WorldWideScience

Sample records for earthquake response analysis

  1. Earthquake response analysis of a base isolated building

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.; Sawada, Y.; Harada, O.; Kawai, N.; Ontsuka, S.

    1989-01-01

    Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipments against the earthquakes. However, it is desired to accumulate the demonstration data on reliability of seismically isolated structures and to establish the analysis methods of those structures. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building. In order to examine the validity of numerical models, earthquake response analyses have been executed by using both lumped mass model, and finite element model

  2. An Overview of Soil Models for Earthquake Response Analysis

    Directory of Open Access Journals (Sweden)

    Halida Yunita

    2015-01-01

    Full Text Available Earthquakes can damage thousands of buildings and infrastructure as well as cause the loss of thousands of lives. During an earthquake, the damage to buildings is mostly caused by the effect of local soil conditions. Depending on the soil type, the earthquake waves propagating from the epicenter to the ground surface will result in various behaviors of the soil. Several studies have been conducted to accurately obtain the soil response during an earthquake. The soil model used must be able to characterize the stress-strain behavior of the soil during the earthquake. This paper compares equivalent linear and nonlinear soil model responses. Analysis was performed on two soil types, Site Class D and Site Class E. An equivalent linear soil model leads to a constant value of shear modulus, while in a nonlinear soil model, the shear modulus changes constantly,depending on the stress level, and shows inelastic behavior. The results from a comparison of both soil models are displayed in the form of maximum acceleration profiles and stress-strain curves.

  3. Simulation analysis of earthquake response of nuclear power plant to the 2003 Miyagi-Oki earthquake

    International Nuclear Information System (INIS)

    Yoshihiro Ogata; Kiyoshi Hirotani; Masayuki Higuchi; Shingo Nakayama

    2005-01-01

    On May 26, 2003 an earthquake of magnitude scale 7.1 (Japan Meteorological Agency) occurred just offshore of Miyagi Prefecture. This was the largest earthquake ever experienced by the nuclear power plant of Tohoku Electric Power Co. in Onagawa (hereafter the Onagawa Nuclear Power Plant) during the 19 years since it had started operations in 1984. In this report, we review the vibration characteristics of the reactor building of the Onagawa Nuclear Power Plant Unit 1 based on acceleration records observed at the building, and give an account of a simulation analysis of the earthquake response carried out to ascertain the appropriateness of design procedure and a seismic safety of the building. (authors)

  4. Earthquake response analysis considering structure-soil-structure interaction

    International Nuclear Information System (INIS)

    Shiomi, T.; Takahashi, K.; Oguro, E.

    1981-01-01

    This paper proposes a numerical method of earthquake response analysis considering the structure-soil-structure interaction between two adjacent buildings. In this paper an analytical study is presented in order to show some typical features of coupling effects of two reactor buildings of the BWR-type nuclear power plant. The technical approach is a kind of substructure method, which at first evaluates the compliance properties with the foundation-soil-foundation interaction and then uses the compliance in determining seismic responses of two super-structures during earthquake motions. For this purpose, it is assumed that the soil medium is an elastic half space for modeling and that the rigidity of any type of structures such as piping facilities connecting the adjacent buildings is negligible. The technical approach is mainly based on the following procedures. Supersturcture stiffness is calculated by using the method which has been developed in our laboratory based on the Thin-Wall Beam Theory. Soil stiffness is expressed by a matrix with 12 x 12 elements as a function of frequency, which is calculated using the soil compliance functions proposed in Dr. Tajimi's Theory. These stiffness values may be expressed by complex numbers for modeling the damping mechanism of superstructures. We can solve eigenvalue problems with frequency dependent stiffness and the large-scale matrix using our method which is based on condensing the matrix to the suitable size by Rayleigh-Ritz method. Earthquake responses can be solved in the frequency domain by Fourier Transform. (orig./RW)

  5. Time history nonlinear earthquake response analysis considering materials and geometrical nonlinearity

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshikawa, K.; Takaoka, E.; Nakazawa, M.; Shikama, Y.

    2002-01-01

    A time history nonlinear earthquake response analysis method was proposed and applied to earthquake response prediction analysis for a Large Scale Seismic Test (LSST) Program in Hualien, Taiwan, in which a 1/4 scale model of a nuclear reactor containment structure was constructed on sandy gravel layer. In the analysis both of strain-dependent material nonlinearity, and geometrical nonlinearity by base mat uplift, were considered. The 'Lattice Model' for the soil-structure interaction model was employed. An earthquake record on soil surface at the site was used as control motion, and deconvoluted to the input motion of the analysis model at GL-52 m with 300 Gal of maximum acceleration. The following two analyses were considered: (A) time history nonlinear, (B) equivalent linear, and the advantage of time history nonlinear earthquake response analysis method is discussed

  6. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-15

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments.

  7. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    International Nuclear Information System (INIS)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments

  8. Y-12 site-specific earthquake response analysis and soil liquefaction assessment

    International Nuclear Information System (INIS)

    Ahmed, S.B.; Hunt, R.J.; Manrod, W.E. III.

    1995-01-01

    A site-specific earthquake response analysis and soil liquefaction assessment were performed for the Oak Ridge Y-12 Plant. The main purpose of these studies was to use the results of the analyses for evaluating the safety of the performance category -1, -2, and -3 facilities against the natural phenomena seismic hazards. Earthquake response was determined for seven (7), one dimensional soil columns (Fig. 12) using two horizontal components of the PC-3 design basis 2000-year seismic event. The computer program SHAKE 91 (Ref. 7) was used to calculate the absolute response accelerations on top of ground (soil/weathered shale) and rock outcrop. The SHAKE program has been validated for horizontal response calculations at periods less than 2.0 second at several sites and consequently is widely accepted in the geotechnical earthquake engineering area for site response analysis

  9. Analysis of Taipei Basin Response for Earthquakes of Various Depths and Locations Using Empirical Data

    Directory of Open Access Journals (Sweden)

    Vladimir Sokolov

    2009-01-01

    Full Text Available The response of Taipei basin upon earthquake excitation was studied using records of recent earthquakes. The strong-motion database includes records obtained at 32 stations of the Taipei TSMIP net work from 83 deep and 142 shallow earthquakes (M > 4.0 that occurred in 1992 - 2004. The characteristics of frequency-de pendent site response were obtained as spectral ratios between the actual earthquake records (horizontal components and those modelled for a hypothetical Very Hard Rock (VHR condition. The models for VHR spectra of Taiwan earthquakes had been recently proposed by Sokolov et al. (2005b, 2006. Analysis of site response characteristics and comparison with simple 1D models of the soil column resulted in the following conclusions: (1 The spectral ratios through out the basin obtained from deep earth quakes (depth > 35 km exhibit good agreement with the theoretical ratios calculated using the 1D models constructed using avail able geological and geotechnical data. (2 The spectral ratios obtained from shallow earth quakes show influence of: (a surface waves generated when travelling from distant sources to the basin and (b relatively low-frequency (< 1 - 2 Hz waves generated within the basin. (3 Some shallow earth quakes pro duce extremely high amplification at frequencies 0.3 - 1 Hz within the basin that may be dangerous for high-rise buildings and high way bridges. (4 The obtained results may be used in probabilistic seismic microzonation of the basin when many possible earth quakes located at various distances are considered. 2D and 3D simulation is necessary to model the seismic influence from particularly large earthquakes.

  10. Predicting Dynamic Response of Structures under Earthquake Loads Using Logical Analysis of Data

    Directory of Open Access Journals (Sweden)

    Ayman Abd-Elhamed

    2018-04-01

    Full Text Available In this paper, logical analysis of data (LAD is used to predict the seismic response of building structures employing the captured dynamic responses. In order to prepare the data, computational simulations using a single degree of freedom (SDOF building model under different ground motion records are carried out. The selected excitation records are real and of different peak ground accelerations (PGA. The sensitivity of the seismic response in terms of displacements of floors to the variation in earthquake characteristics, such as soil class, characteristic period, and time step of records, peak ground displacement, and peak ground velocity, have also been considered. The dynamic equation of motion describing the building model and the applied earthquake load are presented and solved incrementally using the Runge-Kutta method. LAD then finds the characteristic patterns which lead to forecast the seismic response of building structures. The accuracy of LAD is compared to that of an artificial neural network (ANN, since the latter is the most known machine learning technique. Based on the conducted study, the proposed LAD model has been proven to be an efficient technique to learn, simulate, and blindly predict the dynamic response behaviour of building structures subjected to earthquake loads.

  11. Stochastic analysis of the earthquake response of structures with a view to soil-structure interaction

    International Nuclear Information System (INIS)

    Bauer, J.

    1980-01-01

    Thesis dealing with the analysis of earthquake response of structures. In order to achieve a reliable risk assessment, the results of the seismic risk analysis have to be seen in an overall view together with the results of stochastic vibrational analyses, and the data on maximum supportable stresses of the structure. Taking into account stochastic seismic focus models and calculation methods is of special significance in this connection. Based upon well-known seismic risk assessment models, the calculation of the annual probability for exceeding the acceleration level is carried out also considering the length of the failure zone, assuming that the energy released during an earthquake is uniformly, distributed over this fracture zone. The strong influence of local parameters on the annual exceeding probability is shown by a sensitivity analysis. (orig./RW) [de

  12. Analysis of recorded earthquake response data at the Hualien large-scale seismic test site

    International Nuclear Information System (INIS)

    Hyun, C.H.; Tang, H.T.; Dermitzakis, S.; Esfandiari, S.

    1997-01-01

    A soil-structure interaction (SSI) experiment is being conducted in a seismically active region in Hualien, Taiwan. To obtain earthquake data for quantifying SSI effects and providing a basis to benchmark analysis methods, a 1/4-th scale cylindrical concrete containment model similar in shape to that of a nuclear power plant containment was constructed in the field where both the containment model and its surrounding soil, surface and sub-surface, are extensively instrumented to record earthquake data. In between September 1993 and May 1995, eight earthquakes with Richter magnitudes ranging from 4.2 to 6.2 were recorded. The author focuses on studying and analyzing the recorded data to provide information on the response characteristics of the Hualien soil-structure system, the SSI effects and the ground motion characteristics. An effort was also made to directly determine the site soil physical properties based on correlation analysis of the recorded data. No modeling simulations were attempted to try to analytically predict the SSI response of the soil and the structure. These will be the scope of a subsequent study

  13. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  14. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    In the earthquake response analysis for a rigid and massive structure as a nuclear reactor building, it is important to estimate the effect of soil-structure interaction (SSI) appropriately. In case of strong earthquakes, the nonlinearity, such as the wall-ground separation, the base mat uplift of sliding, makes the behavior of the soil-structure system complex. But, if the nuclear reactor building is embedded in a relatively soft ground with surface layer, the wall-ground separation plays the most important role in the response of soil-structure system. Because, it is expected that the base uplift and slide would be less significant due to the effect of the embedment, and the wall-ground friction is usually neglected in design. But, the nonlinearity of ground may have some effect on the wall-ground separation and the response of the structure. These problems have been studied by use of FEM. Others used joint elements between the ground and the structure which does not resist tensile force. Others studied the effect of wall-ground separation with non-tension springs. But the relationship between the ground condition and the effect of the separation has not been clarified yet. To clarify the effect the analyses by FE model and lumped mass model (sway-rocking model) are performed and compared. The key parameter is the ground profile, namely the stiffness of the side soil

  15. Antioptimization of earthquake exitation and response

    Directory of Open Access Journals (Sweden)

    G. Zuccaro

    1998-01-01

    Full Text Available The paper presents a novel approach to predict the response of earthquake-excited structures. The earthquake excitation is expanded in terms of series of deterministic functions. The coefficients of the series are represented as a point in N-dimensional space. Each available ccelerogram at a certain site is then represented as a point in the above space, modeling the available fragmentary historical data. The minimum volume ellipsoid, containing all points, is constructed. The ellipsoidal models of uncertainty, pertinent to earthquake excitation, are developed. The maximum response of a structure, subjected to the earthquake excitation, within ellipsoidal modeling of the latter, is determined. This procedure of determining least favorable response was termed in the literature (Elishakoff, 1991 as an antioptimization. It appears that under inherent uncertainty of earthquake excitation, antioptimization analysis is a viable alternative to stochastic approach.

  16. A dynamic model of liquid containers (tanks) with legs and probability analysis of response to simulated earthquake

    International Nuclear Information System (INIS)

    Fujita, Takafumi; Shimosaka, Haruo

    1980-01-01

    This paper is described on the results of analysis of the response of liquid containers (tanks) to earthquakes. Sine wave oscillation was applied experimentally to model tanks with legs. A model with one degree of freedom is good enough for the analysis. To investigate the reason of this fact, the response multiplication factor of tank displacement was analysed. The shapes of the model tanks were rectangular and cylindrical. Analyses were made by a potential theory. The experimental studies show that the characteristics of attenuation of oscillation was non-linear. The model analysis of this non-linear attenuation was also performed. Good agreement between the experimental and the analytical results was recognized. The probability analysis of the response to earthquake with simulated shock waves was performed, using the above mentioned model, and good agreement between the experiment and the analysis was obtained. (Kato, T.)

  17. Practical guidelines to select and scale earthquake records for nonlinear response history analysis of structures

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2010-01-01

    Earthquake engineering practice is increasingly using nonlinear response history analysis (RHA) to demonstrate performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. Presented herein is a modal-pushover-based scaling (MPS) method to scale ground motions for use in nonlinear RHA of buildings and bridges. In the MPS method, the ground motions are scaled to match (to a specified tolerance) a target value of the inelastic deformation of the first-'mode' inelastic single-degree-of-freedom (SDF) system whose properties are determined by first-'mode' pushover analysis. Appropriate for first-?mode? dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-'mode' SDF system in selecting a subset of the scaled ground motions. Based on results presented for two bridges, covering single- and multi-span 'ordinary standard' bridge types, and six buildings, covering low-, mid-, and tall building types in California, the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  18. 3-dimensional earthquake response analysis of embedded reactor building using hybrid model of boundary elements and finite elements

    International Nuclear Information System (INIS)

    Muto, K.; Motosaka, M.; Kamata, M.; Masuda, K.; Urao, K.; Mameda, T.

    1985-01-01

    In order to investigate the 3-dimensional earthquake response characteristics of an embedded structure with consideration for soil-structure interaction, the authors have developed an analytical method using 3-dimensional hybrid model of boundary elements (BEM) and finite elements (FEM) and have conducted a dynamic analysis of an actual nuclear reactor building. This paper describes a comparative study between two different embedment depths in soil as elastic half-space. As the results, it was found that the earthquake response intensity decreases with the increase of the embedment depth and that this method was confirmed to be effective for investigating the 3-D response characteristics of embedded structures such as deflection pattern of each floor level, floor response spectra in high frequency range. (orig.)

  19. Earthquake response of storey building in Jakarta using accelerographs data analysis

    International Nuclear Information System (INIS)

    Julius, Admiral Musa; Sunardi, Bambang

    2015-01-01

    As seismotectonic, the Jakarta city will be greatly affected by the earthquake which originated from the subduction zone of the Sunda Strait and south of Java. Some occurrences of earthquakes in these location are often perceived by the occupants in the upper floors of multi-storey buildings in Jakarta but was not perceived by the occupants on the ground floor. The case shows the difference in ground-motion parameters on each floor height. The analysis of the earthquake data recorded by accelerographs on different floors need to be done to know the differences in ground-motion parameters. Data used in this research is accelerograph data installed on several floors in the main building of Meteorology Climatology and Geophysics Agency with a case study of Kebumen earthquake on January 25 th 2014. Parameters analyzed include the Peak Ground Acceleration (PGA), Peak Ground Displacement (PGD), Peak Spectral Acceleration (PSA), Amplification (Ag), and the Effective Duration of earthquake (t e ). Research stages include accelerographs data acquisition in three (3) different floors, conversion and data partition for each component, conversion to units of acceleration, determination of PGA, PGD, PSA, Ag and t e as well as data analysis. The study shows the value of PGA on the ground floor, 7 th floor and 15 th floors, respectively are 0.016 g, 0.053 g and 0.116 g. PGD on the ground floor, 7 th floor and 15 th floor respectively are 2.15 cm, 2.98 cm and 4.92 cm. PSA on the ground floor, 7 th floor and 15 th floor respectively are 0.067 g, 0.308 g and 0.836 g. Amplification of the peak acceleration value on the ground floor, 7 th floor and 15 th floor to the surface rock are 4.37, 6.07 and 7.30. Effective duration of the earthquake on the ground floor, 7 th floor and 15 th floor respectively are 222.28 s, 202.28 s and 91.58 s. In general, with increasing floor of the building, the value of the peak ground acceleration, peak ground displacement, peak spectral

  20. Earthquake response of storey building in Jakarta using accelerographs data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Julius, Admiral Musa, E-mail: admiralmusajulius@yahoo.com [Study Program of Geophysics, Indonesia State College of Meteorology Climatology and Geophysics (STMKG), Jl. Perhubungan 1 No. 5, Bintaro 15221 (Indonesia); Jakarta Geophysics Observatory, Indonesia Agency of Meteorology Climatology and Geophysics (BMKG), Jl. Angkasa 1 No. 2, Kemayoran, Jakarta 10720 (Indonesia); Sunardi, Bambang, E-mail: b.sunardi@gmail.com [Research and Development Center, Indonesia Agency of Meteorology Climatology and Geophysics (BMKG), Jl. Angkasa 1 No. 2, Kemayoran, Jakarta 10720 (Indonesia)

    2015-04-24

    As seismotectonic, the Jakarta city will be greatly affected by the earthquake which originated from the subduction zone of the Sunda Strait and south of Java. Some occurrences of earthquakes in these location are often perceived by the occupants in the upper floors of multi-storey buildings in Jakarta but was not perceived by the occupants on the ground floor. The case shows the difference in ground-motion parameters on each floor height. The analysis of the earthquake data recorded by accelerographs on different floors need to be done to know the differences in ground-motion parameters. Data used in this research is accelerograph data installed on several floors in the main building of Meteorology Climatology and Geophysics Agency with a case study of Kebumen earthquake on January 25{sup th} 2014. Parameters analyzed include the Peak Ground Acceleration (PGA), Peak Ground Displacement (PGD), Peak Spectral Acceleration (PSA), Amplification (Ag), and the Effective Duration of earthquake (t{sub e}). Research stages include accelerographs data acquisition in three (3) different floors, conversion and data partition for each component, conversion to units of acceleration, determination of PGA, PGD, PSA, Ag and t{sub e} as well as data analysis. The study shows the value of PGA on the ground floor, 7{sup th} floor and 15{sup th} floors, respectively are 0.016 g, 0.053 g and 0.116 g. PGD on the ground floor, 7{sup th} floor and 15{sup th} floor respectively are 2.15 cm, 2.98 cm and 4.92 cm. PSA on the ground floor, 7{sup th} floor and 15{sup th} floor respectively are 0.067 g, 0.308 g and 0.836 g. Amplification of the peak acceleration value on the ground floor, 7{sup th} floor and 15{sup th} floor to the surface rock are 4.37, 6.07 and 7.30. Effective duration of the earthquake on the ground floor, 7{sup th} floor and 15{sup th} floor respectively are 222.28 s, 202.28 s and 91.58 s. In general, with increasing floor of the building, the value of the

  1. Earthquake response of inelastic structures

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Vaity, K.N.; Reddy, .R.; Vaze, K.K.; Kushwaha, H.S.

    2004-01-01

    The most commonly used method in the seismic analysis of structures is the response spectrum method. For seismic re-evaluation of existing facilities elastic response spectrum method cannot be used directly as large deformation above yield may be observed under Safe Shutdown Earthquake (SSE). The plastic deformation, i.e. hysteretic characteristics of various elements of the structure cause dissipation of energy. Hence the values of damping given by the code, which does not account hysteretic energy dissipation cannot be directly used. In this paper, appropriate damping values are evaluated for 5-storey, 10-storey and 15-storey shear beam structures, which deform beyond their yield limit. Linear elastic analysis is performed for the same structures using these damping values and the storey forces are compared with those obtained using inelastic time history analysis. A damping model, which relates ductility of the structure and damping, is developed. Using his damping model, a practical structure is analysed and results are compared with inelastic time history analysis and the comparison is found to be good

  2. Explanation of earthquake response spectra

    OpenAIRE

    Douglas, John

    2017-01-01

    This is a set of five slides explaining how earthquake response spectra are derived from strong-motion records and simple models of structures and their purpose within seismic design and assessment. It dates from about 2002 and I have used it in various introductory lectures on engineering seismology.

  3. [Expression of negative emotional responses to the 2011 Great East Japan Earthquake: Analysis of big data from social media].

    Science.gov (United States)

    Miura, Asako; Komori, Masashi; Matsumura, Naohiro; Maeda, Kazutoshi

    2015-06-01

    In this article, we investigated the expression of emotional responses to the 2011 Great East Japan Earthquake by analyzing the frequency of negative emotional terms in tweets posted on Twitter, one of the most popular social media platforms. We focused on differences in time-series variations and diurnal changes between two kinds of disasters: natural disasters (earthquakes and tsunamis) and nuclear accidents. The number of tweets containing negative emotional responses increased sharply shortly after the first huge earthquake and decreased over time, whereas tweets about nuclear accidents showed no correlation with elapsed time. Expressions of anxiety about natural disasters had a circadian rhythm, with a peak at midnight, whereas expressions of anger about the nuclear accident were highly sensitive to critical events related to the accident. These findings were discussed in terms of similarities and differences compared to earlier studies on emotional responses in social media.

  4. Our response to the earthquake at Onagawa Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirakawa, Tomoshi

    2008-01-01

    When the Miyagi Offshore earthquake occurred on August 16, 2005, all three units at the Onagawa NPS were shut down automatically according to the Strong Seismic Acceleration' signal. Our inspection after the earthquake confirmed there was no damage to the equipment of the nuclear power plants, but the analysis of the response spectrum observed at the bedrock showed the earthquake had exceeded the 'design-basis earthquake', at certain periods, so that we implemented a review of the seismic safety of plant facilities. In the review, the ground motion of Miyagi Offshore Earthquake which are predicted to occur in the near future were reexamined based on the observation data, and then 'The Ground Motion for Safety Check' surpassing the supposed ground motion of the largest earthquake was established. The seismic safety of plant facilities, important for safety, was assured. At present, No.1 to No.3 units at Onagawa NPS have returned to normal operation. (author)

  5. Comparative Analysis of Emergency Response Operations: Haiti Earthquake in January 2010 and Pakistan’s Flood in 2010

    Science.gov (United States)

    2011-09-01

    Earthquake, Pakistan, Flood, Emergency Response Operations, International Community, HA/DR, United Nations , FRC, NDMA , ICT 16. PRICE CODE 17. SECURITY...Registration Authority NATO North Atlantic Treaty Organization NDMA National Disaster and Management Authority NDMC National Disaster Management...complicates relief efforts. 6 NDMA Pakistan, “Pakistan Floods-Summary of Damages,” No Author. Accessed 24

  6. Earthquake response observation of isolated buildings

    International Nuclear Information System (INIS)

    Harada, O.; Kawai, N.; Ishii, T.; Sawada, Y.; Shiojiri, H.; Mazda, T.

    1989-01-01

    Base isolation system is expected to be a technology for a rational design of FBR plant. In order to apply this system to important structures, accumulation of verification data is necessary. From this point of view, the vibration test and the earthquake response observation of the actual isolated building using laminated rubber bearings and elasto-plastic steel dampers were conducted for the purpose of investigating its dynamic behavior and of proving the reliability of the base isolation system. Since September in 1986, more than thirty earthquakes have been observed. This paper presents the results of the earthquake response observation

  7. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    The effect of the wall-ground separation depends on the relation between the fundamental frequency of the SSI system and that of the surface layer. The maximum accelerations of the upper floors are increased if the side soil is soft. The building shear force is decreased below the ground level if the fundamental frequency of the SSI system is nearly equal to that of the surface layer. The floor response spectra are slightly increased in the high frequency range. Yielding of the soil occurred only in case that the side soil is soft, and the yield zone was restricted in the upper part of the surface layer. Therefore, the material nonlinearity did not affect the results so much. The results of the sway-rocking model (lumped mass model) analysis showed good agreements with those of the FEM models. (orig./HP)

  8. Experimental study of structural response to earthquakes

    International Nuclear Information System (INIS)

    Clough, R.W.; Bertero, V.V.; Bouwkamp, J.G.; Popov, E.P.

    1975-01-01

    The objectives, methods, and some of the principal results obtained from experimental studies of the behavior of structures subjected to earthquakes are described. Although such investigations are being conducted in many laboratories throughout the world, the information presented deals specifically with projects being carried out at the Earthquake Engineering Research Center (EERC) of the University of California, Berkeley. A primary purpose of these investigations is to obtain detailed information on the inelastic response mechanisms in typical structural systems so that the experimentally observed performance can be compared with computer generated analytical predictions. Only by such comparisons can the mathematical models used in dynamic nonlinear analyses be verified and improved. Two experimental procedures for investigating earthquake structural response are discussed: the earthquake simulator facility which subjects the base of the test structure to acceleration histories similar to those recorded in actual earthquakes, and systems of hydraulic rams which impose specified displacement histories on the test components, equivalent to motions developed in structures subjected to actual'quakes. The general concept and performance of the 20ft square EERC earthquake simulator is described, and the testing of a two story concrete frame building is outlined. Correlation of the experimental results with analytical predictions demonstrates that satisfactory agreement can be obtained only if the mathematical model incorporates a stiffness deterioration mechanism which simulates the cracking and other damage suffered by the structure

  9. Pile foundation response in liquefiable soil deposit during strong earthquakes. ; Centrifugal test for pile foundation model and correlation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Y.; Miura, K. (Kajima Corp., Tokyo (Japan)); Scott, R.; Hushmand, B. (California Inst. of Technology, California, CA (United States))

    1992-09-30

    For the purpose of studying the pile foundation response in liquefiable soil deposit during earthquakes, a centrifugal loading system is employed which can reproduce the stress conditions of the soil in the actual ground, and earthquake wave vibration tests are performed in dry and saturated sand layers using a pile foundation model equipped with 4 piles. In addition, the result of the tests is analyzed by simulation using an analytic method for which effective stress is taken into consideration to investigate the effectiveness of this analytical model. It is clarified from the result of the experiments that the bending moment of the pile and the response characteristics of the foundation in the pile foundation response in saturated sand are greatly affected by the longer period of acceleration wave form of the ground and the increase in the ground displacement due to excess pore water pressure buildup. It is shown that the analytical model of the pile foundation/ground system is appropriate, and that this analytical method is effective in evaluating the seismic response of the pile foundation in nonlinear liquefiable soil. 23 refs., 21 figs., 3 tabs.

  10. Twitter Seismology: Earthquake Monitoring and Response in a Social World

    Science.gov (United States)

    Bowden, D. C.; Earle, P. S.; Guy, M.; Smoczyk, G.

    2011-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment USGS earthquake response products and the delivery of hazard information. The potential uses of Twitter for earthquake response include broadcasting earthquake alerts, rapidly detecting widely felt events, qualitatively assessing earthquake damage effects, communicating with the public, and participating in post-event collaboration. Several seismic networks and agencies are currently distributing Twitter earthquake alerts including the European-Mediterranean Seismological Centre (@LastQuake), Natural Resources Canada (@CANADAquakes), and the Indonesian meteorological agency (@infogempabmg); the USGS will soon distribute alerts via the @USGSted and @USGSbigquakes Twitter accounts. Beyond broadcasting alerts, the USGS is investigating how to use tweets that originate near the epicenter to detect and characterize shaking events. This is possible because people begin tweeting immediately after feeling an earthquake, and their short narratives and exclamations are available for analysis within 10's of seconds of the origin time. Using five months of tweets that contain the word "earthquake" and its equivalent in other languages, we generate a tweet-frequency time series. The time series clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a simple Short-Term-Average / Long-Term-Average algorithm similar to that commonly used to detect seismic phases. As with most auto-detection algorithms, the parameters can be tuned to catch more or less events at the cost of more or less false triggers. When tuned to a moderate sensitivity, the detector found 48 globally-distributed, confirmed seismic events with only 2 false triggers. A space-shuttle landing and "The Great California ShakeOut" caused the false triggers. This number of

  11. REVIEW ARTICLE: A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile

    Science.gov (United States)

    Pilz, Marco; Parolai, Stefano; Leyton, Felipe; Campos, Jaime; Zschau, Jochen

    2009-08-01

    Situated in an active tectonic region, Santiago de Chile, the country's capital with more than six million inhabitants, faces tremendous earthquake risk. Macroseismic data for the 1985 Valparaiso event show large variations in the distribution of damage to buildings within short distances, indicating strong effects of local sediments on ground motion. Therefore, a temporary seismic network was installed in the urban area for recording earthquake activity and a study was carried out aiming to estimate site amplification derived from horizontal-to-vertical (H/V) spectral ratios from earthquake data (EHV) and ambient noise (NHV), as well as using the standard spectral ratio (SSR) technique with a nearby reference station located on igneous rock. The results lead to the following conclusions: (1) The analysis of earthquake data shows significant dependence on the local geological structure with respect to amplitude and duration. (2) An amplification of ground motion at frequencies higher than the fundamental one can be found. This amplification would not be found when looking at NHV ratios alone. (3) The analysis of NHV spectral ratios shows that they can only provide a lower bound in amplitude for site amplification. (4) P-wave site responses always show lower amplitudes than those derived by S waves, and sometimes even fail to provide some frequencies of amplification. (5) No variability in terms of time and amplitude is observed in the analysis of the H/V ratio of noise. (6) Due to the geological conditions in some parts of the investigated area, the fundamental resonance frequency of a site is difficult to estimate following standard criteria proposed by the SESAME consortium, suggesting that these are too restrictive under certain circumstances.

  12. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  13. A STUDY ON THE EARTHQUAKE RESPONSE AND EARTHQUAKE RESISTANT DESIGN METHOD OF AN OPEN TYPE WHARF WITH PNEUMATIC CAISSONS

    Science.gov (United States)

    Oishi, Masahiko; Nagao, Takashi; Shigeki, Kouji; Ouchi, Masatoshi; Sato, Yuske; Kinomiya, Osamu

    Seismic response of an open type wharf with pneumatic caisson was clarified using a dynamic finite element method. As a result, rocking behavior of caisson foundations were observed and applicability of a frame model analysis to the earthquake resistant design of a wharf was suggested. Authors proposed the framework of earthquake resistant design method of the wharf including the evaluation method of response acceleration of the wharf.

  14. Analysis methods for predicting the behaviour of isolators and formulation of simplified models for use in predicting response of structures to earthquake type input

    International Nuclear Information System (INIS)

    2002-01-01

    This report describes the simplified models for predicting the response of high-damping natural rubber bearings (HDNRB) to earthquake ground motions and benchmark problems for assessing the accuracy of finite element analyses in designing base-isolators. (author)

  15. Conventional estimating method of earthquake response of mechanical appendage system

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Suzuki, Kohei

    1981-01-01

    Generally, for the estimation of the earthquake response of appendage structure system installed in main structure system, the method of floor response analysis using the response spectra at the point of installing the appendage system has been used. On the other hand, the research on the estimation of the earthquake response of appendage system by the statistical procedure based on probability process theory has been reported. The development of a practical method for simply estimating the response is an important subject in aseismatic engineering. In this study, the method of estimating the earthquake response of appendage system in the general case that the natural frequencies of both structure systems were different was investigated. First, it was shown that floor response amplification factor was able to be estimated simply by giving the ratio of the natural frequencies of both structure systems, and its statistical property was clarified. Next, it was elucidated that the procedure of expressing acceleration, velocity and displacement responses with tri-axial response spectra simultaneously was able to be applied to the expression of FRAF. The applicability of this procedure to nonlinear system was examined. (Kako, I.)

  16. Retrospective analysis of the Spitak earthquake

    Directory of Open Access Journals (Sweden)

    A. K. Tovmassian

    1995-06-01

    Full Text Available Based on the retrospective analysis of numerous data and studies of the Spitak earthquake the present work at- tempts to shed light on different aspects of that catastrophic seismic event which occurred in Northern Arme- nia on December 7, 1988. The authors follow a chronological order of presentation, namely: changes in geo- sphere, atmosphere, biosphere during the preparation of the Spitak earthquake, foreshocks, main shock, after- shocks, focal mechanisms, historical seismicity; seismotectonic position of the source, strong motion records, site effects; the macroseismic effect, collapse of buildings and structures; rescue activities; earthquake conse- quences; and the lessons of the Spitak earthquake.

  17. Basic earthquake engineering from seismology to analysis and design

    CERN Document Server

    Sucuoğlu, Halûk

    2014-01-01

    This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building struc­tures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calcu...

  18. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  19. Earthquake accelerations estimation for construction calculating with different responsibility degrees

    International Nuclear Information System (INIS)

    Dolgaya, A.A.; Uzdin, A.M.; Indeykin, A.V.

    1993-01-01

    The investigation object is the design amplitude of accelerograms, which are used in the evaluation of seismic stability of responsible structures, first and foremost, NPS. The amplitude level is established depending on the degree of responsibility of the structure and on the prevailing period of earthquake action on the construction site. The investigation procedure is based on statistical analysis of 310 earthquakes. At the first stage of statistical data-processing we established the correlation dependence of both the mathematical expectation and root-mean-square deviation of peak acceleration of the earthquake on its prevailing period. At the second stage the most suitable law of acceleration distribution about the mean was chosen. To determine of this distribution parameters, we specified the maximum conceivable acceleration, the excess of which is not allowed. Other parameters of distribution are determined according to statistical data. At the third stage the dependencies of design amplitude on the prevailing period of seismic effect for different structures and equipment were established. The obtained data made it possible to recommend to fix the level of safe-shutdown (SSB) and operating basis earthquakes (OBE) for objects of various responsibility categories when designing NPS. (author)

  20. Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide

    Science.gov (United States)

    Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy

    2009-01-01

    Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.

  1. Analysis of Wedge-like Response in Mexico City during the September 19th, 2017 Puebla-Morelos Earthquake

    Science.gov (United States)

    Baena-Rivera, M.; Sanchez-Sesma, F. J.; Ramirez-Guzman, L.

    2017-12-01

    The September 19th, 2017 Puebla-Morelos earthquake (Mw7.1) caused severe structural and nonstructural damage in Mexico City in the Transition and border of the Lake geotechnical zones. Previously recorded ground motion had not reached similar high intensities. The Transition zone surrounds the base of mountain ranges and is composed of alluvial sands and silts, limited by layers of hard soil of the Hill Zone and highly compressible clay deposits of the Lake Zone. These transition configurations are modeled as dipping layers where the soft sediments progressively thicken away from the edge.We present a preliminary analysis of 2D SH and P-SV dipping layer models with homogeneous and lateral variations that resemble the known structure of the basin. Our results show the emergence of surface waves in the edges, and the spread of the energy, broadening the frequency range as compared to 1D models. The latter is a plausible explanation of the frequency content in the recorded ground motion in sites of observed damage. Acknowledgments: Records used in this research are obtained, processed and maintained by the Seismic Instrumentation Unit of the Institute of Engineering at the National Autonomous University of Mexico. This Project was funded by the Secretaría de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  2. Earthquake Hazard Analysis Methods: A Review

    Science.gov (United States)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  3. A quick earthquake disaster loss assessment method supported by dasymetric data for emergency response in China

    Science.gov (United States)

    Xu, Jinghai; An, Jiwen; Nie, Gaozong

    2016-04-01

    Improving earthquake disaster loss estimation speed and accuracy is one of the key factors in effective earthquake response and rescue. The presentation of exposure data by applying a dasymetric map approach has good potential for addressing this issue. With the support of 30'' × 30'' areal exposure data (population and building data in China), this paper presents a new earthquake disaster loss estimation method for emergency response situations. This method has two phases: a pre-earthquake phase and a co-earthquake phase. In the pre-earthquake phase, we pre-calculate the earthquake loss related to different seismic intensities and store them in a 30'' × 30'' grid format, which has several stages: determining the earthquake loss calculation factor, gridding damage probability matrices, calculating building damage and calculating human losses. Then, in the co-earthquake phase, there are two stages of estimating loss: generating a theoretical isoseismal map to depict the spatial distribution of the seismic intensity field; then, using the seismic intensity field to extract statistics of losses from the pre-calculated estimation data. Thus, the final loss estimation results are obtained. The method is validated by four actual earthquakes that occurred in China. The method not only significantly improves the speed and accuracy of loss estimation but also provides the spatial distribution of the losses, which will be effective in aiding earthquake emergency response and rescue. Additionally, related pre-calculated earthquake loss estimation data in China could serve to provide disaster risk analysis before earthquakes occur. Currently, the pre-calculated loss estimation data and the two-phase estimation method are used by the China Earthquake Administration.

  4. Source Spectra and Site Response for Two Indonesian Earthquakes: the Tasikmalaya and Kerinci Events of 2009

    Science.gov (United States)

    Gunawan, I.; Cummins, P. R.; Ghasemi, H.; Suhardjono, S.

    2012-12-01

    Indonesia is very prone to natural disasters, especially earthquakes, due to its location in a tectonically active region. In September-October 2009 alone, intraslab and crustal earthquakes caused the deaths of thousands of people, severe infrastructure destruction and considerable economic loss. Thus, both intraslab and crustal earthquakes are important sources of earthquake hazard in Indonesia. Analysis of response spectra for these intraslab and crustal earthquakes are needed to yield more detail about earthquake properties. For both types of earthquakes, we have analysed available Indonesian seismic waveform data to constrain source and path parameters - i.e., low frequency spectral level, Q, and corner frequency - at reference stations that appear to be little influenced by site response.. We have considered these analyses for the main shocks as well as several aftershocks. We obtain corner frequencies that are reasonably consistent with the constant stress drop hypothesis. Using these results, we consider using them to extract information about site response form other stations form the Indonesian strong motion network that appear to be strongly affected by site response. Such site response data, as well as earthquake source parameters, are important for assessing earthquake hazard in Indonesia.

  5. E-DECIDER Decision Support Gateway For Earthquake Disaster Response

    Science.gov (United States)

    Glasscoe, M. T.; Stough, T. M.; Parker, J. W.; Burl, M. C.; Donnellan, A.; Blom, R. G.; Pierce, M. E.; Wang, J.; Ma, Y.; Rundle, J. B.; Yoder, M. R.

    2013-12-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing capabilities for decision-making utilizing remote sensing data and modeling software in order to provide decision support for earthquake disaster management and response. E-DECIDER incorporates earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project in order to produce standards-compliant map data products to aid in decision-making following an earthquake. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools, help provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). E-DECIDER utilizes a service-based GIS model for its cyber-infrastructure in order to produce standards-compliant products for different user types with multiple service protocols (such as KML, WMS, WFS, and WCS). The goal is to make complex GIS processing and domain-specific analysis tools more accessible to general users through software services as well as provide system sustainability through infrastructure services. The system comprises several components, which include: a GeoServer for thematic mapping and data distribution, a geospatial database for storage and spatial analysis, web service APIs, including simple-to-use REST APIs for complex GIS functionalities, and geoprocessing tools including python scripts to produce standards-compliant data products. These are then served to the E-DECIDER decision support gateway (http://e-decider.org), the E-DECIDER mobile interface, and to the Department of Homeland Security decision support middleware UICDS (Unified Incident Command and Decision Support). The E-DECIDER decision support gateway features a web interface that

  6. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  7. The Technical Efficiency of Earthquake Medical Rapid Response Teams Following Disasters: The Case of the 2010 Yushu Earthquake in China.

    Science.gov (United States)

    Liu, Xu; Tang, Bihan; Yang, Hongyang; Liu, Yuan; Xue, Chen; Zhang, Lulu

    2015-12-04

    Performance assessments of earthquake medical rapid response teams (EMRRTs), particularly the first responders deployed to the hardest hit areas following major earthquakes, should consider efficient and effective use of resources. This study assesses the daily technical efficiency of EMRRTs in the emergency period immediately following the 2010 Yushu earthquake in China. Data on EMRRTs were obtained from official daily reports of the general headquarters for Yushu earthquake relief, the emergency office of the National Ministry of Health, and the Health Department of Qinghai Province, for a sample of data on 15 EMRRTs over 62 days. Data envelopment analysis was used to examine the technical efficiency in a constant returns to scale model, a variable returns to scale model, and the scale efficiency of EMRRTs. Tobit regression was applied to analyze the effects of corresponding influencing factors. The average technical efficiency scores under constant returns to scale, variable returns to scale, and the scale efficiency scores of the 62 units of analysis were 77.95%, 89.00%, and 87.47%, respectively. The staff-to-bed ratio was significantly related to global technical efficiency. The date of rescue was significantly related to pure technical efficiency. The type of institution to which an EMRRT belonged and the staff-to-bed ratio were significantly related to scale efficiency. This study provides evidence that supports improvements to EMRRT efficiency and serves as a reference for earthquake emergency medical rapid assistance leaders and teams.

  8. The Technical Efficiency of Earthquake Medical Rapid Response Teams Following Disasters: The Case of the 2010 Yushu Earthquake in China

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2015-12-01

    Full Text Available Purpose: Performance assessments of earthquake medical rapid response teams (EMRRTs, particularly the first responders deployed to the hardest hit areas following major earthquakes, should consider efficient and effective use of resources. This study assesses the daily technical efficiency of EMRRTs in the emergency period immediately following the 2010 Yushu earthquake in China. Methods: Data on EMRRTs were obtained from official daily reports of the general headquarters for Yushu earthquake relief, the emergency office of the National Ministry of Health, and the Health Department of Qinghai Province, for a sample of data on 15 EMRRTs over 62 days. Data envelopment analysis was used to examine the technical efficiency in a constant returns to scale model, a variable returns to scale model, and the scale efficiency of EMRRTs. Tobit regression was applied to analyze the effects of corresponding influencing factors. Results: The average technical efficiency scores under constant returns to scale, variable returns to scale, and the scale efficiency scores of the 62 units of analysis were 77.95%, 89.00%, and 87.47%, respectively. The staff-to-bed ratio was significantly related to global technical efficiency. The date of rescue was significantly related to pure technical efficiency. The type of institution to which an EMRRT belonged and the staff-to-bed ratio were significantly related to scale efficiency. Conclusions: This study provides evidence that supports improvements to EMRRT efficiency and serves as a reference for earthquake emergency medical rapid assistance leaders and teams.

  9. Phase response curves for models of earthquake fault dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Franović, Igor, E-mail: franovic@ipb.ac.rs [Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Kostić, Srdjan [Institute for the Development of Water Resources “Jaroslav Černi,” Jaroslava Černog 80, 11226 Belgrade (Serbia); Perc, Matjaž [Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor (Slovenia); CAMTP—Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Klinshov, Vladimir [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Nekorkin, Vladimir [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); University of Nizhny Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation); Kurths, Jürgen [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Institute of Physics, Humboldt University Berlin, 12489 Berlin (Germany)

    2016-06-15

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.

  10. Phase response curves for models of earthquake fault dynamics

    International Nuclear Information System (INIS)

    Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

    2016-01-01

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.

  11. Direct methods of soil-structure interaction analysis for earthquake loadings (IV)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J B; Kim, D S; Choi, J S; Kwon, K C; Kim, Y J; Lee, H J; Kim, S B; Kim, D K [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-15

    Methodologies of SSI analysis for earthquake loadings have been reviewed. Based on the finite element method incorporating infinite element technique for the unbounded exterior region, a computer program for the nonlinear seismic analysis named as 'KIESSI-QK' has been developed. The computer program has been verified using a free-field site-response problem. The Hualien FVT stochastic finite element analysis after backfill and the blind prediction of earthquake responses have been carried out utilizing the developed computer program. The earthquake response analysis for the LSST structure has also been performed and compared with the measured data.

  12. Direct methods of soil-structure interaction analysis for earthquake loadings (IV)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. B.; Kim, D. S.; Choi, J. S.; Kwon, K. C.; Kim, Y. J.; Lee, H. J.; Kim, S. B.; Kim, D. K. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-15

    Methodologies of SSI analysis for earthquake loadings have been reviewed. Based on the finite element method incorporating infinite element technique for the unbounded exterior region, a computer program for the nonlinear seismic analysis named as 'KIESSI-QK' has been developed. The computer program has been verified using a free-field site-response problem. The Hualien FVT stochastic finite element analysis after backfill and the blind prediction of earthquake responses have been carried out utilizing the developed computer program. The earthquake response analysis for the LSST structure has also been performed and compared with the measured data.

  13. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  14. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  15. Direct methods of soil-structure interaction analysis for earthquake loadings (V)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. B.; Choi, J. S.; Lee, J. J.; Park, D. U. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-07-15

    Methodologies of SSI analysis for earthquake loadings have been reviewed. Based on the finite method incorporating infinite element technique for the unbounded exterior region, a computer program for the nonlinear seismic analysis named as 'KIESSI' has been developed. The computer program has been verified using a free-field site-response problem. Post-correlation analysis for the Hualien FVT after backfill and the blind prediction of earthquake responses have been carried out utilizing the developed computer program. The earthquake response analyses for three LSST structures (Hualien, Lotung and Tepsco structure) have also been performed and compared with the measured data.

  16. Earthquake responses of a beam supported by a mechanical snubber

    International Nuclear Information System (INIS)

    Ohmata, Kenichiro; Ishizu, Seiji.

    1989-01-01

    The mechanical snubber is an earthquakeproof device for piping systems under particular circumstances such as high temperature and radioactivity. It has nonlinearities in both load and frequency response. In this report, the resisting force characteristics of the snubber and earthquake responses of piping (a simply supported beam) which is supported by the snubber are simulated using Continuous System Simulation Language (CSSL). Digital simulations are carried out for various kinds of physical properties of the snubber. The restraint effect and the maximum resisting force of the snubber during earthquakes are discussed and compared with the case of an oil damper. The earthquake waves used here are E1 Centro N-S and Akita Harbour N-S (Nihonkai-Chubu earthquake). (author)

  17. Responses to the 2011 Earthquake on Facebook

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    In my investigation of how Japanese ODA policies and practices have engendered global networks, I have frequented the Association of Overseas Technical Scholarships (AOTS)' Facebook group. In the wake of the earthquake on March 11, 2011, many greetings came in from alumni who have within the last...

  18. Guidelines for nuclear plant response to an earthquake

    International Nuclear Information System (INIS)

    1989-12-01

    Guidelines have been developed to assist nuclear plant personnel in the preparation of earthquake response procedures for nuclear power plants. The objectives of the earthquake response procedures are to determine (1) the immediate effects of an earthquake on the physical condition of the nuclear power plant, (2) if shutdown of the plant is appropriate based on the observed damage to the plant or because the OBE has been exceeded, and (3) the readiness of the plant to resume operation following shutdown due to an earthquake. Readiness of a nuclear power plant to restart is determined on the basis of visual inspections of nuclear plant equipment and structures, and the successful completion of surveillance tests which demonstrate that the limiting conditions for operation as defined in the plant Technical Specifications are met. The guidelines are based on information obtained from a review of earthquake response procedures from numerous US and foreign nuclear power plants, interviews with nuclear plant operations personnel, and a review of reports of damage to industrial equipment and structures in actual earthquakes. 7 refs., 4 figs., 4 tabs

  19. Network similarity and statistical analysis of earthquake seismic data

    OpenAIRE

    Deyasi, Krishanu; Chakraborty, Abhijit; Banerjee, Anirban

    2016-01-01

    We study the structural similarity of earthquake networks constructed from seismic catalogs of different geographical regions. A hierarchical clustering of underlying undirected earthquake networks is shown using Jensen-Shannon divergence in graph spectra. The directed nature of links indicates that each earthquake network is strongly connected, which motivates us to study the directed version statistically. Our statistical analysis of each earthquake region identifies the hub regions. We cal...

  20. Effects of non-uniform embedments on earthquake responses of nuclear reactor building

    International Nuclear Information System (INIS)

    Koyanagi, Y.; Okamoto, S.; Yoshida, K.; Inove, H.

    1989-01-01

    The nuclear reactor buildings have the portion embedded in soil. In the seismic design of such structures, it is essential to consider the effects of the embedment on the earthquake response. Most studies on these effects, however, assume the uniform embedment, i.e. the depth of the embedment is constant, which is convenient for the design and analysis. The behavior of the earthquake response considering the three-dimensional aspects of non-uniform embedment has not been made clear yet. In this paper, the authors evaluate the effects of the non-uniform embedment in an inclined ground surface on the earthquake response of a nuclear reactor building as illustrated. A typical PWR type reactor building is chosen as an analysis structure model. Four different types of embedment are set up for the comparison study. The three-dimensional analysis is carried out considering the geometry of embedment

  1. EARTHQUAKE INDUCED LIQUEFACTION ANALYSIS OF

    African Journals Online (AJOL)

    liquefaction analysis of Tendaho earth-fill dam, which is part ... sugar cane plantation in an area of 60,000 hectares. The project .... The model is prepared using the QUAKE/W program for the ..... Geo-slope International, Ltd., Canada. Dynamic ...

  2. Comparison of Human Response against Earthquake and Tsunami

    Science.gov (United States)

    Arikawa, T.; Güler, H. G.; Yalciner, A. C.

    2017-12-01

    The evacuation response against the earthquake and tsunamis is very important for the reduction of human damages against tsunami. But it is very difficult to predict the human behavior after shaking of the earthquake. The purpose of this research is to clarify the difference of the human response after the earthquake shock in the difference countries and to consider the relation between the response and the safety feeling, knowledge and education. For the objective of this paper, the questionnaire survey was conducted after the 21st July 2017 Gokova earthquake and tsunami. Then, consider the difference of the human behavior by comparison of that in 2015 Chilean earthquake and tsunami and 2011 Japan earthquake and tsunami. The seismic intensity of the survey points was almost 6 to 7. The contents of the questions include the feeling of shaking, recalling of the tsunami, the behavior after shock and so on. The questionnaire was conducted for more than 20 20 people in 10 areas. The results are the following; 1) Most people felt that it was a strong shake not to stand, 2) All of the questionnaires did not recall the tsunami, 3) Depending on the area, they felt that after the earthquake the beach was safer than being at home. 4) After they saw the sea drawing, they thought that a tsunami would come and ran away. Fig. 1 shows the comparison of the evacuation rate within 10 minutes in 2011 Japan, 2015 Chile and 2017 Turkey.. From the education point of view, education for tsunami is not done much in Turkey. From the protection facilities point of view, the high sea walls are constructed only in Japan. From the warning alert point of view, there is no warning system against tsunamis in the Mediterranean Sea. As a result of this survey, the importance of tsunami education is shown, and evacuation tends to be delayed if dependency on facilities and alarms is too high.

  3. Future Earth: Reducing Loss By Automating Response to Earthquake Shaking

    Science.gov (United States)

    Allen, R. M.

    2014-12-01

    Earthquakes pose a significant threat to society in the U.S. and around the world. The risk is easily forgotten given the infrequent recurrence of major damaging events, yet the likelihood of a major earthquake in California in the next 30 years is greater than 99%. As our societal infrastructure becomes ever more interconnected, the potential impacts of these future events are difficult to predict. Yet, the same inter-connected infrastructure also allows us to rapidly detect earthquakes as they begin, and provide seconds, tens or seconds, or a few minutes warning. A demonstration earthquake early warning system is now operating in California and is being expanded to the west coast (www.ShakeAlert.org). In recent earthquakes in the Los Angeles region, alerts were generated that could have provided warning to the vast majority of Los Angelinos who experienced the shaking. Efforts are underway to build a public system. Smartphone technology will be used not only to issue that alerts, but could also be used to collect data, and improve the warnings. The MyShake project at UC Berkeley is currently testing an app that attempts to turn millions of smartphones into earthquake-detectors. As our development of the technology continues, we can anticipate ever-more automated response to earthquake alerts. Already, the BART system in the San Francisco Bay Area automatically stops trains based on the alerts. In the future, elevators will stop, machinery will pause, hazardous materials will be isolated, and self-driving cars will pull-over to the side of the road. In this presentation we will review the current status of the earthquake early warning system in the US. We will illustrate how smartphones can contribute to the system. Finally, we will review applications of the information to reduce future losses.

  4. Flash sourcing, or rapid detection and characterization of earthquake effects through website traffic analysis

    Directory of Open Access Journals (Sweden)

    Laurent Frobert

    2011-06-01

    Full Text Available

    This study presents the latest developments of an approach called ‘flash sourcing’, which provides information on the effects of an earthquake within minutes of its occurrence. Information is derived from an analysis of the website traffic surges of the European–Mediterranean Seismological Centre website after felt earthquakes. These surges are caused by eyewitnesses to a felt earthquake, who are the first who are informed of, and hence the first concerned by, an earthquake occurrence. Flash sourcing maps the felt area, and at least in some circumstances, the regions affected by severe damage or network disruption. We illustrate how the flash-sourced information improves and speeds up the delivery of public earthquake information, and beyond seismology, we consider what it can teach us about public responses when experiencing an earthquake. Future developments should improve the description of the earthquake effects and potentially contribute to the improvement of the efficiency of earthquake responses by filling the information gap after the occurrence of an earthquake.

  5. Generation of artificial earthquakes for dynamic analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Tsushima, Y.; Hiromatsu, T.; Abe, Y.; Tamaki, T.

    1979-01-01

    A procedure for generating artificial earthquakes for the purpose of the dynamic analysis of the nuclear power plant has been studied and relevant computer codes developed. This paper describes brieafly the generation procedure employed in the computer codes and also deals with the results of two artificial earthquakes generated as an example for input motions for the aseismic design of a BWR-type reactor building. Using one of the generated artificial earthquakes and two actually recorded earthquakes, non-linear responses of the reactor building were computed and the results were compared with each other. From this comparison, it has been concluded that the computer codes are practically usable and the generated artificial earthquakes are useful and powerful as input motions for dynamic analysis of a nuclear power plant. (author)

  6. Error evaluation of inelastic response spectrum method for earthquake design

    International Nuclear Information System (INIS)

    Paz, M.; Wong, J.

    1981-01-01

    Two-story, four-story and ten-story shear building-type frames subjected to earthquake excitaion, were analyzed at several levels of their yield resistance. These frames were subjected at their base to the motion recorded for north-south component of the 1940 El Centro earthquake, and to an artificial earthquake which would produce the response spectral charts recommended for design. The frames were first subjected to 25% or 50% of the intensity level of these earthquakes. The resulting maximum relative displacement for each story of the frames was assumed to be yield resistance for the subsequent analyses at 100% of intensity for the excitation. The frames analyzed were uniform along their height with the stiffness adjusted as to result in 0.20 seconds of the fundamental period for the two-story frame, 0.40 seconds for the four-story frame and 1.0 seconds for the ten-story frame. Results of the study provided the following conclusions: (1) The percentage error in floor displacement for linear behavior was less than 10%; (2) The percentage error in floor displacement for inelastic behavior (elastoplastic) could be as high as 100%; (3) In most of the cases analyzed, the error increased with damping in the system; (4) As a general rule, the error increased as the modal yield resistance decreased; (5) The error was lower for the structures subjected to the 1940 E1 Centro earthquake than for the same structures subjected to an artificial earthquake which was generated from the response spectra for design. (orig./HP)

  7. Relay chatter and operator response after a large earthquake: An improved PRA methodology with case studies

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Lambert, H.E.; Hill, E.E.

    1987-08-01

    The purpose of this project has been to develop and demonstrate improvements in the PRA methodology used for analyzing earthquake-induced accidents at nuclear power reactors. Specifically, the project addresses methodological weaknesses in the PRA systems analysis used for studying post-earthquake relay chatter and for quantifying human response under high stress. An improved PRA methodology for relay-chatter analysis is developed, and its use is demonstrated through analysis of the Zion-1 and LaSalle-2 reactors as case studies. This demonstration analysis is intended to show that the methodology can be applied in actual cases, and the numerical values of core-damage frequency are not realistic. The analysis relies on SSMRP-based methodologies and data bases. For both Zion-1 and LaSalle-2, assuming that loss of offsite power (LOSP) occurs after a large earthquake and that there are no operator recovery actions, the analysis finds very many combinations (Boolean minimal cut sets) involving chatter of three or four relays and/or pressure switch contacts. The analysis finds that the number of min-cut-set combinations is so large that there is a very high likelihood (of the order of unity) that at least one combination will occur after earthquake-caused LOSP. This conclusion depends in detail on the fragility curves and response assumptions used for chatter. Core-damage frequencies are calculated, but they are probably pessimistic because assuming zero credit for operator recovery is pessimistic. The project has also developed an improved PRA methodology for quantifying operator error under high-stress conditions such as after a large earthquake. Single-operator and multiple-operator error rates are developed, and a case study involving an 8-step procedure (establishing feed-and-bleed in a PWR after an earthquake-initiated accident) is used to demonstrate the methodology

  8. Real-time earthquake monitoring: Early warning and rapid response

    Science.gov (United States)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  9. Probabilistic earthquake hazard analysis for Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2016-04-01

    Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region's political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input's element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1° × 0.1 ° spacing for all of Cairo's districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone's districts (e.g., El Nozha) and the lowest values at the northern and western zone's districts (e.g., El Sharabiya and El Khalifa).

  10. Human Trafficking in Nepal: Post-Earthquake Risk and Response.

    Science.gov (United States)

    Gyawali, Bishal; Keeling, June; Kallestrup, Per

    2017-04-01

    As Nepal mourns the 1-year commemoration of the April 2015 earthquake and its aftershocks that killed more than 8500 people and left thousands injured and displaced, other more hidden repercussions of the resultant chaotic environment need attention: the increased risk of human trafficking. Considering that natural disasters provide a milieu for this illicit trade, there is a need for a robust response from stakeholders such as donors, civil society organizations, and government organizations against human trafficking following disasters such as the Nepal earthquake. Responsibility to prevent and fight trafficking should be explicitly included in the mandate of relief and rehabilitation mechanisms set up at the national level to coordinate the disaster relief response, serving to support populations in both rural and urban areas. (Disaster Med Public Health Preparedness. 2017;11:153-154).

  11. Report on the 2010 Chilean earthquake and tsunami response

    Science.gov (United States)

    ,

    2011-01-01

    In July 2010, in an effort to reduce future catastrophic natural disaster losses for California, the American Red Cross coordinated and sent a delegation of 20 multidisciplinary experts on earthquake response and recovery to Chile. The primary goal was to understand how the Chilean society and relevant organizations responded to the magnitude 8.8 Maule earthquake that struck the region on February 27, 2010, as well as how an application of these lessons could better prepare California communities, response partners and state emergency partners for a comparable situation. Similarities in building codes, socioeconomic conditions, and broad extent of the strong shaking make the Chilean earthquake a very close analog to the impact of future great earthquakes on California. To withstand and recover from natural and human-caused disasters, it is essential for citizens and communities to work together to anticipate threats, limit effects, and rapidly restore functionality after a crisis. The delegation was hosted by the Chilean Red Cross and received extensive briefings from both national and local Red Cross officials. During nine days in Chile, the delegation also met with officials at the national, regional, and local government levels. Technical briefings were received from the President’s Emergency Committee, emergency managers from ONEMI (comparable to FEMA), structural engineers, a seismologist, hospital administrators, firefighters, and the United Nations team in Chile. Cities visited include Santiago, Talca, Constitución, Concepción, Talcahuano, Tumbes, and Cauquenes. The American Red Cross Multidisciplinary Team consisted of subject matter experts, who carried out special investigations in five Teams on the (1) science and engineering findings, (2) medical services, (3) emergency services, (4) volunteer management, and (5) executive and management issues (see appendix A for a full list of participants and their titles and teams). While developing this

  12. USGS GNSS Applications to Earthquake Disaster Response and Hazard Mitigation

    Science.gov (United States)

    Hudnut, K. W.; Murray, J. R.; Minson, S. E.

    2015-12-01

    Rapid characterization of earthquake rupture is important during a disaster because it establishes which fault ruptured and the extent and amount of fault slip. These key parameters, in turn, can augment in situ seismic sensors for identifying disruption to lifelines as well as localized damage along the fault break. Differential GNSS station positioning, along with imagery differencing, are important methods for augmenting seismic sensors. During response to recent earthquakes (1989 Loma Prieta, 1992 Landers, 1994 Northridge, 1999 Hector Mine, 2010 El Mayor - Cucapah, 2012 Brawley Swarm and 2014 South Napa earthquakes), GNSS co-seismic and post-seismic observations proved to be essential for rapid earthquake source characterization. Often, we find that GNSS results indicate key aspects of the earthquake source that would not have been known in the absence of GNSS data. Seismic, geologic, and imagery data alone, without GNSS, would miss important details of the earthquake source. That is, GNSS results provide important additional insight into the earthquake source properties, which in turn help understand the relationship between shaking and damage patterns. GNSS also adds to understanding of the distribution of slip along strike and with depth on a fault, which can help determine possible lifeline damage due to fault offset, as well as the vertical deformation and tilt that are vitally important for gravitationally driven water systems. The GNSS processing work flow that took more than one week 25 years ago now takes less than one second. Formerly, portable receivers needed to be set up at a site, operated for many hours, then data retrieved, processed and modeled by a series of manual steps. The establishment of continuously telemetered, continuously operating high-rate GNSS stations and the robust automation of all aspects of data retrieval and processing, has led to sub-second overall system latency. Within the past few years, the final challenges of

  13. Earthquake response analyses of soil-structure system considering kinematic interaction

    International Nuclear Information System (INIS)

    Murakami, H.; Yokono, K.; Miura, S.; Ishii, K.

    1985-01-01

    Improvement of soil-structure interaction analysis has been one of major concerns in earthquake engineering field, especially in nuclear industries, to evaluate the safety of structure accurately under earthquake events. This research aims to develop a rational analytical tool which considers effect of the 'kinematic interaction' satisfactory with a proposed simple low-pass filter. In this paper, first the effect of the kinematic interaction is investigated based on earthquake response analysis of a reactor building using the practical design models: the spring-mass-dashpot system and the 'lattice model', in which a building and soil medium are modeled by a system of lumped masses. Next, the filter is developed based on parametrical studies with various sizes of depth and width of foundations embedded in two-layers soil, which represents more general soil condition in practical designs compared with a homogeneous soil medium. (orig.)

  14. Earthquake response of heavily damaged historical masonry mosques after restoration

    Science.gov (United States)

    Altunışık, Ahmet Can; Fuat Genç, Ali

    2017-10-01

    Restoration works have been accelerated substantially in Turkey in the last decade. Many historical buildings, mosques, minaret, bridges, towers and structures have been restored. With these restorations an important issue arises, namely how restoration work affects the structure. For this reason, we aimed to investigate the restoration effect on the earthquake response of a historical masonry mosque considering the openings on the masonry dome. For this purpose, we used the Hüsrev Pasha Mosque, which is located in the Ortakapı district in the old city of Van, Turkey. The region of Van is in an active seismic zone; therefore, earthquake analyses were performed in this study. Firstly a finite element model of the mosque was constructed considering the restoration drawings and 16 window openings on the dome. Then model was constructed with eight window openings. Structural analyses were performed under dead load and earthquake load, and the mode superposition method was used in analyses. Maximum displacements, maximum-minimum principal stresses and shear stresses are given with contours diagrams. The results are analyzed according to Turkish Earthquake Code (TEC, 2007) and compared between 8 and 16 window openings cases. The results show that reduction of the window openings affected the structural behavior of the mosque positively.

  15. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    Science.gov (United States)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  16. On the Regional Dependence of Earthquake Response Spectra

    OpenAIRE

    Douglas , John

    2007-01-01

    International audience; It is common practice to use ground-motion models, often developed by regression on recorded accelerograms, to predict the expected earthquake response spectra at sites of interest. An important consideration when selecting these models is the possible dependence of ground motions on geographical region, i.e., are median ground motions in the (target) region of interest for a given magnitude and distance the same as those in the (host) region where a ground-motion mode...

  17. Sensitivity Analysis of Evacuation Speed in Hypothetical NPP Accident by Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lim, Ho-Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Effective emergency response in emergency situation of nuclear power plant (NPP) can make consequences be different therefore it is regarded important when establishing an emergency response plan and assessing the risk of hypothetical NPP accident. Situation of emergency response can be totally changed when NPP accident caused by earthquake or tsunami is considered due to the failure of roads and buildings by the disaster. In this study evacuation speed has been focused among above various factors and reasonable evacuation speed in earthquake scenario has been investigated. Finally, sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Evacuation scenario can be entirely different in the situation of seismic hazard and the sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Various references were investigated and earthquake evacuation model has been developed considering that evacuees may convert their evacuation method from using a vehicle to walking when they face the difficulty of using a vehicle due to intense traffic jam, failure of buildings and roads, and etc. The population dose within 5 km / 30 km have been found to be increased in earthquake situation due to decreased evacuation speed and become 1.5 - 2 times in the severest earthquake evacuation scenario set up in this study. It is not agreed that using same emergency response model which is used for normal evacuation situations when performing level 3 probabilistic safety assessment for earthquake and tsunami event. Investigation of data and sensitivity analysis for constructing differentiated emergency response model in the event of seismic hazard has been carried out in this study.

  18. Sensitivity Analysis of Evacuation Speed in Hypothetical NPP Accident by Earthquake

    International Nuclear Information System (INIS)

    Kim, Sung-yeop; Lim, Ho-Gon

    2016-01-01

    Effective emergency response in emergency situation of nuclear power plant (NPP) can make consequences be different therefore it is regarded important when establishing an emergency response plan and assessing the risk of hypothetical NPP accident. Situation of emergency response can be totally changed when NPP accident caused by earthquake or tsunami is considered due to the failure of roads and buildings by the disaster. In this study evacuation speed has been focused among above various factors and reasonable evacuation speed in earthquake scenario has been investigated. Finally, sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Evacuation scenario can be entirely different in the situation of seismic hazard and the sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Various references were investigated and earthquake evacuation model has been developed considering that evacuees may convert their evacuation method from using a vehicle to walking when they face the difficulty of using a vehicle due to intense traffic jam, failure of buildings and roads, and etc. The population dose within 5 km / 30 km have been found to be increased in earthquake situation due to decreased evacuation speed and become 1.5 - 2 times in the severest earthquake evacuation scenario set up in this study. It is not agreed that using same emergency response model which is used for normal evacuation situations when performing level 3 probabilistic safety assessment for earthquake and tsunami event. Investigation of data and sensitivity analysis for constructing differentiated emergency response model in the event of seismic hazard has been carried out in this study

  19. An evaluation of an operating BWR piping system damping during earthquake by applying auto regressive analysis

    International Nuclear Information System (INIS)

    Kitada, Y.; Makiguchi, M.; Komori, A.; Ichiki, T.

    1985-01-01

    The records of three earthquakes which had induced significant earthquake response to the piping system were obtained with the earthquake observation system. In the present paper, first, the eigenvalue analysis results for the natural piping system based on the piping support (boundary) conditions are described and second, the frequency and the damping factor evaluation results for each vibrational mode are described. In the present study, the Auto Regressive (AR) analysis method is used in the evaluation of natural frequencies and damping factors. The AR analysis applied here has a capability of direct evaluation of natural frequencies and damping factors from earthquake records observed on a piping system without any information on the input motions to the system. (orig./HP)

  20. COMPARING SEA LEVEL RESPONSE AT MONTEREY, CALIFORNIA FROM THE 1989 LOMA PRIETA EARTHQUAKE AND THE 1964 GREAT ALASKAN EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    L. C. Breaker

    2009-01-01

    Full Text Available Two of the largest earthquakes to affect water levels in Monterey Bay in recent years were the Loma Prieta Earthquake (LPE of 1989 with a moment magnitude of 6.9, and the Great Alaskan Earthquake (GAE of 1964 with a moment magnitude of 9.2. In this study, we compare the sea level response of these events with a primary focus on their frequency content and how the bay affected it, itself. Singular Spectrum Analysis (SSA was employed to extract the primary frequencies associated with each event. It is not clear how or exactly where the tsunami associated with the LPE was generated, but it occurred inside the bay and most likely began to take on the characteristics of a seiche by the time it reached the tide gauge in Monterey Harbor. Results of the SSA decomposition revealed two primary periods of oscillation, 9-10 minutes, and 31-32 minutes. The first oscillation is in agreement with the range of periods for the expected natural oscillations of Monterey Harbor, and the second oscillation is consistent with a bay-wide oscillation or seiche mode. SSA decomposition of the GAE revealed several sequences of oscillations all with a period of approximately 37 minutes, which corresponds to the predicted, and previously observed, transverse mode of oscillation for Monterey Bay. In this case, it appears that this tsunami produced quarter-wave resonance within the bay consistent with its seiche-like response. Overall, the sea level responses to the LPE and GAE differed greatly, not only because of the large difference in their magnitudes but also because the driving force in one case occurred inside the bay (LPE, and in the second, outside the bay (GAE. As a result, different modes of oscillation were excited.

  1. Response of base-isolated nuclear structures to extreme earthquake shaking

    International Nuclear Information System (INIS)

    Kumar, Manish; Whittaker, Andrew S.; Constantinou, Michael C.

    2015-01-01

    Highlights: • Response-history analysis of nuclear structures base-isolated using lead–rubber bearings is performed. • Advanced numerical model of lead–rubber bearing is used to capture behavior under extreme earthquake shaking. • Results of response-history analysis obtained using simplified and advanced model of lead–rubber bearings are compared. • Heating of the lead core and variation in buckling load and axial stiffness affect the response. - Abstract: Seismic isolation using low damping rubber and lead–rubber bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. The mechanical properties of these bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead–rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the lateral displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) are investigated using an advanced numerical model of a lead–rubber bearing that has been verified and validated, and implemented in OpenSees. A macro-model is used for response-history analysis of base-isolated NPPs. Ground motions are selected and scaled to be consistent with response spectra for design basis and beyond design basis earthquake shaking at the site of the Diablo Canyon Nuclear Generating Station. Ten isolation systems of two periods and five characteristic strengths are analyzed. The responses obtained using simplified and advanced isolator models are compared. Strength degradation due to heating of lead cores and changes in buckling load most significantly affect the response of the base-isolated NPP.

  2. Response of base-isolated nuclear structures to extreme earthquake shaking

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manish, E-mail: mkumar2@buffalo.edu; Whittaker, Andrew S.; Constantinou, Michael C.

    2015-12-15

    Highlights: • Response-history analysis of nuclear structures base-isolated using lead–rubber bearings is performed. • Advanced numerical model of lead–rubber bearing is used to capture behavior under extreme earthquake shaking. • Results of response-history analysis obtained using simplified and advanced model of lead–rubber bearings are compared. • Heating of the lead core and variation in buckling load and axial stiffness affect the response. - Abstract: Seismic isolation using low damping rubber and lead–rubber bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. The mechanical properties of these bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead–rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the lateral displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) are investigated using an advanced numerical model of a lead–rubber bearing that has been verified and validated, and implemented in OpenSees. A macro-model is used for response-history analysis of base-isolated NPPs. Ground motions are selected and scaled to be consistent with response spectra for design basis and beyond design basis earthquake shaking at the site of the Diablo Canyon Nuclear Generating Station. Ten isolation systems of two periods and five characteristic strengths are analyzed. The responses obtained using simplified and advanced isolator models are compared. Strength degradation due to heating of lead cores and changes in buckling load most significantly affect the response of the base-isolated NPP.

  3. Seismic response of the EBR-II to the Mt. Borah earthquake

    International Nuclear Information System (INIS)

    Gale, J.G.; Lehto, W.K.

    1985-01-01

    On October 28, 1983, an earthquake of magnitude 7.3 occurred in the mountains of central Idaho at a distance of 114-km from the ANL-West site. The earthquake tripped the seismic sensors in the EBR-II reactor shutdown system causing a reactor scram. Visual and operability checks of structures, components, and systems showed no indication of damage or system abnormalities and reactor restart was initiated. As a result of the earthquake, questions arose as to the magnitude of the actual stress levels in critical components and what value of ground acceleration could be experienced without damage to reactor structures. EBR-II was designed prior to implementation of present day requirements for seismic qualification and appropriate analyses had not been conducted. A lumped-mass, finite element model of the primary tank, support structure, and the reactor was generated and analyzed using the response spectrum technique. The analysis showed that the stress levels in the primary tank system were very low during the Mount Borah earthquake and that the system could experience seismic loadings three to four times those of the Mount Borah earthquake without exceeding yield stresses in any of the components

  4. Influence of intensity parameters of earthquake on response of reinforced concrete structures

    Science.gov (United States)

    Cherian, Ciby Jacob; Madhavan Pillai, T. M.; Sajith, A. S.

    2018-03-01

    Earthquake is one of the most frightening and destructive phenomena of nature. The destructive capacity of an earthquake depends on various parameters. Without characterising earthquake time history data to the required intensity parameters, its effect on structures cannot be predicted. The influence of intensity parameter of earthquake on the destructive capacity of a structure is essential in the vibration control scenario also. In the present paper, three reinforced concrete (RC) framed structures with natural frequencies 4.688 Hz, 1.762 Hz, 1.661 Hz are used to investigate the influence between the intensity measures and the response. 20 ground motion time history data were selected with predominant frequency ranging from 1 Hz to 12.5 Hz. Some available intensity measures were used to characterise this data. 3D model of the structure was analysed in ETABSUL 13.1.3 software with diaphragm rigidity at floor level. Modal analysis was used to find the modes and corresponding time periods. Linear time history analysis was done for the three models for all the ground motion data. It is noted that four intensity parameters namely predominant frequency, Peak Ground Acceleration, Velocity Spectrum Intensity, Housner Intensity has an appreciable influence on the response.

  5. THE RESPONSE OF MONTEREY BAY TO THE 2010 CHILEAN EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    Laurence C. Breaker

    2011-01-01

    Full Text Available The primary frequencies contained in the arrival sequence produced by the tsunami from the Chilean earthquake of 2010 in Monterey Bay were extracted to determine the seiche modes that were produced. Singular Spectrum Analysis (SSA and Ensemble Empirical Mode Decomposition (EEMD were employed to extract the primary frequencies of interest. The wave train from the Chilean tsunami lasted for at least four days due to multipath arrivals that may not have included reflections from outside the bay but most likely did include secondary undulations, and energy trapping in the form of edge waves, inside the bay. The SSA decomposition resolved oscillations with periods of 52-57, 34-35, 26-27, and 21-22 minutes, all frequencies that have been predicted and/or observed in previous studies. The EEMD decomposition detected oscillations with periods of 50-55 and 21-22 minutes. Periods in the range of 50-57 minutes varied due to measurement uncertainties but almost certainly correspond to the first longitudinal mode of oscillation for Monterey Bay, periods of 34-35 minutes correspond to the first transverse mode of oscillation that assumes a nodal line across the entrance of the bay, a period of 26- 27 minutes, although previously observed, may not represent a fundamental oscillation, and a period of 21-22 minutes has been predicted and observed previously. A period of ~37 minutes, close to the period of 34-35 minutes, was generated by the Great Alaskan Earthquake of 1964 in Monterey Bay and most likely represents the same mode of oscillation. The tsunamis associated with the Great Alaskan Earthquake and the Chilean Earthquake both entered Monterey Bay but initially arrived outside the bay from opposite directions. Unlike the Great Alaskan Earthquake, however, which excited only one resonant mode inside the bay, the Chilean Earthquake excited several modes suggesting that the asymmetric shape of the entrance to Monterey Bay was an important factor and that the

  6. Earthquake-induced response and potential for gas mobilization in Hanford waste tanks

    International Nuclear Information System (INIS)

    Reid, H.C.; Deibler, J.E.

    1997-09-01

    Seismic events postulated to occur at Hanford are predicted to cause yielding of the various waste materials in double- and single-shell tanks such that some or most of the waste is driven to completely plastic behavior. The seismic analyses documented in this report evaluated waste response to a 1,000-year design basis earthquake (DBE) event. The three-dimensional finite element computational structural analysis models were used with an assumed nonlinear elastic-plastic material definition

  7. Facilitators and obstacles in pre-hospital medical response to earthquakes: a qualitative study

    Science.gov (United States)

    2011-01-01

    Background Earthquakes are renowned as being amongst the most dangerous and destructive types of natural disasters. Iran, a developing country in Asia, is prone to earthquakes and is ranked as one of the most vulnerable countries in the world in this respect. The medical response in disasters is accompanied by managerial, logistic, technical, and medical challenges being also the case in the Bam earthquake in Iran. Our objective was to explore the medical response to the Bam earthquake with specific emphasis on pre-hospital medical management during the first days. Methods The study was performed in 2008; an interview based qualitative study using content analysis. We conducted nineteen interviews with experts and managers responsible for responding to the Bam earthquake, including pre-hospital emergency medical services, the Red Crescent, and Universities of Medical Sciences. The selection of participants was determined by using a purposeful sampling method. Sample size was given by data saturation. Results The pre-hospital medical service was divided into three categories; triage, emergency medical care and transportation, each category in turn was identified into facilitators and obstacles. The obstacles identified were absence of a structured disaster plan, absence of standardized medical teams, and shortage of resources. The army and skilled medical volunteers were identified as facilitators. Conclusions The most compelling, and at the same time amenable obstacle, was the lack of a disaster management plan. It was evident that implementing a comprehensive plan would not only save lives but decrease suffering and enable an effective praxis of the available resources at pre-hospital and hospital levels. PMID:21575233

  8. Facilitators and obstacles in pre-hospital medical response to earthquakes: a qualitative study.

    Science.gov (United States)

    Djalali, Ahmadreza; Khankeh, Hamidreza; Öhlén, Gunnar; Castrén, Maaret; Kurland, Lisa

    2011-05-16

    Earthquakes are renowned as being amongst the most dangerous and destructive types of natural disasters. Iran, a developing country in Asia, is prone to earthquakes and is ranked as one of the most vulnerable countries in the world in this respect. The medical response in disasters is accompanied by managerial, logistic, technical, and medical challenges being also the case in the Bam earthquake in Iran. Our objective was to explore the medical response to the Bam earthquake with specific emphasis on pre-hospital medical management during the first days. The study was performed in 2008; an interview based qualitative study using content analysis. We conducted nineteen interviews with experts and managers responsible for responding to the Bam earthquake, including pre-hospital emergency medical services, the Red Crescent, and Universities of Medical Sciences. The selection of participants was determined by using a purposeful sampling method. Sample size was given by data saturation. The pre-hospital medical service was divided into three categories; triage, emergency medical care and transportation, each category in turn was identified into facilitators and obstacles. The obstacles identified were absence of a structured disaster plan, absence of standardized medical teams, and shortage of resources. The army and skilled medical volunteers were identified as facilitators. The most compelling, and at the same time amenable obstacle, was the lack of a disaster management plan. It was evident that implementing a comprehensive plan would not only save lives but decrease suffering and enable an effective praxis of the available resources at pre-hospital and hospital levels.

  9. Earthquake Intensity and Strong Motion Analysis Within SEISCOMP3

    Science.gov (United States)

    Becker, J.; Weber, B.; Ghasemi, H.; Cummins, P. R.; Murjaya, J.; Rudyanto, A.; Rößler, D.

    2017-12-01

    Measuring and predicting ground motion parameters including seismic intensities for earthquakes is crucial and subject to recent research in engineering seismology.gempa has developed the new SIGMA module for Seismic Intensity and Ground Motion Analysis. The module is based on the SeisComP3 framework extending it in the field of seismic hazard assessment and engineering seismology. SIGMA may work with or independently of SeisComP3 by supporting FDSN Web services for importing earthquake or station information and waveforms. It provides a user-friendly and modern graphical interface for semi-automatic and interactive strong motion data processing. SIGMA provides intensity and (P)SA maps based on GMPE's or recorded data. It calculates the most common strong motion parameters, e.g. PGA/PGV/PGD, Arias intensity and duration, Tp, Tm, CAV, SED and Fourier-, power- and response spectra. GMPE's are configurable. Supporting C++ and Python plug-ins, standard and customized GMPE's including the OpenQuake Hazard Library can be easily integrated and compared. Originally tailored to specifications by Geoscience Australia and BMKG (Indonesia) SIGMA has become a popular tool among SeisComP3 users concerned with seismic hazard and strong motion seismology.

  10. Gambling score in earthquake prediction analysis

    Science.gov (United States)

    Molchan, G.; Romashkova, L.

    2011-03-01

    The number of successes and the space-time alarm rate are commonly used to characterize the strength of an earthquake prediction method and the significance of prediction results. It has been recently suggested to use a new characteristic to evaluate the forecaster's skill, the gambling score (GS), which incorporates the difficulty of guessing each target event by using different weights for different alarms. We expand parametrization of the GS and use the M8 prediction algorithm to illustrate difficulties of the new approach in the analysis of the prediction significance. We show that the level of significance strongly depends (1) on the choice of alarm weights, (2) on the partitioning of the entire alarm volume into component parts and (3) on the accuracy of the spatial rate measure of target events. These tools are at the disposal of the researcher and can affect the significance estimate. Formally, all reasonable GSs discussed here corroborate that the M8 method is non-trivial in the prediction of 8.0 ≤M < 8.5 events because the point estimates of the significance are in the range 0.5-5 per cent. However, the conservative estimate 3.7 per cent based on the number of successes seems preferable owing to two circumstances: (1) it is based on relative values of the spatial rate and hence is more stable and (2) the statistic of successes enables us to construct analytically an upper estimate of the significance taking into account the uncertainty of the spatial rate measure.

  11. Who is Responsible for Human Suffering due to Earthquakes?

    Science.gov (United States)

    Wyss, M.

    2012-12-01

    A court in L'Aquila, Italy, convicted seven to six years in prison and a combined fine of two million Euros for not following their "obligation to avoid death, injury and damage, or at least to minimize them," as the prosecution alleged. These men lose their jobs and pensions, and are banned from holding public office. Meanwhile, the town of L'Aquila is teeming with furious citizens, who are preparing additional civil suits against the defendants, whom they hold responsible for the deaths of their loved ones, killed by collapsing buildings during the magnitude 6.3 earthquake of April 6, 2009. Before this shock, an earthquake swarm had scared the inhabitants for several weeks. To calm the population, the vice-director of the Department of Civil Protection (DCP) called a meeting of the Italian Commission of Great Risks (CGR) in L'Aquila to assess the situation on March 31. One hour before this meeting, the vice-director stated in a TV interview that the seismic situation in L'Aquila was "certainly normal" and posed "no danger" and he added that "the scientific community continues to assure me that, to the contrary, it's a favorable situation because of the continuous discharge of energy." This statement is untrue in two ways. Firstly, small earthquakes do not release enough strain energy to reduce the potential for a large shock, and secondly no seismologist would make such a statement because we know it is not true. However, the population clung to the idea: "the more tremors, the less danger". People who lost relatives allege that they would have left their homes, had they not been falsely assured of their safety. The court treated all seven alike, although they had very different functions and obligations. Two were leaders in DCP, four were members of the CGR, and one was a seismology expert, who brought the latest seismic data. The minutes of the meeting show that none of the experts said anything wrong. They all stated that the probability of a main shock to

  12. Romanian earthquakes analysis using BURAR seismic array

    International Nuclear Information System (INIS)

    Borleanu, Felix; Rogozea, Maria; Nica, Daniela; Popescu, Emilia; Popa, Mihaela; Radulian, Mircea

    2008-01-01

    Bucovina seismic array (BURAR) is a medium-aperture array, installed in 2002 in the northern part of Romania (47.61480 N latitude, 25.21680 E longitude, 1150 m altitude), as a result of the cooperation between Air Force Technical Applications Center, USA and National Institute for Earth Physics, Romania. The array consists of ten elements, located in boreholes and distributed over a 5 x 5 km 2 area; nine with short-period vertical sensors and one with a broadband three-component sensor. Since the new station has been operating the earthquake survey of Romania's territory has been significantly improved. Data recorded by BURAR during 01.01.2005 - 12.31.2005 time interval are first processed and analyzed, in order to establish the array detection capability of the local earthquakes, occurred in different Romanian seismic zones. Subsequently a spectral ratios technique was applied in order to determine the calibration relationships for magnitude, using only the information gathered by BURAR station. The spectral ratios are computed relatively to a reference event, considered as representative for each seismic zone. This method has the advantage to eliminate the path effects. The new calibration procedure is tested for the case of Vrancea intermediate-depth earthquakes and proved to be very efficient in constraining the size of these earthquakes. (authors)

  13. Seismic response of the Pickering pressure relief duct to the 1985 Nahanni earthquake

    International Nuclear Information System (INIS)

    Ghobarah, A.

    1995-05-01

    The objective of this study is to examine the structural response of the Pickering pressure relief duct when subjected to the ground motion records of the 1985 Nahanni earthquake (December 23, 05:16 GMT, Site 1 - Iverson, N.W.T.). It also includes an estimate of the possible impact on the nuclear safety function of the duct. The structural models developed in an earlier study were used in this analysis. The response to the earthquake ground motion was determined on the basis of the estimated capacities of various components of the duct. The ability of the structure to fulfill its nuclear safety function is discussed. (author). 6 refs., 1 tab., 17 figs

  14. The UK medical response to the Sichuan earthquake.

    Science.gov (United States)

    Redmond, A D; Li, J

    2011-06-01

    At 14:48 on 12 May 2008 an earthquake of magnitude 8.0 struck the Wenchuan area of Sichuan province, China. A decision to offer/receive UK medical assistance was agreed at a Sino/British political level and a medical team was despatched to the earthquake area. This study describes the team's experience during the immediate aftermath of the earthquake and the following 18 months, during which there have been joint developments in emergency medicine, disaster planning/preparedness and the management of spinal cord injury. The long-term disability following sudden onset natural disaster and the wider impact on healthcare delivery may prove to be a greater burden to the country than the immediate medical needs, and, accordingly, emergency international aid may need to widen its focus. Although international teams usually arrive too late to support resuscitative measures, they can respond to specific requests for specialised assistance, for example plastic and reconstructive surgery to assist with the ongoing management of complex injury, relieve those who have worked continuously through the disaster, and when required maintain routine day-to-day services while local staff continue to manage the disaster. The timing of this does not necessarily need to be immediate. To maximise its impact, the team planned from the outset to build a relationship with Chinese colleagues that would lead to a sharing of knowledge and experience that would benefit major incident responses in both countries in the future. This has been established, and the linkage of emergency humanitarian assistance to longer term development should be considered by others the next time international emergency humanitarian assistance is contemplated.

  15. Earthquake Complex Network Analysis Before and After the Mw 8.2 Earthquake in Iquique, Chile

    Science.gov (United States)

    Pasten, D.

    2017-12-01

    The earthquake complex networks have shown that they are abble to find specific features in seismic data set. In space, this networkshave shown a scale-free behavior for the probability distribution of connectivity, in directed networks and theyhave shown a small-world behavior, for the undirected networks.In this work, we present an earthquake complex network analysis for the large earthquake Mw 8.2 in the north ofChile (near to Iquique) in April, 2014. An earthquake complex network is made dividing the three dimensional space intocubic cells, if one of this cells contain an hypocenter, we name this cell like a node. The connections between nodes aregenerated in time. We follow the time sequence of seismic events and we are making the connections betweennodes. Now, we have two different networks: a directed and an undirected network. Thedirected network takes in consideration the time-direction of the connections, that is very important for the connectivityof the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out ofthe node i plus the self-connections (if two seismic events occurred successive in time in the same cubic cell, we havea self-connection). The undirected network is made removing the direction of the connections and the self-connectionsfrom the directed network. For undirected networks, we are considering only if two nodes are or not connected.We have built a directed complex network and an undirected complex network, before and after the large earthquake in Iquique. We have used magnitudes greater than Mw = 1.0 and Mw = 3.0. We found that this method can recognize the influence of thissmall seismic events in the behavior of the network and we found that the size of the cell used to build the network isanother important factor to recognize the influence of the large earthquake in this complex system. This method alsoshows a difference in the values of the critical exponent γ (for the probability

  16. Earthquake response characteristics of large structure 'JOYO' deeply embedded in quaternary ground, (3)

    International Nuclear Information System (INIS)

    Yajima, Hiroshi; Sawada, Yoshihiro; Hanada, Kazutake; Sawada, Makoto.

    1987-01-01

    In order to examine aseismicity of embedded structure and to clarify embedment effect, earthquake observations of the large structure 'JOYO' are carried out which is deeply embedded in quaternary ground, and the results are summarized as follows. (1) Amplification factors of horizontal component in ground surface is about 3 to 4 times against the bedrock. Contrastively on the structure, any amplification is not observed at the underground portion, however, little amplification exists at the ground portion of structure. (2) Transfer function of structure has several predominant peaks at frequencies of 4.3 Hz and 8.0 Hz which are well coincided with values obtained from force excitation tests. It is shown that transfer function between basement and ground surface is similar to that between ground of same level to basement and ground surface, suggesting the behavior of basement to be able to estimate by these under ground earthquake motion. (3) According to earthquake motion analysis using S-R models, without regard to consider or not the side ground stiffness, the calculated response values do not so much differ in each model and mostly correspond with observation data, provided that the underground earthquake motion at same level to basement is used as a input wave. Consequently, the behavior of these deeply embedded structure is subject to setting method of input wave rather than modeling method, and it is very useful in design that the most simple model without side ground stiffness can roughly represent the embedment effect. (author)

  17. EVALUATION ON THE SEISMIC RESPONSE CHARACTERISTICS OF A ROAD EMBANKMENT BASED ON THE MODERATE EARTHQUAKE OBSERVATION AND THE MICROTREMOR MEASUREMENT

    Science.gov (United States)

    Hata, Yoshiya; Ichii, Koji; Yamada, Masayuki; Tokida, Ken-Ichi; Takezawa, Koichiro; Shibao, Susumu; Mitsushita, Junji; Murata, Akira; Furukawa, Aiko; Koizumi, Keigo

    Accurate evaluation on the seismic response characteristics of a road embankment is very important for the rational seismic assessment. However, in a lot of previous studies, the seismic response characteristics of an embankment were evaluated based on the results of shaking table test, centrifuge model test and dynamic FEM analysis. In this study, the transfer function and the shear wave velocity of a road embankment were evaluated based on the in-situ records of moderate earthquake observation and microtremor measurement. Test results show the possibility that the shear wave velocity of an embankment can be estimated by the earthquake observation or the microtremor measurement and the dynamic linear FEM analysis.

  18. Earthquake response of nuclear reactor building deeply embedded in soil

    International Nuclear Information System (INIS)

    Masao, T.; Hirasawa, M.; Yamamoto, S.; Koori, Y.

    1977-01-01

    Regarding the earthquake response of nuclear reactor building embedded in soil, experimental and theoretical investigations has been performed on a model of height-3.75 meter, bottom cross section-5x5 meter, weight-173 ton made of conrete under the financial support of Japanese government (The Science and Technology Agency). The top of model was excited by an eccentric mass vibration that can generate maximum force of 3 tons. Earthpressures were measured at the bottom and side wall of model, and displacements were also measured at the top of model (6 components) and ground surface changed in the steps which were 0, 20, 47, 73, 100% (against the height of model). Using these experimental results and soil properties, dynamical characteristics were studied, including resonant frequency, radiation damping, vibrational mode, frequency response and earthpressure distribution around the model at varying embedment by lumped model, cyclindrical elastic wave model and FEM models (thin layer elements). (Auth.)

  19. Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration

    Directory of Open Access Journals (Sweden)

    S. R. McNutt

    1996-06-01

    Full Text Available Global data from 1979 to 1989 pertaining to volcanic earthquake swarms have been compiled into a custom-designed relational database. The database is composed of three sections: 1 a section containing general information on volcanoes, 2 a section containing earthquake swarm data (such as dates of swarm occurrence and durations, and 3 a section containing eruption information. The most abundant and reliable parameter, duration of volcanic earthquake swarms, was chosen for preliminary analysis. The distribution of all swarm durations was found to have a geometric mean of 5.5 days. Precursory swarms were then separated from those not associated with eruptions. The geometric mean precursory swarm duration was 8 days whereas the geometric mean duration of swarms not associated with eruptive activity was 3.5 days. Two groups of precursory swarms are apparent when duration is compared with the eruption repose time. Swarms with durations shorter than 4 months showed no clear relationship with the eruption repose time. However, the second group, lasting longer than 4 months, showed a significant positive correlation with the log10 of the eruption repose period. The two groups suggest that different suites of physical processes are involved in the generation of volcanic earthquake swarms.

  20. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water

    International Nuclear Information System (INIS)

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-01-01

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. - Highlights: • Remote sensing to improve agricultural disaster management • Introduce post-earthquake agrohydrologic remote sensing (PEARS) framework • Apply PEARS framework to 2010 Maule Earthquake in Central Chile

  1. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Jenna, E-mail: jmmartin@ucdavis.edu; Ustin, Susan; Sandoval-Solis, Samuel; O' Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. - Highlights: • Remote sensing to improve agricultural disaster management • Introduce post-earthquake agrohydrologic remote sensing (PEARS) framework • Apply PEARS framework to 2010 Maule Earthquake in Central Chile.

  2. Reliability analysis of service water system under earthquake

    International Nuclear Information System (INIS)

    Yu Yu; Qian Xiaoming; Lu Xuefeng; Wang Shengfei; Niu Fenglei

    2013-01-01

    Service water system is one of the important safety systems in nuclear power plant, whose failure probability is always gained by system reliability analysis. The probability of equipment failure under the earthquake is the function of the peak acceleration of earthquake motion, while the occurrence of earthquake is of randomicity, thus the traditional fault tree method in current probability safety assessment is not powerful enough to deal with such case of conditional probability problem. An analysis frame was put forward for system reliability evaluation in seismic condition in this paper, in which Monte Carlo simulation was used to deal with conditional probability problem. Annual failure probability of service water system was calculated, and failure probability of 1.46X10 -4 per year was obtained. The analysis result is in accordance with the data which indicate equipment seismic resistance capability, and the rationality of the model is validated. (authors)

  3. Earthquake response of nuclear reactor buildings deeply embedded in soil

    International Nuclear Information System (INIS)

    Masao, T.; Takasaki, Y.; Hirasawa, M.; Okajima, M.; Yamamoto, S.; Kawata, E.; Koori, Y.; Ochiai, S.; Shimizu, N.

    1980-01-01

    This paper is concerned with experimental and analytical studies to investigate dynamic behavior of deeply embedded structures such as nuclear reactor buildings. The principal points studied are as follows: (1) Examination of stiffness and radiation damping effects according to embedded depth, (2) verification for distributions of earth pressure according to embedded depth, (3) differences of response characteristics during oscillation according to embedded depth, and (4) proposal of an analytical method for seismic design. Experimental studies were performed by two ways: forced vibration test, and earthquake observation against a rigid body model embedded in soil. Three analytical procedures were performed to compare experimental results and to examine the relation between each procedure. Finally, the dynamic behavior for nuclear reactor buildings with different embedded depths were evaluated by an analytical method. (orig.)

  4. Fracture analysis of concrete gravity dam under earthquake induced ...

    African Journals Online (AJOL)

    Michael Horsfall

    Fracture analysis of concrete gravity dam under earthquake induced loads. 1. ABBAS MANSOURI;. 2 ... 1 Civil Engineering, Islamic Azad University (South Branch of Tehran)Tehran, Iran ..... parameter has on the results of numerical calculations. In this analysis ... with the help of Abaqus software (Abaqus theory manual ...

  5. Assessment of soil-structure interaction practice based on synthesized results from Lotung experiment - earthquake response

    International Nuclear Information System (INIS)

    Hadjian, A.H.; Tseng, W.S.; Tang, Y.K.; Tang, H.T.; Stepp, J.C.

    1991-01-01

    On the assumption that the foundation can be appropriately modeled, it would be difficult to distinguish between the computational capabilities of the SASSI, CLASSI and SUPERALUSH/CLASSI methods of SSI analysis. Given the appropriate model, all three methodologies would produce very similar valid results. However, both CLASSI (Bechtel) and Soil-Spring methods should be used cautiously within their known limitations. The use of FLUSH should be limited to essentially 2D problems. More than the computational methods, the differences in the seismic response results obtained are due to the modeling of the soil-structure system and the characterization of the input motions. A number of insights have been obtained with respect to the validity of SSI analysis methodologies for earthquake response. Among these are the following: vertical wave propagation assumption in performing SSI is adequate to describe the wave field; equivalent linear analysis of soil response for SSI analysis, such as performed by the SHAKE code, provides acceptable results; a significant but non-permanent degradation of soil modulus occurs during earthquakes; the development of soil stiffness degradation and damping curves as a function of strain, based on geophysical and laboratory tests, requires improvement to reduce variability and uncertainty; backfill stiffness plays an important role in determining impedance functions and possibly input motions; scattering of ground motion due to embedment is an important element in performing SSI analysis. (author)

  6. A coupled FE and scaled boundary FE-approach for the earthquake response analysis of arch dam-reservoir-foundation system

    International Nuclear Information System (INIS)

    Wang Yi; Lin Gao; Hu Zhiqiang

    2010-01-01

    For efficient and accurate modelling of arch dam-reservoir-foundation system a coupled Finite Element method (FEM) and Scaled Boundary Finite Element method (SBFEM) is developed. Both the dam-foundation interaction and the dam-reservoir interaction including the effect of reservoir boundary absorption are taken into account. The arch dam is modelled by FEM, while the reservoir domain and the unbounded foundation are modelled by SBFEM. In order to make comparison with the results available in the literature, the Morrow Point arch dam is selected for numerical analysis. The analyses are carried out in the frequency domain, and then the time-domain response of the dam-reservoir-foundation system is obtained by Inverse Fourier Transform.

  7. Analysis of Earthquake Source Spectra in Salton Trough

    Science.gov (United States)

    Chen, X.; Shearer, P. M.

    2009-12-01

    Previous studies of the source spectra of small earthquakes in southern California show that average Brune-type stress drops vary among different regions, with particularly low stress drops observed in the Salton Trough (Shearer et al., 2006). The Salton Trough marks the southern end of the San Andreas Fault and is prone to earthquake swarms, some of which are driven by aseismic creep events (Lohman and McGuire, 2007). In order to learn the stress state and understand the physical mechanisms of swarms and slow slip events, we analyze the source spectra of earthquakes in this region. We obtain Southern California Seismic Network (SCSN) waveforms for earthquakes from 1977 to 2009 archived at the Southern California Earthquake Center (SCEC) data center, which includes over 17,000 events. After resampling the data to a uniform 100 Hz sample rate, we compute spectra for both signal and noise windows for each seismogram, and select traces with a P-wave signal-to-noise ratio greater than 5 between 5 Hz and 15 Hz. Using selected displacement spectra, we isolate the source spectra from station terms and path effects using an empirical Green’s function approach. From the corrected source spectra, we compute corner frequencies and estimate moments and stress drops. Finally we analyze spatial and temporal variations in stress drop in the Salton Trough and compare them with studies of swarms and creep events to assess the evolution of faulting and stress in the region. References: Lohman, R. B., and J. J. McGuire (2007), Earthquake swarms driven by aseismic creep in the Salton Trough, California, J. Geophys. Res., 112, B04405, doi:10.1029/2006JB004596 Shearer, P. M., G. A. Prieto, and E. Hauksson (2006), Comprehensive analysis of earthquake source spectra in southern California, J. Geophys. Res., 111, B06303, doi:10.1029/2005JB003979.

  8. Chile Earthquake: U.S. and International Response

    Science.gov (United States)

    2010-03-11

    most regions far from the epicenter did not experience any serious damage. A tsunami caused significant damage to the city of Hilo , Hawaii ...Tsunami Warning Center for Hawaii , Japan, and other regions bordering the Pacific Ocean that may have been vulnerable to a damaging tsunami, although...earthquake. Why the 1960 earthquake generated a tsunami that caused damage and fatalities in Hawaii , Japan, and the Philippines while the 2010 earthquake did

  9. Analysis of a school building damaged by the 2015 Ranau earthquake Malaysia

    Science.gov (United States)

    Takano, Shugo; Saito, Taiki

    2017-10-01

    On June 5th, 2015 a severe earthquake with a moment Magnitude of 6.0 occurred in Ranau, Malaysia. Depth of the epicenter is 10 km. Due to the earthquake, many facilities were damaged and 18 people were killed due to rockfalls [1]. Because the British Standard (BS) is adopted as a regulation for built buildings in Malaysia, the seismic force is not considered in the structural design. Therefore, the seismic resistance of Malaysian buildings is unclear. To secure the human life and building safety, it is important to grasp seismic resistance of the building. The objective of this study is to evaluate the seismic resistance of the existing buildings in Malaysia built by the British Standard. A school building that was damaged at the Ranau earthquake is selected as the target building. The building is a four story building and the ground floor is designed to be a parking space for the staff. The structural types are infill masonries where main frame is configured by reinforced concrete columns and beams and brick is installed inside the frame as walls. Analysis is performed using the STERA_3D software that is the software to analyze the seismic performance of buildings developed by one of the authors. Firstly, the natural period of the building is calculated and compared with the result of micro-tremor measurement. Secondly, the nonlinear push-over analysis was conducted to evaluate the horizontal load bearing capacity of the building. Thirdly, the earthquake response analysis was conducted using the time history acceleration data measured at the Ranau earthquake by the seismograph installed at Kota Kinabalu. By comparing the results of earthquake response analysis and the actual damage of the building, the reason that caused damage to the building is clarified.

  10. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  11. Flash-sourcing or the rapid detection and characterisation of earthquake effects through clickstream data analysis

    Science.gov (United States)

    Bossu, R.; Mazet-Roux, G.; Roussel, F.; Frobert, L.

    2011-12-01

    Rapid characterisation of earthquake effects is essential for a timely and appropriate response in favour of victims and/or of eyewitnesses. In case of damaging earthquakes, any field observations that can fill the information gap characterising their immediate aftermath can contribute to more efficient rescue operations. This paper presents the last developments of a method called "flash-sourcing" addressing these issues. It relies on eyewitnesses, the first informed and the first concerned by an earthquake occurrence. More precisely, their use of the EMSC earthquake information website (www.emsc-csem.org) is analysed in real time to map the area where the earthquake was felt and identify, at least under certain circumstances zones of widespread damage. The approach is based on the natural and immediate convergence of eyewitnesses on the website who rush to the Internet to investigate cause of the shaking they just felt causing our traffic to increase The area where an earthquake was felt is mapped simply by locating Internet Protocol (IP) addresses during traffic surges. In addition, the presence of eyewitnesses browsing our website within minutes of an earthquake occurrence excludes the possibility of widespread damage in the localities they originate from: in case of severe damage, the networks would be down. The validity of the information derived from this clickstream analysis is confirmed by comparisons with EMS98 macroseismic map obtained from online questionnaires. The name of this approach, "flash-sourcing", is a combination of "flash-crowd" and "crowdsourcing" intending to reflect the rapidity of the data collation from the public. For computer scientists, a flash-crowd names a traffic surge on a website. Crowdsourcing means work being done by a "crowd" of people; It also characterises Internet and mobile applications collecting information from the public such as online macroseismic questionnaires. Like crowdsourcing techniques, flash-sourcing is a

  12. Natural time analysis of the Centennial Earthquake Catalog

    International Nuclear Information System (INIS)

    Sarlis, N. V.; Christopoulos, S.-R. G.

    2012-01-01

    By using the most recent version (1900–2007) of the Centennial Earthquake Catalog, we examine the properties of the global seismicity. Natural time analysis reveals that the fluctuations of the order parameter κ 1 of seismicity exhibit for at least three orders of magnitude a characteristic feature similar to that of the order parameter for other equilibrium or non-equilibrium critical systems—including self-organized critical systems. Moreover, we find non-trivial magnitude correlations for earthquakes of magnitude greater than or equal to 7.

  13. Earthquake Response of Reinforced Concrete Building Retrofitted with Geopolymer Concrete and X-shaped Metallic Damper

    Science.gov (United States)

    Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama

    2017-06-01

    A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.

  14. Development of tipping-over analysis of cask subjected to earthquake strong motion

    International Nuclear Information System (INIS)

    Shirai, Koji; Ito, Chihiro; Ryu, Hiroshi

    1993-01-01

    Since a cask is vertically oriented during loading in cask-storage, it is necessary to investigate the integrity of the cask against tipping-over during strong earthquakes. The rocking and sliding behavior of the cask during strong earthquakes can be analyzed as a dynamic vibration problem for a rigid cylinder. In this paper, in order to clarify the tipping-over characteristics of a cask during strong earthquakes, the authors applied the Distinct Element Method (DEM) to the seismic response analysis of the cask. DEM was introduced by Cundall P.A. in 1971. It is based on the use of an explicit numerical scheme. The cask was considered to be a rigid polygonal element, which satisfied the equation of motion and the law of action and reaction. They examined the applicability of this code by comparison with experimental results obtained from shaking table tests using scale model casks considering the dimension of a 100 ton class full-scale cask

  15. Earthquake prediction in Japan and natural time analysis of seismicity

    Science.gov (United States)

    Uyeda, S.; Varotsos, P.

    2011-12-01

    ' (SES) data are available as in Greece, the natural time analysis of the seismicity after the initiation of the SES allows the determination of the time window of the impending mainshock through the evolution of the value of κ1 itself. It was found to work also for the 1989 M7.1 Loma Prieta earthquake. If SES data are not available, we solely rely on the evolution of the fluctuations of κ1 obtained by computing κ1 values using a natural time window of certain length sliding through the earthquake catalog. The fluctuations of the order parameter, in terms of variability, i. e., standard deviation divided by average, was found to increase dramatically when approaching the 11 March M9 super- giant earthquake. In fact, such increase was also found for M7.1 Kobe in 1995, M8.0 Tokachi-oki in 2003 and Landers and Hector-Mines earthquakes in Southern California. It is worth mentioning that such increase is obtained straghtforwardly from ordinary earthquake catalogs without any adjustable parameters.

  16. Teleseismic analysis of the 1990 and 1991 earthquakes near Potenza

    Directory of Open Access Journals (Sweden)

    G. Ekstrom

    1994-06-01

    Full Text Available Analysis of the available teleseismic data for two moderate earthquakes near the town of Potenza in the Southern Apennines shows that both involve strike-slip faulting on a plane oriented approximately east-west. Only the larger, 5 May 1990, earthquake is sufficiently large for analysis by conventional teleseismic waveform inversion methods, and is seen to consist of a foreshock followed 11 seconds later by the main release of moment. The focal mechanism and seismic moment of the 26 May 1991 earthquake is determined by quantitative comparison of its 15-60 s period surface waves with those generated by the 5 May 1990 event. The focal mechanisms for the two events are found to be very similar. The 1991 earthquake has a scalar moment that is approximately 18% that of the 1990 mainshock. Comparison of higher frequency P waves for the two events, recorded at regional distance, shows that the ratio of trace amplitudes is smaller than the ratio of scalar moments, suggesting that the stress drop for the 1991 event is distinctly smaller than for the 1990 mainshock.

  17. Earthquake response of adjacent structures with viscoelastic and friction dampers

    Directory of Open Access Journals (Sweden)

    Žigić Miodrag

    2015-01-01

    Full Text Available We study the seismic response of two adjacent structures connected with a dry friction damper. Each of them consists of a viscoelastic rod and a rigid block, which can slide without friction along the moving base. A simplified earthquake model is used for modeling the horizontal ground motion. Energy dissipation is taken by the presence of the friction damper, which is modeled by the set-valued Coulomb friction law. Deformation of viscoelastic rods during the relative motion of the blocks represents another way of energy dissipation. The constitutive equation of a viscoelastic body is described by the fractional Zener model, which includes fractional derivatives of stress and strain. The problem merges fractional derivatives as non-local operators and theory of set-valued functions as the non-smooth ones. Dynamical behaviour of the problem is governed by a pair of coupled multi-valued differential equations. The posed Cauchy problem is solved by use of the Grünwald-Letnikov numerical scheme. The behaviour of the system is analyzed for different values of system parameters.

  18. USGS Imagery Applications During Disaster Response After Recent Earthquakes

    Science.gov (United States)

    Hudnut, K. W.; Brooks, B. A.; Glennie, C. L.; Finnegan, D. C.

    2015-12-01

    It is not only important to rapidly characterize surface fault rupture and related ground deformation after an earthquake, but also to repeatedly make observations following an event to forecast fault afterslip. These data may also be used by other agencies to monitor progress on damage repairs and restoration efforts by emergency responders and the public. Related requirements include repeatedly obtaining reference or baseline imagery before a major disaster occurs, as well as maintaining careful geodetic control on all imagery in a time series so that absolute georeferencing may be applied to the image stack through time. In addition, repeated post-event imagery acquisition is required, generally at a higher repetition rate soon after the event, then scaled back to less frequent acquisitions with time, to capture phenomena (such as fault afterslip) that are known to have rates that decrease rapidly with time. For example, lidar observations acquired before and after the South Napa earthquake of 2014, used in our extensive post-processing work that was funded primarily by FEMA, aided in the accurate forecasting of fault afterslip. Lidar was used to independently validate and verify the official USGS afterslip forecast. In order to keep pace with rapidly evolving technology, a development pipeline must be established and maintained to continually test and incorporate new sensors, while adapting these new components to the existing platform and linking them to the existing base software system, and then sequentially testing the system as it evolves. Improvements in system performance by incremental upgrades of system components and software are essential. Improving calibration parameters and thereby progressively eliminating artifacts requires ongoing testing, research and development. To improve the system, we have formed an interdisciplinary team with common interests and diverse sources of support. We share expertise and leverage funding while effectively and

  19. Streamflow responses in Chile to megathrust earthquakes in the 20th and 21st centuries

    Science.gov (United States)

    Mohr, Christian; Manga, Michael; Wang, Chi-yuen; Korup, Oliver

    2016-04-01

    Both coseismic static stress and dynamic stresses associated with seismic waves may cause responses in hydrological systems. Such responses include changes in the water level, hydrochemistry and streamflow discharge. Earthquake effects on hydrological systems provide a means to study the interaction between stress changes and regional hydrology, which is otherwise rarely possible. Chile is a country of frequent and large earthquakes and thus provides abundant opportunities to study such interactions and processes. We analyze streamflow responses in Chile to several megathrust earthquakes, including the 1943 Mw 8.1 Coquimbo, 1950 Mw 8.2 Antofagasta, 1960 Mw 9.5 Valdivia, 1985 Mw 8.0 Valparaiso, 1995 Mw 8.0 Antofagasta, 2010 Mw 8.8 Maule, and the 2014 Mw 8.2 Iquique earthquakes. We use data from 716 stream gauges distributed from the Altiplano in the North to Tierra del Fuego in the South. This network covers the Andes mountain ranges, the central valley, the Coastal Mountain ranges and (mainly in the more southern parts) the Coastal flats. We combine empirical magnitude-distance relationships, machine learning tools, and process-based modeling to characterize responses. We first assess the streamflow anomalies and relate these to topographical, hydro-climatic, geological and earthquake-related (volumetric and dynamic strain) factors using various classifiers. We then apply 1D-groundwater flow modeling to selected catchments in order to test competing hypotheses for the origin of streamflow changes. We show that the co-seismic responses of streamflow mostly involved increasing discharges. We conclude that enhanced vertical permeability can explain most streamflow responses at the regional scale. The total excess water released by a single earthquake, i.e. the Maule earthquake, yielded up to 1 km3. Against the background of megathrust earthquakes frequently hitting Chile, the amount of water released by earthquakes is substantial, particularly for the arid northern

  20. Characterization of the Virginia earthquake effects and source parameters from website traffic analysis

    Science.gov (United States)

    Bossu, R.; Lefebvre, S.; Mazet-Roux, G.; Roussel, F.

    2012-12-01

    This paper presents an after the fact study of the Virginia earthquake of 2011 August 23 using only the traffic observed on the EMSC website within minutes of its occurrence. Although the EMSC real time information services remain poorly identified in the US, a traffic surge was observed immediately after the earthquake's occurrence. Such surges, known as flashcrowd and commonly observed on our website after felt events within the Euro-Med region are caused by eyewitnesses looking for information about the shaking they have just felt. EMSC developed an approach named flashsourcing to map the felt area, and in some circumstances, the regions affected by severe damage or network disruption. The felt area is mapped simply by locating the Internet Protocol (IP) addresses of the visitors to the website during these surges while the existence of network disruption is detected by the instantaneous loss at the time of earthquake's occurrence of existing Internet sessions originating from the impacted area. For the Virginia earthquake, which was felt at large distances, the effects of the waves propagation are clearly observed. We show that the visits to our website are triggered by the P waves arrival: the first visitors from a given locality reach our website 90s after their location was shaken by the P waves. From a processing point of view, eyewitnesses can then be considered as ground motion detectors. By doing so, the epicentral location is determined through a simple dedicated location algorithm within 2 min of the earthquake's occurrence and 30 km accuracy. The magnitude can be estimated in similar time frame by using existing empirical relationships between the surface of the felt area and the magnitude. Concerning the effects of the earthquake, we check whether one can discriminate localities affected by strong shaking from web traffic analysis. This is actually the case. Localities affected by strong level of shaking exhibit higher ratio of visitors to the number

  1. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure method eliminates the deconvolution calculations and the related assumption -regarding type and direction of earthquake waves- required in the direct method. The substructure method is computationally efficient because the two substructures-the structure and the soil region- are analyzed separately; and, more important, it permits taking advantage of the important feature that response to earthquake ground motion is essentially contained in the lower few natural modes of vibration of the structure on fixed base. For sites where essentially similar soils extend to large depths and there is no obvious rigid boundary such as a soil-rock interface, numerical results for earthquake response of a nuclear reactor structure are presented to demonstrate that the commonly used finite element method may lead to unacceptable errors; but the substructure method leads to reliable results

  2. Study on Earthquake Response of High Voltage Electrical Equipment Coupling System with Flexible Busbar

    Science.gov (United States)

    Liu, Chuncheng; Qu, Da; Wang, Chongyang; Lv, Chunlei; Li, Guoqiang

    2017-12-01

    With the rapid development of technology and society, all walks of life in China are becoming more and more dependent on power systems. When earthquake occurs, the electrical equipment of substation is prone to damage because of its own structural features, top-heavy, and brittleness of main body. At the same time, due to the complex coupling of the soft electrical connection of substation electrical equipment, the negative impact can not be estimated. In this paper, the finite element model of the coupling system of the single unit of high voltage electrical equipment with the connecting soft bus is established and the seismic response is analysed. The results showed that there is a significant difference between the simple analysis for the seismic response of electrical equipment monomer and the analytical results of electrical equipment systems, and the impact on different electrical equipment is different. It lays a foundation for the future development of seismic performance analysis of extra high voltage electrical equipment.

  3. Summary of Great East Japan Earthquake response at Onagawa Nuclear Power Station and further safety improvement measures

    International Nuclear Information System (INIS)

    Sato, Toru

    2013-01-01

    A large earthquake occurred on March 11, 2011 and tsunami was generated following it. The East Japan suffered serious damage by the earthquake and tsunami. This is called the Great East Japan Earthquake. Onagawa Nuclear Power Station (NPS) is located closest to the epicenter of Great East Japan Earthquake. We experienced intense shake by the earthquake and some flooding from the tsunami, however, we have succeeded safely cold shutdown of the reactors. In this paper, we introduce summary of Great East Japan Earthquake response a Onagawa NPS and safety improvement measures which are based on both experience of Onagawa NPS and lesson from Fukushima Daiichi NPS accident. (author)

  4. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    Science.gov (United States)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground

  5. Analysis of Earthquake Catalogs for CSEP Testing Region Italy

    International Nuclear Information System (INIS)

    Peresan, A.; Romashkova, L.; Nekrasova, A.; Kossobokov, V.; Panza, G.F.

    2010-07-01

    A comprehensive analysis shows that the set of catalogs provided by the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) as the authoritative database for the Collaboratory for the Study of Earthquake Predictability - Testing Region Italy (CSEP-TRI), is hardly a unified one acceptable for the necessary tuning of models/algorithms, as well as for running rigorous prospective predictability tests at intermediate- or long-term scale. (author)

  6. USGS response to an urban earthquake, Northridge '94

    Science.gov (United States)

    Updike, Randall G.; Brown, William M.; Johnson, Margo L.; Omdahl, Eleanor M.; Powers, Philip S.; Rhea, Susan; Tarr, Arthur C.

    1996-01-01

    The urban centers of our Nation provide our people with seemingly unlimited employment, social, and cultural opportunities as a result of the complex interactions of a diverse population embedded in an highly-engineered environment. Catastrophic events in one or more of the natural earth systems which underlie or envelop urban environment can have radical effects on the integrity and survivability of that environment. Earthquakes have for centuries been the source of cataclysmic events on cities throughout the world. Unlike many other earth processes, the effects of major earthquakes transcend all political, social, and geomorphic boundaries and can have decided impact on cities tens to hundreds of kilometers from the epicenter. In modern cities, where buildings, transportation corridors, and lifelines are complexly interrelated, the life, economic, and social vulnerabilities in the face of a major earthquake can be particularly acute.

  7. Intra-day response of foreign exchange markets after the Tohoku-Oki earthquake

    Science.gov (United States)

    Nakano, Shuhei; Hirata, Yoshito; Iwayama, Koji; Aihara, Kazuyuki

    2015-02-01

    Although an economy is influenced by a natural disaster, the market response to the disaster during the first 24 hours is not clearly understood. Here we show that an earthquake quickly causes temporal changes in a foreign exchange market by examining the case of the Tohoku-Oki earthquake. Recurrence plots and statistical change point detection independently show that the United States dollar-Japanese yen market responded to the earthquake activity without delay and with the delay of about 2 minutes, respectively. These findings support that the efficient market hypothesis nearly holds now in the time scale of minutes.

  8. Rotational Response of Toe-Restrained Retaining Walls to Earthquake Ground Motions

    National Research Council Canada - National Science Library

    Ebeling, Robert M; White, Barry C

    2006-01-01

    .... The PC software CorpsWallRotate (sometimes referred to as CWRotate) was developed to perform an analysis of permanent wall rotation for each proposed retaining wall section to a user-specified earthquake acceleration time-history...

  9. Biomarker responses of mussels exposed to earthquake disturbances

    Science.gov (United States)

    Chandurvelan, Rathishri; Marsden, Islay D.; Glover, Chris N.; Gaw, Sally

    2016-12-01

    The green-lipped mussel, Perna canaliculus is recognised as a bioindicator of coastal contamination in New Zealand (NZ). Mussels (shell length 60-80 mm) were collected from three intertidal areas of Canterbury in the South Island of NZ prior to extreme earthquake disturbances on 22nd February 2011, and 9 months later in October 2011. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle. Metal levels in tissues were site specific, and mostly unaffected by earthquake disturbances. Physiological biomarkers were negatively affected by earthquake disturbances and mussels from the Port of Lyttelton had higher negative scope for growth post-earthquake. Metallothionein-like protein in the digestive gland correlated with metal content of tissues, as did catalase activity in the gill and lipid peroxidation values for the digestive gland. This research demonstrates that physiological and other biomarkers are effective at detecting the effects of multiple stressors following seismic disturbances.

  10. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  11. Effect of foundation embedment on the response of a multi-story building to earthquake excitation

    Directory of Open Access Journals (Sweden)

    Hamood Mohammed

    2018-01-01

    Full Text Available During an earthquake, the behaviour of any structure is affected not only by the superstructure response, but also by the response of the soil beneath. Recent structural failure patterns have indicated the significance of soil-structure interaction (SSI effects. The present study focuses on SSI analysis considering the embedment depth of the foundation of a symmetric six stories reinforced concrete (RCspace bare frame building resting on stiff soil and subjected to seismic loading. The finite element analysis software ANSYS v17.2 is used. Time history (TH analysis has been adopted. The Response in terms of lateral displacements, base shear forces, base moments and variation in natural time periods are calculated from the analysis of the soil foundation structure interaction (SFSI model. Results are compared with that obtained from conventional method assuming rigid support at the base (fixed base of the structure. The results show that the SFSI considering different embedment depths are significant in altering the seismic response of the multi-story building (MSB.

  12. Real-Time Earthquake Intensity Estimation Using Streaming Data Analysis of Social and Physical Sensors

    Science.gov (United States)

    Kropivnitskaya, Yelena; Tiampo, Kristy F.; Qin, Jinhui; Bauer, Michael A.

    2017-06-01

    Earthquake intensity is one of the key components of the decision-making process for disaster response and emergency services. Accurate and rapid intensity calculations can help to reduce total loss and the number of casualties after an earthquake. Modern intensity assessment procedures handle a variety of information sources, which can be divided into two main categories. The first type of data is that derived from physical sensors, such as seismographs and accelerometers, while the second type consists of data obtained from social sensors, such as witness observations of the consequences of the earthquake itself. Estimation approaches using additional data sources or that combine sources from both data types tend to increase intensity uncertainty due to human factors and inadequate procedures for temporal and spatial estimation, resulting in precision errors in both time and space. Here we present a processing approach for the real-time analysis of streams of data from both source types. The physical sensor data is acquired from the U.S. Geological Survey (USGS) seismic network in California and the social sensor data is based on Twitter user observations. First, empirical relationships between tweet rate and observed Modified Mercalli Intensity (MMI) are developed using data from the M6.0 South Napa, CAF earthquake that occurred on August 24, 2014. Second, the streams of both data types are analyzed together in simulated real-time to produce one intensity map. The second implementation is based on IBM InfoSphere Streams, a cloud platform for real-time analytics of big data. To handle large processing workloads for data from various sources, it is deployed and run on a cloud-based cluster of virtual machines. We compare the quality and evolution of intensity maps from different data sources over 10-min time intervals immediately following the earthquake. Results from the joint analysis shows that it provides more complete coverage, with better accuracy and higher

  13. A seismic analysis of nuclear power plant components subjected to multi-excitations of earthquakes

    International Nuclear Information System (INIS)

    Ichiki, T.; Matsumoto, T.; Gunyasu, K.

    1977-01-01

    In this analysis, the modal analysis methods are used to determine the seismic responses of structural systems instead of the direct integration method. These results have been compared with some kinds of other analytical methods, and investigated the accuracy of numerical results of these analysis, applying to such components as Reactor Pressure Vessel and Reactor Internals of an actual plant. The results of this method of analysis are summarized as follows: (1) one of the seismic analysis methods concerning systems subjected to multi-excitations of earthquakes has been presented to the conference of JSME. Although the analytical theory presented to that conference is correct, it has a serious problem about the accuracy of numerical results. This computer program and theory cannot be used practically due to the time necessary to calculate. However, the method described in this paper overcomes those serious problems stated above and has no problem about the computer time and precision. So, it is possible to apply this method to the seismic design of an actual nuclear power plant practically. (2) The feed back effects of the seismic responses of Reactor Internals to Reactor Building are considered so small that we can separate the model of Reactor Internals from Reactor Building. (3) The results of seismic response of Reactor Internals are fairly consistent with those obtained from the model coupled with Reactor Building. (4) This analysis method can be extended to the model of Reactor Internals subjected to more than two random excitations of earthquakes. (5) It is possible that this analysis method is also applied to the seismic analysis of such three-dimensional systems as piping systems subjected to multi-excitations of earthquakes

  14. Modelling psychological responses to the Great East Japan earthquake and nuclear incident.

    Science.gov (United States)

    Goodwin, Robin; Takahashi, Masahito; Sun, Shaojing; Gaines, Stanley O

    2012-01-01

    The Great East Japan (Tōhoku/Kanto) earthquake of March 2011 was followed by a major tsunami and nuclear incident. Several previous studies have suggested a number of psychological responses to such disasters. However, few previous studies have modelled individual differences in the risk perceptions of major events, or the implications of these perceptions for relevant behaviours. We conducted a survey specifically examining responses to the Great Japan earthquake and nuclear incident, with data collected 11-13 weeks following these events. 844 young respondents completed a questionnaire in three regions of Japan; Miyagi (close to the earthquake and leaking nuclear plants), Tokyo/Chiba (approximately 220 km from the nuclear plants), and Western Japan (Yamaguchi and Nagasaki, some 1000 km from the plants). Results indicated significant regional differences in risk perception, with greater concern over earthquake risks in Tokyo than in Miyagi or Western Japan. Structural equation analyses showed that shared normative concerns about earthquake and nuclear risks, conservation values, lack of trust in governmental advice about the nuclear hazard, and poor personal control over the nuclear incident were positively correlated with perceived earthquake and nuclear risks. These risk perceptions further predicted specific outcomes (e.g. modifying homes, avoiding going outside, contemplating leaving Japan). The strength and significance of these pathways varied by region. Mental health and practical implications of these findings are discussed in the light of the continuing uncertainties in Japan following the March 2011 events.

  15. Modelling psychological responses to the Great East Japan earthquake and nuclear incident.

    Directory of Open Access Journals (Sweden)

    Robin Goodwin

    Full Text Available The Great East Japan (Tōhoku/Kanto earthquake of March 2011 was followed by a major tsunami and nuclear incident. Several previous studies have suggested a number of psychological responses to such disasters. However, few previous studies have modelled individual differences in the risk perceptions of major events, or the implications of these perceptions for relevant behaviours. We conducted a survey specifically examining responses to the Great Japan earthquake and nuclear incident, with data collected 11-13 weeks following these events. 844 young respondents completed a questionnaire in three regions of Japan; Miyagi (close to the earthquake and leaking nuclear plants, Tokyo/Chiba (approximately 220 km from the nuclear plants, and Western Japan (Yamaguchi and Nagasaki, some 1000 km from the plants. Results indicated significant regional differences in risk perception, with greater concern over earthquake risks in Tokyo than in Miyagi or Western Japan. Structural equation analyses showed that shared normative concerns about earthquake and nuclear risks, conservation values, lack of trust in governmental advice about the nuclear hazard, and poor personal control over the nuclear incident were positively correlated with perceived earthquake and nuclear risks. These risk perceptions further predicted specific outcomes (e.g. modifying homes, avoiding going outside, contemplating leaving Japan. The strength and significance of these pathways varied by region. Mental health and practical implications of these findings are discussed in the light of the continuing uncertainties in Japan following the March 2011 events.

  16. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    Science.gov (United States)

    Serata, S.

    2006-12-01

    The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical

  17. [The 2010 earthquake in Chile: the response of the health system and international cooperation].

    Science.gov (United States)

    López Tagle, Elizabeth; Santana Nazarit, Paula

    2011-08-01

    Understand the health system and international cooperation response to the catastrophic situation left by the earthquake and tsunami of 27 February 2010 in Chile, and draft proposals for improving strategies to mitigate the devastating effects of natural disasters. Descriptive and qualitative study with a first phase involving the analysis of secondary information-such as news articles, official statements, and technical reports-and a second phase involving semistructured interviews of institutional actors in the public health sector responsible for disaster response and users of the health system who acted as leaders and/or managers of the response. The study was conducted between May and October 2010, and information-gathering focused on the Maule, Bío Bío, and Metropolitan regions. Procedures for recording, distributing, and controlling donations were lacking. The health services suffered significant damage, including the complete destruction of 10 hospitals. The presence of field hospitals and foreign medical teams were appreciated by the community. The family health model and the commitment of personnel helped to ensure the quality of the response. While public health management was generally good, problems dealing with mental health issues were encountered due to a lack of local plans and predisaster simulations. The poor were the most affected. Women became social leaders, organizing the community. Although the health response to the emergency was satisfactory, both the health system and the mobilization of international assistance suffered from weaknesses that exacerbated existing inequities, revealing the need for multisectoral participatory mitigation plans for better disaster preparedness.

  18. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  19. Using Dynamic Fourier Analysis to Discriminate Between Seismic Signals from Natural Earthquakes and Mining Explosions

    Directory of Open Access Journals (Sweden)

    Maria C. Mariani

    2017-08-01

    Full Text Available A sequence of intraplate earthquakes occurred in Arizona at the same location where miningexplosions were carried out in previous years. The explosions and some of the earthquakes generatedvery similar seismic signals. In this study Dynamic Fourier Analysis is used for discriminating signalsoriginating from natural earthquakes and mining explosions. Frequency analysis of seismogramsrecorded at regional distances shows that compared with the mining explosions the earthquake signalshave larger amplitudes in the frequency interval ~ 6 to 8 Hz and significantly smaller amplitudes inthe frequency interval ~ 2 to 4 Hz. This type of analysis permits identifying characteristics in theseismograms frequency yielding to detect potentially risky seismic events.

  20. Automatic analysis of the 2015 Gorkha earthquake aftershock sequence.

    Science.gov (United States)

    Baillard, C.; Lyon-Caen, H.; Bollinger, L.; Rietbrock, A.; Letort, J.; Adhikari, L. B.

    2016-12-01

    The Mw 7.8 Gorkha earthquake, that partially ruptured the Main Himalayan Thrust North of Kathmandu on the 25th April 2015, was the largest and most catastrophic earthquake striking Nepal since the great M8.4 1934 earthquake. This mainshock was followed by multiple aftershocks, among them, two notable events that occurred on the 12th May with magnitudes of 7.3 Mw and 6.3 Mw. Due to these recent events it became essential for the authorities and for the scientific community to better evaluate the seismic risk in the region through a detailed analysis of the earthquake catalog, amongst others, the spatio-temporal distribution of the Gorkha aftershock sequence. Here we complement this first study by doing a microseismic study using seismic data coming from the eastern part of the Nepalese Seismological Center network associated to one broadband station in Everest. Our primary goal is to deliver an accurate catalog of the aftershock sequence. Due to the exceptional number of events detected we performed an automatic picking/locating procedure which can be splitted in 4 steps: 1) Coarse picking of the onsets using a classical STA/LTA picker, 2) phase association of picked onsets to detect and declare seismic events, 3) Kurtosis pick refinement around theoretical arrival times to increase picking and location accuracy and, 4) local magnitude calculation based amplitude of waveforms. This procedure is time efficient ( 1 sec/event), reduces considerably the location uncertainties ( 2 to 5 km errors) and increases the number of events detected compared to manual processing. Indeed, the automatic detection rate is 10 times higher than the manual detection rate. By comparing to the USGS catalog we were able to give a new attenuation law to compute local magnitudes in the region. A detailed analysis of the seismicity shows a clear migration toward the east of the region and a sudden decrease of seismicity 100 km east of Kathmandu which may reveal the presence of a tectonic

  1. Probabilistic safety analysis of earth retaining structures during earthquakes

    Science.gov (United States)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  2. (Multi)fractality of Earthquakes by use of Wavelet Analysis

    Science.gov (United States)

    Enescu, B.; Ito, K.; Struzik, Z. R.

    2002-12-01

    The fractal character of earthquakes' occurrence, in time, space or energy, has by now been established beyond doubt and is in agreement with modern models of seismicity. Moreover, the cascade-like generation process of earthquakes -with one "main" shock followed by many aftershocks, having their own aftershocks- may well be described through multifractal analysis, well suited for dealing with such multiplicative processes. The (multi)fractal character of seismicity has been analysed so far by using traditional techniques, like the box-counting and correlation function algorithms. This work introduces a new approach for characterising the multifractal patterns of seismicity. The use of wavelet analysis, in particular of the wavelet transform modulus maxima, to multifractal analysis was pioneered by Arneodo et al. (1991, 1995) and applied successfully in diverse fields, such as the study of turbulence, the DNA sequences or the heart rate dynamics. The wavelets act like a microscope, revealing details about the analysed data at different times and scales. We introduce and perform such an analysis on the occurrence time of earthquakes and show its advantages. In particular, we analyse shallow seismicity, characterised by a high aftershock "productivity", as well as intermediate and deep seismic activity, known for its scarcity of aftershocks. We examine as well declustered (aftershocks removed) versions of seismic catalogues. Our preliminary results show some degree of multifractality for the undeclustered, shallow seismicity. On the other hand, at large scales, we detect a monofractal scaling behaviour, clearly put in evidence for the declustered, shallow seismic activity. Moreover, some of the declustered sequences show a long-range dependent (LRD) behaviour, characterised by a Hurst exponent, H > 0.5, in contrast with the memory-less, Poissonian model. We demonstrate that the LRD is a genuine characteristic and is not an effect of the time series probability

  3. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure eliminates the deconvolution calculations and the related assumption-regarding type and direction of earthquake waves-required in the direct method. (Auth.)

  4. First-passage Probability Estimation of an Earthquake Response of Seismically Isolated Containment Buildings

    International Nuclear Information System (INIS)

    Hahm, Dae-Gi; Park, Kwan-Soon; Koh, Hyun-Moo

    2008-01-01

    The awareness of a seismic hazard and risk is being increased rapidly according to the frequent occurrences of the huge earthquakes such as the 2008 Sichuan earthquake which caused about 70,000 confirmed casualties and a 20 billion U.S. dollars economic loss. Since an earthquake load contains various uncertainties naturally, the safety of a structural system under an earthquake excitation has been assessed by probabilistic approaches. In many structural applications for a probabilistic safety assessment, it is often regarded that the failure of a system will occur when the response of the structure firstly crosses the limit barrier within a specified interval of time. The determination of such a failure probability is usually called the 'first-passage problem' and has been extensively studied during the last few decades. However, especially for the structures which show a significant nonlinear dynamic behavior, an effective and accurate method for the estimation of such a failure probability is not fully established yet. In this study, we presented a new approach to evaluate the first-passage probability of an earthquake response of seismically isolated structures. The proposed method is applied to the seismic isolation system for the containment buildings of a nuclear power plant. From the numerical example, we verified that the proposed method shows accurate results with more efficient computational efforts compared to the conventional approaches

  5. Expanding the Delivery of Rapid Earthquake Information and Warnings for Response and Recovery

    Science.gov (United States)

    Blanpied, M. L.; McBride, S.; Hardebeck, J.; Michael, A. J.; van der Elst, N.

    2017-12-01

    Scientific organizations like the United States Geological Survey (USGS) release information to support effective responses during an earthquake crisis. Information is delivered to the White House, the National Command Center, the Departments of Defense, Homeland Security (including FEMA), Transportation, Energy, and Interior. Other crucial stakeholders include state officials and decision makers, emergency responders, numerous public and private infrastructure management centers (e.g., highways, railroads and pipelines), the media, and the public. To meet the diverse information requirements of these users, rapid earthquake notifications have been developed to be delivered by e-mail and text message, as well as a suite of earthquake information resources such as ShakeMaps, Did You Feel It?, PAGER impact estimates, and data are delivered via the web. The ShakeAlert earthquake early warning system being developed for the U.S. West Coast will identify and characterize an earthquake a few seconds after it begins, estimate the likely intensity of ground shaking, and deliver brief but critically important warnings to people and infrastructure in harm's way. Currently the USGS is also developing a capability to deliver Operational Earthquake Forecasts (OEF). These provide estimates of potential seismic behavior after large earthquakes and during evolving aftershock sequences. Similar work is underway in New Zealand, Japan, and Italy. In the development of OEF forecasts, social science research conducted during these sequences indicates that aftershock forecasts are valued for a variety of reasons, from informing critical response and recovery decisions to psychologically preparing for more earthquakes. New tools will allow users to customize map-based, spatiotemporal forecasts to their specific needs. Hazard curves and other advanced information will also be available. For such authoritative information to be understood and used during the pressures of an earthquake

  6. Study on earthquake responses of overhead traveling cranes

    International Nuclear Information System (INIS)

    Komori, A.; Fukuda, T.; Veki, T.; Kirata, M.; Hoshii, T.; Kashiwazaki, A.

    1989-01-01

    In nuclear power plants, large-size overhead traveling cranes, such as reactor building crane and turbine building crane, are installed. These overhead cranes are used for transporting heavy loads on the operation floor, and call for safety and reliability even during strong earthquake as well as under the normal operational conditions. The seismic behaviors of overhead traveling cranes, which move on the rails, may be different from those of other structures that are anchored to the building: in the case of cranes, traveling wheels and rails can slip relative to each other when the horizontal seismic force reaches the level of frictional force. In Japan, therefore, a practical guide to the seismic design that considers the sliding has been proposed. However, detailed experimental study on sliding between wheels and rails has not been carried out. In this study, the seismic behaviors of traveling overhead cranes accompanied by sliding between wheels and rails in the traveling direction are examined

  7. The Loma Prieta, California, Earthquake of October 17, 1989: Societal Response

    Science.gov (United States)

    Coordinated by Mileti, Dennis S.

    1993-01-01

    Professional Paper 1553 describes how people and organizations responded to the earthquake and how the earthquake impacted people and society. The investigations evaluate the tools available to the research community to measure the nature, extent, and causes of damage and losses. They describe human behavior during and immediately after the earthquake and how citizens participated in emergency response. They review the challenges confronted by police and fire departments and disruptions to transbay transportations systems. And they survey the challenges of post-earthquake recovery. Some significant findings were: * Loma Prieta provided the first test of ATC-20, the red, yellow, and green tagging of buildings. It successful application has led to widespread use in other disasters including the September 11, 2001, New York City terrorist incident. * Most people responded calmly and without panic to the earthquake and acted to get themselves to a safe location. * Actions by people to help alleviate emergency conditions were proportional to the level of need at the community level. * Some solutions caused problems of their own. The police perimeter around the Cypress Viaduct isolated businesses from their customers leading to a loss of business and the evacuation of employees from those businesses hindered the movement of supplies to the disaster scene. * Emergency transbay ferry service was established 6 days after the earthquake, but required constant revision of service contracts and schedules. * The Loma Prieta earthquake produced minimal disruption to the regional economy. The total economic disruption resulted in maximum losses to the Gross Regional Product of $725 million in 1 month and $2.9 billion in 2 months, but 80% of the loss was recovered during the first 6 months of 1990. Approximately 7,100 workers were laid off.

  8. Response spectra for differential motion of structures supports during earthquakes in Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed I.S. Elmasry

    2012-12-01

    Full Text Available Differential motions of ground supports of stiff structures with large plan dimensions and separate foundations under earthquakes were studied by researchers during the last few decades. Such a type of structural response was previously underestimated. The importance of studying such a response comes up from the fact that usually the structures affected are of strategic importance such as bridges. During their expected life, structures may experience vibrations excited by ground waves of short wavelengths during near-source earthquakes, or during amplified earthquake signals, during explosions, or during vibrations induced from nearby strong vibration sources. This is the case when the differential motion of supports becomes considerable. This paper aims to review the effects of seismic signal variations along the structures dimensions with emphasis on Egypt as a case study. The paper shows some patterns of the damage imposed by such differential motion. A replication of the differential motion in the longitudinal direction is applied on a frame bridge model. The resulting straining actions show the necessity for considering the differential motion of supports in the design of special structures in Egypt. Finally, response spectra for the differential motion of supports, based on the available data from previous earthquakes in Egypt, is derived and proposed for designers to include in the design procedure when accounting for such type of structural response, and especially in long-span bridges.

  9. Mathematical models for estimating earthquake casualties and damage cost through regression analysis using matrices

    International Nuclear Information System (INIS)

    Urrutia, J D; Bautista, L A; Baccay, E B

    2014-01-01

    The aim of this study was to develop mathematical models for estimating earthquake casualties such as death, number of injured persons, affected families and total cost of damage. To quantify the direct damages from earthquakes to human beings and properties given the magnitude, intensity, depth of focus, location of epicentre and time duration, the regression models were made. The researchers formulated models through regression analysis using matrices and used α = 0.01. The study considered thirty destructive earthquakes that hit the Philippines from the inclusive years 1968 to 2012. Relevant data about these said earthquakes were obtained from Philippine Institute of Volcanology and Seismology. Data on damages and casualties were gathered from the records of National Disaster Risk Reduction and Management Council. This study will be of great value in emergency planning, initiating and updating programs for earthquake hazard reduction in the Philippines, which is an earthquake-prone country.

  10. Simple procedure for evaluating earthquake response spectra of large-event motions based on site amplification factors derived from smaller-event records

    International Nuclear Information System (INIS)

    Dan, Kazuo; Miyakoshi, Jun-ichi; Yashiro, Kazuhiko.

    1996-01-01

    A primitive procedure was proposed for evaluating earthquake response spectra of large-event motions to make use of records from smaller events. The result of the regression analysis of the response spectra was utilized to obtain the site amplification factors in the proposed procedure, and the formulation of the seismic-source term in the regression analysis was examined. A linear form of the moment magnitude, Mw, is good for scaling the source term of moderate earthquakes with Mw of 5.5 to 7.0, while a quadratic form of Mw and the ω-square source-spectrum model is appropriate for scaling the source term of smaller and greater earthquakes, respectively. (author). 52 refs

  11. Hydrogeochemical response of groundwater springs during central Italy earthquakes (24 August 2016 and 26-30 October 2016)

    Science.gov (United States)

    Archer, Claire; Binda, Gilberto; Terrana, Silvia; Gambillara, Roberto; Michetti, Alessandro; Noble, Paula; Petitta, Marco; Rosen, Michael; Pozzi, Andrea; Bellezza, Paolo; Brunamonte, Fabio

    2017-04-01

    Co-seismic hydrological and chemical response at groundwater springs following strong earthquakes is a significant concern in the Apennines, a region in central Italy characterized by regional karstic groundwater systems interacting with active normal faults capable of producing Mw 6.5 to 7.0 seismic events. These aquifers also provide water supply to major metropolitan areas in the region. On August 24, 2016, a Mw 6.0 earthquake hit Central Italy in the area where Latium joins Umbria, Marche and Abruzzi; this was immediately followed one hour later by a Mw 5.4 shock. The epicenter of the event was located at the segment boundary between the Mt. Vettore and Mt. Laga faults. On October 26, 2016 and on October 30, 2016, three other big shocks (Mw 5.5, Mw 6.0 and Mw 6.5) ruptured again the Vettore Fault and its NW extension. Immediately after Aug. 24, we sampled springs discharging different aquifers in the Rieti area, including the Peschiera spring, which feeds the aqueduct of Rome. Thermal springs connected with deep groundwater flowpaths were also sampled. These springs, sampled previously in 2014 and 2015, provide some pre-earthquake data. Moreover, we sampled 4 springs along the Mt. Vettore fault system: 3 small springs at Forca di Presta, close to the trace of the earthquake surface ruptures, and two in Castel Sant'Angelo sul Nera. The latter are feeding the Nera aqueduct and the Nerea S.p.A. mineral water plant, which also kindly allowed us to collect bottled water samples from the pre-seismic period. The aim of this study is to evaluate the strong earthquake sequence effects on the hydrochemistry and flow paths of groundwater from different aquifer settings based on analysis before and after seismic events. The comparison between the responses of springs ca. 40 km from the epicenter (Rieti basin) and the springs located near the epicenter (Castelsantangelo sul Nera and Forca di Presta) is especially significant for understanding the resilience of groundwater

  12. The Fusion of Financial Analysis and Seismology: Statistical Methods from Financial Market Analysis Applied to Earthquake Data

    Science.gov (United States)

    Ohyanagi, S.; Dileonardo, C.

    2013-12-01

    As a natural phenomenon earthquake occurrence is difficult to predict. Statistical analysis of earthquake data was performed using candlestick chart and Bollinger Band methods. These statistical methods, commonly used in the financial world to analyze market trends were tested against earthquake data. Earthquakes above Mw 4.0 located on shore of Sanriku (37.75°N ~ 41.00°N, 143.00°E ~ 144.50°E) from February 1973 to May 2013 were selected for analysis. Two specific patterns in earthquake occurrence were recognized through the analysis. One is a spread of candlestick prior to the occurrence of events greater than Mw 6.0. A second pattern shows convergence in the Bollinger Band, which implies a positive or negative change in the trend of earthquakes. Both patterns match general models for the buildup and release of strain through the earthquake cycle, and agree with both the characteristics of the candlestick chart and Bollinger Band analysis. These results show there is a high correlation between patterns in earthquake occurrence and trend analysis by these two statistical methods. The results of this study agree with the appropriateness of the application of these financial analysis methods to the analysis of earthquake occurrence.

  13. Analysis of soil radon data in earthquake precursory studies

    Directory of Open Access Journals (Sweden)

    Hari Prasad Jaishi

    2014-10-01

    Full Text Available Soil radon data were recorded at two selected sites along Mat fault in Mizoram (India, which lies in the highest seismic zone in India. The study was carried out during July 2011 to May 2013 using LR-115 Type II films. Precursory changes in radon concentration were observed prior to some earthquakes that occurred around the measuring sites. Positive correlation was found between the measured radon data and the seismic activity in the region. Statistical analysis of the radon data together with the meteorological parameters was done using Multiple Regression Method. Results obtained show that the method employed was useful for removing the effect of meteorological parameters and to identify radon maxima possibly caused by seismic activity.

  14. Study on China’s Earthquake Prediction by Mathematical Analysis and its Application in Catastrophe Insurance

    Science.gov (United States)

    Jianjun, X.; Bingjie, Y.; Rongji, W.

    2018-03-01

    The purpose of this paper was to improve catastrophe insurance level. Firstly, earthquake predictions were carried out using mathematical analysis method. Secondly, the foreign catastrophe insurances’ policies and models were compared. Thirdly, the suggestions on catastrophe insurances to China were discussed. The further study should be paid more attention on the earthquake prediction by introducing big data.

  15. Evaluation and summary of seismic response of above ground nuclear power plant piping to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    The purpose of this paper is to summarize the observations and experience which has been developed relative to the seismic behavior of above-ground, building-supported, industrial type piping (similar to piping used in nuclear power plants) in strong motion earthquakes. The paper also contains observations regarding the response of piping in experimental tests which attempted to excite the piping to failure. Appropriate conclusions regarding the behavior of such piping in large earthquakes and recommendations as to future design of such piping to resist earthquake motion damage are presented based on observed behavior in large earthquakes and simulated shake table testing

  16. Development of fuel assembly seismic analysis against vertical and horizontal earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T.; Akitake, J.; Kobayashi, H. [Nuclear Development Corporation, Ibaraki (Japan); Azumi, S. [Kansai Electric Power co., inc., Osaka (Japan); Koike, H.; Takeda, N.; Suzuki, S. [Kobe Shipyard and Machinery Works, Mitsubishi Heavy Industries, LTD., Kobe (Japan)

    2001-07-01

    Vertical vibration with large acceleration was observed in KOBE earthquake in 1995. Concerning PWR fuel assembly, though the vertical response has been calculated by a static analysis, it had better be calculated by a dynamic analysis in detail. Furthermore, mutual effects between horizontal and vertical motions attract our attention. For these reasons, a dynamic analysis method in the vertical direction was developed and linked with the previously developed method in the horizontal direction. This is the method that takes effect of vertical vibration into the horizontal vibration analysis as the change of horizontal stiffness, which is brought by axial compressive force. In this paper, fundamental test results for developing the method are introduced and summary of the advanced method's procedure and analysis results are also described. (authors)

  17. Development of fuel assembly seismic analysis against vertical and horizontal earthquake

    International Nuclear Information System (INIS)

    Sato, T.; Akitake, J.; Kobayashi, H.; Azumi, S.; Koike, H.; Takeda, N.; Suzuki, S.

    2001-01-01

    Vertical vibration with large acceleration was observed in KOBE earthquake in 1995. Concerning PWR fuel assembly, though the vertical response has been calculated by a static analysis, it had better be calculated by a dynamic analysis in detail. Furthermore, mutual effects between horizontal and vertical motions attract our attention. For these reasons, a dynamic analysis method in the vertical direction was developed and linked with the previously developed method in the horizontal direction. This is the method that takes effect of vertical vibration into the horizontal vibration analysis as the change of horizontal stiffness, which is brought by axial compressive force. In this paper, fundamental test results for developing the method are introduced and summary of the advanced method's procedure and analysis results are also described. (authors)

  18. Singular limit analysis of a model for earthquake faulting

    DEFF Research Database (Denmark)

    Bossolini, Elena; Brøns, Morten; Kristiansen, Kristian Uldall

    2017-01-01

    In this paper we consider the one dimensional spring-block model describing earthquake faulting. By using geometric singular perturbation theory and the blow-up method we provide a detailed description of the periodicity of the earthquake episodes. In particular, the limit cycles arise from...

  19. Response spectrum analysis of a stochastic seismic model

    International Nuclear Information System (INIS)

    Kimura, Koji; Sakata, Masaru; Takemoto, Shinichiro.

    1990-01-01

    The stochastic response spectrum approach is presented for predicting the dynamic behavior of structures to earthquake excitation expressed by a random process, one of whose sample functions can be regarded as a recorded strong-motion earthquake accelerogram. The approach consists of modeling recorded ground motion by a random process and the root-mean-square response (rms) analysis of a single-degree-of-freedom system by using the moment equations method. The stochastic response spectrum is obtained as a plot of the maximum rms response versus the natural period of the system and is compared with the conventional response spectrum. (author)

  20. A dynamic dispatching and routing model to plan/replan the logistical activities in the response phase of an earthquake

    NARCIS (Netherlands)

    Najafi, M.; Eshgi, K.; de Leeuw, S.L.J.M.

    2014-01-01

    The unpredictable nature and devastating impact of earthquakes enforce governments of disaster-prone regions to provide practical response plans to minimize damage and losses resulting from earthquakes. Logistics management is one of the key issues that should be considered for an appropriate

  1. Extreme earthquake response of nuclear power plants isolated using sliding bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manish, E-mail: mkumar@iitgn.ac.in [Department of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355 (India); Whittaker, Andrew S.; Constantinou, Michael C. [Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260 (United States)

    2017-05-15

    Highlights: • Response-history analysis of a nuclear power plant (NPP) isolated using sliding bearings. • Two models of the NPP, five friction models and four seismic hazard levels considered. • Isolation system displacement can be obtained using a macro NPP model subjected to only horizontal ground motions. • Temperature dependence of friction should be considered in isolation-system displacement calculations. • The effect of friction model on floor spectral ordinates is rather small, especially near the basemat. - Abstract: Horizontal seismic isolation is a viable approach to mitigate risk to structures, systems and components (SSCs) in nuclear power plants (NPPs) under extreme ground shaking. This paper presents a study on an NPP seismically isolated using single concave Friction Pendulum™ (FP) bearings subjected to ground motions representing seismic hazard at two US sites: Diablo Canyon and Vogtle. Two models of the NPP, five models to describe friction at the sliding surface of the FP bearings, and four levels of ground shaking are considered for response-history analysis, which provide insight into the influence of 1) the required level of detail of an NPP model, 2) the vertical component of ground motion on response of isolated NPPs, and 3) the pressure-, temperature- and/or velocity-dependencies of the coefficient of friction, on the response of an isolated NPP. The isolation-system displacement of an NPP can be estimated using a macro model subjected to only the two orthogonal horizontal components of ground motion. The variation of the coefficient of friction with temperature at the sliding surface during earthquake shaking should be accounted for in the calculation of isolation-system displacements, particularly when the shaking intensity is high; pressure and velocity dependencies are not important. In-structure floor spectra should be computed using a detailed three-dimensional model of an isolated NPP subjected to all three components of

  2. Dynamic Response of AP1000 Nuclear Island Due to Safe Shutdown Earthquake Loading

    Directory of Open Access Journals (Sweden)

    Gan Buntara S.

    2017-01-01

    Full Text Available AP1000 is a standard nuclear power plant developed by Westinghouse and its partners by using an advanced passive safety feature. Among the five principle building structures, namely the nuclear island, turbine building, annex building, diesel generator building and radwaste building, the safety of the nuclear island building is the most concerned. This paper investigates the dynamic response of the nuclear island building of the AP1000 plant subjected to safe shutdown earthquake loadings. A finite element model for the building, which is assumed to be built in a hard-rock base, is developed and its dynamic response is computed with the aid of the commercial finite element package ANSYS. The dynamic characteristics, including the natural frequencies, the vibration modes, and the time histories for displacements, velocities, and accelerations of the building are obtained for two typical safe shutdown earthquakes, El Centro and Kobe earthquakes. The dynamic behavior of the building due to the earthquakes and its safety is examined and highlighted.

  3. E-DECIDER Rapid Response to the M 6.0 South Napa Earthquake

    Science.gov (United States)

    Glasscoe, M. T.; Parker, J. W.; Pierce, M. E.; Wang, J.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.

    2014-12-01

    E-DECIDER initiated rapid response mode when the California Earthquake Clearinghouse was activated the morning following the M6 Napa earthquake. Data products, including: 1) rapid damage and loss estimates, 2) deformation magnitude and slope change maps, and 3) aftershock forecasts were provided to the Clearinghouse partners within 24 hours of the event via XchangeCore Web Service Data Orchestration sharing. NASA data products were provided to end-users via XchangeCore, EERI and Clearinghouse websites, and ArcGIS online for Napa response, reaching a wide response audience. The E-DECIDER team helped facilitate rapid delivery of NASA products to stakeholders and participated in Clearinghouse Napa earthquake briefings to update stakeholders on product information. Rapid response products from E-DECIDER can be used to help prioritize response efforts shortly after the event has occurred. InLET (Internet Loss Estimation Tool) post-event damage and casualty estimates were generated quickly after the Napa earthquake. InLET provides immediate post-event estimates of casualties and building damage by performing loss/impact simulations using USGS ground motion data and FEMA HAZUS damage estimation technology. These results were provided to E-DECIDER by their collaborators, ImageCat, Inc. and the Community Stakeholder Network (CSN). Strain magnitude and slope change maps were automatically generated when the Napa earthquake appeared on the USGS feed. These maps provide an early estimate of where the deformation has occurred and where damage may be localized. Using E-DECIDER critical infrastructure overlays with damage estimates, decision makers can direct response effort that can be verified later with field reconnaissance and remote sensing-based observations. Earthquake aftershock forecast maps were produced within hours of the event. These maps highlight areas where aftershocks are likely to occur and can also be coupled with infrastructure overlays to help direct response

  4. Rapid post-earthquake modelling of coseismic landslide intensity and distribution for emergency response decision support

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    2017-09-01

    Full Text Available Current methods to identify coseismic landslides immediately after an earthquake using optical imagery are too slow to effectively inform emergency response activities. Issues with cloud cover, data collection and processing, and manual landslide identification mean even the most rapid mapping exercises are often incomplete when the emergency response ends. In this study, we demonstrate how traditional empirical methods for modelling the total distribution and relative intensity (in terms of point density of coseismic landsliding can be successfully undertaken in the hours and days immediately after an earthquake, allowing the results to effectively inform stakeholders during the response. The method uses fuzzy logic in a GIS (Geographic Information Systems to quickly assess and identify the location-specific relationships between predisposing factors and landslide occurrence during the earthquake, based on small initial samples of identified landslides. We show that this approach can accurately model both the spatial pattern and the number density of landsliding from the event based on just several hundred mapped landslides, provided they have sufficiently wide spatial coverage, improving upon previous methods. This suggests that systematic high-fidelity mapping of landslides following an earthquake is not necessary for informing rapid modelling attempts. Instead, mapping should focus on rapid sampling from the entire affected area to generate results that can inform the modelling. This method is therefore suited to conditions in which imagery is affected by partial cloud cover or in which the total number of landslides is so large that mapping requires significant time to complete. The method therefore has the potential to provide a quick assessment of landslide hazard after an earthquake and may therefore inform emergency operations more effectively compared to current practice.

  5. Seismic soil structure interaction analysis for asymmetrical buildings supported on piled raft for the 2015 Nepal earthquake

    Science.gov (United States)

    Badry, Pallavi; Satyam, Neelima

    2017-01-01

    Seismic damage surveys and analyses conducted on modes of failure of structures during past earthquakes observed that the asymmetrical buildings show the most vulnerable effect throughout the course of failures (Wegner et al., 2009). Thus, all asymmetrical buildings significantly fails during the shaking events and it is really needed to focus on the accurate analysis of the building, including all possible accuracy in the analysis. Apart from superstructure geometry, the soil behavior during earthquake shaking plays a pivotal role in the building collapse (Chopra, 2012). Fixed base analysis where the soil is considered to be infinitely rigid cannot simulate the actual scenario of wave propagation during earthquakes and wave transfer mechanism in the superstructure (Wolf, 1985). This can be well explained in the soil structure interaction analysis, where the ground movement and structural movement can be considered with the equal rigor. In the present study the object oriented program has been developed in C++ to model the SSI system using the finite element methodology. In this attempt the seismic soil structure interaction analysis has been carried out for T, L and C types piled raft supported buildings in the recent 25th April 2015 Nepal earthquake (M = 7.8). The soil properties have been considered with the appropriate soil data from the Katmandu valley region. The effect of asymmetry of the building on the responses of the superstructure is compared with the author's research work. It has been studied/observed that the shape or geometry of the superstructure governs the response of the superstructure subjected to the same earthquake load.

  6. Immediate behavioural responses to earthquakes in Christchurch, New Zealand, and Hitachi, Japan.

    Science.gov (United States)

    Lindell, Michael K; Prater, Carla S; Wu, Hao Che; Huang, Shih-Kai; Johnston, David M; Becker, Julia S; Shiroshita, Hideyuki

    2016-01-01

    This study examines people's immediate responses to earthquakes in Christchurch, New Zealand, and Hitachi, Japan. Data collected from 257 respondents in Christchurch and 332 respondents in Hitachi revealed notable similarities between the two cities in people's emotional reactions, risk perceptions, and immediate protective actions during the events. Respondents' physical, household, and social contexts were quite similar, but Hitachi residents reported somewhat higher levels of emotional reaction and risk perception than did Christchurch residents. Contrary to the recommendations of emergency officials, the most frequent response of residents in both cities was to freeze. Christchurch residents were more likely than Hitachi residents to drop to the ground and take cover, whereas Hitachi residents were more likely than Christchurch residents to evacuate immediately the building in which they were situated. There were relatively small correlations between immediate behavioural responses and demographic characteristics, earthquake experience, and physical, social, or household context. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  7. Development of uniform hazard response spectra for rock sites considering line and point sources of earthquakes

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Kushwaha, H.S.

    2001-12-01

    Traditionally, the seismic design basis ground motion has been specified by normalised response spectral shapes and peak ground acceleration (PGA). The mean recurrence interval (MRI) used to computed for PGA only. It is shown that the MRI associated with such response spectra are not the same at all frequencies. The present work develops uniform hazard response spectra i.e. spectra having the same MRI at all frequencies for line and point sources of earthquakes by using a large number of strong motion accelerograms recorded on rock sites. Sensitivity of the number of the results to the changes in various parameters has also been presented. This work is an extension of an earlier work for aerial sources of earthquakes. These results will help to determine the seismic hazard at a given site and the associated uncertainities. (author)

  8. Hospital stay as a proxy indicator for severe injury in earthquakes: a retrospective analysis.

    Science.gov (United States)

    Zhao, Lu-Ping; Gerdin, Martin; Westman, Lina; Rodriguez-Llanes, Jose Manuel; Wu, Qi; van den Oever, Barbara; Pan, Liang; Albela, Manuel; Chen, Gao; Zhang, De-Sheng; Guha-Sapir, Debarati; von Schreeb, Johan

    2013-01-01

    Earthquakes are the most violent type of natural disasters and injuries are the dominant medical problem in the early phases after earthquakes. However, likely because of poor data availability, high-quality research on injuries after earthquakes is lacking. Length of hospital stay (LOS) has been validated as a proxy indicator for injury severity in high-income settings and could potentially be used in retrospective research of injuries after earthquakes. In this study, we assessed LOS as an adequate proxy indicator for severe injury in trauma survivors of an earthquake. A retrospective analysis was conducted using a database of 1,878 injured patients from the 2008 Wenchuan earthquake. Our primary outcome was severe injury, defined as a composite measure of serious injury or resource use. Secondary outcomes were serious injury and resource use, analysed separately. Non-parametric receiver operating characteristics (ROC) and area under the curve (AUC) analysis was used to test the discriminatory accuracy of LOS when used to identify severe injury. An 0.7earthquake survivors. However, LOS was found to be a proxy for major nonorthopaedic surgery and blood transfusion. These findings can be useful for retrospective research on earthquake-injured patients when detailed hospital records are not available.

  9. Global earthquake casualties due to secondary effects: A quantitative analysis for improving rapid loss analyses

    Science.gov (United States)

    Marano, K.D.; Wald, D.J.; Allen, T.I.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER's overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra-Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability. ?? Springer Science+Business Media B.V. 2009.

  10. An approach to siting nuclear power plants: the relevance of earthquakes, faults and decision analysis

    International Nuclear Information System (INIS)

    Nair, K.; Brogan, G.E.; Cluff, L.S.; Idriss, I.M.; Mao, K.T.

    1975-01-01

    The regional approach to nuclear power plant siting described in this paper identifies candidate sites within the region and ranks these sites by using decision-analysis concepts. The approach uses exclusionary criteria to eliminate areas from consideration and to identify those areas which are most likely to contain candidate sites. These areas are then examined in greater detail to identify candidate sites, and the number of sites under consideration is reduced to a reasonably manageable number, approximately 15. These sites are then ranked using concepts of decision analysis. The exclusionary criteria applied relate primarily to regulatory-agency safety requirements and essential functional requirements. Examples of such criteria include proximity to population centres, presence of active faults, and the availability of cooling water. In many areas of the world, the presence of active faults and potential negative effects of earthquakes are dominant exclusionary criteria. To apply the 'active fault' criterion the region must be studied to locate and assess the activity of all potentially active faults. This requires complementary geologic (including geomorphic), historical, seismological, geodetic and geophysical investigations of the entire region. Site response studies or empirical attenuation correlations can be used to determine the relevant parameters of anticipated shaking from postulated earthquakes, and analytical testing and evaluation can be used to assess the potential extent of ground failure during an earthquake. After candidate sites are identified, an approach based on decision analysis is used to rank them. This approach uses the preferences and judgements of consumers, utility companies, the government, and other groups concerned with siting and licensing issues in the ranking process. Both subjective and objective factors are processed in a logical manner, as are the monetary and non-monetary factors and achievement of competing environmental

  11. The Pacific Tsunami Warning Center's Response to the Tohoku Earthquake and Tsunami

    Science.gov (United States)

    Weinstein, S. A.; Becker, N. C.; Shiro, B.; Koyanagi, K. K.; Sardina, V.; Walsh, D.; Wang, D.; McCreery, C. S.; Fryer, G. J.; Cessaro, R. K.; Hirshorn, B. F.; Hsu, V.

    2011-12-01

    The largest Pacific basin earthquake in 47 years, and also the largest magnitude earthquake since the Sumatra 2004 earthquake, struck off of the east coast of the Tohoku region of Honshu, Japan at 5:46 UTC on 11 March 2011. The Tohoku earthquake (Mw 9.0) generated a massive tsunami with runups of up to 40m along the Tohoku coast. The tsunami waves crossed the Pacific Ocean causing significant damage as far away as Hawaii, California, and Chile, thereby becoming the largest, most destructive tsunami in the Pacific Basin since 1960. Triggers on the seismic stations at Erimo, Hokkaido (ERM) and Matsushiro, Honshu (MAJO), alerted Pacific Tsunami Warning Center (PTWC) scientists 90 seconds after the earthquake began. Four minutes after its origin, and about one minute after the earthquake's rupture ended, PTWC issued an observatory message reporting a preliminary magnitude of 7.5. Eight minutes after origin time, the Japan Meteorological Agency (JMA) issued its first international tsunami message in its capacity as the Northwest Pacific Tsunami Advisory Center. In accordance with international tsunami warning system protocols, PTWC then followed with its first international tsunami warning message using JMA's earthquake parameters, including an Mw of 7.8. Additional Mwp, mantle wave, and W-phase magnitude estimations based on the analysis of later-arriving seismic data at PTWC revealed that the earthquake magnitude reached at least 8.8, and that a destructive tsunami would likely be crossing the Pacific Ocean. The earthquake damaged the nearest coastal sea-level station located 90 km from the epicenter in Ofunato, Japan. The NOAA DART sensor situated 600 km off the coast of Sendai, Japan, at a depth of 5.6 km recorded a tsunami wave amplitude of nearly two meters, making it by far the largest tsunami wave ever recorded by a DART sensor. Thirty minutes later, a coastal sea-level station at Hanasaki, Japan, 600 km from the epicenter, recorded a tsunami wave amplitude of

  12. Rapid Response Products of The ARIA Project for the M6.0 August 24, 2014 South Napa Earthquake

    Science.gov (United States)

    Yun, S. H.; Owen, S. E.; Hua, H.; Milillo, P.; Fielding, E. J.; Hudnut, K. W.; Dawson, T. E.; Mccrink, T. P.; Jo, M. J.; Barnhart, W. D.; Manipon, G. J. M.; Agram, P. S.; Moore, A. W.; Jung, H. S.; Webb, F.; Milillo, G.; Rosinski, A.

    2014-12-01

    A magnitude 6.0 earthquake struck southern Napa county northeast of San Francisco, California, on Aug. 24, 2014, causing significant damage in the city of Napa and nearby areas. One day after the earthquake, the Advanced Rapid Imaging and Analysis (ARIA) team produced and released observations of coseismic ground displacement measured with continuous GPS stations of the Plate Boundary Observatory (operated by UNAVCO for the National Science Foundation) and the Bay Area Rapid Deformation network (operated by Berkeley Seismological Laboratory). Three days after the earthquake (Aug. 27), the Italian Space Agency's (ASI) COSMO-SkyMed (CSK) satellite acquired their first post-event data. On the same day, the ARIA team, in collaboration with ASI and University of Basilicata, produced and released a coseismic interferogram that revealed ground deformation and surface rupture. The depiction of the surface rupture - discontinuities of color fringes in the CSK interferogram - helped guide field geologists from the US Geological Survey and the California Geological Survey (CGS) to features that may have otherwise gone undetected. Small-scale cracks were found on a runway of the Napa County Airport, as well as bridge damage and damaged roads. ARIA's response to this event highlighted the importance of timeliness for mapping surface deformation features. ARIA's rapid response products were shared through Southern California Earthquake Center's response website and the California Earthquake Clearinghouse. A damage proxy map derived from InSAR coherence of CSK data was produced and distributed on Aug. 27. Field crews from the CGS identified true and false positives, including mobile home damage, newly planted grape vines, and a cripple wall failure of a house. Finite fault slip models constrained from CSK interferograms and continuous GPS observations reveal a north-propagating rupture with well-resolved slip from 0-10.5 km depth. We also measured along-track coseismic

  13. Chest injuries associated with earthquakes: an analysis of injuries sustained during the 2008 Wen-Chuan earthquake in China.

    Science.gov (United States)

    Hu, Jia; Guo, Ying-Qiang; Zhang, Er-Yong; Tan, Jin; Shi, Ying-Kang

    2010-08-01

    The goal of this study was to analyze the patterns, therapeutic modalities, and short-term outcomes of patients with chest injuries in the aftermath of the Wen-Chuan earthquake, which occurred on May 12, 2008 and registered 8.0 on the Richter scale. Of the 1522 patients who were referred to the West China Hospital of Sichuan University from May 12 to May 27, 169 patients (11.1%) had suffered major chest injuries. The type of injury, the presence of infection, Abbreviated Injury Score (AIS 2005), New Injury Severity Score (NISS), treatment, and short-term outcome were all documented for each case. Isolated chest injuries were diagnosed in 129 patients (76.3%), while multiple injuries with a major chest trauma were diagnosed in 40 patients (23.7%). The mean AIS and the median NISS of the hospitalized patients with chest injuries were 2.5 and 13, respectively. The mortality rate was 3.0% (5 patients). Most of the chest injuries were classified as minor to moderate trauma; however, coexistent multiple injuries and subsequent infection should be carefully considered in medical response strategies. Coordinated efforts among emergency medical support groups and prior training in earthquake preparedness and rescue in earthquake-prone areas are therefore necessary for efficient evacuation and treatment of catastrophic casualties.

  14. Influence of earthquake strong motion duration on nonlinear structural response

    International Nuclear Information System (INIS)

    Meskouris, K.

    1983-01-01

    The effects of motion duration on nonlinear structural response of high-rise, moment resisting frames are studied by subjecting shear beam models of a 10- and a 5-story frame to a series of synthetic accelerograms, all matching the same NEWMARK/HALL design spectrum. Two different hysteretic laws are used for the story springs, and calculations are carried out for target ductility values of 2 and 4. Maximum ductilities reached and energy-based damage indicators (maximum seismically input energy, hysteretically dissipated energy) are evaluated and correlated with the motion characteristics. A reasonable extrapolative determination of structural response characteristics based on these indicators seems possible. (orig.)

  15. Association between earthquake events and cholera outbreaks: a cross-country 15-year longitudinal analysis.

    Science.gov (United States)

    Sumner, Steven A; Turner, Elizabeth L; Thielman, Nathan M

    2013-12-01

    Large earthquakes can cause population displacement, critical sanitation infrastructure damage, and increased threats to water resources, potentially predisposing populations to waterborne disease epidemics such as cholera. Problem The risk of cholera outbreaks after earthquake disasters remains uncertain. A cross-country analysis of World Health Organization (WHO) cholera data that would contribute to this discussion has yet to be published. A cross-country longitudinal analysis was conducted among 63 low- and middle-income countries from 1995-2009. The association between earthquake disasters of various effect sizes and a relative spike in cholera rates for a given country was assessed utilizing fixed-effects logistic regression and adjusting for gross domestic product per capita, water and sanitation level, flooding events, percent urbanization, and under-five child mortality. Also, the association between large earthquakes and cholera rate increases of various degrees was assessed. Forty-eight of the 63 countries had at least one year with reported cholera infections during the 15-year study period. Thirty-six of these 48 countries had at least one earthquake disaster. In adjusted analyses, country-years with ≥10,000 persons affected by an earthquake had 2.26 times increased odds (95 CI, 0.89-5.72, P = .08) of having a greater than average cholera rate that year compared to country-years having earthquake. The association between large earthquake disasters and cholera infections appeared to weaken as higher levels of cholera rate increases were tested. A trend of increased risk of greater than average cholera rates when more people were affected by an earthquake in a country-year was noted. However these findings did not reach statistical significance at traditional levels and may be due to chance. Frequent large-scale cholera outbreaks after earthquake disasters appeared to be relatively uncommon.

  16. The smart cluster method. Adaptive earthquake cluster identification and analysis in strong seismic regions

    Science.gov (United States)

    Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann

    2017-07-01

    Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.

  17. NEAR REAL-TIME GEOREFERENCE OF UMANNED AERIAL VEHICLE IMAGES FOR POST-EARTHQUAKE RESPONSE

    OpenAIRE

    Wang, S.; Wang, X.; Dou, A.; Yuan, X.; Ding, L.; Ding, X.

    2018-01-01

    The rapid collection of Unmanned Aerial Vehicle (UAV) remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we ...

  18. A procedure for the determination of scenario earthquakes for seismic design based on probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Hirose, Jiro; Muramatsu, Ken

    2002-03-01

    This report presents a study on the procedures for the determination of scenario earthquakes for seismic design of nuclear power plants (NPPs) based on probabilistic seismic hazard analysis (PSHA). In the recent years, the use of PSHA, which is a part of seismic probabilistic safety assessment (PSA), to determine the design basis earthquake motions for NPPs has been proposed. The identified earthquakes are called probability-based scenario earthquakes (PBSEs). The concept of PBSEs originates both from the study of US NRC and from Ishikawa and Kameda. The assessment of PBSEs is composed of seismic hazard analysis and identification of dominant earthquakes. The objectives of this study are to formulate the concept of PBSEs and to examine the procedures for determining the PBSEs for a domestic NPP site. This report consists of three parts, namely, procedures to compile analytical conditions for PBSEs, an assessment to identify PBSEs for a model site using the Ishikawa's concept and the examination of uncertainties involved in analytical conditions. The results obtained from the examination of PBSEs using Ishikawa's concept are as follows. (a) Since PBSEs are expressed by hazard-consistent magnitude and distance in terms of a prescribed reference probability, it is easy to obtain a concrete image of earthquakes that determine the ground response spectrum to be considered in the design of NPPs. (b) Source contribution factors provide the information on the importance of the earthquake source regions and/or active faults, and allows the selection of a couple of PBSEs based on their importance to the site. (c) Since analytical conditions involve uncertainty, sensitivity analyses on uncertainties that would affect seismic hazard curves and identification of PBSEs were performed on various aspects and provided useful insights for assessment of PBSEs. A result from this sensitivity analysis was that, although the difference in selection of attenuation equations led to a

  19. Updated earthquake catalogue for seismic hazard analysis in Pakistan

    Science.gov (United States)

    Khan, Sarfraz; Waseem, Muhammad; Khan, Muhammad Asif; Ahmed, Waqas

    2018-03-01

    A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40-83° N and 20-40° E) includes 36,563 earthquake events, which are reported as 4.0-8.3 moment magnitude (M W) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude M W. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.

  20. Real-time seismic monitoring of the integrated cape girardeau bridge array and recorded earthquake response

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.

  1. Golden Gate Bridge response: a study with low-amplitude data from three earthquakes

    Science.gov (United States)

    Çelebi, Mehmet

    2012-01-01

    The dynamic response of the Golden Gate Bridge, located north of San Francisco, CA, has been studied previously using ambient vibration data and finite element models. Since permanent seismic instrumentation was installed in 1993, only small earthquakes that originated at distances varying between ~11 to 122 km have been recorded. Nonetheless, these records prompted this study of the response of the bridge to low amplitude shaking caused by three earthquakes. Compared to previous ambient vibration studies, the earthquake response data reveal a slightly higher fundamental frequency (shorter-period) for vertical vibration of the bridge deck center span (~7.7–8.3 s versus 8.2–10.6 s), and a much higher fundamental frequency (shorter period) for the transverse direction of the deck (~11.24–16.3 s versus ~18.2 s). In this study, it is also shown that these two periods are dominant apparent periods representing interaction between tower, cable, and deck.

  2. The 2015 Nepal Earthquake(s): Lessons Learned From the Disability and Rehabilitation Sector's Preparation for, and Response to, Natural Disasters.

    Science.gov (United States)

    Landry, Michel D; Sheppard, Phillip S; Leung, Kit; Retis, Chiara; Salvador, Edwin C; Raman, Sudha R

    2016-11-01

    The frequency of natural disasters appears to be mounting at an alarming rate, and the degree to which people are surviving such traumatic events also is increasing. Postdisaster survival often triggers increases in population and individual disability-related outcomes in the form of impairments, activity limitations, and participation restrictions, all of which have an important impact on the individual, his or her family, and their community. The increase in postdisaster disability-related outcomes has provided a rationale for the increased role of the disability and rehabilitation sector's involvement in emergency response, including physical therapists. A recent major earthquake that has drawn the world's attention occurred in the spring of 2015 in Nepal. The response of the local and international communities was large and significant, and although the collection of complex health and disability issues have yet to be fully resolved, there has been a series of important lessons learned from the 2015 Nepal earthquake(s). This perspective article outlines lessons learned from Nepal that can be applied to future disasters to reduce overall disability-related outcomes and more fully integrate rehabilitation in preparation and planning. First, information is presented on disasters in general, and then information is presented that focuses on the earthquake(s) in Nepal. Next, field experience in Nepal before, during, and after the earthquake is described, and actions that can and should be adopted prior to disasters as part of disability preparedness planning are examined. Then, the emerging roles of rehabilitation providers such as physical therapists during the immediate and postdisaster recovery phases are discussed. Finally, approaches are suggested that can be adopted to "build back better" for, and with, people with disabilities in postdisaster settings such as Nepal. © 2016 American Physical Therapy Association.

  3. The 13 January 2001 El Salvador earthquake: A multidata analysis

    Science.gov (United States)

    ValléE, Martin; Bouchon, Michel; Schwartz, Susan Y.

    2003-04-01

    On 13 January 2001, a large normal faulting intermediate depth event (Mw = 7.7) occurred 40 km off the El Salvadorian coast (Central America). We analyze this earthquake using teleseismic, regional, and local data. We first build a kinematic source model by simultaneously inverting P and SH displacement waveforms and source time functions derived from surface waves using an empirical Green's function analysis. In an attempt to discriminate between the two nodal planes (30° trenchward dipping and 60° landward dipping), we perform identical inversions using both possible fault planes. After relocating the hypocentral depth at 54 km, we retrieve the kinematic features of the rupture using a combination of the Neighborhood algorithm of [1999] and the Simplex method allowing for variable rupture velocity and slip. We find updip rupture propagation yielding a centroid depth around 47 km for both assumed fault planes with a larger variance reduction obtained using the 60° landward dipping nodal plane. We test the two possible fault models using regional broadband data and near-field accelerograms provided by [2001]. Near-field data confirm that the steeper landward dipping nodal plane is preferred. Rupture propagated mostly updip and to the northwest, resulting in a main moment release zone of approximately 25 km × 50 km with an average slip of ˜3.5 m. The large slip occurs near the interplate interface at a location where the slab steepens dip significantly. The occurrence of this event is well-explained by bending of the subducting plate.

  4. Applicability of soil-structure interaction analysis methods for earthquake loadings (V)

    International Nuclear Information System (INIS)

    Chang, S. P.; Ko, H. M.; Kim, J. K.; Yoon, J. Y.; Chin, B. M.; Yang, T. S.; Park, J. Y.; Cho, J. R.; Ryu, H.

    1997-07-01

    The ultimate goals of this research are to cultivate the capability of accurate 551 analysis and to develop the effective soil-structure interaction analysis method and computer program by comparing analysis results obtained in Lotung/Hualien lS5T project. In this research, the scope of this study is to establish the method of soil-structure interaction analysis using hyperlement and to develop a computer program of 551 analysis, to do parametric study for the comprehension of the characteristics and the applicability of hyper elements and to verify the validity and the applicability of this method(or program) through the analysis of seismic response of Hualien lS5T project. In this study, we verified the validity and the efficiency of the soil-structure interaction analysis method using hyper elements and developed computer programs using hyper elements. Based on the I-dimensional wave propagation theory, we developed a computer program of free-field analysis considering the primary non-lineriry of seismic responses. And using this program, we computed the effective ground earthquake motions of soil regions. The computer programs using hyper elements can treat non-homogeneity of soil regions very easily and perform the analysis quickly by the usage of the analytical solutions in horizontal direction. 50 this method would be very efficient and practical method

  5. Multiple injuries after earthquakes: a retrospective analysis on 1,871 injured patients from the 2008 Wenchuan earthquake.

    Science.gov (United States)

    Lu-Ping, Zhao; Rodriguez-Llanes, Jose Manuel; Qi, Wu; van den Oever, Barbara; Westman, Lina; Albela, Manuel; Liang, Pan; Gao, Chen; De-Sheng, Zhang; Hughes, Melany; von Schreeb, Johan; Guha-Sapir, Debarati

    2012-05-17

    Multiple injuries have been highlighted as an important clinical dimension of the injury profile following earthquakes, but studies are scarce. We investigated the pattern and combination of injuries among patients with two injuries following the 2008 Wenchuan earthquake. We also described the general injury profile, causes of injury and socio-demographic characteristics of the injured patients. A retrospective hospital-based analysis of 1,871 earthquake injured patients, totaling 3,177 injuries, admitted between 12 and 31 May 2008 to the People's Hospital of Deyang city (PHDC). An electronic, webserver-based database with International Classification of Diseases (ICD)-10-based classification of earthquake-related injury diagnoses (IDs), anatomical sites and additional background variables of the inpatients was used. We analyzed this dataset for injury profile and number of injuries per patient. We then included all patients (856) with two injuries for more in-depth analysis. Possible spatial anatomical associations were determined a priori. Cross-tabulation and more complex frequency matrices for combination analyses were used to investigate the injury profile. Out of the 1,871 injured patients, 810 (43.3%) presented with a single injury. The rest had multiple injuries; 856 (45.8%) had two, 169 (9.0%) patients had three, 32 (1.7%) presented with four injuries, while only 4 (0.2%) were diagnosed with five injuries. The injury diagnoses of patients presenting with two-injuries showed important anatomical intra-site or neighboring clustering, which explained 49.1% of the combinations. For fractures, the result was even more marked as spatial clustering explained 57.9% of the association pattern. The most frequent combination of IDs was a double-fracture, affecting 20.7% of the two-injury patients (n = 177). Another 108 patients (12.6%) presented with fractures associated with crush injury and organ-soft tissue injury. Of the 3,177 injuries, 1,476 (46.5%) were

  6. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California

    Science.gov (United States)

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  7. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California.

    Science.gov (United States)

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  8. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures

  9. Probabilitic analysis for fatigue failure of leg-supported liquid containers under random earthquake-type excitation

    International Nuclear Information System (INIS)

    Fujita, Takafumi

    1981-01-01

    Leg-supported cylindrical containers frequently used for nuclear power plants and chemical plants and leg-supported rectangular containers such as water and fuel tanks are the structures, of which the reliability is feared at the time of earthquakes. In this study, about such leg-supported liquid containers, the structural reliability of the system at the time of earthquakes was analyzed from the viewpoint of fatigue failure at the joints of tanks and supporting legs and the fixing parts of legs. The second order unsteady coupled probability density of response displacement and response velocity and the first and second order unsteady probability density of response displacement envelope were determined, then using the results, the expected value, variance and unsteady probability density of cumulative damage were obtained on the basis of Miner's law, thus the structural reliability of the system was analyzed. The result of analysis was verified with the results of vibration tests using many simulated earthquake waves, and the experiment of the fatigue failure of a model with sine wave vibration was carried out. The mechanical model for the analysis, the unsteady probability density described above, the analysis of structural reliability and the experiment are reported. (Kako, I.)

  10. Investigation of Pre-Earthquake Ionospheric Disturbances by 3D Tomographic Analysis

    Science.gov (United States)

    Yagmur, M.

    2016-12-01

    Ionospheric variations before earthquakes have been widely discussed phenomena in ionospheric studies. To clarify the source and mechanism of these phenomena is highly important for earthquake forecasting. To well understanding the mechanical and physical processes of pre-seismic Ionospheric anomalies that might be related even with Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling, both statistical and 3D modeling analysis are needed. For these purpose, firstly we have investigated the relation between Ionospheric TEC Anomalies and potential source mechanisms such as space weather activity and lithospheric phenomena like positive surface electric charges. To distinguish their effects on Ionospheric TEC, we have focused on pre-seismically active days. Then, we analyzed the statistical data of 54 earthquakes that M≽6 between 2000 and 2013 as well as the 2011 Tohoku and the 2016 Kumamoto Earthquakes in Japan. By comparing TEC anomaly and Solar activity by Dst Index, we have found that 28 events that might be related with Earthquake activity. Following the statistical analysis, we also investigate the Lithospheric effect on TEC change on selected days. Among those days, we have chosen two case studies as the 2011 Tohoku and the 2016 Kumamoto Earthquakes to make 3D reconstructed images by utilizing 3D Tomography technique with Neural Networks. The results will be presented in our presentation. Keywords : Earthquake, 3D Ionospheric Tomography, Positive and Negative Anomaly, Geomagnetic Storm, Lithosphere

  11. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  12. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2013-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  13. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2012-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  14. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.

    Directory of Open Access Journals (Sweden)

    Xiaonan Wu

    Full Text Available When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.

  15. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.

    Science.gov (United States)

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.

  16. Trial application of guidelines for nuclear plant response to an earthquake

    International Nuclear Information System (INIS)

    Schmidt, W.; Oliver, R.; O'Connor, W.

    1993-09-01

    Guidelines have been developed to assist nuclear plant personnel in the preparation of earthquake response procedures for nuclear power plants. These guidelines are published in EPRI report NP-6695, ''Guidelines for Nuclear Plant Response to an Earthquake,'' dated December 1989. This report includes two sets of nuclear plant procedures which were prepared to implement the guidelines of EPRI report NP-6695. The first set were developed by the Toledo Edison Company Davis-Besse plant. Davis-Besse is a pressurized water reactor (PWR) and contains relatively standard seismic monitoring instrumentation typical of many domestic nuclear plants. The second set of procedures were prepared by Yankee Atomic Electric Company for the Vermont Yankee facility. This plant is a boiling water reactor (BWR) with state-of-the-art seismic monitoring and PC-based data processing equipment, software developed specifically to implement the OBE Exceedance Criterion presented in EPRI report NP-5930, ''A Criterion for Determining Exceedance of the operating Basis Earthquake.'' The two sets of procedures are intended to demonstrate how two different nuclear utilities have interpreted and applied the EPRI guidance given in report NP-6695

  17. Adapting Controlled-source Coherence Analysis to Dense Array Data in Earthquake Seismology

    Science.gov (United States)

    Schwarz, B.; Sigloch, K.; Nissen-Meyer, T.

    2017-12-01

    Exploration seismology deals with highly coherent wave fields generated by repeatable controlled sources and recorded by dense receiver arrays, whose geometry is tailored to back-scattered energy normally neglected in earthquake seismology. Owing to these favorable conditions, stacking and coherence analysis are routinely employed to suppress incoherent noise and regularize the data, thereby strongly contributing to the success of subsequent processing steps, including migration for the imaging of back-scattering interfaces or waveform tomography for the inversion of velocity structure. Attempts have been made to utilize wave field coherence on the length scales of passive-source seismology, e.g. for the imaging of transition-zone discontinuities or the core-mantle-boundary using reflected precursors. Results are however often deteriorated due to the sparse station coverage and interference of faint back-scattered with transmitted phases. USArray sampled wave fields generated by earthquake sources at an unprecedented density and similar array deployments are ongoing or planned in Alaska, the Alps and Canada. This makes the local coherence of earthquake data an increasingly valuable resource to exploit.Building on the experience in controlled-source surveys, we aim to extend the well-established concept of beam-forming to the richer toolbox that is nowadays used in seismic exploration. We suggest adapted strategies for local data coherence analysis, where summation is performed with operators that extract the local slope and curvature of wave fronts emerging at the receiver array. Besides estimating wave front properties, we demonstrate that the inherent data summation can also be used to generate virtual station responses at intermediate locations where no actual deployment was performed. Owing to the fact that stacking acts as a directional filter, interfering coherent wave fields can be efficiently separated from each other by means of coherent subtraction. We

  18. Validation of a solid-fluid interaction computer program for the earthquake analysis of nuclear power reactors

    International Nuclear Information System (INIS)

    Dubois, J.; Descleve, P.; Dupont, Y.

    1978-01-01

    This paper evaluates a numerical method for the analysis of the mechanical response of nuclear reactor components composed of steel structures and fluids, during normal or accidental conditions. The method consists of computing the mode shapes and frequencies of the coupled system, with the assumption of small acoustic movements and incompressibility for the fluid. The paper validates the theory and its implementation in the computer program NOVAX (axisymmetric geometry, non axisymmetric loads and response for earthquake response studies) by comparison with known theoretical and experimental results. (author)

  19. Networks in disasters: Multidisciplinary communication and coordination in response and recovery to the 2010 Haiti Earthquake (Invited)

    Science.gov (United States)

    McAdoo, B. G.; Augenstein, J.; Comfort, L.; Huggins, L.; Krenitsky, N.; Scheinert, S.; Serrant, T.; Siciliano, M.; Stebbins, S.; Sweeney, P.; University Of Pittsburgh Haiti Reconnaissance Team

    2010-12-01

    The 12 January 2010 earthquake in Haiti demonstrates the necessity of understanding information communication between disciplines during disasters. Armed with data from a variety of sources, from geophysics to construction, water and sanitation to education, decision makers can initiate well-informed policies to reduce the risk from future hazards. At the core of this disaster was a natural hazard that occurred in an environmentally compromised country. The earthquake itself was not solely responsible for the magnitude of the disaster- poor construction practices precipitated by extreme poverty, a two centuries of post-colonial environmental degradation and a history of dysfunctional government shoulder much of the responsibility. Future policies must take into account the geophysical reality that future hazards are inevitable and may occur within the very near future, and how various institutions will respond to the stressors. As the global community comes together in reconstruction efforts, it is necessary for the various actors to take into account what vulnerabilities were exposed by the earthquake, most vividly seen during the initial response to the disaster. Responders are forced to prioritize resources designated for building collapse and infrastructure damage, delivery of critical services such as emergency medical care, and delivery of food and water to those in need. Past disasters have shown that communication lapses between the response and recovery phases results in many of the exposed vulnerabilities not being adequately addressed, and the recovery hence fails to bolster compromised systems. The response reflects the basic characteristics of a Complex Adaptive System, where new agents emerge and priorities within existing organizations shift to deal with new information. To better understand how information is shared between actors during this critical transition, we are documenting how information is communicated between critical sectors during the

  20. Analysis of source spectra, attenuation, and site effects from central and eastern United States earthquakes

    International Nuclear Information System (INIS)

    Lindley, G.

    1998-02-01

    This report describes the results from three studies of source spectra, attenuation, and site effects of central and eastern United States earthquakes. In the first study source parameter estimates taken from 27 previous studies were combined to test the assumption that the earthquake stress drop is roughly a constant, independent of earthquake size. 200 estimates of stress drop and seismic moment from eastern North American earthquakes were combined. It was found that the estimated stress drop from the 27 studies increases approximately as the square-root of the seismic moment, from about 3 bars at 10 20 dyne-cm to 690 bars at 10 25 dyne-cm. These results do not support the assumption of a constant stress drop when estimating ground motion parameters from eastern North American earthquakes. In the second study, broadband seismograms recorded by the United States National Seismograph Network and cooperating stations have been analysed to determine Q Lg as a function of frequency in five regions: the northeastern US, southeastern US, central US, northern Basin and Range, and California and western Nevada. In the third study, using spectral analysis, estimates have been made for the anelastic attenuation of four regional phases, and estimates have been made for the source parameters of 27 earthquakes, including the M b 5.6, 14 April, 1995, West Texas earthquake

  1. ANALYSIS OF REGULARITIES IN DISTRIBUTION OF EARTHQUAKES BY FOCAL DISPLACEMENT IN THE KURIL-OKHOTSK REGION BEFORE THE CATASTROPHIC SIMUSHIR EARTHQUAKE OF 15 NOVEMBER 2006

    Directory of Open Access Journals (Sweden)

    Timofei K. Zlobin

    2012-01-01

    Full Text Available The catastrophic Simushir earthquake occurred on 15 November 2006 in the Kuril-Okhotsk region in the Middle Kuril Islands which is a transition zone between the Eurasian continent and the Pacific Ocean. It was followed by numerous strong earthquakes. It is established that the catastrophic earthquake was prepared on a site characterized by increased relative effective pressures which is located at the border of the low-pressure area (Figure 1.Based on data from GlobalCMT (Harvard, earthquake focal mechanisms were reconstructed, and tectonic stresses, the seismotectonic setting and the earthquakes distribution pattern were studied for analysis of the field of stresses in the region before to the Simushir earthquake (Figures 2 and 3; Table 1.Five areas of various types of movement were determined. Three of them are stretched along the Kuril Islands. It is established that seismodislocations in earthquake focal areas are regularly distributed. In each of the determined areas, displacements of a specific type (shear or reverse shear are concentrated and give evidence of the alteration and change of zones characterized by horizontal stretching and compression.The presence of the horizontal stretching and compression zones can be explained by a model of subduction (Figure 4. Detailed studies of the state of stresses of the Kuril region confirm such zones (Figure 5. Recent GeodynamicsThe established specific features of tectonic stresses before the catastrophic Simushir earthquake of 15 November 2006 contribute to studies of earthquake forecasting problems. The state of stresses and the geodynamic conditions suggesting occurrence of new earthquakes can be assessed from the data on the distribution of horizontal compression, stretching and shear areas of the Earth’s crust and the upper mantle in the Kuril region.

  2. Comprehensive analysis of earthquake source spectra in southern California

    OpenAIRE

    Shearer, Peter M.; Prieto, Germán A.; Hauksson, Egill

    2006-01-01

    We compute and analyze P wave spectra from earthquakes in southern California between 1989 and 2001 using a method that isolates source-, receiver-, and path-dependent terms. We correct observed source spectra for attenuation using both fixed and spatially varying empirical Green's function methods. Estimated Brune-type stress drops for over 60,000 M_L = 1.5 to 3.1 earthquakes range from 0.2 to 20 MPa with no dependence on moment or local b value. Median computed stress drop increases with de...

  3. Testing the ability of a proposed geotechnical based method to evaluate the liquefaction potential analysis subjected to earthquake vibrations

    Science.gov (United States)

    Abbaszadeh Shahri, A.; Behzadafshar, K.; Esfandiyari, B.; Rajablou, R.

    2010-12-01

    During the earthquakes a number of earth dams have had severe damages or suffered major displacements as a result of liquefaction, thus modeling by computer codes can provide a reliable tool to predict the response of the dam foundation against earthquakes. These modeling can be used in the design of new dams or safety assessments of existing ones. In this paper, on base of the field and laboratory tests and by combination of several software packages a seismic geotechnical based analysis procedure is proposed and verified by comparison with computer model tests, field and laboratory experiences. Verification or validation of the analyses relies to ability of the applied computer codes. By use of Silakhor earthquake (2006, Ms 6.1) and in order to check the efficiency of the proposed framework, the procedure is applied to the Korzan earth dam of Iran which is located in Hamedan Province to analyze and estimate the liquefaction and safety factor. Design and development of a computer code by authors which named as “Abbas Converter” with graphical user interface which operates as logic connecter function that can computes and models the soil profiles is the critical point of this study and the results are confirm and proved the ability of the generated computer code on evaluation of soil behavior under the earthquake excitations. Also this code can make and render facilitate this study more than previous have done, and take over the encountered problem.

  4. Large LOCA accident analysis for AP1000 under earthquake

    International Nuclear Information System (INIS)

    Yu, Yu; Lv, Xuefeng; Niu, Fenglei

    2015-01-01

    Highlights: • Seismic failure event probability is induced by uncertainties in PGA and in Am. • Uncertainty in PGA is shared by all the components at the same place. • Relativity induced by sharing PGA value can be analyzed explicitly by MC method. • Multi components failures and accident sequences will occur under high PGA value. - Abstract: Seismic probabilistic safety assessment (PSA) is developed to give the insight of nuclear power plant risk under earthquake and the main contributors to the risk. However, component failure probability including the initial event frequency is the function of peak ground acceleration (PGA), and all the components especially the different kinds of components at same place will share the common ground shaking, which is one of the important factors to influence the result. In this paper, we propose an analysis method based on Monte Carlo (MC) simulation in which the effect of all components sharing the same PGA level can be expressed by explicit pattern. The Large LOCA accident in AP1000 is analyzed as an example, based on the seismic hazard curve used in this paper, the core damage frequency is almost equal to the initial event frequency, moreover the frequency of each accident sequence is close to and even equal to the initial event frequency, while the main contributors are seismic events since multi components and systems failures will happen simultaneously when a high value of PGA is sampled. The component failure probability is determined by uncertainties in PGA and in component seismic capacity, and the former is the crucial element to influence the result

  5. Load-Unload Response Ratio and Accelerating Moment/Energy Release Critical Region Scaling and Earthquake Prediction

    Science.gov (United States)

    Yin, X. C.; Mora, P.; Peng, K.; Wang, Y. C.; Weatherley, D.

    The main idea of the Load-Unload Response Ratio (LURR) is that when a system is stable, its response to loading corresponds to its response to unloading, whereas when the system is approaching an unstable state, the response to loading and unloading becomes quite different. High LURR values and observations of Accelerating Moment/Energy Release (AMR/AER) prior to large earthquakes have led different research groups to suggest intermediate-term earthquake prediction is possible and imply that the LURR and AMR/AER observations may have a similar physical origin. To study this possibility, we conducted a retrospective examination of several Australian and Chinese earthquakes with magnitudes ranging from 5.0 to 7.9, including Australia's deadly Newcastle earthquake and the devastating Tangshan earthquake. Both LURR values and best-fit power-law time-to-failure functions were computed using data within a range of distances from the epicenter. Like the best-fit power-law fits in AMR/AER, the LURR value was optimal using data within a certain epicentral distance implying a critical region for LURR. Furthermore, LURR critical region size scales with mainshock magnitude and is similar to the AMR/AER critical region size. These results suggest a common physical origin for both the AMR/AER and LURR observations. Further research may provide clues that yield an understanding of this mechanism and help lead to a solid foundation for intermediate-term earthquake prediction.

  6. Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2015-01-01

    Full Text Available This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced frame structure, these self-centering friction damping brace members make the best use of their representative characteristics to minimize residual deformations and to withstand earthquake loads without member replacement. The configuration and response mechanism of self-centering friction damping brace systems are firstly described in this study, and then parametric investigations are conducted through nonlinear time-history analyses performed on numerical single degree-of-freedom spring models. After observing analysis results, adequate design methodologies that optimally account for recentering capability and energy dissipation according to their comparative parameters are intended to be suggested in order to take advantage of energy capacity and to minimize residual deformation simultaneously.

  7. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  8. Epidemiological analysis of trauma patients following the Lushan earthquake.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available BACKGROUND: A 7.0-magnitude earthquake hit Lushan County in China's Sichuan province on April 20, 2013, resulting in 196 deaths and 11,470 injured. This study was designed to analyze the characteristics of the injuries and the treatment of the seismic victims. METHODS: After the earthquake, an epidemiological survey of injured patients was conducted by the Health Department of Sichuan Province. Epidemiological survey tools included paper-and-pencil questionnaires and a data management system based on the Access Database. Questionnaires were completed based on the medical records of inpatients with earthquake-related injuries. Outpatients or non-seismic injured inpatients were excluded. A total of 2010 patients from 140 hospitals were included. RESULTS: The most common type of injuries involved bone fractures (58.3%. Children younger than 10 years of age suffered fewer fractures and chest injuries, but more skin and soft -tissue injuries. Patients older than 80 years were more likely to suffer hip and thigh fractures, pelvis fractures, and chest injuries, whereas adult patients suffered more ankle and foot fractures. A total of 207 cases of calcaneal fracture were due to high falling injuries related to extreme panic. The most common type of infection in hospitalized patients was pulmonary infections. A total of 70.5% patients had limb dysfunction, and 60.1% of this group received rehabilitation. Most patients received rehabilitation within 1 week, and the median duration of rehabilitation was 3 weeks. The cause of death of all seven hospitalized patients who died was severe traumatic brain injuries; five of this group died within 24 h after the earthquake. CONCLUSIONS: Injuries varied as a function of the age of the victim. As more injuries were indirectly caused by the Lushan earthquake, disaster education is urgently needed to avoid secondary injuries.

  9. Using Earthquake Analysis to Expand the Oklahoma Fault Database

    Science.gov (United States)

    Chang, J. C.; Evans, S. C.; Walter, J. I.

    2017-12-01

    The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.

  10. Flashsourcing or Real-Time Mapping of Earthquake Effects from Instantaneous Analysis of the EMSC Website Traffic

    Science.gov (United States)

    Bossu, R.; Gilles, S.; Roussel, F.

    2010-12-01

    Earthquake response efforts are often hampered by the lack of timely and reliable information on the earthquake impact. Rapid detection of damaging events and production of actionable information for emergency response personnel within minutes of their occurrence are essential to mitigate the human impacts from earthquakes. Economically developed countries deploy dense real-time accelerometric networks in regions of high seismic hazard to constrain scenarios from in-situ data. A cheaper alternative, named flashsourcing, is based on implicit data derived from the analysis of the visits by eyewitnesses, the first informed persons, to websites offering real time earthquake information. We demonstrated in 2004 that widely felt earthquakes generate a surge of traffic, known as a flashcrowd, caused by people rushing websites such as the EMSC’s to find information about the shaking they have just felt. With detailed traffic analysis and metrics, widely felt earthquakes can be detected within one minute of the earthquake’s occurrence. In addition, the geographical area where the earthquake has been felt is automatically mapped within 5 minutes by statistically analysing the IP locations of the eyewitnesses, without using any seismological data. These results have been validated on more than 150 earthquakes by comparing the automatic felt maps with the felt area derived from macroseismic questionnaires. In practice, the felt maps are available before the first location is published by the EMSC. We have also demonstrated the capacity to rapidly detect and map areas of widespread damage by detecting when visitors suddenly end their sessions on the website en masse. This has been successfully applied to time and map the massive power failure which plunged a large part of Chile into darkness in March, 2010. If damage to power and communication lines cannot be discriminated from damage to buildings, the absence of sudden session closures precludes the possibility of heavy

  11. Development and use of a master health facility list: Haiti's experience during the 2010 earthquake response.

    Science.gov (United States)

    Rose-Wood, Alyson; Heard, Nathan; Thermidor, Roody; Chan, Jessica; Joseph, Fanor; Lerebours, Gerald; Zugaldia, Antonio; Konkel, Kimberly; Edwards, Michael; Lang, Bill; Torres, Carmen-Rosa

    2014-08-01

    Master health facility lists (MHFLs) are gaining attention as a standards-based means to uniquely identify health facilities and to link facility-level data. The ability to reliably communicate information about specific health facilities can support an array of health system functions, such as routine reporting and emergency response operations. MHFLs support the alignment of donor-supported health information systems with county-owned systems. Recent World Health Organization draft guidance promotes the utility of MHFLs and outlines a process for list development and governance. Although the potential benefits of MHFLs are numerous and may seem obvious, there are few documented cases of MHFL construction and use. The international response to the 2010 Haiti earthquake provides an example of how governments, nongovernmental organizations, and others can collaborate within a framework of standards to build a more complete and accurate list of health facilities. Prior to the earthquake, the Haitian Ministry of Health (Ministère de la Santé Publique et de la Population [MSPP]) maintained a list of public-sector health facilities but lacked information on privately managed facilities. Following the earthquake, the MSPP worked with a multinational group to expand the completeness and accuracy of the list of health facilities, including information on post-quake operational status. This list later proved useful in the response to the cholera epidemic and is now incorporated into the MSPP's routine health information system. Haiti's experience demonstrates the utility of MHFL formation and use in crisis as well as in the routine function of the health information system.

  12. Dynamic buckling and nonlinear response of FBR main vessels under earthquake loading

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi.

    1991-01-01

    Pseudo-dynamic tests of cylindrical shells under high temperature were performed in order to study elasto-plastic shear-bending buckling and the nonlinear response of FBR main vessels under earthquake loading. The test results showed a response reduction effect due to pre-buckling plasticity, and a large seismic margin due to post-buckling energy absorption of the cylinders. A simple expression of the response reduction effect was proposed, as a contribution to the safe and effective seismic design of FBRs. Two methods for seismic margin evaluation were also proposed, and it was shown that appropriate seismic margins can be ensured, when the response reduction effect is incorporated into the seismic design. (author)

  13. Seismic response and resistance capacity of 'as built' WWER 440-230 NPP Kozloduy: Verification of the results by experiments and real earthquake

    International Nuclear Information System (INIS)

    Sachanski, S.

    1993-01-01

    Although Kozloduy NPP units 1 and 2 were not designed for earthquakes they have withstood successfully the Vrancea Earthquake in 1977 with sire peak ground acceleration of 83 sm/s 2 . Both units as well as units 3 and 4 were later recalculated for maximum peak acceleration of 0.1 g. According to values calculated by two-dimensional model, in 1980 reactor buildings had sufficient earthquake resistance capacity for the accepted design seismic excitation. The non symmetric design of WWER-440 structures in plan and elevation, the large eccentricity between the center of rigidities and masses as well as technological connections between the separate substructures and units led to complicated space response and rotational effects which cannot be calculated by two-dimensional models. Three dimensional detailed 'as built' mathematical models were established and verified by series of experiments and real earthquake for: detailed analysis of 'as built' structural response, comparing the results of two and three dimensional models, detailed analyses of seismic safety margins

  14. Stress modulation of earthquakes: A study of long and short period stress perturbations and the crustal response

    Science.gov (United States)

    Johnson, Christopher W.

    Decomposing fault mechanical processes advances our understanding of active fault systems and properties of the lithosphere, thereby increasing the effectiveness of seismic hazard assessment and preventative measures implemented in urban centers. Along plate boundaries earthquakes are inevitable as tectonic forces reshape the Earth's surface. Earthquakes, faulting, and surface displacements are related systems that require multidisciplinary approaches to characterize deformation in the lithosphere. Modern geodetic instrumentation can resolve displacements to millimeter precision and provide valuable insight into secular deformation in near real-time. The expansion of permanent seismic networks as well as temporary deployments allow unprecedented detection of microseismic events that image fault interfaces and fracture networks in the crust. The research presented in this dissertation is at the intersection of seismology and geodesy to study the Earth's response to transient deformation and explores research questions focusing on earthquake triggering, induced seismicity, and seasonal loading while utilizing seismic data, geodetic data, and modeling tools. The focus is to quantify stress changes in the crust, explore seismicity rate variations and migration patterns, and model crustal deformation in order to characterize the evolving state of stress on faults and the migration of fluids in the crust. The collection of problems investigated all investigate the question: Why do earthquakes nucleate following a low magnitude stress perturbation? Answers to this question are fundamental to understanding the time dependent failure processes of the lithosphere. Dynamic triggering is the interaction of faults and triggering of earthquakes represents stress transferring from one system to another, at both local and remote distances [Freed, 2005]. The passage of teleseismic surface waves from the largest earthquakes produce dynamic stress fields and provides a natural

  15. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  16. Earthquake response spectra for seismic design of nuclear power plants in the UK

    International Nuclear Information System (INIS)

    Bommer, Julian J.; Papaspiliou, Myrto; Price, Warren

    2011-01-01

    Highlights: → Seismic design of UK nuclear power plants usually based on PML response spectra. → We review derivation of PML spectra in terms of earthquake data used and procedure. → The data include errors and represent a small fraction of what is now available. → Seismic design loads in current practice are derived as mean uniform hazard spectra. → The need to capture epistemic uncertainty makes use of single equation indefensible. - Abstract: Earthquake actions for the seismic design of nuclear power plants in the United Kingdom are generally based on spectral shapes anchored to peak ground acceleration (PGA) values obtained from a single predictive equation. Both the spectra and the PGA prediction equation were derived in the 1980s. The technical bases for these formulations of seismic loading are now very dated if compared with the state-of-the-art in this field. Alternative spectral shapes are explored and the options, and the associated benefits and challenges, for generating uniform hazard response spectra instead of fixed shapes anchored to PGA are discussed.

  17. Methodology for estimating realistic responses of buildings and components under earthquake motion and its application

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Abe, Kiyoharu; Kohno, Kunihiko; Nakamura, Hidetaka; Itoh, Mamoru.

    1996-11-01

    Failure probabilities of buildings and components under earthquake motion are estimated as conditional probabilities that their realistic responses exceed their capacities. Two methods for estimating their failure probabilities have already been developed. One is a detailed method developed in the Seismic Safety margins Research Program of Lawrence Livermore National Laboratory in U.S.A., which is called 'SSMRP method'. The other is a simplified method proposed by Kennedy et al., which is called 'Zion method'. The Zion method is sometimes called 'response factor method'. The authors adopted the response factor method. In order to enhance the estimation accuracy of failure probabilities of buildings and components, however, a new methodology for improving the response factor method was proposed. Based on the improved method, response factors of buildings and components designed to seismic design standard in Japan were estimated, and their realistic responses were also calculated. By using their realistic responses and capacities, the failure probabilities of a reactor building and relays were estimated. In order to identify the difference between new method, SSMRP method and original response factor method, the failure probabilities were compared estimated by these three methods. A similar method of SSMRP was used instead of the original SSMRP for saving time and labor. The viewpoints for selecting the methods to estimate failure probabilities of buildings and components were also proposed. (author). 55 refs

  18. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  19. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  20. Coupled large earthquakes in the Baikal rift system: Response to bifurcations in nonlinear resonance hysteresis

    Directory of Open Access Journals (Sweden)

    Anatoly V. Klyuchevskii

    2013-11-01

    Full Text Available The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation. The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS. The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes, proximal in time but distant in space, may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors. The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity, with the largest events occurring in pairs, one shortly after another, on two ends of the rift system and with couples of smaller events in the central part of the rift. The event couples appear as peaks of earthquake ‘migration’ rate with an approximately decadal periodicity. Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation. The new knowledge, with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis, may be of theoretical and practical value for earthquake prediction issues. Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region, i.e., there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.

  1. Intensity estimation of historical earthquakes through seismic analysis of wooden house

    International Nuclear Information System (INIS)

    Choi, I. K.; Soe, J. M.

    1999-01-01

    The intensity of historical earthquake records related with house collapses are estimated by the seismic analyses of traditional three-bay-straw-roof house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km - 350 km and hard and soft soil condition were generated for the analyses. Nonlinear dynamic analyses were performed for a traditional three-bay-roof house. Damage level of the wooden house according to the input earthquake motions and the MM intensity were estimated by maximum displacement response at the top of columns. Considering the structural characteristics of the three-bay-straw-roof house, the largest historical earthquake record related to the house collapse is about MMI VIII

  2. Latitude-Time Total Electron Content Anomalies as Precursors to Japan's Large Earthquakes Associated with Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Jyh-Woei Lin

    2011-01-01

    Full Text Available The goal of this study is to determine whether principal component analysis (PCA can be used to process latitude-time ionospheric TEC data on a monthly basis to identify earthquake associated TEC anomalies. PCA is applied to latitude-time (mean-of-a-month ionospheric total electron content (TEC records collected from the Japan GEONET network to detect TEC anomalies associated with 18 earthquakes in Japan (M≥6.0 from 2000 to 2005. According to the results, PCA was able to discriminate clear TEC anomalies in the months when all 18 earthquakes occurred. After reviewing months when no M≥6.0 earthquakes occurred but geomagnetic storm activity was present, it is possible that the maximal principal eigenvalues PCA returned for these 18 earthquakes indicate earthquake associated TEC anomalies. Previously PCA has been used to discriminate earthquake-associated TEC anomalies recognized by other researchers, who found that statistical association between large earthquakes and TEC anomalies could be established in the 5 days before earthquake nucleation; however, since PCA uses the characteristics of principal eigenvalues to determine earthquake related TEC anomalies, it is possible to show that such anomalies existed earlier than this 5-day statistical window.

  3. The role of complex site and basin response in Wellington city, New Zealand, during the 2016 Mw 7.8 Kaikōura earthquake and other recent earthquake sequences.

    Science.gov (United States)

    Kaiser, A. E.; McVerry, G.; Wotherspoon, L.; Bradley, B.; Gerstenberger, M.; Benites, R. A.; Bruce, Z.; Bourguignon, S.; Giallini, S.; Hill, M.

    2017-12-01

    We present analysis of ground motion and complex amplification characteristics in Wellington during recent earthquake sequences and an overview of the 3D basin characterization and ongoing work to update site parameters for seismic design. Significant damage was observed in central Wellington, New Zealand's capital city, following the 2016 Mw7.8 Kaikōura earthquake. Damage was concentrated in mid-rise structures (5 - 15 storeys) and was clearly exacerbated by the particular characteristics of ground motion and the presence of basin effects. Due to the distance of the source (50 - 60km) from the central city, peak ground accelerations were moderate (up to 0.28g) and well within ultimate limit state (ULS) design levels. However, spectral accelerations within the 1 -2 s period range, exceeded 1 in 500 year design level spectra (ULS) in deeper parts of the basin. Amplification with respect to rock at these locations reached factors of up to 7, and was also observed with factors up to at least three across all central city soil recording sites. The ground motions in Wellington were the strongest recorded in the modern era of instrumentation. While similar amplification was observed during the 2013 Mw 6.6 Cook Strait and Grassmere earthquakes, which struck close to the termination of the Kaikōura earthquake rupture, these sources were not sufficiently large to excite significant long-period motions. However, other M7.2+ sources in the region that dominate the seismic hazard, e.g. Wellington Fault, Hikurangi subduction interface and other large proximal crustal faults, are also potentially capable of exciting significant long-period basin response in Wellington. These observations and the expectation of ongoing heightened seismicity have prompted re-evaluation of the current seismic demand levels. Additional field campaigns have also been undertaken to update geotechnical properties and the 3D basin model, in order to inform ongoing research and seismic design practice.

  4. On the basic research of design analysis and testing based on the failure rate for pipings and equipment under earthquake conditions

    International Nuclear Information System (INIS)

    Shibata, H.

    1980-01-01

    This paper deals with the evaluation method of the failure rate of pipings and equipment of nuclear power plants under destructive earthquakes and a new design concept in this stand point of view. These researches are supported by various studies related to this subject, which have been done by the author since 1966. In this paper, the history of the development, the summaries of these studies and their significances to the practice will be described briefly. The surveys on damages of industrial facilities caused by recent destructive earthquakes are the basical study for this subject. And the continuous response observation of model structures of a plant complex to natural earthquakes is another important basic study to know the stochastic nature and significance of response analysis for the anti-earthquake design of nuclear power plants. By having the exact knowledges on these subjects, the author has been developing the evaluation procedure of the failure rate of pipings and equipment under destructive earthquake conditions, a new design method 'counter-input design' and others. Now his effort is going towards establishing their practical procedure after finishing the basic researches. (orig.)

  5. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic

  6. The ANSS response to the Mw 5.8 Central Virginia Seismic Zone earthquake of August 23, 2011

    Science.gov (United States)

    McNamara, D. E.; Horton, S.; Benz, H.; Earle, P. S.; Withers, M. M.; Hayes, G. P.; Kim, W. Y.; Chapman, M. C.; Herrmann, R. B.; Petersen, M. D.; Williams, R. A.

    2011-12-01

    An Mw 5.8 earthquake (depth=6km) occurred on August 23, 2011 (17:51:04 UTC) near Mineral, Virginia, which was widely felt from Maine to Georgia along the eastern seaboard and west to Chicago and western Tennessee. The USGS tallied nearly 142,000 felt reports submitted to the Did You Feel It (DYFI) internet community intensity system, making it the most widely felt earthquake since the web-site began, and demonstrating that more people felt this earthquake than any other in U.S. history. Significant damage was reported in the epicentral area and as far away as Washington D.C. (135 km away); minor damage was reported in Baltimore (200 km). The reverse faulting earthquake occurred on a northeast-striking plane within a region of diffuse seismicity known as the Central Virginia Seismic Zone. Within the first week, the mainshock was followed by 17 aftershocks with magnitude greater than 2, including Mw 4.5, 4.2, and 3.8 events. In the days following the mainshock, 46 portable seismic stations were deployed by several organizations, making this among the best-recorded aftershock sequence in the eastern U.S. Within 24 hours of the mainshock, 8 portable stations were deployed in time to record the largest aftershock to date (M4.5). We will present the results of our post-earthquake response, including attenuation and site amplification observations using portable aftershock station data, details on the initial USGS NEIC post earthquake response products and an assessment of the seismotectonics of the Central Virginia Seismic Zone based on aftershock locations and source parameter modeling of the larger earthquakes.

  7. An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations

    OpenAIRE

    Wang, Feng; Sun, Jian-Gang; Zhang, Ning

    2014-01-01

    Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two compone...

  8. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  9. Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2017-08-01

    Full Text Available Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking and Limit State II (concrete crushing when the PGAs were in a range of 0.8–1.1g and 1.2–1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

  10. Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng; Li, Hong Zhi [Dept. Structural Engineering, Tongji University, Shanghai (China)

    2017-08-15

    Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA) of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking) and Limit State II (concrete crushing) when the PGAs were in a range of 0.8–1.1g and 1.2–1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

  11. ShakeCast: Automating and improving the use of shakemap for post-earthquake deeision-making and response

    Science.gov (United States)

    Wald, D.; Lin, K.-W.; Porter, K.; Turner, Loren

    2008-01-01

    When a potentially damaging earthquake occurs, utility and other lifeline managers, emergency responders, and other critical users have an urgent need for information about the impact on their particular facilities so they can make appropriate decisions and take quick actions to ensure safety and restore system functionality. ShakeMap, a tool used to portray the extent of potentially damaging shaking following an earthquake, on its own can be useful for emergency response, loss estimation, and public information. However, to take full advantage of the potential of ShakeMap, we introduce ShakeCast. ShakeCast facilitates the complicated assessment of potential damage to a user's widely distributed facilities by comparing the complex shaking distribution with the potentially highly variable damageability of their inventory to provide a simple, hierarchical list and maps of structures or facilities most likely impacted. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users' facilities, sends notifications of potential damage to responsible parties, and generates facility damage maps and other Web-based products for both public and private emergency managers and responders. ?? 2008, Earthquake Engineering Research Institute.

  12. Analysis of AHWR downcomer piping supported on elastoplastic dampers and subjected to normal and earthquake loadings

    International Nuclear Information System (INIS)

    Dubey, P.N.; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.

    2010-05-01

    Three layouts have been considered for AHWR downcomer for codal qualification in order to ensure its structural integrity under normal and occasional loads. In addition to codal qualification a good piping layout should have less number of bends and weld joints in order to reduce the in-service inspection cost. Less number of bends will reduce the pressure drop in natural circulation and lesser number of weld joints will reduce the total time of in-service inspection that finally reduces the radiation dose to the workers. Conventional seismic design approach of piping with snubbers leads to high cost, maintenance and possible locking causing undue higher thermal stress during normal operation. New seismic supports in the form of Elasto-Plastic Damper (EPD) are the best suited for nuclear piping because of their simple design, low cost, passive nature and ease in installation. In this report the characteristics of EPD obtained from theory, finite element analysis and tests have been presented and comparison has also been made among the three. Analysis method and code qualification of AHWR downcomer piping considering the loadings due to normal operating and occasional loads such as earthquake have been discussed in detail. This report also explains the concept of single support and multi-support response spectrum analysis methods. The results obtained by using both types of supports i.e. conventional and EPD supports have been compared and use of EPD supports in AHWR downcomer pipe is recommended. (author)

  13. Analysis about factors affecting the degree of damage of buildings in earthquake

    International Nuclear Information System (INIS)

    Jia, Jing; Yan, Jinghong

    2015-01-01

    Earthquakes have been affecting human's safety through human's history. Previous studies on earthquake, mostly, focused on the performance of buildings or evaluating damages. This paper, however, compares different factors that have influence on the damage of buildings with a case study in Wenchuan earthquake, using multiple linear regression methodology, so as to identify to what extend this factors influence the buildings’ damages, then give the rank of importance of these factors. In this process, authors take the type of structure as a dummy variable to compare the degree of damages caused by different types of structure, which were barely studied before. Besides, Factor Analysis Methodology(FA) will be adapted to classify factors, the results of which will simplify later study. The outcome of this study would make a big difference in optimizing the seismic design and improving residential seismic quality. (paper)

  14. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  15. Climate responsive and safe earthquake construction: a community building a school

    Directory of Open Access Journals (Sweden)

    Hari Darshan

    2011-10-01

    Full Text Available This article outlines environment friendly features, climate responsive features and construction features of a prototype school building constructed using green building technology. The school building has other additional features such as earthquake resistant construction, use of local materials and local technology. The construction process not only establishes community ownership, but also facilitates dissemination of the technology to the communities. Schools are effective media for raising awareness, disseminating technology and up-scaling the innovative approach. The approach is cost effective and sustainable for long-term application of green building technology. Furthermore, this paper emphasizes that such construction technology will be instrumental to build culture of safety in communities and reduce disaster risk.

  16. To enhance effectiveness of response to emergency situations following earthquakes, tsunamis, and nuclear disasters

    International Nuclear Information System (INIS)

    Shimada, Jiro; Tase, Choichiro; Tsukada, Yasuhiko; Hasegawa, Arifumi; Ikegami, Yukihiro; Iida, Hiroshi

    2013-01-01

    From the immediate aftermath of the 2011 Tohoku earthquake and tsunami and the ensuing Fukushima Daiichi nuclear disaster. Fukushima Medical University Hospital urgently needed to operate as both a core disaster hospital and a secondary radiation emergency hospital. The disaster drills and emergency simulation training that had been undertaken to prepare for such a scenario proved to be immensely helpful. However, due to the fact that the disaster caused much more damage than expected putting that preparation perfectly into practice was impossible. In any disaster, it is important to collect human intelligence. Therefore, simulating the collection of human intelligence is necessary in order to supplement drills and training and improve rapid response following a disaster. (author)

  17. Java Programs for Using Newmark's Method and Simplified Decoupled Analysis to Model Slope Performance During Earthquakes

    Science.gov (United States)

    Jibson, Randall W.; Jibson, Matthew W.

    2003-01-01

    Landslides typically cause a large proportion of earthquake damage, and the ability to predict slope performance during earthquakes is important for many types of seismic-hazard analysis and for the design of engineered slopes. Newmark's method for modeling a landslide as a rigid-plastic block sliding on an inclined plane provides a useful method for predicting approximate landslide displacements. Newmark's method estimates the displacement of a potential landslide block as it is subjected to earthquake shaking from a specific strong-motion record (earthquake acceleration-time history). A modification of Newmark's method, decoupled analysis, allows modeling landslides that are not assumed to be rigid blocks. This open-file report is available on CD-ROM and contains Java programs intended to facilitate performing both rigorous and simplified Newmark sliding-block analysis and a simplified model of decoupled analysis. For rigorous analysis, 2160 strong-motion records from 29 earthquakes are included along with a search interface for selecting records based on a wide variety of record properties. Utilities are available that allow users to add their own records to the program and use them for conducting Newmark analyses. Also included is a document containing detailed information about how to use Newmark's method to model dynamic slope performance. This program will run on any platform that supports the Java Runtime Environment (JRE) version 1.3, including Windows, Mac OSX, Linux, Solaris, etc. A minimum of 64 MB of available RAM is needed, and the fully installed program requires 400 MB of disk space.

  18. Analysis of the 2005-2016 Earthquake Sequence in Northern Iran Using the Visibility Graph Method

    Science.gov (United States)

    Khoshnevis, Naeem; Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Telesca, Luciano

    2017-11-01

    We present an analysis of the seismicity of northern Iran in the period between 2005 and 2016 using a recently introduced method based on concepts of graph theory. The method relies on the inter-event visibility defined in terms of a connectivity degree parameter, k, which is correlated with the earthquake magnitude, M. Previous studies show that the slope m of the line fitting the k- M plot by the least squares method also observes a relationship with the b value from the Gutenberg-Richter law, thus rendering the graph analysis useful to examine the seismicity of a region. These correlations seem to hold for the analysis of relatively small sequences of earthquakes, offering the possibility of studying seismicity parameters in time. We apply this approach to the case of the seismicity of northern Iran, using an earthquake catalog for the tectonic seismic regions of Azerbaijan, Alborz, and Kopeh Dagh. We use results drawn for this region with the visibility graph approach in combination with results from other similar studies to further improve the universal relationship between m and b, and show that the visibility graph approach can be considered as a valid alternative for analyzing regional seismicity properties and earthquake sequences.

  19. Floor response spectra of the main process building of a reprocessing plant against earthquake, airplane crash and blast

    International Nuclear Information System (INIS)

    Hilpert, H.J.

    1987-01-01

    In the general concept of the planned reprocessing plant for spent fuel elements, the main process building has the central function. This building will be designed to withstand earthquake, airplane crash and blast. This report deals with the stress on components and systems due to vibration of the building, the floor response spectra

  20. The analysis of historical seismograms: an important tool for seismic hazard assessment. Case histories from French and Italian earthquakes

    International Nuclear Information System (INIS)

    Pino, N.A.

    2011-01-01

    Seismic hazard assessment relies on the knowledge of the source characteristics of past earthquakes. Unfortunately, seismic waveform analysis, representing the most powerful tool for the investigation of earthquake source parameters, is only possible for events occurred in the last 100-120 years, i.e., since seismographs with known response function were developed. Nevertheless, during this time significant earthquakes have been recorded by such instruments and today, also thanks to technological progress, these data can be recovered and analysed by means of modern techniques. In this paper, aiming at giving a general sketch of possible analyses and attainable results in historical seismogram studies, I briefly describe the major difficulties in processing the original waveforms and present a review of the results that I obtained from previous seismogram analysis of selected significant historical earthquakes occurred during the first decades of the 20. century, including (A) the December 28, 1908, Messina straits (southern Italy), (B) the June 11, 1909, Lambesc (southern France) - both of which are the strongest ever recorded instrumentally in their respective countries - and (C) the July 13, 1930, Irpinia (southern Italy) events. For these earthquakes, the major achievements are represented by the assessment of the seismic moment (A, B, C), the geometry and kinematics of faulting (B, C), the fault length and an approximate slip distribution (A, C). The source characteristics of the studied events have also been interpreted in the frame of the tectonic environment active in the respective region of interest. In spite of the difficulties inherent to the investigation of old seismic data, these results demonstrate the invaluable and irreplaceable role of historical seismogram analysis in defining the local seismo-genic potential and, ultimately, for assessing the seismic hazard. The retrieved information is crucial in areas where important civil engineering works

  1. Auto Correlation Analysis of Coda Waves from Local Earthquakes for Detecting Temporal Changes in Shallow Subsurface Structures: the 2011 Tohoku-Oki, Japan Earthquake

    Science.gov (United States)

    Nakahara, Hisashi

    2015-02-01

    For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can

  2. The extent of soft tissue and musculoskeletal injuries after earthquakes; describing a role for reconstructive surgeons in an emergency response.

    Science.gov (United States)

    Clover, A J P; Jemec, B; Redmond, A D

    2014-10-01

    Earthquakes are the leading cause of natural disaster-related mortality and morbidity. Soft tissue and musculoskeletal injuries are the predominant type of injury seen after these events and a major reason for admission to hospital. Open fractures are relatively common; however, they are resource-intense to manage. Appropriate management is important in minimising amputation rates and preserving function. This review describes the pattern of musculoskeletal and soft-tissue injuries seen after earthquakes and explores the manpower and resource implications involved in their management. A Medline search was performed, including terms "injury pattern" and "earthquake," "epidemiology injuries" and "earthquakes," "plastic surgery," "reconstructive surgery," "limb salvage" and "earthquake." Papers published between December 1992 and December 2012 were included, with no initial language restriction. Limb injuries are the commonest injuries seen accounting for 60 % of all injuries, with fractures in more than 50 % of those admitted to hospital, with between 8 and 13 % of these fractures open. After the first few days and once the immediate lifesaving phase is over, the management of these musculoskeletal and soft-tissue injuries are the commonest procedures required. Due to the predominance of soft-tissue and musculoskeletal injuries, plastic surgeons as specialists in soft-tissue reconstruction should be mobilised in the early stages of a disaster response as part of a multidisciplinary team with a focus on limb salvage.

  3. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    Science.gov (United States)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  4. Fractal analysis of the spatial distribution of earthquakes along the Hellenic Subduction Zone

    Science.gov (United States)

    Papadakis, Giorgos; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    slope of the recurrence curve to forecast earthquakes in Colombia. Earth Sci. Res. J., 8, 3-9. Makropoulos, K., Kaviris, G., Kouskouna, V., 2012. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst. Sci., 12, 1425-1430. Papadakis, G., Vallianatos, F., Sammonds, P., 2013. Evidence of non extensive statistical physics behavior of the Hellenic Subduction Zone seismicity. Tectonophysics, 608, 1037-1048. Papaioannou, C.A., Papazachos, B.C., 2000. Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull. Seismol. Soc. Am., 90, 22-33. Robertson, M.C., Sammis, C.G., Sahimi, M., Martin, A.J., 1995. Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation. J. Geophys. Res., 100, 609-620. Turcotte, D.L., 1997. Fractals and chaos in geology and geophysics. Second Edition, Cambridge University Press. Vallianatos, F., Michas, G., Papadakis, G., Sammonds, P., 2012. A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece). Acta Geophys., 60, 758-768.

  5. Development of the U.S. Geological Survey's PAGER system (Prompt Assessment of Global Earthquakes for Response)

    Science.gov (United States)

    Wald, D.J.; Earle, P.S.; Allen, T.I.; Jaiswal, K.; Porter, K.; Hearne, M.

    2008-01-01

    The Prompt Assessment of Global Earthquakes for Response (PAGER) System plays a primary alerting role for global earthquake disasters as part of the U.S. Geological Survey’s (USGS) response protocol. We provide an overview of the PAGER system, both of its current capabilities and our ongoing research and development. PAGER monitors the USGS’s near real-time U.S. and global earthquake origins and automatically identifies events that are of societal importance, well in advance of ground-truth or news accounts. Current PAGER notifications and Web pages estimate the population exposed to each seismic intensity level. In addition to being a useful indicator of potential impact, PAGER’s intensity/exposure display provides a new standard in the dissemination of rapid earthquake information. We are currently developing and testing a more comprehensive alert system that will include casualty estimates. This is motivated by the idea that an estimated range of possible number of deaths will aid in decisions regarding humanitarian response. Underlying the PAGER exposure and loss models are global earthquake ShakeMap shaking estimates, constrained as quickly as possible by finite-fault modeling and observed ground motions and intensities, when available. Loss modeling is being developed comprehensively with a suite of candidate models that range from fully empirical to largely analytical approaches. Which of these models is most appropriate for use in a particular earthquake depends on how much is known about local building stocks and their vulnerabilities. A first-order country-specific global building inventory has been developed, as have corresponding vulnerability functions. For calibrating PAGER loss models, we have systematically generated an Atlas of 5,000 ShakeMaps for significant global earthquakes during the last 36 years. For many of these, auxiliary earthquake source and shaking intensity data are also available. Refinements to the loss models are ongoing

  6. Challenges of the New Zealand healthcare disaster preparedness prior to the Canterbury earthquakes: a qualitative analysis.

    Science.gov (United States)

    Al-Shaqsi, Sultan; Gauld, Robin; Lovell, Sarah; McBride, David; Al-Kashmiri, Ammar; Al-Harthy, Abdullah

    2013-03-15

    Disasters are a growing global phenomenon. New Zealand has suffered several major disasters in recent times. The state of healthcare disaster preparedness in New Zealand prior to the Canterbury earthquakes is not well documented. To investigate the challenges of the New Zealand healthcare disaster preparedness prior to the Canterbury earthquakes. Semi-structured interviews with emergency planners in all the District Health Boards (DHBs) in New Zealand in the period between January and March 2010. The interview protocol revolved around the domains of emergency planning adopted by the World Health Organization. Seventeen interviews were conducted. The main themes included disinterest of clinical personnel in emergency planning, the need for communication backup, the integration of private services in disaster preparedness, the value of volunteers, the requirement for regular disaster training, and the need to enhance surge capability of the New Zealand healthcare system to respond to disasters. Prior to the Canterbury earthquakes, healthcare disaster preparedness faced multiple challenges. Despite these challenges, New Zealand's healthcare response was adequate. Future preparedness has to consider the lessons learnt from the 2011 earthquakes to improve healthcare disaster planning in New Zealand.

  7. SEDA: A software package for the Statistical Earthquake Data Analysis

    Science.gov (United States)

    Lombardi, A. M.

    2017-03-01

    In this paper, the first version of the software SEDA (SEDAv1.0), designed to help seismologists statistically analyze earthquake data, is presented. The package consists of a user-friendly Matlab-based interface, which allows the user to easily interact with the application, and a computational core of Fortran codes, to guarantee the maximum speed. The primary factor driving the development of SEDA is to guarantee the research reproducibility, which is a growing movement among scientists and highly recommended by the most important scientific journals. SEDAv1.0 is mainly devoted to produce accurate and fast outputs. Less care has been taken for the graphic appeal, which will be improved in the future. The main part of SEDAv1.0 is devoted to the ETAS modeling. SEDAv1.0 contains a set of consistent tools on ETAS, allowing the estimation of parameters, the testing of model on data, the simulation of catalogs, the identification of sequences and forecasts calculation. The peculiarities of routines inside SEDAv1.0 are discussed in this paper. More specific details on the software are presented in the manual accompanying the program package.

  8. Frequency Response Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kosterev, Dmitry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dai, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  9. Earthquake source imaging by high-resolution array analysis at regional distances: the 2010 M7 Haiti earthquake as seen by the Venezuela National Seismic Network

    Science.gov (United States)

    Meng, L.; Ampuero, J. P.; Rendon, H.

    2010-12-01

    Back projection of teleseismic waves based on array processing has become a popular technique for earthquake source imaging,in particular to track the areas of the source that generate the strongest high frequency radiation. The technique has been previously applied to study the rupture process of the Sumatra earthquake and the supershear rupture of the Kunlun earthquakes. Here we attempt to image the Haiti earthquake using the data recorded by Venezuela National Seismic Network (VNSN). The network is composed of 22 broad-band stations with an East-West oriented geometry, and is located approximately 10 degrees away from Haiti in the perpendicular direction to the Enriquillo fault strike. This is the first opportunity to exploit the privileged position of the VNSN to study large earthquake ruptures in the Caribbean region. This is also a great opportunity to explore the back projection scheme of the crustal Pn phase at regional distances,which provides unique complementary insights to the teleseismic source inversions. The challenge in the analysis of the 2010 M7.0 Haiti earthquake is its very compact source region, possibly shorter than 30km, which is below the resolution limit of standard back projection techniques based on beamforming. Results of back projection analysis using the teleseismic USarray data reveal little details of the rupture process. To overcome the classical resolution limit we explored the Multiple Signal Classification method (MUSIC), a high-resolution array processing technique based on the signal-noise orthognality in the eigen space of the data covariance, which achieves both enhanced resolution and better ability to resolve closely spaced sources. We experiment with various synthetic earthquake scenarios to test the resolution. We find that MUSIC provides at least 3 times higher resolution than beamforming. We also study the inherent bias due to the interferences of coherent Green’s functions, which leads to a potential quantification

  10. Site Response in Las Vegas Valley, Nevada from NTS Explosions and Earthquake Data

    Science.gov (United States)

    Rodgers, Arthur; Tkalcic, Hrvoje; McCallen, David; Larsen, Shawn; Snelson, Catherine

    2006-01-01

    We report site response in Las Vegas Valley (LVV) from historical recordings of Nevada Test Site (NTS) nuclear explosions and earthquake recordings from permanent and temporary seismic stations. Our data set significantly improves the spatial coverage of LVV over previous studies, especially in the northern, deeper parts of the basin. Site response at stations in LVV was measured for frequencies in the range 0.2 5.0 Hz using Standard Spectral Ratios (SSR) and Horizontal-Vertical Spectral Ratios (HVR). For the SSR measurements we used a reference site (approximately NEHRP B ``rock'' classification) located on Frenchman Mountain outside the basin. Site response at sedimentary sites is variable in LVV with average amplifications approaching a factor of 10 at some frequencies. We observed peaks in the site response curves at frequencies clustered near 0.6, 1.2 and 2.0 Hz, with some sites showing additional lower amplitude peaks at higher frequencies. The spatial pattern of site response is strongly correlated with the reported depth to basement for frequencies between 0.2 and 3.0 Hz, although the frequency of peak amplification does not show a similar correlation. For a few sites where we have geotechnical shear velocities, the amplification shows a correlation with the average upper 30-meter shear velocities, V 30. We performed two-dimensional finite difference simulations and reproduced the observed peak site amplifications at 0.6 and 1.2 Hz with a low velocity near-surface layer with shear velocities 600 750 m/s and a thickness of 100 200 m. These modeling results indicate that the amplitude and frequencies of site response peaks in LVV are strongly controlled by shallow velocity structure.

  11. The debate on the prognostic value of earthquake foreshocks: a meta-analysis.

    Science.gov (United States)

    Mignan, Arnaud

    2014-02-14

    The hypothesis that earthquake foreshocks have a prognostic value is challenged by simulations of the normal behaviour of seismicity, where no distinction between foreshocks, mainshocks and aftershocks can be made. In the former view, foreshocks are passive tracers of a tectonic preparatory process that yields the mainshock (i.e., loading by aseismic slip) while in the latter, a foreshock is any earthquake that triggers a larger one. Although both processes can coexist, earthquake prediction is plausible in the first case while virtually impossible in the second. Here I present a meta-analysis of 37 foreshock studies published between 1982 and 2013 to show that the justification of one hypothesis or the other depends on the selected magnitude interval between minimum foreshock magnitude m(min) and mainshock magnitude M. From this literature survey, anomalous foreshocks are found to emerge when m(min) < M - 3.0. These results suggest that a deviation from the normal behaviour of seismicity may be observed only when microseismicity is considered. These results are to be taken with caution since the 37 studies do not all show the same level of reliability. These observations should nonetheless encourage new research in earthquake predictability with focus on the potential role of microseismicity.

  12. Analysis of the space, time and energy distribution of Vrancea earthquakes

    International Nuclear Information System (INIS)

    Radulian, M.; Popa, M.

    1995-01-01

    Statistical analysis of fractal properties of space, time and energy distributions of Vrancea intermediate-depth earthquakes is performed on a homogeneous and complete data set. All events with magnitudes M L >2.5 which occurred from 1974 to 1992 are considered. The 19-year time interval includes the major earthquakes of March 4, 1977, August 26, 1986 and May 30, 1990. The subducted plate, lying between 60 km and 180 km depth, is divided into four active zones with characteristic seismic activities. The correlations between the parameters defining the seismic activities in these zones are studied. The predictive properties of the parameters related to the stress distribution on the fault are analysed. The significant anomalies in time and size distributions of earthquakes are emphasized. The correlations between spatial distribution (fractal dimension), the frequency-magnitude distribution (b slope value) and the high-frequency energy radiated by the source (fall off of the displacement spectra) are studied both at the scale of the whole seismogenic volume and the scale of a specific active zone. The results of this study for the Vrancea earthquakes bring evidence in favour of the seismic source model with hierarchical inhomogeneities (Frankel, 1991) (Author) 8 Figs., 2 Tabs., 5 Refs

  13. Revisiting Slow Slip Events Occurrence in Boso Peninsula, Japan, Combining GPS Data and Repeating Earthquakes Analysis

    Science.gov (United States)

    Gardonio, B.; Marsan, D.; Socquet, A.; Bouchon, M.; Jara, J.; Sun, Q.; Cotte, N.; Campillo, M.

    2018-02-01

    Slow slip events (SSEs) regularly occur near the Boso Peninsula, central Japan. Their time of recurrence has been decreasing from 6.4 to 2.2 years from 1996 to 2014. It is important to better constrain the slip history of this area, especially as models show that the recurrence intervals could become shorter prior to the occurrence of a large interplate earthquake nearby. We analyze the seismic waveforms of more than 2,900 events (M≥1.0) taking place in the Boso Peninsula, Japan, from 1 April 2004 to 4 November 2015, calculating the correlation and the coherence between each pair of events in order to define groups of repeating earthquakes. The cumulative number of repeating earthquakes suggests the existence of two slow slip events that have escaped detection so far. Small transient displacements observed in the time series of nearby GPS stations confirm these results. The detection scheme coupling repeating earthquakes and GPS analysis allow to detect small SSEs that were not seen before by classical methods. This work brings new information on the diversity of SSEs and demonstrates that the SSEs in Boso area present a more complex history than previously considered.

  14. The changing health priorities of earthquake response and implications for preparedness: a scoping review.

    Science.gov (United States)

    Cartwright, C; Hall, M; Lee, A C K

    2017-09-01

    Earthquakes have substantial impacts on mortality in low- and middle-income countries (LMIC). The academic evidence base to support Disaster Risk Reduction activities in LMIC settings is, however, limited. We sought to address this gap by identifying the health and healthcare impacts of earthquakes in LMICs and to identify the implications of these findings for future earthquake preparedness. Scoping review. A scoping review was undertaken with systematic searches of indexed databases to identify relevant literature. Key study details, findings, recommendations or lessons learnt were extracted and analysed across individual earthquake events. Findings were categorised by time frame relative to earthquakes and linked to the disaster preparedness cycle, enabling a profile of health and healthcare impacts and implications for future preparedness to be established. Health services need to prepare for changing health priorities with a shift from initial treatment of earthquake-related injuries to more general health needs occurring within the first few weeks. Preparedness is required to address mental health and rehabilitation needs in the medium to longer term. Inequalities of the impact of earthquakes on health were noted in particular for women, children, the elderly, disabled and rural communities. The need to maintain access to essential services such as reproductive health and preventative health services were identified. Key preparedness actions include identification of appropriate leaders, planning and training of staff. Testing of plans was advocated within the literature with evidence that this is possible in LMIC settings. Whilst there are a range of health and healthcare impacts of earthquakes, common themes emerged in different settings and from different earthquake events. Preparedness of healthcare systems is essential and possible, in order to mitigate the adverse health impacts of earthquakes in LMIC settings. Preparedness is needed at the community

  15. Wavelet-based blind identification of the UCLA Factor building using ambient and earthquake responses

    International Nuclear Information System (INIS)

    Hazra, B; Narasimhan, S

    2010-01-01

    Blind source separation using second-order blind identification (SOBI) has been successfully applied to the problem of output-only identification, popularly known as ambient system identification. In this paper, the basic principles of SOBI for the static mixtures case is extended using the stationary wavelet transform (SWT) in order to improve the separability of sources, thereby improving the quality of identification. Whereas SOBI operates on the covariance matrices constructed directly from measurements, the method presented in this paper, known as the wavelet-based modified cross-correlation method, operates on multiple covariance matrices constructed from the correlation of the responses. The SWT is selected because of its time-invariance property, which means that the transform of a time-shifted signal can be obtained as a shifted version of the transform of the original signal. This important property is exploited in the construction of several time-lagged covariance matrices. The issue of non-stationary sources is addressed through the formation of several time-shifted, windowed covariance matrices. Modal identification results are presented for the UCLA Factor building using ambient vibration data and for recorded responses from the Parkfield earthquake, and compared with published results for this building. Additionally, the effect of sensor density on the identification results is also investigated

  16. Near Real-Time Georeference of Umanned Aerial Vehicle Images for Post-Earthquake Response

    Science.gov (United States)

    Wang, S.; Wang, X.; Dou, A.; Yuan, X.; Ding, L.; Ding, X.

    2018-04-01

    The rapid collection of Unmanned Aerial Vehicle (UAV) remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we will spend much more time to select the images and the find images do not have spatial reference. Therefore, a near-real-time rapid georeference method for UAV remote sensing disaster data is proposed in this paper. The UAV images are achieved georeference combined with the position and attitude data collected by UAV flight control system, and the georeferenced data is organized by means of world file which is developed by ESRI. The C # language is adopted to compile the UAV images rapid georeference software, combined with Geospatial Data Abstraction Library (GDAL). The result shows that it can realize rapid georeference of remote sensing disaster images for up to one thousand UAV images within one minute, and meets the demand of rapid disaster response, which is of great value in disaster emergency application.

  17. NEAR REAL-TIME GEOREFERENCE OF UMANNED AERIAL VEHICLE IMAGES FOR POST-EARTHQUAKE RESPONSE

    Directory of Open Access Journals (Sweden)

    S. Wang

    2018-04-01

    Full Text Available The rapid collection of Unmanned Aerial Vehicle (UAV remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we will spend much more time to select the images and the find images do not have spatial reference. Therefore, a near-real-time rapid georeference method for UAV remote sensing disaster data is proposed in this paper. The UAV images are achieved georeference combined with the position and attitude data collected by UAV flight control system, and the georeferenced data is organized by means of world file which is developed by ESRI. The C # language is adopted to compile the UAV images rapid georeference software, combined with Geospatial Data Abstraction Library (GDAL. The result shows that it can realize rapid georeference of remote sensing disaster images for up to one thousand UAV images within one minute, and meets the demand of rapid disaster response, which is of great value in disaster emergency application.

  18. Seismic Hazard characterization study using an earthquake source with Probabilistic Seismic Hazard Analysis (PSHA) method in the Northern of Sumatra

    International Nuclear Information System (INIS)

    Yahya, A.; Palupi, M. I. R.; Suharsono

    2016-01-01

    Sumatra region is one of the earthquake-prone areas in Indonesia because it is lie on an active tectonic zone. In 2004 there is earthquake with a moment magnitude of 9.2 located on the coast with the distance 160 km in the west of Nanggroe Aceh Darussalam and triggering a tsunami. These events take a lot of casualties and material losses, especially in the Province of Nanggroe Aceh Darussalam and North Sumatra. To minimize the impact of the earthquake disaster, a fundamental assessment of the earthquake hazard in the region is needed. Stages of research include the study of literature, collection and processing of seismic data, seismic source characterization and analysis of earthquake hazard by probabilistic methods (PSHA) used earthquake catalog from 1907 through 2014. The earthquake hazard represented by the value of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) in the period of 0.2 and 1 second on bedrock that is presented in the form of a map with a return period of 2475 years and the earthquake hazard curves for the city of Medan and Banda Aceh. (paper)

  19. Plant state display device after occurrence of earthquake

    International Nuclear Information System (INIS)

    Kitada, Yoshio; Yonekura, Kazuyoshi.

    1992-01-01

    If a nuclear power plant should encounter earthquakes, an earthquake response analysis value previously stored and the earthquakes observed are compared to judge the magnitude of the earthquakes. From the result of the judgement, a possibility that an abnormality is recognized in plant equipment systems after the earthquakes is evaluated, in comparison with a previously stored earthquake fragility data base of each of equipment/systems. The result of the evaluation is displayed in a central control chamber. The plant equipment system is judged such that abnormalities are recognized at a high probability is evaluated by a previously stored earthquake PSA method for the influence of the abnormality on plant safety, and the result is displayed in the central control chamber. (I.S.)

  20. Application of Incremental Dynamic Analysis (IDA Method for Studying the Dynamic Behavior of Structures During Earthquakes

    Directory of Open Access Journals (Sweden)

    M. Javanpour

    2017-02-01

    Full Text Available Prediction of existing buildings’ vulnerability by future earthquakes is one of the most essential topics in structural engineering. Modeling steel structures is a giant step in determining the damage caused by the earthquake, as such structures are increasingly being used in constructions. Hence, two same-order steel structures with two types of structural systems were selected (coaxial moment frames and moment frame. In most cases, a specific structure needs to satisfy several functional levels. For this purpose, a method is required to determine the input request to the structures under possible earthquakes. Therefore, the Incremental Dynamic Analysis (IDA was preferred to the Push-Over non-linear static method for the analysis and design of the considered steel structures, due its accuracy and effect of higher modes at the same time intervals. OpenSees software was used to perform accurate nonlinear analysis of the steel structure. Two parameters (spectral acceleration and maximum ground acceleration were introduced to the modeled frames to compare the numerical correlations of seismic vulnerability obtained by two statistical methods based on the "log-normal distribution" and "logistics distribution", and finally, the parameters of displacement and drift were assessed after analysis.

  1. Localised Effects of a Mega-Disturbance: Spatiotemporal Responses of Intertidal Sandy Shore Communities to the 2010 Chilean Earthquake.

    Science.gov (United States)

    Sepúlveda, Roger D; Valdivia, Nelson

    2016-01-01

    . Therefore, our results suggest that the effects of the Maule mega-earthquake on the ecological communities were spatially heterogeneous and highly localised. We suggest that high mobility and other species' adaptations to the dynamic environmental conditions of sandy beaches might explain the comparatively high resilience of these assemblages. With this work we hope to motivate further experimental research on the role of individual- and population-level properties in the response of sandy-beach communities to interacting sources of disturbances.

  2. Localised Effects of a Mega-Disturbance: Spatiotemporal Responses of Intertidal Sandy Shore Communities to the 2010 Chilean Earthquake.

    Directory of Open Access Journals (Sweden)

    Roger D Sepúlveda

    tsunami. Therefore, our results suggest that the effects of the Maule mega-earthquake on the ecological communities were spatially heterogeneous and highly localised. We suggest that high mobility and other species' adaptations to the dynamic environmental conditions of sandy beaches might explain the comparatively high resilience of these assemblages. With this work we hope to motivate further experimental research on the role of individual- and population-level properties in the response of sandy-beach communities to interacting sources of disturbances.

  3. Seismic margin analysis for Kashiwazaki Kariwa ABWR plant considering the Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Matsuo, Toshihiro; Nagasawa, Kazuyuki; Kawamura, Shinichi; Ueki, Takashi; Higuchi, Tomokazu; Sakaki, Isao

    2009-01-01

    Seismic Margin Analysis (SMA) study was conducted for Kashiwazaki Kariwa (KK) ABWR representative plant (unit 6). Considering that the installation behaved in a safe manner during and after the Niigataken Chuetsu-oki (NCO) Earthquake which significantly exceeded the level of the seismic input taken into account in the design of the plant, the study to find out how much margin the ABWR plant had toward the same seismic motion was conducted. In this study fragility analyses were conducted for SSCs that were included in the accident sequences and that were considered to have relatively small margin taking EPRI margin analysis method into consideration. In order to calculate plant level seismic margin Min-Max method was adopted. As the result of this study, the plant level High Confidence Low Probability of Failure (HCLPF) acceleration for unit 6 was calculated more than tripled NCO earthquake motion. (author)

  4. Analysis of the earthquake data and estimation of source parameters in the Kyungsang basin

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong-Moon; Lee, Jun-Hee [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-04-01

    The purpose of the present study is to determine the response spectrum for the Korean Peninsula and estimate the seismic source parameters and analyze and simulate the ground motion adequately from the seismic characteristics of Korean Peninsula and compare this with the real data. The estimated seismic source parameters such as apparent seismic stress drop is somewhat unstable because the data are insufficient. When the instrumental earthquake data were continuously accumulated in the future, the modification of these parameters may be developed. Although equations presented in this report are derived from the limited data, they can be utilized both in seismology and earthquake engineering. Finally, predictive equations may be given in terms of magnitude and hypocentral distances using these parameters. The estimation of the predictive equation constructed from the simulation is the object of further study. 34 refs., 27 figs., 10 tabs. (Author)

  5. Current problems and subjects on numerical analysis of earthquake geotechnical engineering. For seamless analysis

    International Nuclear Information System (INIS)

    Yoshida, Taiki

    2016-01-01

    There are continuum and discontinuum analyses in the evaluation of seismic stability of surrounding slope in nuclear power plant facility. However, we cannot rationally evaluate such seismic stability due to excessive conservative margin of the results by each analysis. If we can simulate the behavior from small to large deformation by hybridizing them, we can contribute not only to the rationalization of the slope stability evaluation but also the enhancement of evaluation precision in the numerical analysis. In this review, the previous numerical analyses and application cases of them in earthquake geotechnical engineering were classified into three categories, that is, continuum analysis, discontinuum one and the hybridizing process to identify their research themes. The present review has revealed that the research themes are the standardization of condition for conversion, construction of the technique to determine parameters related to conversion and the reasonable physical property set of DEM(Distinct Element Method) after conversion. Our future work will be development of a numerical analysis code hybridizing continuum and discontinuum analyses based on the identified research themes. (author)

  6. A new strategy for earthquake focal mechanisms using waveform-correlation-derived relative polarities and cluster analysis: Application to the 2014 Long Valley Caldera earthquake swarm

    Science.gov (United States)

    Shelly, David R.; Hardebeck, Jeanne L.; Ellsworth, William L.; Hill, David P.

    2016-01-01

    In microseismicity analyses, reliable focal mechanisms can typically be obtained for only a small subset of located events. We address this limitation here, presenting a framework for determining robust focal mechanisms for entire populations of very small events. To achieve this, we resolve relative P and S wave polarities between pairs of waveforms by using their signed correlation coefficients—a by-product of previously performed precise earthquake relocation. We then use cluster analysis to group events with similar patterns of polarities across the network. Finally, we apply a standard mechanism inversion to the grouped data, using either catalog or correlation-derived P wave polarity data sets. This approach has great potential for enhancing analyses of spatially concentrated microseismicity such as earthquake swarms, mainshock-aftershock sequences, and industrial reservoir stimulation or injection-induced seismic sequences. To demonstrate its utility, we apply this technique to the 2014 Long Valley Caldera earthquake swarm. In our analysis, 85% of the events (7212 out of 8494 located by Shelly et al. [2016]) fall within five well-constrained mechanism clusters, more than 12 times the number with network-determined mechanisms. Of the earthquakes we characterize, 3023 (42%) have magnitudes smaller than 0.0. We find that mechanism variations are strongly associated with corresponding hypocentral structure, yet mechanism heterogeneity also occurs where it cannot be resolved by hypocentral patterns, often confined to small-magnitude events. Small (5–20°) rotations between mechanism orientations and earthquake location trends persist when we apply 3-D velocity models and might reflect a geometry of en echelon, interlinked shear, and dilational faulting.

  7. Seismic Response Analysis and Design of Structure with Base Isolation

    International Nuclear Information System (INIS)

    Rosko, Peter

    2010-01-01

    The paper reports the study on seismic response and energy distribution of a multi-story civil structure. The nonlinear analysis used the 2003 Bam earthquake acceleration record as the excitation input to the structural model. The displacement response was analyzed in time domain and in frequency domain. The displacement and its derivatives result energy components. The energy distribution in each story provides useful information for the structural upgrade with help of added devices. The objective is the structural displacement response minimization. The application of the structural seismic response research is presented in base-isolation example.

  8. Preliminary analysis of the rupture process of 11 March 2011 Tohoku-Oki earthquake

    Science.gov (United States)

    Vilotte, J.; Satriano, C.; Dionicio, V.; Lancieri, M.; Bernard, P.

    2011-12-01

    The great 11 March 2011 Off the Pacific Coast of Tohoku earthquake (Mw 9.1) ruptured a ~ 200 km wide mega-thrust fault, with average displacement of ~15-20 m. The earthquake triggered a large devastating tsunami as well as strong ground motion along the east Honshu coastline. Seismic activity in this area is characterized by a number of large earthquakes with Mw ~7.2-7.9 along the down-dip portion of the mega-thrust seaward of Miyagi prefecture, with only few events of magnitude greater than 8 in last hundred years. This region was also recognized to have had a large tsunami earthquake in 869 with a source area estimated further offshore. The rupture process of the Tohoku-Oki earthquake is investigated here combining teleseismic short period P-waves back-projection imaging and broadband P-wave finite fault inversions, together with a preliminary broadband analysis of the Kik-net strong motion recordings across Japan. The main features of the Tohoku-Oki rupture process imaged by the short period (1s) back-projection are: an initial 70-80s radiation phase eastward of the epicenter, with a slow (~1-1.5 km/s) along-dip rupture propagation; a short radiation phase northward of the epicenter; and ultimately a southward radiation phase with a relatively faster rupture propagation. These features are robust and consistent using both the North American and European arrays configurations. At lower periods, the back-projection analysis reveals a shift in the radiation centroid seaward toward the trench. In contrast, the broadband (1-200s) P-waves finite fault inversion exhibits a quite complementary image with a first long period radiation phase up-dip of the epicenter followed by down-dip late southwestward radiation phase that remains however poorly constraint. The robustness and the resolution of both the back-projection and the finite fault inversion analysis are carefully assessed through bootstrap analysis, and the analysis of some of the main foreshocks and aftershocks

  9. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site

    International Nuclear Information System (INIS)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M L 4.5 to M L 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes

  10. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  11. Response and recovery lessons from the 2010-2011 earthquake sequence in Canterbury, New Zealand

    Science.gov (United States)

    Pierepiekarz, Mark; Johnston, David; Berryman, Kelvin; Hare, John; Gomberg, Joan S.; Williams, Robert A.; Weaver, Craig S.

    2014-01-01

    The impacts and opportunities that result when low-probability moderate earthquakes strike an urban area similar to many throughout the US were vividly conveyed in a one-day workshop in which social and Earth scientists, public officials, engineers, and an emergency manager shared their experiences of the earthquake sequence that struck the city of Christchurch and surrounding Canterbury region of New Zealand in 2010-2011. Without question, the earthquake sequence has had unprecedented impacts in all spheres on New Zealand society, locally to nationally--10% of the country's population was directly impacted and losses total 8-10% of their GDP. The following paragraphs present a few lessons from Christchurch.

  12. Network Structure and Community Evolution on Twitter: Human Behavior Change in Response to the 2011 Japanese Earthquake and Tsunami

    Science.gov (United States)

    Lu, Xin; Brelsford, Christa

    2014-10-01

    To investigate the dynamics of social networks and the formation and evolution of online communities in response to extreme events, we collected three datasets from Twitter shortly before and after the 2011 earthquake and tsunami in Japan. We find that while almost all users increased their online activity after the earthquake, Japanese speakers, who are assumed to be more directly affected by the event, expanded the network of people they interact with to a much higher degree than English speakers or the global average. By investigating the evolution of communities, we find that the behavior of joining or quitting a community is far from random: users tend to stay in their current status and are less likely to join new communities from solitary or shift to other communities from their current community. While non-Japanese speakers did not change their conversation topics significantly after the earthquake, nearly all Japanese users changed their conversations to earthquake-related content. This study builds a systematic framework for investigating human behaviors under extreme events with online social network data and our findings on the dynamics of networks and communities may provide useful insight for understanding how patterns of social interaction are influenced by extreme events.

  13. Earthquake-induced crustal deformation and consequences for fault displacement hazard analysis of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gürpinar, Aybars, E-mail: aybarsgurpinar2007@yahoo.com [Nuclear & Risk Consultancy, Anisgasse 4, 1221 Vienna (Austria); Serva, Leonello, E-mail: lserva@alice.it [Independent Consultant, Via dei Dauni 1, 00185 Rome (Italy); Livio, Franz, E-mail: franz.livio@uninsubria.it [Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Velleggio, 11, 22100 Como (Italy); Rizzo, Paul C., E-mail: paul.rizzo@rizzoasoc.com [RIZZO Associates, 500 Penn Center Blvd., Suite 100, Pittsburgh, PA 15235 (United States)

    2017-01-15

    Highlights: • A three-step procedure to incorporate coseismic deformation into PFDHA. • Increased scrutiny for faults in the area permanently deformed by future strong earthquakes. • These faults share with the primary structure the same time window for fault capability. • VGM variation may occur due to tectonism that has caused co-seismic deformation. - Abstract: Readily available interferometric data (InSAR) of the coseismic deformation field caused by recent seismic events clearly show that major earthquakes produce crustal deformation over wide areas, possibly resulting in significant stress loading/unloading of the crust. Such stress must be considered in the evaluation of seismic hazards of nuclear power plants (NPP) and, in particular, for the potential of surface slip (i.e., probabilistic fault displacement hazard analysis - PFDHA) on both primary and distributed faults. In this study, based on the assumption that slip on pre-existing structures can represent the elastic response of compliant fault zones to the permanent co-seismic stress changes induced by other major seismogenic structures, we propose a three-step procedure to address fault displacement issues and consider possible influence of surface faulting/deformation on vibratory ground motion (VGM). This approach includes: (a) data on the presence and characteristics of capable faults, (b) data on recognized and/or modeled co-seismic deformation fields and, where possible, (c) static stress transfer between source and receiving faults of unknown capability. The initial step involves the recognition of the major seismogenic structures nearest to the site and their characterization in terms of maximum expected earthquake and the time frame to be considered for determining their “capability” (as defined in the International Atomic Energy Agency - IAEA Specific Safety Guide SSG-9). Then a GIS-based buffer approach is applied to identify all the faults near the NPP, possibly influenced by

  14. Earthquake-induced crustal deformation and consequences for fault displacement hazard analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Gürpinar, Aybars; Serva, Leonello; Livio, Franz; Rizzo, Paul C.

    2017-01-01

    Highlights: • A three-step procedure to incorporate coseismic deformation into PFDHA. • Increased scrutiny for faults in the area permanently deformed by future strong earthquakes. • These faults share with the primary structure the same time window for fault capability. • VGM variation may occur due to tectonism that has caused co-seismic deformation. - Abstract: Readily available interferometric data (InSAR) of the coseismic deformation field caused by recent seismic events clearly show that major earthquakes produce crustal deformation over wide areas, possibly resulting in significant stress loading/unloading of the crust. Such stress must be considered in the evaluation of seismic hazards of nuclear power plants (NPP) and, in particular, for the potential of surface slip (i.e., probabilistic fault displacement hazard analysis - PFDHA) on both primary and distributed faults. In this study, based on the assumption that slip on pre-existing structures can represent the elastic response of compliant fault zones to the permanent co-seismic stress changes induced by other major seismogenic structures, we propose a three-step procedure to address fault displacement issues and consider possible influence of surface faulting/deformation on vibratory ground motion (VGM). This approach includes: (a) data on the presence and characteristics of capable faults, (b) data on recognized and/or modeled co-seismic deformation fields and, where possible, (c) static stress transfer between source and receiving faults of unknown capability. The initial step involves the recognition of the major seismogenic structures nearest to the site and their characterization in terms of maximum expected earthquake and the time frame to be considered for determining their “capability” (as defined in the International Atomic Energy Agency - IAEA Specific Safety Guide SSG-9). Then a GIS-based buffer approach is applied to identify all the faults near the NPP, possibly influenced by

  15. Seismogeodesy of the 2014 Mw6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault

    Science.gov (United States)

    Melgar, Diego; Geng, Jianghui; Crowell, Brendan W.; Haase, Jennifer S.; Bock, Yehuda; Hammond, William C.; Allen, Richard M.

    2015-07-01

    Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.

  16. Presentation and Analysis of a Worldwide Database of Earthquake-Induced Landslide Inventories : Earthquake-Induced Landslide Inventories

    NARCIS (Netherlands)

    Tanyas, Hakan; Van Westen, Cees J.; Allstadt, Kate E.; Anna Nowicki Jessee, M.; Görüm, Tolga; Jibson, Randall W.; Godt, Jonathan W.; Sato, Hiroshi P.; Schmitt, Robert G.; Marc, Odin; Hovius, Niels

    2017-01-01

    Earthquake‐induced landslide (EQIL) inventories are essential tools to extend our knowledge of the relationship between earthquakes and the landslides they can trigger. Regrettably, such inventories are difficult to generate and therefore scarce, and the available ones differ in terms of their

  17. THE RESPONSE OF MONTEREY BAY TO THE GREAT TOHOKU EARTHQUAKE OF 2011

    Directory of Open Access Journals (Sweden)

    D. Carroll

    2011-01-01

    Full Text Available The response of Monterey Bay to the Great Tohoku earthquake of 2011 is examined in this study. From a practical standpoint, although the resulting tsunami did not cause any damage to the open harbors at Monterey and Moss Landing, it caused extensive damage to boats and infrastructure in Santa Cruz Harbor, which is closed to surrounding waters. From a scientific standpoint, the observed and predicted amplitudes of the tsunami at 1 km from the source were 21.3 and 22.5 m based on the primary arrival from one DART bottom pressure recorder located 986 km ENE of the epicenter. The predicted and observed travel times for the tsunami to reach Monterey Bay agreed within 3%. The predicted and observed periods of the tsunami-generated wave before it entered the bay yielded periods that approached 2 hours. Once the tsunami entered Monterey Bay it was transformed into a seiche with a primary period of 36-37 minutes, corresponding to quarter-wave resonance within the bay. Finally, from a predictive standpoint, major tsunamis that enter the bay from the northwest, as in the present case, are the ones most likely to cause damage to Santa Cruz harbor.

  18. Realization of Earthquake Vulnerability Analysis in Structure Scale with Fuzzy Logic Method in GIS: Kadikoy, Maltepe and Prince Islands Sample

    Directory of Open Access Journals (Sweden)

    Alper Şen

    2016-12-01

    Full Text Available The inadequate evaluation of geologic factors and unqualified and unplanned structuring play effective role in giant damage and loss of lives created by the earthquakes and faulty areas choice and structure construction cause building damages during the earthquake, thus it also causes giant loss of lives. Istanbul province and its immediate environment are located in north of North Anatolian Fault Zone having 1500 km length. Hence, it causes that the settlement’s Sea of Marmara coastal region is located in 1st seismic belt. The earthquake risk in Istanbul and related risk factors should be determined besides vulnerability and earthquake risk. A mathematical model has been created in geographic information systems for Kadıkoy, Maltepe and Prince Islands sub-provinces by using Fuzzy Logic method which is one of the artificial intelligence methods by considering 4 vulnerability parameters and earthquake vulnerability analysis have been made in this study. The used parameters are the location by fault line, geologic structure, building structure and the number of floors. The vulnerability grades emerged as a result of analysis have been studied and the distribution of buildings according to those levels have been presented via a thematic map. The pre-earthquake precautions should be determined for the study field by considering the vulnerability grades in case of any earthquake and the loss of life and property should be minimized.

  19. Hydrothermal response to a volcano-tectonic earthquake swarm, Lassen, California

    Science.gov (United States)

    Ingebritsen, Steven E.; Shelly, David R.; Hsieh, Paul A.; Clor, Laura; P.H. Seward,; Evans, William C.

    2015-01-01

    The increasing capability of seismic, geodetic, and hydrothermal observation networks allows recognition of volcanic unrest that could previously have gone undetected, creating an imperative to diagnose and interpret unrest episodes. A November 2014 earthquake swarm near Lassen Volcanic National Park, California, which included the largest earthquake in the area in more than 60 years, was accompanied by a rarely observed outburst of hydrothermal fluids. Although the earthquake swarm likely reflects upward migration of endogenous H2O-CO2 fluids in the source region, there is no evidence that such fluids emerged at the surface. Instead, shaking from the modest sized (moment magnitude 3.85) but proximal earthquake caused near-vent permeability increases that triggered increased outflow of hydrothermal fluids already present and equilibrated in a local hydrothermal aquifer. Long-term, multiparametric monitoring at Lassen and other well-instrumented volcanoes enhances interpretation of unrest and can provide a basis for detailed physical modeling.

  20. Responses of a tall building in Los Angeles, California as inferred from local and distant earthquakes

    Science.gov (United States)

    Çelebi, Mehmet; Hasan Ulusoy,; Nori Nakata,

    2016-01-01

    Increasing inventory of tall buildings in the United States and elsewhere may be subjected to motions generated by near and far seismic sources that cause long-period effects. Multiple sets of records that exhibited such effects were retrieved from tall buildings in Tokyo and Osaka ~ 350 km and 770 km from the epicenter of the 2011 Tohoku earthquake. In California, very few tall buildings have been instrumented. An instrumented 52-story building in downtown Los Angeles recorded seven local and distant earthquakes. Spectral and system identification methods exhibit significant low frequencies of interest (~0.17 Hz, 0.56 Hz and 1.05 Hz). These frequencies compare well with those computed by transfer functions; however, small variations are observed between the significant low frequencies for each of the seven earthquakes. The torsional and translational frequencies are very close and are coupled. Beating effect is observed in at least two of the seven earthquake data.

  1. Significance of earthquake and weapons-test ground motion to structure response and NRC licensing

    International Nuclear Information System (INIS)

    Blume, J.A.

    1984-01-01

    The author feels that of all the problems to be resolved before a nuclear power plant can be licensed to operate, the earthquake problem is the most difficult from the emotional and public relations point of view, as well as technically. It is the one that intervenors and their lawyers thrive upon, as do the demonstrators. These earthquakes can be tectonic, reservoir induced, and/or imaginary. 9 references, 29 figures

  2. Probabilistic analysis of the torsional effects on the tall building resistance due to earthquake even

    Science.gov (United States)

    Králik, Juraj; Králik, Juraj

    2017-07-01

    The paper presents the results from the deterministic and probabilistic analysis of the accidental torsional effect of reinforced concrete tall buildings due to earthquake even. The core-column structural system was considered with various configurations in plane. The methodology of the seismic analysis of the building structures in Eurocode 8 and JCSS 2000 is discussed. The possibilities of the utilization the LHS method to analyze the extensive and robust tasks in FEM is presented. The influence of the various input parameters (material, geometry, soil, masses and others) is considered. The deterministic and probability analysis of the seismic resistance of the structure was calculated in the ANSYS program.

  3. The 6 April 2009 earthquake at L'Aquila: a preliminary analysis of magnetic field measurements

    Directory of Open Access Journals (Sweden)

    U. Villante

    2010-02-01

    Full Text Available Several investigations reported the possible identification of anomalous geomagnetic field signals prior to earthquake occurrence. In the ULF frequency range, candidates for precursory signatures have been proposed in the increase in the noise background and polarization parameter (i.e. the ratio between the amplitude/power of the vertical component and that one of the horizontal component, in the changing characteristics of the slope of the power spectrum and fractal dimension, in the possible occurrence of short duration pulses. We conducted, with conventional techniques of data processing, a preliminary analysis of the magnetic field observations performed at L'Aquila during three months preceding the 6 April 2009 earthquake, focusing attention on the possible occurrence of features similar to those identified in previous events. Within the limits of this analysis, we do not find compelling evidence for any of the features which have been proposed as earthquake precursors: indeed, most of aspects of our observations (which, in some cases, appear consistent with previous findings might be interpreted in terms of the general magnetospheric conditions and/or of different sources.

  4. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico

    Directory of Open Access Journals (Sweden)

    Carrillo Julián

    2014-01-01

    Full Text Available The development of new codes for earthquake-resistant structures has made possible to guarantee a better performance of buildings, when they are subjected to seismic actions. Therefore, it is convenient that current codes for design of building become conceptually transparent when defining the strength modification factors and assessing maximum lateral displacements, so that the design process can be clearly understood by structural engineers. The aim of this study is to analyze the transparency of earthquake-resistant design approach for buildings in Mexico by means of a critical review of the factors for strength modification and displacement amplification. The approach of building design codes in US is also analyzed. It is concluded that earthquake-resistant design in Mexico have evolved in refinement and complexity. It is also demonstrated that the procedure prescribed by such design codes allows the assessment of the design strengths and displacements in a more rational way, in accordance not only with the present stage of knowledge but also with the contemporary tendencies in building codes. In contrast, the procedures used in US codes may not provide a clear view for seismic response assessment of buildings.

  5. Three-dimensional earthquake analysis of roller-compacted concrete dams

    Directory of Open Access Journals (Sweden)

    M. E. Kartal

    2012-07-01

    Full Text Available Ground motion effect on a roller-compacted concrete (RCC dams in the earthquake zone should be taken into account for the most critical conditions. This study presents three-dimensional earthquake response of a RCC dam considering geometrical non-linearity. Besides, material and connection non-linearity are also taken into consideration in the time-history analyses. Bilinear and multilinear kinematic hardening material models are utilized in the materially non-linear analyses for concrete and foundation rock respectively. The contraction joints inside the dam blocks and dam–foundation–reservoir interaction are modeled by the contact elements. The hydrostatic and hydrodynamic pressures of the reservoir water are modeled with the fluid finite elements based on the Lagrangian approach. The gravity and hydrostatic pressure effects are employed as initial condition before the strong ground motion. In the earthquake analyses, viscous dampers are defined in the finite element model to represent infinite boundary conditions. According to numerical solutions, horizontal displacements increase under hydrodynamic pressure. Besides, those also increase in the materially non-linear analyses of the dam. In addition, while the principle stress components by the hydrodynamic pressure effect the reservoir water, those decrease in the materially non-linear time-history analyses.

  6. Coping with the challenges of early disaster response: 24 years of field hospital experience after earthquakes.

    Science.gov (United States)

    Bar-On, Elhanan; Abargel, Avi; Peleg, Kobi; Kreiss, Yitshak

    2013-10-01

    To propose strategies and recommendations for future planning and deployment of field hospitals after earthquakes by comparing the experience of 4 field hospitals deployed by The Israel Defense Forces (IDF) Medical Corps in Armenia, Turkey, India and Haiti. Quantitative data regarding the earthquakes were collected from published sources; data regarding hospital activity were collected from IDF records; and qualitative information was obtained from structured interviews with key figures involved in the missions. The hospitals started operating between 89 and 262 hours after the earthquakes. Their sizes ranged from 25 to 72 beds, and their personnel numbered between 34 and 100. The number of patients treated varied from 1111 to 2400. The proportion of earthquake-related diagnoses ranged from 28% to 67% (P earthquakes, patient caseload and treatment requirements varied widely. The variables affecting the patient profile most significantly were time until deployment, total number of injured, availability of adjacent medical facilities, and possibility of evacuation from the disaster area. When deploying a field hospital in the early phase after an earthquake, a wide variability in patient caseload should be anticipated. Customization is difficult due to the paucity of information. Therefore, early deployment necessitates full logistic self-sufficiency and operational versatility. Also, collaboration with local and international medical teams can greatly enhance treatment capabilities.

  7. Proactive vs. reactive learning on buildings response and earthquake risks, in schools of Romania

    Directory of Open Access Journals (Sweden)

    Daniela DOBRE

    2015-07-01

    Full Text Available During the last 20 years, many specific activities of earthquake education and preparedness were initiated and supported in Romania by drafting materials for citizens, students, professors etc. (Georgescu et al., 2004, 2006. The education, training and information on earthquake disaster potential are important factors to mitigate the earthquake effects. Such activities, however, need time to be developed and may take different forms of presentation in order to capture the attention, to increase interest, to develop skills and attitudes in order to induce a proper behavior towards safety preparedness. It shall also be based on the accumulation of concerns and knowledge, which are, in principle, a consequence of the motivation, but which depend on the methods applied and actions taken for efficient earthquake preparedness, assessed and updated following actual earthquakes (Masuda, Midorikawa, Miki and Ohmachi, 1988. We are now at a crossroad and the proactive attitude and behavior (anticipative and participative needs to be extended in learning, within institutional framework, but correlated with the usual targets of schools and teenagers proactive issue (ROEDUSEIS-NET; Page and Page, 2003, by encouraging students in activities closer to earthquake engineering.

  8. Modeling the poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event

    Science.gov (United States)

    McCormack, Kimberly A.; Hesse, Marc A.

    2018-04-01

    We model the subsurface hydrologic response to the 7.6 Mw subduction zone earthquake that occurred on the plate interface beneath the Nicoya peninsula in Costa Rica on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. A representative two-dimensional model shows that thrust earthquakes with a slip width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. This leads to multiple poroelastic relaxation timescales that may overlap with the longer viscoelastic timescales. In the three-dimensional model, the complex slip distribution of 2012 Nicoya event and its small width to depth ratio lead to a pore pressure distribution comprising multiple trench parallel ridges of high and low pressure. This leads to complex groundwater flow patterns, non-monotonic variations in predicted well water levels, and poroelastic relaxation on multiple time scales. The model also predicts significant tectonically driven submarine groundwater discharge off-shore. In the weeks following the earthquake, the predicted net submarine groundwater discharge in the study area increases, creating a 100 fold increase in net discharge relative to topography-driven flow over the first 30 days. Our model suggests the hydrological response on land is more complex than typically acknowledged in tectonic studies. This may complicate the interpretation of transient post-seismic surface deformations. Combined tectonic-hydrological observation networks have the potential to reduce such ambiguities.

  9. Responses of a 58-story RC dual core shear wall and outrigger frame building inferred from two earthquakes

    Science.gov (United States)

    Çelebi, Mehmet

    2016-01-01

    Responses of a dual core shear-wall and outrigger-framed 58-story building recorded during the Mw6.0 Napa earthquake of 24 August 2014 and the Mw3.8 Berkeley earthquake of 20 October 2011 are used to identify its dynamic characteristics and behavior. Fundamental frequencies are 0.28 Hz (NS), 0.25 Hz (EW), and 0.43 Hz (torsional). Rigid body motions due to rocking are not significant. Average drift ratios are small. Outrigger frames do not affect average drift ratios or mode shapes. Local site effects do not affect the response; however, response associated with deeper structure may be substantial. A beating effect is observed from data of both earthquakes but beating periods are not consistent. Low critical damping ratios may have contributed to the beating effect. Torsion is relatively larger above outriggers as indicated by the time-histories of motions at the roof, possibly due to the discontinuity of the stiffer shear walls above level 47.

  10. Study of responses of 64-story Rincon Building to Napa, Fremont, Piedmont, San Ramon earthquakes and ambient motions

    Science.gov (United States)

    Çelebi, Mehmet; Hooper, John; Klemencic, Ron

    2017-01-01

    We analyze the recorded responses of a 64-story, instrumented, concrete core shear wall building in San Francisco, California, equipped with tuned sloshing liquid dampers (TSDs) and buckling restraining braces (BRBs). Previously, only ambient data from the 72-channel array in the building were studied (Çelebi et al. 2013). Recently, the 24 August 2014 Mw 6.0 Napa and three other earthquakes were recorded. The peak accelerations of ambient and the larger Napa earthquake responses at the basement are 0.12 cm/s/s and 5.2 cm/s/s respectively—a factor of ~42. At the 61st level, they are 0.30 cm/s/s (ambient) and 16.8 cm/s/s (Napa), respectively—a factor of ~56. Fundamental frequencies (NS ~ 0.3, EW ~ 0.27 Hz) from earthquake responses vary within an insignificant frequency band of ~0.02–0.03 Hz when compared to those from ambient data. In the absence of soil-structure interaction (SSI), these small and insignificant differences may be attributed to (1) identification errors, (2) any nonlinear behavior, and (3) shaking levels that are not large enough to activate the BRBs and TSDs to make significant shifts in frequencies and increase damping.

  11. Development of rupture process analysis method for great earthquakes using Direct Solution Method

    Science.gov (United States)

    Yoshimoto, M.; Yamanaka, Y.; Takeuchi, N.

    2010-12-01

    Conventional rupture process analysis methods using teleseismic body waves were based on ray theory. Therefore, these methods have the following problems in applying to great earthquakes such as 2004 Sumatra earthquake: (1) difficulty in computing all later phases such as the PP reflection phase, (2) impossibility of computing called “W phase”, the long period phase arriving before S wave, (3) implausibility of hypothesis that the distance is far enough from the observation points to the hypocenter compared to the fault length. To solve above mentioned problems, we have developed a new method which uses the synthetic seismograms computed by the Direct Solution Method (DSM, e.g. Kawai et al. 2006) as Green’s functions. We used the DSM software (http://www.eri.u-tokyo.ac.jp/takeuchi/software/) for computing the Green’s functions up to 1 Hz for the IASP91 (Kennett and Engdahl, 1991) model, and determined the final slip distributions using the waveform inversion method (Kikuchi et al. 2003). First we confirmed whether the Green’s functions computed by DSM were accurate in higher frequencies up to 1 Hz. Next we performed the rupture process analysis of this new method for Mw8.0 (GCMT) large Solomon Islands earthquake on April 1, 2007. We found that this earthquake consisted of two asperities and the rupture propagated across the subducting Sinbo ridge. The obtained slip distribution better correlates to the aftershock distributions than existing method. Furthermore, this new method keep same accuracy of existing method (which has the advantage of calculating) with respect to direct P-wave and reflection phases near the source, and also accurately calculate the later phases such a PP-wave.

  12. Legal analysis of citizen lawsuit toward management of the 2006 Yogyakarta earthquake

    Science.gov (United States)

    Suprihadi, Bambang

    2017-07-01

    The Asian Disaster Reduction Center informed that on 27 May 2006 at 5:54 AM Local time or 26 May 2006 at 10:54:00 PM UTC, an M6.3 earthquake has struck the very highly populated region of Yogyakarta. The death estimated between 5,775 and 6,234 and the number of injured was between 46,000 and 53,000. Invitation letters were sent to Indonesia Agency for Meteorology Climatology and Geophysics (BMKG) and to 18 government institutions for attending the session at the Yogyakarta Court on 4 December 2006. Such case was a lawsuit proposed by 46 citizens and registered as number 73/PDT.G/ 2006/PN-Yk and the researcher attended court-session on behalf of the BMKG. Research is conducted to provide legal analysis of citizen lawsuit toward management of the 2006 Yogyakarta earthquake. Data was collected by examining the process of court sessions and mediation between Parties involved which then analysed using the relevant articles of Indonesian Civil Procedural Law. Legal analysis proposed by the researcher indicates that State Court (Pengadilan Negeri) held an `absolute competence' because such case shall not be settled by State Administrative Court (Pengadilan Tata Usaha Negara), however Yogyakarta District Court didn't hold a `relative competence' because such case shall be settled by the Central Jakarta District Court. Such case was not continued due to successful mediation between the two Parties. The 2006 Yogyakarta earthquake alerts BMKG as the earthquake information provider to work properly in accordance with the standard operating procedure to avoid citizen lawsuit that might be proposed in the near future.

  13. Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?

    Science.gov (United States)

    Hanks, Thomas C.; Beroza, Gregory C.; Toda, Shinji

    2012-01-01

    In a recent Opinion piece in these pages, Stein et al. (2011) offer a remarkable indictment of the methods, models, and results of probabilistic seismic hazard analysis (PSHA). The principal object of their concern is the PSHA map for Japan released by the Japan Headquarters for Earthquake Research Promotion (HERP), which is reproduced by Stein et al. (2011) as their Figure 1 and also here as our Figure 1. It shows the probability of exceedance (also referred to as the “hazard”) of the Japan Meteorological Agency (JMA) intensity 6–lower (JMA 6–) in Japan for the 30-year period beginning in January 2010. JMA 6– is an earthquake-damage intensity measure that is associated with fairly strong ground motion that can be damaging to well-built structures and is potentially destructive to poor construction (HERP, 2005, appendix 5). Reiterating Geller (2011, p. 408), Stein et al. (2011, p. 623) have this to say about Figure 1: The regions assessed as most dangerous are the zones of three hypothetical “scenario earthquakes” (Tokai, Tonankai, and Nankai; see map). However, since 1979, earthquakes that caused 10 or more fatalities in Japan actually occurred in places assigned a relatively low probability. This discrepancy—the latest in a string of negative results for the characteristic model and its cousin the seismic-gap model—strongly suggest that the hazard map and the methods used to produce it are flawed and should be discarded. Given the central role that PSHA now plays in seismic risk analysis, performance-based engineering, and design-basis ground motions, discarding PSHA would have important consequences. We are not persuaded by the arguments of Geller (2011) and Stein et al. (2011) for doing so because important misunderstandings about PSHA seem to have conditioned them. In the quotation above, for example, they have confused important differences between earthquake-occurrence observations and ground-motion hazard calculations.

  14. Probabilistic liquefaction hazard analysis at liquefied sites of 1956 Dunaharaszti earthquake, in Hungary

    Science.gov (United States)

    Győri, Erzsébet; Gráczer, Zoltán; Tóth, László; Bán, Zoltán; Horváth, Tibor

    2017-04-01

    Liquefaction potential evaluations are generally made to assess the hazard from specific scenario earthquakes. These evaluations may estimate the potential in a binary fashion (yes/no), define a factor of safety or predict the probability of liquefaction given a scenario event. Usually the level of ground shaking is obtained from the results of PSHA. Although it is determined probabilistically, a single level of ground shaking is selected and used within the liquefaction potential evaluation. In contrary, the fully probabilistic liquefaction potential assessment methods provide a complete picture of liquefaction hazard, namely taking into account the joint probability distribution of PGA and magnitude of earthquake scenarios; both of which are key inputs in the stress-based simplified methods. Kramer and Mayfield (2007) has developed a fully probabilistic liquefaction potential evaluation method using a performance-based earthquake engineering (PBEE) framework. The results of the procedure are the direct estimate of the return period of liquefaction and the liquefaction hazard curves in function of depth. The method combines the disaggregation matrices computed for different exceedance frequencies during probabilistic seismic hazard analysis with one of the recent models for the conditional probability of liquefaction. We have developed a software for the assessment of performance-based liquefaction triggering on the basis of Kramer and Mayfield method. Originally the SPT based probabilistic method of Cetin et al. (2004) was built-in into the procedure of Kramer and Mayfield to compute the conditional probability however there is no professional consensus about its applicability. Therefore we have included not only Cetin's method but Idriss and Boulanger (2012) SPT based moreover Boulanger and Idriss (2014) CPT based procedures into our computer program. In 1956, a damaging earthquake of magnitude 5.6 occurred in Dunaharaszti, in Hungary. Its epicenter was located

  15. Seismo-Lineament Analysis Method (SLAM) Applied to the South Napa Earthquake

    Science.gov (United States)

    Worrell, V. E.; Cronin, V. S.

    2014-12-01

    We used the seismo-lineament analysis method (SLAM; http://bearspace.baylor.edu/Vince_Cronin/www/SLAM/) to "predict" the location of the fault that produced the M 6.0 South Napa earthquake of 24 August 2014, using hypocenter and focal mechanism data from NCEDC (http://www.ncedc.org/ncedc/catalog-search.html) and a digital elevation model from the USGS National Elevation Dataset (http://viewer.nationalmap.gov/viewer/). The ground-surface trace of the causative fault (i.e., the Browns Valley strand of the West Napa fault zone; Bryant, 2000, 1982) and virtually all of the ground-rupture sites reported by the USGS and California Geological Survey (http://www.eqclearinghouse.org/2014-08-24-south-napa/) were located within the north-striking seismo-lineament. We also used moment tensors published online by the USGS and GCMT (http://comcat.cr.usgs.gov/earthquakes/eventpage/nc72282711#scientific_moment-tensor) as inputs to SLAM and found that their northwest-striking seismo-lineaments correlated spatially with the causative fault. We concluded that SLAM could have been used as soon as these mechanism solutions were available to help direct the search for the trace of the causative fault and possible rupture-related damage. We then considered whether the seismogenic fault could have been identified using SLAM prior to the 24 August event, based on the focal mechanisms of smaller prior earthquakes reported by the NCEDC or ISC (http://www.isc.ac.uk). Seismo-lineaments from three M~3.5 events from 1990 and 2012, located in the Vallejo-Crockett area, correlate spatially with the Napa County Airport strand of the West Napa fault and extend along strike toward the Browns Valley strand (Bryant, 2000, 1982). Hence, we might have used focal mechanisms from smaller earthquakes to establish that the West Napa fault is likely seismogenic prior to the South Napa earthquake. Early recognition that a fault with a mapped ground-surface trace is seismogenic, based on smaller earthquakes

  16. Cascadia Onshore-Offshore Site Response, Submarine Sediment Mobilization, and Earthquake Recurrence

    Science.gov (United States)

    Gomberg, J.

    2018-02-01

    Local geologic structure and topography may modify arriving seismic waves. This inherent variation in shaking, or "site response," may affect the distribution of slope failures and redistribution of submarine sediments. I used seafloor seismic data from the 2011 to 2015 Cascadia Initiative and permanent onshore seismic networks to derive estimates of site response, denoted Sn, in low- and high-frequency (0.02-1 and 1-10 Hz) passbands. For three shaking metrics (peak velocity and acceleration and energy density) Sn varies similarly throughout Cascadia and changes primarily in the direction of convergence, roughly east-west. In the two passbands, Sn patterns offshore are nearly opposite and range over an order of magnitude or more across Cascadia. Sn patterns broadly may be attributed to sediment resonance and attenuation. This and an abrupt step in the east-west trend of Sn suggest that changes in topography and structure at the edge of the continental margin significantly impact shaking. These patterns also correlate with gravity lows diagnostic of marginal basins and methane plumes channeled within shelf-bounding faults. Offshore Sn exceeds that onshore in both passbands, and the steepest slopes and shelf coincide with the relatively greatest and smallest Sn estimates at low and high frequencies, respectively; these results should be considered in submarine shaking-triggered slope stability failure studies. Significant north-south Sn variations are not apparent, but sparse sampling does not permit rejection of the hypothesis that the southerly decrease in intervals between shaking-triggered turbidites and great earthquakes inferred by Goldfinger et al. (2012, 2013, 2016) and Priest et al. (2017) is due to inherently stronger shaking southward.

  17. Auto correlation analysis of coda waves from local earthquakes for detecting temporal changes in shallow subsurface structures - The 2011 Tohoku-Oki, Japan, earthquake -

    Science.gov (United States)

    Nakahara, H.

    2013-12-01

    For monitoring temporal changes in subsurface structures, I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Because the use of coda waves requires earthquakes, time resolution for monitoring decreases. But at regions with high seismicity, it may be possible to monitor subsurface structures in sufficient time resolutions. Studying the 2011 Tohoku-Oki (Mw 9.0), Japan, earthquake for which velocity changes have been already reported by previous studies, I try to validate the method. KiK-net stations in northern Honshu are used in the analysis. For each moderate earthquake, normalized auto correlation functions of surface records are stacked with respect to time windows in S-wave coda. Aligning the stacked normalized auto correlation functions with time, I search for changes in arrival times of phases. The phases at lag times of less than 1s are studied because changes at shallow depths are focused. Based on the stretching method, temporal variations in the arrival times are measured at the stations. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. Amounts of the phase delays are in the order of 10% on average with the maximum of about 50% at some stations. For validation, the deconvolution analysis using surface and subsurface records at the same stations are conducted. The results show that the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percents, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable to detect larger changes. In spite of these disadvantages, this analysis is

  18. Aftershock communication during the Canterbury Earthquakes, New Zealand: implications for response and recovery in the built environment

    Science.gov (United States)

    Julia Becker,; Wein, Anne; Sally Potter,; Emma Doyle,; Ratliff, Jamie L.

    2015-01-01

    On 4 September 2010, a Mw7.1 earthquake occurred in Canterbury, New Zealand. Following the initial earthquake, an aftershock sequence was initiated, with the most significant aftershock being a Mw6.3 earthquake occurring on 22 February 2011. This aftershock caused severe damage to the city of Christchurch and building failures that killed 185 people. During the aftershock sequence it became evident that effective communication of aftershock information (e.g., history and forecasts) was imperative to assist with decision making during the response and recovery phases of the disaster, as well as preparedness for future aftershock events. As a consequence, a joint JCDR-USGS research project was initiated to investigate: • How aftershock information was communicated to organisations and to the public; • How people interpreted that information; • What people did in response to receiving that information; • What information people did and did not need; and • What decision-making challenges were encountered relating to aftershocks. Research was conducted by undertaking focus group meetings and interviews with a range of information providers and users, including scientists and science advisors, emergency managers and responders, engineers, communication officers, businesses, critical infrastructure operators, elected officials, and the public. The interviews and focus group meetings were recorded and transcribed, and key themes were identified. This paper focuses on the aftershock information needs for decision-making about the built environment post-earthquake, including those involved in response (e.g., for building assessment and management), recovery/reduction (e.g., the development of new building standards), and readiness (e.g. between aftershocks). The research has found that the communication of aftershock information varies with time, is contextual, and is affected by interactions among roles, by other information, and by decision objectives. A number

  19. Refined Analysis of Fatigue Crack Initiation Life of Beam-to-Column Welded Connections of Steel Frame under Strong Earthquake

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available This paper presents a refined analysis for evaluating low-cycle fatigue crack initiation life of welded beam-to-column connections of steel frame structures under strong earthquake excitation. To consider different length scales between typical beam and column components as well as a few crucial beam-to-column welded connections, a multiscale finite element (FE model having three different length scales is formulated. The model can accurately analyze the inelastic seismic response of a steel frame and then obtain in detail elastoplastic stress and strain field near the welded zone of the connections. It is found that the welded zone is subjected to multiaxial nonproportional loading during strong ground motion and the elastoplastic stress-strain field of the welded zone is three-dimensional. Then, using the correlation of the Fatemi-Socie (FS parameter versus fatigue life obtained by the experimental crack initiation fatigue data of the structural steel weldment subjected to multiaxial loading, the refined evaluation approach of fatigue crack initiation life is developed based on the equivalent plastic strain at fatigue critical position of beam end seams of crucial welded connections when the steel frame is subjected to the strong earthquake excitation.

  20. Multifractal analysis of 2001 Mw 7 . 7 Bhuj earthquake sequence in Gujarat, Western India

    Science.gov (United States)

    Aggarwal, Sandeep Kumar; Pastén, Denisse; Khan, Prosanta Kumar

    2017-12-01

    The 2001 Mw 7 . 7 Bhuj mainshock seismic sequence in the Kachchh area, occurring during 2001 to 2012, has been analyzed using mono-fractal and multi-fractal dimension spectrum analysis technique. This region was characterized by frequent moderate shocks of Mw ≥ 5 . 0 for more than a decade since the occurrence of 2001 Bhuj earthquake. The present study is therefore important for precursory analysis using this sequence. The selected long-sequence has been investigated first time for completeness magnitude Mc 3.0 using the maximum curvature method. Multi-fractal Dq spectrum (Dq ∼ q) analysis was carried out using effective window-length of 200 earthquakes with a moving window of 20 events overlapped by 180 events. The robustness of the analysis has been tested by considering the magnitude completeness correction term of 0.2 to Mc 3.0 as Mc 3.2 and we have tested the error in the calculus of Dq for each magnitude threshold. On the other hand, the stability of the analysis has been investigated down to the minimum magnitude of Mw ≥ 2 . 6 in the sequence. The analysis shows the multi-fractal dimension spectrum Dq decreases with increasing of clustering of events with time before a moderate magnitude earthquake in the sequence, which alternatively accounts for non-randomness in the spatial distribution of epicenters and its self-organized criticality. Similar behavior is ubiquitous elsewhere around the globe, and warns for proximity of a damaging seismic event in an area. OS: Please confirm math roman or italics in abs.

  1. Analysis of the 2016 Amatrice earthquake macroseismic data

    Directory of Open Access Journals (Sweden)

    Lorenzo Hofer

    2016-12-01

    Full Text Available On August 24, 2016, a sudden MW 6.0 seismic event hit central Italy, causing 298 victims and significant damage to residential buildings and cultural heritage. In the days following the mainshock, a macroseismic survey was conducted by teams of the University of Padova, according to the European Macroseismic Scale (EMS98. In this contribution, a critical analysis of the collected macroseismic data is presented and some comparisons were performed with the recent 2012 Emilia sequence.

  2. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.

  3. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    International Nuclear Information System (INIS)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-01-01

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26 th , 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4 th , 2011 and still continuously erupted until August 28 th , 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region

  4. Underlying mechanism of precursory activity from analysis of upward earthquake migration

    Directory of Open Access Journals (Sweden)

    O. A. Molchanov

    2011-01-01

    Full Text Available In this paper we analyse the upward earthquake hypocentral migration in the ten known subduction zones and discuss a possible mechanism of such migration. The total time of the migration appears to range from 2.5 to 10 years. It leads to the estimation of the average velocity Vz~ 60−300 km yr−1. It probably corresponds to the movement of the forcing agent like stress or deformation wave from depths of the upper mantle (600–700 km to the level of the lithosphere with subsequent initiation of fluid migration inside the crust to trigger shallow earthquakes. Averaged over all zones upward migration travel time is about 5 years (< Vz > ≈120 km yr−1 that coincides approximately with the period of characteristic temperature variation (El Nino and crustal seismic periodicity in the Pacific region. These findings are helpful for the study of the seismic precursors and analysis of earthquake triggering.

  5. Analysis of the local lithospheric magnetic activity before and after Panzhihua Mw = 6.0 earthquake (30 August 2008, China

    Directory of Open Access Journals (Sweden)

    Q. Li

    2011-12-01

    Full Text Available Lithospheric ultra low frequency (ULF magnetic activity is recently considered as a very promising candidate for application to short-time earthquake forecasting. However the intensity of the ULF lithospheric magnetic field is very weak and often masked by much stronger ionospheric and magnetospheric signals. The study of pre-earthquake magnetic activity before the occurrence of a strong earthquake is a very hard problem which consists of the identification and localization of the weak signal sources in earthquake hazardous areas of the Earth's crust. For the separation and localization of such sources, we used a new polarization ellipse technique (Dudkin et al., 2010 to process data acquired from fluxgate magnetometers installed in the Sichuan province, China. Sichuan is the region of the strongest seismic activity on the territory of China. During the last century, about 40 earthquakes with magnitude M ≥ 6.5 happened here in close proximity to heavy populated zones. The Panzhihua earthquake Mw = 6.0 happened in the southern part of Sichuan province on 30 August 2008 at 8:30:52 UT. The earthquake hypocentre was located at 10 km depth. During the period 30–31 August – the beginning of September 2008, many clustered aftershocks with magnitudes of up to 5.6 occurred near the earthquake epicentre. The data from three fluxgate magnetometers (belonged to China magnetometer network and placed near to the clustered earthquakes at a distance of 10–55 km from main shock epicenter have been processed. The separation between the magnetometers was in the range of 40–65 km. The analysis of a local lithospheric magnetic activity during the period of January–December 2008 and a possible source structure have been presented in this paper.

  6. Analysis of the Source and Ground Motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla Earthquakes

    Science.gov (United States)

    Melgar, D.; Sahakian, V. J.; Perez-Campos, X.; Quintanar, L.; Ramirez-Guzman, L.; Spica, Z.; Espindola, V. H.; Ruiz-Angulo, A.; Cabral-Cano, E.; Baltay, A.; Geng, J.

    2017-12-01

    The September 2017 Tehuantepec and Puebla earthquakes were intra-slab earthquakes that together caused significant damage in broad regions of Mexico, including the states of Oaxaca, Chiapas, Morelos, Puebla, Mexico, and Mexico City. Ground motions in Mexico City have approximately the same angle of incidence from both earthquakes and potentially sample similar paths close to the city. We examine site effects and source terms by analysis of residuals between Ground-Motion Prediction Equations (GMPEs) and observed ground motions for both of these events at stations from the Servicio Sismólogico Nacional, Instituto de Ingeniería, and the Instituto de Geofísica Red del Valle de Mexico networks. GMPEs are a basis for seismic design, but also provide median ground motion values to act as a basis for comparison of individual earthquakes and site responses. First, we invert for finite-fault slip inversions for Tehuantepec with high-rate GPS, static GPS, tide gauge and DART buoy data, and for Puebla with high-rate GPS and strong motion data. Using the distance from the stations with ground motion observations to the derived slip models, we use the GMPEs of Garcia et al. (2005), Zhao et al. (2006), and Abrahamson, Silva and Kamai (2014), to compute predicted values of peak ground acceleration and velocity (PGA and PGV) and response spectral accelerations (SA). Residuals between observed and predicted ground motion parameters are then computed for each recording, and are decomposed into event and site components using a mixed effects regression. We analyze these residuals as an adjustment away from median ground motions in the region to glean information about the earthquake source properties, as well as local site response in and outside of the Mexico City basin. The event and site terms are then compared with available values of stress drop for the two earthquakes, and Vs30 values for the sites, respectively. This analysis is useful in determining which GMPE is most

  7. Hazard-consistent response spectra in the Region of Murcia (Southeast Spain): comparison to earthquake-resistant provisions

    OpenAIRE

    Gaspar Escribano, Jorge M.; Benito Oterino, Belen; Garcia Mayordomo, Julian

    2008-01-01

    Hazard-consistent ground-motion characterisations of three representative sites located in the Region of Murcia (southeast Spain) are presented. This is the area where the last three damaging events in Spain occurred and there is a significant amount of data for comparing them with seismic hazard estimates and earthquake-resistant provisions. Results of a probabilistic seismic hazard analysis are used to derive uniform hazard spectra (UHS) for the 475-year return period, on rock and soil cond...

  8. Testing continuous earthquake detection and location in Alentejo (South Portugal) by waveform coherency analysis

    Science.gov (United States)

    Matos, Catarina; Grigoli, Francesco; Cesca, Simone; Custódio, Susana

    2015-04-01

    In the last decade a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered Portugal. This extraordinary network coverage enables now the computation of a high-resolution image of the seismicity of Portugal, which in turn will shed light on the seismotectonics of Portugal. The large data volumes available cannot be analyzed by traditional time-consuming manual location procedures. In this presentation we show first results on the automatic detection and location of earthquakes occurred in a selected region in the south of Portugal Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e., lowering the detection threshold). We present a modified version of the automatic seismic event location by waveform coherency analysis developed by Grigoli et al. (2013, 2014), designed to perform earthquake detections and locations in continuous data. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace, while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event detection and location is obtained by performing waveform coherence analysis scanning different hypocentral coordinates. We apply this technique to earthquakes in the Alentejo region (South Portugal), taking advantage from a small aperture seismic network installed in the south of Portugal for two years (2010 - 2011) during the DOCTAR experiment. In addition to the good network coverage, the Alentejo region was chosen for its simple tectonic setting and also because the relationship between seismicity, tectonics and local lithospheric structure is intriguing and still poorly understood. Inside

  9. IR spectral analysis for the diagnostics of crust earthquake precursors

    Directory of Open Access Journals (Sweden)

    R. M. Umarkhodgaev

    2012-11-01

    Full Text Available Some possible physical processes are analysed that cause, under the condition of additional ionisation in a pre-breakdown electric field, emissions in the infrared (IR interval. The atmospheric transparency region of the IR spectrum at wavelengths of 7–15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analyzed. For daytime conditions, modifications of the adsorption spectra of the scattered solar emissions are studied; for nighttime, variations of emission spectra may be used for the analysis.

  10. [Comparative analysis of the clinical characteristics of orthopedic inpatients in Lushan and Wenchuan earthquakes].

    Science.gov (United States)

    Shi, Xiao-Jun; Wang, Guang-Lin; Pei, Fu-Xing; Song, Yue-Ming; Yang, Tian-Fu; Tu, Chong-Qi; Huang, Fu-Guo; Liu, Hao; Lin, Wei

    2013-10-18

    To systematically analyze and compare the clinical characteristics of orthopedic inpatients in Lushan and Wenchuan earthquake, so as to provide useful references for future earthquakes injury rescue. Based on the orthopedic inpatients in Lushan and Wenchuan earthquakes, the data of the age, gender, injury causes, body injured parts and speed of transport were classified and compared. The duration of patients admitted to hospital lasted long and the peak appeared late in Wenchuan earthquake, which is totally opposed to Lushan earthquake. There was no significant difference in the patient's age and gender between the two earthquakes. However, the occurrence rate of crush syndrome, amputation, gas gangrene, vascular injury and multiple organ dysfunction syndrome (MODS) in Wenchuan earthquake was much higher than that in Lushan earthquake. Blunt traumas or crush-related injuries (79.6%) are the major injury cause in Wenchuan earthquake, however, high falling injuries and falls (56.8%) are much higher than blunt trauma or crush-related injuries (39.2%) in Lushan earthquake. The incidence rate of foot fractures, spine fractures and multiple fractures in Lushan earthquake was higher than that in Wenchuan earthquake, but that of open fractures and lower limb fractures was lower than that in Wenchuan earthquake. The rapid rescue scene is the cornerstone of successful treatment, early rescue and transport obviously reduce the incidence of the wound infection, crush syndrome, MODS and amputation. Popularization of correct knowledge of emergency shelters will help to reduce the damage caused by blindly jumping or escaping while earthquake happens.

  11. Rapid Modeling of and Response to Large Earthquakes Using Real-Time GPS Networks (Invited)

    Science.gov (United States)

    Crowell, B. W.; Bock, Y.; Squibb, M. B.

    2010-12-01

    Real-time GPS networks have the advantage of capturing motions throughout the entire earthquake cycle (interseismic, seismic, coseismic, postseismic), and because of this, are ideal for real-time monitoring of fault slip in the region. Real-time GPS networks provide the perfect supplement to seismic networks, which operate with lower noise and higher sampling rates than GPS networks, but only measure accelerations or velocities, putting them at a supreme disadvantage for ascertaining the full extent of slip during a large earthquake in real-time. Here we report on two examples of rapid modeling of recent large earthquakes near large regional real-time GPS networks. The first utilizes Japan’s GEONET consisting of about 1200 stations during the 2003 Mw 8.3 Tokachi-Oki earthquake about 100 km offshore Hokkaido Island and the second investigates the 2010 Mw 7.2 El Mayor-Cucapah earthquake recorded by more than 100 stations in the California Real Time Network. The principal components of strain were computed throughout the networks and utilized as a trigger to initiate earthquake modeling. Total displacement waveforms were then computed in a simulated real-time fashion using a real-time network adjustment algorithm that fixes a station far away from the rupture to obtain a stable reference frame. Initial peak ground displacement measurements can then be used to obtain an initial size through scaling relationships. Finally, a full coseismic model of the event can be run minutes after the event, given predefined fault geometries, allowing emergency first responders and researchers to pinpoint the regions of highest damage. Furthermore, we are also investigating using total displacement waveforms for real-time moment tensor inversions to look at spatiotemporal variations in slip.

  12. Comparison of test and earthquake response modeling of a nuclear power plant containment building

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-01-01

    The reactor building of a BWR plant was subjected to dynamic testing, a minor earthquake, and a strong earthquake at different times. Analytical models simulating each of these events were devised by previous investigators. A comparison of the characteristics of these models is made in this paper. The different modeling assumptions involved in the different simulation analyses restrict the validity of the models for general use and also narrow the comparison down to only a few modes. The dynamic tests successfully identified the first mode of the soil-structure system.

  13. Comparison of test and earthquake response modeling of a nuclear power plant containment building

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-01-01

    The reactor building of a BWR plant was subjected to dynamic testing, a minor earthquake, and a strong earthquake at different times. Analytical models simulating each of these events were devised by previous investigators. A comparison of the characteristics of these models is made in this paper. The different modeling assumptions involved in the different simulation analyses restrict the validity of the models for general use and also narrow the comparison down to only a few modes. The dynamic tests successfully identified the first mode of the soil-structure system

  14. Seismic Responses of Shot Span Bridge under Three Different Patterns of Earthquake Excitations

    International Nuclear Information System (INIS)

    Zhou Daochuan; Chen Guorong; Lu Yan

    2010-01-01

    This paper presents a study of the influence of three different types of seismic input methods on the longitudinal seismic response of a short, three-span, variable cross-section, reinforced concrete bridge. Research progress of the seismic model is introduced briefly. Finite element model is created for the bridge and time history analysis conducted. Three different types of illustrative excitations are considered: 1) the EI-Centro seismic wave is used as uniform excitations at all bridge supports; 2) fixed apparent wave velocity is used for response analysis of traveling wave excitations on the bridge; 3) conforming to a selected coherency model, the multiple seismic excitation time histories considering spatially variable effects are generated. The contrast study of the response analysis result under the three different seismic excitations is conducted and the influence of different seismic input methods is studied. The comparative analysis of the bridge model shows that the uniform ground motion input can not provide conservative seismic demands-in a number of cases it results in lower response than that predicted by multiple seismic excitations. The result of uniform excitation and traveling wave excitation shows very small difference. Consequently, multiple seismic excitations needs to be applied at the bridge supports for response analysis of short span bridge.

  15. Multiple faulting events revealed by trench analysis of the seismogenic structure of the 1976 Ms7.1 Luanxian earthquake, Tangshan Region, China

    Science.gov (United States)

    Guo, Hui; Jiang, Wali; Xie, Xinsheng

    2017-10-01

    The Ms7.8 Tangshan earthquake occurred on 28 July 1976 at 03:42 CST. Approximately 15 h later, the Ms7.1 Luanxian earthquake occurred approximately 40 km northeast of the main shock. The two earthquakes formed different surface rupture zones. The surface rupture of the Tangshan earthquake was NNE-trending and more than 47 km long. The surface rupture of the Luanxian earthquake was more than 6 km long and consisted of two sections, forming a protruding arc to the west. The north and south sections were NE- and NW-trending and 2 km and 4 km long, respectively. A trench was excavated in Sanshanyuan Village across the NE-trending rupture of the Luanxian earthquake, at the macroscopic epicenter of the Luanxian earthquake. Analysis of this trench revealed that the surface rupture is connected to the underground active fault. The following major conclusions regarding Late Quaternary fault activity have been reached. (1) The Sanshanyuan trench indicated that its fault planes trend NE30° and dip SE or NW at angles of approximately 69-82°. (2) The fault experienced four faulting events prior to the Luanxian earthquake at 27.98 ka with an average recurrence interval of approximately 7.5 ka. (3) The Ms7.1 Luanxian earthquake resulted from the activity of the Luanxian Western fault and was triggered by the Ms7.8 Tangshan earthquake. The seismogenic faults of the 1976 Ms7.1 Luanxian earthquake and the 1976 Ms7.8 Tangshan earthquake are not the same fault. This example of an M7 earthquake triggered by a nearly M8 earthquake after more than 10 h on a nearby fault is a worthy topic of research for the future prediction of strong earthquakes.

  16. Earthquake Damping Device for Steel Frame

    Science.gov (United States)

    Zamri Ramli, Mohd; Delfy, Dezoura; Adnan, Azlan; Torman, Zaida

    2018-04-01

    Structures such as buildings, bridges and towers are prone to collapse when natural phenomena like earthquake occurred. Therefore, many design codes are reviewed and new technologies are introduced to resist earthquake energy especially on building to avoid collapse. The tuned mass damper is one of the earthquake reduction products introduced on structures to minimise the earthquake effect. This study aims to analyse the effectiveness of tuned mass damper by experimental works and finite element modelling. The comparisons are made between these two models under harmonic excitation. Based on the result, it is proven that installing tuned mass damper will reduce the dynamic response of the frame but only in several input frequencies. At the highest input frequency applied, the tuned mass damper failed to reduce the responses. In conclusion, in order to use a proper design of damper, detailed analysis must be carried out to have sufficient design based on the location of the structures with specific ground accelerations.

  17. Crowdsourcing for Natural Disaster Response: An Evaluation of Crisis Mapping the 2010 Haitian Earthquake

    Science.gov (United States)

    Feighery, Annie

    2014-01-01

    On January 12, 2010, a magnitude 7.0 earthquake struck Haiti, causing catastrophic damages that resulted in at least 300,000 dead, 300,000 serious injuries, and 1.8 million homeless. The destruction was so complete that roads were no longer visible. While buildings, roads, power, and other infrastructure have taken years to restore, mobile phone…

  18. Disaster response under One Health in the aftermath of Nepal earthquake, 2015.

    Science.gov (United States)

    Asokan, G V; Vanitha, A

    2017-03-01

    Until now, an estimate quotes that 1100 healthcare facilities were damaged and over 100,000 livestock lost in the two earthquakes that occurred in April and May of 2015 in Nepal. Threats of infectious diseases, mostly zoonoses, could affect Nepal's economy, trade, and tourism, and reaching the targets of the United Nations Millennium Development Goals. Historically, outbreaks of infectious diseases, including zoonoses, were largely associated with the aftereffects of the earthquakes. It has been documented that zoonoses constitute 61% of all known infectious diseases. Therefore, the purpose of this communication was to examine the infectious disease outbreaks after earthquakes around the world and explore the risk assessment of the zoonoses threats reported in Nepal and highlight adopting One Health. Our summaries on reported zoonoses in Nepal have shown that parasitic zoonoses were predominant, but other infectious disease outbreaks can occur. The fragile public health infrastructure and inadequately trained public health personnel can accelerate the transmission of infections, mostly zoonoses, in the post impact phase of the earthquake in Nepal. Therefore, we believe that with the support of aid agencies, veterinarians and health professionals can team up to resolve the crisis under One Health. Copyright © 2016 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  19. A multi-objective robust optimization model for logistics planning in the earthquake response phase

    NARCIS (Netherlands)

    Najafi, M.; Eshghi, K.; Dullaert, W.E.H.

    2013-01-01

    Usually, resources are short in supply when earthquakes occur. In such emergency situations, disaster relief organizations must use these scarce resources efficiently to achieve the best possible emergency relief. This paper therefore proposes a multi-objective, multi-mode, multi-commodity, and

  20. ShakeCast: Automating and Improving the Use of ShakeMap for Post-Earthquake Decision- Making and Response

    Science.gov (United States)

    Lin, K.; Wald, D. J.

    2007-12-01

    ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users" facilities, sends notifications of potential damage to responsible parties, and generates facility damage maps and other Web-based products for emergency managers and responders. ShakeMap, a tool used to portray the extent of potentially damaging shaking following an earthquake, provides overall information regarding the affected areas. When a potentially damaging earthquake occurs, utility and other lifeline managers, emergency responders, and other critical users have an urgent need for information about the impact on their particular facilities so they can make appropriate decisions and take quick actions to ensure safety and restore system functionality. To this end, ShakeCast estimates the potential damage to a user's widely distributed facilities by comparing the complex shaking distribution with the potentially highly variable damageability of their inventory to provide a simple, hierarchical list and maps showing structures or facilities most likely impacted. All ShakeMap and ShakeCast files and products are non-propriety to simplify interfacing with existing users" response tools and to encourage user-made enhancement to the software. ShakeCast uses standard RSS and HTTP requests to communicate with the USGS Web servers that host ShakeMaps, which are widely-distributed and heavily mirrored. The RSS approach allows ShakeCast users to initiate and receive selected ShakeMap products and information on software updates. To assess facility damage estimates, ShakeCast users can combine measured or estimated ground motion parameters with damage relationships that can be pre-computed, use one of these ground motion parameters as input, and produce a multi-state discrete output of damage likelihood. Presently three common approaches are being used to provide users with an

  1. Behavioral Response in the Immediate Aftermath of Shaking: Earthquakes in Christchurch and Wellington, New Zealand, and Hitachi, Japan

    Directory of Open Access Journals (Sweden)

    Ihnji Jon

    2016-11-01

    Full Text Available This study examines people’s response actions in the first 30 min after shaking stopped following earthquakes in Christchurch and Wellington, New Zealand, and Hitachi, Japan. Data collected from 257 respondents in Christchurch, 332 respondents in Hitachi, and 204 respondents in Wellington revealed notable similarities in some response actions immediately after the shaking stopped. In all four events, people were most likely to contact family members and seek additional information about the situation. However, there were notable differences among events in the frequency of resuming previous activities. Actions taken in the first 30 min were weakly related to: demographic variables, earthquake experience, contextual variables, and actions taken during the shaking, but were significantly related to perceived shaking intensity, risk perception and affective responses to the shaking, and damage/infrastructure disruption. These results have important implications for future research and practice because they identify promising avenues for emergency managers to communicate seismic risks and appropriate responses to risk area populations.

  2. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  3. Statistical uncertainty of response characteristic of building-appendage system for spectrum-compatible artificial earthquake motion

    International Nuclear Information System (INIS)

    Kurosaki, A.; Kozeki, M.

    1981-01-01

    Spectrum-compatible artificial time histories of ground motions are frequently used for the seismic design of nuclear power plant structures and components. However, statistical uncertainty of the responses of building structures and mechanical components mounted on the building (building-appendage systems) are anticipated, since an artificial time history is no more than one sample from a population of such time histories that match a specified design response spectrum. This uncertainty may spoil the reliability of the seismic design and therefore the extent of the uncertainty of the response characteristic is a matter of great concern. In this paper, above-mentioned uncertainty of the dynamic response characteristics of the building-appendage system to the spectrum-compatible artificial earthquake is investigated. (orig./RW)

  4. Piping Flexibility Analysis of the Primary Cooling System of TRIGA 2000 Bandung Reactor due to Earthquake

    International Nuclear Information System (INIS)

    Rahardjo, H.P.

    2011-01-01

    Earthquakes in a nuclear installation can overload a piping system which is not flexible enough. These loads can be forces, moments and stresses working on the pipes or equipment. If the load is too large and exceed the allowable limits, the piping and equipment can be damaged and lead to overall system operation failure. The load received by piping systems can be reduced by making adequate piping flexibility, so all the loads can be transmitted homogeneously throughout the pipe without load concentration at certain point. In this research the analysis of piping stress has been conducted to determine the size of loads that occurred in the piping of primary cooling system of TRIGA 2000 Reactor, Bandung if an earthquake happened in the reactor site. The analysis was performed using Caesar II software-based finite element method. The ASME code B31.1 arranging the design of piping systems for power generating system (Power Piping Code) was used as reference analysis method. Modeling of piping systems was based on the cooling piping that has already been installed and the existing data reported in Safety Analysis Reports (SARs) of TRIGA 2000 reactor, Bandung. The quake considered in this analysis is the earthquake that occurred due to the Lembang fault, since it has the Peak Ground Acceleration (PGA) in the Bandung TRIGA 2000 reactor site. The analysis results showed that in the static condition for sustain and expansion loads, the stress fraction in all piping lines does not exceed the allowable limit. However, during operation moment, in dynamic condition, the primary cooling system is less flexible at sustain load, expansion load, and combination load and the stress fraction have reached 95,5%. Therefore a pipeline modification (re-routing) is needed to make pipe stress does not exceed the allowable stress. The pipeline modification was carried out by applied a gap of 3 mm in the X direction of the support at node 25 and eliminate the support at the node 30, also a

  5. Advances in analysis of pre-earthquake thermal anomalies by analyzing IR satellite data

    Science.gov (United States)

    Ouzounov, D.; Bryant, N.; Filizzola, C.; Pergola, N.; Taylor, P.; Tramutoli, V.

    Presented work addresses the possible relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing infrared (IR) flux as part of a larger family of electromagnetic (EM) phenomena related to earthquake activity. Thermal infra-red (TIR) surveys performed by polar orbiting (NOAA/AVHRR, MODIS) and geosynchronous weather satellites (GOES, METEOSAT) seems to indicate the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients associated with the place (epicentral area, linear structures and fault systems) and the time of occurrence of a number of major earthquakes with M>5 and focal depths no deeper than 50km. As Earth emitted in 8-14 microns range the TIR signal measured from satellite strongly vary depending on meteorological conditions and other factors (space-time changes in atmospheric transmittance, time/season, solar and satellite zenithal angles and etc) independent from seismic activity, a preliminary definition of "anomalous TIR signal" should be given. To provide reliable discrimination of thermal anomalous area from the natural events (seasonal changes, local morphology) new robust approach (RAT) has been recently proposed (and successfully applied in the field of the monitoring of the major environmental risks) that permits to give a statistically based definition of thermal info-red (TIR) anomaly and reduce of false events detection. New techniques also were specifically developed to assure the precise co-registration of all satellite scenes and permit accurate time-series analysis of satellite observations. As final results we present examples of most recent 2000/2004 worldwide strong earthquakes and the techniques used to capture the tracks of thermal emission mid-IR anomalies and methodology for practical future use of such phenomena in the early warning systems.

  6. Of overlapping Cantor sets and earthquakes: analysis of the discrete Chakrabarti-Stinchcombe model

    Science.gov (United States)

    Bhattacharyya, Pratip

    2005-03-01

    We report an exact analysis of a discrete form of the Chakrabarti-Stinchcombe model for earthquakes (Physica A 270 (1999) 27), which considers a pair of dynamically overlapping finite generations of the Cantor set as a prototype of geological faults. In this model the nth generation of the Cantor set shifts on its replica in discrete steps of the length of a line segment in that generation and periodic boundary conditions are assumed. We determine the general form of time sequences for the constant magnitude overlaps and, hence, obtain the complete time-series of overlaps by the superposition of these sequences for all overlap magnitudes. From the time-series we derive the exact frequency distribution of the overlap magnitudes. The corresponding probability distribution of the logarithm of overlap magnitudes for the nth generation is found to assume the form of the binomial distribution for n Bernoulli trials with probability {1}/{3} for the success of each trial. For an arbitrary pair of consecutive overlaps in the time-series where the magnitude of the earlier overlap is known, we find that the magnitude of the later overlap can be determined with a definite probability; the conditional probability for each possible magnitude of the later overlap follows the binomial distribution for k Bernoulli trials with probability {1}/{2} for the success of each trial and the number k is determined by the magnitude of the earlier overlap. Although this model does not produce the Gutenberg-Richter law for earthquakes, our results indicate that the fractal structure of faults admits a probabilistic prediction of earthquake magnitudes.

  7. Source analysis using regional empirical Green's functions: The 2008 Wells, Nevada, earthquake

    Science.gov (United States)

    Mendoza, C.; Hartzell, S.

    2009-01-01

    We invert three-component, regional broadband waveforms recorded for the 21 February 2008 Wells, Nevada, earthquake using a finite-fault methodology that prescribes subfault responses using eight MW∼4 aftershocks as empirical Green's functions (EGFs) distributed within a 20-km by 21.6-km fault area. The inversion identifies a seismic moment of 6.2 x 1024 dyne-cm (5.8 MW) with slip concentrated in a compact 6.5-km by 4-km region updip from the hypocenter. The peak slip within this localized area is 88 cm and the stress drop is 72 bars, which is higher than expected for Basin and Range normal faults in the western United States. The EGF approach yields excellent fits to the complex regional waveforms, accounting for strong variations in wave propagation and site effects. This suggests that the procedure is useful for studying moderate-size earthquakes with limited teleseismic or strong-motion data and for examining uncertainties in slip models obtained using theoretical Green's functions.

  8. Failure behavior of concrete pile and super-structure dynamic response as a result of soil liquefaction during earthquake

    Science.gov (United States)

    Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki

    2017-10-01

    In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.

  9. Site response, shallow shear-wave velocity, and damage in Los Gatos, California, from the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Hartzell, S.; Carver, D.; Williams, R.A.

    2001-01-01

    Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.

  10. Evaluation of Soil-Structure Interaction on the Seismic Response of Liquid Storage Tanks under Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Mostafa Farajian

    2017-03-01

    Full Text Available Soil-structure interaction (SSI could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks (namely, broad and slender, with aspect ratios of height to radius equal to 0.6 and 1.85 founded on half-space soil is scrutinized under different earthquake ground motions. For a better comparison, the six considered ground motions are classified, based on their pulse-like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Additionally, four types of soils are used to consider a wide variety of soil properties. To this end, after deriving the equations of motion, MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to a decrease in the impulsive displacement, overturning moment, and normalized base shear, the sloshing (or convective displacement is not affected by such effects due to its long period.

  11. Earthquakes and economic growth

    OpenAIRE

    Fisker, Peter Simonsen

    2012-01-01

    This study explores the economic consequences of earthquakes. In particular, it is investigated how exposure to earthquakes affects economic growth both across and within countries. The key result of the empirical analysis is that while there are no observable effects at the country level, earthquake exposure significantly decreases 5-year economic growth at the local level. Areas at lower stages of economic development suffer harder in terms of economic growth than richer areas. In addition,...

  12. An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2014-01-01

    Full Text Available Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1 the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2 Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3 Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase.

  13. Evaluation of Fourier and Response Spectra at Ichihasama and Koromogawa Seismic Intensity Observation Sites During the Iwate-Miyagi Nairiku Earthquake in 2008

    Science.gov (United States)

    Nishikawa, Hayato; Miyajima, Masakatsu

    In this study, we evaluate an acceleration Fourier and response spectra at Ichihasama and Koromogawa seismic intensity observation sites which observed JMA seismic intensity of 6 upper but seismic waveform records don't exist during the Iwate-Miyagi Nairiku earthquake in 2008. Firstly, formula to evaluate acceleration Fourier and response spectra are developed using peak ground acceleration, JMA seismic intensity and predominant period of earthquake spectra based on records obtained from crustal earthquakes with Magnitude of 6 to 7. Acceleration Fourier and response spectra are evaluated for another local government site which are not chosen for development of the formula. The evaluated values mostly agree with the observed ones. Finally, acceleration Fourier and response spectra are evaluated for Ichihasama and Koromogawa observation sites. It is clarified that short period below 1 second was predominated in the evaluated spectra.

  14. The role of the 2008 Mw 7.9 Wenchuan earthquake in topographic evolution: seismically induced landslides and the associated isostatic response

    Science.gov (United States)

    Ren, Z.; Zhang, Z.; Zhang, H.; Zheng, W.; Zhang, P. Z.

    2017-12-01

    The widely held understanding that reverse-faulting earthquakes play an important role in building mountains has been challenged by recent studies suggesting that co-seismic landslides of the 2008 Mw 7.9 Wenchuan earthquake led to a net co-seismic lowering of surface height. We use precise estimates of co-seismic landslide volumes to calculate the long-term isostatic response to landsliding during the 2008 Wenchuan earthquake. The total isostatic respond volume is 2.0 km3 which did not change much associated with thickness of Te, however, the distribution of the rebound changes associated with thickness of Te. The total co-seismic mass change could be 1.8 km3. The maximum isostatic response due to Wenchuan earthquake may have been as high as 0.9 meters in the highest Pengguan massif of the central Longmen Shan. We also find that the average net uplift is 0.16 meters within the total landslide region due to the Wenchuan earthquake. Our findings suggest that the local topographic evolution of the middle Longmen Shan region is closely related to repeated tectonic events such as the 2008 Wenchuan Earthquake.

  15. Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings

    Science.gov (United States)

    Improta, Luigi; di Giulio, Giuseppe; Rovelli, Antonio

    The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1-2 to 7-10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.

  16. Non-inductive components of electromagnetic signals associated with L'Aquila earthquake sequences estimated by means of inter-station impulse response functions

    Directory of Open Access Journals (Sweden)

    C. Di Lorenzo

    2011-04-01

    Full Text Available On 6 April 2009 at 01:32:39 UT a strong earthquake occurred west of L'Aquila at the very shallow depth of 9 km. The main shock local magnitude was Ml = 5.8 (Mw = 6.3. Several powerful aftershocks occurred the following days. The epicentre of the main shock occurred 6 km away from the Geomagnetic Observatory of L'Aquila, on a fault 15 km long having a NW-SE strike, about 140°, and a SW dip of about 42°. For this reason, L'Aquila seismic events offered very favourable conditions to detect possible electromagnetic emissions related to the earthquake. The data used in this work come from the permanent geomagnetic Observatories of L'Aquila and Duronia. Here the results concerning the analysis of the residual magnetic field estimated by means of the inter-station impulse response functions in the frequency band from 0.3 Hz to 3 Hz are shown.

  17. Fukushima after the Great East Japan Earthquake: lessons for developing responsive and resilient health systems

    Science.gov (United States)

    Fukuma, Shingo; Ahmed, Shahira; Goto, Rei; Inui, Thomas S; Atun, Rifat; Fukuhara, Shunichi

    2017-01-01

    Background On 11 March 2011, the Great East Japan Earthquake, followed by a tsunami and nuclear–reactor meltdowns, produced one of the most severe disasters in the history of Japan. The adverse impact of this ‘triple disaster’ on the health of local populations and the health system was substantial. In this study we examine population–level health indicator changes that accompanied the disaster, and discuss options for re–designing Fukushima’s health system, and by extension that of Japan, to enhance its responsiveness and resilience to current and future shocks. Methods We used country–level (Japan–average) or prefecture–level data (2005–2014) available from the portal site of Official Statistics of Japan for Fukushima, Miyagi, and Iwate, the prefectures that were most affected by the disaster, to compare trends before (2005–2010) and after (2011–2014) the ‘disaster’. We made time–trend line plots to describe changes over time in age–adjusted cause–specific mortality rates in each prefecture. Findings All three prefectures, and in particular Fukushima, had lower socio–economic indicators, an older population, lower productivity and gross domestic product per capita, and less higher–level industry than the Japan average. All three prefectures were ‘medically underserved’, with fewer physicians, nurses, ambulance calls and clinics per 100 000 residents than the Japan average. Even before the disaster, age–adjusted all–cause mortality in Fukushima was in general higher than the national rates. After the triple disaster we found that the mortality rate due to myocardial infarction increased substantially in Fukushima while it decreased nationwide. Compared to Japan average, spikes in mortality due to lung disease (all three prefectures), stroke (Iwate and Miyagi), and all–cause mortality (Miyagi and Fukushima) were also observed post–disaster. The cause–specific mortality rate from cancer followed similar trends in

  18. Earthquake resistant design of structures

    International Nuclear Information System (INIS)

    Choi, Chang Geun; Kim, Gyu Seok; Lee, Dong Geun

    1990-02-01

    This book tells of occurrence of earthquake and damage analysis of earthquake, equivalent static analysis method, application of equivalent static analysis method, dynamic analysis method like time history analysis by mode superposition method and direct integration method, design spectrum analysis considering an earthquake-resistant design in Korea. Such as analysis model and vibration mode, calculation of base shear, calculation of story seismic load and combine of analysis results.

  19. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  20. Higher Order Analysis of Turbulent Changes Found in the ELF Range Electric Field Plasma Before Major Earthquakes

    Science.gov (United States)

    Kosciesza, M.; Blecki, J. S.; Parrot, M.

    2014-12-01

    We report the structure function analysis of changes found in electric field in the ELF range plasma turbulence registered in the ionosphere over epicenter region of major earthquakes with depth less than 40 km that took place during 6.5 years of the scientific mission of the DEMETER satellite. We compare the data for the earthquakes for which we found turbulence with events without any turbulent changes. The structure functions were calculated also for the Polar CUSP region and equatorial spread F region. Basic studies of the turbulent processes were conducted with use of higher order spectra and higher order statistics. The structure function analysis was performed to locate and check if there are intermittent behaviors in the ionospheres plasma over epicenter region of the earthquakes. These registrations are correlated with the plasma parameters measured onboard DEMETER satellite and with geomagnetic indices.

  1. Assessment of seismic hazard for NPP sites in France analysis of several aftershocks of November 8, 1983, Liege earthquake

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Mohammadioun, G.; Bresson, A.

    1984-03-01

    Current French practice for assessing seismic hazard on the sites of nuclear facilities is outlined. The procedure calls for as rich and varied an assortment of actual earthquake recordings as can be procured, including earthquakes in France itself and in nearby countries, recorded by the CEA/IPSN's own staff. Following the November 8, 1983, Liege earthquake, suitably equipped, temporary recording stations were set up in the epicentral area in order to record its aftershocks. Ground motion time histories and response spectra were computed for several of these, and a quality factor Q was derived from these data for the most superficial sedimentary layers of the area. The values obtained show reasonable agreement with ones found for similar materials in other regions

  2. Proceedings of preparing for a significant Central United States earthquake-Science needs of the response and recovery community

    Science.gov (United States)

    Witt, Emitt C.

    2010-01-01

    Preface Imagine waking up at 2 o'clock in the morning by a violent rumbling that causes ceilings to fall, furniture to topple over, and windows to break. Your home is crumbling, it is dark, and by the time you realize what is going on the shaking stops. You quickly determine that your family members are okay, but you also realize your power is out, all the windows are broken, and there is substantial damage to your home possibly making it unsafe to remain inside. The temperature outside is in the 20s, there is a heavy snow on the ground, and the flu season is at its peak with two of your family members affected. Unfortunately your family is one of thousands in a similar circumstance and the response to your needs may not be immediate, if at all. Could an earthquake like this happen unannounced? It did in the Central United States during the great New Madrid earthquake of 1811-12. A resident of New Madrid, Missouri writes (Martin, 1848 ): 'On the 16th of December 1811, about 2 o'clock, AM, we were visited by a violent shock of an earthquake accompanied by a very awful noise resembling loud but distant thunder, but more hoarse and vibrating, which was followed in a few minutes by the complete saturation of the atmosphere with sulphurious vapor, causing total darkness. The screams of the affrighted inhabitants running to and fro, not knowing where to go, or what to do-the cries of the fowls and beasts of every species-the crackling of trees falling, and the roar of the Mississippi-the current of which was retrograde for a few minutes, owing as is supposed to an irruption in its bed-formed a scene truly horrible.' Eliza Bryan, March 22, 1816 The residents of the Central United States during the great New Madrid earthquake were accustomed to living rugged life styles. Electrical power was not a reality, water was drawn from shallow hand-dug wells or retrieved from streams, food was hunted or grown, and the homes typically were log structures with dirt floors. Though

  3. SPATIAL-TEMPORAL ANALYSIS OF SOCIAL MEDIA DATA RELATED TO NEPAL EARTHQUAKE 2015

    Directory of Open Access Journals (Sweden)

    L. Thapa

    2016-06-01

    Full Text Available Social Medias these days have become the instant communication platform to share anything; from personal feelings to the matter of public concern, these are the easiest and aphoristic way to deliver information among the mass. With the development of Web 2.0 technologies, more and more emphasis has been given to user input in the web; the concept of Geoweb is being visualized and in the recent years, social media like Twitter, Flicker are among the popular Location Based Social Medias with locational functionality enabled in them. Nepal faced devastating earthquake on 25 April, 2015 resulting in the loss of thousands of lives, destruction in the historical-archaeological sites and properties. Instant help was offered by many countries around the globe and even lots of NGOs, INGOs and people started the rescue operations immediately; concerned authorities and people used different communication medium like Frequency Modulation Stations, Television, and Social Medias over the World Wide Web to gather information associated with the Quake and to ease the rescue activities. They also initiated campaign in the Social Media to raise the funds and support the victims. Even the social medias like Facebook, Twitter, themselves announced the helping campaign to rebuild Nepal. In such scenario, this paper features the analysis of Twitter data containing hashtag related to Nepal Earthquake 2015 together with their temporal characteristics, when were the message generated, where were these from and how these spread spatially over the internet?

  4. Spatial-Temporal Analysis of Social Media Data Related to Nepal Earthquake 2015

    Science.gov (United States)

    Thapa, L.

    2016-06-01

    Social Medias these days have become the instant communication platform to share anything; from personal feelings to the matter of public concern, these are the easiest and aphoristic way to deliver information among the mass. With the development of Web 2.0 technologies, more and more emphasis has been given to user input in the web; the concept of Geoweb is being visualized and in the recent years, social media like Twitter, Flicker are among the popular Location Based Social Medias with locational functionality enabled in them. Nepal faced devastating earthquake on 25 April, 2015 resulting in the loss of thousands of lives, destruction in the historical-archaeological sites and properties. Instant help was offered by many countries around the globe and even lots of NGOs, INGOs and people started the rescue operations immediately; concerned authorities and people used different communication medium like Frequency Modulation Stations, Television, and Social Medias over the World Wide Web to gather information associated with the Quake and to ease the rescue activities. They also initiated campaign in the Social Media to raise the funds and support the victims. Even the social medias like Facebook, Twitter, themselves announced the helping campaign to rebuild Nepal. In such scenario, this paper features the analysis of Twitter data containing hashtag related to Nepal Earthquake 2015 together with their temporal characteristics, when were the message generated, where were these from and how these spread spatially over the internet?

  5. Back analysis of an earthquake-triggered submarine landslide near the SW of Xiaoliuqiu

    Directory of Open Access Journals (Sweden)

    Huai-Houh Hsu

    2018-01-01

    Full Text Available Occurred in the offshore of SW Taiwan on 26 December 2006 with a magnitude of 7, the Pingtung earthquake had triggered numbers of submarine landslides. This event provides an excellent opportunity to incorporate the back analysis approach to evaluate the in situ shear strength parameters. According to the chirp sonar images of the seabed near the SW Xiaoliuqiu obtained before and after the earthquake were adopted to establish the slope profile and identified the location of a circular sliding surface. Consequently, the in situ, effective strength parameters under the critical condition can be calculated by back slope stability analysis. Submarine sediment sampler was obtained via gravity sampling method and the laboratory tests were performed to determine the index properties and strength parameters. Test results indicate the cored sediment has the characteristics of normally consolidated (NC clay. The effective friction angle (φ’ is 15.3° with cohesion (c’ of 19.4 kPa. The effective and total stress methods were used to perform the back analysis. The strength parameters derived from back analysis of effective and total stress methods all indicate values approach the CIU triaxial tests results. Consequently, the representativeness of the marine sediment characteristics obtained from laboratory tests is identified. The total stress approach yields an undrained strength ratio cu/σ'vo of 0.26 which well fit the ratio used in geotechnical practice for estimating NC clay. According to the analytical approach, the landslide was applied seismic forces (seismic coefficient kh = 0.14 and generated excess pore pressure of 31 kPa at the sliding surface.

  6. Rapid Extraction of Landslide and Spatial Distribution Analysis after Jiuzhaigou Ms7.0 Earthquake Based on Uav Images

    Science.gov (United States)

    Jiao, Q. S.; Luo, Y.; Shen, W. H.; Li, Q.; Wang, X.

    2018-04-01

    Jiuzhaigou earthquake led to the collapse of the mountains and formed lots of landslides in Jiuzhaigou scenic spot and surrounding roads which caused road blockage and serious ecological damage. Due to the urgency of the rescue, the authors carried unmanned aerial vehicle (UAV) and entered the disaster area as early as August 9 to obtain the aerial images near the epicenter. On the basis of summarizing the earthquake landslides characteristics in aerial images, by using the object-oriented analysis method, landslides image objects were obtained by multi-scale segmentation, and the feature rule set of each level was automatically built by SEaTH (Separability and Thresholds) algorithm to realize the rapid landslide extraction. Compared with visual interpretation, object-oriented automatic landslides extraction method achieved an accuracy of 94.3 %. The spatial distribution of the earthquake landslide had a significant positive correlation with slope and relief and had a negative correlation with the roughness, but no obvious correlation with the aspect. The relationship between the landslide and the aspect was not found and the probable reason may be that the distance between the study area and the seismogenic fault was too far away. This work provided technical support for the earthquake field emergency, earthquake landslide prediction and disaster loss assessment.

  7. RAPID EXTRACTION OF LANDSLIDE AND SPATIAL DISTRIBUTION ANALYSIS AFTER JIUZHAIGOU Ms7.0 EARTHQUAKE BASED ON UAV IMAGES

    Directory of Open Access Journals (Sweden)

    Q. S. Jiao

    2018-04-01

    Full Text Available Jiuzhaigou earthquake led to the collapse of the mountains and formed lots of landslides in Jiuzhaigou scenic spot and surrounding roads which caused road blockage and serious ecological damage. Due to the urgency of the rescue, the authors carried unmanned aerial vehicle (UAV and entered the disaster area as early as August 9 to obtain the aerial images near the epicenter. On the basis of summarizing the earthquake landslides characteristics in aerial images, by using the object-oriented analysis method, landslides image objects were obtained by multi-scale segmentation, and the feature rule set of each level was automatically built by SEaTH (Separability and Thresholds algorithm to realize the rapid landslide extraction. Compared with visual interpretation, object-oriented automatic landslides extraction method achieved an accuracy of 94.3 %. The spatial distribution of the earthquake landslide had a significant positive correlation with slope and relief and had a negative correlation with the roughness, but no obvious correlation with the aspect. The relationship between the landslide and the aspect was not found and the probable reason may be that the distance between the study area and the seismogenic fault was too far away. This work provided technical support for the earthquake field emergency, earthquake landslide prediction and disaster loss assessment.

  8. Analysis of ionospheric vertical total electron content before the 1 April 2014 Mw 8.2 Chile earthquake

    Science.gov (United States)

    Jiang, Weiping; Ma, Yifang; Zhou, Xiaohui; Li, Zhao; An, Xiangdong; Wang, Kaihua

    2017-11-01

    This paper studies ionospheric vertical total electron content (VTEC) variations before the 1 April 2014 Mw 8.2 Chile earthquake. VTEC derived from 14 global positioning system (GPS) stations and global ionospheric map (GIM) were used to analyze ionospheric variations before the earthquake using the sliding interquartile range method, and the results showed that significant positive VTEC anomalies occurred on 28 March. To explore possible causes of these anomalies, effects of solar and geomagnetic activities were examined, and VTEC variations during 17 March to 31 March in 2009-2013 were cross-compared. Also, VTEC for a full year before the earthquake was investigated. The results indicated that the anomalies were weakly associated with high solar activities and geomagnetic storms and that the anomalies were not normal seasonal and diurnal variations. An analysis of the spatial distribution of the observed anomalies was also presented, and it demonstrated that the anomalies specifically appeared around the epicenter on 28 March. We suggest that the observed anomalies may be associated with the subsequent Chile earthquake. Equatorial anomaly variations were analyzed to discuss the possible physical mechanism, and results showed that the equatorial anomaly unusually increased on 28 March, which indicates that anomalous electric fields generated in the earthquake preparation area and the meridional wind are possible causes of the observed ionospheric anomalies.

  9. Seismic Hazard Analysis based on Earthquake Vulnerability and Peak Ground Acceleration using Microseismic Method at Universitas Negeri Semarang

    Science.gov (United States)

    Sulistiawan, H.; Supriyadi; Yulianti, I.

    2017-02-01

    Microseismic is a harmonic vibration of land that occurs continuously at a low frequency. The characteristics of microseismic represents the characteristics of the soil layer based on the value of its natural frequency. This paper presents the analysis of seismic hazard at Universitas Negeri Semarang using microseismic method. The data acquisition was done at 20 points with distance between points 300 m by using three component’s seismometer. The data was processed using Horizontal to Vertical Spectral Ratio (HVSR) method to obtain the natural frequency and amplification value. The value of the natural frequency and amplification used to determine the value of the earthquake vulnerability and peak ground acceleration (PGA). The result shows then the earthquake vulnerability value range from 0.2 to 7.5, while the value of the average peak ground acceleration (PGA) is in the range 10-24 gal. Therefore, the average peak ground acceleration equal to earthquake intensity IV MMI scale.

  10. Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes

    Science.gov (United States)

    Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.

    2018-03-01

    The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.

  11. Potential Effects of a Scenario Earthquake on the Economy of Southern California: Labor Market Exposure and Sensitivity Analysis to a Magnitude 7.8 Earthquake

    Science.gov (United States)

    Sherrouse, Benson C.; Hester, David J.; Wein, Anne M.

    2008-01-01

    The Multi-Hazards Demonstration Project (MHDP) is a collaboration between the U.S. Geological Survey (USGS) and various partners from the public and private sectors and academia, meant to improve Southern California's resiliency to natural hazards (Jones and others, 2007). In support of the MHDP objectives, the ShakeOut Scenario was developed. It describes a magnitude 7.8 (M7.8) earthquake along the southernmost 300 kilometers (200 miles) of the San Andreas Fault, identified by geoscientists as a plausible event that will cause moderate to strong shaking over much of the eight-county (Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura) Southern California region. This report contains an exposure and sensitivity analysis of economic Super Sectors in terms of labor and employment statistics. Exposure is measured as the absolute counts of labor market variables anticipated to experience each level of Instrumental Intensity (a proxy measure of damage). Sensitivity is the percentage of the exposure of each Super Sector to each Instrumental Intensity level. The analysis concerns the direct effect of the scenario earthquake on economic sectors and provides a baseline for the indirect and interactive analysis of an input-output model of the regional economy. The analysis is inspired by the Bureau of Labor Statistics (BLS) report that analyzed the labor market losses (exposure) of a M6.9 earthquake on the Hayward fault by overlaying geocoded labor market data on Instrumental Intensity values. The method used here is influenced by the ZIP-code-level data provided by the California Employment Development Department (CA EDD), which requires the assignment of Instrumental Intensities to ZIP codes. The ZIP-code-level labor market data includes the number of business establishments, employees, and quarterly payroll categorized by the North American Industry Classification System. According to the analysis results, nearly 225,000 business

  12. Investigation of tectonics and statistical analysis of earthquake hazard in Tange Sorkh dam

    OpenAIRE

    ZOLFAGHARI, Sayyed Yaghoub; RAFIEE, A.; HADI, S. M.R.; TAHERMANESH, R.

    2015-01-01

    Abstract. Today, most understood the importance of the risk of earthquakes with the intensification of the country's development, the rise in urbanization, the concentration of population and material and intellectual capital and increased vulnerability of the capital in the Iran seismic zone. Iran, as one of the most seismic countries in the world, in recent years has witnessed the devastating earthquake, for example can be pointed to earthquakes of Rudbar - Manjil, Bojnoord, Zir Kouh Ghaena...

  13. Discrimination of DPRK M5.1 February 12th, 2013 Earthquake as Nuclear Test Using Analysis of Magnitude, Rupture Duration and Ratio of Seismic Energy and Moment

    Science.gov (United States)

    Salomo Sianipar, Dimas; Subakti, Hendri; Pribadi, Sugeng

    2015-04-01

    On February 12th, 2013 morning at 02:57 UTC, there had been an earthquake with its epicenter in the region of North Korea precisely around Sungjibaegam Mountains. Monitoring stations of the Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) and some other seismic network detected this shallow seismic event. Analyzing seismograms recorded after this event can discriminate between a natural earthquake or an explosion. Zhao et. al. (2014) have been successfully discriminate this seismic event of North Korea nuclear test 2013 from ordinary earthquakes based on network P/S spectral ratios using broadband regional seismic data recorded in China, South Korea and Japan. The P/S-type spectral ratios were powerful discriminants to separate explosions from earthquake (Zhao et. al., 2014). Pribadi et. al. (2014) have characterized 27 earthquake-generated tsunamis (tsunamigenic earthquake or tsunami earthquake) from 1991 to 2012 in Indonesia using W-phase inversion analysis, the ratio between the seismic energy (E) and the seismic moment (Mo), the moment magnitude (Mw), the rupture duration (To) and the distance of the hypocenter to the trench. Some of this method was also used by us to characterize the nuclear test earthquake. We discriminate this DPRK M5.1 February 12th, 2013 earthquake from a natural earthquake using analysis magnitude mb, ms and mw, ratio of seismic energy and moment and rupture duration. We used the waveform data of the seismicity on the scope region in radius 5 degrees from the DPRK M5.1 February 12th, 2013 epicenter 41.29, 129.07 (Zhang and Wen, 2013) from 2006 to 2014 with magnitude M ≥ 4.0. We conclude that this earthquake was a shallow seismic event with explosion characteristics and can be discriminate from a natural or tectonic earthquake. Keywords: North Korean nuclear test, magnitude mb, ms, mw, ratio between seismic energy and moment, ruptures duration

  14. Experience of an orthoplastic limb salvage team after the Haiti earthquake: analysis of caseload and early outcomes.

    LENUS (Irish Health Repository)

    Clover, A James P

    2011-06-01

    After the devastating earthquake in Haiti on January 12, 2010, a British orthoplastic limb salvage team was mobilized. The team operated in a suburb of Port-au-Prince from January 20, 2010. This analysis gives an overview of the caseload and early outcomes.

  15. Dynamic characteristics and structural response of the SWR 1000 under earthquake loading conditions

    International Nuclear Information System (INIS)

    Bielor, E.; Brettschuh, W.; Krutzik, N.J.; Tropp, R.

    2001-01-01

    Based on the conceptual design documentation of the SWR 1000 reactor building as well as specified representative seismological, and soil-dynamic input data, corresponding to prospective sites as a basis, the dynamic characteristics, as well as the in-structure dynamic response of the coupled vibrating structures have been elaborated. The structural design analysis was based on a 3-dimensional mathematical model of the building in which all details of the internal structures as well as the containment including the water in the pools were represented adequately. In order to demonstrate the influence of the soil-structure interaction effects on the dynamic response results, the soil was represented by two different assumptions. At first, considering the state of the art procedures, assuming frequency independent soil capabilities (equivalent stiffnesses and damping values), time domain calculations were carried out. In the second step, based on the frequency-dependency of the soil capabilities, frequency domain calculations were performed. The structural responses obtained by means of both procedures and the same mathematical model of the structures were evaluated and compared. The suitability of the preliminary design concept are discussed and the structural response results obtained on the basis of the bearing capacity and the stresses in the characteristic regions of the structure

  16. Determination of Design Basis Earthquake ground motion

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1997-01-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  17. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  18. Evaluation of earthquake resistance design for underground structures of nuclear power plant, (1)

    International Nuclear Information System (INIS)

    Tohma, Junichi; Kokusho, Kenji; Iwatate, Takahiro; Ohtomo, Keizo

    1986-01-01

    As to earthquake resistant design of underground civil engineering structures related with emergency cooling water system of nuclear power plant, it is required these structures must maintain the function of great important their own facilities during earthquakes, especially for design earthquake motion. In this study, shaft pipline, pit and duct for cooling sea water facilities were chosen as typical underground structures, and the authors deal with the seismic design method for calculation of the principal sectional force in these structures generated by design earthquake motion. Especially, comparative investigations concerned with response displacement method versus dynamic analysis methods (lumped mass analysis and finite element analysis) are discussed. (author)

  19. Seismic response analysis for a deeply embedded nuclear power plant

    International Nuclear Information System (INIS)

    Chen, W.W.H.; Chatterjee, M.; Day, S.M.

    1979-01-01

    One of the important aspect of the aseimic design of nuclear power plants is the evaluation of the seismic soil-structure interaction effect due to design earthquakes. The soil-structure interaction effect can initiate rocking and result in different soil motions compared to the free field motions, thus significantly affecting the structural response. Two methods are generally used to solve the seismic soil-structure interaction problems: the direct finite element method (FLUSH) and the substructure or impedance approach. This paper presents the results of the horizontal seismic soil-structure interaction analysis using the impedance aproach and the direct finite element method for a deeply embedded nuclear power plant. (orig.)

  20. Long-term change of site response after the M W 9.0 Tohoku earthquake in Japan

    Science.gov (United States)

    Wu, Chunquan; Peng, Zhigang

    2012-12-01

    The recent M W 9.0 off the Pacific coast of Tohoku earthquake is the largest recorded earthquake in Japan's history. The Tohoku main shock and its aftershocks generated widespread strong shakings as large as ~3000 Gal along the east coast of Japan. Wu and Peng (2011) found clear drop of resonant frequency of up to 70% during the Tohoku main shock at 6 sites and correlation of resonance (peak) frequency and peak ground acceleration (PGA) during the main shock. Here we follow that study and systematically analyze long-term changes of material properties in the shallow crust from one year before to 5 months after the Tohoku main shock, using seismic data recorded by the Japanese Strong Motion Network KiK-Net. We use sliding window spectral ratios computed from a pair of surface and borehole stations to track the temporal changes in the site response of 6 sites. Our results show two stages of logarithmic recovery after a sharp drop of resonance frequency during the Tohoku main shock. The first stage is a rapid recovery within several hundred seconds to several hours, and the second stage is a slow recovery of more than five months. We also investigate whether the damage caused by the Tohoku main shock could make the near surface layers more susceptible to further damages, but we do not observe clear changes in susceptibility to further damage before and after the Tohoku main shock.

  1. [Response of primary care teams to manage mental health problems after the 2010 earthquake].

    Science.gov (United States)

    Vitriol, Verónica; Minoletti, Alberto; Alvarado, Rubén; Sierralta, Paula; Cancino, Alfredo

    2014-09-01

    Thirty to 50% of people exposed to a natural disaster suffer psychological problems in the ensuing months. To characterize the activities in mental health developed by Primary Health Care centers after the earthquake that affected Chile on february 27th, 2010. A cross-sectional study analyzing 16 urban centers of Maule Region, was carried out. A questionnaire was developed to know the preparatory and supportive activities directed to the community and the training and self-care activities directed to Health Care personnel that were made during the 12 months following the catastrophe. In addition, a questionnaire evaluating structural aspects was designed. Only 1/3 of the centers made some preparatory activity and none of them made a diagnosis of population vulnerability. The average of protective Mental Health interventions coverage reached 35% of the population estimated to be most affected. The activities lasted 31 to 62% of the optimal duration standards set by experts (according to the type of action). Important differences between centers in economic and geographical accessibility, construction and professional resources were found. This study shows the difficulties faced by urban centers of Maule Region to deal with mental health problems caused by the earthquake, which were attributable to the absence of local planning and drills, and to the lack of intra and inter sectorial coordination.

  2. The orientation of disaster donations: differences in the global response to five major earthquakes.

    Science.gov (United States)

    Wei, Jiuchang; Marinova, Dora

    2016-07-01

    This study analyses the influence of gift giving, geographical location, political regime, and trade openness on disaster donation decisions, using five severe earthquakes that occurred between 2008 and 2012 as case studies. The results show that global disaster donation is not dominated by only philanthropy or trade interests, and that the determinants of donation decisions vary with the scale of the natural disaster and the characteristics of the disaster-affected countries. While gift giving exists in the case of middle-size earthquakes, political regimes play a very important part in the overall donation process. Countries with higher perceived corruption may donate more frequently, but those that are more democratic may be more generous in their donations. Generosity based on geographical proximity to the calamity is significant in the decision-making process for most natural disasters, yet it may have a negative effect on donations in Latin America and the Caribbean. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  3. Earthquake Ground Motion Selection

    Science.gov (United States)

    2012-05-01

    Nonlinear analyses of soils, structures, and soil-structure systems offer the potential for more accurate characterization of geotechnical and structural response under strong earthquake shaking. The increasing use of advanced performance-based desig...

  4. Cyclic characteristics of earthquake time histories

    International Nuclear Information System (INIS)

    Hall, J.R. Jr; Shukla, D.K.; Kissenpfennig, J.F.

    1977-01-01

    From an engineering standpoint, an earthquake record may be characterized by a number of parameters, one of which is its 'cyclic characteristics'. The cyclic characteristics are most significant in fatigue analysis of structures and liquefaction analysis of soils where, in addition to the peak motion, cyclic buildup is significant. Whereas duration peak amplitude and response spectra for earthquakes have been studied extensively, the cyclic characteristics of earthquake records have not received an equivalent attention. Present procedures to define the cyclic characteristics are generally based upon counting the number of peaks at various amplitude ranges on a record. This paper presents a computer approach which describes a time history by an amplitude envelope and a phase curve. Using Fast Fourier Transform Techniques, an earthquake time history is represented as a projection along the x-axis of a rotating vector-the length the vector is given by the amplitude spectra-and the angle between the vector and x-axis is given by the phase curve. Thus one cycle is completed when the vector makes a full rotation. Based upon Miner's cumulative damage concept, the computer code automatically combines the cycles of various amplitudes to obtain the equivalent number of cycles of a given amplitude. To illustrate the overall results, the cyclic characteristics of several real and synthetic earthquake time histories have been studied and are presented in the paper, with the conclusion that this procedure provides a physical interpretation of the cyclic characteristics of earthquakes. (Auth.)

  5. Analysis of the similar epicenter earthquakes on 22 January 2013 and 01 June 2013, Central Gulf of Suez, Egypt

    Science.gov (United States)

    Toni, Mostafa; Barth, Andreas; Ali, Sherif M.; Wenzel, Friedemann

    2016-09-01

    On 22 January 2013 an earthquake with local magnitude ML 4.1 occurred in the central part of the Gulf of Suez. Six months later on 1 June 2013 another earthquake with local magnitude ML 5.1 took place at the same epicenter and different depths. These two perceptible events were recorded and localized by the Egyptian National Seismological Network (ENSN) and additional networks in the region. The purpose of this study is to determine focal mechanisms and source parameters of both earthquakes to analyze their tectonic relation. We determine the focal mechanisms by applying moment tensor inversion and first motion analysis of P- and S-waves. Both sources reveal oblique focal mechanisms with normal faulting and strike-slip components on differently oriented faults. The source mechanism of the larger event on 1 June in combination with the location of aftershock sequence indicates a left-lateral slip on N-S striking fault structure in 21 km depth that is in conformity with the NE-SW extensional Shmin (orientation of minimum horizontal compressional stress) and the local fault pattern. On the other hand, the smaller earthquake on 22 January with a shallower hypocenter in 16 km depth seems to have happened on a NE-SW striking fault plane sub-parallel to Shmin. Thus, here an energy release on a transfer fault connecting dominant rift-parallel structures might have resulted in a stress transfer, triggering the later ML 5.1 earthquake. Following Brune's model and using displacement spectra, we calculate the dynamic source parameters for the two events. The estimated source parameters for the 22 January 2013 and 1 June 2013 earthquakes are fault length (470 and 830 m), stress drop (1.40 and 2.13 MPa), and seismic moment (5.47E+21 and 6.30E+22 dyn cm) corresponding to moment magnitudes of MW 3.8 and 4.6, respectively.

  6. Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 parkfield, California, earthquake: Implications for nucleation, fault response, earthquake prediction and tremor

    Science.gov (United States)

    Johnston, M.J.S.; Borcherdt, R.D.; Linde, A.T.; Gladwin, M.T.

    2006-01-01

    Near-field observations of high-precision borehole strain and pore pressure, show no indication of coherent accelerating strain or pore pressure during the weeks to seconds before the 28 September 2004 M 6.0 Parkfield earthquake. Minor changes in strain rate did occur at a few sites during the last 24 hr before the earthquake but these changes are neither significant nor have the form expected for strain during slip coalescence initiating fault failure. Seconds before the event, strain is stable at the 10-11 level. Final prerupture nucleation slip in the hypocentral region is constrained to have a moment less than 2 ?? 1012 N m (M 2.2) and a source size less than 30 m. Ground displacement data indicate similar constraints. Localized rupture nucleation and runaway precludes useful prediction of damaging earthquakes. Coseismic dynamic strains of about 10 microstrain peak-to-peak were superimposed on volumetric strain offsets of about 0.5 microstrain to the northwest of the epicenter and about 0.2 microstrain to the southeast of the epicenter, consistent with right lateral slip. Observed strain and Global Positioning System (GPS) offsets can be simply fit with 20 cm of slip between 4 and 10 km on a 20-km segment of the fault north of Gold Hill (M0 = 7 ?? 1017 N m). Variable slip inversion models using GPS data and seismic data indicate similar moments. Observed postseismic strain is 60% to 300% of the coseismic strain, indicating incomplete release of accumulated strain. No measurable change in fault zone compliance preceding or following the earthquake is indicated by stable earth tidal response. No indications of strain change accompany nonvolcanic tremor events reported prior to and following the earthquake.

  7. Statistics and Analysis of the Relations between Rainstorm Floods and Earthquakes

    Directory of Open Access Journals (Sweden)

    Baodeng Hou

    2016-01-01

    Full Text Available The frequent occurrence of geophysical disasters under climate change has drawn Chinese scholars to pay their attention to disaster relations. If the occurrence sequence of disasters could be identified, long-term disaster forecast could be realized. Based on the Earth Degassing Effect (EDE which is valid, this paper took the magnitude, epicenter, and occurrence time of the earthquake, as well as the epicenter and occurrence time of the rainstorm floods as basic factors to establish an integrated model to study the correlation between rainstorm floods and earthquakes. 2461 severe earthquakes occurred in China or within 3000 km from China and the 169 heavy rainstorm floods occurred in China over the past 200+ years as the input data of the model. The computational results showed that although most of the rainstorm floods have nothing to do with the severe earthquakes from a statistical perspective, some floods might relate to earthquakes. This is especially true when the earthquakes happen in the vapor transmission zone where rainstorms lead to abundant water vapors. In this regard, earthquakes are more likely to cause big rainstorm floods. However, many cases of rainstorm floods could be found after severe earthquakes with a large extent of uncertainty.

  8. The Analysis of the Resilience of Adults One Year after the 2008 Wenchuan Earthquake

    Science.gov (United States)

    Li, Min; Xu, Jiuping; He, Yuan; Wu, Zhibin

    2012-01-01

    Resilience, the ability to spring back from adversity and successfully adapt to it, is becoming an increasingly popular focus in research on the intervention and prevention of mental breakdown. This article aims to assess the resilience of adults exposed to the 2008 Wenchuan earthquake 1 year after the occurrence of the earthquake, to explore the…

  9. State of the art of earthquake engineering in nuclear power plant design

    International Nuclear Information System (INIS)

    Schildknecht, P.O.

    1976-12-01

    A brief outline of definitions based on the USNRC, Seismic and Geologic Siting Criteria for Nuclear Power Plants, and on the plate tectonics and earthquake terminology is given. An introduction into plate tectonics and the associated earthquake phenomena is then presented. Ground motion characteristics are described in connection with the selection of design earthquakes. Mathematical methods of dynamic structural analyses are discussed for linear and nonlinear systems. Response analysis techniques for nuclear power plants are explained considering soil-structure interaction effects. (Auth.)

  10. Identification of earthquakes that generate tsunamis in Java and Nusa Tenggara using rupture duration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pribadi, S., E-mail: sugengpribadimsc@gmail.com [Tsunami Warning Information Division, Indonesian Meteorological Climatological and Geophysical Agency (BMKG), Jalan Angkasa I No. 2, Jakarta13920 and Graduate Student of Earth Sciences, Faculty of Earth Sciences and Technology, Bandung Institute of T (Indonesia); Puspito, N. T.; Yudistira, T.; Afnimar,; Ibrahim, G. [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Laksono, B. I. [Database Maintenance Division, Indonesian Meteorological Climatological and Geophysical Agency (BMKG), Jalan Angkasa I No.2, Jakarta 13920 (Indonesia); Adnan, Z. [Database Maintenance Division, Indonesian Meteorological Climatological and Geophysical Agency (BMKG), Jalan Angkasa I No. 2, Jakarta 13920 and Graduate Student of Earth Sciences, Faculty of Earth Sciences and Technology, Bandung Institute of Technol (Indonesia)

    2014-09-25

    Java and Nusa Tenggara are the tectonically active of Sunda arc. This study discuss the rupture duration as a manifestation of the power of earthquake-generated tsunami. We use the teleseismic (30° - 90°) body waves with high-frequency energy Seismometer is from IRIS network as amount 206 broadband units. We applied the Butterworth high bandpass (1 - 2 Hz) filtered. The arrival and travel times started from wave phase of P - PP which based on Jeffrey Bullens table with TauP program. The results are that the June 2, 1994 Banyuwangi and the July 17, 2006 Pangandaran earthquakes identified as tsunami earthquakes with long rupture duration (To > 100 second), medium magnitude (7.6 < Mw < 7.9) and located near the trench. The others are 4 tsunamigenic earthquakes and 3 inland earthquakes with short rupture duration start from To > 50 second which depend on its magnitude. Those events are located far from the trench.

  11. Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June–August 2000

    Directory of Open Access Journals (Sweden)

    K. Gotoh

    2003-01-01

    Full Text Available In our recent papers we applied fractal methods to extract the earthquake precursory signatures from scaling characteristics of the ULF geomagnetic data, obtained in a seismic active region of Guam Island during the large earthquake of 8 August 1993. We found specific dynamics of their fractal characteristics (spectral exponents and fractal dimensions before the earthquake: appearance of the flicker-noise signatures and increase of the time series fractal dimension. Here we analyze ULF geomagnetic data obtained in a seismic active region of Izu Peninsula, Japan during a swarm of the strong nearby earthquakes of June–August 2000 and compare the results obtained in both regions. We apply the same methodology of data processing using the FFT procedure, Higuchi method and Burlaga-Klein approach to calculate the spectral exponents and fractal dimensions of the ULF time series. We found the common features and specific peculiarities in the behavior of fractal characteristics of the ULF time series before Izu and Guam earthquakes. As a common feature, we obtained the same increase of the ULF time series fractal dimension before the earthquakes, and as specific peculiarity – this increase appears to be sharp for Izu earthquake in comparison with gradual increase of the ULF time series fractal dimension for Guam earthquake. The results obtained in both regions are discussed on the basis of the SOC (self-organized criticality concept taking into account the differences in the depths of the earthquake focuses. On the basis of the peculiarities revealed, we advance methodology for extraction of the earthquake precursory signatures. As an adjacent step, we suggest the combined analysis of the ULF time series in the parametric space polarization ratio – fractal dimension. We reason also upon the advantage of the multifractal approach with respect to the mono-fractal analysis for study of the earthquake preparation dynamics.

  12. Distributed and hierarchical object-based image analysis for damage assessment: a case study of 2008 Wenchuan earthquake, China

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2016-11-01

    Full Text Available Object-based image analysis (OBIA is an emerging technique for analyzing remote sensing image based on object properties including spectral, geometry, contextual and texture information. To reduce the computational cost of this comprehensive OBIA and make it more feasible in disaster responses, we developed a unique approach – distributed and hierarchical OBIA approach for damage assessment. This study demonstrated a completed classification of YingXiu town, heavily devastated by the 2008 Wenchuan earthquake using Quickbrid imagery. Two distinctive areas, mountainous areas and urban, were analyzed separately. This approach does not require substantial processing power and large amounts of available memory because image of a large disaster-affected area was split in smaller pieces. Two or more computers could be used in parallel to process and analyze these sub-images based on different requirements. The approach can be applicable in other cases whereas the established set of rules can be adopted in similar study areas. More experiments will be carried out in future studies to prove its feasibility.

  13. Study of the structure changes caused by earthquakes in Chile applying the lineament analysis to the Aster (Terra) satellite data.

    Science.gov (United States)

    Arellano-Baeza, A.; Zverev, A.; Malinnikov, V.

    Chile is one of the most seismically and volcanically active regions in the South America due to a constant subdiction of the South American plate, converging with the Nazca plate in the extreme North of Chile. Four events, namely: the Ovalle earthquake of Juny 18, 2003, M=6.3, with epicenter localized at (-30:49:33, -71:18:53), the Calama earthquake of Junly 19, 2001, M=5.2, (-30:29:38,-68:33:18), the Pica earthquake of April 10, 2003, M=5.1, (-21:03:20,-68:47:10) and the La Ligua earthquake of May 6, 2001, M=5.1, (-32:35:31,-71:07:58:) were analysed using the 15 m resolution satellite images, provided by the ASTER/VNIR instrument. The Lineament Extraction and Stripes Statistic Analysis (LESSA) software package was used to examine changes in the lineament features caused by sismic activity. Lack of vegetation facilitates the study of the changes in the topography common to all events and makes it possible to evaluate the sismic risk in this region for the future.

  14. On the Correct Application of the 100-40-40 Rule for Combining Responses Due to three Directions of Earthquake Loading

    International Nuclear Information System (INIS)

    Nie, J.; Morante, R.; Miranda, M.; Braverman, J.

    2010-01-01

    The 100-40-40 rule is often used with the response spectrum analysis method to determine the maximum seismic responses from structural responses resulting from the three spatial earthquake components. This rule has been referenced in several recent Design Certification applications of nuclear power plants, and appears to be gaining in popularity. However, this rule is described differently in ASCE 4-98 and Regulatory Guide 1.92, consequently causing confusion on correct implementation of this rule in practice. The square root of the sum of the squares method is another acceptable spatial combination method and was used to justify the adequacy of the 100-40-40 rule during the development of the Regulatory Guide 1.92. The 100-40-40 rule, when applied correctly, is almost always conservative compared to the SRSS method, and is only slightly unconservative in rare cases. The purpose of this paper is to describe in detail the proper application of the 100-40-40 rule, as prescribed in ASCE 4-98 and in Regulatory Guide 1.92, and to clarify the confusion caused by the two different formats of this rule.

  15. On the Correct Application of the 100-40-40 Rule for Combining Responses Due to three Directions of Earthquake Loading

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J.; Morante, R.; Miranda, M., Braverman, J.

    2010-07-18

    The 100-40-40 rule is often used with the response spectrum analysis method to determine the maximum seismic responses from structural responses resulting from the three spatial earthquake components. This rule has been referenced in several recent Design Certification applications of nuclear power plants, and appears to be gaining in popularity. However, this rule is described differently in ASCE 4-98 and Regulatory Guide 1.92, consequently causing confusion on correct implementation of this rule in practice. The square root of the sum of the squares method is another acceptable spatial combination method and was used to justify the adequacy of the 100-40-40 rule during the development of the Regulatory Guide 1.92. The 100-40-40 rule, when applied correctly, is almost always conservative compared to the SRSS method, and is only slightly unconservative in rare cases. The purpose of this paper is to describe in detail the proper application of the 100-40-40 rule, as prescribed in ASCE 4-98 and in Regulatory Guide 1.92, and to clarify the confusion caused by the two different formats of this rule.

  16. Seismic response analysis of an instrumented building structure

    Science.gov (United States)

    Li, H.-J.; Zhu, S.-Y.; Celebi, M.

    2003-01-01

    The Sheraton - Universal hotel, an instrumented building lying in North Hollywood, USA is selected for case study in this paper. The finite element method is used to produce a linear time - invariant structural model, and the SAP2000 program is employed for the time history analysis of the instrumented structure under the base excitation of strong motions recorded in the basement during the Northridge, California earthquake of 17 January 1994. The calculated structural responses are compared with the recorded data in both time domain and frequency domain, and the effects of structural parameters evaluation and indeterminate factors are discussed. Some features of structural response, such as the reason why the peak responses of acceleration in the ninth floor are larger than those in the sixteenth floor, are also explained.

  17. Long-term responses of sandy beach crustaceans to the effects of coastal armouring after the 2010 Maule earthquake in South Central Chile

    Science.gov (United States)

    Rodil, Iván F.; Jaramillo, Eduardo; Acuña, Emilio; Manzano, Mario; Velasquez, Carlos

    2016-02-01

    Earthquakes and tsunamis are large physical disturbances frequently striking the coast of Chile with dramatic effects on intertidal habitats. Armouring structures built as societal responses to beach erosion and shoreline retreat are also responsible of coastal squeeze and habitat loss. The ecological implications of interactions between coastal armouring and earthquakes have recently started to be studied for beach ecosystems. How long interactive impacts persist is still unclear because monitoring after disturbance generally extends for a few months. During five years after the Maule earthquake (South Central Chile, February 27th 2010) we monitored the variability in population abundances of the most common crustacean inhabitants of different beach zones (i.e. upper, medium, and lower intertidal) at two armoured (one concrete seawall and one rocky revetment) and one unarmoured sites along the sandy beach of Llico. Beach morphology changed after the earthquake-mediated uplift, restoring upper- and mid-shore armoured levels that were rapidly colonized by typical crustacean species. However, post-earthquake increasing human activities affected the colonization process of sandy beach crustaceans in front of the seawall. Lower-shore crab Emerita analoga was the less affected by armouring structures, and it was the only crustacean species present at the three sites before and after the earthquake. This study shows that field sampling carried out promptly after major disturbances, and monitoring of the affected sites long after the disturbance is gone are effective approaches to increase the knowledge on the interactive effects of large-scale natural phenomena and artificial defences on beach ecology.

  18. Dynamic response analysis of a 24-story damped steel structure

    Science.gov (United States)

    Feng, Demin; Miyama, Takafumi

    2017-10-01

    In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.

  19. Multi-method Near-surface Geophysical Surveys for Site Response and Earthquake Damage Assessments at School Sites in Washington, USA

    Science.gov (United States)

    Cakir, R.; Walsh, T. J.; Norman, D. K.

    2017-12-01

    We, Washington Geological Survey (WGS), have been performing multi-method near surface geophysical surveys to help assess potential earthquake damage at public schools in Washington. We have been conducting active and passive seismic surveys, and estimating Shear-wave velocity (Vs) profiles, then determining the NEHRP soil classifications based on Vs30m values at school sites in Washington. The survey methods we have used: 1D and 2D MASW and MAM, P- and S-wave refraction, horizontal-to-vertical spectral ratio (H/V), and 2ST-SPAC to measure Vs and Vp at shallow (0-70m) and greater depths at the sites. We have also run Ground Penetrating Radar (GPR) surveys at the sites to check possible horizontal subsurface variations along and between the seismic survey lines and the actual locations of the school buildings. The seismic survey results were then used to calculate Vs30m for determining the NEHRP soil classifications at school sites, thus soil amplification effects on the ground motions. Resulting shear-wave velocity profiles generated from these studies can also be used for site response and liquefaction potential studies, as well as for improvement efforts of the national Vs30m database, essential information for ShakeMap and ground motion modeling efforts in Washington and Pacific Northwest. To estimate casualties, nonstructural, and structural losses caused by the potential earthquakes in the region, we used these seismic site characterization results associated with structural engineering evaluations based on ASCE41 or FEMA 154 (Rapid Visual Screening) as inputs in FEMA Hazus-Advanced Engineering Building Module (AEBM) analysis. Compelling example surveys will be presented for the school sites in western and eastern Washington.

  20. PRELIMINARY ANALYSIS OF THE EARTHQUAKE (MW 8.1 AND TSUNAMI OF APRIL 1, 2007, IN THE SOLOMON ISLANDS, SOUTHWESTERN PACIFIC OCEAN

    Directory of Open Access Journals (Sweden)

    Michael A. Fisher

    2007-01-01

    Full Text Available On April 1, 2007, a destructive earthquake (Mw 8.1 and tsunami struck the central Solomon Islands arc in the southwestern Pacific Ocean. The earthquake had a thrust-fault focal mechanism and occurred at shallow depth (between 15 km and 25 km beneath the island arc. The combined effects of the earthquake and tsunami caused dozens of fatalities and thousands remain without shelter. We present a preliminary analysis of the Mw-8.1 earthquake and resulting tsunami. Multichannel seismic- reflection data collected during 1984 show the geologic structure of the arc’s frontal prism within the earthquake’s rupture zone. Modeling tsunami-wave propagation indicates that some of the islands are so close to the earthquake epicenter that they were hard hit by tsunami waves as soon as 5 min. after shaking began, allowing people scant time to react.

  1. Pre-earthquake multiparameter analysis of the 2016 Amatrice-Norcia (Central Italy) seismic sequence: a case study for the application of the SAFE project concepts

    Science.gov (United States)

    De Santis, A.

    2017-12-01

    The SAFE (Swarm for Earthquake study) project (funded by European Space Agency in the framework "STSE Swarm+Innovation", 2014-2016) aimed at applying the new approach of geosystemics to the analysis of Swarm satellite (ESA) electromagnetic data for investigating the preparatory phase of earthquakes. We present in this talk the case study of the most recent seismic sequence in Italy. First a M6 earthquake on 24 August 2016 and then a M6.5 earthquake on 30 October 2016 shocked almost in the same region of Central Italy causing about 300 deaths in total (mostly on 24 August), with a revival of other significant seismicity on January 2017. Analysing both geophysical and climatological satellite and ground data preceding the major earthquakes of the sequence we present results that confirm a complex solid earth-atmosphere coupling in the preparation phase of the whole sequence.

  2. A study on generation of simulated earthquake ground motion for seismic design of nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Matsumoto, Takuji; Kitada, Yoshio; Osaki, Yorihiko; Kanda, Jun; Masao, Toru.

    1985-01-01

    The aseismatic design of nuclear power generation facilities carried out in Japan at present must conform to the ''Guideline for aseismatic design examination regarding power reactor facilities'' decided by the Atomic Energy Commission in 1978. In this guideline, the earthquake motion used for the analysis of dynamic earthquake response is to be given in the form of the magnitude determined on the basis of the investigation of historical earthquakes and active faults around construction sites and the response spectra corresponding to the distance from epicenters. Accordingly when the analysis of dynamic earthquake response is actually carried out, the simulated earthquake motion made in conformity with these set up response spectra is used as the input earthquake motion for the design. For the purpose of establishing the techniques making simulated earthquake motion which is more appropriate and rational from engineering viewpoint, the research was carried out, and the results are summarized in this paper. The techniques for making simulated earthquake motion, the response of buildings and the response spectra of floors are described. (Kako, I.)

  3. Stability Analysis Of Earth Dam Slopes Subjected To Earthquake Using ERT Results Interpretation

    Directory of Open Access Journals (Sweden)

    Eko Andi Suryo

    2018-01-01

    Full Text Available Earth Dam stability can be affected significantly by the existence of excessive leakage. This is due to decreasing of shear strength of the dam material and additional overturning moment. In such scenario, the non-destructive soil investigation method is needed to analyze the stability of earth dam in current condition. This paper examines the use of Electrical Resistivity Tomography (ERT to investigate soil layers and to measure parameters of soil shear strength indirectly. First survey was carried out at dam crest and downstream using Wenner Configuration along profile lines at electrode spacing of 5 m. There were 5 profile lines of 180m long each and 10m distance of spacing. Furthermore, two profiles lines at weak cross-section based on its resistivity soil values were undertaken. Laboratory tests were conducted to determine relationship between resistivity value, moisture content, cohesion and angle of friction for each type of dam materials. From the ERT results and lab testing, a model dam can be obtained using current material parameters to perform stability analysis of dam subjected to earthquake. The lowest FOS was found at the upstream side about 1.15 and at the downstream side about 1.14 after applying seismic load of 100 years return period. Keywords: Stability Analysis, ERT,resistivity, leakage, dam

  4. Implications of the World Trade Center Health Program (WTCHP) for the public health response to the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Crane, Michael A.; Cho, Hyunje G.; Landrigan, Phillip J.

    2014-01-01

    The attacks on the World Trade Center (WTC) on September 11, 2001 resulted in a serious burden of physical and mental illness for the 50,000 rescue workers that responded to 9/11 as well as the 400,000 residents and workers in the surrounding areas of New York City. The Zadroga Act of 2010 established the WTC Health Program (WTCHP) to provide monitoring and treatment of WTC exposure-related conditions and health surveillance for the responder and survivor populations. Several reports have highlighted the applicability of insights gained from the WTCHP to the public health response to the Great East Japan Earthquake. Optimal exposure monitoring processes and attention to the welfare of vulnerable exposed sub-groups are critical aspects of the response to both incidents. The ongoing mental health care concerns of 9/11 patients accentuate the need for accessible and appropriately skilled mental health care in Fukushima. Active efforts to demonstrate transparency and to promote community involvement in the public health response will be highly important in establishing successful long-term monitoring and treatment programs for the exposed populations in Fukushima. (author)

  5. Effect of Interaction and Rocking Motion on The Earthquake Response of Buildings

    Directory of Open Access Journals (Sweden)

    Gholamreza Havaei

    2015-03-01

    Full Text Available Usually structures are designed under codes based on the assumption that the soil stiffness is infinite, so the foundation rests firmly on the soil. In many cases, the overturning moment due to the lateral forces may exceed the resisting moment due to the gravity forces. Thus, this may cause a foundation uplift because in reality the soil stiffness is not infinite and the structure stands up under gravity forces. The phenomenon of foundation uplifting and its impact on the soil are known as the rocking motion.This study investigates the influence of the rocking motion and interaction by the yielding base plates on the nonlinear behavior of steel structures under dynamic analysis. More specifically, Three- five and seven -storied structuresare designed with ordinary ductility, then the structuresare analyzed in rigid and deformable base plate cases with using the ABAQUS software.The results show that the rocking motion and Interaction decrease the response of buildings such as the base shear, the axial force of columns and the strain energy but also increase the natural period.

  6. An Earthquake Source Sensitivity Analysis for Tsunami Propagation in the Eastern Mediterranean

    Science.gov (United States)

    Necmioglu, Ocal; Meral Ozel, Nurcan

    2013-04-01

    An earthquake source parameter sensitivity analysis for tsunami propagation in the Eastern Mediterranean has been performed based on 8 August 1303 Crete and Dodecanese Islands earthquake resulting in destructive inundation in the Eastern Mediterranean. The analysis involves 23 cases describing different sets of strike, dip, rake and focal depth, while keeping the fault area and displacement, thus the magnitude, same. The main conclusions of the evaluation are drawn from the investigation of the wave height distributions at Tsunami Forecast Points (TFP). The earthquake vs. initial tsunami source parameters comparison indicated that the maximum initial wave height values correspond in general to the changes in rake angle. No clear depth dependency is observed within the depth range considered and no strike angle dependency is observed in terms of amplitude change. Directivity sensitivity analysis indicated that for the same strike and dip, 180° shift in rake may lead to 20% change in the calculated tsunami wave height. Moreover, an approximately 10 min difference in the arrival time of the initial wave has been observed. These differences are, however, greatly reduced in the far field. The dip sensitivity analysis, performed separately for thrust and normal faulting, has both indicated that an increase in the dip angle results in the decrease of the tsunami wave amplitude in the near field approximately 40%. While a positive phase shift is observed, the period and the shape of the initial wave stays nearly the same for all dip angles at respective TFPs. These affects are, however, not observed at the far field. The resolution of the bathymetry, on the other hand, is a limiting factor for further evaluation. Four different cases were considered for the depth sensitivity indicating that within the depth ranges considered (15-60 km), the increase of the depth has only a smoothing effect on the synthetic tsunami wave height measurements at the selected TFPs. The strike

  7. Finite element analysis of skirted foundation adjacent to sand slope under earthquake loading

    OpenAIRE

    Azzam, W.R.

    2015-01-01

    This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerical...

  8. Application of Incremental Dynamic Analysis (IDA) Method for Studying the Dynamic Behavior of Structures During Earthquakes

    OpenAIRE

    Javanpour, M.; Zarfam, P.

    2017-01-01

    Prediction of existing buildings’ vulnerability by future earthquakes is one of the most essential topics in structural engineering. Modeling steel structures is a giant step in determining the damage caused by the earthquake, as such structures are increasingly being used in constructions. Hence, two same-order steel structures with two types of structural systems were selected (coaxial moment frames and moment frame). In most cases, a specific structure needs to satisfy several functional l...

  9. Problems with geologic fault assessment in the safety analysis of earthquake-resistance for nuclear power plants

    International Nuclear Information System (INIS)

    Suzuki, Yasuhiro; Nakata, Takashi; Watanabe, Mitsuhisa

    2008-01-01

    The Niigata-ken Chuetsu-oki Earthquake, occurring on July 16, 2007 in Niigata-prefecture, Japan, the magnitude of which was only 6.8, brought about an unexpectedly huge tremor in the area of Kashiwazaki-Kariwa nuclear plants, Tokyo Electric Power Co. The present paper points out that the huge tremor they experienced could be within the scope of expectation if an adequate analysis was performed for the investigation results on acoustic seafloor exploration done during the 1980's and presented at application for go-ahead for construction of the nuclear reactor and also at the occasion of official safety analysis. The present examination demonstrates clearly the existence of active faults on a large scale in the hypocentral region of the earthquake in the offshore seabed. This fact might be of extremely serious nature and the authors recommend to learn what may be a cause of overlooking the existing fault. (S. Ohno)

  10. The risk communication using the special website of the society of risk analysis for the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Tsubokawa, Hiroaki; Nagasaka, Toshinari; Sunaga, Yohei; Lee, Taiyoung; Taguchi, Hitoshi; Usuda, Yuichiro

    2011-01-01

    The Society for Risk Analysis Japan built the special website that reply to the people who are concerning the risk related to the Great East Japan Earthquake occurred on March 11, 2011. Although, there were many risk communication activities between the specialists of the risk research and citizens on the website, there are some significant problems for the risk communication using the website. This report summarizes the result of our activity. (author)

  11. Detection of ULF electromagnetic emissions as a precursor to an earthquake in China with an improved polarization analysis

    Directory of Open Access Journals (Sweden)

    Y. Ida

    2008-07-01

    Full Text Available An improved analysis of polarization (as the ratio of vertical magnetic field component to the horizontal one has been developed, and applied to the approximately four years data (from 1 March 2003 to 31 December 2006 observed at Kashi station in China. It is concluded that the polarization ratio has exhibited an apparent increase only just before the earthquake on 1 September 2003 (magnitude = 6.1 and epicentral distance of 116 km.

  12. Parametric time series analysis of geoelectrical signals: an application to earthquake forecasting in Southern Italy

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    1996-06-01

    Full Text Available An autoregressive model was selected to describe geoelectrical time series. An objective technique was subsequently applied to analyze and discriminate values above (below an a priorifixed threshold possibly related to seismic events. A complete check of the model and the main guidelines to estimate the occurrence probability of extreme events are reported. A first application of the proposed technique is discussed through the analysis of the experimental data recorded by an automatic station located in Tito, a small town on the Apennine chain in Southern Italy. This region was hit by the November 1980 Irpinia-Basilicata earthquake and it is one of most active areas of the Mediterranean region. After a preliminary filtering procedure to reduce the influence of external parameters (i.e. the meteo-climatic effects, it was demonstrated that the geoelectrical residual time series are well described by means of a second order autoregressive model. Our findings outline a statistical methodology to evaluate the efficiency of electrical seismic precursors.

  13. Emergency response of Fukushima Daini Nuclear Power Station during the Great East Japan Earthquake and its lessons

    International Nuclear Information System (INIS)

    Kawamura, Shinichi

    2016-01-01

    At the time of the occurrence of the Great East Japan Earthquake, Fukushima Daini Nuclear Power Station (hereinafter, Fukushima Daini) was operating four units of BWRS-5 type plants with an output of 1,100 MWe/unit. Among these plants, No. 1, 2, and 4 Units lost all the functions of heat removal equipment of reactors affected by tsunami. However, ad-hoc activities such as the exchange of submerged motors and temporary power installation allowed the recovery of residual heat removal (RHR) system, leading to a success in cold shutdown. This is a success story more than expectation in dealing with emergency situations, but not necessarily all of the correspondences were successfully carried out, leaving some problems. As lessons, the following are pointed out: (1) confirmation of the damage situation of the site and setting of priority rank of recovery, (2) securement of the means that do not depend on initial on-site activities, and (3) possession at the site of the skills of emergency restoration, equipment diagnostic technology, and repair technology. With reflecting lessons and challenges in these correspondences, Tokyo Electric Power Company is working to improve the accident response capability of the organization including Kashiwazaki-Kariwa Nuclear Power Station. As an example of effort of emergency response capability strengthening, there is an application of the US Incident Management System (IMS). The company is continuously making efforts for improving safety through training. (A.O.)

  14. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1997-01-01

    the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  15. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  16. Spatio-temporal earthquake risk assessment for the Lisbon Metropolitan Area - A contribution to improving standard methods of population exposure and vulnerability analysis

    Science.gov (United States)

    Freire, Sérgio; Aubrecht, Christoph

    2010-05-01

    The recent 7.0 M earthquake that caused severe damage and destruction in parts of Haiti struck close to 5 PM (local time), at a moment when many people were not in their residences, instead being in their workplaces, schools, or churches. Community vulnerability assessment to seismic hazard relying solely on the location and density of resident-based census population, as is commonly the case, would grossly misrepresent the real situation. In particular in the context of global (climate) change, risk analysis is a research field increasingly gaining in importance whereas risk is usually defined as a function of hazard probability and vulnerability. Assessment and mapping of human vulnerability has however generally been lagging behind hazard analysis efforts. Central to the concept of vulnerability is the issue of human exposure. Analysis of exposure is often spatially tied to administrative units or reference objects such as buildings, spanning scales from the regional level to local studies for small areas. Due to human activities and mobility, the spatial distribution of population is time-dependent, especially in metropolitan areas. Accurately estimating population exposure is a key component of catastrophe loss modeling, one element of effective risk analysis and emergency management. Therefore, accounting for the spatio-temporal dynamics of human vulnerability correlates with recent recommendations to improve vulnerability analyses. Earthquakes are the prototype for a major disaster, being low-probability, rapid-onset, high-consequence events. Lisbon, Portugal, is subject to a high risk of earthquake, which can strike at any day and time, as confirmed by modern history (e.g. December 2009). The recently-approved Special Emergency and Civil Protection Plan (PEERS) is based on a Seismic Intensity map, and only contemplates resident population from the census as proxy for human exposure. In the present work we map and analyze the spatio-temporal distribution of

  17. AN ANALYSIS OF THE POLICY TO PROVIDE THE TRAFFIC INFORMATION IN THE CASE OF EARTHQUAKES AN EXAMPLE ON THE NOTO PENINSULA EARTHQUAKE, ISHIKAWA PREFECTURE

    Science.gov (United States)

    Takahashi, Masanori; Takayama, Jun-Ichi; Nakayama, Shoichiro

    Noto Peninsula earthquake occurred in Ishikawa Pref., in March, 2007, and the Noto Yuryo, and many arterial roads were damaged. This led to the conosiderable confusion of the road traffic in Noto Peninsula area and gave the influence on all kinds of social/economic activities. Therefore, an method of providing the traffic information for drivers is important in the case of disasters such as earthquakes. We carried out a questionnaire survey for local inhabitants and investigated the road use situation at the time of the Noto Peninsula earthquake and the information acquisition situation about it. We also analyzed whether or not the method of providing the traffic information was appropriate. In addition, we examined the best traffic information in the case of earthquakes.

  18. Direct methods of soil-structure interaction analysis for earthquake loadings

    International Nuclear Information System (INIS)

    Yun, J. B.; Kim, J. M.; Kim, Y. S. and others

    1993-07-01

    The objectives of this study are to review the methods of soil- structure interaction system analysis, particularly the direct method, and to carry out the blind prediction analysis of the Forced Vibration Test(FVT) before backfill in the course of Hualien LSST project. The scope and contents of this study are as follows : theoretical review on soil-structure interaction analysis methods, free-field response analysis methods, modelling methods of unbounded exterior region, hualien LSST FVT blind prediction analysis before backfill. The analysis results are found to be very well compared with the field test results

  19. Dynamic response of infrastructure to environmentally induced loads analysis, measurements, testing, and design

    CERN Document Server

    Manolis, George

    2017-01-01

    This book provides state of the art coverage of important current issues in the analysis, measurement, and monitoring of the dynamic response of infrastructure to environmental loads, including those induced by earthquake motion and differential soil settlement. The coverage is in five parts that address numerical methods in structural dynamics, soil–structure interaction analysis, instrumentation and structural health monitoring, hybrid experimental mechanics, and structural health monitoring for bridges. Examples that give an impression of the scope of the topics discussed include the seismic analysis of bridges, soft computing in earthquake engineering, use of hybrid methods for soil–structure interaction analysis, effects of local site conditions on the inelastic dynamic analysis of bridges, embedded models in wireless sensor networks for structural health monitoring, recent developments in seismic simulation methods, and seismic performance assessment and retrofit of structures. Throughout, the empha...

  20. Detailed seismotectonic analysis of Sumatra subduction zone revealed by high precision earthquake location

    Science.gov (United States)

    Sagala, Ricardo Alfencius; Harjadi, P. J. Prih; Heryandoko, Nova; Sianipar, Dimas

    2017-07-01

    Sumatra was one of the most high seismicity regions in Indonesia. The subduction of Indo-Australian plate beneath Eurasian plate in western Sumatra contributes for many significant earthquakes that occur in this area. These earthquake events can be used to analyze the seismotectonic of Sumatra subduction zone and its system. In this study we use teleseismic double-difference method to obtain more high precision earthquake distribution in Sumatra subduction zone. We use a 3D nested regional-global velocity model. We use a combination of data from both of ISC (International Seismological Center) and BMKG (Agency for Meteorology Climatology and Geophysics, Indonesia). We successfully relocate about 6886 earthquakes that occur on period of 1981-2015. We consider that this new location is more precise than the regular bulletin. The relocation results show greatly reduced of RMS residual of travel time. Using this data, we can construct a new seismotectonic map of Sumatra. A well-built geometry of subduction slab, faults and volcano arc can be obtained from the new bulletin. It is also showed that at a depth of 140-170 km, there is many events occur as moderate-to-deep earthquakes, and we consider about the relation of the slab's events with volcanic arc and inland fault system. A reliable slab model is also built from regression equation using new relocated data. We also analyze the spatial-temporal of seismotectonic using b-value mapping that inspected in detail horizontally and vertically cross-section.

  1. Deformation analysis of Aceh April 11{sup th} 2012 earthquake using GPS observation data

    Energy Technology Data Exchange (ETDEWEB)

    Maulida, Putra, E-mail: putra.maulida@gmail.com [Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Meilano, Irwan; Sarsito, Dina A. [Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Geodesy Research Group, geodesy and geomatic Engineering, ITB (Indonesia); Susilo [Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Geospatial Information Agency (BIG) (Indonesia)

    2015-04-24

    This research tries to estimate the co-seismic deformation of intraplate earthquake occurred off northern Sumatra coast which is about 100-200 km southwest of Sumatrasubduction zone. The earthquake mechanism was strike-slip with magnitude 8.6 and triggering aftershock with magnitude 8.2 two hours later. We estimated the co-seismic deformation by using the GPS (Global Positioning System) continuous data along western Sumatra coast. The GPS observation derived from Sumatran GPS Array (SuGAr) and Geospatial Information Agency (BIG). For data processing we used GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) to estimate the co-seismic deformation. From the GPS daily solution, the result shows that the earthquake caused displacement for the GPS stations in Sumatra. GPS stations in northern Sumatra showed the displacement to the northeast with the average displacement was 15 cm. The biggest displacement was found at station BSIM which is located at Simeuleu Island off north west Sumatra coast. GPS station in middle part of Sumatra, the displacement was northwest. The earthquake also caused subsidence for stations in northern Sumatra, but from the time series there was not sign of subsidence was found at middle part of Sumatra. In addition, the effect of the earthquake was worldwide and affected the other GPS Stations around Hindia oceanic.

  2. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    International Nuclear Information System (INIS)

    Ismullah M, Muh. Fawzy; Lantu,; Aswad, Sabrianto; Massinai, Muh. Altin

    2015-01-01

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). The result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault

  3. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    Energy Technology Data Exchange (ETDEWEB)

    Ismullah M, Muh. Fawzy, E-mail: mallaniung@gmail.com [Master Program Geophysical Engineering, Faculty of Mining and Petroleum Engineering (FTTM), Bandung Institute of Technology (ITB), Jl. Ganesha no. 10, Bandung, 40116, Jawa Barat (Indonesia); Lantu,; Aswad, Sabrianto; Massinai, Muh. Altin [Geophysics Program Study, Faculty of Mathematics and Natural Sciences, Hasanuddin University (UNHAS), Jl. PerintisKemerdekaan Km. 10, Makassar, 90245, Sulawesi Selatan (Indonesia)

    2015-04-24

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). The result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault.

  4. Magnetic storm free ULF analysis in relation with earthquakes in Taiwan

    Directory of Open Access Journals (Sweden)

    S. Wen

    2012-05-01

    Full Text Available Despite early optimism, pre-earthquake anomalous phenomena can be determined by using enhanced amplitude at the ultra-low-frequency range from geomagnetic data via the Fourier transform. In reality, accuracy of the enhanced amplitude in relation to earthquakes (deduced from time-varied geomagnetic data would be damaged by magnetic storms and/or other unwanted influences resulting from solar activity and/or variations in the ionosphere, respectively. We substitute values of the cross correlation between amplitudes, summarized from the earthquake-related (0.1–0.01 Hz and the comparable (0.01–0.001 Hz frequency bands, for isolated amplitude enhancements as indexes of determination associated with seismo-magnetic anomalies to mitigate disturbance caused by magnetic storms. A station located about 300 km away from the others is also taken into account to further examine whether changes of the cross correlation values are caused by seismo-magnetic anomalies limited within local regions or not. Analytical results show that the values suddenly decrease near epicenters a few days before and after 67% (= 6/9 of earthquakes (M > = 5 in Taiwan between September 2010 and March 2011. Seismo-magnetic signals determined by using the values of cross correlation methods partially improve results yielded from the Fourier transform alone and provide advantageous information of earthquake locations.

  5. Application and analysis of debris-flow early warning system in Wenchuan earthquake-affected area

    Science.gov (United States)

    Liu, D. L.; Zhang, S. J.; Yang, H. J.; Zhao, L. Q.; Jiang, Y. H.; Tang, D.; Leng, X. P.

    2016-02-01

    The activities of debris flow (DF) in the Wenchuan earthquake-affected area significantly increased after the earthquake on 12 May 2008. The safety of the lives and property of local people is threatened by DFs. A physics-based early warning system (EWS) for DF forecasting was developed and applied in this earthquake area. This paper introduces an application of the system in the Wenchuan earthquake-affected area and analyzes the prediction results via a comparison to the DF events triggered by the strong rainfall events reported by the local government. The prediction accuracy and efficiency was first compared with a contribution-factor-based system currently used by the weather bureau of Sichuan province. The storm on 17 August 2012 was used as a case study for this comparison. The comparison shows that the false negative rate and false positive rate of the new system is, respectively, 19 and 21 % lower than the system based on the contribution factors. Consequently, the prediction accuracy is obviously higher than the system based on the contribution factors with a higher operational efficiency. On the invitation of the weather bureau of Sichuan province, the authors upgraded their prediction system of DF by using this new system before the monsoon of Wenchuan earthquake-affected area in 2013. Two prediction cases on 9 July 2013 and 10 July 2014 were chosen to further demonstrate that the new EWS has high stability, efficiency, and prediction accuracy.

  6. Deformation analysis of Aceh April 11th 2012 earthquake using GPS observation data

    Science.gov (United States)

    Maulida, Putra; Meilano, Irwan; Sarsito, Dina A.; Susilo

    2015-04-01

    This research tries to estimate the co-seismic deformation of intraplate earthquake occurred off northern Sumatra coast which is about 100-200 km southwest of Sumatrasubduction zone. The earthquake mechanism was strike-slip with magnitude 8.6 and triggering aftershock with magnitude 8.2 two hours later. We estimated the co-seismic deformation by using the GPS (Global Positioning System) continuous data along western Sumatra coast. The GPS observation derived from Sumatran GPS Array (SuGAr) and Geospatial Information Agency (BIG). For data processing we used GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) to estimate the co-seismic deformation. From the GPS daily solution, the result shows that the earthquake caused displacement for the GPS stations in Sumatra. GPS stations in northern Sumatra showed the displacement to the northeast with the average displacement was 15 cm. The biggest displacement was found at station BSIM which is located at Simeuleu Island off north west Sumatra coast. GPS station in middle part of Sumatra, the displacement was northwest. The earthquake also caused subsidence for stations in northern Sumatra, but from the time series there was not sign of subsidence was found at middle part of Sumatra. In addition, the effect of the earthquake was worldwide and affected the other GPS Stations around Hindia oceanic.

  7. Earthquake Prediction Analysis Based on Empirical Seismic Rate: The M8 Algorithm

    International Nuclear Information System (INIS)

    Molchan, G.; Romashkova, L.

    2010-07-01

    The quality of space-time earthquake prediction is usually characterized by a two-dimensional error diagram (n,τ), where n is the rate of failures-to-predict and τ is the normalized measure of space-time alarm. The most reasonable space measure for analysis of a prediction strategy is the rate of target events λ(dg) in a sub-area dg. In that case the quantity H = 1-(n +τ) determines the prediction capability of the strategy. The uncertainty of λ(dg) causes difficulties in estimating H and the statistical significance, α, of prediction results. We investigate this problem theoretically and show how the uncertainty of the measure can be taken into account in two situations, viz., the estimation of α and the construction of a confidence zone for the (n,τ)-parameters of the random strategies. We use our approach to analyse the results from prediction of M ≥ 8.0 events by the M8 method for the period 1985-2009 (the M8.0+ test). The model of λ(dg) based on the events Mw ≥ 5.5, 1977-2004, and the magnitude range of target events 8.0 ≤ M < 8.5 are considered as basic to this M8 analysis. We find the point and upper estimates of α and show that they are still unstable because the number of target events in the experiment is small. However, our results argue in favour of non-triviality of the M8 prediction algorithm. (author)

  8. Earthquake prediction analysis based on empirical seismic rate: the M8 algorithm

    Science.gov (United States)

    Molchan, G.; Romashkova, L.

    2010-12-01

    The quality of space-time earthquake prediction is usually characterized by a 2-D error diagram (n, τ), where n is the fraction of failures-to-predict and τ is the local rate of alarm averaged in space. The most reasonable averaging measure for analysis of a prediction strategy is the normalized rate of target events λ(dg) in a subarea dg. In that case the quantity H = 1 - (n + τ) determines the prediction capability of the strategy. The uncertainty of λ(dg) causes difficulties in estimating H and the statistical significance, α, of prediction results. We investigate this problem theoretically and show how the uncertainty of the measure can be taken into account in two situations, viz., the estimation of α and the construction of a confidence zone for the (n, τ)-parameters of the random strategies. We use our approach to analyse the results from prediction of M >= 8.0 events by the M8 method for the period 1985-2009 (the M8.0+ test). The model of λ(dg) based on the events Mw >= 5.5, 1977-2004, and the magnitude range of target events 8.0 <= M < 8.5 are considered as basic to this M8 analysis. We find the point and upper estimates of α and show that they are still unstable because the number of target events in the experiment is small. However, our results argue in favour of non-triviality of the M8 prediction algorithm.

  9. Electromagnetic Manifestation of Earthquakes

    OpenAIRE

    Uvarov Vladimir

    2017-01-01

    In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  10. Electromagnetic Manifestation of Earthquakes

    Directory of Open Access Journals (Sweden)

    Uvarov Vladimir

    2017-01-01

    Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  11. A consistent response spectrum analysis including the resonance range

    International Nuclear Information System (INIS)

    Schmitz, D.; Simmchen, A.

    1983-01-01

    The report provides a complete consistent Response Spectrum Analysis for any component. The effect of supports with different excitation is taken into consideration, at is the description of the resonance ranges. It includes information explaining how the contributions of the eigenforms with higher eigenfrequencies are to be considered. Stocking of floor response spectra is also possible using the method described here. However, modified floor response spectra must now be calculated for each building mode. Once these have been prepared, the calculation of the dynamic component values is practically no more complicated than with the conventional, non-consistent methods. The consistent Response Spectrum Analysis can supply smaller and larger values than the conventional theory, a fact which can be demonstrated using simple examples. The report contains a consistent Response Spectrum Analysis (RSA), which, as far as we know, has been formulated in this way for the first time. A consistent RSA is so important because today this method is preferentially applied as an important tool for the earthquake proof of components in nuclear power plants. (orig./HP)

  12. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  13. Identification of earthquakes that generate tsunamis in Java and Nusa Tenggara using rupture duration analysis

    International Nuclear Information System (INIS)

    Pribadi, S.; Puspito, N. T.; Yudistira, T.; Afnimar,; Ibrahim, G.; Laksono, B. I.; Adnan, Z.

    2014-01-01

    Java and Nusa Tenggara are the tectonically active of Sunda arc. This study discuss the rupture duration as a manifestation of the power of earthquake-generated tsunami. We use the teleseismic (30° - 90°) body waves with high-frequency energy Seismometer is from IRIS network as amount 206 broadband units. We applied the Butterworth high bandpass (1 - 2 Hz) filtered. The arrival and travel times started from wave phase of P - PP which based on Jeffrey Bullens table with TauP program. The results are that the June 2, 1994 Banyuwangi and the July 17, 2006 Pangandaran earthquakes identified as tsunami earthquakes with long rupture duration (To > 100 second), medium magnitude (7.6 50 second which depend on its magnitude. Those events are located far from the trench

  14. Response of a 42-storey steel-frame building to the Ms = 7.1 Loma Prieta earthquake

    Science.gov (United States)

    Safak, E.

    1993-01-01

    A set of 14 acceleration records was obtained from a 42-storey steel-frame building, the Chevron Building, in San Francisco during the Ms = 7.1 Loma Prieta earthquake of 17 October 1989. Data were analysed using a system identification method based on the discretetime linear filtering, and the least-squares estimation techniques. The results show that the response of the building is dominated by two modes: a translational mode in the weaker (southwest-northeast) principal direction of the building at 0.16 Hz with 5% damping, and a translational-torsional mode along the east-west diagonal of the building's cross-section at 0.20 Hz with 7% damping. There are significant contributions from higher modes at 0.54 Hz, 0.62 Hz, 1.02 Hz and 1.09 Hz. All the modes incorporate some torsion, but the amplitudes of torsional components are small, about 10% of translational amplitudes. Soil-structure interaction influences the vibrations near 1.0 Hz. The contribution of soil-structure interaction to the peak displacements of the building is significant, particularly at lower floors. ?? 1993.

  15. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    Science.gov (United States)

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  16. A comparison of socio-economic loss analysis from the 2013 Haiyan Typhoon and Bohol Earthquake events in the Philippines in near real-time

    Science.gov (United States)

    Daniell, James; Mühr, Bernhard; Kunz-Plapp, Tina; Brink, Susan A.; Kunz, Michael; Khazai, Bijan; Wenzel, Friedemann

    2014-05-01

    In the aftermath of a disaster, the extent of the socioeconomic loss (fatalities, homelessness and economic losses) is often not known and it may take days before a reasonable estimate is known. Using the technique of socio-economic fragility functions developed (Daniell, 2014) using a regression of socio-economic indicators through time against historical empirical loss vs. intensity data, a first estimate can be established. With more information from the region as the disaster unfolds, a more detailed estimate can be provided via a calibration of the initial loss estimate parameters. In 2013, two main disasters hit the Philippines; the Bohol earthquake in October and the Haiyan typhoon in November. Although both disasters were contrasting and hit different regions, the same generalised methodology was used for initial rapid estimates and then the updating of the disaster loss estimate through time. The CEDIM Forensic Disaster Analysis Group of KIT and GFZ produced 6 reports for Bohol and 2 reports for Haiyan detailing various aspects of the disasters from the losses to building damage, the socioeconomic profile and also the social networking and disaster response. This study focusses on the loss analysis undertaken. The following technique was used:- 1. A regression of historical earthquake and typhoon losses for the Philippines was examined using the CATDAT Damaging Earthquakes Database, and various Philippines databases respectively. 2. The historical intensity impact of the examined events were placed in a GIS environment in order to allow correlation with the population and capital stock database from 1900-2013 to create a loss function. The modified human development index from 1900-2013 was also used to also calibrate events through time. 3. The earthquake intensity and the wind speed intensity was used from the 2013 events as well as the 2013 capital stock and population in order to calculate the number of fatalities (except in Haiyan), homeless and

  17. Is It Possible to Predict Strong Earthquakes?

    Science.gov (United States)

    Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F.

    2015-07-01

    The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses.

  18. Health education and promotion at the site of an emergency: experience from the Chinese Wenchuan earthquake response.

    Science.gov (United States)

    Tian, Xiangyang; Zhao, Genming; Cao, Dequan; Wang, Duoquan; Wang, Liang

    2016-03-01

    Theories and strategies of social mobilization, capacity building, mass and interpersonal communication, as well as risk communication and behavioral change were used to develop health education and promotion campaigns to decrease and prevent injuries and infectious diseases among the survivors of the Wenchuan earthquake in May 2008. We evaluated the effectiveness of the campaigns and short-term interventions using mixed-methods. The earthquake survivors' health knowledge, skills, and practice improved significantly with respect to injury protection, food and water safety, environmental and personal hygiene, and disease prevention. No infectious disease outbreaks were reported after the earthquake, and the epidemic level was lower than before the earthquake. After a short-term intervention among the students of Leigu Township Primary and Junior School, the proportion of those with personal hygiene increased from 59.7% to 98.3% (pearthquakes play an important role in preventing injuries and infectious diseases among survivors. © The Author(s) 2014.

  19. Simulating Earthquake Rupture and Off-Fault Fracture Response: Application to the Safety Assessment of the Swedish Nuclear Waste Repository

    KAUST Repository

    Falth, B.; Hokmark, H.; Lund, B.; Mai, Paul Martin; Roberts, R.; Munier, R.

    2014-01-01

    To assess the long-term safety of a deep repository of spent nuclear fuel, upper bound estimates of seismically induced secondary fracture shear displacements are needed. For this purpose, we analyze a model including an earthquake fault, which

  20. Towards smart building structures : adaptive structures in earthquake and wind loading control response – a review

    NARCIS (Netherlands)

    Morales-Beltran, M.; Teuffel, P.M.

    2013-01-01

    This article is a review about applications for non-passive control response of buildings (namely active, hybrid and semi-active systems), wherein the degree of integration between control devices and structural system is explored. The purpose is to establish the current state-of-the-art in the

  1. Seismic response analysis of column supported natural draught cooling tower shells

    International Nuclear Information System (INIS)

    Ramanjaneyulu, K.; Gopalakrishnan, S.; Appa Rao, T.V.S.R.

    2003-01-01

    Natural draught cooling towers (NDCTs) belong to the category of large civil engineering structures and are commonly used in nuclear or thermal power plants. Detailed dynamic analysis has to be carried out for design of cooling towers subjected to seismic excitation, considering the flexibility of the columns. Finite ring element formulations for dynamic analysis of cooling tower shell subjected to seismic excitation are presented in this paper. The geometry of a typical tall natural draught cooling tower is considered in this study for carrying out investigations. Transient response of the hyperbolic cooling tower shell subjected to earthquake loading has been analysed by direct time integration using acceleration-time history of North-South component of El-Centro earthquake. Parametric studies have also been carried out to study the influence of flexibility of column supports and damping on the seismic response of cooling tower shell and the results are discussed in the paper. (author)

  2. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  3. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  4. Co-seismic response of water level in the Jingle well (China) associated with the Gorkha Nepal (Mw 7.8) earthquake

    Science.gov (United States)

    He, Anhua; Fan, Xuefang; Zhao, Gang; Liu, Yang; Singh, Ramesh P.; Hu, Yuliang

    2017-09-01

    Changes in co-seismic water levels associated with the Gorkha Nepal earthquake (25 April 2015, Mw 7.8) were recorded in the Jingle well in Shanxi Province China (longitude E112.03°, latitude N38.35°, about 2769 km from epicenter). Based on the observed water levels, we clearly identified signals relating to P, S and surface waves. However, the water temperature recorded at a depth of 350 m shows no co-seismic changes. A spectrum analysis of co-seismic variations of water level shows that the oscillation frequency and amplitude of water level in the borehole are determined by the natural frequency of the borehole, which is not associated with the propagation of seismic waves. The borehole-aquifer system shows a large amplification associated with ground vibrations generated by earthquakes. Considering the local hydro-geological map and the temperature gradient of the Jingle well, a large volume ;groundwater reservoir; model can be used to explain these processes. Due to seismic wave propagation, the volume of a well-confined aquifer expands and contracts forming fractures that change the water flow. In the well-confined aquifer, water levels oscillate simultaneously with high amplitude ground shaking during earthquakes. However, the water in the center of the ;underground reservoir; remains relatively stationary, without any changes in the water temperature. In addition, a possible precursor wave is recorded in the water level at the Jingle well prior to the Gorkha earthquake.

  5. ANALYSIS OF LABOUR ACCIDENTS OCCURRING IN DISASTER RESTORATION WORK FOLLOWING THE NIIGATA CHUETSU EARTHQUAKE (2004) AND THE NIIGATA CHUETSU-OKI EARTHQUAKE (2007)

    Science.gov (United States)

    Itoh, Kazuya; Noda, Masashi; Kikkawa, Naotaka; Hori, Tomohito; Tamate, Satoshi; Toyosawa, Yasuo; Suemasa, Naoaki

    Labour accidents in disaster-relief and disaster restoration work following the Niigata Chuetsu Earthquake (2004) and the Niigata Chuetsu-oki Earthquake (2007) were analysed and characterised in order to raise awareness of the risks and hazards in such work. The Niigata Chuetsu-oki Earthquake affected houses and buildings rather than roads and railways, which are generally disrupted due to landslides or slope failures caused by earthquakes. In this scenario, the predominant type of accident is a "fall to lower level," which increases mainly due to the fact that labourers are working to repair houses and buildings. On the other hand, landslides and slope failures were much more prevalent in the Niigata Chuetsu Earthquake, resulting in more accidents occurring in geotechnical works rather than in construction works. Therefore, care should be taken in preventing "fall to lower level" accidents associated with repair work on the roofs of low-rise houses, "cut or abrasion" accidents due to the demolition of damaged houses and "caught in or compressed by equipment" accidents in road works and water and sewage works.

  6. Analysis of the soil amplification factor in NCSE-02 and Eurocode-8 regulations: application to the 11th May , 2011 Lorca earthquake

    International Nuclear Information System (INIS)

    Corsino Fernandez, C.; Garcia-Mayordomo, J.

    2014-01-01

    Earthquakes are one of the geological hazards which have produced more human and material loses in the history of manking. Seismic engineering has the purpose of studying the soil dynamic behavior in order to desing structures and buildings adapted to the effects triggered by earthquakes. Within this purpose, one of the most important tasks has been the sutdy of the amplifying effect of seismic movement due to ground characteristics, which is often a major cause responsible of the damage produced by earthquakes, even when their magnitude is not very high. In this article, the soil amplifying effects is considered according to two official sismorresistant regulations in Spain: the current Norma de Construccion Sismorresistente Espanola (NCSE-02) and the European regulation Eurocode 8 (EC-8). First, soils classification different criteria is analyzed and how this affects the soil factor and, particularly, the design seismic action in the form of response spectra. Subsequently, we compared the result of apllying both regulations to typical geological scenarios where the application of either regulation may cause notable differences. The second part of the paper deals with the comparison of NCSE-02 and EC-8 applied in the frame of a real case: the 11 t h May, 2011 Lorca earthquake. We compare the response spectra from both regulations to the actual response spectra derived from the accelerometric record of the earthquake at the Lorca station, and discuss which one fits it better. (Author)

  7. Seismic Response of Tunnel Lining for Shallow-Bias Tunnel with a Small Clear Distance under Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2018-01-01

    Full Text Available In order to study the internal force characteristics of shallow-bias tunnel with a small clear distance in earthquake, a large-scale shaking table slope model test was designed, and the geometric scale was 1 : 10. In the model test, the Wenchuan (WC seismic wave was used as the excitation wave. Then, the three-dimensional numerical model was established by using MIDAS-NX, and the reliability of the numerical model was verified by comparing the acceleration of the test results. The axial force, bending moment, and shear force of the tunnel cross section and longitudinal direction were calculated by the numerical model under different excitation directions included the horizontal direction (X, the vertical direction (Z, and the horizontal and vertical direction (XZ. The results show the following. (1 The internal force of right arch foot of left hole and the left arch foot of right hole is larger than other part of the tunnels because the distance between the two tunnels is smaller and they interact with each other. (2 The loading direction of single direction loading method is different and the variation trend of tunnel force are different, so the loading direction of seismic wave has a significant influence on the seismic force response of the tunnel. (3 All of the internal force values of tunnel lining under the seismic wave action in bidirection are larger than those in single direction. The value is not a simple superposition of two directions and has some coupling effect. The influence of the vertical seismic wave cannot be ignored in dynamic response research. These results improve the understanding of the rock slope with small spacing tunnel under seismic action.

  8. InSAR Analysis of Post-Seismic Deformation Following the 2013 Mw 7.7 Balochistan, Pakistan Earthquake

    Science.gov (United States)

    Peterson, K.; Barnhart, W. D.

    2017-12-01

    On September 24th, 2013, a Mw 7.7 earthquake ruptured a 200 km portion of the Hoshab fault, a reverse fault in the Makran accretionary prism of southern Pakistan. This earthquake is notable because it ruptured a reverse fault with a predominantly strike-slip sense of displacement, and it ruptured a mechanically weak accretionary prism. Here, we present initial analysis of ongoing post-seismic deformation imaged with the Sentinel-1 interferometric synthetic aperture radar (InSAR) mission with the goals of a) determining the dominant post-seismic deformation processes active, b) characterizing the rigidity and rheological structure of a flat-slab subduction zone, and c) elucidating whether post-seismic deformation may account for or exacerbate the 4-6 m fault convergence deficit left by the 2013 earthquake. We first present InSAR time series analysis of the post-seismic transient derived from ongoing Sentinel-1 SAR acquisitions, including a comparison of atmosphere-corrected and uncorrected time series. Interferograms spanning December 2014 to the present reveal an ongoing post-seismic deformation transient in the region surrounding the Hoshab fault. Additionally, fault creep signals on and adjacent to the Hoshab fault are present. Second, we present a suite of forward models that explore the potential contributions of viscoelastic relaxation and frictional afterslip to the recorded displacement signal. These models, conducted using the semi-analytical solutions of RELAX and compared to InSAR line-of-sight time series displacements, explore a range of candidate rheological descriptions of the Makran subduction zone that are designed to probe the rheological structure of a region where current knowledge of the subsurface geology is highly limited. Our preliminary results suggest that post-seismic displacements arise from a combination of viscoelastic deformation and frictional afterslip, as opposed to one single mechanism. Additionally, our preliminary results suggest

  9. Applicability of soil-structure interaction analysis methods for earthquake loadings (IV)

    International Nuclear Information System (INIS)

    Chang, S. P.; Ko, H. M.; Kim, J. K.; Yoon, J. Y.; Chin, B. M.; Yang, T. S.; Park, D. H.; Chung, W.; Park, J. Y.

    1996-07-01

    The ultimate goals of this research are to cultivate the capability of accurate SSI analysis and to develop the effective soil-structure interaction analysis method and computer program by comparing analysis results obtained in Lotung/Hualien LSST project. In this research, computer analysis program using hyper element was developed to analyze the forced vibration test and seismic test of the on-going Hualien LSST project. Prediction analysis and post-prediction analysis for Hualien LSST forced vibration and seismic response were executed by developed program. Thus this report is mainly composed of two parts. One is the summary of theoretical background of hyper element and the other is prediction analysis and post-prediction analysis results for Hualien LSST forced vibration and seismic response tests executed by developed program. Also, a coupling method of hyper element and generalized three-dimensional finite element or general axisymmetric finite element was presented for the further development of computer analysis program related to three dimensional hybrid soil-structure interaction and for the verification, the dynamic stiffness' of rigid circular /rectangular foundation are calculated. It is confirmed that program using hyper element is efficient and practical because it can consider non-homogeneity easily and execute the analysis in short time by using analytic solution m horizontal direction

  10. Coherency analysis of accelerograms recorded by the UPSAR array during the 2004 Parkfield earthquake

    DEFF Research Database (Denmark)

    Konakli, Katerina; Kiureghian, Armen Der; Dreger, Douglas

    2014-01-01

    Spatial variability of near-fault strong motions recorded by the US Geological Survey Parkfield Seismograph Array (UPSAR) during the 2004 Parkfield (California) earthquake is investigated. Behavior of the lagged coherency for two horizontal and the vertical components is analyzed by separately...

  11. Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2015-12-01

    The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the

  12. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  13. Preliminary analysis of strong-motion recordings from the 28 September 2004 Parkfield, California earthquake

    Science.gov (United States)

    Shakal, A.; Graizer, V.; Huang, M.; Borcherdt, R.; Haddadi, H.; Lin, K.-W.; Stephens, C.; Roffers, P.

    2005-01-01

    The Parkfield 2004 earthquake yielded the most extensive set of strong-motion data in the near-source region of a magnitude 6 earthquake yet obtained. The recordings of acceleration and volumetric strain provide an unprecedented document of the near-source seismic radiation for a moderate earthquake. The spatial density of the measurements alon g the fault zone and in the linear arrays perpendicular to the fault is expected to provide an exceptional opportunity to develop improved models of the rupture process. The closely spaced measurements should help infer the temporal and spatial distribution of the rupture process at much higher resolution than previously possible. Preliminary analyses of the peak a cceleration data presented herein shows that the motions vary significantly along the rupture zone, from 0.13 g to more than 2.5 g, with a map of the values showing that the larger values are concentrated in three areas. Particle motions at the near-fault stations are consistent with bilateral rupture. Fault-normal pulses similar to those observed in recent strike-slip earthquakes are apparent at several of the stations. The attenuation of peak ground acceleration with distance is more rapid than that indicated by some standard relationships but adequately fits others. Evidence for directivity in the peak acceleration data is not strong. Several stations very near, or over, the rupturing fault recorded relatively low accelerations. These recordings may provide a quantitative basis to understand observations of low near-fault shaking damage that has been reported in other large strike-slip earthquak.

  14. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  15. Artificial earthquake record generation using cascade neural network

    Directory of Open Access Journals (Sweden)

    Bani-Hani Khaldoon A.

    2017-01-01

    Full Text Available This paper presents the results of using artificial neural networks (ANN in an inverse mapping problem for earthquake accelerograms generation. This study comprises of two parts: 1-D site response analysis; performed for Dubai Emirate at UAE, where eight earthquakes records are selected and spectral matching are performed to match Dubai response spectrum using SeismoMatch software. Site classification of Dubai soil is being considered for two classes C and D based on shear wave velocity of soil profiles. Amplifications factors are estimated to quantify Dubai soil effect. Dubai’s design response spectra are developed for site classes C & D according to International Buildings Code (IBC -2012. In the second part, ANN is employed to solve inverse mapping problem to generate time history earthquake record. Thirty earthquakes records and their design response spectrum with 5% damping are used to train two cascade forward backward neural networks (ANN1, ANN2. ANN1 is trained to map the design response spectrum to time history and ANN2 is trained to map time history records to the design response spectrum. Generalized time history earthquake records are generated using ANN1 for Dubai’s site classes C and D, and ANN2 is used to evaluate the performance of ANN1.

  16. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  17. Nowcasting Earthquakes and Tsunamis

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk

  18. Modern earthquake engineering offshore and land-based structures

    CERN Document Server

    Jia, Junbo

    2017-01-01

    This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.

  19. Simulating Earthquake Rupture and Off-Fault Fracture Response: Application to the Safety Assessment of the Swedish Nuclear Waste Repository

    KAUST Repository

    Falth, B.

    2014-12-09

    To assess the long-term safety of a deep repository of spent nuclear fuel, upper bound estimates of seismically induced secondary fracture shear displacements are needed. For this purpose, we analyze a model including an earthquake fault, which is surrounded by a number of smaller discontinuities representing fractures on which secondary displacements may be induced. Initial stresses are applied and a rupture is initiated at a predefined hypocenter and propagated at a specified rupture speed. During rupture we monitor shear displacements taking place on the nearby fracture planes in response to static as well as dynamic effects. As a numerical tool, we use the 3Dimensional Distinct Element Code (3DEC) because it has the capability to handle numerous discontinuities with different orientations and at different locations simultaneously. In tests performed to benchmark the capability of our method to generate and propagate seismic waves, 3DEC generates results in good agreement with results from both Stokes solution and the Compsyn code package. In a preliminary application of our method to the nuclear waste repository site at Forsmark, southern Sweden, we assume end-glacial stress conditions and rupture on a shallow, gently dipping, highly prestressed fault with low residual strength. The rupture generates nearly complete stress drop and an M-w 5.6 event on the 12 km(2) rupture area. Of the 1584 secondary fractures (150 m radius), with a wide range of orientations and locations relative to the fault, a majority move less than 5 mm. The maximum shear displacement is some tens of millimeters at 200 m fault-fracture distance.

  20. Stress Drops for Oceanic Crust and Mantle Intraplate Earthquakes in the Subduction Zone of Northeastern Japan Inferred from the Spectral Inversion Analysis

    Science.gov (United States)

    Si, H.; Ishikawa, K.; Arai, T.; Ibrahim, R.

    2017-12-01

    Understanding stress drop related to intraplate earthquakes in the subducting plate is very important for seismic hazard mitigation. In previous studies, Kita et al. (2015) analyzed stress drops for intraplate earthquakes under Hokkaido, Northern Japan, using S-coda wave spectral ratio analysis methods, and found that the stress drop for events occurring more than 10 km beneath the upper surface of the subducting plate (within the oceanic mantle) was larger than the stress drop for events occurring within 10 km of the upper surface of the subducting plate (in the oceanic crust). In this study, we focus on intraplate earthquakes that occur under Tohoku, Northeastern Japan, to determine whether similar stress drop differences may exist between earthquakes occurring within the upper 10 km of the subducting plate (within the oceanic crust) and those occurring deeper than 10 km (within the oceanic mantle), based on spectral inversion analysis of seismic waveforms recorded during the earthquakes. We selected 64 earthquakes with focal depths between 49-76 km and Mw 3.5-5.0 that occurred in the source area of the 2003 Miyagi-ken-oki earthquake (Mw 7.0) (region 1), and 82 earthquakes with focal depths between 49-67 km and Mw 3.5-5.5 in the source area of the 2011 Miyagi- ken-oki earthquake (Mw 7.1) (region 2). Records from the target earthquakes at 24 stations in region 1 and 21 stations in region 2 were used in the analysis. A 5-sec time window following S-wave onset was used for each station record. Borehole records of KiK-net station (MYGH04) was used as a reference station for both regions 1 and 2. We applied the spectral inversion analysis method of Matsunami et al. (2003) separately to regions 1 and 2. Our results show that stress drop generally increases with focal depth and that the stress drop for events occurring deeper than 10 km in the plate (within the oceanic mantle) were larger than the stress drop for events occurring within 10 km of the upper surface of the

  1. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions

    Science.gov (United States)

    Spudich, P.; Hellweg, M.; Lee, W.H.K.

    1996-01-01

    The Northridge earthquake caused 1.78 g acceleration in the east-west direction at a site in Tarzana, California, located about 6 km south of the mainshock epicenter. The accelerograph was located atop a hill about 15-m high, 500-m long, and 130-m wide, striking about N78??E. During the aftershock sequence, a temporary array of 21 three-component geophones was deployed in six radial lines centered on the accelerograph, with an average sensor spacing of 35 m. Station COO was located about 2 m from the accelerograph. We inverted aftershock spectra to obtain average relative site response at each station as a function of direction of ground motion. We identified a 3.2-Hz resonance that is a transverse oscillation of the hill (a directional topographic effect). The top/base amplification ratio at 3.2 Hz is about 4.5 for horizontal ground motions oriented approximately perpendicular to the long axis of the hill and about 2 for motions parallel to the hill. This resonance is seen most strongly within 50 m of COO. Other resonant frequencies were also observed. A strong lateral variation in attenuation, probably associated with a fault, caused substantially lower motion at frequencies above 6 Hz at the east end of the hill. There may be some additional scattered waves associated with the fault zone and seen at both the base and top of the hill, causing particle motions (not spectral ratios) at the top of the hill to be rotated about 20?? away from the direction transverse to the hill. The resonant frequency, but not the amplitude, of our observed topographic resonance agrees well with theory, even for such a low hill. Comparisons of our observations with theoretical results indicate that the 3D shape of the hill and its internal structure are important factors affecting its response. The strong transverse resonance of the hill does not account for the large east-west mainshock motions. Assuming linear soil response, mainshock east-west motions at the Tarzana accelerograph

  2. Atlas of Wenchuan-Earthquake Geohazards : Analysis of co-seismic and post-seismic Geohazards in the area affected by the 2008 Wenchuan Earthquake

    NARCIS (Netherlands)

    Tang, Chuan; van Westen, C.J.

    2018-01-01

    This atlas provides basic information and overviews of the occurrence of co-seismic landslides, the subsequent rainstorm-induced debris flows, and the methods used for hazard and risk assessment in the Wenchuan-earthquake affected area. The atlas pages are illustrated with maps, photos and graphs,

  3. The January 2001, El Salvador Earthquake: A Multi-data Analysis

    Science.gov (United States)

    Vallee, M.; Bouchon, M.; Schwartz, S. Y.

    On January 13, 2001, a large normal intermediate depth event (Mw=7.7) occured 40 km away from the Salvadorian coast (Central America). We analysed this earthquake with different sets of seismic data. Because teleseismic waves are the only data which offer a good azimuthal coverage, we first built a kinematic source model with P, SH and surface waves provided by the IRIS,GEOSCOPE and NCEDC networks. P and SH waves were used through a theoretical Green function approach whereas surface waves were used through an Empirical Green Function (EGF) approach. The ambigu- ity between the 30-dipping plane (plunging toward Pacific Ocean) and the 60-degree dipping plane (plunging toward Central America) lead us to do a parallel analysis of the two possible planes. After having relocated the hypocentral depth to 54 km, we tried to retrieve the kinematic features of the rupture. We allowed variable rupture ve- locity (through a finite difference scheme) and variable slip and solved this inverse problem with a combination of the Neighborhood algorithm of Sambridge (1999) and the Simplex method. We found for both planes an updip and northwest rupture prop- agation yielding a centroid depth around 48km. The teleseismic data give a slight preferrence for the 60-dipping plane. In the second part of the study, we tested the two possible fault models with other seismological data, that are (1) regional broad- band data and (2) near-field accelerometers provided by Universidad Centroameri- cana (UCA). Regional data do not allow to discriminate between the two models but near-field data confirm that the fault plane is the steeper one plunging toward Central America. This event initiated at a depth of about 54km on the 60-dipping plane, and rupture propagated mostly updip and to the northwest, breaking a surface of approx- imately 30km*50km with an average slip of about 3.5 m. The large amount of slip occurs updip from the hypocenter near the plate interface. This is better explained by

  4. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  5. The costs and benefits of reconstruction options in Nepal using the CEDIM FDA modelled and empirical analysis following the 2015 earthquake

    Science.gov (United States)

    Daniell, James; Schaefer, Andreas; Wenzel, Friedemann; Khazai, Bijan; Girard, Trevor; Kunz-Plapp, Tina; Kunz, Michael; Muehr, Bernhard

    2016-04-01

    Over the days following the 2015 Nepal earthquake, rapid loss estimates of deaths and the economic loss and reconstruction cost were undertaken by our research group in conjunction with the World Bank. This modelling relied on historic losses from other Nepal earthquakes as well as detailed socioeconomic data and earthquake loss information via CATDAT. The modelled results were very close to the final death toll and reconstruction cost for the 2015 earthquake of around 9000 deaths and a direct building loss of ca. 3 billion (a). A description of the process undertaken to produce these loss estimates is described and the potential for use in analysing reconstruction costs from future Nepal earthquakes in rapid time post-event. The reconstruction cost and death toll model is then used as the base model for the examination of the effect of spending money on earthquake retrofitting of buildings versus complete reconstruction of buildings. This is undertaken future events using empirical statistics from past events along with further analytical modelling. The effects of investment vs. the time of a future event is also explored. Preliminary low-cost options (b) along the line of other country studies for retrofitting (ca. 100) are examined versus the option of different building typologies in Nepal as well as investment in various sectors of construction. The effect of public vs. private capital expenditure post-earthquake is also explored as part of this analysis, as well as spending on other components outside of earthquakes. a) http://www.scientificamerican.com/article/experts-calculate-new-loss-predictions-for-nepal-quake/ b) http://www.aees.org.au/wp-content/uploads/2015/06/23-Daniell.pdf

  6. Fear based Education or Curiosity based Education as an Example of Earthquake and Natural Disaster Education: Results of Statistical Study in Primary Schools in Istanbul-Turkey

    Science.gov (United States)

    Ozcep, T.; Ozcep, F.

    2012-04-01

    Natural disaster reduction focuses on the urgent need for prevention activities to reduce loss of life, damage to property, infrastructure and environment, and the social and economic disruption caused by natural hazards. One of the most important factors in reduction of the potential damage of earthquakes is trained manpower. To understanding the causes of earthquakes and other natural phenomena (landslides, avalanches, floods, volcanoes, etc.) is one of the pre-conditions to show a conscious behavior. The aim of the study is to analysis and to investigate, how earthquakes and other natural phenomena are perceived by the students and the possible consequences of this perception, and their effects of reducing earthquake damage. One of the crucial questions is that is our education system fear or curiosity based education system? Effects of the damages due to earthquakes have led to look like a fear subject. In fact, due to the results of the effects, the earthquakes are perceived scary phenomena. In the first stage of the project, the learning (or perception) levels of earthquakes and other natural disasters for the students of primary school are investigated with a survey. Aim of this survey study of earthquakes and other natural phenomena is that have the students fear based or curiosity based approaching to the earthquakes and other natural events. In the second stage of the project, the path obtained by the survey are evaluated with the statistical point of approach. A questionnaire associated with earthquakes and natural disasters are applied to primary school students (that total number of them is approximately 700 pupils) to measure the curiosity and/or fear levels. The questionnaire consists of 17 questions related to natural disasters. The questions are: "What is the Earthquake ?", "What is power behind earthquake?", "What is the mental response during the earthquake ?", "Did we take lesson from earthquake's results ?", "Are you afraid of earthquake

  7. Comprehensive analysis of tornado statistics in comparison to earthquakes: intensity and temporal behaviour

    Directory of Open Access Journals (Sweden)

    L. Schielicke

    2013-01-01

    Full Text Available Tornadoes and earthquakes are characterised by a high variability in their properties concerning intensity, geometric properties and temporal behaviour. Earthquakes are known for power-law behaviour in their intensity (Gutenberg–Richter law and temporal statistics (e.g. Omori law and interevent waiting times. The observed similarity of high variability of these two phenomena motivated us to compare the statistical behaviour of tornadoes using seismological methods and quest for power-law behaviour. In general, the statistics of tornadoes show power-law behaviour partly coextensive with characteristic scales when the temporal resolution is high (10 to 60 min. These characteristic scales match with the typical diurnal behaviour of tornadoes, which is characterised by a maximum of tornado occurrences in the late afternoon hours. Furthermore, the distributions support the observation that tornadoes cluster in time. Finally, we shortly discuss a possible similar underlying structure composed of heterogeneous, coupled, interactive threshold oscillators that possibly explains the observed behaviour.

  8. Coulomb stress analysis of the 21 February 2008 Mw= 6.0 Wells, Nevada, earthquake

    Science.gov (United States)

    Sevilgen, Volkan

    2011-01-01

    Static Coulomb stress changes imparted by the February 21, 2008 Wells, Nevada earthquake are calculated, using an 8 x 6 km rectangular patch with a uniform slip as a source fault. Stress changes are resolved on nearby active faults using their rake, dip, and strike direction, assuming a fault friction of 0.4. The largest Coulomb stress increase (0.2 bars) imparted to surrounding major active faults from the Wells earthquake occurs on the Clover Hill fault, which may be the southern continuation of the ruptured fault. A 0.1 bar Coulomb stress increase is calculated on the western Snake Mountains fault. Coulomb stress decreases of 0.5 bars are calculated for the northern parts of the Independence and Ruby Mountains faults. The Coulomb stress change is calculated on relocated aftershocks assuming that they have the same strike, dip, and rake, as the source fault. Under this assumption, 75% of the aftershocks received a Coulomb stress increase.

  9. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  10. A detailed analysis of some local earthquakes at Somma-Vesuvius

    Directory of Open Access Journals (Sweden)

    C. Troise

    1999-06-01

    Full Text Available In this paper, we analyze local earthquakes which occurred at Somma-Vesuvius during two episodes of intense seismic swarms, in 1989 and 1995 respectively. For the selected earthquakes we have computed accurate hypocentral locations, focal mechanisms and spectral parameters. We have also studied the ground acceleration produced by the largest events of the sequences (ML 3.0, at various digital stations installed in the area during the periods of higher seismic activity. The main result is that seismicity during the two swarm episodes presents similar features in both locations and focal mechanisms. Strong site dependent effects are evidenced in the seismic radiation and strong amplifications in the frequency band 10-15 Hz are evident at stations located on the younger Vesuvius structure, with respect to one located on the ancient Somma structure. Furthermore, seismic stations show peak accelerations for the same events of more than one order of magnitude apart.

  11. Mothers Coping With Bereavement in the 2008 China Earthquake: A Dual Process Model Analysis.

    Science.gov (United States)

    Chen, Lin; Fu, Fang; Sha, Wei; Chan, Cecilia L W; Chow, Amy Y M

    2017-01-01

    The purpose of this study is to explore the grief experiences of mothers after they lost their children in the 2008 China earthquake. Informed by the Dual Process Model, this study conducted in-depth interviews to explore how six bereaved mothers coped with such grief over a 2-year period. Right after the earthquake, these mothers suffered from intensive grief. They primarily coped with loss-oriented stressors. As time passed, these mothers began to focus on restoration-oriented stressors to face changes in life. This coping trajectory was a dynamic and integral process, which bereaved mothers oscillated between loss- and restoration-oriented stressors. This study offers insight in extending the existing empirical evidence of the Dual Process Model.

  12. Combination of torsional, rotational and translational responses in the seismic analysis of a nuclear power plant

    International Nuclear Information System (INIS)

    Morrone, A.

    1979-01-01

    A particular type of seismic analysis performed on the Nuclear Island Buildings (NIB) complex of a nuclear power plant and the methods developed to combine torsional, rotational and translational responses are described. The NIB complex analyzed consists of various buildings supported on a common foundation mat and tied together from the underground foundation to the roof levels. Three independent building mathematical models were used for the three components of the earthquake with a lumped-mass method utilizing direct integration of the coupled equations of motion. The input ground acceleration time histories were based on three 20 s long statistically independent records whose normalized response spectra enveloped those of Regulatory Guide 1.60. A linear stochastic model was used to generate these records which simulated strong motion earthquakes. Due to site characteristics, the soil material properties were calculated considering different ranges of soil moduli below and above the foundation. (orig.)

  13. Combination of torsional, rotational and translational responses in the seismic analysis of a nuclear power plant

    International Nuclear Information System (INIS)

    Morrone, A.; Sigal, G.B.

    1979-01-01

    A particular type of seismic analysis performed on the Nuclear Island Buildings (NIB) complex of a nuclear power plant and the methods developed to combine torsional, rotational and translational responses are described. The NIB complex analyzed consists of various buildings supported on a common foundation mat and tied together from the underground foundation to the roof levels. Three independent building mathematical models were used for the three components of the earthquake with a lumped-mass method utilizing direct integration of the coupled equations of motion. The input ground acceleration time histories were based on three 20 s long statistically independent records whose mormalized response spectra enveloped those of Regulatory Guide 1.60. A linear stochastic model was used to generate these records which simulated strong motion earthquakes. Due to site characteristics, the soil material properties were calculated considering different ranges of soil moduli below and above the foundation

  14. Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake

    OpenAIRE

    Liang Lu; Zongjian Wang; Xiaoyuan Huang; Bin Zheng; Katsuhiko Arai

    2014-01-01

    The results of laboratory model tests for simulating the slope failure due to vibration, including unreinforced slope and the slope reinforced by using geotextile, show that the slope failure occurs when a cumulative plastic displacement exceeds a certain critical value. To overcome the defects of conventional stability analysis, which evaluates the slope characteristics only by its strength parameters, a numerical procedure considering the stiffness and deformation of materials and geosynthe...

  15. Earthquake hazard analysis for the different regions in and around Ağrı

    Energy Technology Data Exchange (ETDEWEB)

    Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr [Karadeniz Technical University, Trabzon (Turkey); Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr [Ağrı İbrahim Çeçen University, Ağrı (Turkey)

    2016-04-18

    We investigated earthquake hazard parameters for Eastern part of Turkey by determining the a and b parameters in a Gutenberg–Richter magnitude–frequency relationship. For this purpose, study area is divided into seven different source zones based on their tectonic and seismotectonic regimes. The database used in this work was taken from different sources and catalogues such as TURKNET, International Seismological Centre (ISC), Incorporated Research Institutions for Seismology (IRIS) and The Scientific and Technological Research Council of Turkey (TUBITAK) for instrumental period. We calculated the a value, b value, which is the slope of the frequency–magnitude Gutenberg–Richter relationship, from the maximum likelihood method (ML). Also, we estimated the mean return periods, the most probable maximum magnitude in the time period of t-years and the probability for an earthquake occurrence for an earthquake magnitude ≥ M during a time span of t-years. We used Zmap software to calculate these parameters. The lowest b value was calculated in Region 1 covered Cobandede Fault Zone. We obtain the highest a value in Region 2 covered Kagizman Fault Zone. This conclusion is strongly supported from the probability value, which shows the largest value (87%) for an earthquake with magnitude greater than or equal to 6.0. The mean return period for such a magnitude is the lowest in this region (49-years). The most probable magnitude in the next 100 years was calculated and we determined the highest value around Cobandede Fault Zone. According to these parameters, Region 1 covered the Cobandede Fault Zone and is the most dangerous area around the Eastern part of Turkey.

  16. Disaster preparedness and response improvement: comparison of the 2010 Haiti earthquake-related diagnoses with baseline medical data.

    Science.gov (United States)

    van Berlaer, Gerlant; Staes, Tom; Danschutter, Dirk; Ackermans, Ronald; Zannini, Stefano; Rossi, Gabriele; Buyl, Ronald; Gijs, Geert; Debacker, Michel; Hubloue, Ives

    2017-10-01

    Disaster medicine research generally lacks control groups. This study aims to describe categories of diagnoses encountered by the Belgian First Aid and Support Team after the 2010 Haiti earthquake and extract earthquake-related changes from comparison with comparable baseline data. The hypothesis is that besides earthquake-related trauma, medical problems emerge soon, questioning an appropriate composition of Foreign Medical Teams and Interagency Emergency Health Kits. Using a descriptive cohort study design, diagnoses of patients presenting to the Belgian field hospital were prospectively registered during 4 weeks after the earthquake and compared with those recorded similarly by Médecins Sans Frontières in the same area and time span in previous and later years. Of 7000 triaged postearthquake patients, 3500 were admitted, of whom 2795 were included and analysed. In the fortnight after the earthquake, 90% suffered from injury. In the following fortnight, medical diseases emerged, particularly respiratory (23%) and digestive (14%). More than 53% developed infections within 3 weeks after the event. Médecins Sans Frontières registered 6407 patients in 2009; 6033 in 2011; and 7300 in 2012. A comparison indicates that postearthquake patients suffered significantly less from violence, but more from wounds, respiratory, digestive and ophthalmological diseases. This is the first comparison of postearthquake diagnoses with baseline data. Within 2 weeks after the acute phase of an earthquake, respiratory, digestive and ophthalmological problems will emerge to the prejudice of trauma. This fact should be anticipated when composing Foreign Medical Teams and Interagency Emergency Health Kits to be sent to the disaster site.

  17. United States earthquake early warning system: how theory and analysis can save America before the big one happens

    OpenAIRE

    Rockabrand, Ryan

    2017-01-01

    Approved for public release; distribution is unlimited The United States is extremely vulnerable to catastrophic earthquakes. More than 143 million Americans may be threatened by damaging earthquakes in the next 50 years. This thesis argues that the United States is unprepared for the most catastrophic earthquakes the country faces today. Earthquake early warning systems are a major solution in practice to reduce economic risk, to protect property and the environment, and to save lives. Ot...

  18. Proposal of methodology of tsunami accident sequence analysis induced by earthquake using DQFM methodology

    International Nuclear Information System (INIS)

    Muta, Hitoshi; Muramatsu, Ken

    2017-01-01

    Since the Fukushima-Daiichi nuclear power station accident, the Japanese regulatory body has improved and upgraded the regulation of nuclear power plants, and continuous effort is required to enhance risk management in the mid- to long term. Earthquakes and tsunamis are considered as the most important risks, and the establishment of probabilistic risk assessment (PRA) methodologies for these events is a major issue of current PRA. The Nuclear Regulation Authority (NRA) addressed the PRA methodology for tsunamis induced by earthquakes, which is one of the methodologies that should be enhanced step by step for the improvement and maturity of PRA techniques. The AESJ standard for the procedure of seismic PRA for nuclear power plants in 2015 provides the basic concept of the methodology; however, details of the application to the actual plant PRA model have not been sufficiently provided. This study proposes a detailed PRA methodology for tsunamis induced by earthquakes using the DQFM methodology, which contributes to improving the safety of nuclear power plants. Furthermore, this study also states the issues which need more research. (author)

  19. Failure analysis of pebble bed reactors during earthquake by discrete element method

    International Nuclear Information System (INIS)

    Keppler, Istvan

    2013-01-01

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios

  20. Failure analysis of pebble bed reactors during earthquake by discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Keppler, Istvan, E-mail: keppler.istvan@gek.szie.hu [Department of Mechanics and Engineering Design, Szent István University, Páter K.u.1., Gödöllő H-2103 (Hungary)

    2013-05-15

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios.

  1. The Advanced Rapid Imaging and Analysis (ARIA) Project: Status of SAR products for Earthquakes, Floods, Volcanoes and Groundwater-related Subsidence

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Sacco, G. F.; Manipon, G.; Linick, J. P.; Fielding, E. J.; Lundgren, P.; Farr, T. G.; Webb, F.; Rosen, P. A.; Simons, M.

    2017-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating high-level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques including Interferometric Synthetic Aperture Radar (InSAR), differential Global Positioning System, and SAR-based change detection have become critical additions to our toolset for understanding and mapping the damage and deformation caused by earthquakes, volcanic eruptions, floods, landslides, and groundwater extraction. Up until recently, processing of these data sets has been handcrafted for each study or event and has not generated products rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by the California Institute of Technology and by NASA through the Jet Propulsion Laboratory, has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition to supporting the growing science and hazard response communities, the ARIA project has developed the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the influx of raw SAR data from geodetic imaging missions such as ESA's Sentinel-1A/B, now operating with repeat intervals as short as 6 days, and the upcoming NASA NISAR mission. We will present the progress and results we have made on automating the analysis of Sentinel-1A/B SAR data for hazard monitoring and response, with emphasis on recent developments and end user engagement in flood extent mapping and deformation time series for both volcano

  2. The Implementation of Corporate Social Responsibility (CSR in Central Java Earthquake: A Preliminary Study on Consumer Belief, Attitude, and Purchase Intention

    Directory of Open Access Journals (Sweden)

    Kresno Agus Hendarto

    2009-09-01

    Full Text Available In Indonesia, Law No. 40/2007 paragraph 74 on Limited Liability Corporation regulates corporate social responsibility (CSR. Although CSR is mandatory for Indonesian resource-based firms, only four months after its enactment, six parties have asked for a judicial review to the Constitution Court as to the mandatory implementation of CSR. They argue that the mandatory implementation of CSR might result in legal uncertainty, render businesses inefficient, decrease competitiveness, and trigger discriminative treatments. Using the cases of CSR after the earthquake in Yogyakarta, this paper aims at answering the question of whether the implementation of CSR will lead to a decrease in competitiveness. Harnessing a mixed method of qualitative and quantitative approaches, this paper examines the models of beliefs, attitudes, and purchase intentions of consumers toward a company implementing CSR. The first phase of this study used a focus group discussion (FGD to collect data from those who had benefited from CSR, and was analyzed using the content analysis. The results of the first phase then became the basis for the second phase. In the second phase, data were collected by surveying parents of school children whose school buildings were reconstructed by CSR programs, and answers were analyzed using the partial least squares analysis. Results show that the conjecture that the implementation of CSR will result in a decrease in competitiveness is not true. It is evident that CSR program affects the attitudes of consumers toward the firm, and that attitude fully mediates the relation between beliefs and purchase intentions toward the products of the firm implementing CSR.

  3. USGS Earthquake Program GPS Use Case : Earthquake Early Warning

    Science.gov (United States)

    2015-03-12

    USGS GPS receiver use case. Item 1 - High Precision User (federal agency with Stafford Act hazard alert responsibilities for earthquakes, volcanoes and landslides nationwide). Item 2 - Description of Associated GPS Application(s): The USGS Eart...

  4. Seismic Response Analysis of Assembled Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Je, Sang-Yun; Chang, Yoon-Suk; Kang, Sung-Sik

    2015-01-01

    RVIs (Reactor Vessel Internals) perform important safe-related functions such as upholding the nuclear fuel assembly as well as providing the coolant passage of the reactor core and supporting the control rod drive mechanism. Therefore, the components including RVIs have to be designed and constructed taking into account the structural integrity under various accident scenarios. The reliable seismic analysis is essentially demanded to maintain the safe-related functions of RVIs. In this study, a modal analysis was performed based on the previous researches to examine values of frequencies, mode shapes and participation factors. Subsequently, the structural integrity respecting to the earthquake was evaluated through a response spectrum analysis by using the output variables of modal analysis. In this study, the structural integrity of the assembled RVIs was carried out against the seismic event via the modal and response spectrum analyses. Even though 287MPa of the maximum stress value occurred at the connected region between UGS and CSA, which was lower than its allowable value. At present, fluid-structure interaction effects are being examined for further realistic simulation, which will be reported in the near future

  5. Hotspots, Lifelines, and the Safrr Haywired Earthquake Sequence

    Science.gov (United States)

    Ratliff, J. L.; Porter, K.

    2014-12-01

    Though California has experienced many large earthquakes (San Francisco, 1906; Loma Prieta, 1989; Northridge, 1994), the San Francisco Bay Area has not had a damaging earthquake for 25 years. Earthquake risk and surging reliance on smartphones and the Internet to handle everyday tasks raise the question: is an increasingly technology-reliant Bay Area prepared for potential infrastructure impacts caused by a major earthquake? How will a major earthquake on the Hayward Fault affect lifelines (roads, power, water, communication, etc.)? The U.S. Geological Survey Science Application for Risk Reduction (SAFRR) program's Haywired disaster scenario, a hypothetical two-year earthquake sequence triggered by a M7.05 mainshock on the Hayward Fault, addresses these and other questions. We explore four geographic aspects of lifeline damage from earthquakes: (1) geographic lifeline concentrations, (2) areas where lifelines pass through high shaking or potential ground-failure zones, (3) areas with diminished lifeline service demand due to severe building damage, and (4) areas with increased lifeline service demand due to displaced residents and businesses. Potential mainshock lifeline vulnerability and spatial demand changes will be discerned by superimposing earthquake shaking, liquefaction probability, and landslide probability damage thresholds with lifeline concentrations and with large-capacity shelters. Intersecting high hazard levels and lifeline clusters represent potential lifeline susceptibility hotspots. We will also analyze possible temporal vulnerability and demand changes using an aftershock shaking threshold. The results of this analysis will inform regional lifeline resilience initiatives and response and recovery planning, as well as reveal potential redundancies and weaknesses for Bay Area lifelines. Identified spatial and temporal hotspots can provide stakeholders with a reference for possible systemic vulnerability resulting from an earthquake sequence.

  6. Temporal Variation of Tectonic Tremor Activity Associated with Nearby Earthquakes

    Science.gov (United States)

    Chao, K.; Van der Lee, S.; Hsu, Y. J.; Pu, H. C.

    2017-12-01