WorldWideScience

Sample records for earthquake numbers consequence

  1. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  2. Rapid estimation of the economic consequences of global earthquakes

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2011-01-01

    The U.S. Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, operational since mid 2007, rapidly estimates the most affected locations and the population exposure at different levels of shaking intensities. The PAGER system has significantly improved the way aid agencies determine the scale of response needed in the aftermath of an earthquake. For example, the PAGER exposure estimates provided reasonably accurate assessments of the scale and spatial extent of the damage and losses following the 2008 Wenchuan earthquake (Mw 7.9) in China, the 2009 L'Aquila earthquake (Mw 6.3) in Italy, the 2010 Haiti earthquake (Mw 7.0), and the 2010 Chile earthquake (Mw 8.8). Nevertheless, some engineering and seismological expertise is often required to digest PAGER's exposure estimate and turn it into estimated fatalities and economic losses. This has been the focus of PAGER's most recent development. With the new loss-estimation component of the PAGER system it is now possible to produce rapid estimation of expected fatalities for global earthquakes (Jaiswal and others, 2009). While an estimate of earthquake fatalities is a fundamental indicator of potential human consequences in developing countries (for example, Iran, Pakistan, Haiti, Peru, and many others), economic consequences often drive the responses in much of the developed world (for example, New Zealand, the United States, and Chile), where the improved structural behavior of seismically resistant buildings significantly reduces earthquake casualties. Rapid availability of estimates of both fatalities and economic losses can be a valuable resource. The total time needed to determine the actual scope of an earthquake disaster and to respond effectively varies from country to country. It can take days or sometimes weeks before the damage and consequences of a disaster can be understood both socially and economically. The objective of the U.S. Geological Survey's PAGER system is

  3. Low Nephron Number and Its Clinical Consequences

    Directory of Open Access Journals (Sweden)

    Valerie A. Luyckx

    2011-10-01

    Full Text Available decades ago, that developmental programming of the kidney impacts an individual’s risk for hypertension and renal disease in later life. Low birth weight is the strongest current clinical surrogate marker for an adverse intrauterine environment and, based on animal and human studies, is associated with a low nephron number. Other clinical correlates of low nephron number include female gender, short adult stature, small kidney size, and prematurity. Low nephron number in Caucasian and Australian Aboriginal subjects has been shown to be associated with higher blood pressures, and, conversely, hypertension is less prevalent in individuals with higher nephron numbers. In addition to nephron number, other programmed factors associated with the increased risk of hypertension include salt sensitivity, altered expression of renal sodium transporters, altered vascular reactivity, and sympathetic nervous system overactivity. Glomerular volume is universally found to vary inversely with nephron number, suggesting a degree of compensatory hypertrophy and hyperfunction in the setting of a low nephron number. This adaptation may become overwhelmed in the setting of superimposed renal insults, e.g. diabetes mellitus or rapid catch-up growth, leading to the vicious cycle of on-going hyperfiltration, proteinuria, nephron loss and progressive renal functional decline. Many millions of babies are born with low birth weight every year, and hypertension and renal disease prevalences are increasing around the globe. At present, little can be done clinically to augment nephron number; therefore adequate prenatal care and careful postnatal nutrition are crucial to optimize an individual’s nephron number during development and potentially to stem the tide of the growing cardiovascular and renal disease epidemics worldwide.

  4. Persistent consequences of atypical early number concepts

    Directory of Open Access Journals (Sweden)

    Michèle M. M. Mazzocco

    2013-09-01

    Full Text Available How does symbolic number knowledge performance help identify young children at risk for poor mathematics achievement outcomes? In research and practice, classification of mathematics learning disability (MLD, or dyscalculia is typically based on composite scores from broad measures of mathematics achievement. These scores do predict later math achievement levels, but do not specify the nature of math difficulties likely to emerge among students at greatest risk for long-term mathematics failure. Here we report that gaps in 2nd and 3rd graders’ number knowledge predict specific types of errors made on math assessments at Grade 8. Specifically, we show that early whole number misconceptions predict slower and less accurate performance, and atypical computational errors, on Grade 8 arithmetic tests. We demonstrate that basic number misconceptions can be detected by idiosyncratic responses to number knowledge items, and that when such misconceptions are evident during primary school they persist throughout the school age years, with variable manifestation throughout development. We conclude that including specific qualitative assessments of symbolic number knowledge in primary school may provide greater specificity of the types of difficulties likely to emerge among students at risk for poor mathematics outcomes.

  5. The 1638 earthquakes, migratory phenomena and geolinguistic consequences in Calabria

    Directory of Open Access Journals (Sweden)

    J. Trumper

    1995-06-01

    Full Text Available Two disastrous earthquakes occurred in Calabria (Southern Italy in 1638: on March 27th the first one had a destructive damage area on the Tyrrheniail side of Mid-Calabria. the second one hit the east side of the same region on June 9th. In historical times they are the most intensive seismic events in their respective epicentral areas. so that the reconstruction of their effects is very important for the analysis and assessment of seismic risk. They strongly influenced, moreover, the development of the economy and socio-cultural status of many urban communities. A study of these shocks has been carried out and has implied a thorough re-evaluation of the historical sources of information already known and the exploitation of possible new sources. The two macroseismic fields have been reconstructed: in particular that of the second seismic event, the strongest one in its epicentral area. stimulates a thorough revision of the seismotectonics of the Middle-eastern Calabria. Moreover the reconstruction of the historical facts accompanying and following the earthquakes has furnished elements that help to explain observed anomalies in the spatial distribution of Calabrian dialect phenomena.

  6. Knowledge base about earthquakes as a tool to minimize strong events consequences

    Science.gov (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Alexander; Kijko, Andrzej

    2017-04-01

    The paper describes the structure and content of the knowledge base on physical and socio-economical consequences of damaging earthquakes, which may be used for calibration of near real-time loss assessment systems based on simulation models for shaking intensity, damage to buildings and casualties estimates. Such calibration allows to compensate some factors which influence on reliability of expected damage and loss assessment in "emergency" mode. The knowledge base contains the description of past earthquakes' consequences for the area under study. It also includes the current distribution of built environment and population at the time of event occurrence. Computer simulation of the recorded in knowledge base events allow to determine the sets of regional calibration coefficients, including rating of seismological surveys, peculiarities of shaking intensity attenuation and changes in building stock and population distribution, in order to provide minimum error of damaging earthquakes loss estimations in "emergency" mode. References 1. Larionov, V., Frolova, N: Peculiarities of seismic vulnerability estimations. In: Natural Hazards in Russia, volume 6: Natural Risks Assessment and Management, Publishing House "Kruk", Moscow, 120-131, 2003. 2. Frolova, N., Larionov, V., Bonnin, J.: Data Bases Used In Worlwide Systems For Earthquake Loss Estimation In Emergency Mode: Wenchuan Earthquake. In Proc. TIEMS2010 Conference, Beijing, China, 2010. 3. Frolova N. I., Larionov V. I., Bonnin J., Sushchev S. P., Ugarov A. N., Kozlov M. A. Loss Caused by Earthquakes: Rapid Estimates. Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol.84, ISSN 0921-030, Nat Hazards DOI 10.1007/s11069-016-2653

  7. Economic consequences of earthquakes: bridging research and practice with HayWired

    Science.gov (United States)

    Wein, A. M.; Kroll, C.

    2016-12-01

    The U.S. Geological Survey partners with organizations and experts to develop multiple hazard scenarios. The HayWired earthquake scenario refers to a rupture of the Hayward fault in the Bay Area of California and addresses the potential chaos related to interconnectedness at many levels: the fault afterslip and aftershocks, interdependencies of lifelines, wired/wireless technology, communities at risk, and ripple effects throughout today's digital economy. The scenario is intended for diverse audiences. HayWired analyses translate earthquake hazards (surface rupture, ground shaking, liquefaction, landslides) into physical engineering and environmental health impacts, and into societal consequences. Damages to life and property and lifeline service disruptions are direct causes of business interruption. Economic models are used to estimate the economic impacts and resilience in the regional economy. The objective of the economic analysis is to inform policy discourse about economic resilience at all three levels of the economy: macro, meso, and micro. Stakeholders include businesses, economic development, and community leaders. Previous scenario analyses indicate the size of an event: large earthquakes and large winter storms are both "big ones" for California. They motivate actions to reduce the losses from fire following earthquake and water supply outages. They show the effect that resilience can have on reducing economic losses. Evaluators find that stakeholders learned the most about the economic consequences.

  8. The "Trauma Signature:" understanding the psychological consequences of the 2010 Haiti earthquake.

    Science.gov (United States)

    Shultz, James M; Marcelin, Louis Herns; Madanes, Sharon B; Espinel, Zelde; Neria, Yuval

    2011-10-01

    The 2010 Haiti earthquake was one of the most catastrophic episodes in history, leaving 5% of the nation's population killed or injured, and 19% internally displaced. The distinctive combination of earthquake hazards and vulnerabilities, extreme loss of life, and paralyzing damage to infrastructure, predicts population-wide psychological distress, debilitating psychopathology, and pervasive traumatic grief. However, mental health was not referenced in the national recovery plan. The limited MHPSS services provided in the first eight months generally lacked coordination and empirical basis.There is a need to customize and coordinate disaster mental health assessments, interventions, and prevention efforts around the novel stressors and consequences of each traumatic event. An analysis of the key features of the 2010 Haiti earthquake was conducted, defining its "Trauma Signature" based on a synthesis of early disaster situation reports to identify the unique assortment of risk factors for post-disaster mental health consequences. This assessment suggests that multiple psychological risk factors were prominent features of the earthquake in Haiti. For rapid-onset disasters, Trauma Signature (TSIG) analysis can be performed during the post-impact/pre-deployment phase to target the MHPSS response in a manner that is evidence-based and tailored to the event-specific exposures and experiences of disaster survivors. Formalization of tools to perform TSIG analysis is needed to enhance the timeliness and accuracy of these assessments and to extend this approach to human-generated disasters and humanitarian crises.

  9. 78 FR 39781 - Consequence Study of a Beyond-Design-Basis Earthquake Affecting the Spent Fuel Pool for a U.S...

    Science.gov (United States)

    2013-07-02

    ... COMMISSION Consequence Study of a Beyond-Design-Basis Earthquake Affecting the Spent Fuel Pool for a U.S... comment, titled Consequence Study of a Beyond- Design-Basis Earthquake Affecting the Spent Fuel Pool for a... earthquakes present the dominant risk for spent fuel pools, the draft study evaluated how a potential...

  10. Disaster relief in post-earthquake Haiti: unintended consequences of humanitarian volunteerism.

    Science.gov (United States)

    Jobe, Kathleen

    2011-01-01

    This article provides an overview of US humanitarian relief efforts in Haiti following the earthquake on January 12, 2010. Humanitarian aid arrived rapidly from many sources and was largely provided by organized and skilled humanitarian volunteers. There are however multiple impacts on the existing health care systems, as well as the pharmaceutical and medical supply chain created by massive relief efforts involving personnel, medicines, supplies and equipment that should be considered even in the immediate post-disaster period. Additionally the consequences of short-term medical missions by secular and non-secular NGOs should be considered carefully both in the post-disaster period and as ongoing support to underserved populations.

  11. The Long-Run Socio-Economic Consequences of a Large Disaster: The 1995 Earthquake in Kobe.

    Directory of Open Access Journals (Sweden)

    William duPont

    Full Text Available We quantify the 'permanent' socio-economic impacts of the Great Hanshin-Awaji (Kobe earthquake in 1995 by employing a large-scale panel dataset of 1,719 cities, towns, and wards from Japan over three decades. In order to estimate the counterfactual--i.e., the Kobe economy without the earthquake--we use the synthetic control method. Three important empirical patterns emerge: First, the population size and especially the average income level in Kobe have been lower than the counterfactual level without the earthquake for over fifteen years, indicating a permanent negative effect of the earthquake. Such a negative impact can be found especially in the central areas which are closer to the epicenter. Second, the surrounding areas experienced some positive permanent impacts in spite of short-run negative effects of the earthquake. Much of this is associated with movement of people to East Kobe, and consequent movement of jobs to the metropolitan center of Osaka, that is located immediately to the East of Kobe. Third, the furthest areas in the vicinity of Kobe seem to have been insulated from the large direct and indirect impacts of the earthquake.

  12. The Long-Run Socio-Economic Consequences of a Large Disaster: The 1995 Earthquake in Kobe.

    Science.gov (United States)

    duPont, William; Noy, Ilan; Okuyama, Yoko; Sawada, Yasuyuki

    2015-01-01

    We quantify the 'permanent' socio-economic impacts of the Great Hanshin-Awaji (Kobe) earthquake in 1995 by employing a large-scale panel dataset of 1,719 cities, towns, and wards from Japan over three decades. In order to estimate the counterfactual--i.e., the Kobe economy without the earthquake--we use the synthetic control method. Three important empirical patterns emerge: First, the population size and especially the average income level in Kobe have been lower than the counterfactual level without the earthquake for over fifteen years, indicating a permanent negative effect of the earthquake. Such a negative impact can be found especially in the central areas which are closer to the epicenter. Second, the surrounding areas experienced some positive permanent impacts in spite of short-run negative effects of the earthquake. Much of this is associated with movement of people to East Kobe, and consequent movement of jobs to the metropolitan center of Osaka, that is located immediately to the East of Kobe. Third, the furthest areas in the vicinity of Kobe seem to have been insulated from the large direct and indirect impacts of the earthquake.

  13. Formation of deuterons by coalescence: Consequences for deuteron number fluctuations

    Science.gov (United States)

    Fecková, Zuzana; Steinheimer, Jan; Tomášik, Boris; Bleicher, Marcus

    2016-05-01

    Two scenarios for cluster production have long been discussed in the literature: (i) direct emission of the clusters from a (grand-canonical) thermal source or (ii) subsequent formation of the clusters by coalescence of single nucleons. While both approaches have been successfully applied in the past it has not yet been clarified which of the two mechanisms dominates the cluster production. We propose to use recently developed event-by-event techniques to study particle multiplicity fluctuations on nuclear clusters and employ this analysis to the deuteron number fluctuations to disentangle the two production mechanisms. We argue that for a grand-canonical cluster formation, the cluster fluctuations will follow Poisson distribution, while for the coalescence scenario, the fluctuations will strongly deviate from the Poisson expectation. We estimate the effect to be 10% for the variance and up to a factor of 5 for the kurtosis of the deuteron number multiplicity distribution. Our prediction can be tested in the beam energy scan program at the BNL Relativistic Heavy Ion Collider as well as experiments at the GSI Facility for Antiproton and Ion Research and the Nuclotron-based Ion Collider Facility.

  14. Review Article: Potential geomorphic consequences of a future great (Mw = 8.0+ Alpine Fault earthquake, South Island, New Zealand

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    2013-09-01

    Full Text Available The Alpine Fault in New Zealand's South Island has not sustained a large magnitude earthquake since ca. AD 1717. The time since this rupture is close to the average inferred recurrence interval of the fault (~300 yr. The Alpine Fault is therefore expected to generate a large magnitude earthquake in the near future. Previous ruptures of this fault are inferred to have generated Mw = 8.0 or greater earthquakes and to have resulted in, amongst other geomorphic hazards, large-scale landslides and landslide dams throughout the Southern Alps. There is currently 85% probability that the Alpine Fault will cause a Mw = 8.0+ earthquake within the next 100 yr. While the seismic hazard is fairly well understood, that of the consequential geomorphic activity is less well studied, and these consequences are explored herein. They are expected to include landsliding, landslide damming, dam-break flooding, debris flows, river aggradation, liquefaction, and landslide-generated lake/fiord tsunami. Using evidence from previous events within New Zealand as well as analogous international examples, we develop first-order estimates of the likely magnitude and possible locations of the geomorphic effects associated with earthquakes. Landsliding is expected to affect an area > 30 000 km2 and involve > 1billion m3 of material. Some tens of landslide dams are expected to occur in narrow, steep-sided gorges in the affected region. Debris flows will be generated in the first long-duration rainfall after the earthquake and will continue to occur for several years as rainfall (remobilises landslide material. In total more than 1000 debris flows are likely to be generated at some time after the earthquake. Aggradation of up to 3 m will cover an area > 125 km2 and is likely to occur on many West Coast alluvial fans and floodplains. The impact of these effects will be felt across the entire South Island and is likely to continue for several decades.

  15. Earthquake

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    正A serious earthquake happened in Wenchuan, Sichuan. Over 60,000 people died in the earhtquake, millins of people lost their homes. After the earthquake, people showed their love in different ways. Some gave food, medicine and everything necessary, some gave money,

  16. Earthquake Numbers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Financial Relief May 22,2 p.m.-China had appropriated 13.975 billion yuan($2 billion) in relief funds for quake-ravaged areas,including 10.295 billion yuan($1.47 billion)from the central government budget and 3.68 billion yuan($525.71 million)from local govern- ment budgets.

  17. Extreme Subduction Earthquake Scenarios and their Economical Consequences for Mexico City and Guadalajara, Jalisco, Mexico

    Science.gov (United States)

    Chavez, M.; Cabrera, E.; Perea, N.

    2007-05-01

    The destructive effects of large magnitude, thrust subduction superficial (TSS) earthquakes on Mexico City (MC) and Guadalajara (G) has been shown in the recent centuries. For example, the 7/04/1845 a TSS earthquake with Ms 7+ and epicentral distance of about 250 km from MC occurred on the coast of the state of Guerrero, a Maximum Mercalli Modified Intensity (MMI) of IX-X was reported in MC. Furthermore, the 19/09/1985 a Ms 8.1, Mw 8.01, TSS earthquake with epicentral distance of about 340 km from MC occurred on the coast of the state of Michoacan, a maximum MMI of IX-X was reported in MC. Also, the largest, Ms 8.2, instrumentally observed TSS earthquake in Mexico, occurred in the Colima-Jalisco region the 3/06/1932, with epicentral distance of the order of 200 km from G in northwestern Mexico. The 9/10/1995 another similar event, Ms 7.4, Mw 8, with an epicentral distance of about 240 km from G, occurred in the same region and produced MMI IX in the epicentral zone and MMI up to VI in G. The frequency of occurrence of large TSS earthquakes in Mexico is poorly known, but it might vary from decades to centuries [1]. On the other hand, the first recordings of strong ground motions in MC dates from the early 1960´s and most of them were recorded after the 19/09/1985 earthquake. In G there is only one recording of the later event, and 13 for the one occurred the 9/10/1995 [2]. In order to fulfill the lack of strong ground motions records for large damaging TSS earthquakes, which could have an important economical impact on MC [3] and G, in this work we have modeled broadband synthetics (obtained with a hybrid model that has already been satisfactorily compared with observations of the 9/10/1995 Colima-Jalisco Mw 8 earthquake, [4]) expected in MC and G, associated to extreme magnitude Mw 8.5, TSS scenario earthquakes with epicenters in the so-called Guerrero gap and in the Colima-Jalisco zone, respectively. The proposed scenarios are based on the seismic history and up

  18. A Review of Socio-Economic Consequences, Losses and Human Casualties of the 1977 Vrancea, Romania Earthquake

    Directory of Open Access Journals (Sweden)

    Emil-Sever GEORGESCU

    2011-01-01

    Full Text Available Although its socio-economic disaster pattern was obvious, the March 4, 1977 Vrancea, Romania earthquake was studied mainly in seismological and earthquake engineering terms. In 1977, the loss data released in Romania, referred to 32,900 collapsed or heavily damaged dwellings, 35,000 homeless families, thousands of damaged buildings, many other damages and destructions in industry and economy, 1,578 people killed, 11,321 people injured (with 90% of the killed and 67% of the injured being in the city of Bucharest. The Romanian government reported the economic losses from this event in December 1977, as being US$ 2 billion. For a long time, the evaluation of human casualties vs. collapse pattern of buildings in 1977 was not addressed and we still miss integral data. The recovery and reevaluation of economic and social impacts of the 1977 disaster was a concern of the authors, with the intent to better understand its consequences and prepare a new strategy of seismic risk reduction in view of future earthquakes in Romania, and in order to fill that gap the authors recovered many unpublished and obscure data.

  19. Long-term gendered consequences of permanent disabilities caused by the 2005 Pakistan earthquake.

    Science.gov (United States)

    Irshad, Humaira; Mumtaz, Zubia; Levay, Adrienne

    2012-07-01

    This study documents the long-term gendered impact of the 2005 Pakistan earthquake on women and men who were rendered paraplegic as a result of spinal cord injuries sustained during the disaster. Coping mechanisms are also mapped. The findings show that three years after the disaster, paraplegic women are socially, emotionally, and financially isolated. The small stipend they receive is a significant source of income, but it has also led to marital distrust, violence, and abuse. In contrast, men receive full social and emotional support. Their key concern is that the government is not providing them with opportunities to be economically productive. Contemporary discourse and post-disaster policies, while acknowledging the importance of incorporating a gender perspective in the immediate post-disaster period, have failed to acknowledge and address the longer-term gendered impact of disasters, in terms of the different types of impact and strategies adopted by women and men.

  20. Earthquake-induced crustal deformation and consequences for fault displacement hazard analysis of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gürpinar, Aybars, E-mail: aybarsgurpinar2007@yahoo.com [Nuclear & Risk Consultancy, Anisgasse 4, 1221 Vienna (Austria); Serva, Leonello, E-mail: lserva@alice.it [Independent Consultant, Via dei Dauni 1, 00185 Rome (Italy); Livio, Franz, E-mail: franz.livio@uninsubria.it [Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Velleggio, 11, 22100 Como (Italy); Rizzo, Paul C., E-mail: paul.rizzo@rizzoasoc.com [RIZZO Associates, 500 Penn Center Blvd., Suite 100, Pittsburgh, PA 15235 (United States)

    2017-01-15

    Highlights: • A three-step procedure to incorporate coseismic deformation into PFDHA. • Increased scrutiny for faults in the area permanently deformed by future strong earthquakes. • These faults share with the primary structure the same time window for fault capability. • VGM variation may occur due to tectonism that has caused co-seismic deformation. - Abstract: Readily available interferometric data (InSAR) of the coseismic deformation field caused by recent seismic events clearly show that major earthquakes produce crustal deformation over wide areas, possibly resulting in significant stress loading/unloading of the crust. Such stress must be considered in the evaluation of seismic hazards of nuclear power plants (NPP) and, in particular, for the potential of surface slip (i.e., probabilistic fault displacement hazard analysis - PFDHA) on both primary and distributed faults. In this study, based on the assumption that slip on pre-existing structures can represent the elastic response of compliant fault zones to the permanent co-seismic stress changes induced by other major seismogenic structures, we propose a three-step procedure to address fault displacement issues and consider possible influence of surface faulting/deformation on vibratory ground motion (VGM). This approach includes: (a) data on the presence and characteristics of capable faults, (b) data on recognized and/or modeled co-seismic deformation fields and, where possible, (c) static stress transfer between source and receiving faults of unknown capability. The initial step involves the recognition of the major seismogenic structures nearest to the site and their characterization in terms of maximum expected earthquake and the time frame to be considered for determining their “capability” (as defined in the International Atomic Energy Agency - IAEA Specific Safety Guide SSG-9). Then a GIS-based buffer approach is applied to identify all the faults near the NPP, possibly influenced by

  1. Coseismic landsliding estimates for an Alpine Fault earthquake and the consequences for erosion of the Southern Alps, New Zealand

    Science.gov (United States)

    Robinson, T. R.; Davies, T. R. H.; Wilson, T. M.; Orchiston, C.

    2016-06-01

    Landsliding resulting from large earthquakes in mountainous terrain presents a substantial hazard and plays an important role in the evolution of mountain ranges. However estimating the scale and effect of landsliding from an individual earthquake prior to its occurrence is difficult. This study presents first order estimates of the scale and effects of coseismic landsliding resulting from a plate boundary earthquake in the South Island of New Zealand. We model an Mw 8.0 earthquake on the Alpine Fault, which has produced large (M 7.8-8.2) earthquakes every 329 ± 68 years over the last 8 ka, with the last earthquake ~ 300 years ago. We suggest that such an earthquake could produce ~ 50,000 ± 20,000 landslides at average densities of 2-9 landslides km- 2 in the area of most intense landsliding. Between 50% and 90% are expected to occur in a 7000 km2 zone between the fault and the main divide of the Southern Alps. Total landslide volume is estimated to be 0.81 + 0.87/- 0.55 km3. In major northern and southern river catchments, total landslide volume is equivalent to up to a century of present-day aseismic denudation measured from suspended sediment yields. This suggests that earthquakes occurring at century-timescales are a major driver of erosion in these regions. In the central Southern Alps, coseismic denudation is equivalent to less than a decade of aseismic denudation, suggesting precipitation and uplift dominate denudation processes. Nevertheless, the estimated scale of coseismic landsliding is considered to be a substantial hazard throughout the entire Southern Alps and is likely to present a substantial issue for post-earthquake response and recovery.

  2. Nowcasting Earthquakes

    Science.gov (United States)

    Rundle, J. B.; Donnellan, A.; Grant Ludwig, L.; Turcotte, D. L.; Luginbuhl, M.; Gail, G.

    2016-12-01

    Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system, and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(nearthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(nnumber between 0% and 100% to every region so defined, thus providing a unique measure. Physically, the EPS corresponds to an estimate of the level of progress through the earthquake cycle in the defined region at the current time.

  3. Nowcasting earthquakes

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G.

    2016-11-01

    Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(n < n(t)) for the current count n(t) for the small earthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(n < n(t)). EPS is therefore the current level of hazard and assigns a number between 0% and 100% to every region so defined, thus providing a unique measure. Physically, the EPS corresponds to an estimate of the level of progress through the earthquake cycle in the defined region at the current time.

  4. Perceived Changes in Social Relations after Earthquake Trauma among Eastern Anatolian Women: Associated Factors and Mental Health Consequences.

    Science.gov (United States)

    Sezgin, A Ufuk; Punamäki, Raija-Leena

    2016-10-01

    In this study, we examined social relations in women exposed to earthquake trauma in Eastern Anatolia, Turkey. We examined women's perceptions regarding the changes in their social relations within their neighbourhood, within their marriage and with their children; analysed the factors that were associated with these relations; and tested the hypothesis that an improvement in social relations will protect women's mental health from the negative impact of earthquake trauma. Participants consisted of a random selection of 1253 women, who were interviewed regarding their psychosocial needs and mental health status 1 year after earthquake. They reported trauma-related changes in their social relations; their mental health was evaluated using the Post Traumatic Stress Diagnostic Scale and Brief Symptom Inventory. Our study demonstrated severe earthquake trauma was associated with deteriorated social relations, especially neighbourhood and marital relations. Deteriorated marital and child relations were associated with increased levels of psychiatric distress; deteriorated neighbourhood relations were associated with intrusive posttraumatic stress symptoms. Improved neighbourhood relations, but not family relations, were able to protect women's mental health from the negative impact of trauma. The results are discussed regarding their relevance to gender effects and the provision of relation-specific and symptom-specific disaster relief. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Mitigating the consequences of future earthquakes in historical centres: what perspectives from the joined use of past information and geological-geophysical surveys?

    Science.gov (United States)

    Terenzio Gizzi, Fabrizio; Moscatelli, Massimiliano; Potenza, Maria Rosaria; Zotta, Cinzia; Simionato, Maurizio; Pileggi, Domenico; Castenetto, Sergio

    2015-04-01

    To mitigate the damage effects of earthquakes in urban areas and particularly in historical centres prone to high seismic hazard is an important task to be pursued. As a matter of fact, seismic history throughout the world informs us that earthquakes have caused deep changes in the ancient urban conglomerations due to their high building vulnerability. Furthermore, some quarters can be exposed to an increase of seismic actions if compared with adjacent areas due to the geological and/or topographical features of the site on which the historical centres lie. Usually, the strategies aimed to estimate the local seismic hazard make only use of the geological-geophysical surveys. Thorough this approach we do not draw any lesson from what happened as a consequences of past earthquakes. With this in mind, we present the results of a joined use of historical data and traditional geological-geophysical approach to analyse the effects of possible future earthquakes in historical centres. The research activity discussed here is arranged into a joint collaboration between the Department of Civil Protection of the Presidency of Council of Ministers, the Institute of Environmental Geology and Geoengineering and the Institute of Archaeological and Monumental Heritage of the National (Italian) Research Council. In order to show the results, we discuss the preliminary achievements of the integrated study carried out on two historical towns located in Southern Apennines, a portion of the Italian peninsula exposed to high seismic hazard. Taking advantage from these two test sites, we also discuss some methodological implications that could be taken as a reference in the seismic microzonation studies.

  6. Earthquake Science: a New Start

    Institute of Scientific and Technical Information of China (English)

    Chen Yun-tai

    2009-01-01

    @@ Understanding the mechanisms which cause earthquakes and thus earthquake prediction, is inher-ently difficult in comparison to other physical phenom-ena. This is due to the inaccessibility of the Earth's inte-rior, the infrequency of large earthquakes, and the com-plexities of the physical processes involved. Conse-quently, in its broadest sense, earthquake science--the science of studying earthquake phenomena, is a com-prehensive and inter-disciplinary field. The disciplines involved in earthquake science include: traditional seismology, earthquake geodesy, earthquake geology, rock mechanics, complex system theory, and informa-tion and communication technologies related to earth-quake studies.

  7. Is Earthquake Triggering Driven by Small Earthquakes?

    CERN Document Server

    Helmstetter, A

    2002-01-01

    Using a catalog of seismicity for Southern California, we measure how the number of triggered earthquakes increases with the earthquake magnitude. The trade-off between this scaling and the distribution of earthquake magnitudes controls the relative role of small compared to large earthquakes. We show that seismicity triggering is driven by the smallest earthquakes, which trigger fewer aftershocks than larger earthquakes, but which are much more numerous. We propose that the non-trivial scaling of the number of aftershocks emerges from the fractal spatial distribution of aftershocks.

  8. Psychological consequences and quality of life among medical rescuers who responded to the 2010 Yushu earthquake: A neglected problem.

    Science.gov (United States)

    Kang, Peng; Lv, Yipeng; Hao, Lu; Tang, Bihan; Liu, Zhipeng; Liu, Xu; Liu, Yuan; Zhang, Lulu

    2015-12-15

    A comprehensive study was conducted 8 months after the 2010 Yushu earthquake to assess the prevalence of posttraumatic stress disorder (PTSD) among medical rescuers and the rescuers' quality of life. Additionally, the study examines differences between local and supporting forces, as well as the relationship between PTSD and lower quality of life (QoL), and the risk factors for both. A total of 338 rescuers (including 123 local rescuers and 215 supporting ones) were randomly selected from Yushu County (the epicenter) and Xining City using multistage systematic sampling. Two standardized instruments, the PTSD Checklist-Civilian Version (PCL-C) and the Chinese version of the WHOQOL-BREF, were used to evaluate the prevalence of PTSD and obtain the rescuers' QoL. Being between 40 and 50 years old, a nurse, Tibetan, having been in serious danger or having received mental health training before this earthquake were significantly and independently associated with PTSD symptoms. Compared with supporting rescuers, local rescuers were more likely to develop PTSD and to report a lower QoL. Additional mental health services and training should be available to at-risk medical rescuers and groups to ensure they are adequately prepared for relief efforts and to maintain their mental health after assistance in disaster relief.

  9. Analog earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, R.B. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  10. Formation of deuterons by coalescence: Consequences on the deuteron number fluctuations

    CERN Document Server

    Feckova, Zuzana; Tomasik, Boris; Bleicher, Marcus

    2016-01-01

    Two scenarios for cluster production have since long been discussed in the literature: i) direct emission of the clusters from a (grand canonical) thermal source or ii) subsequent formation of the clusters by coalescence of single nucleons. While both approaches have been successfully applied in the past it has not yet been clarified which of the two mechanisms dominates the cluster production. We propose to use recently developed event-by-event techniques to study particle multiplicity fluctuations on nuclear clusters and employ this analysis to the deuteron number fluctuations to disentangle the two production mechanisms. We argue that for a grand canonical cluster formation, the cluster fluctuations will follow Poisson distribution, while for the coalescence scenario, the fluctuations will strongly deviate from the Poisson expectation. We estimate the effect to be 10% for the variance and up to a factor of 5 for the kurtosis of the deuteron number multiplicity distribution. Our prediction can be tested in ...

  11. Earthquakes and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  12. TYPOLOGY OF BUILDINGS FOR TEMPORARY ACCOMMODATION OF PERSONS SUFFERING DUE TO LIQUIDATION OF EARTHQUAKE CONSEQUENCES IN CHINA

    Directory of Open Access Journals (Sweden)

    Bi Xin

    2010-01-01

    Full Text Available The  location of China in a zone of high danger for occurrence of various natural disasters requires a constant readiness for fast execution of construction works pertaining to creation of temporary camps for accommodating the victims. Creation of such settlements where people can live for 5 years, is ensured in different directions, including architecture as well. For this purpose it is necessary to use such types of buildings which can be built within a short period of time and which can provide comfort for residing, conditions for elimination of stresses and realization of psychological rehabilitation. An analysis of the accumulated Chinese experience on temporary camp creation for liquidation of natural disaster consequences allows to determine the most optimum types of buildings and develop recommendations for their improvement

  13. A classifying method analysis on the number of returns for given pulse of post-earthquake airborne LiDAR data

    Science.gov (United States)

    Wang, Jinxia; Dou, Aixia; Wang, Xiaoqing; Huang, Shusong; Yuan, Xiaoxiang

    2016-11-01

    Compared to remote sensing image, post-earthquake airborne Light Detection And Ranging (LiDAR) point cloud data contains a high-precision three-dimensional information on earthquake disaster which can improve the accuracy of the identification of destroy buildings. However after the earthquake, the damaged buildings showed so many different characteristics that we can't distinguish currently between trees and damaged buildings points by the most commonly used method of pre-processing. In this study, we analyse the number of returns for given pulse of trees and damaged buildings point cloud and explore methods to distinguish currently between trees and damaged buildings points. We propose a new method by searching for a certain number of neighbourhood space and calculate the ratio(R) of points whose number of returns for given pulse greater than 1 of the neighbourhood points to separate trees from buildings. In this study, we select some point clouds of typical undamaged building, collapsed building and tree as samples from airborne LiDAR point cloud data which got after 2010 earthquake in Haiti MW7.0 by the way of human-computer interaction. Testing to get the Rvalue to distinguish between trees and buildings and apply the R-value to test testing areas. The experiment results show that the proposed method in this study can distinguish between building (undamaged and damaged building) points and tree points effectively but be limited in area where buildings various, damaged complex and trees dense, so this method will be improved necessarily.

  14. Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models.

    Directory of Open Access Journals (Sweden)

    Guénola Ricard

    Full Text Available A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+, 2n (+/+, 3n (Duplication/+, and balanced 2n compound heterozygous (Deletion/Duplication copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also "genome regulation." Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.

  15. Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models.

    Science.gov (United States)

    Ricard, Guénola; Molina, Jessica; Chrast, Jacqueline; Gu, Wenli; Gheldof, Nele; Pradervand, Sylvain; Schütz, Frédéric; Young, Juan I; Lupski, James R; Reymond, Alexandre; Walz, Katherina

    2010-11-23

    A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also "genome regulation." Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.

  16. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  17. IMMEDIATE MENTAL CONSEQUENCES OF THE GREAT EAST JAPAN EARTHQUAKE AND FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT ON MOTHERS EXPERIENCING MISCARRIAGE, ABORTION, AND STILLBIRTH: THE FUKUSHIMA HEALTH MANAGEMENT SURVEY

    OpenAIRE

    Yoshida-Komiya, Hiromi; Goto, Aya; Yasumura, Seiji; FUJIMORI, KEIYA; Abe, Masafumi; FOR THE PREGNANCY AND BIRTH SURVEY GROUP OF THE FUKUSHIMA HEALTH MANAGEMENT SURVEY,

    2015-01-01

    Background: The Fukushima Pregnancy and Birth Survey was launched to monitor pregnant mothers’ health after the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant (NPP) accident. Several lines of investigations have indicated that a disaster impacts maternal mental health with childbirth. However, there is no research regarding mental health of mothers with fetal loss after a disaster. In this report, we focus on those women immediately after the Great East Japan Earthquake...

  18. Immediate mental consequences of the great east Japan earthquake and Fukushima nuclear power Plant accident on mothers experiencing miscarriage, abortion, and stillbirth: the Fukushima health management survey

    OpenAIRE

    YOSHIDA-KOMIYA, HIROMI; Goto, Aya; Yasumura, Seiji; FUJIMORI, KEIYA; Abe, Masafumi

    2015-01-01

    Background: The Fukushima Pregnancy and Birth Survey was launched to monitor pregnant mothers' health after the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant (NPP) accident. Several lines of investigations have indicated that a disaster impacts maternal mental health with childbirth. However, there is no research regarding mental health of mothers with fetal loss after a disaster. In this report, we focus on those women immediately after the Great East Japan Earthquake...

  19. Traumatic experiences and mental health consequences among child survivors of the 2008 Sichuan earthquake: a community-based follow-up study

    Directory of Open Access Journals (Sweden)

    Jia Zhaobao

    2013-02-01

    Full Text Available Abstract Background The study was implemented to examine the relationship between traumatic experiences and longitudinal development of mental health for children and adolescents who survived the 2008 Sichuan earthquake. Methods Using the method of multistage systematic sampling, 596 children aged between 8 and 16 years were randomly selected from severely affected areas of the earthquake. These children were interviewed with standardized instruments of posttraumatic stress disorder (PTSD and depression at the 15th month after the earthquake, and re-interviewed at the 36th month. Results From the initial to the follow-up assessments, there were no significant changes in both PTSD and depression scores. In addition, no significant change was found on the overall prevalence rates of the symptoms: from 12.4% to 10.7% for PTSD, from 13.9% to 13.5% for depression, and from 4.2% to 4.7% for their co-occurrence. The study also indicated that the earthquake might have a delayed impact on the psychosocial functioning of children and adolescents who were not directly affected by the disaster. Conclusions For child and adolescent survivors of the earthquake, symptoms of PTSD and depression seemed to persist over time. The finding that children reduced their use of mental health services raised great concerns over how to fulfill the unmet psychological needs of these children. More mental health interventions should be allocated to children who had elevated risk for developing persistent course of the symptoms.

  20. Induced Seismicity: What is the Size of the Largest Expected Earthquake?

    Science.gov (United States)

    Zoeller, G.; Holschneider, M.

    2014-12-01

    The injections of fluids is a well-known origin for the triggering of earthquake sequences. The growing number of projects related to enhanced geothermal systems, fracking and others has led to the question, which maximum earthquake magnitude can be expected as a consequence of fluid injection. This question is addressed from the perspective of statistical analysis. Using basic empirical laws of earthquake statistics, we estimate the magnitude MT of the maximum expected earthquake in a pre-defined future time window T. A case study of the fluid injection site at Paradox Valley, Colorado, USA, demonstrates that the magnitude m=4.3 of the largest observed earthquake on 27 May 2000 is lying very well within the expectation from past seismicity without adjusting any parameters. Vice versa, for a given maximum tolerable earthquake at an injection site, we can constrain the corresponding amount of injected fluids that must not be exceeded within pre-defined confidence bounds.

  1. Bam Earthquake in Iran

    CERN Multimedia

    2004-01-01

    Following their request for help from members of international organisations, the permanent Mission of the Islamic Republic of Iran has given the following bank account number, where you can donate money to help the victims of the Bam earthquake. Re: Bam earthquake 235 - UBS 311264.35L Bubenberg Platz 3001 BERN

  2. Recurrence Statistics of Great Earthquakes

    CERN Document Server

    Ben-Naim, E; Johnson, P A

    2013-01-01

    We investigate the sequence of great earthquakes over the past century. To examine whether the earthquake record includes temporal clustering, we identify aftershocks and remove those from the record. We focus on the recurrence time, defined as the time between two consecutive earthquakes. We study the variance in the recurrence time and the maximal recurrence time. Using these quantities, we compare the earthquake record with sequences of random events, generated by numerical simulations, while systematically varying the minimal earthquake magnitude Mmin. Our analysis shows that the earthquake record is consistent with a random process for magnitude thresholds 7.0<=Mmin<=8.3, where the number of events is larger. Interestingly, the earthquake record deviates from a random process at magnitude threshold 8.4<=Mmin<= 8.5, where the number of events is smaller; however, this deviation is not strong enough to conclude that great earthquakes are clustered. Overall, the findings are robust both qualitat...

  3. Predictable earthquakes?

    Science.gov (United States)

    Martini, D.

    2002-12-01

    acceleration) and global number of earthquake for this period from published literature which give us a great picture about the dynamical geophysical phenomena. Methodology: The computing of linear correlation coefficients gives us a chance to quantitatively characterise the relation among the data series, if we suppose a linear dependence in the first step. The correlation coefficients among the Earth's rotational acceleration and Z-orbit acceleration (perpendicular to the ecliptic plane) and the global number of the earthquakes were compared. The results clearly demonstrate the common feature of both the Earth's rotation and Earth's Z-acceleration around the Sun and also between the Earth's rotational acceleration and the earthquake number. This fact might means a strong relation among these phenomena. The mentioned rather strong correlation (r = 0.75) and the 29 year period (Saturn's synodic period) was clearly shown in the counted cross correlation function, which gives the dynamical characteristic of correlation, of Earth's orbital- (Z-direction) and rotational acceleration. This basic period (29 year) was also obvious in the earthquake number data sets with clear common features in time. Conclusion: The Core, which involves the secular variation of the Earth's magnetic field, is the only sufficiently mobile part of the Earth with a sufficient mass to modify the rotation which probably effects on the global time distribution of the earthquakes. Therefore it might means that the secular variation of the earthquakes is inseparable from the changes in Earth's magnetic field, i.e. the interior process of the Earth's core belongs to the dynamical state of the solar system. Therefore if the described idea is real the global distribution of the earthquakes in time is predictable.

  4. Discussion on Earthquake Forecasting and Early Warning

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaodong; Jiang Haikun; Li Mingxiao

    2008-01-01

    Through analysis of natural and social attributes of earthquake forecasting,the relationship between the natural and social attributes of earthquake forecasting (early warning) has been discussed.Regarding the natural attributes of earthquake forecasting,it only attempts to forecast the magnitude,location and occurrence time of future earthquake based on the aualysis of observational data and relevant theories and taking into consideration the present understanding of seismogeny and earthquake generation.It need not consider the consequences an earthquake forecast involves,and its purpose is to check out the level of scientific understanding of earthquakes.In respect of the social aspect of earthquake forecasting,people also focus on the consequence that the forecasting involves,in addition to its natural aspect,such as the uncertainty of earthquake prediction itself,the impact of earthquake prediction,and the earthquake resistant capability of structures (buildings),lifeline works,etc.In a word,it highlights the risk of earthquake forecasting and tries to mitigate the earthquake hazard as much as possible.In this paper,the authors also discuss the scientific and social challenges faced in earthquake prediction and analyze preliminarily the meanings and content of earthquake early warning.

  5. Defeating Earthquakes

    Science.gov (United States)

    Stein, R. S.

    2012-12-01

    our actions. Using these global datasets will help to make the model as uniform as possible. The model must be built by scientists in the affected countries with GEM's support, augmented by their insights and data. The model will launch in 2014; to succeed it must be open, international, independent, and continuously tested. But the mission of GEM is not just the likelihood of ground shaking, but also gaging the economic and social consequences of earthquakes, which greatly amplify the losses. For example, should the municipality of Istanbul retrofit schools, or increase its insurance reserves and recovery capacity? Should a homeowner in a high-risk area move or strengthen her building? This is why GEM is a public-private partnership. GEM's fourteen public sponsors and eight non-governmental organization members are standing for the developing world. To extend GEM into the financial world, we draw upon the expertise of companies. GEM's ten private sponsors have endorsed the acquisition of public knowledge over private gain. In a competitive world, this is a courageous act. GEM is but one link in a chain of preparedness: from earth science and engineering research, through groups like GEM, to mitigation, retrofit or relocate decisions, building codes and insurance, and finally to prepared hospitals, schools, and homes. But it is a link that our community can make strong.

  6. Partial breaking of the Northern Chile seismic gap by the 2014 Pisagua-Iquique earthquake as a consequence of seismic slip transients

    Science.gov (United States)

    Moreno, M.; Bedford, J. R.; Baez, J. C.; Li, S.; Bartsch, M.; Schurr, B.; Oncken, O.; Hoechner, A.; Klotz, J.; Tassara, A.; Shrivastava, M. N.; Gonzalez, G.

    2014-12-01

    The Northern portion of the Chilean margin is considered to be a mature seismic gap based on the magnitude and time of the last great earthquake (Mw~8.8 in 1877), and the assumed long-term slip deficit accumulation rate (67mm/yr). The central fraction of the gap was affected by the April 1st 2014 Pisagua-Iquique earthquake (Mw=8.1), which was preceded by a long-lasting series of foreshocks with increasing magnitudes. The seismic gap has been extensively monitored by the Integrated Plate Boundary Observatory Chile (IPOC) with various geophysical and geodetic techniques . The excellent temporal and spatial coverage of the IPOC GPS network along the entire gap enable us to analyze the kinematics of the plate interface leading up to the mainshock with unprecedented resolution. We use Finite-Element Modelling (FEM) to investigate the subduction zone mechanisms that are responsible for the observed GPS deformation field during the interseismic, coseismic and early postseismic periods. Furthermore, we separate the relative contributions of aseismic and seismic plate interface slip to the short-term elastic deformation leading up to and following the mainshock. GPS time-series show a trenchward acceleration between the March 16th Mw 6.7 foreshock and the mainshock. The cumulative continuous-GPS transient signals can be explained by the elastic displacement of the foreshocks suggesting the dominance of seismic slip leading up to the mainshock. Both the slip distribution of the Pisagua-Iquique event, and its largest aftershock, correlate well with areas that were previously highly locked, and both were enclosed by creeping interface zones. Our model suggests that the plate interface geometry varies the fault normal stress distribution, which influences stress concentration and release in the central part of the gap. The first three months of postseismic ground surface displacement is greatest along the rupture area and in the northern adjacent segment with cumulative

  7. Slepian simulation of distributions of plastic displacements of earthquake excited shear frames with a large number of stories

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Ditlevsen, Ove

    2005-01-01

    motion that interacts with the structure above the bottom floors. As in a recent work by the authors the paper is about application of so-called Slepian model simulation, but in this paper supplemented by a simplification principle that allows a manageable calculation for the considered type of elasto......The object of study is a stationary Gaussian white noise excited plane multistory shear frame with a large number of rigid traverses. All the traverse-connecting columns have finite symmetrical yield limits except the columns in one or more of the bottom floors. The columns behave linearly elastic...... within the yield limits and ideally plastic outside these without accumulating eigenstresses. Within the elastic domain the frame is modeled as a linearly damped oscillator. The white noise excitation acts on the mass of the first floor making the movement of the elastic bottom floors simulate a ground...

  8. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change

    Directory of Open Access Journals (Sweden)

    John G. Blake

    2015-08-01

    Full Text Available Bird populations have declined in many parts of the world but most of those declines can be attributed to effects of human activities (e.g., habitat fragmentation; declines in areas unaffected by human activities are not common. We have been sampling bird populations at an undisturbed site in lowland forest of eastern Ecuador annually since 2001 using a combination of mist nets and direct observations on two 100-ha plots. Bird numbers fluctuated on both plots during the first 8 years but did not show a consistent pattern of change. Since about 2008, numbers of birds on both plots have declined; capture rates in 2014 were ∼40% less than at the start of the study and observation rates were ∼50% less. Both understory and canopy species declined in abundance. Overall, insectivores showed the most pronounced declines but declines varied among trophic groups. The period from 2008 onward also was a period of stronger La Niña events which, at this study site, are associated with increased rainfall. The mechanism for the declines is not known but likely reflects a combination of reduced reproductive success coupled with reduced survival associated with changing climate.

  9. Chest injury in victims of Bam earthquake

    Institute of Scientific and Technical Information of China (English)

    Seyed Mohammad Ghodsi; Moosa Zargar; Ali Khaji; Mojgan Karbakhsh

    2006-01-01

    Objective: To analyze the data of trauma patients with thoracic injury in the earthquake of Bam admitted to hospitals of Tehran University of Medical Science (TUMS)for better understanding the type and consequence of thoracic injuries in a major earthquake.Methods: After Bam earthquake registering 6.5 on the Richter scale, 526 trauma patients were admitted to hospitals of TUMS. Among them, 53 patients sustained thoracic injury.Results: This group was composed of 21 females (39.6%) and 32 males (60.4%). Fifteen patients (28.3%) had isolated chest injuries. Rib fracture (36.4%) was the most common injury in our patients and haemo/pneumothorax (25.5%) followed. Superficial injury was the most common accompanying injury. Multipletrauma patients with chest injury had higher injury severity score (ISS) versus patients with isolated chest injury (P =0.003).Conclusions: Chest wall injuries and haemo/pneumothorax comprise a considerable number of injuries in survival victims of earthquakes. Consequently, the majority of these patients can be treated with observation or tube thoracostomy. We should train and equip the health workers and members of rescue teams to treat and manage these patients in the field.

  10. Hazardous Consequences of Polygamy, Contraceptives and Number of Childs on cervical cancer in a low incoming country: Bangladesh

    Directory of Open Access Journals (Sweden)

    Sayed ASADUZZAMAN

    2016-04-01

    Full Text Available Background: Cervical cancer is the one of the most alarming disease among female in the low incoming country like Bangladesh. The societies of Bangladesh are conservative because of lacking education and consciousness. The information on Bangladeshi female’s cervical cancer factors is not available. Purpose: To retrieve the associations among the factors with cervical cancer and to raise awareness among the women of society. Methods: A case-control study has been acquitted on 426 participants of both patients and non-patients from February 2014 till July 2014. Through a precise questionnaire based on former study the whole data collection process done. For analyzing of data some tasks like binary logistic regression, odds ratio, crosstabs and p-value tests have executed. Results: Factors like First sex at the age below 16, Lack of knowledge about cervical cancer, number of children above 3, STI (Sexually Transmitted Infection affection, previous cervical cancer history are founded highly significant on the other hand oral contraception taken, contraception used and vaccine taken factors are significantly lower than the previous factors. Conclusions: The analysis would help to predict the risk factors of the cervical cancer and may help to diminish the cancer not only from Bangladesh but all over the world.

  11. Earthquake Facts

    Science.gov (United States)

    Jump to Navigation Earthquake Facts The largest recorded earthquake in the United States was a magnitude 9.2 that struck Prince William Sound, ... we know, there is no such thing as "earthquake weather" . Statistically, there is an equal distribution of ...

  12. Fear based Education or Curiosity based Education as an Example of Earthquake and Natural Disaster Education: Results of Statistical Study in Primary Schools in Istanbul-Turkey

    Science.gov (United States)

    Ozcep, T.; Ozcep, F.

    2012-04-01

    Natural disaster reduction focuses on the urgent need for prevention activities to reduce loss of life, damage to property, infrastructure and environment, and the social and economic disruption caused by natural hazards. One of the most important factors in reduction of the potential damage of earthquakes is trained manpower. To understanding the causes of earthquakes and other natural phenomena (landslides, avalanches, floods, volcanoes, etc.) is one of the pre-conditions to show a conscious behavior. The aim of the study is to analysis and to investigate, how earthquakes and other natural phenomena are perceived by the students and the possible consequences of this perception, and their effects of reducing earthquake damage. One of the crucial questions is that is our education system fear or curiosity based education system? Effects of the damages due to earthquakes have led to look like a fear subject. In fact, due to the results of the effects, the earthquakes are perceived scary phenomena. In the first stage of the project, the learning (or perception) levels of earthquakes and other natural disasters for the students of primary school are investigated with a survey. Aim of this survey study of earthquakes and other natural phenomena is that have the students fear based or curiosity based approaching to the earthquakes and other natural events. In the second stage of the project, the path obtained by the survey are evaluated with the statistical point of approach. A questionnaire associated with earthquakes and natural disasters are applied to primary school students (that total number of them is approximately 700 pupils) to measure the curiosity and/or fear levels. The questionnaire consists of 17 questions related to natural disasters. The questions are: "What is the Earthquake ?", "What is power behind earthquake?", "What is the mental response during the earthquake ?", "Did we take lesson from earthquake's results ?", "Are you afraid of earthquake

  13. The Characteristics of Earthquake Swarms in and around Jiangsu Province

    Institute of Scientific and Technical Information of China (English)

    Huang Yun; Tian Jianming; Miao Ali

    2011-01-01

    This paper systematically analyzed 36 earthquake swarms in and around Jiangsu Province, summarized their characteristics and discussed the relationship between earthquske swarms and subsequent strong earthquakes. It also analyzed the judgment criteria for precursory earthquake swarms. Earthquake swarms in Jiangsu Province are concentrated in several areas. Most of them were of magnitude ML2. 0 ~ 3. 9. For most earthquake swarms, the number of earthquakes was less than 30. Time duration for about 55% of earthquake swarms was less than 15 days. The biggest magnitude of one earthquake swarm was not proportional to the number of earthquakes and time duration. There are 78% of earthquake swarms corresponded to the forthcoming earthquakes of M 〉 4. 6 in which there're 57% occured in one year, This shows a medium- and short-term criterion. Distance between earthquake swarm and future earthquake was distributed dispersedly. There were no earthquakes occurring in the same location as earthquake swarms. There was no good correlation between the magnitude and the corresponding rate of future earthquakes and the intensity of earthquake swarms. There was also no good correlation between the number of earthquakes in an earthquake swarm and the corresponding rate. The study also shows that it's better to use U-p or whole-combination to determine the type of earthquake swarm.

  14. Do magnitudes of great subduction earthquakes depend on strength of mechanical coupling between the plates?

    Science.gov (United States)

    Sobolev, Stephan; Muldashev, Iskander

    2017-04-01

    The common thinking is that the magnitude of a great subduction earthquake correlates with the strength of mechanical coupling between slab and overriding plate. Based on this idea, Ruff and Kanamori (1980) suggested that maximum earthquake's magnitude is controlled by two parameters: age of subducting plate and plate convergence rate, when the youngest and the fastest slabs generate the largest earthquakes. This view was supported by many researches since then. However, since 1980 a number of great earthquakes, and particularly two largest earthquakes of the last 12 years, i.e. Great Sumatra/Andaman 2004 Earthquake and Tohoku 2011 earthquake, have violated the suggested correlation. We address the relation between strength of mechanical coupling and earthquake magnitude directly by cross-scale geodynamic modeling of seismic cycles of great subduction earthquakes. This modeling technique employs elasticity, non-linear transient viscous rheology, and rate-and-state friction at slab interface. It generates spontaneous earthquake sequences, and, by using an adaptive time-step algorithm, recreates the deformation process as observed naturally over single and multiple seismic cycles. We model seismic cycles for the great subduction earthquakes with different geometries of subducting plates, different static friction coefficients in subduction channels and different subduction velocities. Under the assumption that rupture length scales with the rupture width, our models demonstrate that maximum magnitudes of the earthquakes are exclusively controlled by the factors that increase rupture width. These factors are: low slab's dipping angle (the largest effect), low friction coefficient in subduction channel (smaller effect) and high subduction velocity (the smallest effect). Models suggest that maximum magnitudes of earthquakes do not correlate significantly with the magnitudes of normal and shear stresses at subduction interface. In agreement with observations, our models

  15. Earthquake Safety Tips in the Classroom

    Science.gov (United States)

    Melo, M. O.; Maciel, B. A. P. C.; Neto, R. P.; Hartmann, R. P.; Marques, G.; Gonçalves, M.; Rocha, F. L.; Silveira, G. M.

    2014-12-01

    The catastrophes induced by earthquakes are among the most devastating ones, causing an elevated number of human losses and economic damages. But, we have to keep in mind that earthquakes don't kill people, buildings do. Earthquakes can't be predicted and the only way of dealing with their effects is to teach the society how to be prepared for them, and how to deal with their consequences. In spite of being exposed to moderate and large earthquakes, most of the Portuguese are little aware of seismic risk, mainly due to the long recurrence intervals between strong events. The acquisition of safe and correct attitudes before, during and after an earthquake is relevant for human security. Children play a determinant role in the establishment of a real and long-lasting "culture of prevention", both through action and new attitudes. On the other hand, when children assume correct behaviors, their relatives often change their incorrect behaviors to mimic the correct behaviors of their kids. In the framework of a Parents-in-Science initiative, we started with bi-monthly sessions for children aged 5 - 6 years old and 9 - 10 years old. These sessions, in which parents, teachers and high-school students participate, became part of the school's permanent activities. We start by a short introduction to the Earth and to earthquakes by story telling and by using simple science activities to trigger children curiosity. With safety purposes, we focus on how crucial it is to know basic information about themselves and to define, with their families, an emergency communications plan, in case family members are separated. Using a shaking table we teach them how to protect themselves during an earthquake. We then finish with the preparation on an individual emergency kit. This presentation will highlight the importance of encouraging preventive actions in order to reduce the impact of earthquakes on society. This project is developed by science high-school students and teachers, in

  16. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  17. Earthquake and Geothermal Energy

    CERN Document Server

    Kapoor, Surya Prakash

    2013-01-01

    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  18. Creating a Global Building Inventory for Earthquake Loss Assessment and Risk Management

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2008-01-01

    contribution of building stock, its relative vulnerability, and distribution are vital components for determining the extent of casualties during an earthquake. It is evident from large deadly historical earthquakes that the distribution of vulnerable structures and their occupancy level during an earthquake control the severity of human losses. For example, though the number of strong earthquakes in California is comparable to that of Iran, the total earthquake-related casualties in California during the last 100 years are dramatically lower than the casualties from several individual Iranian earthquakes. The relatively low casualties count in California is attributed mainly to the fact that more than 90 percent of the building stock in California is made of wood and is designed to withstand moderate to large earthquakes (Kircher, Seligson and others, 2006). In contrast, the 80 percent adobe and or non-engineered masonry building stock with poor lateral load resisting systems in Iran succumbs even for moderate levels of ground shaking. Consequently, the heavy death toll for the 2003 Bam, Iran earthquake, which claimed 31,828 lives (Ghafory-Ashtiany and Mousavi, 2005), is directly attributable to such poorly resistant construction, and future events will produce comparable losses unless practices change. Similarly, multistory, precast-concrete framed buildings caused heavy casualties in the 1988 Spitak, Armenia earthquake (Bertero, 1989); weaker masonry and reinforced-concrete framed construction designed for gravity loads with soft first stories dominated losses in the Bhuj, India earthquake of 2001 (Madabhushi and Haigh, 2005); and adobe and weak masonry dwellings in Peru controlled the death toll in the Peru earthquake of 2007 (Taucer, J. and others, 2007). Spence (2007) after conducting a brief survey of most lethal earthquakes since 1960 found that building collapses remains a major cause of earthquake mortality and unreinforced masonry buildings are one of the mos

  19. Historical Earthquakes in the Yellow Sea and Its Adjacent Area

    Institute of Scientific and Technical Information of China (English)

    Wu Ge; Wang Andong; Wu Di

    2005-01-01

    As a result of sorting out, estimating and cataloging of historical earthquakes, from the year of 2 A.D. to Aug., 1949, we found that there were 2187 earthquakes with M≥3.0 in the area of the Yellow Sea and its adjacent area. Among the earthquakes, the number of earthquakes with M ≥ 5.0 is 209, and at least 43 of the earthquakes caused serious losses, 20 of the earthquakes caused human causalities. It is demonstrated that there were 3 areas of historical earthquake concentration and the earthquake activity was higher in the 16th century and the first half if the 20th century.

  20. Volcanotectonic earthquakes induced by propagating dikes

    Science.gov (United States)

    Gudmundsson, Agust

    2016-04-01

    Volcanotectonic earthquakes are of high frequency and mostly generated by slip on faults. During chamber expansion/contraction earthquakes are distribution in the chamber roof. Following magma-chamber rupture and dike injection, however, earthquakes tend to concentrate around the dike and follow its propagation path, resulting in an earthquake swarm characterised by a number of earthquakes of similar magnitudes. I distinguish between two basic processes by which propagating dikes induce earthquakes. One is due to stress concentration in the process zone at the tip of the dike, the other relates to stresses induced in the walls and surrounding rocks on either side of the dike. As to the first process, some earthquakes generated at the dike tip are related to pure extension fracturing as the tip advances and the dike-path forms. Formation of pure extension fractures normally induces non-double couple earthquakes. There is also shear fracturing in the process zone, however, particularly normal faulting, which produces double-couple earthquakes. The second process relates primarily to slip on existing fractures in the host rock induced by the driving pressure of the propagating dike. Such pressures easily reach 5-20 MPa and induce compressive and shear stresses in the adjacent host rock, which already contains numerous fractures (mainly joints) of different attitudes. In piles of lava flows or sedimentary beds the original joints are primarily vertical and horizontal. Similarly, the contacts between the layers/beds are originally horizontal. As the layers/beds become buried, the joints and contacts become gradually tilted so that the joints and contacts become oblique to the horizontal compressive stress induced by a driving pressure of the (vertical) dike. Also, most of the hexagonal (or pentagonal) columnar joints in the lava flows are, from the beginning, oblique to an intrusive sheet of any attitude. Consequently, the joints and contacts function as potential shear

  1. [Earthquakes--a historical review, environmental and health effects, and health care measures].

    Science.gov (United States)

    Nola, Iskra Alexandra; Doko Jelinić, Jagoda; Žuškin, Eugenija; Kratohvil, Mladen

    2013-06-01

    Earthquakes are natural disasters that can occur at any time, regardless of the location. Their frequency is higher in the Circum-Pacific and Mediterranean/Trans-Asian seismic belt. A number of sophisticated methods define their magnitude using the Richter scale and intensity using the Mercani-Cancani-Sieberg scale. Recorded data show a number of devastating earthquakes that have killed many people and changed the environment dramatically. Croatia is located in a seismically active area, which has endured a series of historical earthquakes, among which several occurred in the Zagreb area. The consequences of an earthquake depend mostly on the population density and seismic resistance of buildings in the affected area. Environmental consequences often include air, water, and soil pollution. The effects of this kind of pollution can have long-term health effects. The most dramatic health consequences result from the demolition of buildings. Therefore, quick and efficient aid depends on well-organized health professionals as well as on the readiness of the civil defence, fire department, and Mountain Rescue Service members. Good coordination among these services can save many lives Public health interventions must include effective control measures in the environment as secondary prevention methods for health problems caused by unfavourable environmental factors. The identification and control of long-term hazards can reduce chronic health effects. The reduction of earthquake-induced damages includes setting priorities in building seismically safe buildings.

  2. Fracking, wastewater disposal, and earthquakes

    Science.gov (United States)

    McGarr, Arthur

    2016-03-01

    In the modern oil and gas industry, fracking of low-permeability reservoirs has resulted in a considerable increase in the production of oil and natural gas, but these fluid-injection activities also can induce earthquakes. Earthquakes induced by fracking are an inevitable consequence of the injection of fluid at high pressure, where the intent is to enhance permeability by creating a system of cracks and fissures that allow hydrocarbons to flow to the borehole. The micro-earthquakes induced during these highly-controlled procedures are generally much too small to be felt at the surface; indeed, the creation or reactivation of a large fault would be contrary to the goal of enhancing permeability evenly throughout the formation. Accordingly, the few case histories for which fracking has resulted in felt earthquakes have been due to unintended fault reactivation. Of greater consequence for inducing earthquakes, modern techniques for producing hydrocarbons, including fracking, have resulted in considerable quantities of coproduced wastewater, primarily formation brines. This wastewater is commonly disposed by injection into deep aquifers having high permeability and porosity. As reported in many case histories, pore pressure increases due to wastewater injection were channeled from the target aquifers into fault zones that were, in effect, lubricated, resulting in earthquake slip. These fault zones are often located in the brittle crystalline rocks in the basement. Magnitudes of earthquakes induced by wastewater disposal often exceed 4, the threshold for structural damage. Even though only a small fraction of disposal wells induce earthquakes large enough to be of concern to the public, there are so many of these wells that this source of seismicity contributes significantly to the seismic hazard in the United States, especially east of the Rocky Mountains where standards of building construction are generally not designed to resist shaking from large earthquakes.

  3. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  4. Spatio-temporal Variations of Characteristic Repeating Earthquake Sequences along the Middle America Trench in Mexico

    Science.gov (United States)

    Dominguez, L. A.; Taira, T.; Hjorleifsdottir, V.; Santoyo, M. A.

    2015-12-01

    Repeating earthquake sequences are sets of events that are thought to rupture the same area on the plate interface and thus provide nearly identical waveforms. We systematically analyzed seismic records from 2001 through 2014 to identify repeating earthquakes with highly correlated waveforms occurring along the subduction zone of the Cocos plate. Using the correlation coefficient (cc) and spectral coherency (coh) of the vertical components as selection criteria, we found a set of 214 sequences whose waveforms exceed cc≥95% and coh≥95%. Spatial clustering along the trench shows large variations in repeating earthquakes activity. Particularly, the rupture zone of the M8.1, 1985 earthquake shows an almost absence of characteristic repeating earthquakes, whereas the Guerrero Gap zone and the segment of the trench close to the Guerrero-Oaxaca border shows a significantly larger number of repeating earthquakes sequences. Furthermore, temporal variations associated to stress changes due to major shows episodes of unlocking and healing of the interface. Understanding the different components that control the location and recurrence time of characteristic repeating sequences is a key factor to pinpoint areas where large megathrust earthquakes may nucleate and consequently to improve the seismic hazard assessment.

  5. 100 years after the Marsica earthquake: contribute of outreach activities

    Science.gov (United States)

    D'Addezio, Giuliana; Giordani, Azzurra; Valle, Veronica; Riposati, Daniela

    2015-04-01

    Many outreach events have been proposed by the scientific community to celebrate the Centenary of the January 13, 1915 earthquake, that devastated the Marsica territory, located in Central Apennines. The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, has realised an interactive exhibition in the Castello Piccolomini, Celano (AQ), to retrace the many aspects of the earthquake disaster, in a region such as Abruzzo affected by several destructive earthquakes during its history. The initiatives represent an ideal opportunity for the development of new programs of communication and training on seismic risk and to spread the culture of prevention. The INGV is accredited with the Servizio Civile Nazionale (National Civic Service) and volunteers are involved in the project "Science and Outreach: a comprehensive approach to the divulgation of knowledge of Earth Sciences" starting in 2014. In this contest, volunteers had the opportunity to fully contribute to the exhibition, in particular, promoting and realising two panels concerning the social and environmental consequences of the Marsica earthquake. Describing the serious consequences of the earthquake, we may raise awareness about natural hazards and about the only effective action for earthquake defense: building with anti seismic criteria. After studies and researches conducted in libraries and via web, two themes have been developped: the serious problem of orphans and the difficult reconstruction. Heavy snowfalls and the presence of wolves coming from the high and wild surrounding mountains complicated the scenario and decelerated the rescue of the affected populations. It is important to underline that the earthquake was not the only devastating event in the country in 1915; another drammatic event was, in fact, the First World War. Whole families died and the still alive infants and

  6. The physics of an earthquake

    Science.gov (United States)

    McCloskey, John

    2008-03-01

    The Sumatra-Andaman earthquake of 26 December 2004 (Boxing Day 2004) and its tsunami will endure in our memories as one of the worst natural disasters of our time. For geophysicists, the scale of the devastation and the likelihood of another equally destructive earthquake set out a series of challenges of how we might use science not only to understand the earthquake and its aftermath but also to help in planning for future earthquakes in the region. In this article a brief account of these efforts is presented. Earthquake prediction is probably impossible, but earth scientists are now able to identify particularly dangerous places for future events by developing an understanding of the physics of stress interaction. Having identified such a dangerous area, a series of numerical Monte Carlo simulations is described which allow us to get an idea of what the most likely consequences of a future earthquake are by modelling the tsunami generated by lots of possible, individually unpredictable, future events. As this article was being written, another earthquake occurred in the region, which had many expected characteristics but was enigmatic in other ways. This has spawned a series of further theories which will contribute to our understanding of this extremely complex problem.

  7. Earthquake Hazards Program: Earthquake Scenarios

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A scenario represents one realization of a potential future earthquake by assuming a particular magnitude, location, and fault-rupture geometry and estimating...

  8. PAGER-CAT: A composite earthquake catalog for calibrating global fatality models

    Science.gov (United States)

    Allen, T.I.; Marano, K.D.; Earle, P.S.; Wald, D.J.

    2009-01-01

    highly uncertain, particularly the casualty numbers, which must be regarded as estimates rather than firm numbers for many earthquakes. Consequently, we encourage contributions from the seismology and earthquake engineering communities to further improve this resource via the Wikipedia page and personal communications, for the benefit of the whole community.

  9. Attention bias in earthquake-exposed survivors: an event-related potential study.

    Science.gov (United States)

    Zhang, Yan; Kong, Fanchang; Han, Li; Najam Ul Hasan, Abbasi; Chen, Hong

    2014-12-01

    The Chinese Wenchuan earthquake, which happened on the 28th of May in 2008, may leave deep invisible scars in individuals. China has a large number of children and adolescents, who tend to be most vulnerable because they are in an early stage of human development and possible post-traumatic psychological distress may have a life-long consequence. Trauma survivors without post-traumatic stress disorder (PTSD) have received little attention in previous studies, especially in event-related potential (ERP) studies. We compared the attention bias to threat stimuli between the earthquake-exposed group and the control group in a masked version of the dot probe task. The target probe presented at the same space location consistent with earthquake-related words was the congruent trial, while in the space location of neutral words was the incongruent trial. Thirteen earthquake-exposed middle school students without PTSD and 13 matched controls were included in this investigation. The earthquake-exposed group showed significantly faster RTs to congruent trials than to incongruent trials. The earthquake-exposed group produced significantly shorter C1 and P1 latencies and larger C1, P1 and P2 amplitudes than the control group. In particular, enhanced P1 amplitude to threat stimuli was observed in the earthquake-exposed group. These findings are in agreement with the prediction that earthquake-exposed survivors have an attention bias to threat stimuli. The traumatic event had a much greater effect on earthquake-exposed survivors even if they showed no PTSD symptoms than individuals in the controls. These results will provide neurobiological evidences for effective intervention and prevention to post-traumatic mental problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Loss Estimations due to Earthquakes and Secondary Technological Hazards

    Science.gov (United States)

    Frolova, N.; Larionov, V.; Bonnin, J.

    2009-04-01

    Expected loss and damage assessment due to natural and technological disasters are of primary importance for emergency management just after the disaster, as well as for development and implementation of preventive measures plans. The paper addresses the procedures and simulation models for loss estimations due to strong earthquakes and secondary technological accidents. The mathematical models for shaking intensity distribution, damage to buildings and structures, debris volume, number of fatalities and injuries due to earthquakes and technological accidents at fire and chemical hazardous facilities are considered, which are used in geographical information systems assigned for these purposes. The criteria of technological accidents occurrence are developed on the basis of engineering analysis of past events' consequences. The paper is providing the results of scenario earthquakes consequences estimation and individual seismic risk assessment taking into account the secondary technological hazards at regional and urban levels. The individual risk is understood as the probability of death (or injuries) due to possible hazardous event within one year in a given territory. It is determined through mathematical expectation of social losses taking into account the number of inhabitants in the considered settlement and probability of natural and/or technological disaster.

  11. Earthquake engineering research: 1982

    Science.gov (United States)

    The Committee on Earthquake Engineering Research addressed two questions: What progress has research produced in earthquake engineering and which elements of the problem should future earthquake engineering pursue. It examined and reported in separate chapters of the report: Applications of Past Research, Assessment of Earthquake Hazard, Earthquake Ground Motion, Soil Mechanics and Earth Structures, Analytical and Experimental Structural Dynamics, Earthquake Design of Structures, Seismic Interaction of Structures and Fluids, Social and Economic Aspects, Earthquake Engineering Education, Research in Japan.

  12. Earthquake related tsunami hazard along the western coast of Thailand

    Directory of Open Access Journals (Sweden)

    F. Løvholt

    2006-01-01

    Full Text Available The primary background for the present study was a project to assist the authorities in Thailand with development of plans for how to deal with the future tsunami risk in both short and long term perspectives, in the wake of the devastating 26 December 2004 Sumatra-Andaman earthquake and tsunami. The study is focussed on defining and analyzing a number of possible future earthquake scenarios (magnitudes 8.5, 8.0 and 7.5 with associated return periods, each one accompanied by specific tsunami modelling. Along the most affected part of the western coast of Thailand, the 2004 tsunami wave caused a maximum water level ranging from 5 to 15 m above mean sea level. These levels and their spatial distributions have been confirmed by detailed numerical simulations. The applied earthquake source is developed based on available seismological and geodetic inversions, and the simulation using the source as initial condition agree well with sea level records and run-up observations. A conclusion from the study is that another megathrust earthquake generating a tsunami affecting the coastline of western Thailand is not likely to occur again for several hundred years. This is in part based on the assumption that the Southern Andaman Microplate Boundary near the Simeulue Islands constitutes a geologic barrier that will prohibit significant rupture across it, and in part on the decreasing subduction rates north of the Banda Ache region. It is also concluded that the largest credible earthquake to be prepared for along the part of the Sunda-Andaman arc that could affect Thailand, is within the next 50–100 years an earthquake of magnitude 8.5, which is expected to occur with more spatial and temporal irregularity than the megathrust events. Numerical simulations have shown such earthquakes to cause tsunamis with maximum water levels up to 1.5–2.0 m along the western coast of Thailand, possibly 2.5–3.0 m on a high tide. However, in a longer time perspective

  13. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2016-12-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  14. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  15. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  16. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  17. Connecting slow earthquakes to huge earthquakes

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  18. 2010 Chile Earthquake Aftershock Response

    Science.gov (United States)

    Barientos, Sergio

    2010-05-01

    1906? Since the number of M>7.0 aftershocks has been low, does the distribution of large-magnitude aftershocks differ from previous events of this size? What is the origin of the extensional-type aftershocks at shallow depths within the upper plate? The international seismological community (France, Germany, U.K., U.S.A.) in collaboration with the Chilean seismological community responded with a total of 140 portable seismic stations to deploy in order to record aftershocks. This combined with the Chilean permanent seismic network, in the area results in 180 stations now in operation recording continuous at 100 cps. The seismic equipment is a mix of accelerometers, short -period and broadband seismic sensors deployed along the entire length of the aftershock zone that will record the aftershock sequence for three to six months. The collected seismic data will be merged and archived to produce an international data set open to the entire seismological community immediately after archiving. Each international group will submit their data as soon as possible in standard (mini seed) format with accompanying meta data to the IRIS DMC where the data will be merged into a combined data set and available to individuals and other data centers. This will be by far the best-recorded aftershock sequence of a large megathrust earthquake. This outstanding international collaboration will provide an open data set for this important earthquake as well as provide a model for future aftershock deployments around the world.

  19. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  20. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  1. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  2. Earthquakes: Risk, Detection, Warning, and Research

    Science.gov (United States)

    2010-01-14

    and central China, and as far away as Bangladesh , Taiwan, Thailand, and Vietnam. Several large aftershocks occurred after the main seismic event...34 The number of stations necessary to generate a data-based ShakeMap depends on the urban area and geology ...Research Congressional Research Service 24 • Earthquake geology and paleoseismology: studies of the history, effects, and mechanics of earthquakes

  3. Two models for earthquake forerunners

    Science.gov (United States)

    Mjachkin, V.I.; Brace, W.F.; Sobolev, G.A.; Dieterich, J.H.

    1975-01-01

    Similar precursory phenomena have been observed before earthquakes in the United States, the Soviet Union, Japan, and China. Two quite different physical models are used to explain these phenomena. According to a model developed by US seismologists, the so-called dilatancy diffusion model, the earthquake occurs near maximum stress, following a period of dilatant crack expansion. Diffusion of water in and out of the dilatant volume is required to explain the recovery of seismic velocity before the earthquake. According to a model developed by Soviet scientists growth of cracks is also involved but diffusion of water in and out of the focal region is not required. With this model, the earthquake is assumed to occur during a period of falling stress and recovery of velocity here is due to crack closure as stress relaxes. In general, the dilatancy diffusion model gives a peaked precursor form, whereas the dry model gives a bay form, in which recovery is well under way before the earthquake. A number of field observations should help to distinguish between the two models: study of post-earthquake recovery, time variation of stress and pore pressure in the focal region, the occurrence of pre-existing faults, and any changes in direction of precursory phenomena during the anomalous period. ?? 1975 Birkha??user Verlag.

  4. A smartphone application for earthquakes that matter!

    Science.gov (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    level of shaking intensity with empirical models of fatality losses calibrated on past earthquakes in each country. Non-seismic detections and macroseismic questionnaires collected online are combined to identify as many as possible of the felt earthquakes regardless their magnitude. Non seismic detections include Twitter earthquake detections, developed by the US Geological Survey, where the number of tweets containing the keyword "earthquake" is monitored in real time and flashsourcing, developed by the EMSC, which detect traffic surges on its rapid earthquake information website caused by the natural convergence of eyewitnesses who rush to the Internet to investigate the cause of the shaking that they have just felt. All together, we estimate that the number of detected felt earthquakes is around 1 000 per year, compared with the 35 000 earthquakes annually reported by the EMSC! Felt events are already the subject of the web page "Latest significant earthquakes" on EMSC website (http://www.emsc-csem.org/Earthquake/significant_earthquakes.php) and of a dedicated Twitter service @LastQuake. We will present the identification process of the earthquakes that matter, the smartphone application itself (to be released in May) and its future evolutions.

  5. Earthquakes in Arkansas and vicinity 1699-2010

    Science.gov (United States)

    Dart, Richard L.; Ausbrooks, Scott M.

    2011-01-01

    This map summarizes approximately 300 years of earthquake activity in Arkansas. It is one in a series of similar State earthquake history maps. Work on the Arkansas map was done in collaboration with the Arkansas Geological Survey. The earthquake data plotted on the map are from several sources: the Arkansas Geological Survey, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Mississippi Department of Environmental Quality. In addition to earthquake locations, other materials presented include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Arkansas and parts of adjacent states. Arkansas has undergone a number of significant felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Arkansas and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  6. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  7. Relationship between earthquake and volcanic eruption inferred from historical records

    Institute of Scientific and Technical Information of China (English)

    陈洪洲; 高峰; 吴雪娟; 孟宪森

    2004-01-01

    A large number of seismic records are discovered for the first time in the historical materials about Wudalianchi volcanic group eruption in 1720~1721, which provides us with abundant volcanic earthquake information. Based on the written records, the relationship between earthquake and volcanic eruption is discussed in the paper. Furthermore it is pointed that earthquake swarm is an important indication of volcanic eruption. Therefore, monitoring volcanic earthquakes is of great significance for forecasting volcanic eruption.

  8. Configurations Of Tire Pressure On The Pavement For Commercial Vehicles: Calculation Of The ‘N’ Number And The Consequences On Pavement Performance

    Directory of Open Access Journals (Sweden)

    Paulo Boulos Filho

    2016-07-01

    Full Text Available Road traffic has a high variety of types of vehicles and cargo transported. One of the main difficulties in pavement design is forecasting the changes in traffic over time and evaluating the comparative deterioration power of the various loads with axle and tire settings and different levels of repetition. The road environment in Brazil, as we know, is the main means of the country's cargo transportation. Throughout the 1990s and 2000s the road modal accounted for over 60% of the total cargo transported in the country leaving the unbalanced Brazilian transport matrix with almost exclusive investments in such means of transportation. According to CNT 2012, which conducted a survey in approximately 45% of the paved network, evaluating the pavement functional conditions, traffic signs and geometry, 46% of the country’s road network has some type of deficiency in the pavement. The goal of this work is to contribute to a better understanding of the complex influence of traffic in the design and service life of the pavement. The load pressure of commercial vehicle tires over the pavement has increased in recent decades. A more apparent effect of this increase in tire pressure would be the change in the pavement- tire contact area which in turn may result in an increase in the contact load between tire and pavement and other harmful effects on the structure. This study aims to determine the effect on the calculation of the N number, or the number of solicitations of the standard axle on the road pavement, measuring the overload as a percentage of the legal load indicated by a scale. In short, we calculate how an increase in the overload percentage in comparison with the allowable load will influence the decrease of the calculated durability of the pavement designed for the highway.

  9. Hurricane Sandy and earthquakes

    OpenAIRE

    MAVASHEV BORIS; MAVASHEV IGOR

    2013-01-01

    Submit for consideration the connection between formation of a hurricane Sandy and earthquakes. As a rule, weather anomalies precede and accompany earthquakes. The hurricane Sandy emerged 2 days prior to strong earthquakes that occurred in the area. And the trajectory of the hurricane Sandy matched the epicenter of the earthquakes. Possibility of early prediction of natural disasters will minimize the moral and material damage.

  10. Optimal Numbers of Braces in Braced-frame Structures under Earthquake Action%多层框架-支撑结构在水平地震作用下的支撑合理数量

    Institute of Scientific and Technical Information of China (English)

    程小燕; 薛彦涛

    2012-01-01

    With the development of the energy dissipation brace, this technology is more and more used in the new structures and the old structures' reinforcement and reconstruction design. In this paper, a series of formulas for determining, optimal numbers of braces under earthquake action are presented, based on the cooperation work principle of brace and frame in braced-frame structure and the code for seismic design of buildings. This method is accurate and convenient enough for use when the braced-frame structure are designed during the preliminary stage of design and the renovated and strengthened of existing frame structure.%随着耗能支撑的发展,支撑越来越多地应用于新建结构和旧有建筑的加固改造中.本文依据框架-支撑结构的协同工作原理,按照我国现行抗震设计规范对混凝土框架-支撑结构侧移变形的限值,推导出了满足层间位移角限值的支撑数量的计算公式,从而为框架-支撑结构的初步设计以及原有框架结构的改造加固提供参考.

  11. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  12. Comparing population exposure to multiple Washington earthquake scenarios for prioritizing loss estimation studies

    Science.gov (United States)

    Wood, Nathan J.; Ratliff, Jamie L.; Schelling, John; Weaver, Craig S.

    2014-01-01

    Scenario-based, loss-estimation studies are useful for gauging potential societal impacts from earthquakes but can be challenging to undertake in areas with multiple scenarios and jurisdictions. We present a geospatial approach using various population data for comparing earthquake scenarios and jurisdictions to help emergency managers prioritize where to focus limited resources on data development and loss-estimation studies. Using 20 earthquake scenarios developed for the State of Washington (USA), we demonstrate how a population-exposure analysis across multiple jurisdictions based on Modified Mercalli Intensity (MMI) classes helps emergency managers understand and communicate where potential loss of life may be concentrated and where impacts may be more related to quality of life. Results indicate that certain well-known scenarios may directly impact the greatest number of people, whereas other, potentially lesser-known, scenarios impact fewer people but consequences could be more severe. The use of economic data to profile each jurisdiction’s workforce in earthquake hazard zones also provides additional insight on at-risk populations. This approach can serve as a first step in understanding societal impacts of earthquakes and helping practitioners to efficiently use their limited risk-reduction resources.

  13. Earthquakes in Mississippi and vicinity 1811-2010

    Science.gov (United States)

    Dart, Richard L.; Bograd, Michael B.E.

    2011-01-01

    This map summarizes two centuries of earthquake activity in Mississippi. Work on the Mississippi map was done in collaboration with the Mississippi Department of Environmental Quality, Office of Geology. The earthquake data plotted on the map are from several sources: the Mississippi Department of Environmental Quality, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Arkansas Geological Survey. In addition to earthquake locations, other materials include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Mississippi and parts of adjacent States. Mississippi has undergone a number of felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Mississippi and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  14. Triggering of repeating earthquakes in central California

    Science.gov (United States)

    Wu, Chunquan; Gomberg, Joan; Ben-Naim, Eli; Johnson, Paul

    2014-01-01

    Dynamic stresses carried by transient seismic waves have been found capable of triggering earthquakes instantly in various tectonic settings. Delayed triggering may be even more common, but the mechanisms are not well understood. Catalogs of repeating earthquakes, earthquakes that recur repeatedly at the same location, provide ideal data sets to test the effects of transient dynamic perturbations on the timing of earthquake occurrence. Here we employ a catalog of 165 families containing ~2500 total repeating earthquakes to test whether dynamic perturbations from local, regional, and teleseismic earthquakes change recurrence intervals. The distance to the earthquake generating the perturbing waves is a proxy for the relative potential contributions of static and dynamic deformations, because static deformations decay more rapidly with distance. Clear changes followed the nearby 2004 Mw6 Parkfield earthquake, so we study only repeaters prior to its origin time. We apply a Monte Carlo approach to compare the observed number of shortened recurrence intervals following dynamic perturbations with the distribution of this number estimated for randomized perturbation times. We examine the comparison for a series of dynamic stress peak amplitude and distance thresholds. The results suggest a weak correlation between dynamic perturbations in excess of ~20 kPa and shortened recurrence intervals, for both nearby and remote perturbations.

  15. Earthquake Risk Management of Underground Lifelines in the Urban Area of Catania

    Science.gov (United States)

    Grasso, S.; Maugeri, M.

    2008-07-01

    Lifelines typically include the following five utility networks: potable water, sewage natural gas, electric power, telecommunication and transportation system. The response of lifeline systems, like gas and water networks, during a strong earthquake, can be conveniently evaluated with the estimated average number of ruptures per km of pipe. These ruptures may be caused either by fault ruptures crossing, or by permanent deformations of the soil mass (landslides, liquefaction), or by transient soil deformations caused by seismic wave propagation. The possible consequences of damaging earthquakes on transportation systems may be the reduction or the interruption of traffic flow, as well as the impact on the emergency response and on the recovery assistance. A critical element in the emergency management is the closure of roads due to fallen obstacles and debris of collapsed buildings. The earthquake-induced damage to buried pipes is expressed in terms of repair rate (RR), defined as the number of repairs divided by the pipe length (km) exposed to a particular level of seismic demand; this number is a function of the pipe material (and joint type), of the pipe diameter and of the ground shaking level, measured in terms of peak horizontal ground velocity (PGV) or permanent ground displacement (PGD). The development of damage algorithms for buried pipelines is primarily based on empirical evidence, tempered with engineering judgment and sometimes by analytical formulations. For the city of Catania, in the present work use has been made of the correlation between RR and peak horizontal ground velocity by American Lifelines Alliance (ALA, 2001), for the verifications of main buried pipelines. The performance of the main buried distribution networks has been evaluated for the Level I earthquake scenario (January 11, 1693 event I = XI, M 7.3) and for the Level II earthquake scenario (February 20, 1818 event I = IX, M 6.2). Seismic damage scenario of main gas pipelines and

  16. Post-earthquake fire resistance of steel buildings

    DEFF Research Database (Denmark)

    Jelinek, T.; Zania, V.; Giuliani, Luisa

    2017-01-01

    Current design procedures do not account for the concomitant or subsequent occurrence of earthquakes and fires, which has so far been justified by the low probability of occurrence of accidental actions. Nevertheless, fires are often triggered as a consequence of damage caused by the earthquake a...

  17. Stress drop Scaling and Stress Release in the Darfield-Christchurch, New Zealand Earthquake Sequence

    Science.gov (United States)

    Abercrombie, R. E.; Fry, B.; Gerstenberger, M. C.; Doser, D. I.; Bannister, S. C.

    2012-12-01

    To investigate earthquake rupture dynamics, and which factors (e.g. normal stress, strain rate, fluids, rheology) govern the earthquake source and consequent ground motions, we need to study earthquakes over a wide range of magnitudes, from a diverse range of tectonic environments. The uncertainties and discrepancies between studies of earthquake stress drop are a frustration to all those who are interested in earthquake source and fault dynamics. There is controversy over whether the earthquake rupture process is self-similar and whether it varies with tectonic setting; different studies give different results. It is unclear whether this is due to differences between the earthquakes, or the analysis methods. We are developing a direct wave, spectral ratio analysis approach that includes realistic estimates of uncertainties and has strict objective criteria for assessing the quality of an EGF derived spectral ratio (Abercrombie, 2012, submitted). Comparing this approach to other methods reveals significant random and systematic biases, enabling us to improve our understanding of the real uncertainties. The Canterbury earthquake sequence that began with the M7.1 Darfield earthquake in September 2010, and includes the devastating M6.2 Christchurch earthquake in February 2011 is a very active sequence within a low strain rate tectonic setting. To date there have been 15 earthquakes with M>5.5. High quality recording and accurate relocations make this an ideal sequence to investigate any spatial, temporal, or magnitude dependence to stress drop. The largest earthquakes appear to have relatively high stress drops (and apparent stress), consistent with the high ground accelerations and damage in Christchurch. This observation is also consistent with the hypothesis that faults in low-strain rate regions with long inter-event times rupture in higher stress drop earthquakes. We use recordings from the various GeoNet broadband stations deployed to record the ongoing

  18. Tohoku earthquake: a surprise?

    CERN Document Server

    Kagan, Yan Y

    2011-01-01

    We consider three issues related to the 2011 Tohoku mega-earthquake: (1) how to evaluate the earthquake maximum size in subduction zones, (2) what is the repeat time for the largest earthquakes in Tohoku area, and (3) what are the possibilities of short-term forecasts during the 2011 sequence. There are two quantitative methods which can be applied to estimate the maximum earthquake size: a statistical analysis of the available earthquake record and the moment conservation principle. The latter technique studies how much of the tectonic deformation rate is released by earthquakes. For the subduction zones, the seismic or historical record is not sufficient to provide a reliable statistical measure of the maximum earthquake. The moment conservation principle yields consistent estimates of maximum earthquake size: for all the subduction zones the magnitude is of the order 9.0--9.7, and for major subduction zones the maximum earthquake size is statistically indistinguishable. Starting in 1999 we have carried out...

  19. The hospital emergency management for a large number of earthquake patients in 2008 Sichuan Wenchuan Earthquake, China%"5·12"汶川特大地震灾害前沿医院"紧急综合救治区"的建立与管理

    Institute of Scientific and Technical Information of China (English)

    冯琦; 王东; 陈立; 何晓芸; 何梅; 刘世全; 雷茂林; 马春华

    2008-01-01

    目的 由于短时间内接受大量地震伤员,且医务人员缺乏,无法按专业划分收治伤员,笔者所在医院建立了紧急建立"紧急综合救治区".方法 紧急建立"紧急综合救治区",区内划分"外科创伤综合救治区"、"外科普通综合区"和"内科普通综合区".抽调绝大多数医护人员进入"外科创伤综合救治区",负责收治各类伤情的灾害伤病员,同时设置预检、污染、手术、隔离、监护等区域,并将帐篷逐一编号、标名."内、外科普通综合病房"由少数医护人员承担诊疗工作,负责收治非灾伤患者.采用不干胶贴作标识贴,写明伤员姓名、性别、年龄、诊断、经治医师及V网通讯号码,然后贴于伤病员手背,并用红色笔在标识贴上画三角符号或用红、黄、蓝不同颜色的腕带,区分重、中、轻伤.将感染伤员和非感染伤员分区管理,并建立了隔离帐篷,严防院内感染传播.结果 医院于震后3 d内收治伤员达1000余人,两周内收治伤员达1500多人,因伤势严重死亡28人,死亡率仅1.8%.结论 "紧急综合救治区"的应急管理模式与机制,既集中了专科优势,又加强了综合服务功能,在有限的医疗资源上,发挥了最大的救治能力.%Objective A large number of injured earthquake patients were accepted by the hospital whilethe professional surgeons were relatively lack. This article introduced the hospital emergency management in 2008Sichuan Wenchuan Earthquake, China. Method Within 3 days, Central Hospital of Mianyang accepted andtreated over 1000 patients after Wenchuan Earthquake jolted on 12 May 2008,and within 2 weeks, the number ofpatients reached 1500. The hospital carded out emergency management plan: (1) emergency comprehensive treat-ment district was established, which was divided into traumatic surgery district, general surgery district, and gen-eral medical district. Traumatic surgery district is responsible for treating traumatic

  20. Earthquake Source and Ground Motion Characteristics of Great Kanto Earthquakes

    Science.gov (United States)

    Somerville, P. G.; Sato, T.; Wald, D. J.; Graves, R. W.; Dan, K.

    2003-12-01

    This paper describes the derivation of a rupture model of the 1923 Kanto earthquake, and the estimation of ground motions that occurred during that earthquake and that might occur during future great Kanto earthquakes. The rupture model was derived from the joint inversion of geodetic and teleseismic data. The leveling and triangulation data place strong constraints on the distribution and orientation of slip on the fault. The most concentrated slip is in the shallow central and western part of the fault. The location of the hypocenter on the western part of the fault gives rise to strong near fault rupture directivity effects, which are largest toward the east in the Boso Peninsula. To estimate the ground motions caused by this earthquake, we first calibrated 1D and 3D wave propagation path effects using the Odawara earthquake of 5 August 1990 (M 5.1), the first earthquake larger than M 5 in the last 60 years near the hypocenter of the 1923 Kanto earthquake. The simulation of the moderate-sized Odawara earthquake demonstrates that the 3D velocity model works quite well at reproducing the recorded long-period (T > 3.33 sec) strong motions, including basin-generated surface waves, for a number of sites located throughout the Kanto basin region. Using this validated 3D model along with the rupture model described above, we simulated the long-period (T > 4 sec) ground motions in this region for the 1923 Kanto earthquake. The largest ground motions occur east of the epicenter along the central and southern part of the Boso Peninsula. These large motions arise from strong rupture directivity effects and are comprised of relatively simple, source-controlled pulses with a dominant period of about 10 sec. Other rupture models and hypocenter locations generally produce smaller long period ground motion levels in this region that those of the 1923 event. North of the epicentral region, in the Tokyo area, 3D basin-generated phases are quite significant, and these phases

  1. Revisiting the global detection capability of earthquakes during the period immediately after a large earthquake: considering the influence of intermediate-depth and deep earthquakes

    Directory of Open Access Journals (Sweden)

    Takaki Iwata

    2012-03-01

    Full Text Available This study examines the global earthquake detection capability of the Global Centroid Moment Tensor (GCMT catalogue during the periods immediately following large earthquakes, including intermediate-depth (70 ≤ depth < 300 km and deep (300 km ≤ depth events. We have already shown that the detection capability beyond an aftershock zone degrades remarkably and that this condition persists for several hours after the occurrence of large shallow (depth < 70 km earthquakes. Because an intermediate-depth or deep earthquake occasionally generates seismic waves with significant amplitudes, it is necessary to investigate the change in the detection capability caused by such events. To this end, from the GCMT catalogue, we constructed the time sequences of the earthquakes that occurred immediately after the large earthquakes, and stacked these time sequences. To these stacked sequences, we then applied a statistical model representing the magnitude-frequency distribution of all observed earthquakes. This model has a parameter that characterizes the detection capability, and the temporal variation of the parameter is estimated by means of a Bayesian approach with a piecewise linear function. Consequently, we find that the global detection capability is lower after the occurrence of shallow earthquakes with magnitudes ≥ 5.45, intermediate-depth earthquakes with magnitudes ≥ 5.95, and deep earthquakes with magnitudes ≥ 6.95.

  2. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-12-01

    Tsunami concerns have increased in the world after the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Consequently, tsunami models have been developed rapidly in the last few years. One of the advanced tsunami models is the GeoClaw tsunami model introduced by LeVeque (2011). This model is adaptive and consistent. Because of different sources of uncertainties in the model, observations are needed to improve model prediction through a data assimilation framework. Model inputs are earthquake parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while the smoother operates smoothing to estimate the earthquake parameters. This method reduces the error produced by uncertain inputs. In addition, state-parameter EnKF is implemented to estimate earthquake parameters. Although number of observations is small, estimated parameters generates a better tsunami prediction than the model. Methods and results of prediction experiments in the Red Sea are presented and the prospect of developing an operational tsunami prediction system in the Red Sea is discussed.

  3. Earthquake rate and magnitude distributions of great earthquakes for use in global forecasts

    Science.gov (United States)

    Kagan, Yan Y.; Jackson, David D.

    2016-07-01

    principle that equates the seismic moment rate with the tectonic moment rate inferred from geodesy and geology, we obtain a consistent estimate of the corner moment largely independent of seismic history. These evaluations confirm the above-mentioned corner magnitude value. The new estimates of corner magnitudes are important both for the forecast part based on seismicity as well as the part based on geodetic strain rates. We examine rate variations as expressed by annual earthquake numbers. Earthquakes larger than magnitude 6.5 obey the Poisson distribution. For smaller events the negative-binomial distribution fits much better because it allows for earthquake clustering.

  4. Earthquake Damage - General

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake is the motion or trembling of the ground produced by sudden displacement of rock in the Earth's crust. Earthquakes result from crustal strain,...

  5. Earthquake Notification Service

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Earthquake Notification Service (ENS) is a free service that sends you automated notifications to your email or cell phone when earthquakes happen.

  6. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  7. Earthquakes in Southern California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There have been many earthquake occurrences in Southern California. This set of slides shows earthquake damage from the following events: Imperial Valley, 1979,...

  8. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Directory of Open Access Journals (Sweden)

    C. H. Nelson

    2012-11-01

    cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico.

    Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9 Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8 California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9 great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

  9. EARTHQUAKE SCALING PARADOX

    Institute of Scientific and Technical Information of China (English)

    WU ZHONG-LIANG

    2001-01-01

    Two measures of earthquakes, the seismic moment and the broadband radiated energy, show completely different scaling relations. For shallow earthquakes worldwide from January 1987 to December 1998, the frequency distribution of the seismic moment shows a clear kink between moderate and large earthquakes, as revealed by previous works. But the frequency distribution of the broadband radiated energy shows a single power law, a classical Gutenberg-Richter relation. This inconsistency raises a paradox in the self-organized criticality model of earthquakes.

  10. A Statistical Analysis of Lunisolar-Earthquake Connections

    Science.gov (United States)

    Rüegg, Christian Michael-André

    2012-11-01

    Despite over a century of study, the relationship between lunar cycles and earthquakes remains controversial and difficult to quantitatively investigate. Perhaps as a consequence, major earthquakes around the globe are frequently followed by "prediction claim", using lunar cycles, that generate media furore and pressure scientists to provide resolute answers. The 2010-2011 Canterbury earthquakes in New Zealand were no exception; significant media attention was given to lunar derived earthquake predictions by non-scientists, even though the predictions were merely "opinions" and were not based on any statistically robust temporal or causal relationships. This thesis provides a framework for studying lunisolar earthquake temporal relationships by developing replicable statistical methodology based on peer reviewed literature. Notable in the methodology is a high accuracy ephemeris, called ECLPSE, designed specifically by the author for use on earthquake catalogs and a model for performing phase angle analysis.

  11. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  12. Earthquake and Schools. [Videotape].

    Science.gov (United States)

    Federal Emergency Management Agency, Washington, DC.

    Designing schools to make them more earthquake resistant and protect children from the catastrophic collapse of the school building is discussed in this videotape. It reveals that 44 of the 50 U.S. states are vulnerable to earthquake, but most schools are structurally unprepared to take on the stresses that earthquakes exert. The cost to the…

  13. School Safety and Earthquakes.

    Science.gov (United States)

    Dwelley, Laura; Tucker, Brian; Fernandez, Jeanette

    1997-01-01

    A recent assessment of earthquake risk to Quito, Ecuador, concluded that many of its public schools are vulnerable to collapse during major earthquakes. A subsequent examination of 60 buildings identified 15 high-risk buildings. These schools were retrofitted to meet standards that would prevent injury even during Quito's largest earthquakes. US…

  14. Redefining Earthquakes and the Earthquake Machine

    Science.gov (United States)

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  15. Redefining Earthquakes and the Earthquake Machine

    Science.gov (United States)

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  16. Operational earthquake forecasting can enhance earthquake preparedness

    Science.gov (United States)

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time‐dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground‐motion exceedance probabilities as well as short‐term rupture probabilities—in concert with the long‐term forecasts of probabilistic seismic‐hazard analysis (PSHA).

  17. Earthquake Loss Estimation Uncertainties

    Science.gov (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Aleksander

    2013-04-01

    The paper addresses the reliability issues of strong earthquakes loss assessment following strong earthquakes with worldwide Systems' application in emergency mode. Timely and correct action just after an event can result in significant benefits in saving lives. In this case the information about possible damage and expected number of casualties is very critical for taking decision about search, rescue operations and offering humanitarian assistance. Such rough information may be provided by, first of all, global systems, in emergency mode. The experience of earthquakes disasters in different earthquake-prone countries shows that the officials who are in charge of emergency response at national and international levels are often lacking prompt and reliable information on the disaster scope. Uncertainties on the parameters used in the estimation process are numerous and large: knowledge about physical phenomena and uncertainties on the parameters used to describe them; global adequacy of modeling techniques to the actual physical phenomena; actual distribution of population at risk at the very time of the shaking (with respect to immediate threat: buildings or the like); knowledge about the source of shaking, etc. Needless to be a sharp specialist to understand, for example, that the way a given building responds to a given shaking obeys mechanical laws which are poorly known (if not out of the reach of engineers for a large portion of the building stock); if a carefully engineered modern building is approximately predictable, this is far not the case for older buildings which make up the bulk of inhabited buildings. The way population, inside the buildings at the time of shaking, is affected by the physical damage caused to the buildings is not precisely known, by far. The paper analyzes the influence of uncertainties in strong event parameters determination by Alert Seismological Surveys, of simulation models used at all stages from, estimating shaking intensity

  18. Prediction of earthquake-triggered landslide event sizes

    Science.gov (United States)

    Braun, Anika; Havenith, Hans-Balder; Schlögel, Romy

    2016-04-01

    Seismically induced landslides are a major environmental effect of earthquakes, which may significantly contribute to related losses. Moreover, in paleoseismology landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes and thus allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. We present here a review of factors contributing to earthquake triggered slope failures based on an "event-by-event" classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, 'Intensity', 'Fault', 'Topographic energy', 'Climatic conditions' and 'Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. The relative weight of these factors was extracted from published data for numerous past earthquakes; topographic inputs were checked in Google Earth and through geographic information systems. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be cross-checked. One of our main findings is that the 'Fault' factor, which is based on characteristics of the fault, the surface rupture and its location with respect to mountain areas, has the most important

  19. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  20. Sichuan Earthquake in China

    Science.gov (United States)

    2008-01-01

    The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams. This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.

  1. Sichuan Earthquake in China

    Science.gov (United States)

    2008-01-01

    The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams. This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.

  2. Choice & Consequence

    DEFF Research Database (Denmark)

    Khan, Azam

    between cause and effect in complex systems complicates decision making. To address this issue, we examine the central role that data-driven decision making could play in critical domains such as sustainability or medical treatment. We developed systems for exploratory data analysis and data visualization...... of data analysis and instructional interface design, to both simulation systems and decision support interfaces. We hope that projects such as these will help people to understand the link between their choices and the consequences of their decisions....

  3. Choice & Consequence

    DEFF Research Database (Denmark)

    Khan, Azam

    between cause and effect in complex systems complicates decision making. To address this issue, we examine the central role that data-driven decision making could play in critical domains such as sustainability or medical treatment. We developed systems for exploratory data analysis and data visualization...... of data analysis and instructional interface design, to both simulation systems and decision support interfaces. We hope that projects such as these will help people to understand the link between their choices and the consequences of their decisions....

  4. Using Smartphones to Detect Earthquakes

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2012-12-01

    We are using the accelerometers in smartphones to record earthquakes. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. Given the potential number of smartphones, and small separation of sensors, this new type of seismic dataset has significant potential provides that the signal can be separated from the noise. We developed an application for android phones to record the acceleration in real time. These records can be saved on the local phone or transmitted back to a server in real time. The accelerometers in the phones were evaluated by comparing performance with a high quality accelerometer while located on controlled shake tables for a variety of tests. The results show that the accelerometer in the smartphone can reproduce the characteristic of the shaking very well, even the phone left freely on the shake table. The nature of these datasets is also quite different from traditional networks due to the fact that smartphones are moving around with their owners. Therefore, we must distinguish earthquake signals from other daily use. In addition to the shake table tests that accumulated earthquake records, we also recorded different human activities such as running, walking, driving etc. An artificial neural network based approach was developed to distinguish these different records. It shows a 99.7% successful rate of distinguishing earthquakes from the other typical human activities in our database. We are now at the stage ready to develop the basic infrastructure for a smartphone seismic network.

  5. Seismicity dynamics and earthquake predictability

    Directory of Open Access Journals (Sweden)

    G. A. Sobolev

    2011-02-01

    Full Text Available Many factors complicate earthquake sequences, including the heterogeneity and self-similarity of the geological medium, the hierarchical structure of faults and stresses, and small-scale variations in the stresses from different sources. A seismic process is a type of nonlinear dissipative system demonstrating opposing trends towards order and chaos. Transitions from equilibrium to unstable equilibrium and local dynamic instability appear when there is an inflow of energy; reverse transitions appear when energy is dissipating. Several metastable areas of a different scale exist in the seismically active region before an earthquake. Some earthquakes are preceded by precursory phenomena of a different scale in space and time. These include long-term activation, seismic quiescence, foreshocks in the broad and narrow sense, hidden periodical vibrations, effects of the synchronization of seismic activity, and others. Such phenomena indicate that the dynamic system of lithosphere is moving to a new state – catastrophe. A number of examples of medium-term and short-term precursors is shown in this paper. However, no precursors identified to date are clear and unambiguous: the percentage of missed targets and false alarms is high. The weak fluctuations from outer and internal sources play a great role on the eve of an earthquake and the occurrence time of the future event depends on the collective behavior of triggers. The main task is to improve the methods of metastable zone detection and probabilistic forecasting.

  6. A critical history of British earthquakes

    Directory of Open Access Journals (Sweden)

    R. M. W. Musson

    2004-06-01

    Full Text Available This paper reviews the history of the study of historical British earthquakes. The publication of compendia of British earthquakes goes back as early as the late 16th Century. A boost to the study of earthquakes in Britain was given in the mid 18th Century as a result of two events occurring in London in 1750 (analogous to the general increase in earthquakes in Europe five years later after the 1755 Lisbon earthquake. The 19th Century saw a number of significant studies, culminating in the work of Davison, whose book-length catalogue was published finally in 1924. After that appears a gap, until interest in the subject was renewed in the mid 1970s. The expansion of the U.K. nuclear programme in the 1980s led to a series of large-scale investigations of historical British earthquakes, all based almost completely on primary historical data and conducted to high standards. The catalogue published by BGS in 1994 is a synthesis of these studies, and presents a parametric catalogue in which historical earthquakes are assessed from intensity data points based on primary source material. Since 1994, revisions to parameters have been minor and new events discovered have been restricted to a few small events.

  7. Strong motion duration and earthquake magnitude relationships

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M.W.; Short, S.A. [EQE International, Inc., San Francisco, CA (United States); Kennedy, R.P. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States)

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  8. Losses Associated with Secondary Effects in Earthquakes

    Directory of Open Access Journals (Sweden)

    James E. Daniell

    2017-06-01

    Full Text Available The number of earthquakes with high damage and high losses has been limited to around 100 events since 1900. Looking at historical losses from 1900 onward, we see that around 100 key earthquakes (or around 1% of damaging earthquakes have caused around 93% of fatalities globally. What is indeed interesting about this statistic is that within these events, secondary effects have played a major role, causing around 40% of economic losses and fatalities as compared to shaking effects. Disaggregation of secondary effect economic losses and fatalities demonstrating the relative influence of historical losses from direct earthquake shaking in comparison to tsunami, fire, landslides, liquefaction, fault rupture, and other type losses is important if we are to understand the key causes post-earthquake. The trends and major event impacts of secondary effects are explored in terms of their historic impact as well as looking to improved ways to disaggregate them through two case studies of the Tohoku 2011 event for earthquake, tsunami, liquefaction, fire, and the nuclear impact; as well as the Chilean 1960 earthquake and tsunami event.

  9. Smartphone MEMS accelerometers and earthquake early warning

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  10. Earthquakes in cities revisited

    CERN Document Server

    Wirgin, Armand

    2016-01-01

    During the last twenty years, a number of publications of theoretical-numerical nature have appeared which come to the apparently-reassuring conclusion that seismic motion on the ground in cities is smaller than what this motion would be in the absence of the buildings (but for the same underground and seismic load). Other than the fact that this finding tells nothing about the motion within the buildings, it must be confronted with the overwhelming empirical evidence (e.g, earthquakes in Sendai (2011), Kathmandu (2015), Tainan City (2016), etc.) that shaking within buildings of a city is often large enough to damage or even destroy these structures. I show, on several examples, that theory can be reconciled with empirical evidence, and suggest that the crucial subject of seismic response in cities is in need of more thorough research.

  11. The MSSA consequence tables

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, I.J.

    1988-01-01

    The Master Safeguards and Security Agreement (MSSA) is the mechanism through which the U.S. Department of Energy is implementing a policy of graded safeguards. Under this concept, the level of protection provided to a target is proportional to the ''cost'' of the loss of the target. Cost is measured by use of the conditional risk equation in which the protection system ineffectiveness is multiplied by the consequence to society of a successful adversary attempt. The consequences which are used in the MSSA process were developed in the summer of the 1986 by a consensus of DOE personnel and contractors. There are separate consequence tables for theft of SNM, radiological sabotage. The consequence values in the tables were deliberately not cross-normalized. The consequence values in each table correspond to a societal or DOE cost, for example, the consequence values for SNM theft compared to a normalized estimate of the expected number of fatalities from a successful use of the stolen material times an estimate of the likelihood of successfully using the material. Consequence values for radiological sabotage correspond very roughly to a similar expected fatality level. Values for industrial sabotage are an estimate of the impact on DOE weapons production or impact on the nuclear weapons stockpile. Problems have arisen in the use of these tables and are discussed in the paper.

  12. Number theory

    CERN Document Server

    Andrews, George E

    1994-01-01

    Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl

  13. Study on evaluation of cities' ability reducing earthquake disasters

    Institute of Scientific and Technical Information of China (English)

    张风华; 谢礼立; 范立础

    2004-01-01

    Cities′ ability reducing earthquake disasters is a complex system involving numerous factors, moreover the re-search on evaluating cities′ ability reducing earthquake disasters relates to multi-subject, such as earthquake sci-ence, social science, economical science and so on. In this paper, firstly, the conception of cities′ ability reducingearthquake disasters is presented, and the ability could be evaluated with three basic elements - the possible seis-mic casualty and economic loss during the future earthquakes that are likely to occur in the city and its surround-ings and time required for recovery after earthquake; based upon these three basic elements, a framework, whichconsists of six main components, for evaluating city′s ability reducing earthquake disasters is proposed; then thestatistical relations between the index system and the ratio of seismic casualty, the ratio of economic loss and re-covery time are gained utilizing the cities′ prediction results of earthquake disasters which were made during theninth five-year plan; at last, the method defining the comprehensive index of cities′ ability reducing earthquakedisasters is presented. Thus the relatively comprehensive theory frame is set up. The frame can evaluate cities′ability reducing earthquake disasters absolutely and quantitatively and consequently instruct the decision-makingon reducing cities′ earthquake disasters loss.

  14. Disturbances in equilibrium function after major earthquake

    Science.gov (United States)

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi

    2012-10-01

    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  15. Earthquake swarms in South America

    Science.gov (United States)

    Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.

    2011-10-01

    We searched for earthquake swarms in South America between 1973 and 2009 using the global Preliminary Determination of Epicenters (PDE) catalogue. Seismicity rates vary greatly over the South American continent, so we employ a manual search approach that aims to be insensitive to spatial and temporal scales or to the number of earthquakes in a potential swarm. We identify 29 possible swarms involving 5-180 earthquakes each (with total swarm moment magnitudes between 4.7 and 6.9) within a range of tectonic and volcanic locations. Some of the earthquake swarms on the subduction megathrust occur as foreshocks and delineate the limits of main shock rupture propagation for large earthquakes, including the 2010 Mw 8.8 Maule, Chile and 2007 Mw 8.1 Pisco, Peru earthquakes. Also, subduction megathrust swarms commonly occur at the location of subduction of aseismic ridges, including areas of long-standing seismic gaps in Peru and Ecuador. The magnitude-frequency relationship of swarms we observe appears to agree with previously determined magnitude-frequency scaling for swarms in Japan. We examine geodetic data covering five of the swarms to search for an aseismic component. Only two of these swarms (at Copiapó, Chile, in 2006 and near Ticsani Volcano, Peru, in 2005) have suitable satellite-based Interferometric Synthetic Aperture Radar (InSAR) observations. We invert the InSAR geodetic signal and find that the ground deformation associated with these swarms does not require a significant component of aseismic fault slip or magmatic intrusion. Three swarms in the vicinity of the volcanic arc in southern Peru appear to be triggered by the Mw= 8.5 2001 Peru earthquake, but predicted static Coulomb stress changes due to the main shock were very small at the swarm locations, suggesting that dynamic triggering processes may have had a role in their occurrence. Although we identified few swarms in volcanic regions, we suggest that particularly large volcanic swarms (those that

  16. Business closure and relocation: a comparative analysis of the Loma Prieta earthquake and Hurricane Andrew.

    Science.gov (United States)

    Wasileski, Gabriela; Rodríguez, Havidán; Diaz, Walter

    2011-01-01

    The occurrence of a number of large-scale disasters or catastrophes in recent years, including the Indian Ocean tsunami (2004), the Kashmir earthquake (2005), Hurricane Katrina (2005) and Hurricane Ike (2008), have raised our awareness regarding the devastating effects of disasters on human populations and the importance of developing mitigation and preparedness strategies to limit the consequences of such events. However, there is still a dearth of social science research focusing on the socio-economic impact of disasters on businesses in the United States. This paper contributes to this research literature by focusing on the impact of disasters on business closure and relocation through the use of multivariate logistic regression models, specifically focusing on the Loma Prieta earthquake (1989) and Hurricane Andrew (1992). Using a multivariate model, we examine how physical damage to the infrastructure, lifeline disruption and business characteristics, among others, impact business closure and relocation following major disasters.

  17. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  18. HCTISN - Plenary extraordinary meeting on the 9 March 2012 - General consequences of the earthquake and tsunami; Status of Fukushima-Dai-ichi nuclear installations; The Fukushima accident, one year after: environmental and health situation in Japan; Protective actions undertaken by Japanese authorities; Support by AREVA to Japan after the Fukushima accident; What went on in Fukushima? Implementation of the IAEA nuclear safety action plan; Review of European stress tests by the peers; Opinion of the ASN on complementary safety assessments (CSAs); HCTISN - Reunion pleniere extraordinaire du 9 mars 2012: Consequences generales du seisme et du tusnami; Situation des installations nucleaires de Fukushima Dai-ichi; L'accident de Fukushima 1 an apres: situation environnementale et sanitaire au Japon; Les actions de protection engagees par les autorites japonaises; Aide apportee par AREVA au Japon suite a l'accident de Fukushima; Que s'est-il passe a Fukushima?

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Susumu [Ambassade du Japon en France, 7 Avenue Hoche, 75008 Paris (France); Charles, T.; Champion, Didier [Institut de radioprotection et de surete nucleaire - IRSN, 31, avenue de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Jean-Luc Godet [Autorite de surete nucleaire, 6, place du Colonel Bourgoin, 75012 Paris (France); ASN/DIS, 10, Route du Panorama, 92266 Fontenay-aux-Roses cedex (France); Arnaud GAY [Business Unit Valorisation - AREVA (France); Philippe Jamet [European Nuclear Safety Regulators Group - ENSREG, Autorite de surete nucleaire, 6, place du Colonel Bourgoin, 75012 Paris (France)

    2012-03-09

    This document contains Power Point presentations proposed during a plenary session of the High Committee transparency and information on nuclear safety (HCTISN). The contributions addressed the Fukushima accident (the earthquake and the tsunami, the technical consequences on the plant, the consequences on the environment and on health, the different actions undertaken in Japan to protect the population, the consequences on nuclear safety in other countries with notably the performance of stress tests or the organisation of complementary safety assessments on the French fleet of nuclear reactors

  19. Clustered and transient earthquake sequences in mid-continents

    Science.gov (United States)

    Liu, M.; Stein, S. A.; Wang, H.; Luo, G.

    2012-12-01

    Earthquakes result from sudden release of strain energy on faults. On plate boundary faults, strain energy is constantly accumulating from steady and relatively rapid relative plate motion, so large earthquakes continue to occur so long as motion continues on the boundary. In contrast, such steady accumulation of stain energy does not occur on faults in mid-continents, because the far-field tectonic loading is not steadily distributed between faults, and because stress perturbations from complex fault interactions and other stress triggers can be significant relative to the slow tectonic stressing. Consequently, mid-continental earthquakes are often temporally clustered and transient, and spatially migrating. This behavior is well illustrated by large earthquakes in North China in the past two millennia, during which no single large earthquakes repeated on the same fault segments, but moment release between large fault systems was complementary. Slow tectonic loading in mid-continents also causes long aftershock sequences. We show that the recent small earthquakes in the Tangshan region of North China are aftershocks of the 1976 Tangshan earthquake (M 7.5), rather than indicators of a new phase of seismic activity in North China, as many fear. Understanding the transient behavior of mid-continental earthquakes has important implications for assessing earthquake hazards. The sequence of large earthquakes in the New Madrid Seismic Zone (NMSZ) in central US, which includes a cluster of M~7 events in 1811-1812 and perhaps a few similar ones in the past millennium, is likely a transient process, releasing previously accumulated elastic strain on recently activated faults. If so, this earthquake sequence will eventually end. Using simple analysis and numerical modeling, we show that the large NMSZ earthquakes may be ending now or in the near future.

  20. Reduction of earthquake disasters

    Institute of Scientific and Technical Information of China (English)

    陈顒; 陈祺福; 黄静; 徐文立

    2003-01-01

    The article summarizes the researches on mitigating earthquake disasters of the past four years in China. The studyof earthquake disasters′ quantification shows that the losses increase remarkably when population concentrates inurban area and social wealth increase. The article also summarizes some new trends of studying earthquake disas-ters′ mitigation, which are from seismic hazard to seismic risk, from engineering disaster to social disaster andintroduces the community-centered approach.

  1. The consequences of "Culture's consequences"

    DEFF Research Database (Denmark)

    Knudsen, Fabienne; Loloma Froholdt, Lisa

    2009-01-01

    , but it may also have unintentional outcomes. It may lead to a deterministic view of other cultures, thereby reinforcing prejudices and underestimating other forms of differences; it risks blinding the participants of the specific context of a given communicative situation. The article opens with a critical...... review of the theory of Geert Hofstede, the most renowned representative of this theoretical approach. The practical consequences of using such a concept of culture is then analysed by means of a critical review of an article applying Hofstede to cross-cultural crews in seafaring. Finally, alternative...... views on culture are presented. The aim of the article is, rather than to promote any specific theory, to reflect about diverse perspectives of cultural sense-making in cross-cultural encounters. Udgivelsesdato: Oktober...

  2. The Application of Speaker Recognition Techniques in the Detection of Tsunamigenic Earthquakes

    Science.gov (United States)

    Gorbatov, A.; O'Connell, J.; Paliwal, K.

    2015-12-01

    Tsunami warning procedures adopted by national tsunami warning centres largely rely on the classical approach of earthquake location, magnitude determination, and the consequent modelling of tsunami waves. Although this approach is based on known physics theories of earthquake and tsunami generation processes, this may be the main shortcoming due to the need to satisfy minimum seismic data requirement to estimate those physical parameters. At least four seismic stations are necessary to locate the earthquake and a minimum of approximately 10 minutes of seismic waveform observation to reliably estimate the magnitude of a large earthquake similar to the 2004 Indian Ocean Tsunami Earthquake of M9.2. Consequently the total time to tsunami warning could be more than half an hour. In attempt to reduce the time of tsunami alert a new approach is proposed based on the classification of tsunamigenic and non tsunamigenic earthquakes using speaker recognition techniques. A Tsunamigenic Dataset (TGDS) was compiled to promote the development of machine learning techniques for application to seismic trace analysis and, in particular, tsunamigenic event detection, and compare them to existing seismological methods. The TGDS contains 227 off shore events (87 tsunamigenic and 140 non-tsunamigenic earthquakes with M≥6) from Jan 2000 to Dec 2011, inclusive. A Support Vector Machine classifier using a radial-basis function kernel was applied to spectral features derived from 400 sec frames of 3-comp. 1-Hz broadband seismometer data. Ten-fold cross-validation was used during training to choose classifier parameters. Voting was applied to the classifier predictions provided from each station to form an overall prediction for an event. The F1 score (harmonic mean of precision and recall) was chosen to rate each classifier as it provides a compromise between type-I and type-II errors, and due to the imbalance between the representative number of events in the tsunamigenic and non

  3. An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes.

    Science.gov (United States)

    Shapira, Stav; Novack, Lena; Bar-Dayan, Yaron; Aharonson-Daniel, Limor

    2016-01-01

    A comprehensive technique for earthquake-related casualty estimation remains an unmet challenge. This study aims to integrate risk factors related to characteristics of the exposed population and to the built environment in order to improve communities' preparedness and response capabilities and to mitigate future consequences. An innovative model was formulated based on a widely used loss estimation model (HAZUS) by integrating four human-related risk factors (age, gender, physical disability and socioeconomic status) that were identified through a systematic review and meta-analysis of epidemiological data. The common effect measures of these factors were calculated and entered to the existing model's algorithm using logistic regression equations. Sensitivity analysis was performed by conducting a casualty estimation simulation in a high-vulnerability risk area in Israel. the integrated model outcomes indicated an increase in the total number of casualties compared with the prediction of the traditional model; with regard to specific injury levels an increase was demonstrated in the number of expected fatalities and in the severely and moderately injured, and a decrease was noted in the lightly injured. Urban areas with higher populations at risk rates were found more vulnerable in this regard. The proposed model offers a novel approach that allows quantification of the combined impact of human-related and structural factors on the results of earthquake casualty modelling. Investing efforts in reducing human vulnerability and increasing resilience prior to an occurrence of an earthquake could lead to a possible decrease in the expected number of casualties.

  4. Characteristics and Implication of the Earthquake Swarm Occurred in Fuzhou in September 1999

    Institute of Scientific and Technical Information of China (English)

    Yuan Dingqiang; Wang Jian

    2001-01-01

    On September 23, 1999, an earthquake swarm occurred in Fuzhou. Because the swarm occurred in the region where earthquakes occurred scarcely before and very close to the center of the city as well as shortly after the Jiji earthquake with Ms7.6 in Taiwan, September 21, 1999, has aroused interest broadly. In this paper, we analyzed the characteristics of spatial and temporal distribution of the earthquake swarm and validated magnitude-number constituent of the swarm is special. In present theory, the earthquake swarm means that a small scale macro original rupture has formed in the layer of the crust in Fuzhou region where moderately strong earthquake risk exists.

  5. Discrimination between nuclear explosions and earthquakes based on consideration of tectonic ambient shear stress values

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of fracture mechanics earthquake rupture model, the relations between source parameters and t0, the value of tectonic ambient shear stress in the place where the earthquake occurs, have been derived. Thus, we can calculate a large number of values of tectonic ambient shear stress or values of background stress in the place where the earthquake occurs. If nuclear explosions are treated as earthquakes in the calculation, we find that t0 values of nuclear explosions have about 20 MPa, which is obviously higher than average t0 values of earthquakes with the same magnitude. This result can be used to discriminate nuclear explosions from earthquakes.

  6. Landslides triggered by the 2004 Niigata Ken Chuetsu, Japan, earthquake

    Science.gov (United States)

    Kieffer, D.S.; Jibson, R.; Rathje, E.M.; Kelson, K.

    2006-01-01

    The Niigata Ken Chuetsu earthquake triggered a vast number of lanslides in the epicentral region. Landslide concentrations were among the highest ever measured after an earthquake, and most of the triggered landslides were relatively shallow failures parallel to the steep slope faces. The dense concentration of landslides can be attributed to steep local topography in relatively weak geologic units, adverse hydrologic conditions caused by significant antecedent rainfall, and very strong shaking. Many of the landslides could be discerned from high-resolution satellite imagery acquired immediately after the earthquake. ?? 2006, Earthquake Engineering Research Institute.

  7. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    Science.gov (United States)

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  8. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  9. Implications of the Regional Earthquake Likelihood Models test of earthquake forecasts in California

    Directory of Open Access Journals (Sweden)

    Michael Karl Sachs

    2012-09-01

    Full Text Available The Regional Earthquake Likelihood Models (RELM test was the first competitive comparison of prospective earthquake forecasts. The test was carried out over 5 years from 1 January 2006 to 31 December 2010 over a region that included all of California. The test area was divided into 7682 0.1°x0.1° spatial cells. Each submitted forecast gave the predicted numbers of earthquakes Nemi larger than M=4.95 in 0.1 magnitude bins for each cell. In this paper we present a method that separates the forecast of the number of test earthquakes from the forecast of their locations. We first obtain the number Nem of forecast earthquakes in magnitude bin m. We then determine the conditional probability λemi=Nemi/Nem that an earthquake in magnitude bin m will occur in cell i. The summation of λemi over all 7682 cells is unity. A random (no skill forecast gives equal values of λemi for all spatial cells and magnitude bins. The skill of a forecast, in terms of the location of the earthquakes, is measured by the success in assigning large values of λemi to the cells in which earthquakes occur and low values of λemi to the cells where earthquakes do not occur. Thirty-one test earthquakes occurred in 27 different combinations of spatial cells i and magnitude bins m, we had the highest value of λemi for that mi cell. We evaluate the performance of eleven submitted forecasts in two ways. First, we determine the number of mi cells for which the forecast λemi was the largest, the best forecast is the one with the highest number. Second, we determine the mean value of λemi for the 27 mi cells for each forecast. The best forecast has the highest mean value of λemi. The success of a forecast during the test period is dependent on the allocation of the probabilities λemi between the mi cells, since the sum over the mi cells is unity. We illustrate the forecast distributions of λemi and discuss their differences. We conclude that the RELM test was successful in

  10. Calculation of displacements on fractures intersecting canisters induced by earthquakes: Aberg, Beberg and Ceberg examples

    Energy Technology Data Exchange (ETDEWEB)

    LaPointe, P.R.; Cladouhos, T. [Golder Associates Inc. (Sweden); Follin, S. [Golder Grundteknik KB (Sweden)

    1999-01-01

    -wide earthquake source parameter database upon which the relations between surface rupture length, subsurface fault displacement and fault width (depth for vertical faults) is representative of Swedish earthquakes. Results of the calculations are presented in several ways. A canister is considered to be damaged or to have failed if a fracture intersecting the canister has an instantaneous or cumulative slip greater than 0.1m. Canisters may fail during a single earthquake, or due to the cumulative effects of multiple smaller earthquakes. Failure percentages for single earthquakes for a 100,000-year period range from a high of 0.59% for Aberg to a low of 0.03% for Ceberg. Failure for cumulative effects only vary from 0.056% for Aberg to 0.004% for Ceberg. Additional investigation of the single earthquakes that cause unacceptable slippage suggests that their probability of occurrence over a 100,000 year time period is very low, but that their consequences are more severe in that they tend to damage multiple canisters. When a damaging earthquake occurs, an average of from 0.4% to 1.8% of the canisters experience induced slips greater than 0.1m, the higher number representative of Aberg, and the lower value representative of Ceberg. Although earthquakes were simulated at distances over 100 km from the canister positions, single earthquakes that produced displacements greater than 0.1 m were confined to the immediate vicinity of the repository. A plot for the Ceberg simulations shows that over 95% of the single, damaging earthquakes are within I km of the canister that they damage, and 99% are within 2.5 km. The maximum distance for the simulations was approximately 31 km. This suggests that the vast majority of faults that might potentially produce damaging earthquakes lie with a few kilometers of the repository. The simulations suggest that faults tens or hundreds of kilometers distant from the canisters are very unlikely to produce damage due to single earthquake events 39 refs, 36

  11. The Christchurch earthquake stroke incidence study.

    Science.gov (United States)

    Wu, Teddy Y; Cheung, Jeanette; Cole, David; Fink, John N

    2014-03-01

    We examined the impact of major earthquakes on acute stroke admissions by a retrospective review of stroke admissions in the 6 weeks following the 4 September 2010 and 22 February 2011 earthquakes. The control period was the corresponding 6 weeks in the previous year. In the 6 weeks following the September 2010 earthquake there were 97 acute stroke admissions, with 79 (81.4%) ischaemic infarctions. This was similar to the 2009 control period which had 104 acute stroke admissions, of whom 80 (76.9%) had ischaemic infarction. In the 6 weeks following the February 2011 earthquake, there were 71 stroke admissions, and 61 (79.2%) were ischaemic infarction. This was less than the 96 strokes (72 [75%] ischaemic infarction) in the corresponding control period. None of the comparisons were statistically significant. There was also no difference in the rate of cardioembolic infarction from atrial fibrillation between the study periods. Patients admitted during the February 2011 earthquake period were less likely to be discharged directly home when compared to the control period (31.2% versus 46.9%, p=0.036). There was no observable trend in the number of weekly stroke admissions between the 2 weeks leading to and 6 weeks following the earthquakes. Our results suggest that severe psychological stress from earthquakes did not influence the subsequent short term risk of acute stroke, but the severity of the earthquake in February 2011 and associated civil structural damages may have influenced the pattern of discharge for stroke patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. More Earthquake Misery

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Less than four months after the devastation of the Wenchuan earthquake on May 12, another quake brings further death and destruction to southwest China on August 30, a 6.1-magnitude earthquake hit southwest China, the border of Sichuan Province and Yunnan Province. Panzhihua City, Huili County in Sichuan and Yuanmou County and Yongren County in Yunnan were worst hit.

  13. HAZGRIDX: earthquake forecasting model for ML≥ 5.0 earthquakes in Italy based on spatially smoothed seismicity

    Directory of Open Access Journals (Sweden)

    Aybige Akinci

    2010-11-01

    Full Text Available We present a five-year, time-independent, earthquake-forecast model for earthquake magnitudes of 5.0 and greater in Italy using spatially smoothed seismicity data. The model is called HAZGRIDX, and it was developed based on the assumption that future earthquakes will occur near locations of historical earthquakes; it does not take into account any information from tectonic, geological, or geodetic data. Thus HAZGRIDX is based on observed earthquake occurrence from seismicity data, without considering any physical model. In the present study, we calculate earthquake rates on a spatial grid platform using two declustered catalogs: 1 the Parametric catalog of Italian earthquakes (Catalogo Parametrico dei Terremoti Italiani, CPTI04 that contains the larger earthquakes from MW 7.0 since 1100; and 2 the Italian seismicity catalogue (Catalogo della Sismicità Italiana, CSI 1.1 that contains the small earthquakes down to ML 1.0, with a maximum of ML 5.9, over the past 22 years (1981-2003. The model assumes that earthquake magnitudes follow the Gutenberg-Richter law, with a uniform b-value. The forecast rates are presented in terms of the expected numbers of ML>5.0 events per year for each grid cell of about 10 km × 10 km. The final map is derived by averaging the earthquake potentials that come from these two different catalogs: CPTI04 and CSI 1.1. We also describe the earthquake occurrences in terms of probabilities of occurrence of one event within a specified magnitude bin, DM0.1, in a five year time period. HAZGRIDX is one of several forecasting models, scaled to five and ten years, that have been submitted to the Collaboratory for the Study of Earthquake Probability (CSEP forecasting center in ETH, Zurich, to be tested for Italy.

  14. Demand surge following earthquakes

    Science.gov (United States)

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  15. Modeling earthquake dynamics

    Science.gov (United States)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  16. Real-Time Earthquake Intensity Estimation Using Streaming Data Analysis of Social and Physical Sensors

    Science.gov (United States)

    Kropivnitskaya, Yelena; Tiampo, Kristy F.; Qin, Jinhui; Bauer, Michael A.

    2017-06-01

    Earthquake intensity is one of the key components of the decision-making process for disaster response and emergency services. Accurate and rapid intensity calculations can help to reduce total loss and the number of casualties after an earthquake. Modern intensity assessment procedures handle a variety of information sources, which can be divided into two main categories. The first type of data is that derived from physical sensors, such as seismographs and accelerometers, while the second type consists of data obtained from social sensors, such as witness observations of the consequences of the earthquake itself. Estimation approaches using additional data sources or that combine sources from both data types tend to increase intensity uncertainty due to human factors and inadequate procedures for temporal and spatial estimation, resulting in precision errors in both time and space. Here we present a processing approach for the real-time analysis of streams of data from both source types. The physical sensor data is acquired from the U.S. Geological Survey (USGS) seismic network in California and the social sensor data is based on Twitter user observations. First, empirical relationships between tweet rate and observed Modified Mercalli Intensity (MMI) are developed using data from the M6.0 South Napa, CAF earthquake that occurred on August 24, 2014. Second, the streams of both data types are analyzed together in simulated real-time to produce one intensity map. The second implementation is based on IBM InfoSphere Streams, a cloud platform for real-time analytics of big data. To handle large processing workloads for data from various sources, it is deployed and run on a cloud-based cluster of virtual machines. We compare the quality and evolution of intensity maps from different data sources over 10-min time intervals immediately following the earthquake. Results from the joint analysis shows that it provides more complete coverage, with better accuracy and higher

  17. Real-Time Earthquake Intensity Estimation Using Streaming Data Analysis of Social and Physical Sensors

    Science.gov (United States)

    Kropivnitskaya, Yelena; Tiampo, Kristy F.; Qin, Jinhui; Bauer, Michael A.

    2016-10-01

    Earthquake intensity is one of the key components of the decision-making process for disaster response and emergency services. Accurate and rapid intensity calculations can help to reduce total loss and the number of casualties after an earthquake. Modern intensity assessment procedures handle a variety of information sources, which can be divided into two main categories. The first type of data is that derived from physical sensors, such as seismographs and accelerometers, while the second type consists of data obtained from social sensors, such as witness observations of the consequences of the earthquake itself. Estimation approaches using additional data sources or that combine sources from both data types tend to increase intensity uncertainty due to human factors and inadequate procedures for temporal and spatial estimation, resulting in precision errors in both time and space. Here we present a processing approach for the real-time analysis of streams of data from both source types. The physical sensor data is acquired from the U.S. Geological Survey (USGS) seismic network in California and the social sensor data is based on Twitter user observations. First, empirical relationships between tweet rate and observed Modified Mercalli Intensity (MMI) are developed using data from the M6.0 South Napa, CAF earthquake that occurred on August 24, 2014. Second, the streams of both data types are analyzed together in simulated real-time to produce one intensity map. The second implementation is based on IBM InfoSphere Streams, a cloud platform for real-time analytics of big data. To handle large processing workloads for data from various sources, it is deployed and run on a cloud-based cluster of virtual machines. We compare the quality and evolution of intensity maps from different data sources over 10-min time intervals immediately following the earthquake. Results from the joint analysis shows that it provides more complete coverage, with better accuracy and higher

  18. Storm sudden commencements and earthquakes

    Science.gov (United States)

    Lavrov, Ivan; Sobisevich, Aleksey; Guglielmi, Anatol

    2015-03-01

    We have investigated statistically the problem of possible impact of the geomagnetic storm sudden com-mencement (SSC) on the global seismic activity. SSC are used as reference points for comparative analysis of seismicity by the method of superposed epoch. We selected 405 earthquakes from 1973 to 2010 with M˜5 magnitudes from a representative part of USGS Catalog. The comparative analysis of seismicity was carried out at the intervals of ˜60 min relative to the reference point. With a high degree of reliability, it was found that before the reference point the number of earthquakes is noticeably greater than after it. In other words, the global seismicity is suppressed by SSC. We refer to some studies in which the chemical, thermal and force mechanisms of the electromagnetic field action on rocks are discussed. We emphasize the incompleteness of the study concerning the correlation between SSC and earthquakes because we still do not succeed in understanding and interpreting the relationship in terms of physics and mathematics. The study need to be continued to solve this problem of interest and importance.

  19. Bayesian kinematic earthquake source models

    Science.gov (United States)

    Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.

    2009-12-01

    Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high

  20. Populating the Advanced National Seismic System Comprehensive Earthquake Catalog

    Science.gov (United States)

    Earle, P. S.; Perry, M. R.; Andrews, J. R.; Withers, M. M.; Hellweg, M.; Kim, W. Y.; Shiro, B.; West, M. E.; Storchak, D. A.; Pankow, K. L.; Huerfano Moreno, V. A.; Gee, L. S.; Wolfe, C. J.

    2016-12-01

    The U.S. Geological Survey maintains a repository of earthquake information produced by networks in the Advanced National Seismic System with additional data from the ISC-GEM catalog and many non-U.S. networks through their contributions to the National Earthquake Information Center PDE bulletin. This Comprehensive Catalog (ComCat) provides a unified earthquake product while preserving attribution and contributor information. ComCat contains hypocenter and magnitude information with supporting phase arrival-time and amplitude measurements (when available). Higher-level products such as focal mechanisms, earthquake slip models, "Did You Feel It?" reports, ShakeMaps, PAGER impact estimates, earthquake summary posters, and tectonic summaries are also included. ComCat is updated as new events are processed and the catalog can be accesed at http://earthquake.usgs.gov/earthquakes/search/. Throughout the past few years, a concentrated effort has been underway to expand ComCat by integrating global and regional historic catalogs. The number of earthquakes in ComCat has more than doubled in the past year and it presently contains over 1.6 million earthquake hypocenters. We will provide an overview of catalog contents and a detailed description of numerous tools and semi-automated quality-control procedures developed to uncover errors including systematic magnitude biases, missing time periods, duplicate postings for the same events, and incorrectly associated events.

  1. Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes.

    Science.gov (United States)

    Chan, Christina; Elliott, John; Troughton, Richard; Frampton, Christopher; Smyth, David; Crozier, Ian; Bridgman, Paul

    2013-01-01

    Christchurch, New Zealand, was struck by 2 major earthquakes at 4:36 am on 4 September 2010, magnitude 7.1 and at 12:51 pm on 22 February 2011, magnitude 6.3. Both events caused widespread destruction. Christchurch Hospital was the region's only acute care hospital. It remained functional following both earthquakes. We were able to examine the effects of the 2 earthquakes on acute cardiac presentations. Patients admitted under Cardiology in Christchurch Hospital 3 week prior to and 5 weeks following both earthquakes were analysed, with corresponding control periods in September 2009 and February 2010. Patients were categorised based on diagnosis: ST elevation myocardial infarction, Non ST elevation myocardial infarction, stress cardiomyopathy, unstable angina, stable angina, non cardiac chest pain, arrhythmia and others. There was a significant increase in overall admissions (pearthquake. This pattern was not seen after the early afternoon February earthquake. Instead, there was a very large number of stress cardiomyopathy admissions with 21 cases (95% CI 2.6-6.4) in 4 days. There had been 6 stress cardiomyopathy cases after the first earthquake (95% CI 0.44-2.62). Statistical analysis showed this to be a significant difference between the earthquakes (pearthquake triggered a large increase in ST elevation myocardial infarction and a few stress cardiomyopathy cases. The early afternoon February earthquake caused significantly more stress cardiomyopathy. Two major earthquakes occurring at different times of day differed in their effect on acute cardiac events.

  2. Earthquake forecast enrichment scores

    Directory of Open Access Journals (Sweden)

    Christine Smyth

    2012-03-01

    Full Text Available The Collaboratory for the Study of Earthquake Predictability (CSEP is a global project aimed at testing earthquake forecast models in a fair environment. Various metrics are currently used to evaluate the submitted forecasts. However, the CSEP still lacks easily understandable metrics with which to rank the universal performance of the forecast models. In this research, we modify a well-known and respected metric from another statistical field, bioinformatics, to make it suitable for evaluating earthquake forecasts, such as those submitted to the CSEP initiative. The metric, originally called a gene-set enrichment score, is based on a Kolmogorov-Smirnov statistic. Our modified metric assesses if, over a certain time period, the forecast values at locations where earthquakes have occurred are significantly increased compared to the values for all locations where earthquakes did not occur. Permutation testing allows for a significance value to be placed upon the score. Unlike the metrics currently employed by the CSEP, the score places no assumption on the distribution of earthquake occurrence nor requires an arbitrary reference forecast. In this research, we apply the modified metric to simulated data and real forecast data to show it is a powerful and robust technique, capable of ranking competing earthquake forecasts.

  3. Phase Transformations and Earthquakes

    Science.gov (United States)

    Green, H. W.

    2011-12-01

    Phase transformations have been cited as responsible for, or at least involved in, "deep" earthquakes for many decades (although the concept of "deep" has varied). In 1945, PW Bridgman laid out in detail the string of events/conditions that would have to be achieved for a solid/solid transformation to lead to a faulting instability, although he expressed pessimism that the full set of requirements would be simultaneously achieved in nature. Raleigh and Paterson (1965) demonstrated faulting during dehydration of serpentine under stress and suggested dehydration embrittlement as the cause of intermediate depth earthquakes. Griggs and Baker (1969) produced a thermal runaway model of a shear zone under constant stress, culminating in melting, and proposed such a runaway as the origin of deep earthquakes. The discovery of Plate Tectonics in the late 1960s established the conditions (subduction) under which Bridgman's requirements for earthquake runaway in a polymorphic transformation could be possible in nature and Green and Burnley (1989) found that instability during the transformation of metastable olivine to spinel. Recent seismic correlation of intermediate-depth-earthquake hypocenters with predicted conditions of dehydration of antigorite serpentine and discovery of metastable olivine in 4 subduction zones, suggests strongly that dehydration embrittlement and transformation-induced faulting are the underlying mechanisms of intermediate and deep earthquakes, respectively. The results of recent high-speed friction experiments and analysis of natural fault zones suggest that it is likely that similar processes occur commonly during many shallow earthquakes after initiation by frictional failure.

  4. Earthquake Disaster Management and Insurance

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    As one of the most powerful tools to reduce the earthquake loss, the Earthquake Disaster Management [EDM] and Insurance [EI] have been highlighted and have had a great progress in many countries in recent years. Earthquake disaster management includes a series of contents, such as earthquake hazard and risk analysis, vulnerability analysis of building and infrastructure, earthquake aware training, and building the emergency response system. EI, which has been included in EDM after this practice has been...

  5. Earthquakes and emergence

    Science.gov (United States)

    Earthquakes and emerging infections may not have a direct cause and effect relationship like tax evasion and jail, but new evidence suggests that there may be a link between the two human health hazards. Various media accounts have cited a massive 1993 earthquake in Maharashtra as a potential catalyst of the recent outbreak of plague in India that has claimed more than 50 lives and alarmed the world. The hypothesis is that the earthquake may have uprooted underground rat populations that carry the fleas infected with the bacterium that causes bubonic plague and can lead to the pneumonic form of the disease that is spread through the air.

  6. Earthquake engineering in Peru

    Science.gov (United States)

    Vargas, N.J

    1983-01-01

    During the last decade, earthquake engineering research in Peru has been carried out at the Catholic University of Peru and at the Universidad Nacional de Ingeniera (UNI). The Geophysical Institute (IGP) under the auspices of the Organization of American States (OAS) has initiated in Peru other efforts in regional seismic hazard assessment programs with direct impact to the earthquake engineering program. Further details on these programs have been reported by L. Ocola in the Earthquake Information Bulletin, January-February 1982, vol. 14, no. 1, pp. 33-38. 

  7. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-05-01

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011.

  8. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation.

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-05-10

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011.

  9. Distribution characteristics of earthquake-induced landslide with the earthquake source fault-the cases of recent strong earthquakes in eastern Japan

    Science.gov (United States)

    Hasi, B.; Ishii, Y.; Maruyama, K.; Terada, H.

    2009-12-01

    In recent years, 3 strong earthquakes, the Mid-Niigata earthquake (M6.8, October 23, 2004), the Noto Peninsula earthquake (M6.9, March 25, 2007), the Chuetsu-offshore earthquake (M6.8, July 16, 2007), stroke eastern Japan. All of these earthquakes occurred inland by reverse fault, with depth 11-17km hypocenter, triggered a large number of landslides and caused serious damage to the involved regions due to these landslides. To clarify the distribution characteristics of landslides induced by these earthquakes, we interpreted landslides by using aerial photographs taken immediately after the earthquakes, and analyzed landslide distributions with the peak ground acceleration (PGA) and seismic intensity (in Japan Meteorological Agency intensity scale), source fault of the mainshock of each earthquake. The analyzing results revealed that: 1) Most of the landslides occurred in the area where the PGA is larger than 500 gal, and the maximum seismic intensity is larger than 5 plus ; 2) The landslides occurred in a short distance from the source fault (the shortest distance from the surface projection of top tip of the fault), about 80% occurred within the distance of 20 km; 3) More than 80% of landslides occurred on the hanging wall, and the size of landslide (length, width, area) is larger than that occurred on the footwall of the source fault; 4) The number and size of landslide tends to deceases with the distance from the source fault. Our results suggesting that the distance from the source fault of earthquake could be a parameter to analyze the landslide occurrence induce by strong earthquake.

  10. An evaluation of Health of the Nation Outcome Scales data to inform psychiatric morbidity following the Canterbury earthquakes.

    Science.gov (United States)

    Beaglehole, Ben; Frampton, Chris M; Boden, Joseph M; Mulder, Roger T; Bell, Caroline J

    2017-06-01

    Following the onset of the Canterbury, New Zealand earthquakes, there were widespread concerns that mental health services were under severe strain as a result of adverse consequences on mental health. We therefore examined Health of the Nation Outcome Scales data to see whether this could inform our understanding of the impact of the Canterbury earthquakes on patients attending local specialist mental health services. Health of the Nation Outcome Scales admission data were analysed for Canterbury mental health services prior to and following the Canterbury earthquakes. These findings were compared to Health of the Nation Outcome Scales admission data from seven other large District Health Boards to delineate local from national trends. Percentage changes in admission numbers were also calculated before and after the earthquakes for Canterbury and the seven other large district health boards. Admission Health of the Nation Outcome Scales scores in Canterbury increased after the earthquakes for adult inpatient and community services, old age inpatient and community services, and Child and Adolescent inpatient services compared to the seven other large district health boards. Admission Health of the Nation Outcome Scales scores for Child and Adolescent community services did not change significantly, while admission Health of the Nation Outcome Scales scores for Alcohol and Drug services in Canterbury fell compared to other large district health boards. Subscale analysis showed that the majority of Health of the Nation Outcome Scales subscales contributed to the overall increases found. Percentage changes in admission numbers for the Canterbury District Health Board and the seven other large district health boards before and after the earthquakes were largely comparable with the exception of admissions to inpatient services for the group aged 4-17 years which showed a large increase. The Canterbury earthquakes were followed by an increase in Health of the Nation

  11. Fractals and Forecasting in Earthquakes and Finance

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Turcotte, D. L.

    2011-12-01

    It is now recognized that Benoit Mandelbrot's fractals play a critical role in describing a vast range of physical and social phenomena. Here we focus on two systems, earthquakes and finance. Since 1942, earthquakes have been characterized by the Gutenberg-Richter magnitude-frequency relation, which in more recent times is often written as a moment-frequency power law. A similar relation can be shown to hold for financial markets. Moreover, a recent New York Times article, titled "A Richter Scale for the Markets" [1] summarized the emerging viewpoint that stock market crashes can be described with similar ideas as large and great earthquakes. The idea that stock market crashes can be related in any way to earthquake phenomena has its roots in Mandelbrot's 1963 work on speculative prices in commodities markets such as cotton [2]. He pointed out that Gaussian statistics did not account for the excessive number of booms and busts that characterize such markets. Here we show that both earthquakes and financial crashes can both be described by a common Landau-Ginzburg-type free energy model, involving the presence of a classical limit of stability, or spinodal. These metastable systems are characterized by fractal statistics near the spinodal. For earthquakes, the independent ("order") parameter is the slip deficit along a fault, whereas for the financial markets, it is financial leverage in place. For financial markets, asset values play the role of a free energy. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In the case of financial models, the probabilities are closely related to implied volatility, an important component of Black-Scholes models for stock valuations. [2] B. Mandelbrot, The variation of certain speculative prices, J. Business, 36, 294 (1963)

  12. Multiparameter monitoring of short-term earthquake precursors and its physical basis. Implementation in the Kamchatka region

    Directory of Open Access Journals (Sweden)

    Pulinets Sergey

    2016-01-01

    Full Text Available We apply experimental approach of the multiparameter monitoring of short-term earthquake precursors which reliability was confirmed by the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC model created recently [1]. A key element of the model is the process of Ion induced Nucleation (IIN and formation of cluster ions occurring as a result of the ionization of near surface air layer by radon emanating from the Earth's crust within the earthquake preparation zone. This process is similar to the formation of droplet’s embryos for cloud formation under action of galactic cosmic rays. The consequence of this process is the generation of a number of precursors that can be divided into two groups: a thermal and meteorological, and b electromagnetic and ionospheric. We demonstrate elements of prospective monitoring of some strong earthquakes in Kamchatka region and statistical results for the Chemical potential correction parameter for more than 10 years of observations for earthquakes with M≥6. As some experimental attempt, the data of Kamchatka volcanoes monitoring will be demonstrated.

  13. Tweet Earthquake Dispatch (TED)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS is offering earthquake alerts via two twitter accounts: @USGSted and @USGSBigQuakes. On average, @USGSted and @USGSBigQuakes will produce about one tweet...

  14. 1988 Spitak Earthquake Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1988 Spitak Earthquake database is an extensive collection of geophysical and geological data, maps, charts, images and descriptive text pertaining to the...

  15. Earthquake Damage to Schools

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of slides graphically illustrates the potential danger that major earthquakes pose to school structures and to the children and adults who happen to be...

  16. Rainfall-triggering response patterns of post-seismic debris flows in the Wenchuan earthquake area

    NARCIS (Netherlands)

    Zhou, W.; Tang, C.; van Asch, Th.W.J.; Zhou, nn.

    2013-01-01

    Several giant debris flows occurred in southwestern China after the Wenchuan earthquake, causing serious casualties and economic losses. Debris flows were frequently triggered after the earthquake. A relatively accurate prediction of these post-seismic debris flows can help to reduce the consequent

  17. Simulating Earthquake Early Warning Systems in the Classroom as a New Approach to Teaching Earthquakes

    Science.gov (United States)

    D'Alessio, M. A.

    2010-12-01

    A discussion of P- and S-waves seems an ubiquitous part of studying earthquakes in the classroom. Textbooks from middle school through university level typically define the differences between the waves and illustrate the sense of motion. While many students successfully memorize the differences between wave types (often utilizing the first letter as a memory aide), textbooks rarely give tangible examples of how the two waves would "feel" to a person sitting on the ground. One reason for introducing the wave types is to explain how to calculate earthquake epicenters using seismograms and travel time charts -- very abstract representations of earthquakes. Even when the skill is mastered using paper-and-pencil activities or one of the excellent online interactive versions, locating an epicenter simply does not excite many of our students because it evokes little emotional impact, even in students located in earthquake-prone areas. Despite these limitations, huge numbers of students are mandated to complete the task. At the K-12 level, California requires that all students be able to locate earthquake epicenters in Grade 6; in New York, the skill is a required part of the Regent's Examination. Recent innovations in earthquake early warning systems around the globe give us the opportunity to address the same content standard, but with substantially more emotional impact on students. I outline a lesson about earthquakes focused on earthquake early warning systems. The introductory activities include video clips of actual earthquakes and emphasize the differences between the way P- and S-waves feel when they arrive (P arrives first, but is weaker). I include an introduction to the principle behind earthquake early warning (including a summary of possible uses of a few seconds warning about strong shaking) and show examples from Japan. Students go outdoors to simulate P-waves, S-waves, and occupants of two different cities who are talking to one another on cell phones

  18. Injection-induced earthquakes.

    Science.gov (United States)

    Ellsworth, William L

    2013-07-12

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  19. Injection-induced earthquakes

    Science.gov (United States)

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  20. Prediction of the date, magnitude and affected area of impending strong earthquakes using integration of multi precursors earthquake parameters

    Directory of Open Access Journals (Sweden)

    M. R. Saradjian

    2011-04-01

    Full Text Available Usually a precursor alone might not be useful as an accurate, precise, and stand-alone criteria for the earthquake parameters prediction. Therefore it is more appropriate to exploit parameters extracted from a variety of individual precursors so that their simultaneous integration would reduce the parameters's uncertainty.

    In our previous studies, five strong earthquakes which happened in the Samoa Islands, Sichuan (China, L'Aquila (Italy, Borujerd (Iran and Zarand (Iran have been analyzed to locate unusual variations in the time series of the different earthquake precursors. In this study, we have attempted to estimate earthquake parameters using the detected anomalies in the mentioned case studies.

    Using remote sensing observations, this study examines variations of electron and ion density, electron temperature, total electron content (TEC, electric and magnetic fields and land surface temperature (LST several days before the studied earthquakes. Regarding the ionospheric precursors, the geomagnetic indices Dst and Kp were used to distinguish pre-earthquake disturbed states from the other anomalies related to the geomagnetic activities.

    The inter-quartile range of data was utilized to construct their upper and lower bound to detect disturbed states outsides the bounds which might be associated with impending earthquakes.

    When the disturbed state associated with an impending earthquake is detected, based on the type of precursor, the number of days relative to the earthquake day is estimated. Then regarding the deviation value of the precursor from the undisturbed state the magnitude of the impending earthquake is estimated. The radius of the affected area is calculated using the estimated magnitude and Dobrovolsky formula.

    In order to assess final earthquake parameters (i.e. date, magnitude and radius of the affected area for each case study, the earthquake

  1. Strike-slip earthquakes can also be detected in the ionosphere

    Science.gov (United States)

    Astafyeva, Elvira; Rolland, Lucie M.; Sladen, Anthony

    2014-11-01

    It is generally assumed that co-seismic ionospheric disturbances are generated by large vertical static displacements of the ground during an earthquake. Consequently, it is expected that co-seismic ionospheric disturbances are only observable after earthquakes with a significant dip-slip component. Therefore, earthquakes dominated by strike-slip motion, i.e. with very little vertical co-seismic component, are not expected to generate ionospheric perturbations. In this work, we use total electron content (TEC) measurements from ground-based GNSS-receivers to study ionospheric response to six recent largest strike-slip earthquakes: the Mw7.8 Kunlun earthquake of 14 November 2001, the Mw8.1 Macquarie earthquake of 23 December 2004, the Sumatra earthquake doublet, Mw8.6 and Mw8.2, of 11 April 2012, the Mw7.7 Balochistan earthquake of 24 September 2013 and the Mw 7.7 Scotia Sea earthquake of 17 November 2013. We show that large strike-slip earthquakes generate large ionospheric perturbations of amplitude comparable with those induced by dip-slip earthquakes of equivalent magnitude. We consider that in the absence of significant vertical static co-seismic displacements of the ground, other seismological parameters (primarily the magnitude of co-seismic horizontal displacements, seismic fault dimensions, seismic slip) may contribute in generation of large-amplitude ionospheric perturbations.

  2. Short-Term Foreshocks and Earthquake Prediction

    Science.gov (United States)

    Papadopoulos, G. A.; Minadakis, G.; Orfanogiannaki, K.

    2016-12-01

    Foreshock recognition before main shocks depends on various factors, e.g. geophysical, catalogue completeness, foreshock definition, spatiotemporal windows. Foreshocks move towards the main shock epicenter, their number increases with the inverse of time, their b-value drops. However, only in very few single foreshock sequences these 3-D patterns were recognized at the same time, e.g. before the 2009 L' Aquila (Italy) earthquake (Mw6.3) and the 2010, 2014 and 2015 major earthquakes (Mw8+) that ruptured at the subduction zone of Chile. For the first time we found statistically significant 3-D foreshock patterns before small-to-moderate earthquakes. We present two good examples of earthquakes occurring on 4 March 2012 (Mw5.2) and 3 July 2013 (Mw4.8) in Athos and Polyphyto, both in North Greece. The great similarity with the patterns found before strong and major earthquakes indicates that the foreshock process is scale invariant in a wide magnitude range. It is likely that the process is independent of the faulting type at least for dip-slip faulting. There is also a trend of the main shock magnitude to scale with the foreshock area. These findings imply that foreshock activity is likely governed by pattern universality which may also reflect universality in the deformation process thus opening new ways for the foreshock utilization in the prediction of the main shock.

  3. Computing Earthquake Probabilities on Global Scales

    Science.gov (United States)

    Holliday, James R.; Graves, William R.; Rundle, John B.; Turcotte, Donald L.

    2016-03-01

    Large devastating events in systems such as earthquakes, typhoons, market crashes, electricity grid blackouts, floods, droughts, wars and conflicts, and landslides can be unexpected and devastating. Events in many of these systems display frequency-size statistics that are power laws. Previously, we presented a new method for calculating probabilities for large events in systems such as these. This method counts the number of small events since the last large event and then converts this count into a probability by using a Weibull probability law. We applied this method to the calculation of large earthquake probabilities in California-Nevada, USA. In that study, we considered a fixed geographic region and assumed that all earthquakes within that region, large magnitudes as well as small, were perfectly correlated. In the present article, we extend this model to systems in which the events have a finite correlation length. We modify our previous results by employing the correlation function for near mean field systems having long-range interactions, an example of which is earthquakes and elastic interactions. We then construct an application of the method and show examples of computed earthquake probabilities.

  4. The 1997 Kagoshima (Japan) Earthquake Doublet: A Quantitative Analysis of Stress Interaction

    Science.gov (United States)

    Woessner, J.; Hauksson, E.; Wiemer, S.; Neukomm, S.

    2003-12-01

    Understanding how the nucleation of earthquakes is affected by sudden changes in the state of stress in their immediate vicinity may provide insight into the elusive relationship between static stress changes and earthquake occurrence. As working hypothesis, we assume that if aftershocks are in part caused by stress changes from their mainshock, changes in their decay rate may reflect changes in the state of stress induced by nearby large earthquakes. The 1997 Kagoshima (Japan) earthquake doublet provides a unique opportunity to analyze this hypothesis for two moderate M6 events that occurred on adjacent faults with the epicenters located in a distance of about 5 km from each other. We map the Omori law parameters on an equally spaced grid for the time period between the two mainshocks (the learning period of 47.8 days) using four Omori law type models with increasing complexity. The best fitting model is found using the corrected Akaike Criterion Information. We then forecast the number of aftershocks for the next 50 days and compare it to the actual observed number. Uncertainties in the rate forecasts are obtained by a bootstrap approach, allowing us to compute a detailed map of the significance of the relative rate changes. We find four regions with highly significant relative rate changes, three negative and one positive, which are a consequence of the activation and deactivation of aftershock activity due to the second mainshock, respectively. While our results confirm a relative rate drop in the Western part of the aftershock sequence that is in agreement with the stress triggering hypothesis (Stein, 2003), the other changes cannot be readily explained. Because of the importance of rate changes for the evaluation of the stress triggering hypothesis as well as for rate and state friction models, we consider our quantitative analysis technique introduced here important and a step forward in the process of understanding the behavior of aftershocks.

  5. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  6. Soft Schemes for Earthquake-Geotechnical Dilemmas

    Directory of Open Access Journals (Sweden)

    Silvia García

    2013-01-01

    Full Text Available Models of real systems are of fundamental importance in virtually all disciplines because they can be useful for gaining a better understanding of the organism. Models make it possible to predict or simulate a system’s behavior; in earthquake geotechnical engineering, they are required for the design of new constructions and for the analysis of those that exist. Since the quality of the model typically determines an upper bound on the quality of the final problem solution, modeling is often the bottleneck in the development of the whole system. As a consequence, a strong demand for advanced modeling and identification schemes arises. During the past years, soft computing techniques have been used for developing unconventional procedures to study earthquake geotechnical problems. Considering the strengths and weaknesses of the algorithms, in this work a criterion to leverage the best features to develop efficient hybrid models is presented. Via the development of schemes for integrating data-driven and theoretical procedures, the soft computing tools are presented as reliable earthquake geotechnical models. This assertion is buttressed using a broad history of seismic events and monitored responses in complicated soils systems. Combining the versatility of fuzzy logic to represent qualitative knowledge, the data-driven efficiency of neural networks to provide fine-tuned adjustments via local search, and the ability of genetic algorithms to perform efficient coarse-granule global search, the earthquake geotechnical problems are observed, analyzed, and solved under a holistic approach.

  7. Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes.

    Directory of Open Access Journals (Sweden)

    Christina Chan

    Full Text Available BACKGROUND: Christchurch, New Zealand, was struck by 2 major earthquakes at 4:36 am on 4 September 2010, magnitude 7.1 and at 12:51 pm on 22 February 2011, magnitude 6.3. Both events caused widespread destruction. Christchurch Hospital was the region's only acute care hospital. It remained functional following both earthquakes. We were able to examine the effects of the 2 earthquakes on acute cardiac presentations. METHODS: Patients admitted under Cardiology in Christchurch Hospital 3 week prior to and 5 weeks following both earthquakes were analysed, with corresponding control periods in September 2009 and February 2010. Patients were categorised based on diagnosis: ST elevation myocardial infarction, Non ST elevation myocardial infarction, stress cardiomyopathy, unstable angina, stable angina, non cardiac chest pain, arrhythmia and others. RESULTS: There was a significant increase in overall admissions (p<0.003, ST elevation myocardial infarction (p<0.016, and non cardiac chest pain (p<0.022 in the first 2 weeks following the early morning September earthquake. This pattern was not seen after the early afternoon February earthquake. Instead, there was a very large number of stress cardiomyopathy admissions with 21 cases (95% CI 2.6-6.4 in 4 days. There had been 6 stress cardiomyopathy cases after the first earthquake (95% CI 0.44-2.62. Statistical analysis showed this to be a significant difference between the earthquakes (p<0.05. CONCLUSION: The early morning September earthquake triggered a large increase in ST elevation myocardial infarction and a few stress cardiomyopathy cases. The early afternoon February earthquake caused significantly more stress cardiomyopathy. Two major earthquakes occurring at different times of day differed in their effect on acute cardiac events.

  8. Oklahoma’s recent earthquakes and saltwater disposal

    Science.gov (United States)

    Walsh, F. Rall; Zoback, Mark D.

    2015-01-01

    Over the past 5 years, parts of Oklahoma have experienced marked increases in the number of small- to moderate-sized earthquakes. In three study areas that encompass the vast majority of the recent seismicity, we show that the increases in seismicity follow 5- to 10-fold increases in the rates of saltwater disposal. Adjacent areas where there has been relatively little saltwater disposal have had comparatively few recent earthquakes. In the areas of seismic activity, the saltwater disposal principally comes from “produced” water, saline pore water that is coproduced with oil and then injected into deeper sedimentary formations. These formations appear to be in hydraulic communication with potentially active faults in crystalline basement, where nearly all the earthquakes are occurring. Although most of the recent earthquakes have posed little danger to the public, the possibility of triggering damaging earthquakes on potentially active basement faults cannot be discounted. PMID:26601200

  9. Robust method to detect and locate local earthquakes by means of amplitude measurements.

    Science.gov (United States)

    del Puy Papí Isaba, María; Brückl, Ewald

    2016-04-01

    In this study we present a robust new method to detect and locate medium and low magnitude local earthquakes. This method is based on an empirical model of the ground motion obtained from amplitude data of earthquakes in the area of interest, which were located using traditional methods. The first step of our method is the computation of maximum resultant ground velocities in sliding time windows covering the whole period of interest. In the second step, these maximum resultant ground velocities are back-projected to every point of a grid covering the whole area of interest while applying the empirical amplitude - distance relations. We refer to these back-projected ground velocities as pseudo-magnitudes. The number of operating seismic stations in the local network equals the number of pseudo-magnitudes at each grid-point. Our method introduces the new idea of selecting the minimum pseudo-magnitude at each grid-point for further analysis instead of searching for a minimum of the L2 or L1 norm. In case no detectable earthquake occurred, the spatial distribution of the minimum pseudo-magnitudes constrains the magnitude of weak earthquakes hidden in the ambient noise. In the case of a detectable local earthquake, the spatial distribution of the minimum pseudo-magnitudes shows a significant maximum at the grid-point nearest to the actual epicenter. The application of our method is restricted to the area confined by the convex hull of the seismic station network. Additionally, one must ensure that there are no dead traces involved in the processing. Compared to methods based on L2 and even L1 norms, our new method is almost wholly insensitive to outliers (data from locally disturbed seismic stations). A further advantage is the fast determination of the epicenter and magnitude of a seismic event located within a seismic network. This is possible due to the method of obtaining and storing a back-projected matrix, independent of the registered amplitude, for each seismic

  10. Research of prediction for mine earthquake basing on underground rock's movement and deformation mechanism

    Institute of Scientific and Technical Information of China (English)

    LI Yong-jing

    2008-01-01

    Movement and deformation of underground rock include vertical dislocation and horizontal deformation, and the energy released by mine earthquake can be calculated basing on deformation energy. So put forwards the prediction for degree and spread of mine earthquake according to the underground rock's movement and deformation. The actual number of times and spread of mine earthquake on site were greatly identical to the prediction. The practice proves the possibility of prediction for mine earthquake basing on the analysis of underground rock's movement and deformation, and sets up new approach of mine earthquake prediction.

  11. Research of prediction for mine earthquake basing on underground rock's movement and deformation mechanism

    Institute of Scientific and Technical Information of China (English)

    LI Yong-jing

    2008-01-01

    Movement and deformation of underground rock include vertical dislocation and horizontal deformation,and the energy released by mine earthquake can be calculated basing on deformation energy.So put forwards the prediction for degree and spread of mine earthquake according to the underground rock's movement and deformation.The actual number of times and spread of mine earthquake on site were greatly identical to the prediction.The practice proves the possibility of prediction for mine earthquake basing on the analysis of underground rock's movement and deformation,and sets up new approach of mine earthquake prediction.

  12. Comparing methods for Earthquake Location

    Science.gov (United States)

    Turkaya, Semih; Bodin, Thomas; Sylvander, Matthieu; Parroucau, Pierre; Manchuel, Kevin

    2017-04-01

    There are plenty of methods available for locating small magnitude point source earthquakes. However, it is known that these different approaches produce different results. For each approach, results also depend on a number of parameters which can be separated into two main branches: (1) parameters related to observations (number and distribution of for example) and (2) parameters related to the inversion process (velocity model, weighting parameters, initial location etc.). Currently, the results obtained from most of the location methods do not systematically include quantitative uncertainties. The effect of the selected parameters on location uncertainties is also poorly known. Understanding the importance of these different parameters and their effect on uncertainties is clearly required to better constrained knowledge on fault geometry, seismotectonic processes and at the end to improve seismic hazard assessment. In this work, realized in the frame of the SINAPS@ research program (http://www.institut-seism.fr/projets/sinaps/), we analyse the effect of different parameters on earthquakes location (e.g. type of phase, max. hypocentral separation etc.). We compare several codes available (Hypo71, HypoDD, NonLinLoc etc.) and determine their strengths and weaknesses in different cases by means of synthetic tests. The work, performed for the moment on synthetic data, is planned to be applied, in a second step, on data collected by the Midi-Pyrénées Observatory (OMP).

  13. Earth's rotation variations and earthquakes 2010–2011

    Directory of Open Access Journals (Sweden)

    L. Ostřihanský

    2012-01-01

    character of aftershocks 19 years earlier in difference only one day to 27 December 1985 earthquake, proving that not only sidereal 13.66 days variations but also that the 19 years Metons cycle is the period of the earthquakes occurrence. Histograms show the regular change of earthquake positions on branches of LOD graph and also the shape of histogram and number of earthquakes on LOD branches from the mid-ocean ridge can show which side of the ridge moves quicker.

  14. An efficient repeating signal detector to investigate earthquake swarms

    Science.gov (United States)

    Skoumal, Robert J.; Brudzinski, Michael R.; Currie, Brian S.

    2016-08-01

    Repetitive earthquake swarms have been recognized as key signatures in fluid injection induced seismicity, precursors to volcanic eruptions, and slow slip events preceding megathrust earthquakes. We investigate earthquake swarms by developing a Repeating Signal Detector (RSD), a computationally efficient algorithm utilizing agglomerative clustering to identify similar waveforms buried in years of seismic recordings using a single seismometer. Instead of relying on existing earthquake catalogs of larger earthquakes, RSD identifies characteristic repetitive waveforms by rapidly identifying signals of interest above a low signal-to-noise ratio and then grouping based on spectral and time domain characteristics, resulting in dramatically shorter processing time than more exhaustive autocorrelation approaches. We investigate seismicity in four regions using RSD: (1) volcanic seismicity at Mammoth Mountain, California, (2) subduction-related seismicity in Oaxaca, Mexico, (3) induced seismicity in Central Alberta, Canada, and (4) induced seismicity in Harrison County, Ohio. In each case, RSD detects a similar or larger number of earthquakes than existing catalogs created using more time intensive methods. In Harrison County, RSD identifies 18 seismic sequences that correlate temporally and spatially to separate hydraulic fracturing operations, 15 of which were previously unreported. RSD utilizes a single seismometer for earthquake detection which enables seismicity to be quickly identified in poorly instrumented regions at the expense of relying on another method to locate the new detections. Due to the smaller computation overhead and success at distances up to ~50 km, RSD is well suited for real-time detection of low-magnitude earthquake swarms with permanent regional networks.

  15. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    Science.gov (United States)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a

  16. Earthquake impact scale

    Science.gov (United States)

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Bausch, D.

    2011-01-01

    With the advent of the USGS prompt assessment of global earthquakes for response (PAGER) system, which rapidly assesses earthquake impacts, U.S. and international earthquake responders are reconsidering their automatic alert and activation levels and response procedures. To help facilitate rapid and appropriate earthquake response, an Earthquake Impact Scale (EIS) is proposed on the basis of two complementary criteria. On the basis of the estimated cost of damage, one is most suitable for domestic events; the other, on the basis of estimated ranges of fatalities, is generally more appropriate for global events, particularly in developing countries. Simple thresholds, derived from the systematic analysis of past earthquake impact and associated response levels, are quite effective in communicating predicted impact and response needed after an event through alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1,000, respectively. For damage impact, yellow, orange, and red thresholds are triggered by estimated losses reaching $1M, $100M, and $1B, respectively. The rationale for a dual approach to earthquake alerting stems from the recognition that relatively high fatalities, injuries, and homelessness predominate in countries in which local building practices typically lend themselves to high collapse and casualty rates, and these impacts lend to prioritization for international response. In contrast, financial and overall societal impacts often trigger the level of response in regions or countries in which prevalent earthquake resistant construction practices greatly reduce building collapse and resulting fatalities. Any newly devised alert, whether economic- or casualty-based, should be intuitive and consistent with established lexicons and procedures. Useful alerts should

  17. Lessons from the conviction of the L'Aquila seven: The standard probabilistic earthquake hazard and risk assessment is ineffective

    Science.gov (United States)

    Wyss, Max

    2013-04-01

    being incorrect for scientific reasons and here I argue that it is also ineffective for psychological reasons. Instead of calming the people or by underestimating the hazard in strongly active areas by the GSHAP approach, they should be told quantitatively the consequences of the reasonably worst case and be motivated to prepare for it, whether or not it may hit the present or the next generation. In a worst case scenario for L'Aquila, the number of expected fatalities and injured should have been calculated for an event in the range of M6.5 to M7, as I did for a civil defense exercise in Umbria, Italy. With the prospect that approximately 500 people may die in an earthquake in the immediate or distant future, some residents might have built themselves an earthquake closet (similar to a simple tornado shelter) in a corner of their apartment, into which they might have dashed to safety at the onset of the P-wave before the destructive S-wave arrived. I conclude that in earthquake prone areas quantitative loss estimates due to a reasonable worst case earthquake should replace probabilistic hazard and risk estimates. This is a service, which experts owe the community. Insurance companies and academics may still find use for probabilistic estimates of losses, especially in areas of low seismic hazard, where the worst case scenario approach is less appropriate.

  18. Rupture, waves and earthquakes

    Science.gov (United States)

    UENISHI, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  19. Earthquake engineering in China

    Institute of Scientific and Technical Information of China (English)

    胡聿贤

    2002-01-01

    The development of earthquake engineering in China is described into three stages.The initial stage in 1950's -1960's was marked with the initiation of this branch of science from its creation in the first national 12-year plan of science andtechnology by specifying earthquake engineering as a branch item and IEM was one participant. The first earthquake zonationmap and the first seismic design code were soon completed and used in engineering design. Site effect on structural design andsite selection were seriously studied. The second stage marked with the occurrence of quite a few strong earthquakes in China,from which many lessons were learned and corresponding considerations were specified in our design codes and followed inconstruction practice. The third stage is a stage of disaster management, which is marked by a series of governmentdocumentations, leading by a national law of the People's Republic of China on the protecting against and mitigating earthquakedisasters adopted at the meeting of the Standing Committee of the National People's Congress of the People's Republic of Chinain 1997, and then followed by some provincial and municipal laws to force the actions outlined in the national law. It may beexpected that our society will be much more safer to resist the attack of future strong earthquakes with less losses. Lastly,possible future developments are also discussed.

  20. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  1. Earthquake Damage to Transportation Systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Earthquakes represent one of the most destructive natural hazards known to man. A serious result of large-magnitude earthquakes is the disruption of transportation...

  2. Earthquakes, March-April 1989

    Science.gov (United States)

    Person, W.J.

    1989-01-01

    The first major earthquake (7.0-7.9) of the year hit Mexico on April 25, killing three people and causing some damage. Earthquake-related deaths were also reported from Malawi, China, and New Britain. 

  3. Early earthquakes of the Americas

    Institute of Scientific and Technical Information of China (English)

    Niu Zhijun

    2006-01-01

    @@ In recent decades the science of seismology,in particular the study of individual earthquakes, has expanded dramatically. A seismologist can look for evidence of past earthquakes in the material remains that have been excavated by archaeologists.

  4. Geomorphic legacy of medieval Himalayan earthquakes in the Pokhara Valley

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    The Himalayas and their foreland belong to the world's most earthquake-prone regions. With millions of people at risk from severe ground shaking and associated damages, reliable data on the spatial and temporal occurrence of past major earthquakes is urgently needed to inform seismic risk analysis. Beyond the instrumental record such information has been largely based on historical accounts and trench studies. Written records provide evidence for damages and fatalities, yet are difficult to interpret when derived from the far-field. Trench studies, in turn, offer information on rupture histories, lengths and displacements along faults but involve high chronological uncertainties and fail to record earthquakes that do not rupture the surface. Thus, additional and independent information is required for developing reliable earthquake histories. Here, we present exceptionally well-dated evidence of catastrophic valley infill in the Pokhara Valley, Nepal. Bayesian calibration of radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments yields a robust age distribution that matches the timing of nearby M>8 earthquakes in ~1100, 1255, and 1344 AD. The upstream dip of tributary valley fills and X-ray fluorescence spectrometry of their provenance rule out local sediment sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from the Annapurna Massif >60 km away. The landscape-changing consequences of past large Himalayan earthquakes have so far been elusive. Catastrophic aggradation in the wake of two historically documented medieval earthquakes and one inferred from trench studies underscores that Himalayan valley fills should be considered as potential archives of past earthquakes. Such valley fills are pervasive in the Lesser Himalaya though high erosion rates reduce

  5. Statistical physics approach to earthquake occurrence and forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de [Department of Industrial and Information Engineering, Second University of Naples, Aversa (CE) (Italy); Godano, Cataldo [Department of Mathematics and Physics, Second University of Naples, Caserta (Italy); Grasso, Jean Robert [ISTerre, IRD-CNRS-OSUG, University of Grenoble, Saint Martin d’Héres (France); Lippiello, Eugenio, E-mail: eugenio.lippiello@unina2.it [Department of Mathematics and Physics, Second University of Naples, Caserta (Italy)

    2016-04-25

    There is striking evidence that the dynamics of the Earth crust is controlled by a wide variety of mutually dependent mechanisms acting at different spatial and temporal scales. The interplay of these mechanisms produces instabilities in the stress field, leading to abrupt energy releases, i.e., earthquakes. As a consequence, the evolution towards instability before a single event is very difficult to monitor. On the other hand, collective behavior in stress transfer and relaxation within the Earth crust leads to emergent properties described by stable phenomenological laws for a population of many earthquakes in size, time and space domains. This observation has stimulated a statistical mechanics approach to earthquake occurrence, applying ideas and methods as scaling laws, universality, fractal dimension, renormalization group, to characterize the physics of earthquakes. In this review we first present a description of the phenomenological laws of earthquake occurrence which represent the frame of reference for a variety of statistical mechanical models, ranging from the spring-block to more complex fault models. Next, we discuss the problem of seismic forecasting in the general framework of stochastic processes, where seismic occurrence can be described as a branching process implementing space–time-energy correlations between earthquakes. In this context we show how correlations originate from dynamical scaling relations between time and energy, able to account for universality and provide a unifying description for the phenomenological power laws. Then we discuss how branching models can be implemented to forecast the temporal evolution of the earthquake occurrence probability and allow to discriminate among different physical mechanisms responsible for earthquake triggering. In particular, the forecasting problem will be presented in a rigorous mathematical framework, discussing the relevance of the processes acting at different temporal scales for

  6. Statistical physics approach to earthquake occurrence and forecasting

    Science.gov (United States)

    de Arcangelis, Lucilla; Godano, Cataldo; Grasso, Jean Robert; Lippiello, Eugenio

    2016-04-01

    There is striking evidence that the dynamics of the Earth crust is controlled by a wide variety of mutually dependent mechanisms acting at different spatial and temporal scales. The interplay of these mechanisms produces instabilities in the stress field, leading to abrupt energy releases, i.e., earthquakes. As a consequence, the evolution towards instability before a single event is very difficult to monitor. On the other hand, collective behavior in stress transfer and relaxation within the Earth crust leads to emergent properties described by stable phenomenological laws for a population of many earthquakes in size, time and space domains. This observation has stimulated a statistical mechanics approach to earthquake occurrence, applying ideas and methods as scaling laws, universality, fractal dimension, renormalization group, to characterize the physics of earthquakes. In this review we first present a description of the phenomenological laws of earthquake occurrence which represent the frame of reference for a variety of statistical mechanical models, ranging from the spring-block to more complex fault models. Next, we discuss the problem of seismic forecasting in the general framework of stochastic processes, where seismic occurrence can be described as a branching process implementing space-time-energy correlations between earthquakes. In this context we show how correlations originate from dynamical scaling relations between time and energy, able to account for universality and provide a unifying description for the phenomenological power laws. Then we discuss how branching models can be implemented to forecast the temporal evolution of the earthquake occurrence probability and allow to discriminate among different physical mechanisms responsible for earthquake triggering. In particular, the forecasting problem will be presented in a rigorous mathematical framework, discussing the relevance of the processes acting at different temporal scales for different

  7. PERFORMANCE OF AN EARTHQUAKE EXCITED ROOF DIAPHRAGM.

    Science.gov (United States)

    Celebi, M.; Brady, G.; Safak, E.; Converse, A.; ,

    1986-01-01

    The objective of this paper is to study the earthquake performance of the roof diaphragm of the West Valley College gymnasium in Saratoga, California through a complete set of acceleration records obtained during the 24 April 1984 Morgan Hill Earthquake (M equals 6. 1). The roof diaphragm of the 112 ft. multiplied by 144 ft. rectangular, symmetric gymnasium consists of 3/8 in. plywood over tongue-and-groove sheathing attached to steel trusses supported by reinforced concrete columns and walls. Three sensors placed in the direction of each of the axes of the diaphragm facilitate the evaluation of in-plane deformation of the diaphragm. Other sensors placed at ground level measure vertical and horizontal motion of the building floor, and consequently allow the calculation of the relative motion of the diaphragm with respect to the ground level.

  8. Earthquake Size Distribution: Power-Law with Exponent Beta = 1/2 ?

    CERN Document Server

    Kagan, Yan Y

    2009-01-01

    We propose that the widely observed and universal Gutenberg-Richter relation is a mathematical consequence of the critical branching nature of earthquake process in a brittle fracture environment. These arguments, though preliminary, are confirmed by recent investigations of the seismic moment distribution in global earthquake catalogs and by the results on the distribution in crystals of dislocation avalanche sizes. We consider possible systematic and random errors in determining earthquake size, especially its seismic moment. These effects increase the estimate of the parameter beta of the power-law distribution of earthquake sizes. In particular we find that the decrease in relative moment uncertainties with earthquake size causes inflation in the beta-value by about 1-3%. Moreover, earthquake clustering greatly influences the beta-parameter. If clusters (aftershock sequences) are taken as the entity to be studied, then the exponent value for their size distribution would decrease by 5-10%. The complexity ...

  9. Research Development and Perspective on Slow Slip, Tremors, and Slow Earthquakes

    Institute of Scientific and Technical Information of China (English)

    Wang Yanzhao; Shen Zhengkang

    2007-01-01

    Seismological and geodetic observations indicate that slow slip sometimes occurs in active fault zones beneath the seismogenic depth, and large slow slip can result in transient ground motion.Slow earthquakes, on the other hand, emit tremor-like signals within a narrow frequency band, and usually produce no catastrophic consequences. In general, slow slip and slow earthquakes probably correspond to deformation processes associated with releasing elastic energy in fault zones, and understanding their mechanisms may help improve our understanding of fault zone dynamic processes. This article reviews the research progress on slow slip and slow earthquakes over the last decade. Crustal motion and tremor activities associated with slow slip and slow earthquakes have been investigated extensively, mainly involving locating sources of slow slip and slow earthquakes and numerical modeling of their processes. In the meantime, debates have continued about slow slip and slow earthquakes,such as their origins, relationship, and mechanisms.

  10. The Global Earthquake Model - Past, Present, Future

    Science.gov (United States)

    Smolka, Anselm; Schneider, John; Stein, Ross

    2014-05-01

    The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange. Sharing of data and risk information, best practices, and approaches across the globe are key to assessing risk more effectively. Through consortium driven global projects, open-source IT development and collaborations with more than 10 regions, leading experts are developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. The year 2013 has seen the completion of ten global data sets or components addressing various aspects of earthquake hazard and risk, as well as two GEM-related, but independently managed regional projects SHARE and EMME. Notably, the International Seismological Centre (ISC) led the development of a new ISC-GEM global instrumental earthquake catalogue, which was made publicly available in early 2013. It has set a new standard for global earthquake catalogues and has found widespread acceptance and application in the global earthquake community. By the end of 2014, GEM's OpenQuake computational platform will provide the OpenQuake hazard/risk assessment software and integrate all GEM data and information products. The public release of OpenQuake is planned for the end of this 2014, and will comprise the following datasets and models: • ISC-GEM Instrumental Earthquake Catalogue (released January 2013) • Global Earthquake History Catalogue [1000-1903] • Global Geodetic Strain Rate Database and Model • Global Active Fault Database • Tectonic Regionalisation Model • Global Exposure Database • Buildings and Population Database • Earthquake Consequences Database • Physical Vulnerabilities Database • Socio-Economic Vulnerability and Resilience Indicators • Seismic

  11. An investigation into the socioeconomic aspects of two major earthquakes in Iran.

    Science.gov (United States)

    Amini Hosseini, Kambod; Hosseinioon, Solmaz; Pooyan, Zhila

    2013-07-01

    An evaluation of the socioeconomic consequences of earthquakes is an essential part of the development of risk reduction and disaster management plans. However, these variables are not normally addressed sufficiently after strong earthquakes; researchers and relevant stakeholders focus primarily on the physical damage and casualties. The importance of the socioeconomic consequences of seismic events became clearer in Iran after the Bam earthquake on 26 December 2003, as demonstrated by the formulation and approval of various laws and ordinances. This paper reviews the country's regulatory framework in the light of the socioeconomic aspects of two major and destructive earthquakes: in Manjil-Rudbar in 1990, and in Bam in 2003. The results take the form of recommendations and practical strategies for incorporating the socioeconomic dimensions of earthquakes in disaster risk management planning. The results presented here can be applied in other countries with similar conditions to those of Iran in order to improve public preparedness and risk reduction.

  12. Australia: historical earthquake studies

    Directory of Open Access Journals (Sweden)

    K. McCue

    2004-06-01

    Full Text Available Historical studies of earthquakes in Australia using information dating back to 1788 have been comprehensive, if not exhaustive. Newspapers have been the main source of historical earthquake studies. A brief review is given here with an introduction to the pre-European aboriginal dreamtime information. Some of the anecdotal information of the last two centuries has been compiled as isoseismal maps. Relationships between isoseismal radii and magnitude have been established using post-instrumental data allowing magnitudes to be assigned to the pre-instrumental data, which can then be incorporated into the national earthquake database. The studies have contributed to hazard analyses for the building codes and stimulated research into microzonation and paleo-seismology.

  13. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  14. A critical review of Electric Earthquake Precursors

    Directory of Open Access Journals (Sweden)

    F. Vallianatos

    2001-06-01

    Full Text Available The generation of transient electric potential prior to rupture has been demonstrated in a number of laboratory experiments involving both dry and wet rock specimens. Several different electrification effects are responsible for these observations, but how these may scale up co-operatively in large heterogeneous rock volumes, to produce observable macroscopic signals, is still incompletely understood. Accordingly, the nature and properties of possible Electric Earthquake Precursors (EEP are still inadequately understood. For a long time observations have been fragmentary, narrow band and oligo-parametric (for instance, the magnetic field was not routinely measured. In general, the discrimination of purported EEP signals relied on "experience" and ad hoc empirical rules that could be shown unable to guarantee the validity of the data. In consequence, experimental studies have produced a prolific variety of signal shape, complexity and duration but no explanation for the apparently indefinite diversity. A set of inconsistent or conflicting ideas attempted to explain such observations, including different concepts about the EEP source region (near the observer or at the earthquake focus and propagation (frequently assumed to be guided by peculiar geoelectric structure. Statistics was also applied to establish the "beyond chance" association between presumed EEP signals and earthquakes. In the absence of well constrained data, this approach ended up with intense debate and controversy but no useful results. The response of the geophysical community was scepticism and by the mid-90's, the very existence of EEP was debated. At that time, a major re-thinking of EEP research began to take place, with reformulation of its queries and objectives and refocusing on the exploration of fundamental concepts, less on field experiments. The first encouraging results began to appear in the last two years of the 20th century. Observation technologies are mature

  15. Is there a relationship between solar activity and earthquakes?

    Science.gov (United States)

    L'Huissier, P.; Dominguez, M.; Gallo, N.; Tapia, M.; Pinto, V. A.; Moya, P. S.; Stepanova, M. V.; Munoz, V.; Rogan, J.; Valdivia, J. A.

    2012-12-01

    Several statistical studies have suggested a connection between solar and geomagnetic activity, and seismicity. Some studies claim there are global effects, relating solar activity, for instance, with earthquake occurrence on the Earth. Other studies intend to find effects on a local scale, where perturbations in the geomagnetic activity are followed by seismic events. We intend to investigate this issue by means of a surrogates method. First, we analyze the statistical validity of reported correlations between the number of sunspots and the annual number of earthquakes during the last century. On the other hand, in relation to local geomagnetic variations prior to an important earthquake, we carry out a study of the magnetic field fluctuations using the SAMBA array in a window of two years centered in the February 27th, 2010 M = 8.8 earthquake at Chile. We expect these studies to be useful in order to find measurable precursors before an important seismic event.

  16. Mass wasting triggered by the 5 March 1987 Ecuador earthquakes

    Science.gov (United States)

    Schuster, R.L.; Nieto, A.S.; O'Rourke, T. D.; Crespo, E.; Plaza-Nieto, G.

    1996-01-01

    On 5 March 1987, two earthquakes (Ms=6.1 and Ms=6.9) occurred about 25 km north of Reventador Volcano, along the eastern slopes of the Andes Mountains in northeastern Ecuador. Although the shaking damaged structures in towns and villages near the epicentral area, the economic and social losses directly due to earthquake shaking were small compared to the effects of catastrophic earthquake-triggered mass wasting and flooding. About 600 mm of rain fell in the region in the month preceding the earthquakes; thus, the surficial soils had high moisture contents. Slope failures commonly started as thin slides, which rapidly turned into fluid debris avalanches and debris flows. The surficial soils and thick vegetation covering them flowed down the slopes into minor tributaries and then were carried into major rivers. Rock and earth slides, debris avalanches, debris and mud flows, and resulting floods destroyed about 40 km of the Trans-Ecuadorian oil pipeline and the only highway from Quito to Ecuador's northeastern rain forests and oil fields. Estimates of total volume of earthquake-induced mass wastage ranged from 75-110 million m3. Economic losses were about US$ 1 billion. Nearly all of the approximately 1000 deaths from the earthquakes were a consequence of mass wasting and/ or flooding.

  17. High frequency microseismic noise as possible earthquake precursor

    Directory of Open Access Journals (Sweden)

    Ivica Sović

    2013-08-01

    Full Text Available Before an earthquake occurs, microseismic noise in high frequency (HF range, i.e. 2-25 Hz, is being generated during preparation process. These signals change the microseismic noise and, consequently, the spectrum of microseismic noise. Time variation of spectra recorded at the same seismological station could imply the change of the state of noise source. We propose the image moment analysis approach to objectively compare microseismic noise spectra. The result could be used for earthquake precursor identification. Expected spectra change is in HF range, so the analysis has been limited to the shallow tectonic earthquakes with epicenters close, up to 15 km, the seismological stations. The method has been tested post festum using four earthquakes in Dinarides which satisfied condition for epicentral distance. The spectra were calculated for noise recorded in time intervals of 10 days before and 6 to 10 days after the earthquakes. Affine moment invariants were calculated for noise spectra which were treated as the input objects. Spectra of the first five days in the series were referent spectra. The classification parameters were Euclidean distances between referent spectra and the spectra for all days in the series, including referent ones. The results have shown that the spectra of the microseismic noise become noticeably different than the other spectra in time intervals one or two days before an earthquake.

  18. Indonesian Earthquake Decision Support System

    CERN Document Server

    Warnars, Spits

    2010-01-01

    Earthquake DSS is an information technology environment which can be used by government to sharpen, make faster and better the earthquake mitigation decision. Earthquake DSS can be delivered as E-government which is not only for government itself but in order to guarantee each citizen's rights for education, training and information about earthquake and how to overcome the earthquake. Knowledge can be managed for future use and would become mining by saving and maintain all the data and information about earthquake and earthquake mitigation in Indonesia. Using Web technology will enhance global access and easy to use. Datawarehouse as unNormalized database for multidimensional analysis will speed the query process and increase reports variation. Link with other Disaster DSS in one national disaster DSS, link with other government information system and international will enhance the knowledge and sharpen the reports.

  19. Episodic tremor triggers small earthquakes

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    It has been suggested that episodic tremor and slip (ETS), the weak shaking not associated with measurable earthquakes, could trigger nearby earthquakes. However, this had not been confirmed until recently. Vidale et al. monitored seismicity in the 4-month period around a 16-day episode of episodic tremor and slip in March 2010 in the Cascadia region. They observed five small earthquakes within the subducting slab during the ETS episode. They found that the timing and locations of earthquakes near the tremor suggest that the tremor and earthquakes are related. Furthermore, they observed that the rate of earthquakes across the area was several times higher within 2 days of tremor activity than at other times, adding to evidence of a connection between tremor and earthquakes. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003559, 2011)

  20. ALMA measures Calama earthquake

    Science.gov (United States)

    Brito, R.; Shillue, B.

    2010-04-01

    On 4 March 2010, the ALMA system response to an extraordinarily large disturbance was measured when a magnitude 6.3 earthquake struck near Calama, Chile, relatively close to the ALMA site. Figures 1 through 4 demonstrate the remarkable performance of the ALMA system to a huge disturbance that was more than 100 times the specification for correction accuracy.

  1. Road Damage Following Earthquake

    Science.gov (United States)

    1989-01-01

    Ground shaking triggered liquefaction in a subsurface layer of water-saturated sand, producing differential lateral and vertical movement in a overlying carapace of unliquified sand and slit, which moved from right to left towards the Pajaro River. This mode of ground failure, termed lateral spreading, is a principal cause of liquefaction-related earthquake damage caused by the Oct. 17, 1989, Loma Prieta earthquake. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: S.D. Ellen, U.S. Geological Survey

  2. The HayWired earthquake scenario—Earthquake hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-01-01

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  3. Earthquake forecasting studies using radon time series data in Taiwan

    Science.gov (United States)

    Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-04-01

    For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.

  4. An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2014-01-01

    Full Text Available Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1 the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2 Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3 Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase.

  5. Has El Salvador Fault Zone produced M ≥ 7.0 earthquakes? The 1719 El Salvador earthquake

    Science.gov (United States)

    Canora, C.; Martínez-Díaz, J.; Álvarez-Gómez, J.; Villamor, P.; Ínsua-Arévalo, J.; Alonso-Henar, J.; Capote, R.

    2013-05-01

    Historically, large earthquakes, Mw ≥ 7.0, in the Εl Salvador area have been attributed to activity in the Cocos-Caribbean subduction zone. Τhis is correct for most of the earthquakes of magnitude greater than 6.5. However, recent paleoseismic evidence points to the existence of large earthquakes associated with rupture of the Εl Salvador Fault Ζone, an Ε-W oriented strike slip fault system that extends for 150 km through central Εl Salvador. Τo calibrate our results from paleoseismic studies, we have analyzed the historical seismicity of the area. In particular, we suggest that the 1719 earthquake can be associated with paleoseismic activity evidenced in the Εl Salvador Fault Ζone. Α reinterpreted isoseismal map for this event suggests that the damage reported could have been a consequence of the rupture of Εl Salvador Fault Ζone, rather than rupture of the subduction zone. Τhe isoseismal is not different to other upper crustal earthquakes in similar tectonovolcanic environments. We thus challenge the traditional assumption that only the subduction zone is capable of generating earthquakes of magnitude greater than 7.0 in this region. Τhis result has broad implications for future risk management in the region. Τhe potential occurrence of strong ground motion, significantly higher and closer to the Salvadorian populations that those assumed to date, must be considered in seismic hazard assessment studies in this area.

  6. Global consequences of unsafe abortion.

    Science.gov (United States)

    Singh, Susheela

    2010-11-01

    Unsafe abortion is a significant cause of death and ill health in women in the developing world. A substantial body of research on these consequences exists, although studies are of variable quality. However, unsafe abortion has a number of other significant consequences that are much less widely recognized. These include the economic consequences, the immediate costs of providing medical care for abortion-related complications, the costs of medical care for longer-term health consequences, lost productivity to the country, the impact on families and the community, and the social consequences that affect women and families. This article will review the scientific evidence on the consequences of unsafe abortion, highlight gaps in the evidence base, suggest areas where future research efforts are needed, and speculate on the future situation regarding consequences and evidence over the next 5-10 years. The information provided is useful and timely given the current heightened interest in the issue of unsafe abortion, growing from the recent focus of national and international agencies on reducing maternal mortality by 75% by 2015 (as one of the Millennium Development Goals established in 2000).

  7. Electromagnetic earthquake triggering phenomena: State-of-the-art research and future developments

    Science.gov (United States)

    Zeigarnik, Vladimir; Novikov, Victor

    2014-05-01

    Developed in the 70s of the last century in Russia unique pulsed power systems based on solid propellant magneto-hydrodynamic (MHD) generators with an output of 10-500 MW and operation duration of 10 to 15 s were applied for an active electromagnetic monitoring of the Earth's crust to explore its deep structure, oil and gas electrical prospecting, and geophysical studies for earthquake prediction due to their high specific power parameters, portability, and a capability of operation under harsh climatic conditions. The most interesting and promising results were obtained during geophysical experiments at the test sites located at Pamir and Northern Tien Shan mountains, when after 1.5-2.5 kA electric current injection into the Earth crust through an 4 km-length emitting dipole the regional seismicity variations were observed (increase of number of weak earthquakes within a week). Laboratory experiments performed by different teams of the Institute of Physics of the Earth, Joint Institute for High Temperatures, and Research Station of Russian Academy of Sciences on observation of acoustic emission behavior of stressed rock samples during their processing by electric pulses demonstrated similar patterns - a burst of acoustic emission (formation of cracks) after application of current pulse to the sample. Based on the field and laboratory studies it was supposed that a new kind of earthquake triggering - electromagnetic initiation of weak seismic events has been observed, which may be used for the man-made electromagnetic safe release of accumulated tectonic stresses and, consequently, for earthquake hazard mitigation. For verification of this hypothesis some additional field experiments were carried out at the Bishkek geodynamic proving ground with application of pulsed ERGU-600 facility, which provides 600 A electric current in the emitting dipole. An analysis of spatio-temporal redistribution of weak regional seismicity after ERGU-600 pulses, as well as a response

  8. The Kresna earthquake of 1904 in Bulgaria

    Directory of Open Access Journals (Sweden)

    N. N. Ambraseys

    2001-06-01

    Full Text Available The Kresna earthquake in 1904 in Bulgaria is one of the largest shallow 20th century events on land in the Balkans. This event, which was preceded by a large foreshock, has hitherto been assigned a range of magnitudes up to M S = 7.8 but the reappraisal of instrumental data yields a much smaller value of M S = 7.2 and a re-assement of the intensity distribution suggests 7.1. Thus both instrumental and macroseismic data appear consistent with a magnitude which is also compatible with the fault segmentation and local morphology of the region which cannot accommodate shallow events much larger than about 7.0. The relatively large size of the main shock suggests surface faulting but the available field evidence is insufficient to establish the dimensions, attitude andamount of dislocation, except perhaps in the vicinity of Krupnik. This downsizing of the Kresna earthquake has important consequences for tectonics and earthquake hazard estimates in the Balkans.

  9. Listening to Earthquakes with Infrasound

    Science.gov (United States)

    Mucek, A. E.; Langston, C. A.

    2011-12-01

    A tripartite infrasound array was installed to listen to earthquakes occurring along the Guy-Greenbrier fault in Arkansas. The active earthquake swarm is believed to be caused by deep waste water injections and will allow us to explain the mechanisms causing earthquake "booms" that have been heard during an earthquake. The array has an aperture of 50 meters and is installed next to the X301 seismograph station run by the Center for Earthquake Research and Information (CERI). This arrangement allows simultaneous recording of seismic and acoustic changes from the arrival of an earthquake. Other acoustic and seismic sources that have been found include thunder from thunderstorms, gunshots, quarry explosions and hydraulic fracturing activity from the local gas wells. The duration of the experiment is from the last week of June to the last week of September 2011. During the first month and a half, seven local earthquakes were recorded, along with numerous occurrences of the other infrasound sources. Phase arrival times of the recorded waves allow us to estimate wave slowness and azimuth of infrasound events. Using these two properties, we can determine whether earthquake "booms" occur at a site from the arrival of the P-wave or whether the earthquake "booms" occur elsewhere and travel through the atmosphere. Preliminary results show that the infrasound correlates well to the ground motion during an earthquake for frequencies below 15 Hertz.

  10. The HayWired earthquake scenario

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    interconnectedness of infrastructure, society, and our economy. How would this earthquake scenario, striking close to Silicon Valley, impact our interconnected world in ways and at a scale we have not experienced in any previous domestic earthquake?The area of present-day Contra Costa, Alameda, and Santa Clara Counties contended with a magnitude-6.8 earthquake in 1868 on the Hayward Fault. Although sparsely populated then, about 30 people were killed and extensive property damage resulted. The question of what an earthquake like that would do today has been examined before and is now revisited in the HayWired scenario. Scientists have documented a series of prehistoric earthquakes on the Hayward Fault and are confident that the threat of a future earthquake, like that modeled in the HayWired scenario, is real and could happen at any time. The team assembled to build this scenario has brought innovative new approaches to examining the natural hazards, impacts, and consequences of such an event. Such an earthquake would also be accompanied by widespread liquefaction and landslides, which are treated in greater detail than ever before. The team also considers how the now-prototype ShakeAlert earthquake early warning system could provide useful public alerts and automatic actions.Scientific Investigations Report 2017–5013 and accompanying data releases are the products of an effort led by the USGS, but this body of work was created through the combined efforts of a large team including partners who have come together to form the HayWired Coalition (see chapter A). Use of the HayWired scenario has already begun. More than a full year of intensive partner engagement, beginning in April 2017, is being directed toward producing the most in-depth look ever at the impacts and consequences of a large earthquake on the Hayward Fault. With the HayWired scenario, our hope is to encourage and support the active ongoing engagement of the entire community of the San Francisco Bay region by

  11. Smartphone-Based Earthquake and Tsunami Early Warning in Chile

    Science.gov (United States)

    Brooks, B. A.; Baez, J. C.; Ericksen, T.; Barrientos, S. E.; Minson, S. E.; Duncan, C.; Guillemot, C.; Smith, D.; Boese, M.; Cochran, E. S.; Murray, J. R.; Langbein, J. O.; Glennie, C. L.; Dueitt, J.; Parra, H.

    2016-12-01

    Many locations around the world face high seismic hazard, but do not have the resources required to establish traditional earthquake and tsunami warning systems (E/TEW) that utilize scientific grade seismological sensors. MEMs accelerometers and GPS chips embedded in, or added inexpensively to, smartphones are sensitive enough to provide robust E/TEW if they are deployed in sufficient numbers. We report on a pilot project in Chile, one of the most productive earthquake regions world-wide. There, magnitude 7.5+ earthquakes occurring roughly every 1.5 years and larger tsunamigenic events pose significant local and trans-Pacific hazard. The smartphone-based network described here is being deployed in parallel to the build-out of a scientific-grade network for E/TEW. Our sensor package comprises a smartphone with internal MEMS and an external GPS chipset that provides satellite-based augmented positioning and phase-smoothing. Each station is independent of local infrastructure, they are solar-powered and rely on cellular SIM cards for communications. An Android app performs initial onboard processing and transmits both accelerometer and GPS data to a server employing the FinDer-BEFORES algorithm to detect earthquakes, producing an acceleration-based line source model for smaller magnitude earthquakes or a joint seismic-geodetic finite-fault distributed slip model for sufficiently large magnitude earthquakes. Either source model provides accurate ground shaking forecasts, while distributed slip models for larger offshore earthquakes can be used to infer seafloor deformation for local tsunami warning. The network will comprise 50 stations by Sept. 2016 and 100 stations by Dec. 2016. Since Nov. 2015, batch processing has detected, located, and estimated the magnitude for Mw>5 earthquakes. Operational since June, 2016, we have successfully detected two earthquakes > M5 (M5.5, M5.1) that occurred within 100km of our network while producing zero false alarms.

  12. Injuries as a result of California earthquakes in the past decade.

    Science.gov (United States)

    Shoaf, K I; Sareen, H R; Nguyen, L H; Bourque, L B

    1998-09-01

    The devastating effects of earthquakes have been demonstrated repeatedly in the past decade, through moderate and major earthquakes such as the October 1987 Whittier Narrows earthquake (5.9 on the Richter scale), the October 1989 Loma Prieta earthquake (7.1) and the January 1994 Northridge earthquake (6.7). While 'official' tallies of injuries and deaths are reported for each event, the numbers vary from report to report. For Northridge, the number of injuries vary between 8,000 and 12,000; the number of deaths from 33 to 73 (Peek-Asa et al., 1997; Durkin, 1996). While official estimates are commonly reported following disasters, the study of actual numbers, types and causes of casualties has not developed. In this paper, we identify the numbers and risk factors for injuries within community-based samples across three earthquakes in urban California. We first report the numbers and types of injuries in each earthquake and then identify risk factors specifically associated with the Northridge earthquake.

  13. A Stochastical Model for the Earthquake Occurences in Turkey

    Directory of Open Access Journals (Sweden)

    Gamze ÖZEL

    2009-04-01

    Full Text Available The fields of seismology and earthquake engineering deal with the studies for earthquake predictions, hazard assessments and the prevention of possible damage due to destructive earthquakes. Various kind of statistical models are used for the earthquake occurences. The most familiar model is a Poisson process for random series of events. However, the Poisson process is insufficient if the incorporation of more information about the seismic process is required. Recently, a compound Poisson process has been proposed an alternative to the Poisson process for the earthquake analysis. In this study, the compound Poisson process is introduced and the probabilities of earthquake numbers with magnitude M ³ 5.0 which will occur within 3 and 6 months; 5 and 10 years have been obtained for Turkey from the Poisson process. Then, it is shown that the aftershock sequences follow a geometric distribution. By this way, the probabilities of total number of aftershocks which will occur within one year and two years with magnitude M ³ 4.0 in Turkey are obtained from the compound Poisson process. Finally, the expected values of main shocks and total number of aftershocks which will occur within one year and two years are computed. The results show that the earthquake occurrence probability with magnitude M ³ 5.0 increases, whereas the probability of total number of aftershocks with magnitude M ³ 4.0 decreases in Turkey as the time increases. Besides, the total aftershock number with magnitude M ³ 4.0 , after a main shock with magnitude M ³ 5.0, equals to zero with the probability 0.48 within one year. The findings also indicate that approximately 130 main shocks with M ³ 5.0 , 28 aftershocks with magnitude M ³ 4.0 are expected within 30 years in Turkey.

  14. Distant, delayed and ancient earthquake-induced landslides

    Science.gov (United States)

    Havenith, Hans-Balder; Torgoev, Almaz; Braun, Anika; Schlögel, Romy; Micu, Mihai

    2016-04-01

    On the basis of a new classification of seismically induced landslides we outline particular effects related to the delayed and distant triggering of landslides. Those cannot be predicted by state-of-the-art methods. First, for about a dozen events the 'predicted' extension of the affected area is clearly underestimated. The most problematic cases are those for which far-distant triggering of landslides had been reported, such as for the 1988 Saguenay earthquake. In Central Asia reports for such cases are known for areas marked by a thick cover of loess. One possible contributing effect could be a low-frequency resonance of the thick soils induced by distant earthquakes, especially those in the Pamir - Hindu Kush seismic region. Such deep focal and high magnitude (>>7) earthquakes are also found in Europe, first of all in the Vrancea region (Romania). For this area and others in Central Asia we computed landslide event sizes related to scenario earthquakes with M>7.5. The second particular and challenging type of triggering is the one delayed with respect to the main earthquake event: case histories have been reported for the Racha earthquake in 1991 when several larger landslides only started moving 2 or 3 days after the main shock. Similar observations were also made after other earthquake events in the U.S., such as after the 1906 San Francisco, the 1949 Tacoma, the 1959 Hebgen Lake and the 1983 Bora Peak earthquakes. Here, we will present a series of detailed examples of (partly monitored) mass movements in Central Asia that mainly developed after earthquakes, some even several weeks after the main shock: e.g. the Tektonik and Kainama landslides triggered in 1992 and 2004, respectively. We believe that the development of the massive failures is a consequence of the opening of tension cracks during the seismic shaking and their filling up with water during precipitations that followed the earthquakes. The third particular aspect analysed here is the use of large

  15. Gravitational and geomagnetic tidal source of earthquake triggering

    Science.gov (United States)

    Palumbo, A.

    1989-12-01

    A relationship is presently established between large earthquakes and the earth's tides and external geomagnetic fields, in conjunction with a triggering mechanism having its bases in the large solar and lunar variations observed during a number of the shocks examined. A majority of these shocks are noted to be located within a latitude-belt which coincides with the intensity maximum of ionospheric currents. A local magnetostriction process in the rocks appears to be the triggering mechanism. The large number of earthquakes occurring during maximum solar activity may be related to the enhanced geomagnetic triggering effect of higher sunspot numbers.

  16. A new earthquake location method based on the waveform inversion

    CERN Document Server

    Wu, Hao; Huang, Xueyuan; Yang, Dinghui

    2016-01-01

    In this paper, a new earthquake location method based on the waveform inversion is proposed. As is known to all, the waveform misfit function is very sensitive to the phase shift between the synthetic waveform signal and the real waveform signal. Thus, the convergence domain of the conventional waveform based earthquake location methods is very small. In present study, by introducing and solving a simple sub-optimization problem, we greatly expand the convergence domain of the waveform based earthquake location method. According to a large number of numerical experiments, the new method expands the range of convergence by several tens of times. This allows us to locate the earthquake accurately even from some relatively bad initial values.

  17. The sinusoidal periodicity nature for M>=5 global earthquakes

    CERN Document Server

    Zhang, Z X

    2016-01-01

    By using the M>=5 global earthquake data for Jan. 1950 to Dec. 2015, we performed statistical analyses for the parameters magnitude, time, and depth on a yearly scale. The magnitude spectrum, which is the earthquake number accumulated at different magnitudes, had an exponential distribution. For the first time, we report a very significant characteristic of the sinusoidal periodic variation in the spectral index. The cycle of the sine function fitting was 30.98 years. The concept of annual equivalent total magnitude (AETM) of total released energy for each year was introduced and the trend variation of AETM year by year was studied. Overall, the global AETM of earthquakes with M>=5 displayed a certain upward trend as the years elapsed. At the same time, the change of the average epicenter depth of the global earthquakes (M>=5) in each year was analyzed.

  18. Principles for selecting earthquake motions in engineering design of large dams

    Science.gov (United States)

    Krinitzsky, E.L.; Marcuson, William F.

    1983-01-01

    This report gives a synopsis of the various tools and techniques used in selecting earthquake ground motion parameters for large dams. It presents 18 charts giving newly developed relations for acceleration, velocity, and duration versus site earthquake intensity for near- and far-field hard and soft sites and earthquakes having magnitudes above and below 7. The material for this report is based on procedures developed at the Waterways Experiment Station. Although these procedures are suggested primarily for large dams, they may also be applicable for other facilities. Because no standard procedure exists for selecting earthquake motions in engineering design of large dams, a number of precautions are presented to guide users. The selection of earthquake motions is dependent on which one of two types of engineering analyses are performed. A pseudostatic analysis uses a coefficient usually obtained from an appropriate contour map; whereas, a dynamic analysis uses either accelerograms assigned to a site or specified respunse spectra. Each type of analysis requires significantly different input motions. All selections of design motions must allow for the lack of representative strong motion records, especially near-field motions from earthquakes of magnitude 7 and greater, as well as an enormous spread in the available data. Limited data must be projected and its spread bracketed in order to fill in the gaps and to assure that there will be no surprises. Because each site may have differing special characteristics in its geology, seismic history, attenuation, recurrence, interpreted maximum events, etc., as integrated approach gives best results. Each part of the site investigation requires a number of decisions. In some cases, the decision to use a 'least ork' approach may be suitable, simply assuming the worst of several possibilities and testing for it. Because there are no standard procedures to follow, multiple approaches are useful. For example, peak motions at

  19. Classification of Earthquake-triggered Landslide Events - Review of Classical and Particular Cases

    Science.gov (United States)

    Braun, A.; Havenith, H. B.; Schlögel, R.

    2016-12-01

    Seismically induced landslides often contribute to a significant degree to the losses related to earthquakes. The identification of possible extends of landslide affected areas can help to target emergency measures when an earthquake occurs or improve the resilience of inhabited areas and critical infrastructure in zones of high seismic hazard. Moreover, landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes in paleoseismic studies, allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. Inspired by classical reviews of earthquake induced landslides, e.g. by Keefer or Jibson, we present here a review of factors contributing to earthquake triggered slope failures based on an `event-by-event' classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, `Intensity', `Fault', `Topographic energy', `Climatic conditions' and `Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be crosschecked. We present cases where our prediction model performs well and discuss particular cases

  20. Solar activity and earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, J.

    1979-02-26

    Prolonged astronomical observations have discovered that the Sun, which is the nearest star to the Earth, is not calm and serene. On the solar surface, there are often windstorms, electrical lights, and sometimes large flame eruptions; and there are regularly black spots in patches which are also active. The Sun not only disperses light and heat, but also throws out large quantities of currents of charged particles to be scattered in space and to reach the Earth, sometimes, which are called by some solar winds. These activities in the Sun can induce many physical phenomena on earth, including magnetic storms, polar light, sudden disruption or attenuation of medium- and short-wave radio, and many atmospheric changes. Some scientists believe they are perhaps also related to the occurrence of earthquakes. This paper explains these solar activities and their possible relationship to earthquakes.

  1. Remote sensing and earthquake risk: A (re)insurance perspective

    Science.gov (United States)

    Smolka, Anselm; Siebert, Andreas

    2013-04-01

    The insurance sector is faced with two issues regarding earthquake risk: the estimation of rarely occurring losses from large events and the assessment of the average annual net loss. For this purpose, knowledge is needed of actual event losses, of the distribution of exposed values, and of their vulnerability to earthquakes. To what extent can remote sensing help the insurance industry fulfil these tasks, and what are its limitations? In consequence of more regular and high-resolution satellite coverage, we have seen earth observation and remote sensing methods develop over the past years to a stage where they appear to offer great potential for addressing some shortcomings of the data underlying risk assessment. These include lack of statistical representativeness and lack of topicality. Here, remote sensing can help in the following areas: • Inventories of exposed objects (pre- and post-disaster) • Projection of small-scale ground-based vulnerability classification surveys to a full inventory • Post-event loss assessment But especially from an insurance point of view, challenges remain. The strength of airborne remote sensing techniques lies in outlining heavily damaged areas where damage is caused by easily discernible structural failure, i.e. total or partial building collapse. Examples are the Haiti earthquake (with minimal insured loss) and the tsunami-stricken areas in the Tohoku district of Japan. What counts for insurers, however, is the sum of monetary losses. The Chile, the Christchurch and the Tohoku earthquakes each caused insured losses in the two-digit billion dollar range. By far the greatest proportion of these insured losses were due to non-structural damage to buildings, machinery and equipment. Even with the Tohoku event, no more than 30% of the total material damage was caused by the tsunami according to preliminary surveys, and this figure includes damage due to earthquake shock which was unrecognisable after the passage of the tsunami

  2. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  3. Pain after earthquake

    Directory of Open Access Journals (Sweden)

    Angeletti Chiara

    2012-06-01

    Full Text Available Abstract Introduction On 6 April 2009, at 03:32 local time, an Mw 6.3 earthquake hit the Abruzzi region of central Italy causing widespread damage in the City of L Aquila and its nearby villages. The earthquake caused 308 casualties and over 1,500 injuries, displaced more than 25,000 people and induced significant damage to more than 10,000 buildings in the L'Aquila region. Objectives This observational retrospective study evaluated the prevalence and drug treatment of pain in the five weeks following the L'Aquila earthquake (April 6, 2009. Methods 958 triage documents were analysed for patients pain severity, pain type, and treatment efficacy. Results A third of pain patients reported pain with a prevalence of 34.6%. More than half of pain patients reported severe pain (58.8%. Analgesic agents were limited to available drugs: anti-inflammatory agents, paracetamol, and weak opioids. Reduction in verbal numerical pain scores within the first 24 hours after treatment was achieved with the medications at hand. Pain prevalence and characterization exhibited a biphasic pattern with acute pain syndromes owing to trauma occurring in the first 15 days after the earthquake; traumatic pain then decreased and re-surged at around week five, owing to rebuilding efforts. In the second through fourth week, reports of pain occurred mainly owing to relapses of chronic conditions. Conclusions This study indicates that pain is prevalent during natural disasters, may exhibit a discernible pattern over the weeks following the event, and current drug treatments in this region may be adequate for emergency situations.

  4. Foreshocks of strong earthquakes

    Science.gov (United States)

    Guglielmi, A. V.; Sobisevich, L. E.; Sobisevich, A. L.; Lavrov, I. P.

    2014-07-01

    The specific enhancement of ultra-low-frequency (ULF) electromagnetic oscillations a few hours prior to the strong earthquakes, which was previously mentioned in the literature, motivated us to search for the distinctive features of the mechanical (foreshock) activity of the Earth's crust in the epicentral zones of the future earthquakes. Activation of the foreshocks three hours before the main shock is revealed, which is roughly similar to the enhancement of the specific electromagnetic ULF emission. It is hypothesized that the round-the-world seismic echo signals from the earthquakes, which form the peak of energy release 2 h 50 min before the main events, act as the triggers of the main shocks due to the cumulative action of the surface waves converging to the epicenter. It is established that the frequency of the fluctuations in the foreshock activity decreases at the final stages of the preparation of the main shocks, which probably testifies to the so-called mode softening at the approach of the failure point according to the catastrophe theory.

  5. Spatio-temporal features of vegetation restoration and variation after the Wenchuan earthquake with satellite images

    Science.gov (United States)

    Peng, Hou; Qiao, Wang; Yipeng, Yang; Weiguo, Jiang; Bingfeng, Yang; Qiang, Chen; Lihua, Yuan; Fanming, Kong; Xi, Chen; Guanjie, Wang

    2014-01-01

    The Wenchuan earthquake was a deadly earthquake that occurred on May 12, 2008, in Sichuan province of China. With the help of classic statistic methods, including arithmetic mean, standard deviation and linear trend estimation, vegetation restoration was recognized by analyzing spatio-temporal features of normalized difference vegetation index (NDVI) before and after this earthquake. Results indicate: (1) spatial distribution of NDVI mean values remains similar from 1998 to 2011. Higher values are mainly found in north, whereas lower values are mainly distributed over southeast, which is in good correlation with elevation and landform. Vegetation damage is at different levels in different seismic intensity (SI) regions: the higher SI is, the worse vegetation damage is. (2) Over the whole region, standard deviation is bigger after earthquake than before. Both absolute and relative changes in ecosystem stability increase with increasing SI. In different counties, variation of ecosystem stability is more obvious after earthquake, increase of standard deviation is approximately 6.5 times. Relatively, vegetation regionalization is the smallest analysis unit. Consequently, changes resulting from earthquake are unobvious. (3) Linear trend estimation coefficient increases from 0.0079 before the earthquake to 0.0359 after the earthquake in this whole region. This indicates that the plant ecosystem is rapidly restored between 2009 and 2011. The biggest linear trend is for the hill region, indicating good plant restoration and increase after earthquake. Fluctuation of linear trend estimation coefficient in different counties is more obvious after earthquake. Vegetation restoration after earthquake is most obvious in the regions that suffered the greatest SI (SI10 and SI11). In contrast, fluctuation in linear trend estimation coefficient of annual NDVI mean value for different classes of vegetation is more obvious before earthquake.

  6. Visualizing Earthquakes in '3D' using the IRIS Earthquake Browser (IEB) Website

    Science.gov (United States)

    Welti, R.; McQuillan, P. J.; Weertman, B. R.

    2012-12-01

    The distribution of earthquakes is often easier to interpret in 3D, but most 3D visualization tools require the installation of specialized software and some practice in their use. To reduce this barrier for students and the general public, a pseudo-3D seismicity viewer has been developed which runs in a web browser as part of the IRIS Earthquake Browser (IEB). IEB is an interactive map for viewing earthquake epicenters all over the world, and is composed of a Google map, HTML, JavaScript and a fast earthquake hypocenter web service. The web service accesses seismic data at IRIS from the early 1960s until present. Users can change the region, the number of events, and the depth and magnitude ranges to display. Earthquakes may also be viewed as a table, or exported to various formats. Predefined regions can be selected and zoomed to, and bookmarks generally preserve whatever region and settings are in effect when bookmarked, allowing the easy sharing of particular "scenarios" with other users. Plate boundaries can be added to the display. The 3DV viewer displays events for the currently-selected IEB region in a separate window. They can be rotated and zoomed, with a fast response for plots of up to several thousand events. Rotation can be done manually by dragging or automatically at a set rate, and tectonic plate boundaries turned on or off. 3DV uses a geographical projection algorithm provided by Gary Pavils and collaborators. It is written in HTML5, and is based on CanvasMol by Branislav Ulicny.; A region SE of Fiji, selected in IRIS Earthquake Browser. ; The same region as viewed in 3D Viewer.

  7. Factors affecting household adoption of an evacuation plan in American Samoa after the 2009 earthquake and tsunami.

    Science.gov (United States)

    Apatu, Emma J I; Gregg, Chris E; Richards, Kasie; Sorensen, Barbara Vogt; Wang, Liang

    2013-08-01

    American Samoa is still recovering from the debilitating consequences of the September 29, 2009 tsunami. Little is known about current household preparedness in American Samoa for future earthquakes and tsunamis. Thus, this study sought to enumerate the number of households with an earthquake and tsunami evacuation plan and to identify predictors of having a household evacuation plan through a post-tsunami survey conducted in July 2011. Members of 300 households were interviewed in twelve villages spread across regions of the principle island of Tutuila. Multiple logistic regression showed that being male, having lived in one's home for tsunami event increased the likelihood of having a household evacuation plan. The prevalence of tsunami evacuation planning was 35% indicating that survivors might feel that preparation is not necessary given effective adaptive responses during the 2009 event. Results suggest that emergency planners and public health officials should continue with educational outreach to families to spread awareness around the importance of developing plans for future earthquakes and tsunamis to help mitigate human and structural loss from such natural disasters. Additional research is needed to better understand the linkages between pre-event planning and effective evacuation responses as were observed in the 2009 events.

  8. Earthquake forecasting: Statistics and Information

    CERN Document Server

    Gertsik, V; Krichevets, A

    2013-01-01

    We present an axiomatic approach to earthquake forecasting in terms of multi-component random fields on a lattice. This approach provides a method for constructing point estimates and confidence intervals for conditional probabilities of strong earthquakes under conditions on the levels of precursors. Also, it provides an approach for setting multilevel alarm system and hypothesis testing for binary alarms. We use a method of comparison for different earthquake forecasts in terms of the increase of Shannon information. 'Forecasting' and 'prediction' of earthquakes are equivalent in this approach.

  9. Earthquake forecasting and its verification

    Directory of Open Access Journals (Sweden)

    J. R. Holliday

    2005-01-01

    Full Text Available No proven method is currently available for the reliable short time prediction of earthquakes (minutes to months. However, it is possible to make probabilistic hazard assessments for earthquake risk. In this paper we discuss a new approach to earthquake forecasting based on a pattern informatics (PI method which quantifies temporal variations in seismicity. The output, which is based on an association of small earthquakes with future large earthquakes, is a map of areas in a seismogenic region ('hotspots'' where earthquakes are forecast to occur in a future 10-year time span. This approach has been successfully applied to California, to Japan, and on a worldwide basis. Because a sharp decision threshold is used, these forecasts are binary--an earthquake is forecast either to occur or to not occur. The standard approach to the evaluation of a binary forecast is the use of the relative (or receiver operating characteristic (ROC diagram, which is a more restrictive test and less subject to bias than maximum likelihood tests. To test our PI method, we made two types of retrospective forecasts for California. The first is the PI method and the second is a relative intensity (RI forecast based on the hypothesis that future large earthquakes will occur where most smaller earthquakes have occurred in the recent past. While both retrospective forecasts are for the ten year period 1 January 2000 to 31 December 2009, we performed an interim analysis 5 years into the forecast. The PI method out performs the RI method under most circumstances.

  10. Recurrence intervals between earthquakes strongly depend on history

    CERN Document Server

    Livina, V; Havlin, S; Bunde, A

    2004-01-01

    We study the statistics of the recurrence times between earthquakes above a certain magnitude M$ in California. We find that the distribution of the recurrence times strongly depends on the previous recurrence time $\\tau_0$. As a consequence, the conditional mean recurrence time $\\hat \\tau(\\tau_0)$ between two events increases monotonically with $\\tau_0$. For $\\tau_0$ well below the average recurrence time $\\ov{\\tau}, \\hat\\tau(\\tau_0)$ is smaller than $\\ov{\\tau}$, while for $\\tau_0>\\ov{\\tau}$, $\\hat\\tau(\\tau_0)$ is greater than $\\ov{\\tau}$. Also the mean residual time until the next earthquake does not depend only on the elapsed time, but also strongly on $\\tau_0$. The larger $\\tau_0$ is, the larger is the mean residual time. The above features should be taken into account in any earthquake prognosis.

  11. Upper-Plate Earthquake Swarms Remotely Triggered by the 2012 Mw-7.6 Nicoya Earthquake, Costa Rica

    Science.gov (United States)

    Linkimer, L.; Arroyo, I. G.; Montero Pohly, W. K.; Lücke, O. H.

    2013-12-01

    Remotely triggered seismicity that takes place at distances greater than 1-2 fault lengths appears to be a frequent phenomenon after large earthquakes, including damaging upper-plate 5.0-to-6.0 magnitude earthquakes in Costa Rica after the large (Mw greater than 7.0) inter-plate earthquakes in 1941, 1950, 1983, 1990, and 1991. On 5 of September 2012, an inter-plate 7.6-Mw earthquake struck the Nicoya Peninsula, triggering upper-plate seismicity in the interior of Costa Rica again. The number of upper plate-earthquakes outside the Nicoya source region that were recorded by the National Seismological Network (RSN: UCR-ICE) for the six-month period after the Nicoya event was two times higher than that number of upper plate-earthquakes during the six months before it happened. We analyze the three largest upper-plate earthquake swarms that took place during the first six months after the Nicoya event. We relocate the epicenters using a double difference algorithm with a 1D velocity model (HypoDD) and using a probabilistic method with a 3D velocity model (NonLinLoc). Additionally we compute first motion focal mechanisms for the largest events. The three swarms analyzed occurred at distances of 170 to 350 km from the Nicoya source region in three different tectonic settings: the Cartago area in the central part of Costa Rica near the active volcanic arc (approximately 170 km from the source region), the Calero Island near the Costa Rica-Nicaragua border in the backarc Caribbean region (approximately 220 km), and the San Vito area in the Costa Rica-Panama border region, at the southern flank of the Talamanca Cordillera, an inactive portion of the magmatic arc (approximately 300 km). The Cartago swarm with 95 1.8-to-4.1 Mw earthquakes occurred from September 5 to October 31, 2012. The location and left-lateral solution of the largest event suggest that the Aguacaliente fault, which caused the deadliest earthquake in Costa Rican history on May 4, 1910 (Ms 6.4), is the

  12. Distribution characteristics of historical earthquake classes in Jiangsu Province and South Huanghai Sea region

    Institute of Scientific and Technical Information of China (English)

    田建明; 徐徐; 谢华章; 杨云; 丁政

    2004-01-01

    According to the analysis on the characteristics of historic earthquakes in Jiangsu Province and South Huanghai Sea region, the historical earthquakes in the studied area are divided into two kinds of"comparatively safe class"and"comparatively dangerous class". Then the statistical result of earthquake class, the characteristics of geographical distribution and geological structures are studied. The study shows: a) In Jiangsu Province and South Huanghai Sea region, the majority of historical strong earthquakes belong to"comparatively safe class", only 13.8% belong to"comparatively dangerous class"; b) Most historical earthquakes belong to"comparatively safe class" in the land area of Jiangsu, eastern sea area of Yangtze River mouth and northern depression of South Huanghai Sea region. However, along the coast of middle Jiangsu Province and in the sea area of South Huanghai Sea, the distribution of historical earthquake classes is complex and the earthquake series of"comparatively dangerous class"and"comparatively safe class"are equivalent in number; c) In the studied area, the statistical results of historical earthquake classes and the characteristics of spatial distribution accord very well with the real case of present-day earthquake series. It shows that the seismic activity in the region has the characteristic of succession, and the result from this study can be used as a reference for early postseismic judgment in the earthquake emergency work in Jiangsu Province.

  13. XIXth century earthquakes in Belgium, the Netherlands and western Germany

    Science.gov (United States)

    Knuts, Elisabeth; Dost, Bernard; Alexandre, Pierre; Camelbeeck, Thierry

    2014-05-01

    Since the last quarter of the XXth century, the rules of the historic criticism are applied in the study of the past earthquakes thanks to the collaboration between seismologists and historians. Various monographs have already been published on the historic seismicity of Belgium, Netherlands and nearby regions but few about the XIXth century. The list of the shocks arisen in those regions is not clearly established. For the major earthquakes, we can find useful monographs that where published at the time of the events. However there is a lack of information about smaller earthquakes that are mentioned in the Belgian, Dutch, French and German catalogs. For those smaller events it is often not possible to determine the zone of perceptibility. Sometimes we cannot even take for sure that the reported event is a real one. The aim of our study is to overcome this gap. Taking into account the rules of historical criticism, we read all the available bibliography, undertook researches in the archives and made an analysis of the press in order to establish a reliable list of earthquakes. Several categories of sources were used: narrative and administrative sources, contemporaneous studies, letters sent to the scientific institutions and press. We could confirm that 84 earthquakes are real and determine a list of fake earthquakes that are unfortunately present in the traditional catalogs. In the list of fake earthquakes, we highlighted several events that we consider doubtful and that require additional researches, especially several earthquakes in mining zone. We compiled our results as a four-column table providing the date of the earthquake, the supposed epicenter, the number of founded sources and the number of macroseismic datapoints. Based on the macroseismic datapoints, we estimated the intensities for every great phenomenon according to EMS-98 scale. The map of the epicenters indicates that the most active zone in the area during the XIXth century is the Lower Rhine

  14. Statistical validation of earthquake related observations

    Science.gov (United States)

    Kossobokov, V. G.

    2011-12-01

    The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable or, conversely, delicately-designed models. The widespread practice of deceptive modeling considered as a "reasonable proxy" of the natural seismic process leads to seismic hazard assessment of unknown quality, which errors propagate non-linearly into inflicted estimates of risk and, eventually, into unexpected societal losses of unacceptable level. The studies aimed at forecast/prediction of earthquakes must include validation in the retro- (at least) and, eventually, in prospective tests. In the absence of such control a suggested "precursor/signal" remains a "candidate", which link to target seismic event is a model assumption. Predicting in advance is the only decisive test of forecast/predictions and, therefore, the score-card of any "established precursor/signal" represented by the empirical probabilities of alarms and failures-to-predict achieved in prospective testing must prove statistical significance rejecting the null-hypothesis of random coincidental occurrence in advance target earthquakes. We reiterate suggesting so-called "Seismic Roulette" null-hypothesis as the most adequate undisturbed random alternative accounting for the empirical spatial distribution of earthquakes: (i) Consider a roulette wheel with as many sectors as the number of earthquake locations from a sample catalog representing seismic locus, a sector per each location and (ii) make your bet according to prediction (i.e., determine, which locations are inside area of alarm, and put one chip in each of the corresponding sectors); (iii) Nature turns the wheel; (iv) accumulate statistics of wins and losses along with the number of chips spent. If a precursor in charge of prediction exposes an imperfection of Seismic Roulette then, having in mind

  15. Human casualties in earthquakes: modelling and mitigation

    Science.gov (United States)

    Spence, R.J.S.; So, E.K.M.

    2011-01-01

    Earthquake risk modelling is needed for the planning of post-event emergency operations, for the development of insurance schemes, for the planning of mitigation measures in the existing building stock, and for the development of appropriate building regulations; in all of these applications estimates of casualty numbers are essential. But there are many questions about casualty estimation which are still poorly understood. These questions relate to the causes and nature of the injuries and deaths, and the extent to which they can be quantified. This paper looks at the evidence on these questions from recent studies. It then reviews casualty estimation models available, and finally compares the performance of some casualty models in making rapid post-event casualty estimates in recent earthquakes.

  16. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    Science.gov (United States)

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M. A.; Johnson, Neil F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  17. Short-term forecasting of Taiwanese earthquakes using a universal model of fusion-fission processes.

    Science.gov (United States)

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M A; Johnson, Neil F

    2014-01-10

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow.

  18. Modeling earthquake activity using a memristor-based cellular grid

    Science.gov (United States)

    Vourkas, Ioannis; Sirakoulis, Georgios Ch.

    2013-04-01

    Earthquakes are absolutely among the most devastating natural phenomena because of their immediate and long-term severe consequences. Earthquake activity modeling, especially in areas known to experience frequent large earthquakes, could lead to improvements in infrastructure development that will prevent possible loss of lives and property damage. An earthquake process is inherently a nonlinear complex system and lately scientists have become interested in finding possible analogues of earthquake dynamics. The majority of the models developed so far were based on a mass-spring model of either one or two dimensions. An early approach towards the reordering and the improvement of existing models presenting the capacitor-inductor (LC) analogue, where the LC circuit resembles a mass-spring system and simulates earthquake activity, was also published recently. Electromagnetic oscillation occurs when energy is transferred between the capacitor and the inductor. This energy transformation is similar to the mechanical oscillation that takes place in the mass-spring system. A few years ago memristor-based oscillators were used as learning circuits exposed to a train of voltage pulses that mimic environment changes. The mathematical foundation of the memristor (memory resistor), as the fourth fundamental passive element, has been expounded by Leon Chua and later extended to a more broad class of memristors, known as memristive devices and systems. This class of two-terminal passive circuit elements with memory performs both information processing and storing of computational data on the same physical platform. Importantly, the states of these devices adjust to input signals and provide analog capabilities unavailable in standard circuit elements, resulting in adaptive circuitry and providing analog parallel computation. In this work, a memristor-based cellular grid is used to model earthquake activity. An LC contour along with a memristor is used to model seismic activity

  19. The 1448 earthquake in Catalonia. Some effects and local reactions

    Directory of Open Access Journals (Sweden)

    R. Salicrù i Lluch

    1995-06-01

    Full Text Available The May 1448 earthquake. the last destructive one that took place in Catalonia in the Middle Ages, was known chiefly from several chronistic and narrative medieval sources. To these sources I add new previously unknown data proceeding Eroin documentary archival sources in Barcelona, and other data that up to now have been wrongly considered as a consequence of the weak quake recorded in September 1450. They allow us to locate the epicentre in the Vall&s Oriental, around Llinars, to deny the existence of two almost simultaneous earthquakes, and to extend the range of the earthquake damage. to pinpoint them better and to suppose that the effects of the 1448 earthquake were more important than we had previously thought. All this information leads to several reflections on compulsory critical analysis of historical seismic documentary sources in order for them to be useful to historical seismicity. Finally. by the opposition of the three lands of documentary sources that refer to the damage caused by the earthquake in the township of Mataro. I show how natural catastrophes could be manipulated, and the skill of a society in exploiting them to deal with an adverse situation.

  20. Testimonies to the L'Aquila earthquake (2009) and to the L'Aquila process

    Science.gov (United States)

    Kalenda, Pavel; Nemec, Vaclav

    2014-05-01

    members with manslaughter and negligence for failing to warn the public of the impending risk. Many international organizations were falsely interpreting the accusation and sentence at the first stage as a problem of impossibility to predict earthquakes. The same situation appeared when the verdict at the 1st stage was pronounced in October 2012. But this verdict is exclusively based on the personal behaviour of the sentenced persons in the course of ONE HOUR SESSION of the Great Risk Board in L'Aquila on March 31, 2009 and on the fact that two of them presented results of the session immediately to media and local population after the session. Terrible consequences of this irresponsible behavior initiated the final accusation shared by a relatively small but intellectually advanced number of families associated with victims of the earthquake. They all had a deep confidence to the top Italian seismologists who attended the meeting of the Commission. Special INGV web site founded by the "decreto INGV n.641 del 19/12/2012" asking for support letters contains the trial documentation (http://processoaquila.wordpress.com/) including the Italian version of the verdict unfortunately with incomplete or incorrect and mostly MISSING English translations.

  1. Large earthquakes create vertical permeability by breaching aquitards

    Science.gov (United States)

    Wang, Chi-Yuen; Liao, Xin; Wang, Lee-Ping; Wang, Chung-Ho; Manga, Michael

    2016-08-01

    Hydrologic responses to earthquakes and their mechanisms have been widely studied. Some responses have been attributed to increases in the vertical permeability. However, basic questions remain: How do increases in the vertical permeability occur? How frequently do they occur? Is there a quantitative measure for detecting the occurrence of aquitard breaching? We try to answer these questions by examining data from a dense network of ˜50 monitoring stations of clustered wells in a sedimentary basin near the epicenter of the 1999 M7.6 Chi-Chi earthquake in western Taiwan. While most stations show evidence that confined aquifers remained confined after the earthquake, about 10% of the stations show evidence of coseismic breaching of aquitards, creating vertical permeability as high as that of aquifers. The water levels in wells without evidence of coseismic breaching of aquitards show tidal responses similar to that of a confined aquifer before and after the earthquake. Those wells with evidence of coseismic breaching of aquitards, on the other hand, show distinctly different postseismic tidal response. Furthermore, the postseismic tidal response of different aquifers became strikingly similar, suggesting that the aquifers became hydraulically connected and the connection was maintained many months thereafter. Breaching of aquitards by large earthquakes has significant implications for a number of societal issues such as the safety of water resources, the security of underground waste repositories, and the production of oil and gas. The method demonstrated here may be used for detecting the occurrence of aquitard breaching by large earthquakes in other seismically active areas.

  2. A preliminary report on the Great Wenchuan Earthquake

    Science.gov (United States)

    Wang, Zifa

    2008-06-01

    The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes available on the extent of the event. Immediately after the earthquake, the China Earthquake Administration (CEA) responded quickly by sending teams of experts to the affected region, eventually including over 60 staff members from the Institute of Engineering Mechanics (IEM). This paper reports preliminary information that has been gathered in the first 18 days after the event, covering seismicity, search and rescue efforts, observed ground motions, and damage and loss estimates. The extensive field investigation has revealed a number of valuable findings that could be useful in improving research in earthquake engineering in the future. Once again, this earthquake has shown that the vertical component of ground motion is as significant as horizontal ground motions in the near-source area. Finally, note that as more information is gathered, the numbers reported in this paper will need to be adjusted accordingly.

  3. Improving Earthquake Stress Drop Measurements - What can we Really Resolve?

    Science.gov (United States)

    Abercrombie, R. E.; Bannister, S. C.; Fry, B.; Ruhl, C. J.; Kozlowska, M.

    2015-12-01

    Earthquake stress drop is fundamental to understanding the physics of the rupture process. Although it is superficially simple to calculate an estimate of stress drop from the corner frequency of the radiated spectrum, it is much harder to be certain that measurements are reliable and accurate. The same is true of other measurements of stress drop and radiated energy. The large number of studies of earthquake stress drop, the high variability in results (~0.1-100 MPa), the large uncertainties, and the ongoing scaling controversy are evidence for this. We investigate the resolution and uncertainties of stress drops calculated using an empirical Green's function (EGF) approach. Earthquakes in 3 sequences at Parkfield, California are recorded by multiple borehole stations and have abundant smaller earthquakes to use as EGFs (Abercrombie, 2014). The earthquakes in the largest magnitude cluster (M~2.1) exhibit clear temporal variation of stress drop. Independent studies obtained a similar pattern implying that it is resolvable for these well-recorded, simple sources. The borehole data reveal a similar temporal pattern for another sequence, not resolvable in an earlier study using surface recordings. The earthquakes in the third sequence have complex sources; corner frequency measurements for this sequence are highly variable and poorly resolved. We use the earthquakes in the first cluster to quantify the uncertainties likely to arise in less optimal settings. The limited signal bandwidth and the quality of the EGF assumption are major sources of error. Averaging across multiple stations improves the resolution, as does using multiple good EGFs (Abercrombie, 2015). We adapt the approach to apply to larger data sets. We focus on New Zealand, with the aim of resolving stress drop variability in a variety of tectonic settings. We investigate stacking over stations and multiple EGFs, and compare earthquakes (M~3-6) from both the overlying and the subducting plates.

  4. Earthquakes Threaten Many American Schools

    Science.gov (United States)

    Bailey, Nancy E.

    2010-01-01

    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  5. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  6. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  7. Anthropogenic triggering of large earthquakes.

    Science.gov (United States)

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-26

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years.

  8. Heavy tails and earthquake probabilities

    Science.gov (United States)

    Ellsworth, William L.

    2012-01-01

    The 21st century has already seen its share of devastating earthquakes, some of which have been labeled as “unexpected,” at least in the eyes of some seismologists and more than a few journalists. A list of seismological surprises could include the 2004 Sumatra-Andaman Islands; 2008 Wenchuan, China; 2009 Haiti; 2011 Christchurch, New Zealand; and 2011 Tohoku, Japan, earthquakes

  9. Earthquakes Threaten Many American Schools

    Science.gov (United States)

    Bailey, Nancy E.

    2010-01-01

    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  10. Can Satellites Aid Earthquake Predictions?

    Institute of Scientific and Technical Information of China (English)

    John Roach; 李晓辉

    2004-01-01

    @@ Earthquake prediction is an imprecise science, and to illustrate the point,many experts point to the story of Tangshen①, China. On July 28, 1976, a magnitude② 7. 6 earthquake struck the city of Tangshen, China, without warning. None of the signs of the successful prediction from a year and half earlier were present. An estimated 250,000 people died.

  11. Physical Mechanisms for Earthquakes at Intermediate Depths

    Science.gov (United States)

    Green, H. W.; Green, H. W.

    2001-12-01

    Conventional brittle shear failure it is strongly inhibited by pressure because it relies on local tensile failure. In contrast, plastic flow processes are thermally activated, making them sensitive functions of temperature, but their pressure dependence is only moderate. As a consequence, in Earth, faulting by unassisted brittle failure is probably restricted to depths less than ~ 30 km because the rocks flow at lower stresses than they fracture. To enable faulting at greater depths, mineral reactions must occur that generate a fluid or fluid-like solid that is much weaker than the parent assemblage. Although a variety of plastic instabilities have been and continue to be proposed to explain earthquakes at depth, dehydration embrittlement remains the only experimentally verified faulting mechanism consistent with the pressures and compositions existing at depths of 50-300km within subducting lithosphere. However, low pressure hydrous phases potentially abundant in subducting lithosphere (e.g. chlorite and antigorite) exhibit a temperature maximum in their stability, implying that the bulk volume change at depths of more than 70-100 km. becomes negative, thereby raising questions about mechanical instability upon dehydration. Further, it is now well-accepted that intermediate-depth earthquakes occur within the descending slab (double seismic zones present in several slabs dramatically demonstrate this fact), in conflict with the maximum depth of 10-12 km accepted for hydration of the lithosphere at oceanic spreading centers. Thus, on the one hand these earthquakes may be evidence that hydrous phases exist deep within subducting slabs but on the other hand, a mechanism for hydration to such depths is not known. One possibility is that large earthquakes outboard of trenches break the surface and allow hydration of the fault zone that can later dehydrate to yield earthquakes at depth, but no mechanism is known for pumping H2O into such fault zones to depths of tens of

  12. Motzkin numbers out of Random Domino Automaton

    CERN Document Server

    Białecki, Mariusz

    2011-01-01

    Motzkin numbers are derived from a special case of Random Domino Automaton - recently proposed toy model of earthquakes. An exact solution of the set of equations describing stationary state of Random Domino Automaton in "inverse-power" case is presented. A link with Motzkin numbers allows to present explicit form of asymptotic behaviour of the automaton.

  13. Sismosima: A pioneer project for earthquake detection; Sismosima: un proyecto pionero para la deteccion de Terremotos

    Energy Technology Data Exchange (ETDEWEB)

    Echague, C. de

    2015-07-01

    Currently you can only study how earthquakes occur and minimizing their consequences, but in Sismosima are studied earthquakes for if possible issue a pre-alert. Geological and Mining Institute of Spain (IGME) launched this project that has already achieved in test the caves in which you installed meters an increase of carbon dioxide (CO{sub 2}) that match the shot earthquake. Now, it remains check if gas emission occurs simultaneously, before or after. If were before, a couple of minutes would be enough to give an early warning with which save lives and ensure facilities. (Author)

  14. Prehistoric Earthquakes in the Puget Lowland, Washington

    Science.gov (United States)

    Sherrod, B. L.

    2005-12-01

    . Coastal marsh stratigraphy, lidar mapping, and fault scarp excavations help define recent activity along the Southern Whidbey Island fault zone (SWIFZ). Abrupt uplift of more than one meter at a coastal marsh on south-central Whidbey Island suggests that a MW 6.5 - 7.0 earthquake on the SWIFZ shook the region between 3200 and 2800 years B.P. Subtle scarps on Pleistocene surfaces are visible on high-resolution lidar topography at a number of locations in the mainland region, often closely associated with aeromagnetic lineaments. In the field, scarps exhibit northeast-side-up vertical relief of 1 to 5 m. Four excavations across two lidar scarps show that the SWIFZ produced at least four events since deglaciation about 16,400 years ago, the most recent after 2700 years ago. The evidence for Holocene deformation across the entire Puget Sound lowlands is now very pervasive, but still incomplete. Lidar scarps have been identified in several areas not associated with the seven zones noted here, but have yet to be investigated. Lidar data covers about 70 percent of the Puget Sound basin, but key areas with suspected crustal faults in northwestern Washington have yet to be flown. Still, the combination of paleoseismological field investigations and lidar imaging allowed remarkable progress in understanding the Holocene earthquake history of greater Puget Sound in just seven years. The new observations will be an important addition to observations used to calculate the National Hazard Maps.

  15. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  16. Earthquake forecasting: statistics and information

    Directory of Open Access Journals (Sweden)

    Vladimir Gertsik

    2016-01-01

    Full Text Available The paper presents a decision rule forming a mathematical basis of earthquake forecasting problem. We develop an axiomatic approach to earthquake forecasting in terms of multicomponent random fields on a lattice. This approach provides a method for constructing point estimates and confidence intervals for conditional probabilities of strong earthquakes under conditions on the levels of precursors. Also, it provides an approach for setting a multilevel alarm system and hypothesis testing for binary alarms. We use a method of comparison for different algorithms of earthquake forecasts in terms of the increase of Shannon information. ‘Forecasting’ (the calculation of the probabilities and ‘prediction’ (the alarm declaring of earthquakes are equivalent in this approach.

  17. Are Earthquakes a Critical Phenomenon?

    Science.gov (United States)

    Ramos, O.

    2014-12-01

    Earthquakes, granular avalanches, superconducting vortices, solar flares, and even stock markets are known to evolve through power-law distributed events. During decades, the formalism of equilibrium phase transition has coined these phenomena as critical, which implies that they are also unpredictable. This work revises these ideas and uses earthquakes as the paradigm to demonstrate that slowly driven systems evolving through uncorrelated and power-law distributed avalanches (UPLA) are not necessarily critical systems, and therefore not necessarily unpredictable. By linking the correlation length to the pdf of the distribution, and comparing it with the one obtained at a critical point, a condition of criticality is introduced. Simulations in the classical Olami-Feder-Christensen (OFC) earthquake model confirm the findings, showing that earthquakes are not a critical phenomenon. However, one single catastrophic earthquake may show critical properties and, paradoxically, the emergence of this temporal critical behaviour may eventually carry precursory signs of catastrophic events.

  18. Twitter Seismology: Earthquake Monitoring and Response in a Social World

    Science.gov (United States)

    Bowden, D. C.; Earle, P. S.; Guy, M.; Smoczyk, G.

    2011-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment USGS earthquake response products and the delivery of hazard information. The potential uses of Twitter for earthquake response include broadcasting earthquake alerts, rapidly detecting widely felt events, qualitatively assessing earthquake damage effects, communicating with the public, and participating in post-event collaboration. Several seismic networks and agencies are currently distributing Twitter earthquake alerts including the European-Mediterranean Seismological Centre (@LastQuake), Natural Resources Canada (@CANADAquakes), and the Indonesian meteorological agency (@infogempabmg); the USGS will soon distribute alerts via the @USGSted and @USGSbigquakes Twitter accounts. Beyond broadcasting alerts, the USGS is investigating how to use tweets that originate near the epicenter to detect and characterize shaking events. This is possible because people begin tweeting immediately after feeling an earthquake, and their short narratives and exclamations are available for analysis within 10's of seconds of the origin time. Using five months of tweets that contain the word "earthquake" and its equivalent in other languages, we generate a tweet-frequency time series. The time series clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a simple Short-Term-Average / Long-Term-Average algorithm similar to that commonly used to detect seismic phases. As with most auto-detection algorithms, the parameters can be tuned to catch more or less events at the cost of more or less false triggers. When tuned to a moderate sensitivity, the detector found 48 globally-distributed, confirmed seismic events with only 2 false triggers. A space-shuttle landing and "The Great California ShakeOut" caused the false triggers. This number of

  19. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    Science.gov (United States)

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  20. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    Science.gov (United States)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  1. Aftershock communication during the Canterbury Earthquakes, New Zealand: implications for response and recovery in the built environment

    Science.gov (United States)

    Julia Becker,; Wein, Anne; Sally Potter,; Emma Doyle,; Ratliff, Jamie L.

    2015-01-01

    On 4 September 2010, a Mw7.1 earthquake occurred in Canterbury, New Zealand. Following the initial earthquake, an aftershock sequence was initiated, with the most significant aftershock being a Mw6.3 earthquake occurring on 22 February 2011. This aftershock caused severe damage to the city of Christchurch and building failures that killed 185 people. During the aftershock sequence it became evident that effective communication of aftershock information (e.g., history and forecasts) was imperative to assist with decision making during the response and recovery phases of the disaster, as well as preparedness for future aftershock events. As a consequence, a joint JCDR-USGS research project was initiated to investigate: • How aftershock information was communicated to organisations and to the public; • How people interpreted that information; • What people did in response to receiving that information; • What information people did and did not need; and • What decision-making challenges were encountered relating to aftershocks. Research was conducted by undertaking focus group meetings and interviews with a range of information providers and users, including scientists and science advisors, emergency managers and responders, engineers, communication officers, businesses, critical infrastructure operators, elected officials, and the public. The interviews and focus group meetings were recorded and transcribed, and key themes were identified. This paper focuses on the aftershock information needs for decision-making about the built environment post-earthquake, including those involved in response (e.g., for building assessment and management), recovery/reduction (e.g., the development of new building standards), and readiness (e.g. between aftershocks). The research has found that the communication of aftershock information varies with time, is contextual, and is affected by interactions among roles, by other information, and by decision objectives. A number

  2. Synthetic PGV and PGA values for the 1969 St. Vincent Cape earthquake Ms=8.1.

    Science.gov (United States)

    Buforn, E.; Pro, C.; Borges, J.; Oliveira, C. S.; Carranza, M.; Udias, A.; Martinez Solares, J. M.; Gomis-Moreno, A.; Mattesini, M.

    2015-12-01

    The Cape St. Vincent region is of great seismological interest due to its tectonic complexity and the occurrence of the great 1755 Lisbon earthquake. This earthquake can repeat with catastrophic consequences. The last large shock occurred in this area on 28 February 1969 (Ms=8.1) was recorded by analogical instruments which are completely saturated. The lack of large earthquakes recorded by BB instruments limit the possibilities of seismic hazard studies in this region. In order to solve this problem, we have generated synthetic seismograms at regional distances for recent and well studied earthquakes occurred in this region, such as the 2007 (Mw=5.9) or the 2009 (Mw=5.5) events. This allows testing the earth model used for synthetic data and to generate synthetic records at regional distances for larger earthquakes. We have generated synthetic PGA values for 1969 earthquake and check them with the PGA value observed at a site of Lisbon. From the PGV values and using the empirical relations developed by Carranza et al. (2013) we obtain the predicted instrumental intensity IMM using the Wald et al (1999) relations . Comparison of them with the observed intensities for the 1969 earthquake in the Iberian Peninsula allows to validate this relation for large earthquakes at the region.

  3. Constraints on the Size of the Smallest Triggering Earthquake from the ETAS Model, Baath's Law, and Observed Aftershock Sequences

    CERN Document Server

    Sornette, D

    2004-01-01

    The physics of earthquake triggering together with simple assumptions of self-similarity impose the existence of a minimum magnitude m0 below which earthquakes do not trigger other earthquakes. Noting that the magnitude md of completeness of seismic catalogs has no reason to be the same as the magnitude m0 of the smallest triggering earthquake, we use quantitative fits and maximum likelihood inversions of observed aftershock sequences as well as Baath's law, compare with ETAS model predictions and thereby constrain the value of m0. We show that the branching ratio $n$ (average number of triggered earthquake per earthquake also equal to the fraction of aftershocks in seismic catalogs) is the key parameter controlling the minimum triggering magnitude m0. Conversely, physical upper bounds for m0 derived from state- and velocity-weakening friction indicate that at least 60 to 70 percent of all earthquakes are aftershocks.

  4. Tsunamigenic Ratio of the Pacific Ocean earthquakes and a proposal for a Tsunami Index

    Directory of Open Access Journals (Sweden)

    A. Suppasri

    2012-01-01

    Full Text Available The Pacific Ocean is the location where two-thirds of tsunamis have occurred, resulting in a great number of casualties. Once information on an earthquake has been issued, it is important to understand if there is a tsunami generation risk in relation with a specific earthquake magnitude or focal depth. This study proposes a Tsunamigenic Ratio (TR that is defined as the ratio between the number of earthquake-generated tsunamis and the total number of earthquakes. Earthquake and tsunami data used in this study were selected from a database containing tsunamigenic earthquakes from prior 1900 to 2011. The TR is calculated from earthquake events with a magnitude greater than 5.0, a focal depth shallower than 200 km and a sea depth less than 7 km. The results suggest that a great earthquake magnitude and a shallow focal depth have a high potential to generate tsunamis with a large tsunami height. The average TR in the Pacific Ocean is 0.4, whereas the TR for specific regions of the Pacific Ocean varies from 0.3 to 0.7. The TR calculated for each region shows the relationship between three influential parameters: earthquake magnitude, focal depth and sea depth. The three parameters were combined and proposed as a dimensionless parameter called the Tsunami Index (TI. TI can express better relationship with the TR and with maximum tsunami height, while the three parameters mentioned above cannot. The results show that recent submarine earthquakes had a higher potential to generate a tsunami with a larger tsunami height than during the last century. A tsunami is definitely generated if the TI is larger than 7.0. The proposed TR and TI will help ascertain the tsunami generation risk of each earthquake event based on a statistical analysis of the historical data and could be an important decision support tool during the early tsunami warning stage.

  5. The 2015 Gorkha Nepal Earthquake: Insights from Earthquake Damage Survey

    Directory of Open Access Journals (Sweden)

    Katsuichiro eGoda

    2015-06-01

    Full Text Available The 2015 Gorkha Nepal earthquake caused tremendous damage and loss. To gain valuable lessons from this tragic event, an earthquake damage investigation team was dispatched to Nepal from 1 May 2015 to 7 May 2015. A unique aspect of the earthquake damage investigation is that first-hand earthquake damage data were obtained 6 to 11 days after the mainshock. To gain deeper understanding of the observed earthquake damage in Nepal, the paper reviews the seismotectonic setting and regional seismicity in Nepal and analyzes available aftershock data and ground motion data. The earthquake damage observations indicate that the majority of the damaged buildings were stone/brick masonry structures with no seismic detailing, whereas the most of RC buildings were undamaged. This indicates that adequate structural design is the key to reduce the earthquake risk in Nepal. To share the gathered damage data widely, the collected damage data (geo-tagged photos and observation comments are organized using Google Earth and the kmz file is made publicly available.

  6. Post-Traumatic Stress Disorder and other mental disorders in the general population after Lorca’s earthquakes, 2011 (Murcia, Spain): A cross-sectional study

    Science.gov (United States)

    Salmerón, Diego; Vilagut, Gemma; Tormo, Mª José; Ruíz-Merino, Guadalupe; Escámez, Teresa; Júdez, Javier; Martínez, Salvador; Koenen, Karestan C.; Navarro, Carmen; Alonso, Jordi; Kessler, Ronald C.

    2017-01-01

    Aims To describe the prevalence and severity of mental disorders and to examine differences in risk among those with and without a lifetime history prior to a moderate magnitude earthquake that took place in Lorca (Murcia, Spain) at roughly the mid-point (on May 11, 2011) of the time interval in which a regional epidemiological survey was already being carried out (June 2010 –May 2012). Methods The PEGASUS-Murcia project is a cross-sectional face-to-face interview survey of a representative sample of non-institutionalized adults in Murcia. Main outcome measures are prevalence and severity of anxiety, mood, impulse and substance disorders in the 12 months previous to the survey, assessed using the Composite International Diagnostic Interview (CIDI 3.0). Sociodemographic variables, prior history of any mental disorder and earthquake-related stressors were entered as independent variables in a logistic regression analysis. Findings A total number of 412 participants (response rate: 71%) were interviewed. Significant differences in 12-month prevalence of mental disorders were found in Lorca compared to the rest of Murcia for any (12.8% vs 16.8%), PTSD (3.6% vs 0.5%) and other anxiety disorders (5.3% vs 9.2%) (p≤ 0.05 for all). No differences were found for 12-month prevalence of any mood or any substance disorder. The two major predictors for developing a 12-month post-earthquake mental disorder were a prior mental disorder and the level of exposure. Other risk factors included female sex and low-average income. Conclusions PTSD and other mental disorders are commonly associated with earthquake disasters. Prior mental disorders and the level of exposure to the earthquakes are the most important for the development of a consequent mental disorder and this recognition may help to identify those individuals that may most benefit from specific therapeutic intervention. PMID:28723949

  7. Earthquake warning system for infrastructures : a scoping analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Nancy S.; O' Connor, Sharon L.; Stamber, Kevin Louis; Kelic, Andjelka; Fogleman, William E. (GRIT, Inc., Albuquerque, NM); Vugrin, Eric D.; Corbet, Thomas Frank, Jr.; Brown, Theresa Jean

    2011-09-01

    This report provides the results of a scoping study evaluating the potential risk reduction value of a hypothetical, earthquake early-warning system. The study was based on an analysis of the actions that could be taken to reduce risks to population and infrastructures, how much time would be required to take each action and the potential consequences of false alarms given the nature of the action. The results of the scoping analysis indicate that risks could be reduced through improving existing event notification systems and individual responses to the notification; and production and utilization of more detailed risk maps for local planning. Detailed maps and training programs, based on existing knowledge of geologic conditions and processes, would reduce uncertainty in the consequence portion of the risk analysis. Uncertainties in the timing, magnitude and location of earthquakes and the potential impacts of false alarms will present major challenges to the value of an early-warning system.

  8. Some more earthquakes from medieval Kashmir

    Science.gov (United States)

    Ahmad, Bashir; Shafi, Muzamil

    2014-07-01

    Kashmir has the peculiarity of having written history of almost 5,000 years. However, the description of earthquakes in the archival contents is patchy prior to 1500 a.d. Moreover, recent search shows that there exist certain time gaps in the catalogs presently in use especially at medieval level (1128-1586 a.d.). The presence of different ruling elites in association with socioeconomic and political conditions has in many ways confused the historical context of the medieval sources. However, by a meticulous review of the Sanskrit sources (between the twelfth and sixteenth century), it has been possible to identify unspecified but fair number (eight seismic events) of earthquakes that do not exist in published catalogs of Kashmir or whose dates are very difficult to establish. Moreover, historical sources reveal that except for events which occurred during Sultan Skinder's rule (1389-1413) and during the reign of King Zain-ul-Abidin (1420-1470), all the rediscovered seismic events went into oblivion, due mainly to the fact that the sources available dedicated their interests to the military events, which often tended to overshadow/superimpose over and even concealed natural events like earthquakes, resulting in fragmentary accounts and rendering them of little value for macroseismic intensity evaluation necessary for more efficient seismic hazard assessment.

  9. Multidimensional scaling visualization of earthquake phenomena

    Science.gov (United States)

    Lopes, António M.; Machado, J. A. Tenreiro; Pinto, C. M. A.; Galhano, A. M. S. F.

    2014-01-01

    Earthquakes are associated with negative events, such as large number of casualties, destruction of buildings and infrastructures, or emergence of tsunamis. In this paper, we apply the Multidimensional Scaling (MDS) analysis to earthquake data. MDS is a set of techniques that produce spatial or geometric representations of complex objects, such that, objects perceived to be similar/distinct in some sense are placed nearby/distant on the MDS maps. The interpretation of the charts is based on the resulting clusters since MDS produces a different locus for each similarity measure. In this study, over three million seismic occurrences, covering the period from January 1, 1904 up to March 14, 2012 are analyzed. The events, characterized by their magnitude and spatiotemporal distributions, are divided into groups, either according to the Flinn-Engdahl seismic regions of Earth or using a rectangular grid based in latitude and longitude coordinates. Space-time and Space-frequency correlation indices are proposed to quantify the similarities among events. MDS has the advantage of avoiding sensitivity to the non-uniform spatial distribution of seismic data, resulting from poorly instrumented areas, and is well suited for accessing dynamics of complex systems. MDS maps are proven as an intuitive and useful visual representation of the complex relationships that are present among seismic events, which may not be perceived on traditional geographic maps. Therefore, MDS constitutes a valid alternative to classic visualization tools, for understanding the global behavior of earthquakes.

  10. Modelling earthquake interaction and seismicity statistics

    Science.gov (United States)

    Steacy, S.; Hetherington, A.

    2009-04-01

    The effects of earthquake interaction and fault complexity on seismicity statistics are investigated in a 3D model composed of a number of cellular automata (each representing an individual fault) distributed in a volume. Each automaton is assigned a fractal distribution of strength. Failure occurs when the 3D Coulomb stress on any cell exceeds its strength and stress transfer during simulated earthquake rupture is via nearest-neighbor rules formulated to give realistic stress concentrations. An event continues until all neighboring cells whose stresses exceed their strengths have ruptured and the size of the event is determined from its area and stress drop. Long-range stress interactions are computed following the termination of simulated ruptures using a boundary element code. In practice, these stress perturbations are only computed for events above a certain size (e.g. a threshold length of 10 km) and stresses are updated on nearby structures. Events which occur as a result of these stress interactions are considered to be "triggered" earthquakes and they, in turn, can trigger further seismic activity. The threshold length for computing interaction stresses is a free parameter and hence interaction can be "turned off" by setting this to an unrealistically high value. We consider 3 synthetic fault networks of increasing degrees of complexity - modelled on the North Anatolian fault system, the structures in the San Francisco Bay Area, and the Southern California fault network. We find that the effect of interaction is dramatically different in networks of differing complexity. In the North Anatolian analogue, for example, interaction leads to a decreased number of events, increased b-values, and an increase in recurrence intervals. In the Bay Area model, by contrast, we observe that interaction increases the number of events, decreases the b-values, and has little effect on recurrence intervals. For all networks, we find that interaction can activate mis

  11. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  12. Improving Post-Earthquake Insurance Claim Management: A Novel Approach to Prioritize Geospatial Data Collection

    Directory of Open Access Journals (Sweden)

    Massimiliano Pittore

    2015-10-01

    Full Text Available With a population exceeding 14 million and a GDP of more than 300 billion USD, Istanbul dominates the Turkish economy. Unfortunately, this concentration of social and economic assets is permanently threatened by potentially devastating earthquakes, given the city’s close proximity to several well-known fault systems. As a measure to mitigate the consequences of such events, and to increase the resilience of the exposed communities, the Turkish Catastrophe Insurance Pool (TCIP has been set up to provide affordable and reliable earthquake insurance to households all over the country. In the aftermath of a damaging event, especially in Istanbul, the operational capacity of TCIP will be seriously challenged by the high number of claims whose settlement would have to be swift and fair in order to kick-start the recovery process. In this paper we explore an integrated approach based on mobile mapping and ad hoc prioritization techniques to streamline the data collection and analysis process, with application to both the pre-event and post-event phases. Preliminary results obtained in Besiktas, a populous district of Istanbul, are presented and discussed.

  13. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  14. Earthquakes: Risk, Monitoring, Notification, and Research

    Science.gov (United States)

    2008-06-19

    far away as Bangladesh , Taiwan, Thailand, and Vietnam. Several large aftershocks have occurred since the main seismic event. The May 12 earthquake...motion of tectonic plates; ! Earthquake geology and paleoseismology: studies of the history, effects, and mechanics of earthquakes; ! Earthquake hazards

  15. Management of limb fractures in a teaching hospital: comparison between Wenchuan and Yushu earthquakes

    Institute of Scientific and Technical Information of China (English)

    MIN Li; TU Chong-qi; LIU Lei; ZHANG Wen-li; YI Min; SONG Yue-ming; HUANG Fu-guo; YANG Tian-fu; PEI Fu-xing

    2013-01-01

    Objective:To comparatively analyze the medical records of patients with limb fractures as well as rescue strategy in Wenchuan and Yushu earthquakes so as to provide references for post-earthquake rescue.Methods:We retrospectively investigated 944 patients sustaining limb fractures,including 891 in Wenchuan earthquake and 53 in Yushu earthquake,who were admitted to West China Hospital (WCH) of Sichuan University.Results:In Wenchuan earthquake,WCH met its three peaks of limb fracture patients influx,on post-earthquake day (PED) 2,8 and 14 respectively.Between PED 3-14,585 patients were transferred from WCH to other hospitals outside the Sichuan Province.In Yushu earthquake,the maximum influx of limb fracture patients happened on PED 3,and no one was shifted to other hospitals.Both in Wenchuan and Yushu earthquakes,most limb fractures were caused by blunt strike and crash/burying.In Wenchuan earthquake,there were 396 (396/942,42.0%) open limb fractures,including 28 Gustilo Ⅰ,201 Gustilo Ⅱ and 167 Gustilo Ⅲ injuries.But in Yushu earthquake,the incidence of open limb fracture was much lower (6/61,9.8%).The percent of patients with acute complications in Wenchuan earthquake (167/891,18.7%) was much higher than that in Yushu earthquake (5/53,3.8%).In Wenchuan earthquake rescue,1 018 surgeries were done,composed of debridement in 376,internal fixation in 283,external fixation in 119,and vacuum sealing drainage in 117,etc.While among the 64 surgeries in Yushu earthquake rescue,the internal fixation for limb fracture was mostly adopted.All patients received proper treatment and survived except one who died due to multiple organs failure in Wenchuan earthquake.Conclusion:Provision of suitable and sufficient medical care in a catastrophe can only be achieved by construction of sophisticated national disaster medical system,prediction of the injury types and number of injuries,and confirmation of participating hospitals' exact role.Based on the valuable rescue

  16. Management of limb fractures in a teaching hospital: comparison between Wenchuan and Yushu earthquakes.

    Science.gov (United States)

    Min, Li; Tu, Chong-qi; Liu, Lei; Zhang, Wen-li; Yi, Min; Song, Yue-ming; Huang, Fu-guo; Yang, Tian-fu; Pei, Fu-xing

    2013-01-01

    To comparatively analyze the medical records of patients with limb fractures as well as rescue strategy in Wenchuan and Yushu earthquakes so as to provide references for post-earthquake rescue. We retrospectively investigated 944 patients sustaining limb fractures, including 891 in Wenchuan earthquake and 53 in Yushu earthquake, who were admitted to West China Hospital (WCH) of Sichuan University. In Wenchuan earthquake, WCH met its three peaks of limb fracture patients influx, on post-earthquake day (PED) 2, 8 and 14 respectively. Between PED 3-14, 585 patients were transferred from WCH to other hospitals outside the Sichuan Province. In Yushu earthquake, the maximum influx of limb fracture patients happened on PED 3, and no one was shifted to other hospitals. Both in Wenchuan and Yushu earthquakes, most limb fractures were caused by blunt strike and crush/burying. In Wenchuan earthquake, there were 396 (396/942, 42.0%) open limb fractures, including 28 Gustilo I, 201 Gustilo II and 167 Gustilo III injuries. But in Yushu earthquake, the incidence of open limb fracture was much lower (6/61, 9.8%). The percent of patients with acute complications in Wenchuan earthquake (167/891, 18.7%) was much higher than that in Yushu earthquake (5/53, 3.8%). In Wenchuan earthquake rescue, 1 018 surgeries were done, composed of debridement in 376, internal fixation in 283, external fixation in 119, and vacuum sealing drainage in 117, etc. While among the 64 surgeries in Yushu earthquake rescue, the internal fixation for limb fracture was mostly adopted. All patients received proper treatment and survived except one who died due to multiple organs failure in Wenchuan earthquake. Provision of suitable and sufficient medical care in a catastrophe can only be achieved by construction of sophisticated national disaster medical system, prediction of the injury types and number of injuries, and confirmation of participating hospitals?exact role. Based on the valuable rescue experiences

  17. Modified mercalli intensities for nine earthquakes in central and western Washington between 1989 and 1999

    Science.gov (United States)

    Brocher, Thomas M.; Dewey, James W.; Cassidy, John F.

    2017-08-15

    We determine Modified Mercalli (Seismic) Intensities (MMI) for nine onshore earthquakes of magnitude 4.5 and larger that occurred in central and western Washington between 1989 and 1999, on the basis of effects reported in postal questionnaires, the press, and professional collaborators. The earthquakes studied include four earthquakes of M5 and larger: the M5.0 Deming earthquake of April 13, 1990, the M5.0 Point Robinson earthquake of January 29, 1995, the M5.4 Duvall earthquake of May 3, 1996, and the M5.8 Satsop earthquake of July 3, 1999. The MMI are assigned using data and procedures that evolved at the U.S. Geological Survey (USGS) and its Department of Commerce predecessors and that were used to assign MMI to felt earthquakes occurring in the United States between 1931 and 1986. We refer to the MMI assigned in this report as traditional MMI, because they are based on responses to postal questionnaires and on newspaper reports, and to distinguish them from MMI calculated from data contributed by the public by way of the internet. Maximum traditional MMI documented for the M5 and larger earthquakes are VII for the 1990 Deming earthquake, V for the 1995 Point Robinson earthquake, VI for the 1996 Duvall earthquake, and VII for the 1999 Satsop earthquake; the five other earthquakes were variously assigned maximum intensities of IV, V, or VI. Starting in 1995, the Pacific Northwest Seismic Network (PNSN) published MMI maps for four of the studied earthquakes, based on macroseismic observations submitted by the public by way of the internet. With the availability now of the traditional USGS MMI interpreted for all the sites from which USGS postal questionnaires were returned, the four Washington earthquakes join a rather small group of earthquakes for which both traditional USGS MMI and some type of internet-based MMI have been assigned. The values and distributions of the traditional MMI are broadly similar to the internet-based PNSN intensities; we discuss some

  18. Complex networks of earthquakes and aftershocks

    Directory of Open Access Journals (Sweden)

    M. Baiesi

    2005-01-01

    Full Text Available We invoke a metric to quantify the correlation between any two earthquakes. This provides a simple and straightforward alternative to using space-time windows to detect aftershock sequences and obviates the need to distinguish main shocks from aftershocks. Directed networks of earthquakes are constructed by placing a link, directed from the past to the future, between pairs of events that are strongly correlated. Each link has a weight giving the relative strength of correlation such that the sum over the incoming links to any node equals unity for aftershocks, or zero if the event had no correlated predecessors. A correlation threshold is set to drastically reduce the size of the data set without losing significant information. Events can be aftershocks of many previous events, and also generate many aftershocks. The probability distribution for the number of incoming and outgoing links are both scale free, and the networks are highly clustered. The Omori law holds for aftershock rates up to a decorrelation time that scales with the magnitude, m, of the initiating shock as tcutoff~10β m with β~-3/4. Another scaling law relates distances between earthquakes and their aftershocks to the magnitude of the initiating shock. Our results are inconsistent with the hypothesis of finite aftershock zones. We also find evidence that seismicity is dominantly triggered by small earthquakes. Our approach, using concepts from the modern theory of complex networks, together with a metric to estimate correlations, opens up new avenues of research, as well as new tools to understand seismicity.

  19. Earthquake Hazard Assessment: Basics of Evaluation

    Science.gov (United States)

    Kossobokov, Vladimir

    2016-04-01

    Seismic hazard assessment (SHA) is not an easy task that implies a delicate application of statistics to data of limited size and different accuracy. Earthquakes follow the Unified Scaling Law that generalizes the Gutenberg-Richter relationship by taking into account naturally fractal distribution of their sources. Moreover, earthquakes, including the great and mega events, are clustered in time and their sequences have irregular recurrence intervals. Furthermore, earthquake related observations are limited to the recent most decades (or centuries in just a few rare cases). Evidently, all this complicates reliable assessment of seismic hazard and associated risks. Making SHA claims, either termless or time dependent (so-called t-DASH), quantitatively probabilistic in the frames of the most popular objectivists' viewpoint on probability requires a long series of "yes/no" trials, which cannot be obtained without an extended rigorous testing of the method predictions against real observations. Therefore, we reiterate the necessity and possibility of applying the modified tools of Earthquake Prediction Strategies, in particular, the Error Diagram, introduced by G.M. Molchan in early 1990ies for evaluation of SHA, and the Seismic Roulette null-hypothesis as a measure of the alerted space. The set of errors, i.e. the rates of failure and of the alerted space-time volume, compared to those obtained in the same number of random guess trials permits evaluating the SHA method effectiveness and determining the optimal choice of the parameters in regard to specified cost-benefit functions. These and other information obtained in such a testing supplies us with a realistic estimate of confidence in SHA results and related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. These basics of SHA evaluation are exemplified in brief with a few examples, which analyses in more detail are given in a poster of

  20. Anomalous Power Law Distribution of Total Lifetimes of Branching Processes Relevant to Earthquakes

    CERN Document Server

    Saichev, A

    2004-01-01

    We consider a branching model of triggered seismicity, the ETAS (epidemic-type aftershock sequence) model which assumes that each earthquake can trigger other earthquakes (``aftershocks''). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. Due to the large fluctuations of the number of aftershocks triggered directly by any earthquake (``productivity'' or ``fertility''), there is a large variability of the total number of aftershocks from one sequence to another, for the same mainshock magnitude. We study the regime where the distribution of fertilities $\\mu$ is characterized by a power law $\\sim 1/\\mu^{1+\\gamma}$ and the bare Omori law for the memory of previous triggering mothers decays slowly as $\\sim 1/t^{1+\\theta}$, with $0 < \\theta <1$ relevant for earthquakes. Using the tool of generating probability functions and a quasistatic approximation which is shown to be exact asymptotically for large durations, we show that the density distribution of to...

  1. Multi-events earthquake early warning algorithm using a Bayesian approach

    Science.gov (United States)

    Wu, S.; Yamada, M.; Tamaribuchi, K.; Beck, J. L.

    2015-02-01

    Current earthquake early warning (EEW) systems lack the ability to appropriately handle multiple concurrent earthquakes, which led to many false alarms during the 2011 Tohoku earthquake sequence in Japan. This paper uses a Bayesian probabilistic approach to handle multiple concurrent events for EEW. We implement the theory using a two-step algorithm. First, an efficient approximate Bayesian model class selection scheme is used to estimate the number of concurrent events. Then, the Rao-Blackwellized Importance Sampling method with a sequential proposal probability density function is used to estimate the earthquake parameters, that is hypocentre location, origin time, magnitude and local seismic intensity. A real data example based on 2 months data (2011 March 9-April 30) around the time of the 2011 M9 Tohoku earthquake is studied to verify the proposed algorithm. Our algorithm results in over 90 per cent reduction in the number of incorrect warnings compared to the existing EEW system operating in Japan.

  2. [Psychological trauma and crisis intervention in children after earthquake].

    Science.gov (United States)

    Cui, Yong-Hua

    2013-06-01

    As a momentous disaster, earthquake would bring severe psychological trauma to children, with an adverse effect not only on the physiological functions, but also on their behaviors, emotions, and cognition, and the short-term and long-term consequences are much greater in children than in adults. The children of different ages have different psychological reactions, so psychological intervention varies with children's age. Psychological intervention is still important long afterwards to prevent permanent psychological trauma in children.

  3. Prevalence and predictors of posttraumatic stress disorder, anxiety, depression, and burnout in Pakistani earthquake recovery workers.

    Science.gov (United States)

    Ehring, Thomas; Razik, Saiqa; Emmelkamp, Paul M G

    2011-01-30

    Past research has shown a substantial prevalence of emotional disorders in professionals involved in rescue and/or relief operations following natural disasters, including earthquakes. However, no published study to date has investigated whether disaster rehabilitation and reconstruction workers involved in later phases of the earthquake response are also affected by emotional problems. A nearly complete sample of earthquake rehabilitation and reconstruction workers (N=267) involved in the response to the 2005 earthquake in Northern Pakistan filled in a set of self-report questionnaires assessing emotional problems and predictor variables approximately 24 months after the earthquake. Most participants had experienced the disaster themselves and suffered from a number of stressors during and shortly after the acute earthquake phase. A substantial subgroup of participants reported clinically relevant levels of emotional disorders, especially earthquake-related posttraumatic stress disorder (42.6%), as well as depression and anxiety (approx. 20%). Levels of burnout were low. Symptom levels of posttraumatic stress disorder were associated with the severity of the earthquake experience, past traumas, work-related stressors, low social support, and female gender. The results document a high prevalence of emotional problems in earthquake rehabilitation and recovery workers.

  4. Slip Distribution of Two Recent Large Earthquakes in the Guerrero Segment of the Mexican Subduction Zone, and Their Relation to Previous Earthquakes, Silent Slip Events and Seismic Gaps

    Science.gov (United States)

    Hjorleifsdottir, V.; Ji, C.; Iglesias, A.; Cruz-Atienza, V. M.; Singh, S. K.

    2016-12-01

    In 2012 and 2014 mega-thrust earthquakes occurred approximately 300 km apart, in the state of Guerrero, Mexico. The westernmost half of the segment between them has not had a large earthquake in at least 100 years and most of the easternmost half last broke in 1957. However, down dip of both earthquakes, silent slip events have been reported, as well as in the gap between them (Kostoglodov et al 2003, Graham 2014). There are indications that the westernmost half has different frictional properties than the areas surrounds it. However, the two events at the edges of the zone also seem to behave in different manners, indicating a broad range of frictional properties in this area, with changes occurring over short distances. The 2012/03/20, M7.5 earthquake occurred near the Guerrero-Oaxaca border, between the towns of Ometepec (Gro.) and Pinotepa Nacional (Oax.). This earthquake is noteworthy for breaking the same asperities as two previously recorded earthquakes, the M7.2 1937 and M6.9 1982(a) earthquakes, in very large "repeating earthquakes". Furthermore, the density of repeating smaller events is larger in this zone than in other parts of the subduction zone (Dominguez et al, submitted) and this earthquake has had very many aftershocks for its size (UNAM Seis. group, 2013). The 2012 event may have broken two asperities (UNAM Seis. group, 2013). How the two asperities relate to the previous relatively smaller "large events", to the repeating earthquakes, the high number of aftershocks and to the slow slip event is not clear. The 2014/04/18 M 7.2 earthquake broke a patch on the edge of the Guerrero gap, that previously broke in the 1979 M7.4 earthquake as well as the 1943 M 7.4 earthquake. This earthquake, despite being smaller, had a much larger duration, few aftershocks and clearly ruptured two separate patches (UNAM Seis. group 2015). In this work we estimate the slip distributions for the 2012 and 2014 earthquakes, by combining the data used separately in

  5. Laboratory constraints on models of earthquake recurrence

    Science.gov (United States)

    Beeler, Nicholas M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian D.; Goldsby, David L.

    2014-01-01

    In this study, rock friction ‘stick-slip’ experiments are used to develop constraints on models of earthquake recurrence. Constant-rate loading of bare rock surfaces in high quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip rate-dependent process that also determines the size of the stress drop [Dieterich, 1979; Ruina, 1983] and as a consequence, stress drop varies weakly but systematically with loading rate [e.g., Gu and Wong, 1991; Karner and Marone, 2000; McLaskey et al., 2012]. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. As follows from the previous studies referred to above, experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a non-linear slip-predictable model. The fault’s rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence co-vary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability and successive stress drops are strongly correlated indicating a ‘memory’ of prior slip history that extends over at least one recurrence cycle.

  6. The threat of silent earthquakes

    Science.gov (United States)

    Cervelli, Peter

    2004-01-01

    Not all earthquakes shake the ground. The so-called silent types are forcing scientists to rethink their understanding of the way quake-prone faults behave. In rare instances, silent earthquakes that occur along the flakes of seaside volcanoes may cascade into monstrous landslides that crash into the sea and trigger towering tsunamis. Silent earthquakes that take place within fault zones created by one tectonic plate diving under another may increase the chance of ground-shaking shocks. In other locations, however, silent slip may decrease the likelihood of destructive quakes, because they release stress along faults that might otherwise seem ready to snap.

  7. Earthquakes: Thinking about the unpredictable

    Science.gov (United States)

    Geller, Robert J.

    The possibility of predicting earthquakes has been investigated by professionals and amateurs, seismologists and nonseismologists, for over 100 years. More than once, hopes of a workable earthquake prediction scheme have been raised only to be dashed. Such schemes—on some occasions accompanied by claims of an established track record—continue to be proposed, not only by Earth scientists, but also by workers in other fields. The assessment of these claims is not just a scientific or technical question. Public administrators and policy makers must make decisions regarding appropriate action in response to claims that some scheme has a predictive capability, or to specific predictions of imminent earthquakes.

  8. Fractal Models of Earthquake Dynamics

    CERN Document Server

    Bhattacharya, Pathikrit; Kamal,; Samanta, Debashis

    2009-01-01

    Our understanding of earthquakes is based on the theory of plate tectonics. Earthquake dynamics is the study of the interactions of plates (solid disjoint parts of the lithosphere) which produce seismic activity. Over the last about fifty years many models have come up which try to simulate seismic activity by mimicking plate plate interactions. The validity of a given model is subject to the compliance of the synthetic seismic activity it produces to the well known empirical laws which describe the statistical features of observed seismic activity. Here we present a review of two such models of earthquake dynamics with main focus on a relatively new model namely The Two Fractal Overlap Model.

  9. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  10. Analysis of the relationship between landslides size distribution and earthquake source area

    Science.gov (United States)

    Valagussa, Andrea; Crosta, Giovanni B.; Frattini, Paolo; Xu, Chong

    2014-05-01

    The spatial distribution of earthquake induced landslides around the seismogenetic source has been analysed to better understand the triggering of landslides in seismic areas and to forecast the maximum distance at which an earthquake, with a certain magnitude, can induce landslides (e.g Keefer, 1984). However, when applying such approaches to old earthquakes (e.g 1929 Buller and 1968 Iningahua earthquakes New Zealand; Parker, 2013; 1976 Friuli earthquake, Italy) one should be concerned about the undersampling of smaller landslides which can be cancelled by erosion and landscape evolution. For this reason, it is important to characterize carefully the relationship between landslide area and number with distance from the source, but also the size distribution of landslides as a function of distance from the source. In this paper, we analyse the 2008 Wenchuan earthquake landslide inventory (Xu et al, 2013). The earthquake triggered more than 197,000 landslides of different type, including rock avalanches, rockfalls, translational and rotational slides, lateral spreads and derbies flows. First, we calculated the landslide intensity (number of landslides per unit area) and spatial density (landslide area per unit area) as a function of distance from the source area of the earthquake. Then, we developed magnitude frequency curves (MFC) for different distances from the source area. Comparing these curves, we can describe the relation between the distance and the frequency density of landslide in seismic area. Keefer D K (1984) Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406-421. Parker R N, (2013) Hillslope memory and spatial and temporal distributions of earthquake-induced landslides, Durham theses, Durham University. Xu, C., Xu, X., Yao, X., & Dai, F. (2013). Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis

  11. Earthquake Breccias (Invited)

    Science.gov (United States)

    Rowe, C. D.; Melosh, B. L.; Lamothe, K.; Schnitzer, V.; Bate, C.

    2013-12-01

    Fault breccias are one of the fundamental classes of fault rocks and are observed in many exhumed faults. Some breccias have long been assumed to form co-seismically, but textural or mechanistic evidence for the association with earthquakes has never been documented. For example, at dilational jogs in brittle faults, it is common to find small bodies of chaotic breccia in lenticular or rhombohedral voids bounded by main slip surfaces and linking segments. Sibson interpreted these 'implosion breccias' as evidence of wall rock fracturing during sudden unloading when the dilational jogs open during earthquake slip (Sibson 1985, PAGEOPH v. 124, n. 1, 159-175). However, the role of dynamic fracturing in forming these breccias has not been tested. Moreover, the criteria for identifying implosion breccia have not been defined - do all breccias in dilational jogs or step-overs represent earthquake slip? We are building a database of breccia and microbreccia textures to develop a strictly observational set of criteria for distinction of breccia texture classes. Here, we present observations from the right-lateral Pofadder Shear Zone, South Africa, and use our textural criteria to identify the relative roles of dynamic and quasi-static fracture patterns, comminution/grinding and attrition, hydrothermal alteration, dissolution, and cementation. Nearly 100% exposure in the hyper-arid region south of the Orange River allowed very detailed mapping of frictional fault traces associated with rupture events, containing one or more right-steps in each rupture trace. Fracture patterns characteristic of on- and off-fault damage associated with propagation of dynamic rupture are observed along straight segments of the faults. The wall rock fractures are regularly spaced, begin at the fault trace and propagate at a high angle to the fault, and locally branch into subsidiary fractures before terminating a few cm away. This pattern of fractures has been previously linked to dynamic

  12. Post-earthquake ignition vulnerability assessment of Küçükçekmece District

    Science.gov (United States)

    Yildiz, S. S.; Karaman, H.

    2013-12-01

    In this study, a geographic information system (GIS)-based model was developed to calculate the post-earthquake ignition probability of a building, considering damage to the building's interior gas and electrical distribution system and the overturning of appliances. In order to make our model more reliable and realistic, a weighting factor was used to define the possible existence of each appliance or other contents in the given occupancy. A questionnaire was prepared to weigh the relevance of the different components of post-earthquake ignitions using the analytical hierarchy process (AHP). The questionnaire was evaluated by researchers who were experienced in earthquake engineering and post-earthquake fires. The developed model was implemented to HAZTURK's (Hazards Turkey) earthquake loss assessment software, as developed by the Mid-America Earthquake Center with the help of Istanbul Technical University. The developed post-earthquake ignition tool was applied to Küçükçekmece, Istanbul, in Turkey. The results were evaluated according to structure types, occupancy types, the number of storeys, building codes and specified districts. The evaluated results support the theory that post-earthquake ignition probability is inversely proportional to the number of storeys and the construction year, depending upon the building code.

  13. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  14. USGS Tweet Earthquake Dispatch (@USGSted): Using Twitter for Earthquake Detection and Characterization

    Science.gov (United States)

    Liu, S. B.; Bouchard, B.; Bowden, D. C.; Guy, M.; Earle, P.

    2012-12-01

    The U.S. Geological Survey (USGS) is investigating how online social networking services like Twitter—a microblogging service for sending and reading public text-based messages of up to 140 characters—can augment USGS earthquake response products and the delivery of hazard information. The USGS Tweet Earthquake Dispatch (TED) system is using Twitter not only to broadcast seismically-verified earthquake alerts via the @USGSted and @USGSbigquakes Twitter accounts, but also to rapidly detect widely felt seismic events through a real-time detection system. The detector algorithm scans for significant increases in tweets containing the word "earthquake" or its equivalent in other languages and sends internal alerts with the detection time, tweet text, and the location of the city where most of the tweets originated. It has been running in real-time for 7 months and finds, on average, two or three felt events per day with a false detection rate of less than 10%. The detections have reasonable coverage of populated areas globally. The number of detections is small compared to the number of earthquakes detected seismically, and only a rough location and qualitative assessment of shaking can be determined based on Tweet data alone. However, the Twitter detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The main benefit of the tweet-based detections is speed, with most detections occurring between 19 seconds and 2 minutes from the origin time. This is considerably faster than seismic detections in poorly instrumented regions of the world. Going beyond the initial detection, the USGS is developing data mining techniques to continuously archive and analyze relevant tweets for additional details about the detected events. The information generated about an event is displayed on a web-based map designed using HTML5 for the mobile environment, which can be valuable when the user is not able to access a

  15. A moment in time: emergency nurses and the Canterbury earthquakes.

    Science.gov (United States)

    Richardson, S; Ardagh, M; Grainger, P; Robinson, V

    2013-06-01

    To outline the impact of the Canterbury, New Zealand (NZ) earthquakes on Christchurch Hospital, and the experiences of emergency nurses during this time. NZ has experienced earthquakes and aftershocks centred in the Canterbury region of the South Island. The location of these, around and within the major city of Christchurch, was unexpected and associated with previously unknown fault lines. While the highest magnitude quake occurred in September 2010, registering 7.1 on the Richter scale, it was the magnitude 6.3 event on 22 February 2011 which was associated with the greatest injury burden and loss of life. Staff working in the only emergency department in the city were faced with an external emergency while also being directly affected as part of the disaster. SOURCES OF EVIDENCE: This paper developed following interviews with nurses who worked during this period, and draws on literature related to healthcare responses to earthquakes and natural disasters. The establishment of an injury database allowed for an accurate picture to emerge of the injury burden, and each of the authors was present and worked in a clinical capacity during the earthquake. Nurses played a significant role in the response to the earthquakes and its aftermath. However, little is known regarding the impact of this, either in personal or professional terms. This paper presents an overview of the earthquakes and experiences of nurses working during this time, identifying a range of issues that will benefit from further exploration and research. It seeks to provide a sense of the experiences and the potential meanings that were derived from being part of this 'moment in time'. Examples of innovations in practice emerged during the earthquake response and a number of recommendations for nursing practice are identified. © 2013 The Authors. International Nursing Review © 2013 International Council of Nurses.

  16. Analysis of consequences and Civil Protection activities in the Lorca earthquake (Murcia): Pre-emergency, Emergency and Post emergency; Analisis de Consecuencias y Actuaciones de Proteccion Civil en el Terremoto de Lorca (Murcia): Pre-Emergencia, Emergencia y Post-Emergencia

    Energy Technology Data Exchange (ETDEWEB)

    Pascual Santamaria, G.; Gonzalez Lopez, S.; Alguacil Alguacil, L.

    2012-07-01

    This article aims to provide a summary of the actions taken by Civil Protection Organizations, after the earthquakes that occurred in Lorca, May 2011, in order to minimize damage to people and property. With this aim, measures that arise from the functions of Civil Protection were applied (Anticipation, Prevention, Planning, Intervention and Normalization) as defined in the basic legislation: Civil Protection Act 2/1985 of January 21 and Royal Decree 407/1992 of 24 April, approving the Basic Rule of Civil Protection. Specifically, two plans were applied this time: The State Civil Protection Plan to the Seismic Risk and the Civil Protection Special Plan to the Seismic Risk - Region of Murcia (SISMIMUR). According to these plans two meetings of the State Coordinating Committee were called on May 11 and 12. The Integrated Operational Coordinating Committee (CECOPI) was convened on May 11 and dissolved on December 28, once the necessary actions to minimize damage and to provide means and resources to the emergency were completed. In summary, the earthquake caused 9 deaths, 324 injuries (3 serious, 49 required hospitalization, on May 23 six people were still hospitalized), thousands of people were housed in 4 temporary camps, one of which was maintained until the 30 October. The text summarizes the statistics of damaged buildings and the means that intervened in the emergency response. At present and in application of the {sup R}oyal Decree Law 6/2011 of 13 May by adopting urgent measures to repair damage caused by seismic movements that occurred on May 11, 2011 in Lorca, Murcia{sup ,} 13.028 applications have been analyzed and 382,3 million euros have been released by the Insurance Compensation Consortium after analyzing more than 31.000 files, besides 10 months after the events the State has released 19.093.760,78. (Author) 10 refs.

  17. Behavior of Columns During Earthquakes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The behavior of columns during earthquakes is very important since column failures may lead to additional structural failures and result in total building collapses....

  18. Medical complications associated with earthquakes.

    Science.gov (United States)

    Bartels, Susan A; VanRooyen, Michael J

    2012-02-25

    Major earthquakes are some of the most devastating natural disasters. The epidemiology of earthquake-related injuries and mortality is unique for these disasters. Because earthquakes frequently affect populous urban areas with poor structural standards, they often result in high death rates and mass casualties with many traumatic injuries. These injuries are highly mechanical and often multisystem, requiring intensive curative medical and surgical care at a time when the local and regional medical response capacities have been at least partly disrupted. Many patients surviving blunt and penetrating trauma and crush injuries have subsequent complications that lead to additional morbidity and mortality. Here, we review and summarise earthquake-induced injuries and medical complications affecting major organ systems.

  19. Statistical earthquake focal mechanism forecasts

    CERN Document Server

    Kagan, Yan Y

    2013-01-01

    Forecasts of the focal mechanisms of future earthquakes are important for seismic hazard estimates and Coulomb stress and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range from -75 to +75 degrees, based on the Global Central Moment Tensor earthquake catalog. In the new forecasts we've improved the spatial resolution to 0.1 degree and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each grid point. Simultaneously we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method ...

  20. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Institute of Scientific and Technical Information of China (English)

    高孟潭; 金学申; 安卫平; 吕晓健

    2004-01-01

    The geography information system of the 1303 Hongtong M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studied. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  1. Scenario-Based Multi-Objective Optimum Allocation Model for Earthquake Emergency Shelters Using a Modified Particle Swarm Optimization Algorithm: A Case Study in Chaoyang District, Beijing, China

    National Research Council Canada - National Science Library

    Zhao, Xiujuan; Xu, Wei; Ma, Yunjia; Hu, Fuyu

    2015-01-01

    The correct location of earthquake emergency shelters and their allocation to residents can effectively reduce the number of casualties by providing safe havens and efficient evacuation routes during...

  2. Consequences of Accounting Standards

    Institute of Scientific and Technical Information of China (English)

    Cai Mingyue

    2009-01-01

    The first part of this article consists in attempting to highlight the importance of concerning about the economic consequences and introducing the foundation of economic consequence theory, proposing that the accounting standard is not only a kind of technical standard, it also has the economic consequences, so it becomes the object which all quarters special interest group gambles to get latent profit. After general characterization of the economic consequences in the second part, the article gives a description of the influences the change of accounting standards bring to the government, the ordinary investors and creditors, the auditors, and the enterprise, establishing a framework that how those groups react as the economic consequences in the third part. The fourth section compare technical theory and accounting standards theory, links the basic norms of accounting such as conservatism, relevance and reliability to the methods of escaping the harm of economic consequences, then proposes some specific methods in the formuhtion of accounting standard. Finally, the article utilizes the methods to settle the problems appearing in Chinese market.

  3. Daily earthquake forecasts during the May-June 2012 Emilia earthquake sequence (northern Italy

    Directory of Open Access Journals (Sweden)

    Warner Marzocchi

    2012-10-01

    Full Text Available On May 20, 2012, at 02:03 UTC, a magnitude Ml 5.9 earthquake hit part of the Po Plain area (latitude, 44.89 ˚N; longitude, 11.23 ˚E close to the village of Finale-Emilia in the Emilia-Romagna region (northern Italy. This caused a number of human losses and significant economic damage to buildings, and to local farms and industry. This earthquake was preceded by an increase in the seismicity the day before, with the largest shock of Ml 4.1 at 23:13 UTC (latitude, 44.90 ˚N; longitude, 11.26 ˚E. It was then followed by six other Ml 5.0 or greater events in the following weeks. The largest of these six earthquakes occurred on May 29, 2012, at 07:00 UTC (Ml 5.8, and was located 12 km southwest of the May 20, 2012, main event (latitude, 44.85 ˚N; longitude, 11.09 ˚E, resulting in the collapse of many buildings that had already been weakened, a greater number of victims, and most of the economic damage (see Figure 1. This sequence took place in one of the Italian regions that is considered to be at small-to-moderate seismic hazard [Gruppo di Lavoro MPS 2004]. Earthquakes of the M6 class have occurred in the past in this zone [Gruppo di Lavoro CPTI 2004], but with a much smaller time frequency with respect to the most seismically hazardous parts of Italy. […

  4. Earthquakes - Volcanoes (Causes and Forecast)

    Science.gov (United States)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  5. Earthquake damage to underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, H.R.; Hustrulid, W.A. Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository.

  6. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  7. Intracontinental basins and strong earthquakes

    Institute of Scientific and Technical Information of China (English)

    邓起东; 高孟潭; 赵新平; 吴建春

    2004-01-01

    The September 17, 1303 Hongtong M=8 earthquake occurred in Linfen basin of Shanxi down-faulted basin zone. It is the first recorded M=8 earthquake since the Chinese historical seismic records had started and is a great earthquake occurring in the active intracontinental basin. We had held a Meeting of the 700th Anniversary of the 1303 Hongtong M=8 Earthquake in Shanxi and a Symposium on Intracontinental Basins and Strong Earthquakes in Taiyuan City of Shanxi Province on September 17~18, 2003. The articles presented on the symposium discussed the relationships between active intracontinental basins of different properties, developed in different regions, including tensional graben and semi-graben basins in tensile tectonic regions, compression-depression basins and foreland basins in compressive tectonic regions and pull-apart basins in strike-slip tectonic zones, and strong earthquakes in China. In this article we make a brief summary of some problems. The articles published in this special issue are a part of the articles presented on the symposium.

  8. Analysing post-earthquake landslide activity using multi-temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake

    Science.gov (United States)

    Tang, Chenxiao; Van Westen, Cees J.; Tanyas, Hakan; Jetten, Victor G.

    2016-12-01

    Large earthquakes in mountainous regions may trigger thousands of landslides, some active for years. We analysed the changes in landslide activity near the epicentre of the 2008 Wenchuan earthquake by generating five landslide inventories for different years through stereoscopic digital visual image interpretation. From May 2008 to April 2015, 660 new landslides occurred outside the co-seismic landslide areas. In April 2015, the number of active landslides had gone down to 66, less than 1 % of the co-seismic landslides, but still much higher than the pre-earthquake levels. We expect that the landslide activity will continue to decay, but may be halted if extreme rainfall events occur.

  9. Triggering of volcanic eruptions by large earthquakes

    Science.gov (United States)

    Nishimura, Takeshi

    2017-08-01

    When a large earthquake occurs near an active volcano, there is often concern that volcanic eruptions may be triggered by the earthquake. In this study, recently accumulated, reliable data were analyzed to quantitatively evaluate the probability of the occurrence of new eruptions of volcanoes located near the epicenters of large earthquakes. For volcanoes located within 200 km of large earthquakes of magnitude 7.5 or greater, the eruption occurrence probability increases by approximately 50% for 5 years after the earthquake origin time. However, no significant increase in the occurrence probability of new eruptions was observed at distant volcanoes or for smaller earthquakes. The present results strongly suggest that new eruptions are likely triggered by static stress changes and/or strong ground motions caused by nearby large earthquakes. This is not similar to the previously presented evidence that volcanic earthquakes at distant volcanoes are remotely triggered by surface waves generated by large earthquakes.

  10. Morphometric measurement of the faults in Kerman province and its relation with earthquake magnitude in Richter scale

    Directory of Open Access Journals (Sweden)

    Mostafa khabazi

    2016-06-01

    Full Text Available Iran is geographically one of the most prone regions to natural disasters especially earthquake in the world such that it is in the seventh place in Asia and the 13th place in the world regarding annual mean of the highest number of population at risk of earthquake. On the other hand, 32% of the area, 70% of the population, and 67% of the gross production of the country are located in regions prone to earthquake. Iran with its several faults is always prone to this terrible natural disaster and it is one of high risk regions regarding the earthquake. There is a mutual relation between fault and earthquake. It means that the number of faults in the region is effective on earthquake occurrence. On the other hand, every earthquake will cause creation of new faults. In present research, the faults in the region will be positioned using satellite images and their dimensions have been measured by GIS advanced techniques. Then, the relationship between fault length and earthquake magnitude will be studied and the amount of human and inhuman losses of earthquake have been estimated. Therefore, the potential and allometric power of a fault such as length, width, and depth of a fault has been estimated in occurrence of earthquake. Then the extension of ruptures resulted from earthquake has been determined in the area of fault and finally the region has been zoned into non-risky, low risk and high risk categories. Results show that there is a direct relationship between fault length and its magnitude in Richter scale. The longer the length of the fault, the earthquake will be more intensive. The highest frequency of earthquake associates to the west and northwest of the region under study meaning where faults are longer and denser.

  11. Spanish sources concerning the 1693 earthquake in Sicily

    Directory of Open Access Journals (Sweden)

    F. Rodriguez de la Torre

    1995-06-01

    Full Text Available When the great 1693 earthquake occurred, Sicily was a viceroyalty of Spain. In order to find primary and direct sources, the Archivo General de Simancas has to be investigated. Due to the lack of extensive and adequate catalogues it is difficult search amongst the millions of documents filed there. The author located among numerous bundles of papers of different Sections. a total of 238 manuscripts (with 850 pages and 4 printed edicts related to the 1693 earthquake. All the gathered information offers good prospects of true knowledge on many aspects related to the seismic catastrophe: perception area. number of victims, ruin of towns, list of aftershocks. reconstruction. health and public order problems, and all those problems that surround a great historic earthquake (economic, political, social and religious.

  12. Development of fragility functions to estimate homelessness after an earthquake

    Science.gov (United States)

    Brink, Susan A.; Daniell, James; Khazai, Bijan; Wenzel, Friedemann

    2014-05-01

    Immediately after an earthquake, many stakeholders need to make decisions about their response. These decisions often need to be made in a data poor environment as accurate information on the impact can take months or even years to be collected and publicized. Social fragility functions have been developed and applied to provide an estimate of the impact in terms of building damage, deaths and injuries in near real time. These rough estimates can help governments and response agencies determine what aid may be required which can improve their emergency response and facilitate planning for longer term response. Due to building damage, lifeline outages, fear of aftershocks, or other causes, people may become displaced or homeless after an earthquake. Especially in cold and dangerous locations, the rapid provision of safe emergency shelter can be a lifesaving necessity. However, immediately after an event there is little information available about the number of homeless, their locations and whether they require public shelter to aid the response agencies in decision making. In this research, we analyze homelessness after historic earthquakes using the CATDAT Damaging Earthquakes Database. CATDAT includes information on the hazard as well as the physical and social impact of over 7200 damaging earthquakes from 1900-2013 (Daniell et al. 2011). We explore the relationship of both earthquake characteristics and area characteristics with homelessness after the earthquake. We consider modelled variables such as population density, HDI, year, measures of ground motion intensity developed in Daniell (2014) over the time period from 1900-2013 as well as temperature. Using a base methodology based on that used for PAGER fatality fragility curves developed by Jaiswal and Wald (2010), but using regression through time using the socioeconomic parameters developed in Daniell et al. (2012) for "socioeconomic fragility functions", we develop a set of fragility curves that can be

  13. Probabilistic Earthquake Hazard in Metropolitan Taipei and Its Surrounding Regions

    Directory of Open Access Journals (Sweden)

    Chin-Tung Cheng

    2010-01-01

    Full Text Available The aim of this study is to evaluate the probability of seismic hazard for the Taipei metropolitan area in northern Taiwan from readily available information, including the attenuation relationship of peak ground acceleration (PGA, tectonic settings, fault-slip data, and seismicity. The PGA seismic hazard mapping reveals that the hazard level in this area increases going from northwest to southeast and southwest. There are four important earthquake sources that contribute to the hazard level: (1 the plate-boundary interface (subduction zone interface located offshore of the Ilan plain; (2 the intraslab subduction zone underneath Taipei itself; (3 the crustal areal sources in eastern Taiwan and central Taiwan; and (4 the nearby active Shanchiao fault. The slip-rate of the targeted fault is relatively low, and therefore not the most dangerous earthquake source revealed in the 475-year return period. However, there is no doubt that the target fault is the control source in the 2475-year return period. Furthermore, higher PGAs are predicted using the attenuation relationship of subduction zone earthquake sources rather than crustal earthquake sources, meaning an increase of the seismic hazard level over previous estimates. Consequently, more attention needs to be paid to subduction zone sources when considering mitigation of seismic hazards in northern Taiwan.

  14. Initiatives to Reduce Earthquake Risk of Developing Countries

    Science.gov (United States)

    Tucker, B. E.

    2008-12-01

    The seventeen-year-and-counting history of the Palo Alto-based nonprofit organization GeoHazards International (GHI) is the story of many initiatives within a larger initiative to increase the societal impact of geophysics and civil engineering. GHI's mission is to reduce death and suffering due to earthquakes and other natural hazards in the world's most vulnerable communities through preparedness, mitigation and advocacy. GHI works by raising awareness in these communities about their risk and about affordable methods to manage it, identifying and strengthening institutions in these communities to manage their risk, and advocating improvement in natural disaster management. Some of GHI's successful initiatives include: (1) creating an earthquake scenario for Quito, Ecuador that describes in lay terms the consequences for that city of a probable earthquake; (2) improving the curricula of Pakistani university courses about seismic retrofitting; (3) training employees of the Public Works Department of Delhi, India on assessing the seismic vulnerability of critical facilities such as a school, a hospital, a police headquarters, and city hall; (4) assessing the vulnerability of the Library of Tibetan Works and Archives in Dharamsala, India; (5) developing a seismic hazard reduction plan for a nonprofit organization in Kathmandu, Nepal that works to manage Nepal's seismic risk; and (6) assisting in the formulation of a resolution by the Council of the Organization for Economic Cooperation and Development (OECD) to promote school earthquake safety among OECD member countries. GHI's most important resource, in addition to its staff and Board of Trustees, is its members and volunteer advisors, who include some of the world's leading earth scientists, earthquake engineers, urban planners and architects, from the academic, public, private and nonprofit sectors. GHI is planning several exciting initiatives in the near future. One would oversee the design and construction of

  15. Nurse willingness to report for work in the event of an earthquake in Israel.

    Science.gov (United States)

    Ben Natan, Merav; Nigel, Simon; Yevdayev, Innush; Qadan, Mohamad; Dudkiewicz, Mickey

    2014-10-01

    To examine variables affecting nurse willingness to report for work in the event of an earthquake in Israel and whether this can be predicted through the Theory of Self-Efficacy. The nursing profession has a major role in preparing for earthquakes. Nurse willingness to report to work in the event of an earthquake has never before been examined. Self-administered questionnaires were distributed among a convenience sample of 400 nurses and nursing students in Israel during January-April 2012. High willingness to report to work in the event of an earthquake was declared by 57% of respondents. High perceived self-efficacy, level of knowledge and experience predict willingness to report to work in the event of an earthquake. Multidisciplinary collaboration and support was also cited as a meaningful factor. Perceived self-efficacy, level of knowledge, experience and the support of a multidisciplinary staff affect nurse willingness to report to work in the event of an earthquake. Nurse managers can identify factors that increase nurse willingness to report to work in the event of an earthquake and consequently develop strategies for more efficient management of their nursing workforce. © 2013 John Wiley & Sons Ltd.

  16. Sagan numbers

    OpenAIRE

    Mendonça, J. Ricardo G.

    2012-01-01

    We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.

  17. Fibonacci numbers

    CERN Document Server

    Vorob'ev, Nikolai Nikolaevich

    2011-01-01

    Fibonacci numbers date back to an 800-year-old problem concerning the number of offspring born in a single year to a pair of rabbits. This book offers the solution and explores the occurrence of Fibonacci numbers in number theory, continued fractions, and geometry. A discussion of the ""golden section"" rectangle, in which the lengths of the sides can be expressed as a ration of two successive Fibonacci numbers, draws upon attempts by ancient and medieval thinkers to base aesthetic and philosophical principles on the beauty of these figures. Recreational readers as well as students and teacher

  18. Relationships between Slow Slip and Earthquakes at the Brittle-Ductile Transition of Subduction Zones

    Science.gov (United States)

    Brudzinski, M. R.; Colella, H.; Skoumal, R.; Cabral-Cano, E.; Arciniega-Ceballos, A.; Graham, S. E.; DeMets, C.; Sit, S. M.; Holtkamp, S. G.

    2014-12-01

    Following the discovery of episodic tremor and slip, one of the key questions raised is whether the phenomena can be a harbinger of megathrust earthquakes. Several recent large subduction earthquakes have provided an opportunity to investigate this question. The March 20, 2012 Mw 7.4 Ometepec earthquake in southern Mexico represents one such opportunity as it occurred in an area with a joint seismic and geodetic network in the source region that can examine whether patterns in the episodic tremor and slip were related to the earthquake. GPS data indicate that a 5-month-long slow slip episode (SSE) migrated toward and reached the vicinity of the mainshock source zone a few weeks before the earthquake. With multi-station waveform matching of templates constructed from visible aftershock signals, we find an increase in seismic activity during the SSE. The fault patches represented by these templates fill in the gap between the earthquake epicenter and the primary SSE. Analysis of other seismic swarms in Oaxaca near the down-dip end of the seismogenic zone with multi-station template matching also shows an increase in seismicity during SSEs. This evidence adds to a growing number of published accounts that indicate slow slip, whether geodetically or seismically inferred, is becoming a more commonly observed pre-earthquake signature. We use RSQSim earthquake simulations to model these scenarios using a subduction interface with a shallow seismogenic zone, deep SSE zone, and a microseismicity zone in between. Simulations where the microseismicity zone is assigned varying effective normal stresses and slip speeds over small distances generate cases in which microseismicity primarily occurs when a SSE migrates up-dip to the point enough stress is transferred to nucleate an earthquake on elements with a higher effective normal stress. Together these observations support the notion that SSE can trigger traditional earthquakes, not just tremor and low-frequency earthquakes.

  19. Cutaneous Leishmaniasis in Bam: A Comparative Evaluation of Pre- and Post- Earthquake Years (1999-2008

    Directory of Open Access Journals (Sweden)

    I Sharifi

    2011-06-01

    Full Text Available "nBackground: The recent devastating earthquake of December 26 in Bam, 2003 created various risk factors; caused a sharp increase in incidence of anthroponotic cutaneous leishmaniasis (ACL cases and reached to an epidemic proportion. The objective of this study was to evaluate the status of ACL cases five years before the earthquake compared to the cases occurred five years after the earthquake (1999-2008."nMethods: Status of disease was assessed retrospectively for the five years before the earthquake and prospectively for the five years after the earthquake. Identification was confirmed by smear and polymerase chain reaction (PCR."nResults: The mean annual incidence of ACL for the period from 1999 to 2003 was 1.9 per 1000 comparing to post earthquake period, which was 7.6 per 1000. Most of the infection was in individuals of <20 years, more frequently in females before the earthquake, whilst in contrast, there was a progressive rise in the number of cases, significantly in male individuals of >20 years (P< 0.0001 in post earthquake era. The anatomical distribution of lesions considerably changed during the two periods. Most of the cases were limited to three zones within the city prior to the earthquake, whereas it was spread throughout different zones after the earthquake. PCR indicated that the CL was due to Leishmania tropica in the city."nConclusion: The results strongly suggest that in natural disasters such as earthquakes various precipitating factors in favor of disease will be created, which in turn provide a suitable condition for propagation of the vector and the transmis­sion of the parasite.

  20. Building collapse and human deaths resulting from the Chi-Chi Earthquake in Taiwan, September 1999.

    Science.gov (United States)

    Liao, Yen-Hsiung; Hwang, Long-Chih; Chang, Chih-Ching; Hong, Yu-Jue; Lee, I-Nong; Huang, Jen-Hsuan; Lin, Shu-Fang; Shen, Maurice; Lin, Chia-Hong; Gau, Yung-Yen; Yang, Chin-Tzo

    2003-09-01

    In this study, the authors attempted to determine factors associated with earthquake deaths in the great Chi-Chi Earthquake that occurred on September 21, 1999, in Taiwan. An isoseismal map was used to identify life-threatening hazards. The vertical peak ground acceleration of ground motion intensity was deemed the most appropriate index for the evaluation of building collapse and mortality. Mortality increased with the increase in earthquake intensity, and building collapse, approaching the epicenter. The greatest number of collapsed buildings and human deaths occurred between the Chelungpu Fault and the Shuantun Fault. Individuals 65 yr of age and older were the most vulnerable to the impact. The authors' findings suggest that improvements in earthquake-resistant building design and construction, as well as improved medical rescue for the elderly, could reduce the level of exposure to earthquake hazards.

  1. The Electronic Encyclopedia of Earthquakes

    Science.gov (United States)

    Benthien, M.; Marquis, J.; Jordan, T.

    2003-12-01

    The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will

  2. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    through using mathematical names for the numbers such as one-ten-one for 11 and five-ten-six for 56. The project combines the renaming of numbers with supporting the teaching with the new number names. Our hypothesis is that Danish children have more difficulties learning and working with numbers, because...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....

  3. A Prospect of Earthquake Prediction Research

    CERN Document Server

    Ogata, Yosihiko

    2013-01-01

    Earthquakes occur because of abrupt slips on faults due to accumulated stress in the Earth's crust. Because most of these faults and their mechanisms are not readily apparent, deterministic earthquake prediction is difficult. For effective prediction, complex conditions and uncertain elements must be considered, which necessitates stochastic prediction. In particular, a large amount of uncertainty lies in identifying whether abnormal phenomena are precursors to large earthquakes, as well as in assigning urgency to the earthquake. Any discovery of potentially useful information for earthquake prediction is incomplete unless quantitative modeling of risk is considered. Therefore, this manuscript describes the prospect of earthquake predictability research to realize practical operational forecasting in the near future.

  4. Southern California Earthquake Center--Virtual Display of Objects (SCEC-VDO): An Earthquake Research and Education Tool

    Science.gov (United States)

    Perry, S.; Maechling, P.; Jordan, T.

    2006-12-01

    Interns in the program Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT, an NSF Research Experience for Undergraduates Site) have designed, engineered, and distributed SCEC-VDO (Virtual Display of Objects), an interactive software used by earthquake scientists and educators to integrate and visualize global and regional, georeferenced datasets. SCEC-VDO is written in Java/Java3D with an extensible, scalable architecture. An increasing number of SCEC-VDO datasets are obtained on the fly through web services and connections to remote databases; and user sessions may be saved in xml-encoded files. Currently users may display time-varying sequences of earthquake hypocenters and focal mechanisms, several 3-dimensional fault and rupture models, satellite imagery - optionally draped over digital elevation models - and cultural datasets including political boundaries. The ability to juxtapose and interactively explore these data and their temporal and spatial relationships has been particularly important to SCEC scientists who are evaluating fault and deformation models, or who must quickly evaluate the menace of evolving earthquake sequences. Additionally, SCEC-VDO users can annotate the display, plus script and render animated movies with adjustable compression levels. SCEC-VDO movies are excellent communication tools and have been featured in scientific presentations, classrooms, press conferences, and television reports.

  5. [Response of bacterial community structures at No. 10 Spring in Urumqi to felt earthquakes].

    Science.gov (United States)

    Luo, Jiao; Yang, Hongmei; Gao, Xiaoqi; You, Luhua; Lou, Kai

    2015-03-04

    Our aim was to know response of spring bacteria and metabolic characteristics of sensitive bacteria to felt earthquake. Water samples were collected from January 31 to December 31, 2012, during which period 5 felt earthquakes occurred and the epicenter was 100 kilometers away from the No. 10 Spring in Urumqi. We monitored the spring bacterial activities and function diversity changes from No. 10 Spring in Urumqi during the pre- and post-earthquake stages by using plate culture counting methods and BIOLOG GEN III bacteria plate. The spring bacterial numbers presented stochastic dynamic changes through the year. The culturable bacteria numbers and average well color development (AWCD ) of carbon source utilization of bacterial community were higher after the earthquake. Besides, there were some correlations with magnitude and epicenter distance of earthquake. The main carbon source utilization types of sensitive bacteria group for felt earthquake were sugar alcohol at the No. 10 Spring. The results indicated that the BIOLOG GEN III plate can be used for spring bacterial metabolism diversity research. Culturable bacteria numbers and carbon source utilization of bacterial communities showed some reflecting earthquake law.

  6. Finding fault: Earthquakes during the reign of Tang Dezong (785-805)

    Science.gov (United States)

    Fortenberry, Kyle S.

    Drawing from trends in environmental and disaster studies, this study examines the meaning of earthquakes within the official histories of China's Tang Dynasty (618-907), specifically those during the reign of Emperor Dezong (r. 785-805), as both historiographic metaphors and incidents of real natural-induced disaster. Earthquakes, like other forms of potentially harmful natural phenomena, demonstrated, the Chinese believed, Heaven's dissatisfaction with a sitting ruler. Over time, ministers and court scholars sought to draw connections between earthquakes and specific forms of behavior in attempts to perhaps prevent future incidents of seismic reproach. And though certain relationships are articulated more clearly in some parts of the histories than others, earthquakes nevertheless demonstrated an ability to engender a great sense of uncertainty and discord within historical memory. Consequently, the reading of the natural world codified in the official histories marked an attempt by the Chinese state to control human behavior for generations to come.

  7. Linking fossil reefs with earthquakes: Geologic insight to where induced seismicity occurs in Alberta

    Science.gov (United States)

    Schultz, Ryan; Corlett, Hilary; Haug, Kristine; Kocon, Ken; MacCormack, Kelsey; Stern, Virginia; Shipman, Todd

    2016-03-01

    Recently, a significant increase in North American, midcontinent earthquakes has been associated with contemporaneous development of petroleum resources. Despite the proliferation of drilling throughout sedimentary basins worldwide, earthquakes are only induced at a small fraction of wells. In this study, we focus on cases of induced seismicity where high-resolution data are available in the central Western Canada Sedimentary Basin. Our regional comparison of induced earthquake depths suggests basement-controlled tectonics. Complementary to these findings, hypocenters of induced seismicity clusters coincide with the margins of Devonian carbonate reefs. We interpret this spatial correspondence as the result of geographically biased activation potential, possibly as a consequence of reef nucleation preference to paleobathymetric highs associated with Precambrian basement tectonics. This finding demonstrates the importance of geologic/tectonic factors to earthquake induction, in addition to industrial operational parameters. In fact, the observation of induced seismicity silhouetting deep fossil reef systems may be a useful tool to identify future regions with increased seismogenic potential.

  8. EsLorca: An initiative for earthquake education and awareness on seismic risk; EsLorca: una iniciativa para la educacion y concienciacion sobre el riesgo sismico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Moreno, F.; Salazar Ortuno, A.; Martinez Diaz, J.; Lopez Martin, J. A.; Terrer Miras, R.; Hernandez Sapena, A.

    2012-11-01

    The experience of a multidisciplinary group of professionals during the emergency following the damaging Lorca 2011 earthquake shows that a more thorough preparation of the population prior to the event would have reduced the effects on the population in general and even possibly reduced the number of victims. Our aim here is to present a realistic and applicable educational project (EsLorca) based on the knowledge and experience obtained in Lorca in order to fill this educational gap. EsLorca is designed as a training project to help students/citizens to achieve the minimum skills necessary to react appropriately during and after a destructive earthquake on the basis of their understanding of earthquake phenomena, from its geological origins to its effects on buildings. In addition to state education, the project intends in its objectives to reach adult and senior citizens. The educational plan consists of a series of activities designed to last 50 minutes, which can be taken part in during academic tutoring sessions and are easy to organise in neighbourhood associations, senior citizens centres, and the work place and so on. Planning for adults and older citizens would be adapted to the specific conditions and needs of each centre or association. The structure of the plan is sequential. Its initial content is related directly to the emergency before passing on to a suitable knowledge and understanding of the geological phenomenon and its consequences. (Author) 13 refs.

  9. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  10. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  11. Earthquake probabilities in the San Francisco Bay Region: 2000 to 2030 - a summary of findings

    Science.gov (United States)

    ,

    1999-01-01

    region—an innovation over previous studies of the SFBR that considered only a small number of potential earthquakes of fixed magnitude.

  12. Morlet Wavelet Analysis of ML >= 3 Earthquakes in the Taipei Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Kou-Cheng Chen

    2015-01-01

    Full Text Available ML >= 3 earthquakes (ML = local magnitude that occurred in the Taipei Metropolitan Area (TMA from 1973 - 2013 are selected to study the dominant seismicity period of this area. The epicentral distribution and temporal sequences of earthquake magnitudes are simply described. These earthquakes can be divided into two groups: one for events shallower than 40 km and one for events deeper than 60 km. Shallow earthquakes are located mainly in the 0 - 10 km depth range north of 25.1°N,25.1°N, and down to 35 km for those south of 25.1°N.25.1°N. Deep events are located in the subduction zone, with a dip angle of about 70°.70°. The Morlet wavelet technique is applied to analyze the dominant periods of temporal variations in numbers of monthly earthquakes in the shallow and deep ranges for three magnitude ranges, i.e., ML >= 3, 4, and 5. The results show that for shallow earthquakes the dominant periods are 15.4, 30.8, 66.1, and 132.2 months when ML >= 3 and 30.8 months when ML >= 4; while for deep earthquakes, the dominant periods are 16.5 and 141.7 months when ML >= 3 and 141.7 months when ML >= 4. The dominant period cannot be obtained for both shallow and deep ML >= 5 earthquakes.

  13. Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts

    Directory of Open Access Journals (Sweden)

    Stefan Wiemer

    2010-11-01

    Full Text Available On August 1, 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP launched a prospective and comparative earthquake predictability experiment in Italy. The goal of this CSEP-Italy experiment is to test earthquake occurrence hypotheses that have been formalized as probabilistic earthquake forecasts over temporal scales that range from days to years. In the first round of forecast submissions, members of the CSEP-Italy Working Group presented 18 five-year and ten-year earthquake forecasts to the European CSEP Testing Center at ETH Zurich. We have considered here the twelve time-independent earthquake forecasts among this set, and evaluated them with respect to past seismicity data from two Italian earthquake catalogs. We present the results of the tests that measure the consistencies of the forecasts according to past observations. As well as being an evaluation of the time-independent forecasts submitted, this exercise provides insight into a number of important issues in predictability experiments with regard to the specification of the forecasts, the performance of the tests, and the trade-off between robustness of results and experiment duration. We conclude with suggestions for the design of future earthquake predictability experiments.

  14. Earthquake fault superhighways

    Science.gov (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.

    2010-10-01

    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  15. Eulerian numbers

    CERN Document Server

    Petersen, T Kyle

    2015-01-01

    This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...

  16. Earthquake Shaking and Damage to Buildings: Recent evidence for severe ground shaking raises questions about the earthquake resistance of structures.

    Science.gov (United States)

    Page, R A; Joyner, W B; Blume, J A

    1975-08-22

    Ground shaking close to the causative fault of an earthquake is more intense than it was previously believed to be. This raises the possibility that large numbers of buildings and other structures are not sufficiently resistant for the intense levels of shaking that can occur close to the fault. Many structures were built before earthquake codes were adopted; others were built according to codes formulated when less was known about the intensity of near-fault shaking. Although many building types are more resistant than conventional design analyses imply, the margin of safety is difficult to quantify. Many modern structures, such as freeways, have not been subjected to and tested by near-fault shaking in major earthquakes (magnitude 7 or greater). Damage patterns in recent moderate-sized earthquakes occurring in or adjacent to urbanized areas (17), however, indicate that many structures, including some modern ones designed to meet earthquake code requirements, cannot withstand the severe shaking that can occur close to a fault. It is necessary to review the ground motion assumed and the methods utilized in the design of important existing structures and, if necessary, to strengthen or modify the use of structures that are found to be weak. New structures situated close to active faults should be designed on the basis of ground motion estimates greater than those used in the past. The ultimate balance between risk of earthquake losses and cost for both remedial strengthening and improved earthquake-resistant construction must be decided by the public. Scientists and engineers must inform the public about earthquake shaking and its effect on structures. The exposure to damage from seismic shaking is steadily increasing because of continuing urbanization and the increasing complexity of lifeline systems, such as power, water, transportation, and communication systems. In the near future we should expect additional painful examples of the damage potential of moderate

  17. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  18. Using earthquake intensities to forecast earthquake occurrence times

    Directory of Open Access Journals (Sweden)

    J. R. Holliday

    2006-01-01

    Full Text Available It is well known that earthquakes do not occur randomly in space and time. Foreshocks, aftershocks, precursory activation, and quiescence are just some of the patterns recognized by seismologists. Using the Pattern Informatics technique along with relative intensity analysis, we create a scoring method based on time dependent relative operating characteristic diagrams and show that the occurrences of large earthquakes in California correlate with time intervals where fluctuations in small earthquakes are suppressed relative to the long term average. We estimate a probability of less than 1% that this coincidence is due to random clustering. Furthermore, we show that the methods used to obtain these results may be applicable to other parts of the world.

  19. THE GREAT SOUTHERN CALIFORNIA SHAKEOUT: Earthquake Science for 22 Million People

    Science.gov (United States)

    Jones, L.; Cox, D.; Perry, S.; Hudnut, K.; Benthien, M.; Bwarie, J.; Vinci, M.; Buchanan, M.; Long, K.; Sinha, S.; Collins, L.

    2008-12-01

    Earthquake science is being communicated to and used by the 22 million residents of southern California to improve resiliency to future earthquakes through the Great Southern California ShakeOut. The ShakeOut began when the USGS partnered with the California Geological Survey, Southern California Earthquake Center and many other organizations to bring 300 scientists and engineers together to formulate a comprehensive description of a plausible major earthquake, released in May 2008, as the ShakeOut Scenario, a description of the impacts and consequences of a M7.8 earthquake on the Southern San Andreas Fault (USGS OFR2008-1150). The Great Southern California ShakeOut was a week of special events featuring the largest earthquake drill in United States history. The ShakeOut drill occurred in houses, businesses, and public spaces throughout southern California at 10AM on November 13, 2008, when southern Californians were asked to pretend that the M7.8 scenario earthquake had occurred and to practice actions that could reduce the impact on their lives. Residents, organizations, schools and businesses registered to participate in the drill through www.shakeout.org where they could get accessible information about the scenario earthquake and share ideas for better reparation. As of September 8, 2008, over 2.7 million confirmed participants had been registered. The primary message of the ShakeOut is that what we do now, before a big earthquake, will determine what our lives will be like after. The goal of the ShakeOut has been to change the culture of earthquake preparedness in southern California, making earthquakes a reality that are regularly discussed. This implements the sociological finding that 'milling,' discussing a problem with loved ones, is a prerequisite to taking action. ShakeOut milling is taking place at all levels from individuals and families, to corporations and governments. Actions taken as a result of the ShakeOut include the adoption of earthquake

  20. Reconnecting Actions and Consequences

    DEFF Research Database (Denmark)

    Petersen, Marianne Graves; Ludvigsen, Martin; Krogh, Peter

    2009-01-01

    In this paper we present a brief critique of the current approach to the design of pervasive computing artifacts; claiming that this in itself promotes solutions that prevent end-users from accessing and understanding the consequences of their actions in terms of energy sustainability, specifical...

  1. Acromegaly : irreversible clinical consequences

    NARCIS (Netherlands)

    Wassenaar, Monica Johanna Elisabeth

    2010-01-01

    This thesis describes the long-term consequences of growth hormone and insulin-like growth factor I excess in patients cured from acromegaly for a mean duration of 17 years. Regarding the considerable prevalence of diverse morbidity in these patients, during the active phase of the disease but even

  2. Acromegaly : irreversible clinical consequences

    NARCIS (Netherlands)

    Wassenaar, Monica Johanna Elisabeth

    2010-01-01

    This thesis describes the long-term consequences of growth hormone and insulin-like growth factor I excess in patients cured from acromegaly for a mean duration of 17 years. Regarding the considerable prevalence of diverse morbidity in these patients, during the active phase of the disease but even

  3. Hepatic steatosis : metabolic consequences

    NARCIS (Netherlands)

    Boer, Adriana Maria den

    2006-01-01

    In this thesis we focused on the causes and consequences of hepatic steatosis. Epidemiological studies in humans, as well as experimental studies in animal models, have shown an association between visceral obesity and dyslipidemia, insulin resistance and type 2 diabetes mellitus. The mechanism

  4. Reconnecting Actions and Consequences

    DEFF Research Database (Denmark)

    Ludvigsen, Martin; Krogh, Peter; Petersen, Marianne Graves

    2009-01-01

    In this paper we present a brief critique of the current approach to the design of pervasive computing artifacts; claiming that this in itself promotes solutions that prevent end-users from accessing and understanding the consequences of their actions in terms of energy sustainability, specifically...

  5. Hepatic steatosis : metabolic consequences

    NARCIS (Netherlands)

    Boer, Adriana Maria den

    2006-01-01

    In this thesis we focused on the causes and consequences of hepatic steatosis. Epidemiological studies in humans, as well as experimental studies in animal models, have shown an association between visceral obesity and dyslipidemia, insulin resistance and type 2 diabetes mellitus. The mechanism unde

  6. Normal modal preferential consequence

    CSIR Research Space (South Africa)

    Britz, K

    2012-12-01

    Full Text Available of necessitation holds for the corresponding consequence relations, as one would expect it to. We present a representation result for this tightened framework, and investigate appropriate notions of entailment in this context|normal entailment, and a rational...

  7. Retrospection on the Conclusions of Earthquake Tendency Forecast before the Wenchuan Ms8.0 Earthquake

    Institute of Scientific and Technical Information of China (English)

    Liu Jie; Guo Tieshuan; Yang Liming; Su Youjin; Li Gang

    2009-01-01

    The reason for the failure to forecast the Wenchuan Ms8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kuulun Mountains Pass Ms8.1 earthquake and the 2008 Wenchuan Ms8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a Ms8.0 large earthquake in Chinese Mainland after the 2001 Western Kunlun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of Ms7.0 earthquake and an obvious quietude of Ms5.0 and Ms6.0 earthquakes during 2002 ~2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning'er Ms6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with Ms≥7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.

  8. Quantifying variability in earthquake rupture models using multidimensional scaling: application to the 2011 Tohoku earthquake

    KAUST Repository

    Razafindrakoto, Hoby

    2015-04-22

    Finite-fault earthquake source inversion is an ill-posed inverse problem leading to non-unique solutions. In addition, various fault parametrizations and input data may have been used by different researchers for the same earthquake. Such variability leads to large intra-event variability in the inferred rupture models. One way to understand this problem is to develop robust metrics to quantify model variability. We propose a Multi Dimensional Scaling (MDS) approach to compare rupture models quantitatively. We consider normalized squared and grey-scale metrics that reflect the variability in the location, intensity and geometry of the source parameters. We test the approach on two-dimensional random fields generated using a von Kármán autocorrelation function and varying its spectral parameters. The spread of points in the MDS solution indicates different levels of model variability. We observe that the normalized squared metric is insensitive to variability of spectral parameters, whereas the grey-scale metric is sensitive to small-scale changes in geometry. From this benchmark, we formulate a similarity scale to rank the rupture models. As case studies, we examine inverted models from the Source Inversion Validation (SIV) exercise and published models of the 2011 Mw 9.0 Tohoku earthquake, allowing us to test our approach for a case with a known reference model and one with an unknown true solution. The normalized squared and grey-scale metrics are respectively sensitive to the overall intensity and the extension of the three classes of slip (very large, large, and low). Additionally, we observe that a three-dimensional MDS configuration is preferable for models with large variability. We also find that the models for the Tohoku earthquake derived from tsunami data and their corresponding predictions cluster with a systematic deviation from other models. We demonstrate the stability of the MDS point-cloud using a number of realizations and jackknife tests, for

  9. Earthquake forecast via neutrino tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; CHEN Ya-Zheng; LI Xue-Qian

    2011-01-01

    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. An- tineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomog- raphy of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for ν emitted from a reactor. The case for a ν beam from a neutrino factory is also investigated, and it is noted that, because of the typically high energy associated with such neutrinos, the oscillation length is too large and the resultant variation is not practically observable. Our conclusion is that with the present reactor facilities and detection techniques, it is still a difficult task to make an earthquake forecast using such a scheme, though it seems to be possible from a theoretical point of view while ignoring some uncertainties. However, with the development of the geology, especially the knowledge about the fault zone, and with the improvement of the detection techniques, etc., there is hope that a medium-term earthquake forecast would be feasible.

  10. Homogenization of the Japanese Damaging Earthquakes List in the Chronological Scientific Tables

    Science.gov (United States)

    Koketsu, K.; Yoshii, T.

    2009-12-01

    The Japanese Damaging Earthquakes List in the Chronological Scientific Tables ("Rika Nenpyo" in Japanese) is one the most widely used earthquake catalog in Japan for eighty years from 1925. Damaging earthquakes have been compiled by a single editor and the result has been published for each year from 1925, though no issue was published in 1944 to 1946 due to World War II and the Japanese territory was changed several times for political reasons. The editors are A. Imamura (1925 - 1935), T. Matsuzawa (1936 - 1947), H. Kawasumi (1948 - 1965), T. Hagiwara (1966 - 1969), T. Usami (1970 - 1985), T. Yoshii (1986 - 2001), and K. Koketsu (2002 - present). The compilations were carried out with their individual criteria, so that this catalog is not homogeneous. In 2005, we defined a new universal criterion, where all earthquakes associated with one or more fatalities, one or more house collapses, or tsunami grade one or larger (2 m or higher tsunami) are included. We then applied this criterion to earthquakes in 1885 or later, since modern seismic observation began in Japan in 1885. Three earthquakes are omitted and one earthquake is added for the period of A. Imamura. The scores for the periods of T. Matsuzawa, H. Kawasumi, T. Hagiwara, T. Usami, T. Yoshii, and K. Koketsu are: two omitted and one added, three omitted and zero added, zero omitted and zero added, nine omitted and one added, one omitted and three added, and zero omitted and one added, respectively, suggesting that T. Usami used a loose criterion but T. Yoshii used a tight criterion. The figure below shows the numbers of damaging earthquakes in the new catalog for years of 1885 to 2007. Although the catalog was already homogenized, the numbers are not distributed homogeneously. For example, the numbers after the 1923 Kanto earthquake (deadliest earthquake in Japanese modern history; 105,000 fatalities, 109,000 house collapses) are smaller than those before this earthquake. The numbers in 1971 to 1992 look

  11. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  12. Earthquakes in Central California, 1980-1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There have been many earthquake occurrences in central California. This set of slides shows earthquake damage from the following events: Livermore, 1980, Coalinga,...

  13. Advancing Integrated STEM Learning through Engineering Design: Sixth-Grade Students' Design and Construction of Earthquake Resistant Buildings

    Science.gov (United States)

    English, Lyn D.; King, Donna; Smeed, Joanna

    2017-01-01

    As part of a 3-year longitudinal study, 136 sixth-grade students completed an engineering-based problem on earthquakes involving integrated STEM learning. Students employed engineering design processes and STEM disciplinary knowledge to plan, sketch, then construct a building designed to withstand earthquake damage, taking into account a number of…

  14. The tectonic source of the 1755 Lisbon earthquake and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Zitellini, N.; Chierici, F. (CNR, Centro Nazionale delle Ricerche, Bologna (Italy). Ist. di Geologia Marina); Sartori, R. (Bologna Univ. (Italy). Dip. di Scienze della Terra e Geologico-Ambientali); Torelli, L. (Parma Univ. (Italy). Dip. di Scienze della Terra)

    1999-02-01

    The SW continental margin of Iberia is affected by several tectonic structures of Cenozoic to Recent age, generated by the dynamics of the Iberia-Africa plate margin. This activity is testified by diffuse seismicity along the eastern portion of the Azores-Gibraltar line. The most important active structure, detected during a reflection seismic survey in 1992, is a thrust-fault, some 50 km long and with dip-slip throw of more than 1 km, located offshore Cabo de S.Vincente. A relocation of historical earthquakes in the area shows that this structure lies very close to the epicentre of the catastrophic 1755 Lisbon earthquake and that it should be the generator of the event. This submarine structure can now be studied for modelization of tsunamis and consequent risk mitigation.

  15. EARTHQUAKE PREDICTION BASED ON THE HYDROGEODEFORMATION FIELD MONITORING DATA

    Directory of Open Access Journals (Sweden)

    Gennady V. Kulikov

    2015-09-01

    Full Text Available The paper discusses further ways to improve the geodynamic informativity of the hydrogeodeformation field (HGD field monitoring. New methods for efficient assessment of the stressstrain state of the geological environment and seismic hazard are proposed. There are described the methods of monitoring data processing, distinguishing of HGD cycles, and construction of «forecasting» contours along extremums of these cycles. It is revealed that responses of the HGD field to development of planetaryscale endogenic geodynamic processes of earthquake preparation (with M>7 are simultaneously manifested in all seismically active regions of Russia which are remote from each other. Such responses occur from one to three months prior to such seismic events. The mechanism of this phenomenon can be disputed. The authors support the «planetary pulsation» concept which is up for the most recent debates. As evidenced by the HGD field monitoring data, strong earthquakes are a consequence of this phenomenon.

  16. The tectonic source of the 1755 Lisbon earthquake and tsunami

    Directory of Open Access Journals (Sweden)

    L. Torelli

    1999-06-01

    Full Text Available The SW continental margin of Iberia is affected by several tectonic structures of Cenozoic to Recent age, gen-erated by the dynamics of the Iberia-Africa plate margin. This activity is testified by diffuse seismicity along the eastern portion of the Azores-Gibraltar line. The most important active structure, detected during a reflection seismic survey in 1992, is a thrust-fault, some 50 km long and with dip-slip throw of more than 1 km, located offshore Cabo de S. Vincente. A relocation of historical earthquakes in the area shows that this structure lies very close to the epicentre of the catastrophic 1755 Lisbon earthquake and that it should be the generator of the event. This submarine structure can now be studied for modelization of tsunamis and consequent risk mitigation.

  17. On some electrical effects of the 1887 Ligurian earthquake

    Science.gov (United States)

    Poirier, Jean-Paul; Perrier, Frédéric; Le Mouël, Jean-Louis

    2008-04-01

    Significant electrical effects were observed in association with the 23 February 1887 Ligurian earthquake. Magnetic oscillatory signals, recorded in several locations in France and England, are inconclusive, as they can be interpreted as a consequence of the shaking of the magnetometers induced by the seismic waves. While observations in a telephone switch in Cannes could suggest the presence of electrical currents during the earthquake, evidence that is more convincing was reported near Monaco, where a telegraph operator received an electric shock that caused muscular tetanisation. This could be the first reliable evidence of a strong coseismic electrical potential. The minimal ground electric potential difference able to generate this condition is estimated to be of the order of 40 V. These observations, combined with similar accounts in Italy and in Martinique during early operation of telegraph networks, also suggest the existence of electrical phenomena occurring seconds or minutes before the main shock.

  18. Nonstationary ETAS models for nonstandard earthquakes

    OpenAIRE

    Kumazawa, Takao; Ogata, Yosihiko

    2014-01-01

    The conditional intensity function of a point process is a useful tool for generating probability forecasts of earthquakes. The epidemic-type aftershock sequence (ETAS) model is defined by a conditional intensity function, and the corresponding point process is equivalent to a branching process, assuming that an earthquake generates a cluster of offspring earthquakes (triggered earthquakes or so-called aftershocks). Further, the size of the first-generation cluster depends on the magnitude of...

  19. The October 12, 1992, Dahshur, Egypt, Earthquake

    Science.gov (United States)

    Thenhaus, P.C.; Celebi, M.; Sharp, R.V.

    1993-01-01

    Cairo and northeastern Egypt experienced a rare, damaging earthquake on October 12, 1992. The earthquake, which measured 5.9 on the Richter magnitude scale, was centered near the village of Dahshur, about 18 km south of Cairo. The computed hypocentral depth of the earthquake, about 25 km, is consistent with the fact that fault rupture associated with the earthquake did not reach the surface. 

  20. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    Directory of Open Access Journals (Sweden)

    Mustafa ULAS

    2013-01-01

    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  1. Impact of the 2016 Ecuador Earthquake on Zika Virus Cases.

    Science.gov (United States)

    Vasquez, Diego; Palacio, Ana; Nuñez, Jose; Briones, Wladimir; Beier, John C; Pareja, Denisse C; Tamariz, Leonardo

    2017-07-01

    To evaluate the impact of the April 2016 7.8-magnitude earthquake in Ecuador on the incidence of Zika virus (ZIKV) cases. We used the national public health surveillance system for reportable transmissible conditions and included suspected and laboratory-confirmed ZIKV cases. We compared the number of cases before and after the earthquake in areas closer to and farther from the epicenter. From January to July 2016, 2234 patients suspected of having ZIKV infection were reported in both affected and control areas. A total of 1110 patients had a reverse transcription-polymerase chain reaction assay, and 159 were positive for ZIKV. The cumulative incidence of ZIKV in the affected area was 11.1 per 100 000 after the earthquake. The odds ratio of having ZIKV infection in those living in the affected area was 8.0 (95% CI = 4.4, 14.6; P < .01) compared with the control area and adjusted for age, gender, province population, and number of government health care facilities. A spike in ZIKV cases occurred after the earthquake. Patients in the area closest to the epicenter had a delay in seeking care.

  2. Magic Numbers

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    THE last digit of my home phone number in Beijing is 4. “So what?” European readers might ask.This was my attitude when I first lived in China; I couldn't understand why Chinese friends were so shocked at my indifference to the number 4. But China brings new discoveries every day, and I have since seen the light. I know now that Chinese people have their own ways of preserving their well being, and that they see avoiding the number 4 as a good way to stay safe.

  3. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    Earthquakes and volcanoes are caused by: 1)Various liquid elements (e.g. H20, H2S, S02) which emerge from the pyrosphere and are trapped in the space between the solid crust and the pyrosphere (Moho discontinuity). 2)Protrusions of the solid crust at the Moho discontinuity (mountain range roots, sinking of the lithosphere's plates). 3)The differential movement of crust and pyrosphere. The crust misses one full rotation for approximately every 100 pyrosphere rotations, mostly because of the lunar pull. The above mentioned elements can be found in small quantities all over the Moho discontinuity, and they are constantly causing minor earthquakes and small volcanic eruptions. When large quantities of these elements (H20, H2S, SO2, etc) concentrate, they are carried away by the pyrosphere, moving from west to east under the crust. When this movement takes place under flat surfaces of the solid crust, it does not cause earthquakes. But when these elements come along a protrusion (a mountain root) they concentrate on its western side, displacing the pyrosphere until they fill the space created. Due to the differential movement of pyrosphere and solid crust, a vacuum is created on the eastern side of these protrusions and when the aforementioned liquids overfill this space, they explode, escaping to the east. At the point of their escape, these liquids are vaporized and compressed, their flow accelerates, their temperature rises due to fluid friction and they are ionized. On the Earth's surface, a powerful rumbling sound and electrical discharges in the atmosphere, caused by the movement of the gasses, are noticeable. When these elements escape, the space on the west side of the protrusion is violently taken up by the pyrosphere, which collides with the protrusion, causing a major earthquake, attenuation of the protrusions, cracks on the solid crust and damages to structures on the Earth's surface. It is easy to foresee when an earthquake will occur and how big it is

  4. Historical earthquake investigations in Greece

    Directory of Open Access Journals (Sweden)

    K. Makropoulos

    2004-06-01

    Full Text Available The active tectonics of the area of Greece and its seismic activity have always been present in the country?s history. Many researchers, tempted to work on Greek historical earthquakes, have realized that this is a task not easily fulfilled. The existing catalogues of strong historical earthquakes are useful tools to perform general SHA studies. However, a variety of supporting datasets, non-uniformly distributed in space and time, need to be further investigated. In the present paper, a review of historical earthquake studies in Greece is attempted. The seismic history of the country is divided into four main periods. In each one of them, characteristic examples, studies and approaches are presented.

  5. 13 CFR 120.174 - Earthquake hazards.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  6. Comment on "Fractal analysis of ULF electromagnetic emissions in possible association with earthquakes in China" by Ida et al. (2012

    Directory of Open Access Journals (Sweden)

    F. Masci

    2013-06-01

    Full Text Available Ida et al. (2012 identified anomalous decreases in the fractal dimension of the vertical (Z component of the geomagnetic field, which they interpreted as precursors to the China earthquake of 1 September 2003. According to Ida et al. (2012, short-term earthquake prediction seems to be possible only by using electromagnetic phenomena. Here, it is shown that the decreases of the fractal dimension documented by Ida et al. (2012 are not really anomalous, but they are part of the normal geomagnetic activity driven by solar–terrestrial interactions. As a consequence, these fractal dimension decreases are not related to the 1 September 2003 earthquake.

  7. Understanding intraplate earthquakes in Sweden: the where and why

    Science.gov (United States)

    Lund, Björn; Tryggvason, Ari; Chan, NeXun; Högdahl, Karin; Buhcheva, Darina; Bödvarsson, Reynir

    2016-04-01

    The Swedish National Seismic Network (SNSN) underwent a rapid expansion and modernization between the years 2000 - 2010. The number of stations increased from 6 to 65, all broadband or semi-broadband with higher than standard sensitivity and all transmitting data in real-time. This has lead to a significant increase in the number of detected earthquakes, with the magnitude of completeness being approximately ML 0.5 within the network. During the last 15 years some 7,300 earthquakes have been detected and located, which can be compared to the approximately 1,800 earthquakes in the Swedish catalog from 1375 to 1999. We have used the recent earthquake catalog and various antropogenic sources (e.g. mine blasts, quarry blasts and infrastructure construction blast) to derive low resolution 3D P- and S-wave velocity models for entire Sweden. Including the blasts provides a more even geographical distribution of sources as well as good constraints on the locations. The resolution of the derived velocity models is in the 20 km range in the well resolved areas. A fairly robust feature observed in the Vp/Vs ratio of the derived models is a difference between the Paleoproterozoic rocks belonging to the TIB (Transscanidinavian Igneous Belt) and the Svecofennian rocks east and north of this region (a Vp/Vs ratio about 1.72 prevail in the former compared to a value below 1.70 in the latter) at depths down to 15 km. All earthquakes occurring since 2000 have been relocated in the 3D velocity model. The results show very clear differences in how earthquakes occur in different parts of Sweden. In the north, north of approximately 64 degrees latitude, most earthquakes occur on or in the vicinity of the Holocene postglacial faults. From 64N to approximately 60N earthquake activity is concentrated along the northeast coast line, with some relation to the offset in the bedrock from the onshore area to the offshore Bay of Bothnia. In southern Sweden earthquake activity is more widely

  8. Problems of reliability in earthquake parameters determination from historicaI records

    Directory of Open Access Journals (Sweden)

    G. Monachesi

    1996-06-01

    Full Text Available Earthquake parameters determination from macroseismic data is a procedure, the reliability of whose results can be impaired by many problems related to quality, number and distribution of data. Such problems are common with ancient, sketchily documented events, but can affect even comparatively recent earthquakes. This paper presents some cases of Central Italy earthquakes, the determination of whose epicentral parameters involved problems of reliability. Not all problems can ever be completely solved. It is therefore necessary to devise ways for putting on record the uncertainty of the resulting parameters, so that future users can be aware of them.

  9. Application of consequence-based design criteria in regions of moderate seismicity

    Institute of Scientific and Technical Information of China (English)

    胡聿贤

    2003-01-01

    Current design criteria and principles of earthquake engineering design are reviewed, including safety factors, probabilistic approach, and two-level and multi-level functional design ideas. The modern multi-functional idea is discussed in greater details. When designing a structure, its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance, ranging usually from 1.0 to 1.5. This paper suggests a method of "consequence-based design," which considers the consequences of malfunctioning instead of simply an importance factor. The main argument for this method is that damage to a structure located in different types of societies may have very different consequences, which are dependant on its value and usefulness to the society and the seismicity in the region.

  10. Coupling geodynamic earthquake cycles and dynamic ruptures

    Science.gov (United States)

    van Zelst, Iris; van Dinther, Ylona; Gabriel, Alice-Agnes; Heuret, Arnauld

    2016-04-01

    Studying the seismicity in a subduction zone and its effects on tsunamis requires diverse modelling methods that span spatial and temporal scales. Hundreds of years are necessary to build the stresses and strengths on a fault, while consequent earthquake rupture propagation is determined by both these initial fault conditions and the feedback of seismic waves over periods of seconds up to minutes. This dynamic rupture displaces the sea floor, thereby causing tsunamis. The aim of the ASCETE (Advanced Simulations of Coupled Earthquake and Tsunami Events) project is to study all these aspects and their interactions. Here, we present preliminary results of the first aspects in this modelling chain: the coupling of a seismo-thermo-mechanical (STM) code to the dynamic rupture model SeisSol. STM models of earthquake cycles have the advantage of solving multiple earthquake events in a self-consistent manner concerning stress, strength and geometry. However, the drawback of these models is that they often lack in spatial or temporal resolution and do not include wave propagation. In contrast, dynamic rupture models solve for frictional failure coupled to seismic wave propagation. We use the software package SeisSol (www.seissol.org) based on an ADER-DG discretization allowing high-order accuracy in space and time as well as flexible tetrahedral meshing. However, such simulations require assumptions on the initial fault stresses and strengths and its geometry, which are hard to constrain due to the lack of near-field observations and the complexity of coseismic conditions. By adapting the geometry as well as the stress and strength properties of the self-consistently developing non-finite fault zones from the geodynamic models as initial conditions for the dynamic rupture models, the advantages of both methods are exploited and modelling results may be compared. Our results show that a dynamic rupture can be triggered spontaneously and that the propagating rupture is

  11. Nice numbers

    CERN Document Server

    Barnes, John

    2016-01-01

    In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...

  12. Earthquake Education in Prime Time

    Science.gov (United States)

    de Groot, R.; Abbott, P.; Benthien, M.

    2004-12-01

    Since 2001, the Southern California Earthquake Center (SCEC) has collaborated on several video production projects that feature important topics related to earthquake science, engineering, and preparedness. These projects have also fostered many fruitful and sustained partnerships with a variety of organizations that have a stake in hazard education and preparedness. The Seismic Sleuths educational video first appeared in the spring season 2001 on Discovery Channel's Assignment Discovery. Seismic Sleuths is based on a highly successful curriculum package developed jointly by the American Geophysical Union and The Department of Homeland Security Federal Emergency Management Agency. The California Earthquake Authority (CEA) and the Institute for Business and Home Safety supported the video project. Summer Productions, a company with a reputation for quality science programming, produced the Seismic Sleuths program in close partnership with scientists, engineers, and preparedness experts. The program has aired on the National Geographic Channel as recently as Fall 2004. Currently, SCEC is collaborating with Pat Abbott, a geology professor at San Diego State University (SDSU) on the video project Written In Stone: Earthquake Country - Los Angeles. Partners on this project include the California Seismic Safety Commission, SDSU, SCEC, CEA, and the Insurance Information Network of California. This video incorporates live-action demonstrations, vivid animations, and a compelling host (Abbott) to tell the story about earthquakes in the Los Angeles region. The Written in Stone team has also developed a comprehensive educator package that includes the video, maps, lesson plans, and other supporting materials. We will present the process that facilitates the creation of visually effective, factually accurate, and entertaining video programs. We acknowledge the need to have a broad understanding of the literature related to communication, media studies, science education, and

  13. Scaling relation for earthquake networks

    CERN Document Server

    Abe, Sumiyoshi

    2008-01-01

    The scaling relation derived by Dorogovtsev, Goltsev, Mendes and Samukhin [Phys. Rev. E, 68 (2003) 046109] states that the exponents of the power-law connectivity distribution, gamma, and the power-law eigenvalue distribution of the adjacency matrix, delta, of a locally treelike scale-free network satisfy 2*gamma - delta = 1 in the mean field approximation. Here, it is shown that this relation holds well for the reduced simple earthquake networks (without tadpole-loops and multiple edges) constructed from the seismic data taken from California and Japan. The result is interpreted from the viewpoint of the hierarchical organization of the earthquake networks.

  14. Computational methods in earthquake engineering

    CERN Document Server

    Plevris, Vagelis; Lagaros, Nikos

    2017-01-01

    This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance. .

  15. Earthquakes triggered by fluid extraction

    Science.gov (United States)

    Segall, P.

    1989-01-01

    Seismicity is correlated in space and time with production from some oil and gas fields where pore pressures have declined by several tens of megapascals. Reverse faulting has occurred both above and below petroleum reservoirs, and normal faulting has occurred on the flanks of at least one reservoir. The theory of poroelasticity requires that fluid extraction locally alter the state of stress. Calculations with simple geometries predict stress perturbations that are consistent with observed earthquake locations and focal mechanisms. Measurements of surface displacement and strain, pore pressure, stress, and poroelastic rock properties in such areas could be used to test theoretical predictions and improve our understanding of earthquake mechanics. -Author

  16. Earthquake Hazard and Risk in Alaska

    Science.gov (United States)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  17. Were the 1952 Kern County and 1933 Long Beach, California, Earthquakes Induced?

    Science.gov (United States)

    Hough, S. E.; Tsai, V. C.; Walker, R. L., II; Page, M. T.; Aminzadeh, F.

    2016-12-01

    Several recent studies have presented evidence that significant induced earthquakes occurred in a number of regions during the 20th century related to either production or early wastewater injection. We consider whether the Mw6.4 Long Beach and Mw7.3 1952 Kern County earthquakes might have been induced by production in the Huntington Beach and Wheeler Ridge oil fields, respectively. The Long Beach earthquake occurred within 9 months of the start of directional drilling that first exploited offshore tideland reserves at depths of ≈1200 m; the well location was within ≈3 km of the event epicenter. The Kern County earthquake occurred 111 days following the first exploitation of deep Eocene production horizons within the Wheeler Ridge field at depths reaching 3 km, within ≈1 km of the White Wolf fault (WWF); the epicenter of this earthquake is poorly constrained but the preferred epicenter is within ≈7 km of the well. While production in the Wheeler Ridge field would have reduced pore pressure, likely inhibiting failure on the WWF assuming a Coulomb failure criteria, we present a model based on analytical solutions with model parameters constrained from detailed industry data, whereby direct pore pressure effects were blocked by a normal fault that created an impermeable barrier close to the WWF, allowing the normal stress change associated with production to dominate, thereby promoting failure by unclamping the fault. Our proposed triggering mechanism is consistent with the observation that significant earthquakes are only rarely induced by production in proximity to major faults. Our results also suggest that significant induced earthquakes in southern California during the early 20th century might have been associated with industry practices that are no longer employed (i.e., production without water re-injection). The occurrence of significant earthquakes during the earthquake 20th century therefore does not necessarily imply a high likely of induced

  18. Earthquake-triggered landslides along the Hyblean-Malta Escarpment (off Augusta, eastern Sicily, Italy) - assessment of the related tsunamigenic potential

    Science.gov (United States)

    Ausilia Paparo, Maria; Armigliato, Alberto; Pagnoni, Gianluca; Zaniboni, Filippo; Tinti, Stefano

    2017-02-01

    Eastern Sicily is affected by earthquakes and tsunamis of local and remote origin, which is known through numerous historical chronicles. Recent studies have put emphasis on the role of submarine landslides as the direct cause of the main local tsunamis, envisaging that earthquakes (in 1693 and 1908) did produce a tsunami, but also that they triggered mass failures that were able to generate an even larger tsunami. The debate is still open, and though no general consensus has been found among scientists so far, this research had the merit to attract attention on possible generation of tsunamis by landslides off Sicily. In this paper we investigate the tsunami potential of mass failures along one sector of the Hyblean-Malta Escarpment (HME). facing Augusta. The HME is the main offshore geological structure of the region running almost parallel to the coast, off eastern Sicily. Here, bottom morphology and slope steepness favour soil failures. In our work we study slope stability under seismic load along a number of HME transects by using the Minimun Lithostatic Deviation (MLD) method, which is based on the limit-equilibrium theory. The main goal is to identify sectors of the HME that could be unstable under the effect of realistic earthquakes. We estimate the possible landslide volume and use it as input for numerical codes to simulate the landslide motion and the consequent tsunami. This is an important step for the assessment of the tsunami hazard in eastern Sicily and for local tsunami mitigation policies. It is also important in view of tsunami warning system since it can help to identify the minimum earthquake magnitude capable of triggering destructive tsunamis induced by landslides, and therefore to set up appropriate knowledge-based criteria to launch alert to the population.

  19. Phenomenological consequences of supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I.; Littenberg, L.

    1982-01-01

    This report deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. It is concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/anti K/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed. The report is organized as follows. Section I consists of a brief review of supersymmetry and the salient features of existing supersymmetric models; this section can be ignored by those familiar with such models since it contains nothing new. Section 2 deals with the consequences for nucleon decay of SUSY. The remaining sections then discuss the physics possibilities of various machines; e anti e in Section 3, ep in Section 4, pp (or anti pp) colliders in Section 5 and fixed target hadron machines in Section 6.

  20. Fault Orientation Determination for the 4 March 2008 Taoyuan Earthquake from Dense Near-Source Seismic Observations

    Directory of Open Access Journals (Sweden)

    Min-Hung Shih

    2014-01-01

    Full Text Available On 4 March 2008, a moderate earthquake (ML = 5.2 occurred in southern Taiwan and named as the Taoyuan earthquake, preceded by foreshocks and followed by numerous aftershocks. This earthquake sequence occurred during the TAIGER (TAiwan Integrated GEodynamics Research controlled-source seismic experiment. Consequently, several seismic networks were deployed in the Taiwan area at this time and many stations recorded this earthquake sequence in the near-source region. We archived and processed near-source observations to determine the fault orientation. To locate the events more accurately, station corrections, waveform cross-correlation to pick seismic phases, and a double-difference earthquake location algorithm were used to compute earthquake hypocenters. Over a 50-hour recording period, beginning half an hour before the start of the main shock, 2340 events were identified within the earthquake sequence. The identified aftershocks reveal a clear fault plane with a strike of N37°EN37°E and a dip of 45°SE.45°SE. This plane corresponds to one of the focal mechanism nodal planes determined by the Broadband Array in Taiwan for Seismology (BATS (strike = 37°,37°, dip = 48°,48°, and rake = 96°.96°. Based on the main shock focal mechanism, the aftershock distribution, and the regional geological reports, we suggest that faulting on the northern extension of the major regional active fault, the Chishan Fault, caused the Taoyuan earthquake sequence.

  1. Dancing Earthquake Science Assists Recovery from the Christchurch Earthquakes

    Science.gov (United States)

    Egan, Candice J.; Quigley, Mark C.

    2015-01-01

    The 2010-2012 Christchurch (Canterbury) earthquakes in New Zealand caused loss of life and psychological distress in residents throughout the region. In 2011, student dancers of the Hagley Dance Company and dance professionals choreographed the performance "Move: A Seismic Journey" for the Christchurch Body Festival that explored…

  2. Dancing Earthquake Science Assists Recovery from the Christchurch Earthquakes

    Science.gov (United States)

    Egan, Candice J.; Quigley, Mark C.

    2015-01-01

    The 2010-2012 Christchurch (Canterbury) earthquakes in New Zealand caused loss of life and psychological distress in residents throughout the region. In 2011, student dancers of the Hagley Dance Company and dance professionals choreographed the performance "Move: A Seismic Journey" for the Christchurch Body Festival that explored…

  3. Complex networks of earthquakes and aftershocks

    CERN Document Server

    Baiesi, M; Baiesi, Marco; Paczuski, Maya

    2004-01-01

    We invoke a metric to quantify the correlation between any two earthquakes. This provides a simple and straightforward alternative to using space-time windows to detect aftershock sequences and obviates the need to distinguish main shocks from aftershocks. Directed networks of earthquakes are constructed by placing a link, directed from the past to the future, between pairs of events that are strongly correlated. Each link has a weight giving the relative strength of correlation such that the sum over the incoming links to any node equals unity for aftershocks, or zero if the event had no correlated predecessors. Events can be aftershocks of many previous events, and also generate many aftershocks. The probability distribution for the number of incoming and outgoing links are both scale free, and the networks are highly clustered and modular. The Omori law holds for aftershock rates with a decorrelation time that grows with the magnitude of the initiating shock. Another scaling law is found for the fat-tailed...

  4. @INGVterremoti: Tweeting the Automatic Detection of Earthquakes

    Science.gov (United States)

    Casarotti, E.; Amato, A.; Comunello, F.; Lauciani, V.; Nostro, C.; Polidoro, P.

    2014-12-01

    The use of social media is emerging as a powerful tool fordisseminating trusted information about earthquakes. Since 2009, theTwitter account @INGVterremoti provides constant and timely detailsabout M2+ seismic events detected by the Italian National SeismicNetwork, directly connected with the seismologists on duty at IstitutoNazionale di Geofisica e Vulcanologia (INGV). After the 2012 seismicsequence, the account has been awarded by a national prize as the"most useful Twitter account". Currently, it updates more than 110,000followers (one the first 50 Italian Twitter accounts for number offollowers). Nevertheless, since it provides only the manual revisionof seismic parameters, the timing (approximately between 10 and 20minutes after an event) has started to be under evaluation.Undeniably, mobile internet, social network sites and Twitter in particularrequire a more rapid and "real-time" reaction.During the last 18 months, INGV tested the tweeting of the automaticdetection of M3+ earthquakes, obtaining results reliable enough to bereleased openly 1 or 2 minutes after a seismic event. During the summerof 2014, INGV, with the collaboration of CORIS (Department ofCommunication and Social Research, Sapienza University of Rome),involved the followers of @INGVterremoti and citizens, carrying out aquali-quantitative study (through in-depth interviews and a websurvey) in order to evaluate the best format to deliver suchinformation. In this presentation we will illustrate the results of the reliability test and theanalysis of the survey.

  5. The Uses of Dynamic Earthquake Triggering

    Science.gov (United States)

    Brodsky, Emily E.; van der Elst, Nicholas J.

    2014-05-01

    Dynamic triggering of earthquakes by seismic waves is a robustly observed phenomenon with well-documented examples from over 30 major earthquakes. We are now in a position to use dynamic triggering as a natural experiment to probe the reaction of faults to the known stresses from seismic waves. We show here that dynamic triggering can be used to investigate the distribution of stresses required for failure on faults. In some regions, faults appear to be uniformly distributed over their loading cycles with equal numbers at all possible stresses from failure. Regions under tectonic extension, at the interface between locked and creeping faults, or subject to anthropogenic forcing are most prone to triggered failure. Predictions of future seismicity rates based on seismic wave amplitudes are theoretically possible and may provide similar results to purely stochastic prediction schemes. The underlying mechanisms of dynamic triggering are still unknown. The prolonged triggered sequences require a multistage process such as shear failure from rate-state friction coupled to aseismic creep or continued triggering through a secondary cascade. Permeability enhancement leading to drainage or pore pressure redistribution on faults is an alternative possibility.

  6. Gambling scores for earthquake predictions and forecasts

    Science.gov (United States)

    Zhuang, Jiancang

    2010-04-01

    This paper presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points betted by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  7. Tweeting Earthquakes using TensorFlow

    Science.gov (United States)

    Casarotti, E.; Comunello, F.; Magnoni, F.

    2016-12-01

    The use of social media is emerging as a powerful tool for disseminating trusted information about earthquakes. Since 2009, the Twitter account @INGVterremoti provides constant and timely details about M2+ seismic events detected by the Italian National Seismic Network, directly connected with the seismologists on duty at Istituto Nazionale di Geofisica e Vulcanologia (INGV). Currently, it updates more than 150,000 followers. Nevertheless, since it provides only the manual revision of seismic parameters, the timing (approximately between 10 and 20 minutes after an event) has started to be under evaluation. Undeniably, mobile internet, social network sites and Twitter in particular require a more rapid and "real-time" reaction. During the last 36 months, INGV tested the tweeting of the automatic detection of M3+ earthquakes, studying the reliability of the information both in term of seismological accuracy that from the point of view of communication and social research. A set of quality parameters (i.e. number of seismic stations, gap, relative error of the location) has been recognized to reduce false alarms and the uncertainty of the automatic detection. We present an experiment to further improve the reliability of this process using TensorFlow™ (an open source software library originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization).

  8. The excitation of tsunamis by deep earthquakes

    Science.gov (United States)

    Okal, Emile A.

    2017-04-01

    Motivated by the detection of a millimetric tsunami following the deep earthquake of 2013 May 24 in the Sea of Okhotsk (depth 603 km; record moment M0 = 3.95 × 1028 dyn cm), we present a number of theoretical studies of the influence of source depth, zs, on the excitation of tsunamis by dislocation sources. In the framework of the static deformation of an elastic half-space, we show that the energy available for tsunami excitation by a seismic source whose depth is significantly greater than source dimensions is expected to vary as M_0^2/z_{{s}}^2, in contrast to the classical scaling as M_0^{4/3} for shallow sources. This is verified by numerical simulations based on the MOST algorithm, which also confirm the interpretation of the millimetric signals observed on DART sensors during the 2013 event. The normal-mode formalism, which considers tsunamis as a special branch of the spheroidal oscillations of the Earth in the presence of a water layer at its surface, also predicts an M_0^2/z_{{s}}^2 scaling for point source double-couples, and confirms millimetric amplitudes in the geometry of the DART buoys having recorded the 2013 Okhotsk tsunami. A general investigation of potential tsunami excitation as a function of depth for realistic intermediate and deep sources suggests the admittedly remote possibility of damaging events if deep earthquakes even greater than the 2013 event could occur at the bottom of Wadati-Benioff zones.

  9. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  10. Transcendental numbers

    CERN Document Server

    Murty, M Ram

    2014-01-01

    This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.

  11. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.

    2004-01-01

    the 2003 damage was caused by lateral spreading in two separate areas, one near Norswing Drive and the other near Juanita Avenue. The areas coincided with areas with the highest liquefaction potential found in Oceano. Areas with site amplification conditions similar to those in Oceano are particularly vulnerable to earthquakes. Site amplification may cause shaking from distant earthquakes, which normally would not cause damage, to increase locally to damaging levels. The vulnerability in Oceano is compounded by the widespread distribution of highly liquefiable soils that will reliquefy when ground shaking is amplified as it was during the San Simeon earthquake. The experience in Oceano can be expected to repeat because the region has many active faults capable of generating large earthquakes. In addition, liquefaction and lateral spreading will be more extensive for moderate-size earthquakes that are closer to Oceano than was the 2003 San Simeon earthquake. Site amplification and liquefaction can be mitigated. Shaking is typically mitigated in California by adopting and enforcing up-to-date building codes. Although not a guarantee of safety, application of these codes ensures that the best practice is used in construction. Building codes, however, do not always require the upgrading of older structures to new code requirements. Consequently, many older structures may not be as resistant to earthquake shaking as new ones. For older structures, retrofitting is required to bring them up to code. Seismic provisions in codes also generally do not apply to nonstructural elements such as drywall, heating systems, and shelving. Frequently, nonstructural damage dominates the earthquake loss. Mitigation of potential liquefaction in Oceano presently is voluntary for existing buildings, but required by San Luis Obispo County for new construction. Multiple mitigation procedures are available to individual property owners. These procedures typically involve either

  12. Numerical Simulation of Stress evolution and earthquake sequence of the Tibetan Plateau

    Science.gov (United States)

    Dong, Peiyu; Hu, Caibo; Shi, Yaolin

    2015-04-01

    lower than certain value. For locations where large earthquakes occurred during the 110 years, the initial stresses can be inverted if the strength is estimated and the tectonic loading is assumed constant. Therefore, although initial stress state is unknown, we can try to make estimate of a range of it. In this study, we estimated a reasonable range of initial stress, and then based on Coulomb-Mohr criterion to regenerate the earthquake sequence, starting from the Daofu earthquake of 1904. We calculated the stress field evolution of the sequence, considering both the tectonic loading and interaction between the earthquakes. Ultimately we got a sketch of the present stress. Of course, a single model with certain initial stress is just one possible model. Consequently the potential seismic hazards distribution based on a single model is not convincing. We made test on hundreds of possible initial stress state, all of them can produce the historical earthquake sequence occurred, and summarized all kinds of calculated probabilities of the future seismic activity. Although we cannot provide the exact state in the future, but we can narrow the estimate of regions where is in high probability of risk. Our primary results indicate that the Xianshuihe fault and adjacent area is one of such zones with higher risk than other regions in the future. During 2014, there were 6 earthquakes (M > 5.0) happened in this region, which correspond with our result in some degree. We emphasized the importance of the initial stress field for the earthquake sequence, and provided a probabilistic assessment for future seismic hazards. This study may bring some new insights to estimate the initial stress, earthquake triggering, and the stress field evolution .

  13. Chernobyl: what sanitary consequences?; Tchernobyl: quelles consequences sanitaires?

    Energy Technology Data Exchange (ETDEWEB)

    Aurengo, A. [Assistance Publique, Hopitaux de Parix (AP-HP), 75 - Paris (France)

    2001-11-01

    Because of its public health, ecological and industrial consequences, the Chernobyl accident has become a myth which serves as the focus of many fears, justified or not. no one can question the seriousness of the event, but after fifteen years there is still no agreement about the effect it has had or will have on public health. For example, the total number of deaths attributed to Chernobyl varies from less than a hundred to several millions and congenital malformations from negligible to cataclysmic. Effects on public health may be calculated from data on contamination, from the dose received and from the risk, all three of which are likely to be very roughly known; or they may be evaluated on the spot, either by epidemiological studies or by examining medical registers. This report makes an inventory of the different risks and takes stock on them. (N.C.)

  14. Aftershock Characteristics as a Means of Discriminating Explosions from Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2009-05-20

    The behavior of aftershock sequences around the Nevada Test Site in the southern Great Basin is characterized as a potential discriminant between explosions and earthquakes. The aftershock model designed by Reasenberg and Jones (1989, 1994) allows for a probabilistic statement of earthquake-like aftershock behavior at any time after the mainshock. We use this model to define two types of aftershock discriminants. The first defines M{sub X}, or the minimum magnitude of an aftershock expected within a given duration after the mainshock with probability X. Of the 67 earthquakes with M > 4 in the study region, 63 of them produce an aftershock greater than M{sub 99} within the first seven days after a mainshock. This is contrasted with only six of 93 explosions with M > 4 that produce an aftershock greater than M{sub 99} for the same period. If the aftershock magnitude threshold is lowered and the M{sub 90} criteria is used, then no explosions produce an aftershock greater than M{sub 90} for durations that end more than 17 days after the mainshock. The other discriminant defines N{sub X}, or the minimum cumulative number of aftershocks expected for given time after the mainshock with probability X. Similar to the aftershock magnitude discriminant, five earthquakes do not produce more aftershocks than N{sub 99} within 7 days after the mainshock. However, within the same period all but one explosion produce less aftershocks then N{sub 99}. One explosion is added if the duration is shortened to two days after than mainshock. The cumulative number aftershock discriminant is more reliable, especially at short durations, but requires a low magnitude of completeness for the given earthquake catalog. These results at NTS are quite promising and should be evaluated at other nuclear test sites to understand the effects of differences in the geologic setting and nuclear testing practices on its performance.

  15. Proactive vs. reactive learning on buildings response and earthquake risks, in schools of Romania

    Directory of Open Access Journals (Sweden)

    Daniela DOBRE

    2015-07-01

    Full Text Available During the last 20 years, many specific activities of earthquake education and preparedness were initiated and supported in Romania by drafting materials for citizens, students, professors etc. (Georgescu et al., 2004, 2006. The education, training and information on earthquake disaster potential are important factors to mitigate the earthquake effects. Such activities, however, need time to be developed and may take different forms of presentation in order to capture the attention, to increase interest, to develop skills and attitudes in order to induce a proper behavior towards safety preparedness. It shall also be based on the accumulation of concerns and knowledge, which are, in principle, a consequence of the motivation, but which depend on the methods applied and actions taken for efficient earthquake preparedness, assessed and updated following actual earthquakes (Masuda, Midorikawa, Miki and Ohmachi, 1988. We are now at a crossroad and the proactive attitude and behavior (anticipative and participative needs to be extended in learning, within institutional framework, but correlated with the usual targets of schools and teenagers proactive issue (ROEDUSEIS-NET; Page and Page, 2003, by encouraging students in activities closer to earthquake engineering.

  16. Morphogenic Uncertainties of the 2008 Wenchuan Earthquake:Generating or Reducing?

    Institute of Scientific and Technical Information of China (English)

    Zhikun Ren; Zhuqi Zhang; Jinhui Yin; Fuchu Dai; Huiping Zhang

    2014-01-01

    Landscape evolution in active orogen region is inevitably affected by landslides associ-ated with strong earthquakes, rain or storm. However, quantitative studies of the orogenic or eroded volumes are rarely demonstrated. The 2008 Wenchuan Earthquake triggered serious landsliding, con-sequently, a large amount of landslide material. However, the landslide volume is estimated mainly on the landslides areas interpreted in their semi-automated landslide mapping algorithm. However, the total volume of landslides triggered by the Wenchuan Earthquake amounts to 5-10 times bigger than the expected upper bound according to the empirical correlation between“total landslide volume”and“moment magnitude”. Here we show that the total landslide volume estimation has large uncertainties to be used to determine whether the Wenchuan Earthquake generates or reduces relief. Thus, the widely held view that large dip-slip and oblique-slip earthquakes build mountainous topography may still be applicable to the Wenchuan Earthquake in Longmen Shan area. To challenge this view, simple landslide volume and co-seismic uplift comparison is not enough, i.e., more data are needed.

  17. Automatic earthquake confirmation for early warning system

    Science.gov (United States)

    Kuyuk, H. S.; Colombelli, S.; Zollo, A.; Allen, R. M.; Erdik, M. O.

    2015-07-01

    Earthquake early warning studies are shifting real-time seismology in earthquake science. They provide methods to rapidly assess earthquakes to predict damaging ground shaking. Preventing false alarms from these systems is key. Here we developed a simple, robust algorithm, Authorizing GRound shaking for Earthquake Early warning Systems (AGREEs), to reduce falsely issued alarms. This is a network threshold-based algorithm, which differs from existing approaches based on apparent velocity of P and S waves. AGREEs is designed to function as an external module to support existing earthquake early warning systems (EEWSs) and filters out the false events, by evaluating actual shaking near the epicenter. Our retrospective analyses of the 2009 L'Aquila and 2012 Emilia earthquakes show that AGREEs could help an EEWS by confirming the epicentral intensity. Furthermore, AGREEs is able to effectively identify three false events due to a storm, a teleseismic earthquake, and broken sensors in Irpinia Seismic Network, Italy.

  18. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  19. Numbers, Please!

    Science.gov (United States)

    Thelin, John R.

    2013-01-01

    What topic would you choose if you had the luxury of writing forever? In this article, John Thelin provides his response: He would opt to write about the history of higher education in a way that relies on quantitative data. "Numbers, please!" is his research request in taking on a longitudinal study of colleges and universities over…

  20. Numbers, Please!

    Science.gov (United States)

    Thelin, John R.

    2013-01-01

    What topic would you choose if you had the luxury of writing forever? In this article, John Thelin provides his response: He would opt to write about the history of higher education in a way that relies on quantitative data. "Numbers, please!" is his research request in taking on a longitudinal study of colleges and universities over…

  1. Negative Numbers

    Science.gov (United States)

    Galbraith, Mary J.

    1974-01-01

    Examination of models for representing integers demonstrates that formal operational thought is required for establishing the operations on integers. Advocated is the use of many models for introducing negative numbers but, apart from addition, it is recommended that operations on integers be delayed until the formal operations stage. (JP)

  2. Rapid estimate of earthquake source duration: application to tsunami warning.

    Science.gov (United States)

    Reymond, Dominique; Jamelot, Anthony; Hyvernaud, Olivier

    2016-04-01

    We present a method for estimating the source duration of the fault rupture, based on the high-frequency envelop of teleseismic P-Waves, inspired from the original work of (Ni et al., 2005). The main interest of the knowledge of this seismic parameter is to detect abnormal low velocity ruptures that are the characteristic of the so called 'tsunami-earthquake' (Kanamori, 1972). The validation of the results of source duration estimated by this method are compared with two other independent methods : the estimated duration obtained by the Wphase inversion (Kanamori and Rivera, 2008, Duputel et al., 2012) and the duration calculated by the SCARDEC process that determines the source time function (M. Vallée et al., 2011). The estimated source duration is also confronted to the slowness discriminant defined by Newman and Okal, 1998), that is calculated routinely for all earthquakes detected by our tsunami warning process (named PDFM2, Preliminary Determination of Focal Mechanism, (Clément and Reymond, 2014)). Concerning the point of view of operational tsunami warning, the numerical simulations of tsunami are deeply dependent on the source estimation: better is the source estimation, better will be the tsunami forecast. The source duration is not directly injected in the numerical simulations of tsunami, because the cinematic of the source is presently totally ignored (Jamelot and Reymond, 2015). But in the case of a tsunami-earthquake that occurs in the shallower part of the subduction zone, we have to consider a source in a medium of low rigidity modulus; consequently, for a given seismic moment, the source dimensions will be decreased while the slip distribution increased, like a 'compact' source (Okal, Hébert, 2007). Inversely, a rapid 'snappy' earthquake that has a poor tsunami excitation power, will be characterized by higher rigidity modulus, and will produce weaker displacement and lesser source dimensions than 'normal' earthquake. References: CLément, J

  3. The Value, Protocols, and Scientific Ethics of Earthquake Forecasting

    Science.gov (United States)

    Jordan, Thomas H.

    2013-04-01

    Earthquakes are different from other common natural hazards because precursory signals diagnostic of the magnitude, location, and time of impending seismic events have not yet been found. Consequently, the short-term, localized prediction of large earthquakes at high probabilities with low error rates (false alarms and failures-to-predict) is not yet feasible. An alternative is short-term probabilistic forecasting based on empirical statistical models of seismic clustering. During periods of high seismic activity, short-term earthquake forecasts can attain prospective probability gains up to 1000 relative to long-term forecasts. The value of such information is by no means clear, however, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing operational forecasting protocols in this sort of "low-probability environment." This paper will explore the complex interrelations among the valuation of low-probability earthquake forecasting, which must account for social intangibles; the protocols of operational forecasting, which must factor in large uncertainties; and the ethics that guide scientists as participants in the forecasting process, who must honor scientific principles without doing harm. Earthquake forecasts possess no intrinsic societal value; rather, they acquire value through their ability to influence decisions made by users seeking to mitigate seismic risk and improve community resilience to earthquake disasters. According to the recommendations of the International Commission on Earthquake Forecasting (www.annalsofgeophysics.eu/index.php/annals/article/view/5350), operational forecasting systems should appropriately separate the hazard-estimation role of scientists from the decision-making role of civil protection authorities and individuals. They should

  4. Lifecycle Problems in Consequence Estimation

    Directory of Open Access Journals (Sweden)

    Lehman William

    2016-01-01

    Full Text Available The United States Army Corps of Engineers (USACE guidance documents require economists and planners to meet a very high standard when evaluating consequences resulting from flood events. The guidance documents require analysts to evaluate how government action changes the consequences over time, in addition to evaluating how government inaction changes consequences over time as well. Corps guidance (Engineering Regulation 1105-2-100, Section 2-3.c.4 and Engineering Regulation 1105-2-100, Section 2-3.b respectively require the evaluation of direct and indirect economic impacts, life risk impacts, and agricultural impacts for both current conditions and future most likely conditions across a range of alternatives. Evaluating the potential for impacts from flooding across time, and how time impacts their existence or vulnerability, is considered a “lifecycle approach”. Little to no guidance is available on the process of calculating this “lifecycle approach” regarding changes in the value and number of assets within the floodplain over time. Performing a lifecycle analysis of a project over durations from 30 to 100 years, depending on the project purpose, requires evaluation of the changes in human behavior caused by changes in the floodplain such as reconstruction of structures, maintenance of structures, construction of new structures, population growth, and what type of structures are being built within the study area. This type of evaluation is not fully supported by most of the software programs utilized for flood risk management in the planning context. This paper is intended to describe pros and cons of economic lifecycle evaluation techniques to address the needs stated by policy, and tools that are being developed to support this analysis.

  5. Coping with the challenges of early disaster response: 24 years of field hospital experience after earthquakes.

    Science.gov (United States)

    Bar-On, Elhanan; Abargel, Avi; Peleg, Kobi; Kreiss, Yitshak

    2013-10-01

    To propose strategies and recommendations for future planning and deployment of field hospitals after earthquakes by comparing the experience of 4 field hospitals deployed by The Israel Defense Forces (IDF) Medical Corps in Armenia, Turkey, India and Haiti. Quantitative data regarding the earthquakes were collected from published sources; data regarding hospital activity were collected from IDF records; and qualitative information was obtained from structured interviews with key figures involved in the missions. The hospitals started operating between 89 and 262 hours after the earthquakes. Their sizes ranged from 25 to 72 beds, and their personnel numbered between 34 and 100. The number of patients treated varied from 1111 to 2400. The proportion of earthquake-related diagnoses ranged from 28% to 67% (P earthquakes, patient caseload and treatment requirements varied widely. The variables affecting the patient profile most significantly were time until deployment, total number of injured, availability of adjacent medical facilities, and possibility of evacuation from the disaster area. When deploying a field hospital in the early phase after an earthquake, a wide variability in patient caseload should be anticipated. Customization is difficult due to the paucity of information. Therefore, early deployment necessitates full logistic self-sufficiency and operational versatility. Also, collaboration with local and international medical teams can greatly enhance treatment capabilities.

  6. Landslides triggered by the 1946 Ancash earthquake, Peru

    Science.gov (United States)

    Kampherm, T. S.; Evans, S. G.; Valderrama Murillo, P.

    2009-04-01

    The 1946 M7.3 Ancash Earthquake triggered a large number of landslides in an epicentral area that straddled the Continental Divide of South America in the Andes of Peru. A small number of landslides were described in reconnaissance reports by E. Silgado and Arnold Heim published shortly after the earthquake, but further details of the landslides triggered by the earthquake have not been reported since. Utilising field traverses, aerial photograph interpretation and GIS, our study mapped 45 landslides inferred to have been triggered by the event. 83% were rock avalanches involving Cretaceous limestones interbedded with shales. The five largest rock/debris avalanches occurred at Rio Llama (est. vol. 37 M m3), Suytucocha (est. vol., 13.5 Mm3), Quiches (est. vol. 10.5 Mm3 ), Pelagatos (est. vol. 8 Mm3), and Shundoy (est. vol. 8 Mm3). The Suytucocha, Quiches, and Pelagatos landslides were reported by Silgado and Heim. Rock slope failure was most common on slopes with a southwest aspect, an orientation corresponding to the regional dip direction of major planar structures in the Andean foreland belt (bedding planes and thrust faults). In valleys oriented transverse to the NW-SE structural grain of the epicentral area, south-westerly dipping bedding planes combined with orthogonal joint sets to form numerous wedge failures. Many initial rock slope failures were transformed into rock/debris avalanches by the entrainment of colluvium in their path. At Acobamba, a rock avalanche that transformed into a debris avalanche (est. vol. 4.3 Mm3) overwhelmed a village resulting in the deaths of 217 people. The cumulative volume-frequency plot shows a strong power law relation below a marked rollover, similar in form to that derived for landslides triggered by the 1994 Northridge Earthquake. The total volume of the 45 landslides is approximately 93 Mm3. The data point for the Ancash Earthquake plots near the regression line calculated by Keefer (1994), and modified by Malamud et al

  7. Earthquake forecasting: a possible solution considering the GPS ionospheric delay

    Directory of Open Access Journals (Sweden)

    M. De Agostino

    2011-12-01

    Full Text Available The recent earthquakes in L'Aquila (Italy and in Japan have dramatically emphasized the problem of natural disasters and their correct forecasting. One of the aims of the research community is to find a possible and reliable forecasting method, considering all the available technologies and tools. Starting from the recently developed research concerning this topic and considering that the number of GPS reference stations around the world is continuously increasing, this study is an attempt to investigate whether it is possible to use GPS data in order to enhance earthquake forecasting. In some cases, ionospheric activity level increases just before to an earthquake event and shows a different behaviour 5–10 days before the event, when the seismic event has a magnitude greater than 4–4.5 degrees. Considering the GPS data from the reference stations located around the L'Aquila area (Italy, an analysis of the daily variations of the ionospheric signal delay has been carried out in order to evaluate a possible correlation between seismic events and unexpected variations of ionospheric activities. Many different scenarios have been tested, in particular considering the elevation angles, the visibility lengths and the time of day (morning, afternoon or night of the satellites. In this paper, the contribution of the ionospheric impact has been shown: a realistic correlation between ionospheric delay and earthquake can be seen about one week before the seismic event.

  8. Exploring the statistical convergence of earthquake inter-event times

    Science.gov (United States)

    Naylor, M.; Main, I.; Touati, S.

    2008-12-01

    Seismic activity is routinely quantified using mean event rates or mean inter-event times. Standard estimates of the error on such mean values implicitly assume that the events that are used to calculate the mean are independent. However, earthquakes can be triggered by other events and are thus not necessarily independent. As a result, the errors on mean earthquake inter-event times do not exhibit Gaussian convergence with increasing sample size according to the Central Limit Theorem [1]. In this presentation we investigate how the errors decay with sample size in earthquake catalogues. We demonstrate that the errors on mean inter-event times, as a function of sample size, are well estimated by defining an effective sample size using the autocorrelation function to estimate the number of pieces of independent data that exist in samples of different length. This allows us to accurately project estimates of error as a function of sample size, which are further verified using extended simulations of the ETAS model. This is a generic technique that can be used to assess errors on a wide variety of correlated datasets. [1] Naylor, M., Main, I.G. and Touati, S., (In press) Quantifying uncertainties on mean earthquake inter-event times, JGR.

  9. Environmental Degradation: Causes and Consequences

    Directory of Open Access Journals (Sweden)

    Swati Tyagi

    2014-08-01

    Full Text Available The subject of environmental economics is at the forefront of the green debate: the environment can no longer be viewed as an entity separate from the economy. Environmental degradation is of many types and have many consequences. To address this challenge a number of studies have been conducted in both developing and developed countries applying different methods to capture health benefits from improved environmental quality. Minimizing exposure to environmental risk factors by enhancing air quality and access to improved sources of drinking and bathing water, sanitation and clean energy is found to be associated with significant health benefits and can contribute significantly to the achievement of the Millennium Development Goals of environmental sustainability, health and development. In this paper, I describe the national and global causes and consequences of environmental degradation and social injustice. This paper provides a review of the literature on studies associated with reduced environmental risk and in particular focusing on reduced air pollution, enhanced water quality and climate change mitigation.

  10. Individual Consequences of Internal Marketing

    Directory of Open Access Journals (Sweden)

    Naghi Remus Ionut

    2015-07-01

    Full Text Available Since the emergence of the concept of internal marketing in the literature there have been almost 40 years. This period was marked by a constant increase of the concerns in the internal marketing area, these efforts being evidenced by the publication of a consistent number of articles (conceptual and empirical which analyze this subject. Considering the previous empirical studies, most of them have focused on studying the relationship between internal marketing and employee satisfaction and / or organizational commitment. However, the relationship between internal marketing and its consequences has been less analyzed in the context of emergent economies. In this paper we aimed to analyze the individual consequences of the internal marketing in the Romanian economy context, focusing our attention on three constructs: employee satisfaction, organizational commitment and organizational citizenship behavior. The research was conducted on a sample of 83 medium and large companies in various sectors of the Romanian economy. In order to proceed with the statistical data analyses we followed these steps: verifying the scales reliability, determining factor loadings and research hypotheses testing. Our research results are consistent with results of previous studies showing that the adoption of internal marketing practice has a positive effect on employee satisfaction, organizational commitment and organizational citizenship behavior

  11. Localization of b-values and maximum earthquakes; B chi to saidai jishin no chiikisei

    Energy Technology Data Exchange (ETDEWEB)

    Kurimoto, H.

    1996-05-01

    There is a thought that hourly and spacial blanks in earthquake activity contribute to earthquake occurrence probability. Based on an idea that if so, this tendency may appear also in statistical parameters of earthquake, earthquake activities in every ten years were investigated in the relation between locational distribution of inclined b values of a line relating to the number of earthquake and the magnitude, and the center focus of earthquakes which are M{ge}7.0. The field surveyed is the Japanese Islands and the peripheral ocean, and the area inside the circle with a radius of 100km with a lattice-like point divided in 1{degree} in every direction of latitude and longitude as center was made a unit region. The depth is divided by above 60km or below 60km. As a result, the following were found out: as to epicenters of earthquakes with M{ge}7.0 during the survey period of 100 years, many are in a range of b(b value){le}0.75, and sometimes they may be in a range of b{ge}0.75 in the area from the ocean near Izu peninsula to the ocean off the west Hokkaido; the position of epicenters in a range of b{le}0.75 seems not to come close to the center of contour which indicates the maximum b value. 7 refs., 2 figs.

  12. Consequences of Predicted or Actual Asteroid Impacts

    Science.gov (United States)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  13. Sensitivity Analysis of Evacuation Speed in Hypothetical NPP Accident by Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lim, Ho-Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Effective emergency response in emergency situation of nuclear power plant (NPP) can make consequences be different therefore it is regarded important when establishing an emergency response plan and assessing the risk of hypothetical NPP accident. Situation of emergency response can be totally changed when NPP accident caused by earthquake or tsunami is considered due to the failure of roads and buildings by the disaster. In this study evacuation speed has been focused among above various factors and reasonable evacuation speed in earthquake scenario has been investigated. Finally, sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Evacuation scenario can be entirely different in the situation of seismic hazard and the sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Various references were investigated and earthquake evacuation model has been developed considering that evacuees may convert their evacuation method from using a vehicle to walking when they face the difficulty of using a vehicle due to intense traffic jam, failure of buildings and roads, and etc. The population dose within 5 km / 30 km have been found to be increased in earthquake situation due to decreased evacuation speed and become 1.5 - 2 times in the severest earthquake evacuation scenario set up in this study. It is not agreed that using same emergency response model which is used for normal evacuation situations when performing level 3 probabilistic safety assessment for earthquake and tsunami event. Investigation of data and sensitivity analysis for constructing differentiated emergency response model in the event of seismic hazard has been carried out in this study.

  14. Studying health consequences of microchimerism

    DEFF Research Database (Denmark)

    Olsen, J.; Campi, Rita; Frydenberg, Morten;

    2003-01-01

    Abstract. A pregnancy requires a reasonably good health and may have positive as well as negative health consequences for the woman. Part of these health effects may depend on the immune response to the exchange of fetal cells (microchimerism). The number of biological fathers to a woman’s children...... may thus have a health effect beyond the parity effect. A possible design for studying this is to compare health effects for women with or without multiple partners but with the same parity. We compared total and cause specific mortality in these two groups in order to estimate their comparability...... one partner had a higher relative mortality rate, which was even higher if she had more than two partners. This finding persisted after excluding unnatural deaths and did not depend on time from exposure. Although some of the findings were adjusted for parity, age and social factors, it is highly...

  15. Studying health consequences of microchimerism

    DEFF Research Database (Denmark)

    Olsen, J.; Campi, Rita; Frydenberg, Morten

    2003-01-01

    Abstract. A pregnancy requires a reasonably good health and may have positive as well as negative health consequences for the woman. Part of these health effects may depend on the immune response to the exchange of fetal cells (microchimerism). The number of biological fathers to a woman’s children...... may thus have a health effect beyond the parity effect. A possible design for studying this is to compare health effects for women with or without multiple partners but with the same parity. We compared total and cause specific mortality in these two groups in order to estimate their comparability...... unlikely that these large differences are entirely related to microchimerism. The study shows that caution is needed when studying health effects of procreation with multiple partners....

  16. The ShakeOut Earthquake Scenario - A Story That Southern Californians Are Writing

    Science.gov (United States)

    Perry, Suzanne; Cox, Dale; Jones, Lucile; Bernknopf, Richard; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne

    2008-01-01

    The question is not if but when southern California will be hit by a major earthquake - one so damaging that it will permanently change lives and livelihoods in the region. How severe the changes will be depends on the actions that individuals, schools, businesses, organizations, communities, and governments take to get ready. To help prepare for this event, scientists of the U.S. Geological Survey (USGS) have changed the way that earthquake scenarios are done, uniting a multidisciplinary team that spans an unprecedented number of specialties. The team includes the California Geological Survey, Southern California Earthquake Center, and nearly 200 other partners in government, academia, emergency response, and industry, working to understand the long-term impacts of an enormous earthquake on the complicated social and economic interactions that sustain southern California society. This project, the ShakeOut Scenario, has applied the best current scientific understanding to identify what can be done now to avoid an earthquake catastrophe. More information on the science behind this project will be available in The ShakeOut Scenario (USGS Open-File Report 2008-1150; http://pubs.usgs.gov/of/2008/1150/). The 'what if?' earthquake modeled in the ShakeOut Scenario is a magnitude 7.8 on the southern San Andreas Fault. Geologists selected the details of this hypothetical earthquake by considering the amount of stored strain on that part of the fault with the greatest risk of imminent rupture. From this, seismologists and computer scientists modeled the ground shaking that would occur in this earthquake. Engineers and other professionals used the shaking to produce a realistic picture of this earthquake's damage to buildings, roads, pipelines, and other infrastructure. From these damages, social scientists projected casualties, emergency response, and the impact of the scenario earthquake on southern California's economy and society. The earthquake, its damages, and

  17. Post-earthquake modification of 2015 Gorkha Earthquake landslides in the Bhote Koshi River valley

    Science.gov (United States)

    Cook, Kristen; Andermann, Christoff; Adhikari, Basanta; Schmitt, Clemens; Marc, Odin

    2016-04-01

    Large earthquakes trigger widespread mass failures, and the estimated volumes of landslide material are often used to estimate seismically triggered erosion, assuming that all landslide material is transported out of the affected area. The expectation that earthquakes can generate a pulse of sediment output from the affected area can also potentially be used to recognize large seismic events in the sedimentary record. However, in order to properly understand the relationship between earthquake triggered landslides, sediment flux, and erosion, we need to consider how and when the landslide debris is mobilized in the fluvial system and exported from the catchment. We present observations from three field excursions to the upper Bhote Koshi River following the April 25 2015 Gorkha earthquake, which triggered extensive landsliding in this region. Our observations, from early June, late July, and Oct 2015, cover the pre-monsoon, mid-monsoon, and post-monsoon periods, allowing us to constrain monsoon-driven changes to seismically triggered landslides.In order to quantify post-earthquake modification of individual landslides and of the transport of landslide materials to the main trunk rivers, we conducted surveys using both terrestrial lidar and SfM. Immediately following the earthquake, a large number of landslides were disconnected from the channels, with significant amounts of material stored on the hillslopes. This was facilitated by the widespread presence of a two-step topography, with steep slopes adjacent to the main river channels and a section of lower gradient hillslope above. The landslides above this step typically did not reach the channel, or only delivered material via preexisting narrow debris flow chutes. As expected, the monsoon caused new landslides, the expansion of existing landslides, and the modification of coseisimic landslide deposits. In late July we observed ongoing mobilization of this stored material, with repeated downslope delivery of

  18. An examination of the consequences in high consequence operations

    Energy Technology Data Exchange (ETDEWEB)

    Spray, S.D.; Cooper, J.A.

    1996-06-01

    Traditional definitions of risk partition concern into the probability of occurrence and the consequence of the event. Most safety analyses focus on probabilistic assessment of an occurrence and the amount of some measurable result of the event, but the real meaning of the ``consequence`` partition is usually afforded less attention. In particular, acceptable social consequence (consequence accepted by the public) frequently differs significantly from the metrics commonly proposed by risk analysts. This paper addresses some of the important system development issues associated with consequences, focusing on ``high consequence operations safety.``

  19. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries.

    Directory of Open Access Journals (Sweden)

    Mark Last

    Full Text Available This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006-2010 are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698 is reached by the Multi-Objective Info-Fuzzy Network (M-IFN algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year.

  20. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries.

    Science.gov (United States)

    Last, Mark; Rabinowitz, Nitzan; Leonard, Gideon

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006-2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year.

  1. Prospective and retrospective evaluation of five-year earthquake forecast models for California

    Science.gov (United States)

    Strader, Anne; Schneider, Max; Schorlemmer, Danijel

    2017-10-01

    The Collaboratory for the Study of Earthquake Predictability was developed to prospectively test earthquake forecasts through reproducible and transparent experiments within a controlled environment. From January 2006 to December 2010, the Regional Earthquake Likelihood Models (RELM) Working Group developed and evaluated thirteen time-invariant prospective earthquake mainshock forecasts. The number, spatial and magnitude components of the forecasts were compared to the observed seismicity distribution using a set of likelihood-based consistency tests. In this RELM experiment update, we assess the long-term forecasting potential of the RELM forecasts. Additionally, we evaluate RELM forecast performance against the Uniform California Earthquake Rupture Forecast (UCERF2) and the National Seismic Hazard Mapping Project (NSHMP) forecasts, which are used for seismic hazard analysis for California. To test each forecast's long-term stability, we also evaluate each forecast from January 2006 to December 2015, which contains both five-year testing periods, and the 40-year period from January 1967 to December 2006. Multiple RELM forecasts, which passed the N-test during the retrospective (January 2006 to December 2010) period, overestimate the number of events from January 2011 to December 2015, although their forecasted spatial distributions are consistent with observed earthquakes. Both the UCERF2 and NSHMP forecasts pass all consistency tests for the two five-year periods; however, they tend to underestimate the number of observed earthquakes over the 40-year testing period. The smoothed seismicity model Helmstetter-et-al.Mainshock outperforms both United States Geological Survey (USGS) models during the second five-year experiment, and contains higher forecasted seismicity rates than the USGS models at multiple observed earthquake locations.

  2. Strong motions and engineering structure performances in recent major earthquakes

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Li

    2010-01-01

    @@ In recent years, a series of major earthquakes occurred, which resulted in considerable engineering damage and collapse, triggered heavy geological hazards, and caused extremely high casualties and huge property and economic loss. The earthquakes include the 1994 Northridge earthquake (M6.8), the 1995 Kobe earthquake (M6.8), the 1999 Izmit earthquake (M7.6), the 1999 Jiji (Chi-Chi) earthquake (M7.6), the 2005 northern Pakistan earthquake (M7.6), the 2008 Wenchuan earthquake (M8.0) and the 2010 Haiti earthquake (M7.0). Some villages, towns and even cities were devastated in the earthquakes, especially in the 2005 northern Pakistan earthquake, the 2008 Wenchuan earthquake and the 2010 Haiti earthquake.

  3. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...

  4. Connectivity of earthquake-triggered landslides with the fluvial network: Implications for landslide sediment transport after the 2008 Wenchuan earthquake

    Science.gov (United States)

    Li, Gen; West, A. Joshua; Densmore, Alexander L.; Hammond, Douglas E.; Jin, Zhangdong; Zhang, Fei; Wang, Jin; Hilton, Robert G.

    2016-04-01

    Evaluating the influence of earthquakes on erosion, landscape evolution, and sediment-related hazards requires understanding fluvial transport of material liberated in earthquake-triggered landslides. The location of landslides relative to river channels is expected to play an important role in postearthquake sediment dynamics. In this study, we assess the position of landslides triggered by the Mw 7.9 Wenchuan earthquake, aiming to understand the relationship between landslides and the fluvial network of the steep Longmen Shan mountain range. Combining a landslide inventory map and geomorphic analysis, we quantify landslide-channel connectivity in terms of the number of landslides, landslide area, and landslide volume estimated from scaling relationships. We observe a strong spatial variability in landslide-channel connectivity, with volumetric connectivity (ξ) ranging from ~20% to ~90% for different catchments. This variability is linked to topographic effects that set local channel densities, seismic effects (including seismogenic faulting) that regulate landslide size, and substrate effects that may influence both channelization and landslide size. Altogether, we estimate that the volume of landslides connected to channels comprises 43 + 9/-7% of the total coseismic landslide volume. Following the Wenchuan earthquake, fine-grained (90% of the total landslide volume) may be more significantly affected by landslide locations.

  5. Estimation of Future Earthquake Losses in California

    Science.gov (United States)

    Rowshandel, B.; Wills, C. J.; Cao, T.; Reichle, M.; Branum, D.

    2003-12-01

    Recent developments in earthquake hazards and damage modeling, computing, and data management and processing, have made it possible to develop estimates of the levels of damage from earthquakes that may be expected in the future in California. These developments have been mostly published in the open literature, and provide an opportunity to estimate the levels of earthquake damage Californians can expect to suffer during the next several decades. Within the past 30 years, earthquake losses have increased dramatically, mostly because our exposure to earthquake hazards has increased. All but four of the recent damaging earthquakes have occurred distant from California's major population centers. Two, the Loma Prieta earthquake and the San Fernando earthquake, occurred on the edges of major populated areas. Loma Prieta caused significant damage in the nearby Santa Cruz and in the more distant, heavily populated, San Francisco Bay area. The 1971 San Fernando earthquake had an epicenter in the lightly populated San Gabriel Mountains, but caused slightly over 2 billion dollars in damage in the Los Angeles area. As urban areas continue to expand, the population and infrastructure at risk increases. When earthquakes occur closer to populated areas, damage is more significant. The relatively minor Whittier Narrows earthquake of 1987 caused over 500 million dollars in damage because it occurred in the Los Angeles metropolitan area, not at its fringes. The Northridge earthquake had fault rupture directly beneath the San Fernando Valley, and caused about 46 billion dollars in damage. This vast increase in damage from the San Fernando earthquake reflected both the location of the earthquake directly beneath the populated area and the 23 years of continued development and resulting greater exposure to potential damage. We have calculated losses from potential future earthquake, both as scenarios of potential earthquakes and as annualized losses considering all the potential

  6. Unintended Consequences of Remittance

    Directory of Open Access Journals (Sweden)

    Adediran Daniel Ikuomola

    2015-09-01

    Full Text Available Research on migrants’ remittance in Nigeria has largely focused on the contribution to national development and economic well-being of family members. In contrast, this article explores the way in which remittance serves as potential sources of conflict within migrant households. The article investigates intra-household conflicts related to migrant remittances, revealing the contradictory and unintended consequences of remittances destabilizing cordial relationships between migrants and family members. Within the family (mainly extended families, the sharing of remittance is often accompanied with envy, distrust, and accusation of witch hunt. While improper utilization and accountability of remittances strain relationships, migrants are forced to re-strategize on how remittances get to their relatives and sometimes cut off communication and remittances with family members. Based on the qualitative data collected in Benin City (Edo State in Nigeria, the article investigates intra-household conflicts emanating from migrant remittances, from the perspectives of migrants on holidays.

  7. Medical consequences of obesity.

    Science.gov (United States)

    Lawrence, Victor J; Kopelman, Peter G

    2004-01-01

    The obese are subject to health problems directly relating to the carriage of excess adipose tissue. These problems range from arthritis, aches and pains, sleep disturbance, dyspnea on mild exertion, and excessive sweating to social stigmatization and discrimination, all of which may contribute to low quality of life and depression (Table 1). The most serious medical consequences of obesity are a result of endocrine and metabolic changes, most notably type 2 diabetes mellitus, cardiovascular disease, and increased risk of cancer. Not all obesity comorbidities are fully reversed by weight loss. The degree and duration of weight loss required may not be achievable by an individual patient. Furthermore, "weight cycling" may be more detrimental to both physical and mental health than failure to achieve weight loss targets with medical and lifestyle advice.

  8. Earthquake Analysis for the System of RC Building with a Steel Tower

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A steel tower topping an RC building comprises a non-proportional damping structural system with different damping ratios. To compare the results from the non-proportional damping model and the equivalent damping model ,the structural system was calculated with the two damping models during earthquake respectively, using earthquake time history analysis computer program developed by the authors. Differences in the calculated results of inner forces and displacements using the two damping models were observed. It is found that if the equivalent damping model is used in design, the consequence will be unsafe for the steel tower and too safe for the RC building at the same time.

  9. Relation between the characteristics of strong earthquake activities in Chinese mainland and the Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Zhang; Guohua Yang; Xian Lu; Mingxiao Li; Zhigao Yang

    2009-01-01

    This paper studies the relations between the great Wenchuan earthquake and the active-quiet periodic characteristics of strong earthquakes, the rhythmic feature of great earthquakes, and the grouped spatial distribution of MS8.0 earthquakes in Chinese mainland. We also studied the relation between the Wenchuan earthquake and the stepwise migration characteristics of MS≥7.0 earthquakes on the North-South seismic belt, the features of the energy releasing acceleration in the active crustal blocks related to the Wenchuan earthquake and the relation between the Wenchuan earthquake and the so called second-arc fault zone. The results can be summarized as follows: ① the occurrence of the Wenchuan earthquake was consistent with the active-quiet periodic characteristics of strong earthquakes; ② its occurrence is consistent with the features of grouped occurrence of MS8.0 earthquakes and follows the 25 years rhythm (each circulation experiences the same time) of great earthquakes; ③ the Wenchuan MS8.0 earthquake follows the well known stepwise migration feature of strong earthquakes on the North-South seismic belt; ④ the location where the Wenchuan MS8.0 earthquake took place has an obvious consistency with the temporal and spatial characteristic of grouped activity of MS≥7.0 strong earthquakes on the second-arc fault zone; ⑤ the second-arc fault zone is not only the lower boundary for earthquakes with more than 30 km focal depth, but also looks like a lower boundary for deep substance movement; and ⑥ there are obvious seismic accelerations nearby the Qaidam and Qiangtang active crustal blocks (the northern and southern neighbors of the Bayan Har active block, respectively), which agrees with the GPS observation data.

  10. The Search for VLF Precursors to Major Earthquakes: A Case Study with the M9.0 Earthquake of 11-Mar-2011 (Invited)

    Science.gov (United States)

    Cohen, M.; Kosovichev, P.; Marshall, R. A.; Droscoll, A.; Scherrer, D. K.

    2013-12-01

    It has been proposed that Very Low Frequency (VLF, 3-30 kHz) radio remote sensing may be used to detect ionospheric changes which may precede major earthquakes by hours or days. We report the results of a search for VLF precursors to the M9.0 Tohoku earthquake of 11-Mar-2011, the fifth most powerful earthquake in recorded history. Broadband and narrowband radio recordings were made at a site in Onagawa, Japan located ~102 km from the epicenter. The receiver operated for about two minutes after the start of the earthquake, after which the receiver lost power. Examination of the VLF data shows no radio emissions preceding or coincident with the onset of the earthquake. However, once the secondary seismic waves reached the receiver, a number of impulses and diffuse noise bands arose which may result from the entire power grid shaking or from radio emissions from compressing or fracturing rocks. Examination of the ELF data (0.2-1 kHz) shows no precursor effect in the hours preceding the seismic activity. We also examine the amplitudes of VLF subionospherically propagating transmitter signals going back months before the earthquake. We apply previously proposed techniques to extract properties of the diurnal amplitude profile that have been thought to correlate with earthquake precursors, but find no anomalous effect despite the remarkable intensity of the earthquake and proximity of the receiver to the epicenter. In general there are anomalous deviations but they cannot be reliably correlated with seismic activity. We also report the results of a global search for a lightning precursor effect on lightning flash rates, using the GLD360 network.

  11. Portals for Real-Time Earthquake Data and Forecasting: Challenge and Promise (Invited)

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Feltstykket, R.; Donnellan, A.; Glasscoe, M. T.

    2013-12-01

    Earthquake forecasts have been computed by a variety of countries world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. However, recent events clearly demonstrate that mitigating personal risk is becoming the responsibility of individual members of the public. Open access to a variety of web-based forecasts, tools, utilities and information is therefore required. Portals for data and forecasts present particular challenges, and require the development of both apps and the client/server architecture to deliver the basic information in real time. The basic forecast model we consider is the Natural Time Weibull (NTW) method (JBR et al., Phys. Rev. E, 86, 021106, 2012). This model uses small earthquakes (';seismicity-based models') to forecast the occurrence of large earthquakes, via data-mining algorithms combined with the ANSS earthquake catalog. This method computes large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Localizing these forecasts in space so that global forecasts can be computed in real time presents special algorithmic challenges, which we describe in this talk. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we compute real-time global forecasts at a grid scale of 0.1o. We analyze and monitor the performance of these models using the standard tests, which include the Reliability/Attributes and Receiver Operating Characteristic (ROC) tests. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges of serving up these datasets over the web on web-based platforms such as those at www.quakesim.org , www.e-decider.org , and www.openhazards.com.

  12. Foreshocks Are Not Predictive of Future Earthquake Size

    Science.gov (United States)

    Page, M. T.; Felzer, K. R.; Michael, A. J.

    2014-12-01

    The standard model for the origin of foreshocks is that they are earthquakes that trigger aftershocks larger than themselves (Reasenberg and Jones, 1989). This can be formally expressed in terms of a cascade model. In this model, aftershock magnitudes follow the Gutenberg-Richter magnitude-frequency distribution, regardless of the size of the triggering earthquake, and aftershock timing and productivity follow Omori-Utsu scaling. An alternative hypothesis is that foreshocks are triggered incidentally by a nucleation process, such as pre-slip, that scales with mainshock size. If this were the case, foreshocks would potentially have predictive power of the mainshock magnitude. A number of predictions can be made from the cascade model, including the fraction of earthquakes that are foreshocks to larger events, the distribution of differences between foreshock and mainshock magnitudes, and the distribution of time lags between foreshocks and mainshocks. The last should follow the inverse Omori law, which will cause the appearance of an accelerating seismicity rate if multiple foreshock sequences are stacked (Helmstetter and Sornette, 2003). All of these predictions are consistent with observations (Helmstetter and Sornette, 2003; Felzer et al. 2004). If foreshocks were to scale with mainshock size, this would be strong evidence against the cascade model. Recently, Bouchon et al. (2013) claimed that the expected acceleration in stacked foreshock sequences before interplate earthquakes is higher prior to M≥6.5 mainshocks than smaller mainshocks. Our re-analysis fails to support the statistical significance of their results. In particular, we find that their catalogs are not complete to the level assumed, and their ETAS model underestimates inverse Omori behavior. To conclude, seismicity data to date is consistent with the hypothesis that the nucleation process is the same for earthquakes of all sizes.

  13. Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2016-12-01

    Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.

  14. Earthquake Analysis of Structure by Base Isolation Technique in SAP

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available This paper presents an overview of the present state of base isolation techniques with special emphasis and a brief on other techniques developed world over for mitigating earthquake forces on the structures. The dynamic analysis procedure for isolated structures is briefly explained. The provisions of FEMA 450 for base isolated structures are highlighted. The effects of base isolation on structures located on soft soils and near active faults are given in brief. Simple case study on natural base isolation using naturally available soils is presented. Also, the future areas of research are indicated. Earthquakes are one of nature IS greatest hazards; throughout historic time they have caused significant loss offline and severe damage to property, especially to man-made structures. On the other hand, earthquakes provide architects and engineers with a number of important design criteria foreign to the normal design process. From well established procedures reviewed by many researchers, seismic isolation may be used to provide an effective solution for a wide range of seismic design problems. The application of the base isolation techniques to protect structures against damage from earthquake attacks has been considered as one of the most effective approaches and has gained increasing acceptance during the last two decades. This is because base isolation limits the effects of the earthquake attack, a flexible base largely decoupling the structure from the ground motion, and the structural response accelerations are usually less than the ground acceleration. In general, the increase of additional viscous damping in the structure may reduce displacement and acceleration responses of the structure. This study also seeks to evaluate the effects of additional damping on the seismic response when compared with structures without additional damping for the different ground motions.

  15. Ecological Management and the Cosmogenic Mechanism of Earthquakes

    Directory of Open Access Journals (Sweden)

    Mogiljuk Zhanna

    2016-01-01

    Full Text Available Critical issue of ecological risk management in urban areas is to predict the evolution of the dangerous natural processes intensity. The special situation in the realization of these risks take the earthquake threat and the stresses emergency fluctuations in the geological environment of the buildings and structures bases. This article is devoted to one of the main problems of earthquake engineering - verification of the dominant mechanisms and causality of the earthquakes intensity dangerous evolution. In it discusses the comparative analysis results of the Earth gravitational interaction energy variations amplitudes with the Sun, with the Moon and the solar system planets. Also presented the comparative evaluations results of the Earth geospheres gravitational perturbations amplitudes with the Earth solar radiation energy with the energy of its own heat of the Earth. It is shown that the energy of his own heat and Sun exposure of the Earth much less energy to gravitational perturbations in the near-earth space. In the article presents the spectral analysis results of earthquakes global daily energy on the Earth before and after the Shoemaker-Levy comet explosion on Jupiter. It is shown that the seismic events number on Earth with magnitude greater than 2.5 on the Richter scale after the comet explosion increased in 10 times. In the earthquakes global daily energy spectrum shows the spectral manifestations of solar system planets gravitational resonances. In given article the researches results of natural disasters cosmogenic sources power allow us to argue that ecological risk effective management is impossible without the evolution forecast of the cosmogenic effects intensity on natural processes for sustainable urban development.

  16. How complete is the ISC-GEM Global Earthquake Catalog?

    Science.gov (United States)

    Michael, Andrew J.

    2014-01-01

    The International Seismological Centre, in collaboration with the Global Earthquake Model effort, has released a new global earthquake catalog, covering the time period from 1900 through the end of 2009. In order to use this catalog for global earthquake studies, I determined the magnitude of completeness (Mc) as a function of time by dividing the earthquakes shallower than 60 km into 7 time periods based on major changes in catalog processing and data availability and applying 4 objective methods to determine Mc, with uncertainties determined by non-parametric bootstrapping. Deeper events were divided into 2 time periods. Due to differences between the 4 methods, the final Mc was determined subjectively by examining the features that each method focused on in both the cumulative and binned magnitude frequency distributions. The time periods and Mc values for shallow events are: 1900-1917, Mc=7.7; 1918-1939, Mc=7.0; 1940-1954, Mc=6.8; 1955-1963, Mc=6.5; 1964-1975, Mc=6.0; 1976-2003, Mc=5.8; and 2004-2009, Mc=5.7. Using these Mc values for the longest time periods they are valid for (e.g. 1918-2009, 1940-2009,…) the shallow data fits a Gutenberg-Richter distribution with b=1.05 and a=8.3, within 1 standard deviation, with no declustering. The exception is for time periods that include 1900-1917 in which there are only 33 events with M≥ Mc and for those few data b=2.15±0.46. That result calls for further investigations for this time period, ideally having a larger number of earthquakes. For deep events, the results are Mc=7.1 for 1900-1963, although the early data are problematic; and Mc=5.7 for 1964-2009. For that later time period, b=0.99 and a=7.3.

  17. Induced earthquakes. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection.

    Science.gov (United States)

    Keranen, K M; Weingarten, M; Abers, G A; Bekins, B A; Ge, S

    2014-07-25

    Unconventional oil and gas production provides a rapidly growing energy source; however, high-production states in the United States, such as Oklahoma, face sharply rising numbers of earthquakes. Subsurface pressure data required to unequivocally link earthquakes to wastewater injection are rarely accessible. Here we use seismicity and hydrogeological models to show that fluid migration from high-rate disposal wells in Oklahoma is potentially responsible for the largest swarm. Earthquake hypocenters occur within disposal formations and upper basement, between 2- and 5-kilometer depth. The modeled fluid pressure perturbation propagates throughout the same depth range and tracks earthquakes to distances of 35 kilometers, with a triggering threshold of ~0.07 megapascals. Although thousands of disposal wells operate aseismically, four of the highest-rate wells are capable of inducing 20% of 2008 to 2013 central U.S. seismicity.

  18. Earthquake disaster simulation of civil infrastructures from tall buildings to urban areas

    CERN Document Server

    Lu, Xinzheng

    2017-01-01

    Based on more than 12 years of systematic investigation on earthquake disaster simulation of civil infrastructures, this book covers the major research outcomes including a number of novel computational models, high performance computing methods and realistic visualization techniques for tall buildings and urban areas, with particular emphasize on collapse prevention and mitigation in extreme earthquakes, earthquake loss evaluation and seismic resilience. Typical engineering applications to several tallest buildings in the world (e.g., the 632 m tall Shanghai Tower and the 528 m tall Z15 Tower) and selected large cities in China (the Beijing Central Business District, Xi'an City, Taiyuan City and Tangshan City) are also introduced to demonstrate the advantages of the proposed computational models and techniques. The high-fidelity computational model developed in this book has proven to be the only feasible option to date for earthquake-induced collapse simulation of supertall buildings that are higher than 50...

  19. The earth as a living planet: Human-type diseases in the earthquake preparation process

    CERN Document Server

    Contoyiannis, Y F; Eftaxias, K

    2013-01-01

    The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic feat...

  20. Brief Communication: Correlation of global earthquake rates with temperature and sunspot cycle

    Science.gov (United States)

    Rajesh, R.; Tiwari, R. K.

    2014-04-01

    We studied the complex and non-stationary records of global earthquake employing the robust statistical and spectral techniques to understand the patterns, processes and periodicity. Singular Spectral Analysis (SSA) and correlation methods are used to quantify the nature of principle dynamical processes of global annual earthquake rates. The SSA decomposes the principle component of earthquake rates (first mode), which suggests that there is a linear increase in the yearly earthquake number from 1975 to 2005 accounting for 93% variance and may be identified with the earth's internal dynamical processes. Superimposed on this monotonic trend, there is an 11 years cyclic variation (second and third modes) accounting for 5% variance, which may corresponds to the well-known solar cycle. The remaining 2% higher order fluctuating components appears to be associated with artificial recharge and natural triggering forces (reservoir, tidal triggering etc.). The correlation study indicates that there is strong positive and negative correlation among the global earthquake rates with surface air temperature and sunspot numbers respectively. Interesting coupling mechanisms do exist, in which atmospheric circulations perturbed by the abrupt temperature variability might change the torques/momentum of inertia (earth's angular momentum) of the earth and thereby may offer the required inputs to trigger earthquake activities at the "critical phases".

  1. Brief Communication: Correlation of global earthquake rates with temperature and sunspot cycle

    Directory of Open Access Journals (Sweden)

    R. Rajesh

    2014-04-01

    Full Text Available We studied the complex and non-stationary records of global earthquake employing the robust statistical and spectral techniques to understand the patterns, processes and periodicity. Singular Spectral Analysis (SSA and correlation methods are used to quantify the nature of principle dynamical processes of global annual earthquake rates. The SSA decomposes the principle component of earthquake rates (first mode, which suggests that there is a linear increase in the yearly earthquake number from 1975 to 2005 accounting for 93% variance and may be identified with the earth's internal dynamical processes. Superimposed on this monotonic trend, there is an 11 years cyclic variation (second and third modes accounting for 5% variance, which may corresponds to the well-known solar cycle. The remaining 2% higher order fluctuating components appears to be associated with artificial recharge and natural triggering forces (reservoir, tidal triggering etc.. The correlation study indicates that there is strong positive and negative correlation among the global earthquake rates with surface air temperature and sunspot numbers respectively. Interesting coupling mechanisms do exist, in which atmospheric circulations perturbed by the abrupt temperature variability might change the torques/momentum of inertia (earth's angular momentum of the earth and thereby may offer the required inputs to trigger earthquake activities at the "critical phases".

  2. Remote Dynamic Earthquake Triggering in Shale Gas Basins in Canada and Implications for Triggering Mechanisms

    Science.gov (United States)

    Harrington, Rebecca M.; Liu, Yajing; Wang, Bei; Kao, Honn; Yu, Hongyu

    2017-04-01

    Here we investigate the occurrence of remote dynamic triggering in three sedimentary basins in Canada where recent fluid injection activity is correlated with increasing numbers of earthquakes. In efforts to count as many small, local earthquakes as possible for the statistical test of triggering, we apply a multi-station matched-filter detection method to continuous waveforms to detect uncataloged local earthquakes in 10-day time windows surrounding triggering mainshocks occurring between 2013-2015 with an estimated local peak ground velocity exceeding 0.01 cm/s. We count the number of earthquakes in 24-hour bins and use a statistical p-value test to determine if the changes in seismicity levels after the mainshock waves have passed are statistically significant. The p-value tests show occurrences of triggering following transient stress perturbations of production history is longer. The observations combined with new modeling results suggest that the poroelastic response of the medium may be the dominant factor influencing instantaneous triggering, particularly in low-permeability tight shales. At sites where production history is longer and permeabilities have been increased, both pore pressure diffusion and the poroelastic response of the medium may work together to promote both instantaneous and delayed triggering. Not only does the interplay of the poroelastic response of the medium and pore pressure diffusion have implications for triggering induced earthquakes near injection sites, but it may be a plausible explanation for observations of instantaneous and delayed earthquake triggering in general.

  3. Hydrological anomalies connected to earthquakes in southern Apennines (Italy

    Directory of Open Access Journals (Sweden)

    E. Esposito

    2001-01-01

    Full Text Available The study of hydrological variations in the watersheds of seismic areas can be useful in order to acquire a new knowledge of the mechanisms by which earthquakes can produce hydrological anomalies. Italy has the availability of many long historical series both of hydrological parameters and of seismological data, and is an ideal laboratory to verify the validity of theoretical models proposed by various authors. In this work we analyse the hydrological anomalies associated with some of the big earthquakes that occurred in the last century in the southern Apennines: 1930, 1980 and 1984. For these earthquakes we analysed hydrometric and pluviometric data looking for significant anomalies in springs, water wells and mountain streams. The influence of rainfalls on the normal flows of rivers, springs and wells has been ascertained. Also, the earthquake of 1805, for which a lot of hydrological perturbations have been reported, is considered in order to point out effects imputable to this earthquake that can be similar to the effects of the other big earthquakes. The considered seismic events exhibit different modes of energy release, different focal mechanisms and different propagation of effects on the invested areas. Furthermore, even if their epicentres were not localised in contiguous seismogenetic areas, it seems that the hydrological effects imputable to them took place in the same areas. Such phenomena have been compared with macroseismic fields and transformed in parameters, in order to derive empirical relationships between the dimensions of the event and the characteristics of the hydrological variations. The results of this work point to a close dependence among hydrological anomalies, regional structures and fault mechanisms, and indicate that many clear anomalies have been forerunners of earthquakes. In 1993, the Naples Bureau of the Hydrographic National Service started the continuous monitoring of hydrologic parameters by a network of

  4. The 2015 Illapel Earthquake in Chile: Initial Findings

    Science.gov (United States)

    Barrientos, S. E.

    2015-12-01

    On September 16, 2015 at 19:54 hrs (local time) a magnitude 8.3 earthquake took place off the coast of the Coquimbo Region in central Chile. The National Seismological Centre (CSN) reported epicentral coordinates 71.864°W and 31.553°S and a W-phase magnitude of 8.4 This earthquake is the largest in the country since the February 27, 2010 event and the third largest since May 22, 1960, surpassing in size the one that took place off the coast of Iquique- Pisagua on April 1, 2014. Unlike the later, the 2015 earthquake showed no recognizable immediate precursor activity in the epicentral area. Focal mechanisms of the mainshock and larger aftershocks are consistent with the displacement of the Nazca plate beneath the South American plate. The previous large earthquakes of similar size took place in this region on April 6, 1943, with a magnitude of 7.9 (Beck et al., 1998); Abe (1979) lists this earthquake with tsunami magnitude equivalent to 8.2 Preliminary estimates of the slip distribution, based on GNSS data, indicate that the rupture length reaches about 200-250 km with a maximum displacement of the order of 6 m. Coastal uplift of 40 cm close to the epicentral area is evidenced by biological markers. The epicenter is not located either at the region of maximum or minimum slip, but where there is a strong fault displacement gradient. Number of daily aftershocks within the first four weeks is decaying with a p-value of the order of 0.8 to 1. An anomalous maximum acceleration of the order of 80% g was recorded on the E-W horizontal component of the station located at a station in Montepatria, more than 80 km away from the region of maximum slip. Because the general area recorded values of 30%g, it is very likely that this high acceleration is due to ground effects. Historical seismicity in the region is examined to understand the possible future scenarios of large earthquakes. To the north, the 1922 (Mw=8.4, Mt=8.7) has been the last to rupture this zone; to the south

  5. Inference of postseismic deformation mechanisms of the 1923 Kanto earthquake

    Science.gov (United States)

    Pollitz, F.F.; Nyst, M.; Nishimura, T.; Thatcher, W.

    2006-01-01

    Coseismic slip associated with the M7.9, 1923 Kanto earthquake is fairly well understood, involving slip of up to 8 m along the Philippine Sea-Honshu interplate boundary under Sagami Bay and its onland extension. Postseismic deformation after the 1923 earthquake, however, is relatively poorly understood. We revisit the available deformation data in order to constrain possible mechanisms of postseismic deformation and to examine the consequences for associated stress changes in the surrounding crust. Data from two leveling lines and one tide gage station over the first 7-8 years postseismic period are of much greater amplitude than the corresponding expected interseismic deformation during the same period, making these data suitable for isolating the signal from postseismic deformation. We consider both viscoelastic models of asthenosphere relaxation and afterslip models. A distributed coseismic slip model presented by Pollitz et al. (2005), combined with prescribed parameters of a viscoelastic Earth model, yields predicted postseismic deformation that agrees with observed deformation on mainland Honshu from Tokyo to the Izu peninsula. Elsewhere (southern Miura peninsula; Boso peninsula), the considered viscoelastic models fail to predict observed deformation, and a model of ???1 in shallow afterslip in the offshore region south of the Boso peninsula, with equivalent moment magnitude Mw = 7.0, adequately accounts for the observed deformation. Using the distributed coseismic slip model, layered viscoelastic structure, and a model of interseismic strain accumulation, we evaluate the post-1923 stress evolution, including both the coseismic and accumulated postseismic stress changes and those stresses contributed by interseismic loading. We find that if account is made for the varying tectonic regime in the region, the occurrence of both immediate (first month) post-1923 crustal aftershocks as well as recent regional crustal seismicity is consistent with the predicted

  6. Earthquake Risk, FEMA Earthquake Hazzard Risk Map, Published in 1994, Delaware Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Earthquake Risk dataset, was produced all or in part from Published Reports/Deeds information as of 1994. It is described as 'FEMA Earthquake Hazzard Risk Map'....

  7. Earthquakes in Oita triggered by the 2016 M7.3 Kumamoto earthquake

    Science.gov (United States)

    Yoshida, Shingo

    2016-11-01

    During the passage of the seismic waves from the M7.3 Kumamoto, Kyushu, earthquake on April 16, 2016, a M5.7 [semiofficial value estimated by the Japan Meteorological Agency (JMA)] event occurred in the central part of Oita prefecture, approximately 80 km far away from the mainshock. Although there have been a number of reports that M 5 triggered events. In this paper, we firstly confirm that this event is a M6-class event by re-estimating the magnitude using the strong-motion records of K-NET and KiK-net, and crustal deformation data at the Yufuin station observed by the Geospatial Information Authority of Japan. Next, by investigating the aftershocks of 45 mainshocks which occurred over the past 20 years based on the JMA earthquake catalog (JMAEC), we found that the delay time of the 2016 M5.7 event in Oita was the shortest. Therefore, the M5.7 event could be regarded as an exceptional M > 5 event that was triggered by passing seismic waves, unlike the usual triggered events and aftershocks. Moreover, a search of the JMAEC shows that in the 2016 Oita aftershock area, swarm earthquake activity was low over the past 30 years compared with neighboring areas. We also found that in the past, probably or possibly triggered events frequently occurred in the 2016 Oita aftershock area. The Oita area readily responds to remote triggering because of high geothermal activity and young volcanism in the area. The M5.7 Oita event was triggered by passing seismic waves, probably because large dynamic stress change was generated by the mainshock at a short distance and because the Oita area was already loaded to a critical stress state without a recent energy release as suggested by the past low swarm activity.[Figure not available: see fulltext.

  8. Research for Stakeholders: Delivering the ShakeOut Earthquake Scenario to Golden Guardian Emergency Exercise Planners

    Science.gov (United States)

    Perry, S. C.; Holbrook, C. C.

    2008-12-01

    The ShakeOut Scenario of a magnitude 7.8 earthquake on the southern San Andreas Fault was developed to fit needs of end users, particularly emergency managers at Federal, State, and local levels. Customization has continued after initial publication. The Scenario, a collaboration among some 300 experts in physical and social sciences, engineering, and industry, was released in May, 2008, to a key planning conference for the November 2008 Golden Guardian Exercise series. According to long-standing observers, the 2008 exercise is the most ambitious of their experience. The scientific foundation has attracted a large number of participants and there are already requests to continue use of the Scenario in 2009. Successful exercises cover a limited range of capabilities, in order to test performance in measurable ways, and to train staff without overwhelming them. Any one exercise would fail if it attempted to capture the complexity of impacts from a major earthquake. Instead, exercise planners have used the Scenario like a magnifying glass to identify risk and capabilities most critical to their own jurisdictions. Presentations by Scenario scientists and a 16-page narrative provided an initial overview. However, many planners were daunted in attempts to extract details from a 300-page report, 12 supplemental studies, and 10 appendices, or in attempts to cast the reality into straightforward events to drive successful exercises. Thus we developed an evolving collection of documents, presentations, and consultations that included impacts to specific jurisdictions; distillations of damages and consequences; and annotated lists of capabilities and situations to consider. Some exercise planners needed realistic extrapolations beyond posited damages; others sought reality checks; yet others needed new formats or perspectives. Through all this, it was essential to maintain flexibility, assisting planners to adjust findings where appropriate, while indicating why some results

  9. A resonance mechanism of earthquakes

    CERN Document Server

    Flambaum, V V

    2015-01-01

    It had been observed in [1] that there are periodic 4-6 hours pulses of ? 200 ?Hz seismogravita- tional oscillations ( SGO ) before 95 % of powerful earthquakes. We explain this by beating between an oscillation eigenmode of a whole tectonic plate and a local eigenmode of an active zone which tranfers the oscillation energy from the tectonic plate to the active zone causing the eathrquake. Oscillation frequencies of the plate and ones of the active zone are tuned to a resonance by an additional pressure applied to the active zone due to collision of neighboring plates or convection in the upper mantia (plume). Corresponding theory may be used for short-term prediction of the earthquakes and tsunami.

  10. Pre-earthquake Magnetic Pulses

    CERN Document Server

    Scoville, John; Freund, Friedemann

    2014-01-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are observable because their extremely long wavelength allows them to pass through the Earth's crust. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stress is building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  11. Great East Japan Earthquake Tsunami

    Science.gov (United States)

    Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.

    2011-12-01

    The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by

  12. An observation on the main factor for the high fatalities by the March 11 earthquake

    Science.gov (United States)

    Ishida, M.; Baba, T.; Ando, M.

    2011-12-01

    On 11 March 2011, Mw9.0 earthquake occurred in Tohoku district, the northeastern Japan, and caused a large tsunami which affected the greater part of the area. During 115 years prior to this event, large tsunamis have struck the Tohoku region in 1960, 1933 and 1896. Therefore, disaster mitigation efforts have been undertaken in the Tohoku region, such as the construction of incomparably strong breakwaters, the annual practice for tsunami evacuation drill, the preparation of hazard maps, etc. Despite these long-term efforts, ca. 25,000 deaths and missing persons were reported by the National Police Headquarters, Japan. In order to clarify the causes of such high number of the fatalities, we interviewed 120 tsunami survivors in 7 cities mainly in Iwate prefecture in several periods after the earthquake. Since the tsunami arrived more than 20-30 min later after the strong ground shaking stopped and highlands are within about 10 to 20 minutes on foot, residents would have been saved if people had taken an immediate action. We found several major reasons why the residents delayed their evacuation actions as follows: 1. Earthquakes that were forecast for the offshore Tohoku by the governmental committee had been much smaller than the March 11 event. Accordingly, evacuation shelters were located at the lower level than that required for the incoming tsunami; 2. The earthquake magnitude and tsunami height of the first warning issue by Japan Meteorological Agency (JMA) was significantly smaller than those of the actual events. Majority of local residents thought that breakwaters would protect them. The JMA renewed the earthquake magnitude and tsunami height step by step, but the corrected information did not reach to the local residents because of the blackout of electric power. Consequently, the residents were unable to get the renewed information through TV or radio; 3. Fifty percent of the local residents experienced the 1960 Chile tsunami that significantly smaller than

  13. The physics of rock failure and earthquakes

    CERN Document Server

    Ohnaka, Mitiyasu

    2013-01-01

    Despite significant advances in the understanding of earthquake generation processes and derivation of underlying physical laws, controversy remains regarding the constitutive law for earthquake ruptures and how it should be formulated. Laboratory experiments are necessary to obtain high-resolution measurements that allow the physical nature of shear rupture processes to be deduced, and to resolve the controversy. This important book provides a deeper understanding of earthquake processes from nucleation to their dynamic propagation. Its key focus is a deductive approach based on laboratory-derived physical laws and formulae, such as a unifying constitutive law, a constitutive scaling law, and a physical model of shear rupture nucleation. Topics covered include: the fundamentals of rock failure physics, earthquake generation processes, physical scale dependence, and large-earthquake generation cycles. Designed for researchers and professionals in earthquake seismology, rock failure physics, geology and earthq...

  14. Is There An Earthquake Migration Global Pattern?

    Science.gov (United States)

    dos Santos, A. M.; Franca, G. S.; da Silveira, A. G.; Frigeri, G. V.; Marotta, G. S.

    2012-12-01

    Earthquake migration patterns before large earthquake were proposed by Mogi (1968) and existence of the correlation between earthquakes over distances that show probable global interdependence and this theme is certainly one of the most intriguing in field of seismology. In this job, we will present the phenomenology of earthquake migration global seismic pattern empirically, in order to ensure statistically the correlation of long range and lead to confrontation these seismic patterns. We used the international catalog available, such as, NEIC-USGS. We find that the pair of events that have a good correlation are confirmed statistically. As Shebalin (1996) has shown the earthquake chain, we show this first stage of the earthquake prediction correlation for large distances.

  15. Earthquake Hazard Mitigation Strategy in Indonesia

    Science.gov (United States)

    Karnawati, D.; Anderson, R.; Pramumijoyo, S.

    2008-05-01

    Because of the active tectonic setting of the region, the risks of geological hazards inevitably increase in Indonesian Archipelagoes and other ASIAN countries. Encouraging community living in the vulnerable area to adapt with the nature of geology will be the most appropriate strategy for earthquake risk reduction. Updating the Earthquake Hazard Maps, enhancement ofthe existing landuse management , establishment of public education strategy and method, strengthening linkages among stake holders of disaster mitigation institutions as well as establishement of continues public consultation are the main strategic programs for community resilience in earthquake vulnerable areas. This paper highlights some important achievements of Earthquake Hazard Mitigation Programs in Indonesia, together with the difficulties in implementing such programs. Case examples of Yogyakarta and Bengkulu Earthquake Mitigation efforts will also be discussed as the lesson learned. The new approach for developing earthquake hazard map which is innitiating by mapping the psychological aspect of the people living in vulnerable area will be addressed as well.

  16. Earthquakes in Virginia and vicinity 1774 - 2004

    Science.gov (United States)

    Tarr, Arthur C.; Wheeler, Russell L.

    2006-01-01

    This map summarizes two and a third centuries of earthquake activity. The seismic history consists of letters, journals, diaries, and newspaper and scholarly articles that supplement seismograph recordings (seismograms) dating from the early twentieth century to the present. All of the pre-instrumental (historical) earthquakes were large enough to be felt by people or to cause shaking damage to buildings and their contents. Later, widespread use of seismographs meant that tremors too small or distant to be felt could be detected and accurately located. Earthquakes are a legitimate concern in Virginia and parts of adjacent States. Moderate earthquakes cause slight local damage somewhere in the map area about twice a decade on the average. Additionally, many buildings in the map area were constructed before earthquake protection was added to local building codes. The large map shows all historical and instrumentally located earthquakes from 1774 through 2004.

  17. Earthquake forewarning in the Cascadia region

    Science.gov (United States)

    Gomberg, Joan S.; Atwater, Brian F.; Beeler, Nicholas M.; Bodin, Paul; Davis, Earl; Frankel, Arthur; Hayes, Gavin P.; McConnell, Laura; Melbourne, Tim; Oppenheimer, David H.; Parrish, John G.; Roeloffs, Evelyn A.; Rogers, Gary D.; Sherrod, Brian; Vidale, John; Walsh, Timothy J.; Weaver, Craig S.; Whitmore, Paul M.

    2015-08-10

    This report, prepared for the National Earthquake Prediction Evaluation Council (NEPEC), is intended as a step toward improving communications about earthquake hazards between information providers and users who coordinate emergency-response activities in the Cascadia region of the Pacific Northwest. NEPEC charged a subcommittee of scientists with writing this report about forewarnings of increased probabilities of a damaging earthquake. We begin by clarifying some terminology; a “prediction” refers to a deterministic statement that a particular future earthquake will or will not occur. In contrast to the 0- or 100-percent likelihood of a deterministic prediction, a “forecast” describes the probability of an earthquake occurring, which may range from >0 to 4 earthquakes on the plate interface north of the Mendocino region 

  18. Dim prospects for earthquake prediction

    Science.gov (United States)

    Geller, Robert J.

    I was misquoted by C. Lomnitz's [1998] Forum letter (Eos, August 4, 1998, p. 373), which said: [I wonder whether Sasha Gusev [1998] actually believes that branding earthquake prediction a ‘proven nonscience’ [Geller, 1997a] is a paradigm for others to copy.”Readers are invited to verify for themselves that neither “proven nonscience” norv any similar phrase was used by Geller [1997a].

  19. Understand mountain studies from earthquake

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Sichuan earthquake on 12 May was the most devastating one to hit China over the past 60 years or so. As the affected were mostly mountainous areas, serious damages were caused by various secondary disasters ranging from mountain collapse to the formation of quake lakes. This leaves Prof. DENG Wei, director-general of the Institute of Mountain Hazards and Environment, CAS, much to think about, and he is calling for strengthening studies on mountain science.

  20. Tangshan Women After the Earthquake

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    TWENTY years ago, Tangshan, a city in China’s Hebei Province, was struck by an earthquake which killed 240,000 people, injured 160,000, and destroyed 10,200 homes. In 7,200 families there were no survivors. After 20 years of rebuilding, a new Tangshan has risen from the debris. Tangshan women played a very important role in rebuilding their hometown.

  1. Mechanics of Multifault Earthquake Ruptures

    Science.gov (United States)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  2. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  3. Legal consequences of kleptomania.

    Science.gov (United States)

    Grant, Jon E; Odlaug, Brian L; Davis, Andrew A; Kim, Suck Won

    2009-12-01

    Although studies have examined clinical characteristics of kleptomania, no previous studies have examined the legal consequences of kleptomania. From 2001 to 2007, 101 adult subjects (n = 27 [26.7%] males) with DSM-IV kleptomania were assessed on sociodemographics and clinical characteristics including symptom severity, comorbidity, and legal repercussions. Of 101 subjects with kleptomania, 73.3% were female. Mean age of shoplifting onset was 19.4 +/- 12.0 years, and subjects shoplifted a mean of 8.2 +/- 11.0 years prior to meeting full criteria for kleptomania. Co-occurring depressive, substance use, and impulse control disorders were common. Sixty-nine subjects with kleptomania (68.3%) had been arrested, 36.6% had been arrested but not convicted, 20.8% had been convicted and incarcerated after conviction, while only 10.9% had been convicted and not incarcerated after conviction. Kleptomania is associated with significant legal repercussions. The findings emphasize the need for rigorous treatment approaches to target kleptomania symptoms and prevent re-offending.

  4. Scaling and Stress Release in the Darfield-Christchurch, New Zealand Earthquake Sequence

    Science.gov (United States)

    Abercrombie, R. E.; Fry, B.; Doser, D. I.

    2014-12-01

    The Canterbury earthquake sequence began with the M7.1 Darfield earthquake in 2010, and includes the devastating M6.2 Christchurch earthquake in 2011. The high ground accelerations and damage in Christchurch suggested that the larger eartthquakes may be high stress drop events. This is consistent with the hypothesis that faults in low-strain rate regions with long inter-event times rupture in higher stress drop earthquakes. The wide magnitude range of this prolific sequence, and the high-quality recording enable us to test this. The spatial migration of the sequence, from Darfield through Christchurch and then offshore, enables us to investigate whether we can resolve any spatial or temporal variation in earthquake stress drop. An independent study of 500 aftershocks (Oth & Kaiser, 2014) found no magnitude dependence, and identified spatially varying stress drop. Such patterns can be more confidently interpreted if observed by independent studies using different approaches. We use a direct wave, empirical Green's function (EGF) approach that includes measurement uncertainties, and objective criteria for assessing the quality of each spectral ratio (Abercrombie, 2013). The large number of earthquakes in the sequence enables us to apply the same approach to a wide range of magnitudes (M~2-6) recorded at the same stations, and so minimize the effects of any systematic biases in results. In our preliminary study, we include 2500 earthquakes recorded at a number of strong motion and broadband stations. We use multiple EGFs for each event, and find 300 earthquakes with well-resolved ratios at 5 or more stations. The stress drops are magnitude independent and there is broad correlation with the results of Oth & Kaiser. We apply the same approach to a much larger data set and compare our results to those of Oth & Kaiser, and also to other regions studied using our EGF method.

  5. Pre-earthquake magnetic pulses

    Directory of Open Access Journals (Sweden)

    J. Scoville

    2014-12-01

    Full Text Available A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are generated deep in the Earth's crust, in and around the Hypocentral volume, days or even weeks before Earthquakes. They are observable at the surface because their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stresses are building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  6. Global review of human-induced earthquakes.

    OpenAIRE

    Foulger, Gillian R.; Wilson, Miles; Gluyas, Jon; Julian, Bruce R.; Davies, Richard

    2017-01-01

    The Human-induced Earthquake Database, HiQuake, is a comprehensive record of earthquake sequences postulated to be induced by anthropogenic activity. It contains over 700 cases spanning the period 1868–2016. Activities that have been proposed to induce earthquakes include the impoundment of water reservoirs, erecting tall buildings, coastal engineering, quarrying, extraction of groundwater, coal, minerals, gas, oil and geothermal fluids, excavation of tunnels, and adding material to the subsu...

  7. Researchers start complying with the requests of city administrators on earthquake risk issues: a recent case for Catania, Italy

    Science.gov (United States)

    Finazzi, D.; Frassine, L.; Pessina, V.

    2003-04-01

    Earthquake risk assessments and scenario studies carried out within national or European projects, not only have resonance in the research community, but they are becoming of increasing of interest for local administrators because of the detailed level of analysis and the nature of the results, that could be readily used. Notwithstanding their interest, the local administrators seem to have difficulties in transferring easily this kind of information into urban emergency plans. To overcome such difficulties, some damage prediction studies could be usefully re-focused on objectives that meet more directly the practical needs of city officials, such as identifying the streets that could be obstructed by the debris caused by the failure of damaged buildings in case of strong earthquakes. For Catania, a city in the Mediterranean with high exposure to earthquake risk, local operators have indicated a densely inhabited section with a critical ratio between the buildings elevation and the width of the roads. In this section, a damage scenario has been evaluated for residential buildings, considering also the strategic facilities such as schools, hospitals, city offi