WorldWideScience

Sample records for earthquake motion estimates

  1. Strong Earthquake Motion Estimates for Three Sites on the U.C. Riverside Campus; TOPICAL

    International Nuclear Information System (INIS)

    Archuleta, R.; Elgamal, A.; Heuze, F.; Lai, T.; Lavalle, D.; Lawrence, B.; Liu, P.C.; Matesic, L.; Park, S.; Riemar, M.; Steidl, J.; Vucetic, M.; Wagoner, J.; Yang, Z.

    2000-01-01

    The approach of the Campus Earthquake Program (CEP) is to combine the substantial expertise that exists within the UC system in geology, seismology, and geotechnical engineering, to estimate the earthquake strong motion exposure of UC facilities. These estimates draw upon recent advances in hazard assessment, seismic wave propagation modeling in rocks and soils, and dynamic soil testing. The UC campuses currently chosen for application of our integrated methodology are Riverside, San Diego, and Santa Barbara. The procedure starts with the identification of possible earthquake sources in the region and the determination of the most critical fault(s) related to earthquake exposure of the campus. Combined geological, geophysical, and geotechnical studies are then conducted to characterize each campus with specific focus on the location of particular target buildings of special interest to the campus administrators. We drill and geophysically log deep boreholes next to the target structure, to provide direct in-situ measurements of subsurface material properties, and to install uphole and downhole 3-component seismic sensors capable of recording both weak and strong motions. The boreholes provide access below the soil layers, to deeper materials that have relatively high seismic shear-wave velocities. Analyses of conjugate downhole and uphole records provide a basis for optimizing the representation of the low-strain response of the sites. Earthquake rupture scenarios of identified causative faults are combined with the earthquake records and with nonlinear soil models to provide site-specific estimates of strong motions at the selected target locations. The predicted ground motions are shared with the UC consultants, so that they can be used as input to the dynamic analysis of the buildings. Thus, for each campus targeted by the CEP project, the strong motion studies consist of two phases, Phase 1-initial source and site characterization, drilling, geophysical logging

  2. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  3. Ground-motion modeling of the 1906 San Francisco Earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events

    Science.gov (United States)

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.

    2008-01-01

    We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  4. The limits of earthquake early warning: Timeliness of ground motion estimates

    OpenAIRE

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions aroun...

  5. Instantaneous spectrum estimation of earthquake ground motions based on unscented Kalman filter method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.

  6. The limits of earthquake early warning: Timeliness of ground motion estimates

    Science.gov (United States)

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information.

  7. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  8. Modeling of earthquake ground motion in the frequency domain

    Science.gov (United States)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation

  9. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    Science.gov (United States)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  10. Ground motions estimates for a cascadia earthquake from liquefaction evidence

    Science.gov (United States)

    Dickenson, S.E.; Obermeier, S.F.

    1998-01-01

    Paleoseismic studies conducted in the coastal regions of the Pacific Northwest in the past decade have revealed evidence of crustal downdropping and subsequent tsunami inundation, attributable to a large earthquake along the Cascadia subduction zone which occurred approximately 300 years ago, and most likely in 1700 AD. In order to characterize the severity of ground motions from this earthquake, we report on results of a field search for seismically induced liquefaction features. The search was made chiefly along the coastal portions of several river valleys in Washington, rivers along the central Oregon coast, as well as on islands in the Columbia River of Oregon and Washington. In this paper we focus only on the results of the Columbia River investigation. Numerous liquefaction features were found in some regions, but not in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors at each site in order to estimate the intensity of ground shaking.

  11. Prediction of site specific ground motion for large earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1990-01-01

    In this paper, we apply the semi-empirical synthesis method by IRIKURA (1983, 1986) to the estimation of site specific ground motion using accelerograms observed at Kumatori in Osaka prefecture. Target earthquakes used here are a comparatively distant earthquake (Δ=95 km, M=5.6) caused by the YAMASAKI fault and a near earthquake (Δ=27 km, M=5.6). The results obtained are as follows. 1) The accelerograms from the distant earthquake (M=5.6) are synthesized using the aftershock records (M=4.3) for 1983 YAMASAKI fault earthquake whose source parameters have been obtained by other authors from the hypocentral distribution of the aftershocks. The resultant synthetic motions show a good agreement with the observed ones. 2) The synthesis for a near earthquake (M=5.6, we call this target earthquake) are made using a small earthquake which occurred in the neighborhood of the target earthquake. Here, we apply two methods for giving the parameters for synthesis. One method is to use the parameters of YAMASAKI fault earthquake which has the same magnitude as the target earthquake, and the other is to use the parameters obtained from several existing empirical formulas. The resultant synthetic motion with the former parameters shows a good agreement with the observed one, but that with the latter does not. 3) We estimate the source parameters from the source spectra of several earthquakes which have been observed in this site. Consequently we find that the small earthquakes (M<4) as Green's functions should be carefully used because the stress drops are not constant. 4) We propose that we should designate not only the magnitudes but also seismic moments of the target earthquake and the small earthquake. (J.P.N.)

  12. A study of Guptkashi, Uttarakhand earthquake of 6 February 2017 ( M w 5.3) in the Himalayan arc and implications for ground motion estimation

    Science.gov (United States)

    Srinagesh, Davuluri; Singh, Shri Krishna; Suresh, Gaddale; Srinivas, Dakuri; Pérez-Campos, Xyoli; Suresh, Gudapati

    2018-05-01

    The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake's location (30.546° N, 79.063° E), depth ( H = 19 km), the seismic moment ( M 0 = 1.12×1017 Nm, M w 5.3), the focal mechanism ( φ = 280°, δ = 14°, λ = 84°), the source radius ( a = 1.3 km), and the static stress drop (Δ σ s 22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω -2 source model) by attenuation parameters Q( f) = 500 f 0.9, κ = 0.04 s, and f max = infinite, and a stress drop of Δ σ = 70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤ 200 km during five other earthquakes in the region (4.6 ≤ M w ≤ 6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.

  13. Spatial correlation of probabilistic earthquake ground motion and loss

    Science.gov (United States)

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  14. The 2011 Mineral, VA M5.8 Earthquake Ground Motions and Stress Drop: An Important Contribution to the NGA East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2011-12-01

    The M5.8 Mineral, Virginia earthquake of August 23, 2011 is the largest instrumentally recorded earthquake in eastern North America since the 1988 M5.9 Saguenay, Canada earthquake. Historically, a similar magnitude earthquake occurred on May 31, 1897 at 18:58 UCT in western Virginia west of Roanoke. Paleoseismic evidence for larger magnitude earthquakes has also been found in the central Virginia region. The Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), is ongoing at the Pacific Earthquake Engineering Research Center funded by the U.S. Nuclear Regulatory Commission, the U.S. Geological Survey, the Electric Power Research Institute, and the U.S. Department of Energy. The available recordings from the M5.8 Virginia are being added to the NGA East ground motion database. Close in (less than 100 km) strong motion recordings are particularly interesting for both ground motion and stress drop estimates as most close-in broadband seismometers clipped on the mainshock. A preliminary estimate for earthquake corner frequency for the M5.8 Virginia earthquake of ~0.7 Hz has been obtained from a strong motion record 57 km from the mainshock epicenter. For a M5.8 earthquake this suggests a Brune stress drop of ~300 bars for the Virginia event. Very preliminary comparisons using accelerometer data suggest the ground motions from the M5.8 Virginia earthquake agree well with current ENA ground motion prediction equations (GMPEs) at short periods (PGA, 0.2 s) and are below the GMPEs at longer periods (1.0 s), which is the same relationship seen from other recent M5 ENA earthquakes. We will present observed versus GMPE ground motion comparisons for all the ground motion observations and stress drop estimates from strong motion recordings at distances less than 100 km. A review of the completed NGA East ENA ground motion database will also be provided.

  15. Estimation of slip scenarios of mega-thrust earthquakes and strong motion simulations for Central Andes, Peru

    Science.gov (United States)

    Pulido, N.; Tavera, H.; Aguilar, Z.; Chlieh, M.; Calderon, D.; Sekiguchi, T.; Nakai, S.; Yamazaki, F.

    2012-12-01

    We have developed a methodology for the estimation of slip scenarios for megathrust earthquakes based on a model of interseismic coupling (ISC) distribution in subduction margins obtained from geodetic data, as well as information of recurrence of historical earthquakes. This geodetic slip model (GSM) delineates the long wavelength asperities within the megathrust. For the simulation of strong ground motion it becomes necessary to introduce short wavelength heterogeneities to the source slip to be able to efficiently simulate high frequency ground motions. To achieve this purpose we elaborate "broadband" source models constructed by combining the GSM with several short wavelength slip distributions obtained from a Von Karman PSD function with random phases. Our application of the method to Central Andes in Peru, show that this region has presently the potential of generating an earthquake with moment magnitude of 8.9, with a peak slip of 17 m and a source area of approximately 500 km along strike and 165 km along dip. For the strong motion simulations we constructed 12 broadband slip models, and consider 9 possible hypocenter locations for each model. We performed strong motion simulations for the whole central Andes region (Peru), spanning an area from the Nazca ridge (16^o S) to the Mendana fracture (9^o S). For this purpose we use the hybrid strong motion simulation method of Pulido et al. (2004), improved to handle a general slip distribution. Our simulated PGA and PGV distributions indicate that a region of at least 500 km along the coast of central Andes is subjected to a MMI intensity of approximately 8, for the slip model that yielded the largest ground motions among the 12 slip models considered, averaged for all assumed hypocenter locations. This result is in agreement with the macroseismic intensity distribution estimated for the great 1746 earthquake (M~9) in central Andes (Dorbath et al. 1990). Our results indicate that the simulated PGA and PGV for

  16. Earthquake strong ground motion studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, Ivan; Silva, W.; Darragh, R.; Stark, C.; Wright, D.; Jackson, S.; Carpenter, G.; Smith, R.; Anderson, D.; Gilbert, H.; Scott, D.

    1989-01-01

    Site-specific strong earthquake ground motions have been estimated for the Idaho National Engineering Laboratory assuming that an event similar to the 1983 M s 7.3 Borah Peak earthquake occurs at epicentral distances of 10 to 28 km. The strong ground motion parameters have been estimated based on a methodology incorporating the Band-Limited-White-Noise ground motion model coupled with Random Vibration Theory. A 16-station seismic attenuation and site response survey utilizing three-component portable digital seismographs was also performed for a five-month period in 1989. Based on the recordings of regional earthquakes, the effects of seismic attenuation in the shallow crust and along the propagation path and local site response were evaluated. This data combined with a detailed geologic profile developed for each site based principally on borehole data, was used in the estimation of the strong ground motion parameters. The preliminary peak horizontal ground accelerations for individual sites range from approximately 0.15 to 0.35 g. Based on the authors analysis, the thick sedimentary interbeds (greater than 20 m) in the basalt section attenuate ground motions as speculated upon in a number of previous studies

  17. Recent applications for rapid estimation of earthquake shaking and losses with ELER Software

    International Nuclear Information System (INIS)

    Demircioglu, M.B.; Erdik, M.; Kamer, Y.; Sesetyan, K.; Tuzun, C.

    2012-01-01

    A methodology and software package entitled Earthquake Loss Estimation Routine (ELER) was developed for rapid estimation of earthquake shaking and losses throughout the Euro-Mediterranean region. The work was carried out under the Joint Research Activity-3 (JRA3) of the EC FP6 project entitled Network of Research Infrastructures for European Seismology (NERIES). The ELER methodology anticipates: 1) finding of the most likely location of the source of the earthquake using regional seismo-tectonic data base; 2) estimation of the spatial distribution of selected ground motion parameters at engineering bedrock through region specific ground motion prediction models, bias-correcting the ground motion estimations with strong ground motion data, if available; 3) estimation of the spatial distribution of site-corrected ground motion parameters using regional geology database using appropriate amplification models; and 4) estimation of the losses and uncertainties at various orders of sophistication (buildings, casualties). The multi-level methodology developed for real time estimation of losses is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships which are coded into ELER. The present paper provides brief information on the methodology of ELER and provides an example application with the recent major earthquake that hit the Van province in the east of Turkey on 23 October 2011 with moment magnitude (Mw) of 7.2. For this earthquake, Kandilli Observatory and Earthquake Research Institute (KOERI) provided almost real time estimations in terms of building damage and casualty distribution using ELER. (author)

  18. Characteristics of Earthquake Ground Motion Attenuation in Korea and Japan

    International Nuclear Information System (INIS)

    Choi, In-Kil; Choun, Young-Sun; Nakajima, Masato; Ohtori, Yasuki; Yun, Kwan-Hee

    2006-01-01

    The characteristics of a ground motion attenuation in Korea and Japan were estimated by using the earthquake ground motions recorded at the equal distance observation station by KMA, K-NET and KiK-net of Korea and Japan. The ground motion attenuation equations proposed for Korea and Japan were evaluated by comparing the predicted value for the Fukuoka earthquake with the observed records. The predicted values from the attenuation equations show a good agreement with the observed records and each other. It can be concluded from this study that the ground motion attenuation equations can be used for the prediction of strong ground motion attenuation and for an evaluation of the attenuation equations proposed for Korea

  19. ARMA models for earthquake ground motions. Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Chang, Mark K.; Kwiatkowski, Jan W.; Nau, Robert F.; Oliver, Robert M.; Pister, Karl S.

    1981-02-01

    This report contains an analysis of four major California earthquake records using a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It has been possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters and test the residuals generated by these models. It has also been possible to show the connections, similarities and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed in this report is suitable for simulating earthquake ground motions in the time domain and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. (author)

  20. Ground Motion Prediction for Great Interplate Earthquakes in Kanto Basin Considering Variation of Source Parameters

    Science.gov (United States)

    Sekiguchi, H.; Yoshimi, M.; Horikawa, H.

    2011-12-01

    Broadband ground motions are estimated in the Kanto sedimentary basin which holds Tokyo metropolitan area inside for anticipated great interplate earthquakes along surrounding plate boundaries. Possible scenarios of great earthquakes along Sagami trough are modeled combining characteristic properties of the source area and adequate variation in source parameters in order to evaluate possible ground motion variation due to next Kanto earthquake. South to the rupture area of the 2011 Tohoku earthquake along the Japan trench, we consider possible M8 earthquake. The ground motions are computed with a four-step hybrid technique. We first calculate low-frequency ground motions at the engineering basement. We then calculate higher-frequency ground motions at the same position, and combine the lower- and higher-frequency motions using a matched filter. We finally calculate ground motions at the surface by computing the response of the alluvium-diluvium layers to the combined motions at the engineering basement.

  1. Quantitative prediction of strong motion for a potential earthquake fault

    Directory of Open Access Journals (Sweden)

    Shamita Das

    2010-02-01

    Full Text Available This paper describes a new method for calculating strong motion records for a given seismic region on the basis of the laws of physics using information on the tectonics and physical properties of the earthquake fault. Our method is based on a earthquake model, called a «barrier model», which is characterized by five source parameters: fault length, width, maximum slip, rupture velocity, and barrier interval. The first three parameters may be constrained from plate tectonics, and the fourth parameter is roughly a constant. The most important parameter controlling the earthquake strong motion is the last parameter, «barrier interval». There are three methods to estimate the barrier interval for a given seismic region: 1 surface measurement of slip across fault breaks, 2 model fitting with observed near and far-field seismograms, and 3 scaling law data for small earthquakes in the region. The barrier intervals were estimated for a dozen earthquakes and four seismic regions by the above three methods. Our preliminary results for California suggest that the barrier interval may be determined if the maximum slip is given. The relation between the barrier interval and maximum slip varies from one seismic region to another. For example, the interval appears to be unusually long for Kilauea, Hawaii, which may explain why only scattered evidence of strong ground shaking was observed in the epicentral area of the Island of Hawaii earthquake of November 29, 1975. The stress drop associated with an individual fault segment estimated from the barrier interval and maximum slip lies between 100 and 1000 bars. These values are about one order of magnitude greater than those estimated earlier by the use of crack models without barriers. Thus, the barrier model can resolve, at least partially, the well known discrepancy between the stress-drops measured in the laboratory and those estimated for earthquakes.

  2. Primary variables influencing generation of earthquake motions by a deconvolution process

    International Nuclear Information System (INIS)

    Idriss, I.M.; Akky, M.R.

    1979-01-01

    In many engineering problems, the analysis of potential earthquake response of a soil deposit, a soil structure or a soil-foundation-structure system requires the knowledge of earthquake ground motions at some depth below the level at which the motions are recorded, specified, or estimated. A process by which such motions are commonly calculated is termed a deconvolution process. This paper presents the results of a parametric study which was conducted to examine the accuracy, convergence, and stability of a frequency used deconvolution process and the significant parameters that may influence the output of this process. Parameters studied in included included: soil profile characteristics, input motion characteristics, level of input motion, and frequency cut-off. (orig.)

  3. Estimation of failure probability on real structure utilized by earthquake observation data

    International Nuclear Information System (INIS)

    Matsubara, Masayoshi

    1995-01-01

    The objective of this report is to propose the procedure which estimates the structural response on a real structure by utilizing earthquake observation data using Neural network system. We apply the neural network system to estimate the ground motion of the site by enormous earthquake data published from Japan Meteorological Agency. The proposed procedure has some possibility to estimate the correlation between earthquake and response adequately. (author)

  4. Estimation of S-wave velocity structure of deep sedimentary layers using geophysical data and earthquake ground motion records

    International Nuclear Information System (INIS)

    Suzuki, Haruhiko

    2014-01-01

    The preliminary results with an outline of array observation for micro-tremor and natural earthquakes around the NIIT site were explained. Phase velocity estimated from a horizontal array of strong motion observation agrees with that from the micro-tremor survey. Estimation results are consistent with other literature, such as PS-logging data and gravity maps. Further improvement of the three-dimensional modeling by using micro-tremor surveys and horizontal array observation is planned for the future. (author)

  5. Earthquake magnitude estimation using the τ c and P d method for earthquake early warning systems

    Science.gov (United States)

    Jin, Xing; Zhang, Hongcai; Li, Jun; Wei, Yongxiang; Ma, Qiang

    2013-10-01

    Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.

  6. Strong ground motion prediction using virtual earthquakes.

    Science.gov (United States)

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  7. Strong motion duration and earthquake magnitude relationships

    International Nuclear Information System (INIS)

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ''strong motion duration'' has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions

  8. Uniform risk spectra of strong earthquake ground motion: NEQRISK

    International Nuclear Information System (INIS)

    Lee, V.W.; Trifunac, M.D.

    1987-01-01

    The concept of uniform risk spectra of Anderson and Trifunac (1977) has been generalized to include (1) more refined description of earthquake source zones, (2) the uncertainties in estimating seismicity parameters a and b in log 10 N = a - bM, (3) to consider uncertainties in estimation of maximum earthquake size in each source zone, and to (4) include the most recent results on empirical scaling of strong motion amplitudes at a site. Examples of using to new NEQRISK program are presented and compared with the corresponding case studies of Anderson and Trifunac (1977). The organization of the computer program NEQRISK is also briefly described

  9. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals.

    Science.gov (United States)

    Wu, Yih-Min; Kanamori, Hiroo

    2008-01-09

    As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τ c and the peak ground-motionvelocity (PGV) could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τ c and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds.

  10. Ground motion estimation for the elevated bridges of the Kyushu Shinkansen derailment caused by the foreshock of the 2016 Kumamoto earthquake based on the site-effect substitution method

    Science.gov (United States)

    Hata, Yoshiya; Yabe, Masaaki; Kasai, Akira; Matsuzaki, Hiroshi; Takahashi, Yoshikazu; Akiyama, Mitsuyoshi

    2016-12-01

    An earthquake of JMA magnitude 6.5 (first event) hit Kumamoto Prefecture, Japan, at 21:26 JST, April 14, 2016. Subsequently, an earthquake of JMA magnitude 7.3 (second event) hit Kumamoto and Oita Prefectures at 01:46 JST, April 16, 2016. An out-of-service Kyushu Shinkansen train carrying no passengers traveling on elevated bridges was derailed by the first event. This was the third derailment caused by an earthquake in the history of the Japanese Shinkansen, after one caused by the 2004 Mid-Niigata Prefecture Earthquake and another triggered by the 2011 Tohoku Earthquake. To analyze the mechanism of this third derailment, it is crucial to evaluate the strong ground motion at the derailment site with high accuracy. For this study, temporary earthquake observations were first carried out at a location near the bridge site; these observations were conducted because although the JMA Kumamoto Station site and the derailment site are closely located, the ground response characteristics at these sites differ. Next, empirical site amplification and phase effects were evaluated based on the obtained observation records. Finally, seismic waveforms during the first event at the bridge site of interest were estimated based on the site-effect substitution method. The resulting estimated acceleration and velocity waveforms for the derailment site include much larger amplitudes than the waveforms recorded at the JMA Kumamoto and MLIT Kumamoto station sites. The reliability of these estimates is confirmed by the finding that the same methods reproduce strong ground motions at the MLIT Kumamoto Station site accurately. These estimated ground motions will be useful for reasonable safety assessment of anti-derailment devices on elevated railway bridges.[Figure not available: see fulltext.

  11. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  12. Passive containment system in high earthquake motion

    International Nuclear Information System (INIS)

    Kleimola, F.W.; Falls, O.B. Jr.

    1977-01-01

    High earthquake motion necessitates major design modifications in the complex of plant structures, systems and components in a nuclear power plant. Distinctive features imposed by seismic category, safety class and quality classification requirements for the high seismic ground acceleration loadings significantly reflect in plant costs. The design features in the Passive Containment System (PCS) responding to high earthquake ground motion are described

  13. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals

    Directory of Open Access Journals (Sweden)

    Hiroo Kanamori

    2008-01-01

    Full Text Available As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τc and the peak ground-motionvelocity (PGV could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τc and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds.

  14. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy ...

  15. Broadband Ground Motion Observation and Simulation for the 2016 Kumamoto Earthquake

    Science.gov (United States)

    Miyake, H.; Chimoto, K.; Yamanaka, H.; Tsuno, S.; Korenaga, M.; Yamada, N.; Matsushima, T.; Miyakawa, K.

    2016-12-01

    During the 2016 Kumamoto earthquake, strong motion data were widely recorded by the permanent dense triggered strong motion network of K-NET/KiK-net and seismic intensity meters installed by local government and JMA. Seismic intensities close to the MMI 9-10 are recorded twice at the Mashiki town, and once at the Nishihara village and KiK-net Mashiki (KMMH16 ground surface). Near-fault records indicate extreme ground motion exceeding 400 cm/s in 5% pSv at a period of 1 s for the Mashiki town and 3-4 s for the Nishihara village. Fault parallel velocity components are larger between the Mashiki town and the Nishihara village, on the other hand, fault normal velocity components are larger inside the caldera of the Aso volcano. The former indicates rupture passed through along-strike stations, and the latter stations located at the forward rupture direction (e.g., Miyatake, 1999). In addition to the permanent observation, temporary continuous strong motion stations were installed just after the earthquake in the Kumamoto city, Mashiki town, Nishihara village, Minami-Aso village, and Aso town, (e.g., Chimoto et al., 2016; Tsuno et al., 2016; Yamanaka et al. 2016). This study performs to estimate strong motion generation areas for the 2016 Kumamoto earthquake sequence using the empirical Green's function method, then to simulate broadband ground motions for both the permanent and temporary strong motion stations. Currently the target period range is between 0.1 s to 5-10 s due to the signal-to-noise ratio of element earthquakes used for the empirical Green's functions. We also care fault dimension parameters N within 4 to 10 to avoid spectral sags and artificial periodicity. The simulated seismic intensities as well as fault normal and parallel velocity components will be discussed.

  16. Principles for selecting earthquake motions in engineering design of large dams

    Science.gov (United States)

    Krinitzsky, E.L.; Marcuson, William F.

    1983-01-01

    a site may be obtained from several methods that involve magnitude of earthquake, distance from source, and corresponding motions; or, alternately, peak motions may be assigned from other correlations based on earthquake intensity. Various interpretations exist to account for duration, recurrence, effects of site conditions, etc. Comparison of the various interpretations can be very useful. Probabilities can be assigned; however, they can present very serious problems unless appropriate care is taken when data are extrapolated beyond their data base. In making deterministic judgments, probabilistic data can provide useful guidance in estimating the uncertainties of the decision. The selection of a design ground motion for large dams is based in the end on subjective judgments which should depend, to an important extent, on the consequences of failure. Usually, use of a design value of ground motion representing a mean plus one standard deviation of possible variation in the mean of the data puts one in a conservative position. If failure presents no hazard to life, lower values of design ground motion may be justified, providing there are cost benefits and the risk is acceptable to the owner. Where a large hazard to life exists (i.e., a dam above an urbanized area) one may wish to use values of design ground motion that approximate the very worst case. The selection of a design ground motion must be appropriate for its particular set of circumstances.

  17. Exploration of deep S-wave velocity structure using microtremor array technique to estimate long-period ground motion

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Higashi, Sadanori; Sato, Kiyotaka

    2007-01-01

    In this study, microtremor array measurements were conducted at 9 sites in the Niigata plain to explore deep S-wave velocity structures for estimation of long-period earthquake ground motion. The 1D S-wave velocity profiles in the Niigata plain are characterized by 5 layers with S-wave velocities of 0.4, 0.8, 1.5, 2.1 and 3.0 km/s, respectively. The depth to the basement layer is deeper in the Niigata port area located at the Japan sea side of the Niigata plain. In this area, the basement depth is about 4.8 km around the Seirou town and about 4.1 km around the Niigata city, respectively. These features about the basement depth in the Niigata plain are consistent with the previous surveys. In order to verify the profiles derived from microtremor array exploration, we estimate the group velocities of Love wave for four propagation paths of long-period earthquake ground motion during Niigata-ken tyuetsu earthquake by multiple filter technique, which were compared with the theoretical ones calculated from the derived profiles. As a result, it was confirmed that the group velocities from the derived profiles were in good agreement with the ones from long-period earthquake ground motion records during Niigata-ken tyuetsu earthquake. Furthermore, we applied the estimation method of design basis earthquake input for seismically isolated nuclear power facilities by using normal mode solution to estimate long-period earthquake ground motion during Niigata-ken tyuetsu earthquake. As a result, it was demonstrated that the applicability of the above method for the estimation of long-period earthquake ground motion were improved by using the derived 1D S-wave velocity profile. (author)

  18. A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta

    Science.gov (United States)

    Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.

    2015-12-01

    Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.

  19. Earthquake Strong Ground Motion Scenario at the 2008 Olympic Games Sites, Beijing, China

    Science.gov (United States)

    Liu, L.; Rohrbach, E. A.; Chen, Q.; Chen, Y.

    2006-12-01

    Historic earthquake record indicates mediate to strong earthquakes have been frequently hit greater Beijing metropolitan area where is going to host the 2008 summer Olympic Games. For the readiness preparation of emergency response to the earthquake shaking for a mega event in a mega city like Beijing in summer 2008, this paper tries to construct the strong ground motion scenario at a number of gymnasium sites for the 2008 Olympic Games. During the last 500 years (the Ming and Qing Dynasties) in which the historic earthquake record are thorough and complete, there are at least 12 earthquake events with the maximum intensity of VI or greater occurred within 100 km radius centered at the Tiananmen Square, the center of Beijing City. Numerical simulation of the seismic wave propagation and surface strong ground motion is carried out by the pseudospectral time domain methods with viscoelastic material properties. To improve the modeling efficiency and accuracy, a multi-scale approach is adapted: the seismic wave propagation originated from an earthquake rupture source is first simulated by a model with larger physical domain with coarser grids. Then the wavefield at a given plane is taken as the source input for the small-scale, fine grid model for the strong ground motion study at the sites. The earthquake source rupture scenario is based on two particular historic earthquake events: One is the Great 1679 Sanhe-Pinggu Earthquake (M~8, Maximum Intensity XI at the epicenter and Intensity VIII in city center)) whose epicenter is about 60 km ENE of the city center. The other one is the 1730 Haidian Earthquake (M~6, Maximum Intensity IX at the epicenter and Intensity VIII in city center) with the epicentral distance less than 20 km away from the city center in the NW Haidian District. The exist of the thick Tertiary-Quaternary sediments (maximum thickness ~ 2 km) in Beijing area plays a critical role on estimating the surface ground motion at the Olympic Games sites, which

  20. Prediction of strong earthquake motions on rock surface using evolutionary process models

    International Nuclear Information System (INIS)

    Kameda, H.; Sugito, M.

    1984-01-01

    Stochastic process models are developed for prediction of strong earthquake motions for engineering design purposes. Earthquake motions with nonstationary frequency content are modeled by using the concept of evolutionary processes. Discussion is focused on the earthquake motions on bed rocks which are important for construction of nuclear power plants in seismic regions. On this basis, two earthquake motion prediction models are developed, one (EMP-IB Model) for prediction with given magnitude and epicentral distance, and the other (EMP-IIB Model) to account for the successive fault ruptures and the site location relative to the fault of great earthquakes. (Author) [pt

  1. An empirical assessment of near-source strong ground motion for a 6.6 mb (7.5 MS) earthquake in the Eastern United States

    International Nuclear Information System (INIS)

    Campbell, Kenneth W.

    1984-06-01

    To help assess the impact of the current U.S. Geological Survey position on the seismic safety of nuclear power plants in the Eastern United States (EUS), several techniques for estimating near-source strong ground motion for a Charleston size earthquake were evaluated. The techniques for estimating the near-source strong ground motion for a 6.6 m b (7.5 M S ) in the Eastern United States which were assessed are methods based on site specific analyses, semi-theoretical scaling techniques, and intensity-based estimates. The first involves the statistical analysis of ground motion records from earthquakes and recording stations having the same general characteristics (earthquakes with magnitudes of 7.5 M S or larger, epicentral distances of 25 km or less, and sites of either soil or rock). Some recommendations for source and characterization scaling of the bias resulting primarily from an inadequate sample of near-source recordings from earthquakes of large magnitude are discussed. The second technique evaluated requires that semi-theoretical estimates of peak ground motion parameters for a 6.6 m b (7.5 M S ) earthquake be obtained from scaling relations. Each relation uses a theoretical expression between peak acceleration magnitude and distance together with available strong motion data (majority coming from California) to develop a scaling relation appropriate for the Eastern United States. None of the existing ground motion models for the EUS include the potential effects of source or site characteristics. Adjustments to account for fault mechanisms, site topography, site geology, and the size and embedment of buildings are discussed. The final approach used relations between strong ground motion parameters and Modified Mercalli Intensity in conjunction with two methods to estimate peak parameters for a 6.6 m s (7.5 M S ) earthquake. As with other techniques, adjustment of peak acceleration estimates are discussed. Each method differently approaches the problem

  2. Ground Motion Characteristics of Induced Earthquakes in Central North America

    Science.gov (United States)

    Atkinson, G. M.; Assatourians, K.; Novakovic, M.

    2017-12-01

    The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in

  3. Strong ground motion of the 2016 Kumamoto earthquake

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, H.; Morikawa, N.; Fujiwara, H.

    2016-12-01

    The 2016 Kumamoto earthquake that is composed of Mw 6.1 and Mw 7.1 earthquakes respectively occurred in the Kumamoto region at 21:26 on April 14 and 28 hours later at 1:25 on April 16, 2016 (JST). These earthquakes are considered to rupture mainly the Hinagu fault zone for the Mw 6.1 event and the Futagawa fault zone for the Mw 7.1 event, respectively, where the Headquarter for Earthquake Research Promotion performed the long-term evaluation as well as seismic hazard assessment prior to the 2016 Kumamoto earthquake. Strong shakings with seismic intensity 7 in the JMA scale were observed at four times in total: Mashiki town for the Mw 6.1 and Mw 7.1 events, Nishihara village for the Mw 7.1 event, and NIED/KiK-net Mashiki (KMMH16) for the Mw 7.1 event. KiK-net Mashiki (KMMH16) recorded peak ground acceleration more than 1000 cm/s/s, and Nishihara village recorded peak ground velocity more than 250 cm/s. Ground motions were observed wider area for the Mw 7.1 event than the Mw 6.1 event. Peak ground accelerations and peak ground velocities of K-NET/KiK-net stations are consistent with the ground motion prediction equations by Si and Midorikawa (1999). Peak ground velocities at longer distance than 200 km attenuate slowly, which can be attributed to the large Love wave with a dominant period around 10 seconds. 5%-damped pseudo spectral velocity of the Mashiki town shows a peak at period of 1-2 s that exceeds ground motion response of JR Takatori of the 1995 Kobe earthquake and the Kawaguchi town of the 2004 Chuetsu earthquake. 5%-damped pseudo spectral velocity of the Nishihara village shows 350 cm/s peak at period of 3-4 s that is similar to the several stations in Kathmandu basin by Takai et al. (2016) during the 2015 Gorkha earthquake in Nepal. Ground motions at several stations in Oita exceed the ground motion prediction equations due to an earthquake induced by the Mw 7.1 event. Peak ground accelerations of K-NET Yufuin (OIT009) records 90 cm/s/s for the Mw 7

  4. Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...

  5. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    Science.gov (United States)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  6. Intensity estimation of historical earthquakes through seismic analysis of wooden house

    International Nuclear Information System (INIS)

    Choi, I. K.; Soe, J. M.

    1999-01-01

    The intensity of historical earthquake records related with house collapses are estimated by the seismic analyses of traditional three-bay-straw-roof house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km - 350 km and hard and soft soil condition were generated for the analyses. Nonlinear dynamic analyses were performed for a traditional three-bay-roof house. Damage level of the wooden house according to the input earthquake motions and the MM intensity were estimated by maximum displacement response at the top of columns. Considering the structural characteristics of the three-bay-straw-roof house, the largest historical earthquake record related to the house collapse is about MMI VIII

  7. Examination of earthquake Ground Motion in the deep underground environment of Japan

    International Nuclear Information System (INIS)

    Goto, J.; Tsuchi, H.; Mashimo, M.

    2009-01-01

    Among the possible impacts of earthquakes on the geological disposal system, ground motion is not included in the criteria for selecting a candidate repository site because, in general, ground motion deep underground is considered to be smaller than at the surface. Also, after backfilling/closure, the repository moves together with the surrounding rock. We have carried out a detailed examination of earthquake ground motion deep underground using extensive data from recent observation networks to support the above assumption. As a result, it has been reconfirmed that earthquake ground motion deep underground is relatively smaller than at the surface. Through detailed analysis of data, we have identified the following important parameters for evaluating earthquake ground motion deep underground: depth and velocity distribution of the rock formations of interest, the intensity of the short period component of earthquakes and incident angle of seismic waves to the rock formations. (authors)

  8. Ground motion characteristics of 2007 Niigata-ken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou; Nishimura, Isao; Mizutani, Hiroyuki; Tokumitsu, Ryoichi; Mashimo, Mitsugu; Tanaka, Shinya

    2010-01-01

    Strong motion records of 2007 Niigata-ken Chuetsu-oki earthquake were examined in order to evaluate ground motion characteristics of the earthquake. Ground motions observed at Kashiwazaki Kariwa Nuclear Power Plant site were significantly larger than the response spectra evaluated on the basis of Noda et al. (2002), and the level of the ground motion observed at Arahama area (unit 1-4 side) was approximately twice as large as that at Ominato area (unit 5-7 side). Observation records of the offshore events other than the earthquake were also larger than the response spectra based on Noda et al. (2002), whereas records of the inland events were smaller than those. In addition, these characteristics were also observed in the vicinity of the site through the analysis of the ground motion records obtained by KiK-net. (author)

  9. Methodology for estimating realistic responses of buildings and components under earthquake motion and its application

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Abe, Kiyoharu; Kohno, Kunihiko; Nakamura, Hidetaka; Itoh, Mamoru.

    1996-11-01

    Failure probabilities of buildings and components under earthquake motion are estimated as conditional probabilities that their realistic responses exceed their capacities. Two methods for estimating their failure probabilities have already been developed. One is a detailed method developed in the Seismic Safety margins Research Program of Lawrence Livermore National Laboratory in U.S.A., which is called 'SSMRP method'. The other is a simplified method proposed by Kennedy et al., which is called 'Zion method'. The Zion method is sometimes called 'response factor method'. The authors adopted the response factor method. In order to enhance the estimation accuracy of failure probabilities of buildings and components, however, a new methodology for improving the response factor method was proposed. Based on the improved method, response factors of buildings and components designed to seismic design standard in Japan were estimated, and their realistic responses were also calculated. By using their realistic responses and capacities, the failure probabilities of a reactor building and relays were estimated. In order to identify the difference between new method, SSMRP method and original response factor method, the failure probabilities were compared estimated by these three methods. A similar method of SSMRP was used instead of the original SSMRP for saving time and labor. The viewpoints for selecting the methods to estimate failure probabilities of buildings and components were also proposed. (author). 55 refs

  10. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  11. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  12. Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki

    2017-01-01

    The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available

  13. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    Science.gov (United States)

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  14. An empirical assessment of near-source strong ground motion for a 6.6 m{sub b} (7.5 M{sub S}) earthquake in the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kenneth W

    1984-06-01

    To help assess the impact of the current U.S. Geological Survey position on the seismic safety of nuclear power plants in the Eastern United States (EUS), several techniques for estimating near-source strong ground motion for a Charleston size earthquake were evaluated. The techniques for estimating the near-source strong ground motion for a 6.6 m{sub b} (7.5 M{sub S}) in the Eastern United States which were assessed are methods based on site specific analyses, semi-theoretical scaling techniques, and intensity-based estimates. The first involves the statistical analysis of ground motion records from earthquakes and recording stations having the same general characteristics (earthquakes with magnitudes of 7.5 M{sub S} or larger, epicentral distances of 25 km or less, and sites of either soil or rock). Some recommendations for source and characterization scaling of the bias resulting primarily from an inadequate sample of near-source recordings from earthquakes of large magnitude are discussed. The second technique evaluated requires that semi-theoretical estimates of peak ground motion parameters for a 6.6 m{sub b} (7.5 M{sub S}) earthquake be obtained from scaling relations. Each relation uses a theoretical expression between peak acceleration magnitude and distance together with available strong motion data (majority coming from California) to develop a scaling relation appropriate for the Eastern United States. None of the existing ground motion models for the EUS include the potential effects of source or site characteristics. Adjustments to account for fault mechanisms, site topography, site geology, and the size and embedment of buildings are discussed. The final approach used relations between strong ground motion parameters and Modified Mercalli Intensity in conjunction with two methods to estimate peak parameters for a 6.6 m{sub s} (7.5 M{sub S}) earthquake. As with other techniques, adjustment of peak acceleration estimates are discussed. Each method

  15. On the relation of earthquake stress drop and ground motion variability

    Science.gov (United States)

    Oth, Adrien; Miyake, Hiroe; Bindi, Dino

    2017-07-01

    One of the key parameters for earthquake source physics is stress drop since it can be directly linked to the spectral level of ground motion. Stress drop estimates from moment corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than expected from the between-event ground motion variability. This discrepancy raises the question whether classically determined stress drop variability is too large, which would have significant consequences for seismic hazard analysis. We use a large high-quality data set from Japan with well-studied stress drop data to address this issue. Nonparametric and parametric reference ground motion models are derived, and the relation of between-event residuals for Japan Meteorological Agency equivalent seismic intensity and peak ground acceleration with stress drop is analyzed for crustal earthquakes. We find a clear correlation of the between-event residuals with stress drops estimates; however, while the island of Kyushu is characterized by substantially larger stress drops than Honshu, the between-event residuals do not reflect this observation, leading to the appearance of two event families with different stress drop levels yet similar range of between-event residuals. Both the within-family and between-family stress drop variations are larger than expected from the ground motion between-event variability. A systematic common analysis of these parameters holds the potential to provide important constraints on the relative robustness of different groups of data in the different parameter spaces and to improve our understanding on how much of the observed source parameter variability is likely to be true source physics variability.

  16. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-04-13

    Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes

  17. Analyses of computer programs for the probabilistic estimation of design earthquake and seismological characteristics of the Korean Peninsula

    International Nuclear Information System (INIS)

    Lee, Gi Hwa

    1997-11-01

    The purpose of the present study is to develop predictive equations from simulated motions which are adequate for the Korean Peninsula and analyze and utilize the computer programs for the probabilistic estimation of design earthquakes. In part I of the report, computer programs for the probabilistic estimation of design earthquake are analyzed and applied to the seismic hazard characterizations in the Korean Peninsula. In part II of the report, available instrumental earthquake records are analyzed to estimate earthquake source characteristics and medium properties, which are incorporated into simulation process. And earthquake records are simulated by using the estimated parameters. Finally, predictive equations constructed from the simulation are given in terms of magnitude and hypocentral distances

  18. A Mw 6.3 earthquake scenario in the city of Nice (southeast France): ground motion simulations

    Science.gov (United States)

    Salichon, Jérome; Kohrs-Sansorny, Carine; Bertrand, Etienne; Courboulex, Françoise

    2010-07-01

    The southern Alps-Ligurian basin junction is one of the most seismically active zone of the western Europe. A constant microseismicity and moderate size events (3.5 case of an offshore Mw 6.3 earthquake located at the place where two moderate size events (Mw 4.5) occurred recently and where a morphotectonic feature has been detected by a bathymetric survey. We used a stochastic empirical Green’s functions (EGFs) summation method to produce a population of realistic accelerograms on rock and soil sites in the city of Nice. The ground motion simulations are calibrated on a rock site with a set of ground motion prediction equations (GMPEs) in order to estimate a reasonable stress-drop ratio between the February 25th, 2001, Mw 4.5, event taken as an EGF and the target earthquake. Our results show that the combination of the GMPEs and EGF techniques is an interesting tool for site-specific strong ground motion estimation.

  19. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  20. Earthquake source model using strong motion displacement

    Indian Academy of Sciences (India)

    The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ...

  1. Published attenuation functions compared to 6/29/1992 Little Skull Mountain earthquake motion

    International Nuclear Information System (INIS)

    Hofmann, R.B.; Ibrahim, A.K.

    1994-01-01

    Several western U.S. strong motion acceleration earthquake attenuation functions are compared to peak accelerations recorded during the 6/29/1992 Little Skull Mountain, Nevada earthquake. The comparison revealed that there are several definitions of site-to-source distance and at least two definitions of peak acceleration in use. Probabilistic seismic hazard analysis (PSHA) codes typically estimate accelerations assuming point sources. The computer code, SEISM 1, was developed for the eastern U.S. where ground acceleration is usually defined in terms of epicentral distance. Formulae whose distance definitions require knowledge of the earthquake fault slip zone dimensions may predict very different near-field accelerations when epicentral distance is used. Approximations to achieve more consistent PSHA results are derived

  2. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    Science.gov (United States)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  3. Analyses of surface motions caused by the magnitude 9.0 2004 Sumatra earthquake

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Gudmundsson, Ó.

    The Sumatra, Indonesia, earthquake on December 26th was one of the most devastating earthquakes in history. With a magnitude of Mw = 9.0 it is the forth largest earthquake recorded since 1900. It occurred about one hundred kilometers off the west coast of northern Sumatra, where the relatively thin...... of years. The result was a devastating tsunami hitting coastlines across the Indian Ocean killing more than 225,000 people in Sri Lanka, India, Indonesia, Thailand and Malaysia. An earthquake of this magnitude is expected to involve a displacement on the fault on the order of 10 meters. But, what...... was the actual amplitude of the surface motions that triggered the tsunami? This can be constrained using the amplitudes of elastic waves radiated from the earthquake, or by direct measurements of deformation. Here we present estimates of the deformation based on continuous Global Positioning System (GPS...

  4. Earthquake ground-motion in presence of source and medium heterogeneities

    KAUST Repository

    Vyas, Jagdish Chandra

    2017-01-01

    This dissertation work investigates the effects of earthquake rupture complexity and heterogeneities in Earth structure on near-field ground-motions. More specifically, we address two key issues in seismology: (1) near-field ground-shaking variability as function of distance and azimuth for unilateral directive ruptures, and (2) impact of rupture complexity and seismic scattering on Mach wave coherence associated with supershear rupture propagation. We examine earthquake ground-motion variability associated with unilateral ruptures based on ground-motion simulations of the MW 7.3 1992 Landers earthquake, eight simplified source models, and a MW 7.8 rupture simulation (ShakeOut) for the San Andreas fault. Our numerical modeling reveals that the ground-shaking variability in near-fault distances (< 20 km) is larger than that given by empirical ground motion prediction equations. In addition, the variability decreases with increasing distance from the source, exhibiting a power-law decay. The high near-field variability can be explained by strong directivity effects whose influence weaken as we move away from the fault. At the same time, the slope of the power-law decay is found to be dominantly controlled by slip heterogeneity. Furthermore, the ground-shaking variability is high in the rupture propagation direction whereas low in the directions perpendicular to it. However, the variability expressed as a function of azimuth is not only sensitive to slip heterogeneity, but also to rupture velocity. To study Mach wave coherence for supershear ruptures, we consider heterogeneities in rupture parameters (variations in slip, rise time and rupture speed) and 3D scattering media having small-scale random heterogeneities. The Mach wave coherence is reduced at near-fault distances (< 10 km) by the source heterogeneities. At the larger distances from the source, medium scattering plays the dominant role in reducing the Mach wave coherence. Combined effect of the source and

  5. A Method for Estimation of Death Tolls in Disastrous Earthquake

    Science.gov (United States)

    Pai, C.; Tien, Y.; Teng, T.

    2004-12-01

    Fatality tolls caused by the disastrous earthquake are the one of the most important items among the earthquake damage and losses. If we can precisely estimate the potential tolls and distribution of fatality in individual districts as soon as the earthquake occurrences, it not only make emergency programs and disaster management more effective but also supply critical information to plan and manage the disaster and the allotments of disaster rescue manpower and medicine resources in a timely manner. In this study, we intend to reach the estimation of death tolls caused by the Chi-Chi earthquake in individual districts based on the Attributive Database of Victims, population data, digital maps and Geographic Information Systems. In general, there were involved many factors including the characteristics of ground motions, geological conditions, types and usage habits of buildings, distribution of population and social-economic situations etc., all are related to the damage and losses induced by the disastrous earthquake. The density of seismic stations in Taiwan is the greatest in the world at present. In the meantime, it is easy to get complete seismic data by earthquake rapid-reporting systems from the Central Weather Bureau: mostly within about a minute or less after the earthquake happened. Therefore, it becomes possible to estimate death tolls caused by the earthquake in Taiwan based on the preliminary information. Firstly, we form the arithmetic mean of the three components of the Peak Ground Acceleration (PGA) to give the PGA Index for each individual seismic station, according to the mainshock data of the Chi-Chi earthquake. To supply the distribution of Iso-seismic Intensity Contours in any districts and resolve the problems for which there are no seismic station within partial districts through the PGA Index and geographical coordinates in individual seismic station, the Kriging Interpolation Method and the GIS software, The population density depends on

  6. Strong motion recordings of the 2008/12/23 earthquake in Northern Italy: another case of very weak motion?

    Science.gov (United States)

    Sabetta, F.; Zambonelli, E.

    2009-04-01

    On December 23 2008 an earthquake of magnitude ML=5.1 (INGV) Mw=5.4 (INGV-Harvard Global CMT) occurred in northern Italy close to the cities of Parma and Reggio Emilia. The earthquake, with a macroseismic intensity of VI MCS, caused a very slight damage (some tens of unusable buildings and some hundreds of damaged buildings), substantially lower than the damage estimated by the loss simulation scenario currently used by the Italian Civil Protection. Due to the recent upgrading of the Italian strong motion network (RAN), the event has been recorded by a great number of accelerometers (the largest ever obtained in Italy for a single shock): 21 digital and 8 analog instruments with epicentral distances ranging from 16 to 140 km. The comparison of recorded PGA, PGV, Arias intensity, and spectral values with several widely used Ground Motion Prediction Equations (GMPEs) showed much lower ground motion values respect to the empirical predictions (a factor ranging from 4 to 2). A first explanation of the strong differences, in damage and ground motion, between actual data and predictions could be, at a first sight, attributed to the rather high focal depth of 27 km. However, even the adoption of GMPEs accounting for depth of the source and using hypocentral distance (Berge et al 2003, Pousse et al 2005), does not predict large differences in motions, especially at distances larger than 30 km where most of the data are concentrated and where the effect of depth on source-to-site distance is small. At the same time the adoption of the most recent GMPEs (Ambraseys et al 2005, Akkar & bommer 2007) taking into account the different magnitude scaling and the faster attenuation of small magnitudes through magnitude-dependent attenuation, does not show a better agreement with the recorded data. The real reasons of the above mentioned discrepancies need to be further investigated, however a possible explanation could be a low source rupture velocity, likewise the 2002 Molise

  7. Reliable selection of earthquake ground motions for performance-based design

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sextos, A.G.

    2016-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Prequalified code-compatible suites of seismic motions are provided through a multi-criterion approach to satisfy prescribed reduced variability...... of the method, by being subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv-sc) and the conventional index (δconv), already used by most existing code-based earthquake records selection and scaling procedures. The findings reveal the superiority...

  8. Update of Earthquake Strong-Motion Instrumentation at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robert C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-01

    Following the January 1980 earthquake that was felt at Lawrence Livermore National Laboratory (LLNL), a network of strong-motion accelerographs was installed at LLNL. Prior to the 1980 earthquake, there were no accelerographs installed. The ground motion from the 1980 earthquake was estimated from USGS instruments around the Laboratory to be between 0.2 – 0.3 g horizontal peak ground acceleration. These instruments were located at the Veterans Hospital, 5 miles southwest of LLNL, and in San Ramon, about 12 miles west of LLNL. In 2011, the Department of Energy (DOE) requested to know the status of our seismic instruments. We conducted a survey of our instrumentation systems and responded to DOE in a letter. During this survey, it was found that the recorders in Buildings 111 and 332 were not operational. The instruments on Nova had been removed, and only three of the 10 NIF instruments installed in 2005 were operational (two were damaged and five had been removed from operation at the request of the program). After the survey, it was clear that the site seismic instrumentation had degraded substantially and would benefit from an overhaul and more attention to ongoing maintenance. LLNL management decided to update the LLNL seismic instrumentation system. The updated system is documented in this report.

  9. Strong motion modeling at the Paducah Diffusion Facility for a large New Madrid earthquake

    International Nuclear Information System (INIS)

    Herrmann, R.B.

    1991-01-01

    The Paducah Diffusion Facility is within 80 kilometers of the location of the very large New Madrid earthquakes which occurred during the winter of 1811-1812. Because of their size, seismic moment of 2.0 x 10 27 dyne-cm or moment magnitude M w = 7.5, the possible recurrence of these earthquakes is a major element in the assessment of seismic hazard at the facility. Probabilistic hazard analysis can provide uniform hazard response spectra estimates for structure evaluation, but a deterministic modeling of a such a large earthquake can provide strong constraints on the expected duration of motion. The large earthquake is modeled by specifying the earthquake fault and its orientation with respect to the site, and by specifying the rupture process. Synthetic time histories, based on forward modeling of the wavefield, from each subelement are combined to yield a three component time history at the site. Various simulations are performed to sufficiently exercise possible spatial and temporal distributions of energy release on the fault. Preliminary results demonstrate the sensitivity of the method to various assumptions, and also indicate strongly that the total duration of ground motion at the site is controlled primarily by the length of the rupture process on the fault

  10. Hybrid Simulations of the Broadband Ground Motions for the 2008 MS8.0 Wenchuan, China, Earthquake

    Science.gov (United States)

    Yu, X.; Zhang, W.

    2012-12-01

    The Ms8.0 Wenchuan earthquake occurred on 12 May 2008 at 14:28 Beijing Time. It is the largest event happened in the mainland of China since the 1976, Mw7.6, Tangshan earthquake. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and "quake lakes" which formed by landslide-induced reservoirs. These resulted in tremendous losses of life and property. Casualties numbered more than 80,000 people, and there were major economic losses. However, this earthquake is the first Ms 8 intraplate earthquake with good close fault strong motion coverage. Over four hundred strong motion stations of the National Strong Motion Observation Network System (NSMONS) recorded the mainshock. Twelve of them located within 20 km of the fault traces and another 33 stations located within 100 km. These observations, accompanying with the hundreds of GPS vectors and multiple ALOS INSAR images, provide an unprecedented opportunity to study the rupture process of such a great intraplate earthquake. In this study, we calculate broadband near-field ground motion synthetic waveforms of this great earthquake using a hybrid broadband ground-motion simulation methodology, which combines a deterministic approach at low frequencies (f < 1.0 Hz) with a theoretic Green's function calculation approach at high frequency ( ~ 10.0 Hz). The fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time that were obtained by an inversion kinematic source model. At the same time, based on the aftershock data, we analyze the site effects for the near-field stations. Frequency-dependent site-amplification values for each station are calculated using genetic algorithms. For the calculation of the synthetic waveforms, at first, we carry out simulations using the hybrid methodology for the frequency up to 10.0 Hz. Then, we consider for

  11. Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes

    Science.gov (United States)

    Bijukchhen, Subeg M.; Takai, Nobuo; Shigefuji, Michiko; Ichiyanagi, Masayoshi; Sasatani, Tsutomu; Sugimura, Yokito

    2017-07-01

    The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous studies have shown that the sediments are 600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1-0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses

  12. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    International Nuclear Information System (INIS)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates

  13. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  14. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  15. Identification of strong earthquake ground motion by using pattern recognition

    International Nuclear Information System (INIS)

    Suzuki, Kohei; Tozawa, Shoji; Temmyo, Yoshiharu.

    1983-01-01

    The method of grasping adequately the technological features of complex waveform of earthquake ground motion and utilizing them as the input to structural systems has been proposed by many researchers, and the method of making artificial earthquake waves to be used for the aseismatic design of nuclear facilities has not been established in the unified form. In this research, earthquake ground motion was treated as an irregular process with unsteady amplitude and frequency, and the running power spectral density was expressed as a dark and light image on a plane of the orthogonal coordinate system with both time and frequency axes. The method of classifying this image into a number of technologically important categories by pattern recognition was proposed. This method is based on the concept called compound similarity method in the image technology, entirely different from voice diagnosis, and it has the feature that the result of identification can be quantitatively evaluated by the analysis of correlation of spatial images. Next, the standard pattern model of the simulated running power spectral density corresponding to the representative classification categories was proposed. Finally, the method of making unsteady simulated earthquake motion was shown. (Kako, I.)

  16. A study on generation of simulated earthquake ground motion for seismic design of nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Matsumoto, Takuji; Kitada, Yoshio; Osaki, Yorihiko; Kanda, Jun; Masao, Toru.

    1985-01-01

    The aseismatic design of nuclear power generation facilities carried out in Japan at present must conform to the ''Guideline for aseismatic design examination regarding power reactor facilities'' decided by the Atomic Energy Commission in 1978. In this guideline, the earthquake motion used for the analysis of dynamic earthquake response is to be given in the form of the magnitude determined on the basis of the investigation of historical earthquakes and active faults around construction sites and the response spectra corresponding to the distance from epicenters. Accordingly when the analysis of dynamic earthquake response is actually carried out, the simulated earthquake motion made in conformity with these set up response spectra is used as the input earthquake motion for the design. For the purpose of establishing the techniques making simulated earthquake motion which is more appropriate and rational from engineering viewpoint, the research was carried out, and the results are summarized in this paper. The techniques for making simulated earthquake motion, the response of buildings and the response spectra of floors are described. (Kako, I.)

  17. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges

    Science.gov (United States)

    Jin, Zhibin; Pei, Shiling; Li, Xiaozhen; Liu, Hongyan; Qiang, Shizhong

    2016-11-01

    The running safety of railway vehicles on bridges can be negatively affected by earthquake events. This phenomenon has traditionally been investigated with only the lateral ground excitation component considered. This paper presented results from a numerical investigation on the contribution of vertical ground motion component to the derailment of vehicles on simply-supported bridges. A full nonlinear wheel-rail contact model was used in the investigation together with the Hertzian contact theory and nonlinear creepage theory, which allows the wheel to jump vertically and separate from the rail. The wheel-rail relative displacement was used as the criterion for derailment events. A total of 18 ground motion records were used in the analysis to account for the uncertainty of ground motions. The results showed that inclusion of vertical ground motion will likely increase the chance of derailment. It is recommended to include vertical ground motion component in earthquake induced derailment analysis to ensure conservative estimations. The derailment event on bridges was found to be more closely related to the deck acceleration rather than the ground acceleration.

  18. Development of fragility functions to estimate homelessness after an earthquake

    Science.gov (United States)

    Brink, Susan A.; Daniell, James; Khazai, Bijan; Wenzel, Friedemann

    2014-05-01

    Immediately after an earthquake, many stakeholders need to make decisions about their response. These decisions often need to be made in a data poor environment as accurate information on the impact can take months or even years to be collected and publicized. Social fragility functions have been developed and applied to provide an estimate of the impact in terms of building damage, deaths and injuries in near real time. These rough estimates can help governments and response agencies determine what aid may be required which can improve their emergency response and facilitate planning for longer term response. Due to building damage, lifeline outages, fear of aftershocks, or other causes, people may become displaced or homeless after an earthquake. Especially in cold and dangerous locations, the rapid provision of safe emergency shelter can be a lifesaving necessity. However, immediately after an event there is little information available about the number of homeless, their locations and whether they require public shelter to aid the response agencies in decision making. In this research, we analyze homelessness after historic earthquakes using the CATDAT Damaging Earthquakes Database. CATDAT includes information on the hazard as well as the physical and social impact of over 7200 damaging earthquakes from 1900-2013 (Daniell et al. 2011). We explore the relationship of both earthquake characteristics and area characteristics with homelessness after the earthquake. We consider modelled variables such as population density, HDI, year, measures of ground motion intensity developed in Daniell (2014) over the time period from 1900-2013 as well as temperature. Using a base methodology based on that used for PAGER fatality fragility curves developed by Jaiswal and Wald (2010), but using regression through time using the socioeconomic parameters developed in Daniell et al. (2012) for "socioeconomic fragility functions", we develop a set of fragility curves that can be

  19. Response spectra for differential motion of structures supports during earthquakes in Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed I.S. Elmasry

    2012-12-01

    Full Text Available Differential motions of ground supports of stiff structures with large plan dimensions and separate foundations under earthquakes were studied by researchers during the last few decades. Such a type of structural response was previously underestimated. The importance of studying such a response comes up from the fact that usually the structures affected are of strategic importance such as bridges. During their expected life, structures may experience vibrations excited by ground waves of short wavelengths during near-source earthquakes, or during amplified earthquake signals, during explosions, or during vibrations induced from nearby strong vibration sources. This is the case when the differential motion of supports becomes considerable. This paper aims to review the effects of seismic signal variations along the structures dimensions with emphasis on Egypt as a case study. The paper shows some patterns of the damage imposed by such differential motion. A replication of the differential motion in the longitudinal direction is applied on a frame bridge model. The resulting straining actions show the necessity for considering the differential motion of supports in the design of special structures in Egypt. Finally, response spectra for the differential motion of supports, based on the available data from previous earthquakes in Egypt, is derived and proposed for designers to include in the design procedure when accounting for such type of structural response, and especially in long-span bridges.

  20. Wideband simulation of earthquake ground motion by a spectrum-matching, multiple-pulse technique

    International Nuclear Information System (INIS)

    Gusev, A.; Pavlov, V.

    2006-04-01

    To simulate earthquake ground motion, we combine a multiple-point stochastic earthquake fault model and a suite of Green functions. Conceptually, our source model generalizes the classic one of Haskell (1966). At any time instant, slip occurs over a narrow strip that sweeps the fault area at a (spatially variable) velocity. This behavior defines seismic signals at lower frequencies (LF), and describes directivity effects. High-frequency (HF) behavior of source signal is defined by local slip history, assumed to be a short segment of pulsed noise. For calculations, this model is discretized as a grid of point subsources. Subsource moment rate time histories, in their LF part, are smooth pulses whose duration equals to the rise time. In their HF part, they are segments of non-Gaussian noise of similar duration. The spectral content of subsource time histories is adjusted so that the summary far-field signal follows certain predetermined spectral scaling law. The results of simulation depend on random seeds, and on particular values of such parameters as: stress drop; average and dispersion parameter for rupture velocity; rupture nucleation point; slip zone width/rise time, wavenumber-spectrum parameter defining final slip function; the degrees of non-Gaussianity for random slip rate in time, and for random final slip in space, and more. To calculate ground motion at a site, Green functions are calculated for each subsource-site pair, then convolved with subsource time functions and at last summed over subsources. The original Green function calculator for layered weakly inelastic medium is of discrete wavenumber kind, with no intrinsic limitations with respect to layer thickness or bandwidth. The simulation package can generate example motions, or used to study uncertainties of the predicted motion. As a test, realistic analogues of recorded motions in the epicentral zone of the 1994 Northridge, California earthquake were synthesized, and related uncertainties were

  1. Guidelines for earthquake ground motion definition for the Eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors

  2. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design

    Science.gov (United States)

    Borcherdt, Roger D.

    2014-01-01

    Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value  of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. 

  3. Estimation of Seismic Ground Motions and Attendant Potential Human Fatalities from Scenario Earthquakes on the Chishan Fault in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu

    2017-01-01

    Full Text Available The purpose of this study is to estimate maximum ground motions in southern Taiwan as well as to assess potential human fatalities from scenario earthquakes on the Chishan active faults in this area. The resultant Shake Map patterns of maximum ground motion in a case of Mw 7.2 show the areas of PGA above 400 gals are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan, as shown in the regions inside the yellow lines in the corresponding figure. Comparing cities with similar distances located in Tainan, Kaohsiung, and Pingtung to the Chishan fault, the cities in Tainan area have relatively greater PGA and PGV, due to large site response factors in Tainan area. Furthermore, seismic hazards in terms of PGA and PGV in the vicinity of the Chishan fault are not completely dominated by the Chishan fault. The main reason is that some areas located in the vicinity of the Chishan fault are marked with low site response amplification values from 0.55 - 1.1 and 0.67 - 1.22 for PGA and PGV, respectively. Finally, from estimation of potential human fatalities from scenario earthquakes on the Chishan active fault, it is noted that potential fatalities increase rapidly in people above age 45. Total fatalities reach a high peak in age groups of 55 - 64. Another to pay special attention is Kaohsiung City has more than 540 thousand households whose residences over 50 years old. In light of the results of this study, I urge both the municipal and central governments to take effective seismic hazard mitigation measures in the highly urbanized areas with a large number of old buildings in southern Taiwan.

  4. Earthquake ground-motion in presence of source and medium heterogeneities

    KAUST Repository

    Vyas, Jagdish Chandra

    2017-01-01

    -motion variability associated with unilateral ruptures based on ground-motion simulations of the MW 7.3 1992 Landers earthquake, eight simplified source models, and a MW 7.8 rupture simulation (ShakeOut) for the San Andreas fault. Our numerical modeling reveals

  5. Strong-motion characteristics and source process during the Suruga Bay earthquake in 2009 through observed records on rock sites

    International Nuclear Information System (INIS)

    Shiba, Yoshiaki; Sato, Hiroaki; Kuriyama, Masayuki

    2010-01-01

    On 11 August 2009, a moderate earthquake of M 6.5 occurred in the Suruga Bay region, south of Shizuoka prefecture. During this event, JMA Seismic Intensity reached 6 lower in several cities around the hypocenter, and at Hamaoka nuclear power plant of Chubu Electric Power reactors were automatically shutdown due to large ground motions. Though the epicenter is located at the eastern edge of source area for the assumed great Tokai earthquake of M 8, this event is classified into the intra-plate (intra-slab) earthquake, due to its focal depth lower than that of the plate boundary and fault geometry supposed from the moment tensor solution. Dense strong-motion observation network has been deployed mainly on the rock outcrops by our institute around the source area, and the waveform data of the main shock and several aftershocks were obtained at 13 stations within 100 km from the hypocenter. The observed peak ground motions and velocity response spectral amplitudes are both obviously larger than the empirical attenuation relations derived from the inland and plate-boundary earthquake data, which displays the characteristics of the intra-slab earthquake faulting. Estimated acceleration source spectra of the main shock also exhibit the short period level about 1.7 times larger than the average of those for past events, and it corresponds with the additional term in the attenuation curve of the peak ground acceleration for the intra-plate earthquake. Detailed source process of the main shock is inferred using the inversion technique. The initial source model is assumed to be composed of two distinct fault planes according to the minute aftershock distribution. Estimated source model shows that large slip occurred near the hypocenter and at the boundary region between two fault planes where the rupture transfers from primary to secondary fault. Furthermore the broadband source inversion using velocity motions in the frequency up to 5 Hz demonstrates the high effective

  6. Earthquake Intensity and Strong Motion Analysis Within SEISCOMP3

    Science.gov (United States)

    Becker, J.; Weber, B.; Ghasemi, H.; Cummins, P. R.; Murjaya, J.; Rudyanto, A.; Rößler, D.

    2017-12-01

    Measuring and predicting ground motion parameters including seismic intensities for earthquakes is crucial and subject to recent research in engineering seismology.gempa has developed the new SIGMA module for Seismic Intensity and Ground Motion Analysis. The module is based on the SeisComP3 framework extending it in the field of seismic hazard assessment and engineering seismology. SIGMA may work with or independently of SeisComP3 by supporting FDSN Web services for importing earthquake or station information and waveforms. It provides a user-friendly and modern graphical interface for semi-automatic and interactive strong motion data processing. SIGMA provides intensity and (P)SA maps based on GMPE's or recorded data. It calculates the most common strong motion parameters, e.g. PGA/PGV/PGD, Arias intensity and duration, Tp, Tm, CAV, SED and Fourier-, power- and response spectra. GMPE's are configurable. Supporting C++ and Python plug-ins, standard and customized GMPE's including the OpenQuake Hazard Library can be easily integrated and compared. Originally tailored to specifications by Geoscience Australia and BMKG (Indonesia) SIGMA has become a popular tool among SeisComP3 users concerned with seismic hazard and strong motion seismology.

  7. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  8. The effect of regional variation of seismic wave attenuation on the strong ground motion from earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D H; Bernreuter, D L

    1981-10-01

    Attenuation is caused by geometric spreading and absorption. Geometric spreading is almost independent of crustal geology and physiographic region, but absorption depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high frequency waves, absorption does not affect ground motion at distances less than about 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States is similar to that in the western United States. Beyond the near field, differences in ground motion can best be accounted for by differences in attenuation caused by differences in absorption. The stress drop of eastern earthquakes may be higher than for western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. But we believe this factor is of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. The characteristics of strong ground motion in the conterminous United States are discussed in light of these considerations, and estimates are made of the epicentral ground motions in the central and eastern United States. (author)

  9. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    Science.gov (United States)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are

  10. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    Science.gov (United States)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for induced earthquakes in the central US.

  11. Guidelines for earthquake ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab

  12. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    Science.gov (United States)

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  13. Data Files for Ground-Motion Simulations of the 1906 San Francisco Earthquake and Scenario Earthquakes on the Northern San Andreas Fault

    Science.gov (United States)

    Aagaard, Brad T.; Barall, Michael; Brocher, Thomas M.; Dolenc, David; Dreger, Douglas; Graves, Robert W.; Harmsen, Stephen; Hartzell, Stephen; Larsen, Shawn; McCandless, Kathleen; Nilsson, Stefan; Petersson, N. Anders; Rodgers, Arthur; Sjogreen, Bjorn; Zoback, Mary Lou

    2009-01-01

    This data set contains results from ground-motion simulations of the 1906 San Francisco earthquake, seven hypothetical earthquakes on the northern San Andreas Fault, and the 1989 Loma Prieta earthquake. The bulk of the data consists of synthetic velocity time-histories. Peak ground velocity on a 1/60th degree grid and geodetic displacements from the simulations are also included. Details of the ground-motion simulations and analysis of the results are discussed in Aagaard and others (2008a,b).

  14. Consistency of GPS and strong-motion records: case study of the Mw9.0 Tohoku-Oki 2011 earthquake

    Science.gov (United States)

    Psimoulis, Panos; Houlié, Nicolas; Michel, Clotaire; Meindl, Michael; Rothacher, Markus

    2014-05-01

    High-rate GPS data are today commonly used to supplement seismic data for the Earth surface motions focusing on earthquake characterisation and rupture modelling. Processing of GPS records using Precise Point Positioning (PPP) can provide real-time information of seismic wave propagation, tsunami early-warning and seismic rupture. Most studies have shown differences between the GPS and seismic systems at very long periods (e.g. >100sec) and static displacements. The aim of this study is the assessment of the consistency of GPS and strong-motion records by comparing their respective displacement waveforms for several frequency bands. For this purpose, the records of the GPS (GEONET) and the strong-motion (KiK-net and K-NET) networks corresponding to the Mw9.0 Tohoku 2011 earthquake were analysed. The comparison of the displacement waveforms of collocated (distance<100m) GPS and strong-motion sites show that the consistency between the two datasets depends on the frequency of the excitation. Differences are mainly due to the GPS noise at relatively short-periods (<3-4 s) and the saturation of the strong-motion sensors for relatively long-periods (40-80 s). Furthermore the agreement between the GPS and strong-motion records also depends on the direction of the excitation signal and the distance from the epicentre. In conclusion, velocities and displacements recovered from GPS and strong-motion records are consistent for long-periods (3-100 s), proving that GPS networks can contribute to the real-time estimation of the long-period ground motion map of an earthquake.

  15. Combining multiple earthquake models in real time for earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Wu, Stephen; Beck, James L; Heaton, Thomas H.

    2017-01-01

    The ultimate goal of earthquake early warning (EEW) is to provide local shaking information to users before the strong shaking from an earthquake reaches their location. This is accomplished by operating one or more real‐time analyses that attempt to predict shaking intensity, often by estimating the earthquake’s location and magnitude and then predicting the ground motion from that point source. Other EEW algorithms use finite rupture models or may directly estimate ground motion without first solving for an earthquake source. EEW performance could be improved if the information from these diverse and independent prediction models could be combined into one unified, ground‐motion prediction. In this article, we set the forecast shaking at each location as the common ground to combine all these predictions and introduce a Bayesian approach to creating better ground‐motion predictions. We also describe how this methodology could be used to build a new generation of EEW systems that provide optimal decisions customized for each user based on the user’s individual false‐alarm tolerance and the time necessary for that user to react.

  16. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  17. Broadband Ground Motion Reconstruction for the Kanto Basin during the 1923 Kanto Earthquake

    Science.gov (United States)

    Sekiguchi, Haruko; Yoshimi, Masayuki

    2011-03-01

    Ground motions of the 1923 Kanto Earthquake inside the Kanto Basin are numerically simulated in a wide frequency range (0-10 Hz) based on new knowledge of the earthquake's source processes, the sedimentary structure of the basin, and techniques for generating broadband source models of great earthquakes. The Kanto Earthquake remains one of the most important exemplars for ground motion prediction in Japan due to its size, faulting geometry, and location beneath the densely populated Kanto sedimentary basin. We reconstruct a broadband source model of the 1923 Kanto Earthquake from inversion results by introducing small-scale heterogeneities. The corresponding ground motions are simulated using a hybrid technique comprising the following four calculations: (1) low-frequency ground motion of the engineering basement, modeled using a finite difference method; (2) high-frequency ground motion of the engineering basement, modeled using a stochastic Green's function method; (3) total ground motion of the engineering basement (i.e. 1 + 2); and (4) ground motion at the surface in response to the total basement ground motion. We employ a recently developed three-dimensional (3D) velocity structure model of the Kanto Basin that incorporates prospecting data, microtremor observations and measurements derived from strong ground motion records. Our calculations reveal peak ground velocities (PGV) exceeding 50 cm/s in the area above the fault plane: to the south, where the fault plane is shallowest, PGV reaches 150-200 cm/s at the engineering basement and 200-250 cm/s at the surface. Intensity 7, the maximum value in the Japan Meteorological Agency's intensity scale, is calculated to have occurred widely in Sagami Bay, which corresponds well with observed house-collapse rates due to the 1923 event. The modeling reveals a pronounced forward directivity effect for the area lying above the southern, shallow part of the fault plane. The high PGV and intensity seen above the

  18. Support motions for mechanical components during earthquakes

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1979-01-01

    The functioning of mechanical and other equipment during and after earthquakes may not only be necessary to avoid catastrophic consequences, such as in nuclear facilities, but also to guarantee the adequate functioning of emergency facilities (hospitals and fire stations, for example) that are necessary to cope with the aftermath of an earthquake. The state-of-the-art methods used for prescribing support motions to equipment in structures is reviewed from the elementary to the more complex. Also reviewed are the justifications for the uncoupling of the equipment from the structure for purposes of analysis, and the impacts that uncertainties in the total process may have on equipment design. (author)

  19. A flatfile of ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas

    Science.gov (United States)

    Rennolet, Steven B.; Moschetti, Morgan P.; Thompson, Eric M.; Yeck, William

    2018-01-01

    We have produced a uniformly processed database of orientation-independent (RotD50, RotD100) ground motion intensity measurements containing peak horizontal ground motions (accelerations and velocities) and 5-percent-damped pseudospectral accelerations (0.1–10 s) from more than 3,800 M ≥ 3 earthquakes in Oklahoma and Kansas that occurred between January 2009 and December 2016. Ground motion time series were collected from regional, national, and temporary seismic arrays out to 500 km. We relocated the majority of the earthquake hypocenters using a multiple-event relocation algorithm to produce a set of near-uniformly processed hypocentral locations. Ground motion processing followed standard methods, with the primary objective of reducing the effects of noise on the measurements. Regional wave-propagation features and the high seismicity rate required careful selection of signal windows to ensure that we captured the entire ground motion record and that contaminating signals from extraneous earthquakes did not contribute to the database. Processing was carried out with an automated scheme and resulted in a database comprising more than 174,000 records (https://dx.doi.org/10.5066/F73B5X8N). We anticipate that these results will be useful for improved understanding of earthquake ground motions and for seismic hazard applications.

  20. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage

    Directory of Open Access Journals (Sweden)

    Amin E. Khalil

    2017-06-01

    Full Text Available Strong ground shaking during earthquakes can greatly affect the ancient monuments and subsequently demolish the human heritage. On October 12th 1992, a moderate earthquake (Ms = 5.8 shocked the greater Cairo area causing widespread damages. Unfortunately, the focus of that earthquake is located about 14 km to the south of Zoser pyramid. After the earthquake, the Egyptian Supreme council of antiquities issued an alarm that Zoser pyramid is partially collapsed and international and national efforts are exerted to restore this important human heritage that was built about 4000 years ago. Engineering and geophysical work is thus needed for the restoration process. The definition of the strong motion parameters is one of the required studies since seismically active zone is recorded in its near vicinity. The present study adopted the stochastic method to determine the peak ground motion (acceleration, velocity and displacement for the three largest earthquakes recorded in the Egypt’s seismological history. These earthquakes are Shedwan earthquake with magnitude Ms = 6.9, Aqaba earthquake with magnitude Mw = 7.2 and Cairo (Dahshour earthquake with magnitude Ms = 5.8. The former two major earthquakes took place few hundred kilometers away. It is logic to have the predominant effects from the epicentral location of the Cairo earthquake; however, the authors wanted to test also the long period effects of the large distance earthquakes expected from the other two earthquakes under consideration. In addition, the dynamic site response was studied using the Horizontal to vertical spectral ratio (HVSR technique. HVSR can provide information about the fundamental frequency successfully; however, the amplification estimation is not accepted. The result represented as either peak ground motion parameters or response spectra indicates that the effects from Cairo earthquake epicenter are the largest for all periods considered in the present study. The

  1. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage

    Science.gov (United States)

    Khalil, Amin E.; Abdel Hafiez, H. E.; Girgis, Milad; Taha, M. A.

    2017-06-01

    Strong ground shaking during earthquakes can greatly affect the ancient monuments and subsequently demolish the human heritage. On October 12th 1992, a moderate earthquake (Ms = 5.8) shocked the greater Cairo area causing widespread damages. Unfortunately, the focus of that earthquake is located about 14 km to the south of Zoser pyramid. After the earthquake, the Egyptian Supreme council of antiquities issued an alarm that Zoser pyramid is partially collapsed and international and national efforts are exerted to restore this important human heritage that was built about 4000 years ago. Engineering and geophysical work is thus needed for the restoration process. The definition of the strong motion parameters is one of the required studies since seismically active zone is recorded in its near vicinity. The present study adopted the stochastic method to determine the peak ground motion (acceleration, velocity and displacement) for the three largest earthquakes recorded in the Egypt's seismological history. These earthquakes are Shedwan earthquake with magnitude Ms = 6.9, Aqaba earthquake with magnitude Mw = 7.2 and Cairo (Dahshour earthquake) with magnitude Ms = 5.8. The former two major earthquakes took place few hundred kilometers away. It is logic to have the predominant effects from the epicentral location of the Cairo earthquake; however, the authors wanted to test also the long period effects of the large distance earthquakes expected from the other two earthquakes under consideration. In addition, the dynamic site response was studied using the Horizontal to vertical spectral ratio (HVSR) technique. HVSR can provide information about the fundamental frequency successfully; however, the amplification estimation is not accepted. The result represented as either peak ground motion parameters or response spectra indicates that the effects from Cairo earthquake epicenter are the largest for all periods considered in the present study. The level of strong motion as

  2. Advanced methods on the evaluation of design earthquake motions for important power constructions

    International Nuclear Information System (INIS)

    Higashi, Sadanori; Shiba, Yoshiaki; Sato, Hiroaki; Sato, Yusuke; Nakajima, Masato; Sakai, Michiya; Sato, Kiyotaka

    2009-01-01

    In this report, we compiled advanced methods on the evaluation of design earthquake motions for important power constructions such as nuclear power, thermal power, and hydroelectric power facilities. For the nuclear and hydroelectric power facilities, we developed an inversion method of broad-band (0.1-5Hz) source process and obtained valid results from applying the method to the 2007 Niigata-ken Chuetsu-oki earthquake (M6.8). We have also improved our modeling techniques of thick sedimentary layered structure such as the S-wave velocity modeling by using microtremor array measurement and the frequency dependent damping factor with a lower limit. For seismic isolation design for nuclear power facilities, we proposed a design pseudo-velocity response spectrum. For the thermal power facilities, we performed three-dimensional numerical simulation of Kanto Basin for a prediction relation of long-period ground motion. We also proposed the introduction of probabilistic approach into the deterministic evaluation flow of design earthquake motions and evaluated the effect of a great earthquake with a short return period on the seismic hazard in Miyagi Prefecture, Japan. (author)

  3. ShakeMapple : tapping laptop motion sensors to map the felt extents of an earthquake

    Science.gov (United States)

    Bossu, Remy; McGilvary, Gary; Kamb, Linus

    2010-05-01

    There is a significant pool of untapped sensor resources available in portable computer embedded motion sensors. Included primarily to detect sudden strong motion in order to park the disk heads to prevent damage to the disks in the event of a fall or other severe motion, these sensors may also be tapped for other uses as well. We have developed a system that takes advantage of the Apple Macintosh laptops' embedded Sudden Motion Sensors to record earthquake strong motion data to rapidly build maps of where and to what extent an earthquake has been felt. After an earthquake, it is vital to understand the damage caused especially in urban environments as this is often the scene for large amounts of damage caused by earthquakes. Gathering as much information from these impacts to determine where the areas that are likely to be most effected, can aid in distributing emergency services effectively. The ShakeMapple system operates in the background, continuously saving the most recent data from the motion sensors. After an earthquake has occurred, the ShakeMapple system calculates the peak acceleration within a time window around the expected arrival and sends that to servers at the EMSC. A map plotting the felt responses is then generated and presented on the web. Because large-scale testing of such an application is inherently difficult, we propose to organize a broadly distributed "simulated event" test. The software will be available for download in April, after which we plan to organize a large-scale test by the summer. At a specified time, participating testers will be asked to create their own strong motion to be registered and submitted by the ShakeMapple client. From these responses, a felt map will be produced representing the broadly-felt effects of the simulated event.

  4. Estimating network effect in geocenter motion: Theory

    Science.gov (United States)

    Zannat, Umma Jamila; Tregoning, Paul

    2017-10-01

    Geophysical models and their interpretations of several processes of interest, such as sea level rise, postseismic relaxation, and glacial isostatic adjustment, are intertwined with the need to realize the International Terrestrial Reference Frame. However, this realization needs to take into account the geocenter motion, that is, the motion of the center of figure of the Earth surface, due to, for example, deformation of the surface by earthquakes or hydrological loading effects. Usually, there is also a discrepancy, known as the network effect, between the theoretically convenient center of figure and the physically accessible center of network frames, because of unavoidable factors such as uneven station distribution, lack of stations in the oceans, disparity in the coverage between the two hemispheres, and the existence of tectonically deforming zones. Here we develop a method to estimate the magnitude of the network effect, that is, the error introduced by the incomplete sampling of the Earth surface, in measuring the geocenter motion, for a network of space geodetic stations of a fixed size N. For this purpose, we use, as our proposed estimate, the standard deviations of the changes in Helmert parameters measured by a random network of the same size N. We show that our estimate scales as 1/√N and give an explicit formula for it in terms of the vector spherical harmonics expansion of the displacement field. In a complementary paper we apply this formalism to coseismic displacements and elastic deformations due to surface water movements.

  5. Ground motion following selection of SRS design basis earthquake and associated deterministic approach

    International Nuclear Information System (INIS)

    1991-03-01

    This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart

  6. Database for earthquake strong motion studies in Italy

    Science.gov (United States)

    Scasserra, G.; Stewart, J.P.; Kayen, R.E.; Lanzo, G.

    2009-01-01

    We describe an Italian database of strong ground motion recordings and databanks delineating conditions at the instrument sites and characteristics of the seismic sources. The strong motion database consists of 247 corrected recordings from 89 earthquakes and 101 recording stations. Uncorrected recordings were drawn from public web sites and processed on a record-by-record basis using a procedure utilized in the Next-Generation Attenuation (NGA) project to remove instrument resonances, minimize noise effects through low- and high-pass filtering, and baseline correction. The number of available uncorrected recordings was reduced by 52% (mostly because of s-triggers) to arrive at the 247 recordings in the database. The site databank includes for every recording site the surface geology, a measurement or estimate of average shear wave velocity in the upper 30 m (Vs30), and information on instrument housing. Of the 89 sites, 39 have on-site velocity measurements (17 of which were performed as part of this study using SASW techniques). For remaining sites, we estimate Vs30 based on measurements on similar geologic conditions where available. Where no local velocity measurements are available, correlations with surface geology are used. Source parameters are drawn from databanks maintained (and recently updated) by Istituto Nazionale di Geofisica e Vulcanologia and include hypocenter location and magnitude for small events (M< ??? 5.5) and finite source parameters for larger events. ?? 2009 A.S. Elnashai & N.N. Ambraseys.

  7. Addressing earthquakes strong ground motion issues at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Silva, W.J.; Stark, C.L.; Jackson, S.; Smith, R.P.

    1991-01-01

    In the course of reassessing seismic hazards at the Idaho National Engineering Laboratory (INEL), several key issues have been raised concerning the effects of the earthquake source and site geology on potential strong ground motions that might be generated by a large earthquake. The design earthquake for the INEL is an approximate moment magnitude (M w ) 7 event that may occur on the southern portion of the Lemhi fault, a Basin and Range normal fault that is located on the northwestern boundary of the eastern Snake River Plain and the INEL, within 10 to 27 km of several major facilities. Because the locations of these facilities place them at close distances to a large earthquake and generally along strike of the causative fault, the effects of source rupture dynamics (e.g., directivity) could be critical in enhancing potential ground shaking at the INEL. An additional source issue that has been addressed is the value of stress drop to use in ground motion predictions. In terms of site geology, it has been questioned whether the interbedded volcanic stratigraphy beneath the ESRP and the INEL attenuates ground motions to a greater degree than a typical rock site in the western US. These three issues have been investigated employing a stochastic ground motion methodology which incorporates the Band-Limited-White-Noise source model for both a point source and finite fault, random vibration theory and an equivalent linear approach to model soil response

  8. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    Science.gov (United States)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  9. A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw = 6.4

    Directory of Open Access Journals (Sweden)

    Hiroo Kanamori

    2017-01-01

    Full Text Available Despite a moderate magnitude, Mw = 6.4, the 5 February 2016 Meinong, Taiwan, earthquake caused significant damage in Tainan City and the surrounding areas. Several seismograms display an impulsive S-wave velocity pulse with an amplitude of about 1 m s-1, which is similar to large S-wave pulses recorded for the past several larger damaging earthquakes, such as the 1995 Kobe, Japan, earthquake (Mw = 6.9 and the 1994 Northridge, California, earthquake (Mw = 6.7. The observed PGV in the Tainan area is about 10 times larger than the median PGV of Mw = 6.4 crustal earthquakes in Taiwan. We investigate the cause of the localized strong ground motions. The peak-to-peak ground-motion displacement at the basin sites near Tainan is about 35 times larger than that at a mountain site with a similar epicentral distance. At some frequency bands (0.9 - 1.1 Hz, the amplitude ratio is as large as 200. Using the focal mechanism of this earthquake, typical “soft” and “hard” crustal structures, and directivity inferred from the observed waveforms and the slip distribution, we show that the combined effect yields an amplitude ratio of 17 to 34. The larger amplitude ratios at higher frequency bands can be probably due to the effects of complex 3-D basin structures. The result indicates that even from a moderate event, if these effects simultaneously work together toward amplifying ground motions, the extremely large ground motions as observed in Tainan can occur. Such occurrences should be taken into consideration in hazard mitigation measures in the place with frequent moderate earthquakes.

  10. Analysis of the earthquake data and estimation of source parameters in the Kyungsang basin

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong-Moon; Lee, Jun-Hee [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-04-01

    The purpose of the present study is to determine the response spectrum for the Korean Peninsula and estimate the seismic source parameters and analyze and simulate the ground motion adequately from the seismic characteristics of Korean Peninsula and compare this with the real data. The estimated seismic source parameters such as apparent seismic stress drop is somewhat unstable because the data are insufficient. When the instrumental earthquake data were continuously accumulated in the future, the modification of these parameters may be developed. Although equations presented in this report are derived from the limited data, they can be utilized both in seismology and earthquake engineering. Finally, predictive equations may be given in terms of magnitude and hypocentral distances using these parameters. The estimation of the predictive equation constructed from the simulation is the object of further study. 34 refs., 27 figs., 10 tabs. (Author)

  11. Rapid earthquake hazard and loss assessment for Euro-Mediterranean region

    Science.gov (United States)

    Erdik, Mustafa; Sesetyan, Karin; Demircioglu, Mine; Hancilar, Ufuk; Zulfikar, Can; Cakti, Eser; Kamer, Yaver; Yenidogan, Cem; Tuzun, Cuneyt; Cagnan, Zehra; Harmandar, Ebru

    2010-10-01

    The almost-real time estimation of ground shaking and losses after a major earthquake in the Euro-Mediterranean region was performed in the framework of the Joint Research Activity 3 (JRA-3) component of the EU FP6 Project entitled "Network of Research Infra-structures for European Seismology, NERIES". This project consists of finding the most likely location of the earthquake source by estimating the fault rupture parameters on the basis of rapid inversion of data from on-line regional broadband stations. It also includes an estimation of the spatial distribution of selected site-specific ground motion parameters at engineering bedrock through region-specific ground motion prediction equations (GMPEs) or physical simulation of ground motion. By using the Earthquake Loss Estimation Routine (ELER) software, the multi-level methodology developed for real time estimation of losses is capable of incorporating regional variability and sources of uncertainty stemming from GMPEs, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships.

  12. A simulation of Earthquake Loss Estimation in Southeastern Korea using HAZUS and the local site classification Map

    Science.gov (United States)

    Kang, S.; Kim, K.

    2013-12-01

    Regionally varying seismic hazards can be estimated using an earthquake loss estimation system (e.g. HAZUS-MH). The estimations for actual earthquakes help federal and local authorities develop rapid, effective recovery measures. Estimates for scenario earthquakes help in designing a comprehensive earthquake hazard mitigation plan. Local site characteristics influence the ground motion. Although direct measurements are desirable to construct a site-amplification map, such data are expensive and time consuming to collect. Thus we derived a site classification map of the southern Korean Peninsula using geologic and geomorphologic data, which are readily available for the entire southern Korean Peninsula. Class B sites (mainly rock) are predominant in the area, although localized areas of softer soils are found along major rivers and seashores. The site classification map is compared with independent site classification studies to confirm our site classification map effectively represents the local behavior of site amplification during an earthquake. We then estimated the losses due to a magnitude 6.7 scenario earthquake in Gyeongju, southeastern Korea, with and without the site classification map. Significant differences in loss estimates were observed. The loss without the site classification map decreased without variation with increasing epicentral distance, while the loss with the site classification map varied from region to region, due to both the epicentral distance and local site effects. The major cause of the large loss expected in Gyeongju is the short epicentral distance. Pohang Nam-Gu is located farther from the earthquake source region. Nonetheless, the loss estimates in the remote city are as large as those in Gyeongju and are attributed to the site effect of soft soil found widely in the area.

  13. Seismic ground motion modelling and damage earthquake scenarios: A bridge between seismologists and seismic engineers

    International Nuclear Information System (INIS)

    Panza, G.F.; Romanelli, F.; Vaccari. F.; . E-mails: Luis.Decanini@uniroma1.it; Fabrizio.Mollaioli@uniroma1.it)

    2002-07-01

    The input for the seismic risk analysis can be expressed with a description of 'roundshaking scenarios', or with probabilistic maps of perhaps relevant parameters. The probabilistic approach, unavoidably based upon rough assumptions and models (e.g. recurrence and attenuation laws), can be misleading, as it cannot take into account, with satisfactory accuracy, some of the most important aspects like rupture process, directivity and site effects. This is evidenced by the comparison of recent recordings with the values predicted by the probabilistic methods. We prefer a scenario-based, deterministic approach in view of the limited seismological data, of the local irregularity of the occurrence of strong earthquakes, and of the multiscale seismicity model, that is capable to reconcile two apparently conflicting ideas: the Characteristic Earthquake concept and the Self Organized Criticality paradigm. Where the numerical modeling is successfully compared with records, the synthetic seismograms permit the microzoning, based upon a set of possible scenario earthquakes. Where no recordings are available the synthetic signals can be used to estimate the ground motion without having to wait for a strong earthquake to occur (pre-disaster microzonation). In both cases the use of modeling is necessary since the so-called local site effects can be strongly dependent upon the properties of the seismic source and can be properly defined only by means of envelopes. The joint use of reliable synthetic signals and observations permits the computation of advanced hazard indicators (e.g. damaging potential) that take into account local soil properties. The envelope of synthetic elastic energy spectra reproduces the distribution of the energy demand in the most relevant frequency range for seismic engineering. The synthetic accelerograms can be fruitfully used for design and strengthening of structures, also when innovative techniques, like seismic isolation, are employed. For these

  14. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  15. Ground-motion modeling of the 1906 San Francisco earthquake, part I: Validation using the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; Zoback, M.L.

    2008-01-01

    We compute ground motions for the Beroza (1991) and Wald et al. (1991) source models of the 1989 magnitude 6.9 Loma Prieta earthquake using four different wave-propagation codes and recently developed 3D geologic and seismic velocity models. In preparation for modeling the 1906 San Francisco earthquake, we use this well-recorded earthquake to characterize how well our ground-motion simulations reproduce the observed shaking intensities and amplitude and durations of recorded motions throughout the San Francisco Bay Area. All of the simulations generate ground motions consistent with the large-scale spatial variations in shaking associated with rupture directivity and the geologic structure. We attribute the small variations among the synthetics to the minimum shear-wave speed permitted in the simulations and how they accommodate topography. Our long-period simulations, on average, under predict shaking intensities by about one-half modified Mercalli intensity (MMI) units (25%-35% in peak velocity), while our broadband simulations, on average, under predict the shaking intensities by one-fourth MMI units (16% in peak velocity). Discrepancies with observations arise due to errors in the source models and geologic structure. The consistency in the synthetic waveforms across the wave-propagation codes for a given source model suggests the uncertainty in the source parameters tends to exceed the uncertainty in the seismic velocity structure. In agreement with earlier studies, we find that a source model with slip more evenly distributed northwest and southeast of the hypocenter would be preferable to both the Beroza and Wald source models. Although the new 3D seismic velocity model improves upon previous velocity models, we identify two areas needing improvement. Nevertheless, we find that the seismic velocity model and the wave-propagation codes are suitable for modeling the 1906 earthquake and scenario events in the San Francisco Bay Area.

  16. Seismic hazard in Hawaii: High rate of large earthquakes and probabilistics ground-motion maps

    Science.gov (United States)

    Klein, F.W.; Frankel, A.D.; Mueller, C.S.; Wesson, R.L.; Okubo, P.G.

    2001-01-01

    distribution similar to that including characteristic earthquakes. The island chain northwest of Hawaii Island is seismically and volcanically much less active. We model its seismic hazard with a combination of a linearly decaying ramp fit to the cataloged seismicity and spatially smoothed seismicity with a smoothing half-width of 10 km. We use a combination of up to four attenuation relations for each map because for either PGA or SA, there is no single relation that represents ground motion for all distance and magnitude ranges. Great slumps and landslides visible on the ocean floor correspond to catastrophes with effective energy magnitudes ME above 8.0. A crude estimate of their frequency suggests that the probabilistic earthquake hazard is at least an order of magnitude higher for flank earthquakes than that from submarine slumps.

  17. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions

    Science.gov (United States)

    Atkinson, G.M.; Boore, D.M.

    2003-01-01

    Ground-motion relations for earthquakes that occur in subduction zones are an important input to seismic-hazard analyses in many parts of the world. In the Cascadia region (Washington, Oregon, northern California, and British Columbia), for example, there is a significant hazard from megathrust earthquakes along the subduction interface and from large events within the subducting slab. These hazards are in addition to the hazard from shallow earthquakes in the overlying crust. We have compiled a response spectra database from thousands of strong-motion recordings from events of moment magnitude (M) 5-8.3 occurring in subduction zones around the world, including both interface and in-slab events. The 2001 M 6.8 Nisqually and 1999 M 5.9 Satsop earthquakes are included in the database, as are many records from subduction zones in Japan (Kyoshin-Net data), Mexico (Guerrero data), and Central America. The size of the database is four times larger than that available for previous empirical regressions to determine ground-motion relations for subduction-zone earthquakes. The large dataset enables improved determination of attenuation parameters and magnitude scaling, for both interface and in-slab events. Soil response parameters are also better determined by the data. We use the database to develop global ground-motion relations for interface and in-slab earthquakes, using a maximum likelihood regression method. We analyze regional variability of ground-motion amplitudes across the global database and find that there are significant regional differences. In particular, amplitudes in Cascadia differ by more than a factor of 2 from those in Japan for the same magnitude, distance, event type, and National Earthquake Hazards Reduction Program (NEHRP) soil class. This is believed to be due to regional differences in the depth of the soil profile, which are not captured by the NEHRP site classification scheme. Regional correction factors to account for these differences are

  18. Probabilistic evaluation of near-field ground motions due to buried-rupture earthquakes caused by undefined faults

    International Nuclear Information System (INIS)

    Shohei Motohashi; Katsumi Ebisawa; Masaharu Sakagmi; Kazuo Dan; Yasuhiro Ohtsuka; Takao Kagawa

    2005-01-01

    The Nuclear Safety Commission of Japan has been reviewing the current Guideline for Earthquake Resistant Design of Nuclear Power Plants since July 2001. According to recent earthquake research, one of the main issues in the review is the design earthquake motion due to close-by earthquakes caused by undefined faults. This paper proposes a probabilistic method for covering variations of earthquake magnitude and location of undefined faults by strong motion simulation technique based on fault models for scenario earthquakes, and describes probabilistic response spectra due to close-by scenario earthquakes caused by undefined faults. Horizontal uniform hazard spectra evaluated by a hybrid technique are compared with those evaluated by an empirical approach. The response spectra with a damping factor of 5% at 0.02 s simulated by the hybrid technique are about 160, 340, 570, and 800 cm/s/s for annual exceedance probabilities of 10 -3 , 10 -4 , 10 -5 , and 10 -6 , respectively, which are in good agreement with the response spectra evaluated by the empirical approach. It is also recognized that the response spectrum proposed by Kato et al. (2004) as the upper level of the strong motion records of buried-rupture earthquakes corresponded to the uniform hazard spectra between 10 -5 and 10 -4 in the period range shorter than 0.4 s. (authors)

  19. Earthquake shaking hazard estimates and exposure changes in the conterminous United States

    Science.gov (United States)

    Jaiswal, Kishor S.; Petersen, Mark D.; Rukstales, Kenneth S.; Leith, William S.

    2015-01-01

    A large portion of the population of the United States lives in areas vulnerable to earthquake hazards. This investigation aims to quantify population and infrastructure exposure within the conterminous U.S. that are subjected to varying levels of earthquake ground motions by systematically analyzing the last four cycles of the U.S. Geological Survey's (USGS) National Seismic Hazard Models (published in 1996, 2002, 2008 and 2014). Using the 2013 LandScan data, we estimate the numbers of people who are exposed to potentially damaging ground motions (peak ground accelerations at or above 0.1g). At least 28 million (~9% of the total population) may experience 0.1g level of shaking at relatively frequent intervals (annual rate of 1 in 72 years or 50% probability of exceedance (PE) in 50 years), 57 million (~18% of the total population) may experience this level of shaking at moderately frequent intervals (annual rate of 1 in 475 years or 10% PE in 50 years), and 143 million (~46% of the total population) may experience such shaking at relatively infrequent intervals (annual rate of 1 in 2,475 years or 2% PE in 50 years). We also show that there is a significant number of critical infrastructure facilities located in high earthquake-hazard areas (Modified Mercalli Intensity ≥ VII with moderately frequent recurrence interval).

  20. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    I. Wong

    2004-01-01

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M and O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes

  1. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  2. Structure-specific selection of earthquake ground motions for the reliable design and assessment of structures

    DEFF Research Database (Denmark)

    Katsanos, E. I.; Sextos, A. G.

    2018-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Code-compatible suites of seismic motions are provided being, at the same time, prequalified through a multi-criterion approach to induce...... was subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv–sc) and the conventional one (δconv), that is commonly used for earthquake records selection and scaling. The findings from numerous linear response history analyses reveal the superiority...

  3. A cooperative NRC/CEA research project on earthquake ground motion on soil sites: overview

    International Nuclear Information System (INIS)

    Murphy, A.J.; Mohammadioun, B.

    1989-10-01

    This paper provides an overview of a multi-phase experiment being conducted jointly by the U.S. Nuclear Regulatory Commission and the French Commissariat a l'Energie Atomique. The objective of the experiment is to collect a comprehensive set of data on the propagation of earthquake ground motions vertically through a shallow soil column (on the order of several tens of meters). The data will be used to validate several of the available engineering computer codes for modeling earthquake ground motion. The data set will also be used to develop an improved understanding of the earthquake source function and the potential for non-linear effects controlling the propagation through the shallow soil column

  4. Using a Full Complex Site Transfer Function to Estimate Strong Ground Motion in Port-au-Prince (Haiti).

    Science.gov (United States)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.

    2017-12-01

    To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.

  5. Strong-Motion Data From the Parkfield Earthquake of September 28, 2004

    Science.gov (United States)

    Shakal, A. F.; Borcherdt, R. D.; Graizer, V.; Haddadi, H.; Huang, M.; Lin, K.; Stephens, C.

    2004-12-01

    Very complex ground motion with high spatial variability was recorded in the near field of the M6 Parkfield earthquake of 9/28/04 by a strong motion array. The array provided the highest density of recording stations in the near field of any earthquake recorded to date. A total of 56 stations were located within 20 km of the fault; 48 were within 10 km of the fault, more than for many other earthquakes combined. Most (45) of the stations were part of a specialized array of classic analog instruments installed by CGS in the early 1980s, and 11 were digital high resolution instruments installed by the USGS. The set of recordings obtained provide a wealth of information on near field ground motion. Processing and analysis of the strong-motion data, available at www.cisn-edc.org, is underway. The spatial variation of the ground motion, even over relatively short distances, is great. For example, a peak acceleration of 0.30 g was recorded in the town of Parkfield, but several stations, within about 2 km, that surround this station recorded acceleration levels well over 1 g. The strong shaking at these stations, near the termination end of the rupture, is consistent with directivity focusing, as the rupture propagated from the epicenter near Gold Hill to the northwest. However, some of the strongest shaking occurs well south of the rupture, at stations near Hwy 46 at the south end of the Cholame Valley, incompatible with directivity focusing from a simple rupture. An additional aspect is that several near-fault stations have very low shaking, despite being directly over the rupturing fault. This may provide a quantitative basis to understand observed cases of low-strength buildings immediately near a fault being only slightly damaged.

  6. Rocking motion of structures under earthquakes. Overturning of 2-DOF system

    International Nuclear Information System (INIS)

    Kobayashi, Koichi; Watanabe, Tetsuya; Tanaka, Kihachiro; Tomoda, Akinori

    2011-01-01

    In recent years, huge earthquakes happen, for example, The South Hyogo prefecture Earthquake in 1995, The Mid Niigata Prefecture Earthquake in 2004, The Iwate-Miyagi Nairiku Earthquake in 2008. In The Niigataken Chuetsu-oki Earthquake in 2007, hundreds of drums fell down and water spilled out. A lot of studies about rocking behavior of rigid body had been performed from 1960's. However, these studies were only for a specific condition of the structure size or input vibration characteristics. Therefore, generalizes fall condition for earthquake is required. This paper deals with the analytical and the experimental study of the rocking vibration of 1-DOF rocking system, 2-DOF vibration-rocking system and 2-DOF rocking system under earthquakes. In this study, the equation of motion for each rocking systems are developed. The numerical model of 2-DOF rocking system is evaluated by free rocking experiment. In this paper, 'Overturning Map' which can distinguish whether structures falls or not is proposed. The overturning map of each rocking systems excited by the artificial earthquake wave calculated from the design spectrum is shown. As the result, overturning condition of structures is clarified. (author)

  7. Evaluation and summary of seismic response of above ground nuclear power plant piping to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    The purpose of this paper is to summarize the observations and experience which has been developed relative to the seismic behavior of above-ground, building-supported, industrial type piping (similar to piping used in nuclear power plants) in strong motion earthquakes. The paper also contains observations regarding the response of piping in experimental tests which attempted to excite the piping to failure. Appropriate conclusions regarding the behavior of such piping in large earthquakes and recommendations as to future design of such piping to resist earthquake motion damage are presented based on observed behavior in large earthquakes and simulated shake table testing

  8. Implications of the Mw9.0 Tohoku-Oki earthquake for ground motion scaling with source, path, and site parameters

    Science.gov (United States)

    Stewart, Jonathan P.; Midorikawa, Saburoh; Graves, Robert W.; Khodaverdi, Khatareh; Kishida, Tadahiro; Miura, Hiroyuki; Bozorgnia, Yousef; Campbell, Kenneth W.

    2013-01-01

    The Mw9.0 Tohoku-oki Japan earthquake produced approximately 2,000 ground motion recordings. We consider 1,238 three-component accelerograms corrected with component-specific low-cut filters. The recordings have rupture distances between 44 km and 1,000 km, time-averaged shear wave velocities of VS30 = 90 m/s to 1,900 m/s, and usable response spectral periods of 0.01 sec to >10 sec. The data support the notion that the increase of ground motions with magnitude saturates at large magnitudes. High-frequency ground motions demonstrate faster attenuation with distance in backarc than in forearc regions, which is only captured by one of the four considered ground motion prediction equations for subduction earthquakes. Recordings within 100 km of the fault are used to estimate event terms, which are generally positive (indicating model underprediction) at short periods and zero or negative (overprediction) at long periods. We find site amplification to scale minimally with VS30 at high frequencies, in contrast with other active tectonic regions, but to scale strongly with VS30 at low frequencies.

  9. Shaking Table Tests on the Seismic Behavior of Steel Frame Structures Subjected to Various Earthquake Ground Motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Kim, Min Kyu; Choun, Young Sun; Seo, Jeong Moon

    2004-05-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. Recent large earthquakes occurred in near-fault zone have done significant damage and loss of life to earthquake area. A survey on some of the Quaternary fault segments near the Korean nuclear power plants is ongoing. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. In this study, the shaking table tests of three steel frame structures were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean nuclear power plant site and a typical near-fault earthquake recorded at Chi-Chi earthquake, were used as input motions. The acceleration and displacement responses of the structure due to the design earthquake were larger than those due to the other input earthquakes. It seems that the design earthquake for the Korean nuclear power plants is conservative, and that the near-fault earthquake and scenario earthquake are not so damageable for the nuclear power plant structures, because the fundamental frequencies of the nuclear power plant structures are generally greater than 5 Hz. The high frequency ground motions that appeared in the scenario earthquake can be more damageable for the equipment installed on the high floors in a building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipment

  10. Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake

    Science.gov (United States)

    Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath

    2016-06-01

    The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.

  11. Near-fault earthquake ground motion prediction by a high-performance spectral element numerical code

    International Nuclear Information System (INIS)

    Paolucci, Roberto; Stupazzini, Marco

    2008-01-01

    Near-fault effects have been widely recognised to produce specific features of earthquake ground motion, that cannot be reliably predicted by 1D seismic wave propagation modelling, used as a standard in engineering applications. These features may have a relevant impact on the structural response, especially in the nonlinear range, that is hard to predict and to be put in a design format, due to the scarcity of significant earthquake records and of reliable numerical simulations. In this contribution a pilot study is presented for the evaluation of seismic ground-motions in the near-fault region, based on a high-performance numerical code for 3D seismic wave propagation analyses, including the seismic fault, the wave propagation path and the near-surface geological or topographical irregularity. For this purpose, the software package GeoELSE is adopted, based on the spectral element method. The set-up of the numerical benchmark of 3D ground motion simulation in the valley of Grenoble (French Alps) is chosen to study the effect of the complex interaction between basin geometry and radiation mechanism on the variability of earthquake ground motion

  12. Sensitivity of Earthquake Loss Estimates to Source Modeling Assumptions and Uncertainty

    Science.gov (United States)

    Reasenberg, Paul A.; Shostak, Nan; Terwilliger, Sharon

    2006-01-01

    Introduction: This report explores how uncertainty in an earthquake source model may affect estimates of earthquake economic loss. Specifically, it focuses on the earthquake source model for the San Francisco Bay region (SFBR) created by the Working Group on California Earthquake Probabilities. The loss calculations are made using HAZUS-MH, a publicly available computer program developed by the Federal Emergency Management Agency (FEMA) for calculating future losses from earthquakes, floods and hurricanes within the United States. The database built into HAZUS-MH includes a detailed building inventory, population data, data on transportation corridors, bridges, utility lifelines, etc. Earthquake hazard in the loss calculations is based upon expected (median value) ground motion maps called ShakeMaps calculated for the scenario earthquake sources defined in WGCEP. The study considers the effect of relaxing certain assumptions in the WG02 model, and explores the effect of hypothetical reductions in epistemic uncertainty in parts of the model. For example, it addresses questions such as what would happen to the calculated loss distribution if the uncertainty in slip rate in the WG02 model were reduced (say, by obtaining additional geologic data)? What would happen if the geometry or amount of aseismic slip (creep) on the region's faults were better known? And what would be the effect on the calculated loss distribution if the time-dependent earthquake probability were better constrained, either by eliminating certain probability models or by better constraining the inherent randomness in earthquake recurrence? The study does not consider the effect of reducing uncertainty in the hazard introduced through models of attenuation and local site characteristics, although these may have a comparable or greater effect than does source-related uncertainty. Nor does it consider sources of uncertainty in the building inventory, building fragility curves, and other assumptions

  13. Source rupture process of the 2016 Kaikoura, New Zealand earthquake estimated from the kinematic waveform inversion of strong-motion data

    Science.gov (United States)

    Zheng, Ao; Wang, Mingfeng; Yu, Xiangwei; Zhang, Wenbo

    2018-03-01

    On 2016 November 13, an Mw 7.8 earthquake occurred in the northeast of the South Island of New Zealand near Kaikoura. The earthquake caused severe damages and great impacts on local nature and society. Referring to the tectonic environment and defined active faults, the field investigation and geodetic evidence reveal that at least 12 fault sections ruptured in the earthquake, and the focal mechanism is one of the most complicated in historical earthquakes. On account of the complexity of the source rupture, we propose a multisegment fault model based on the distribution of surface ruptures and active tectonics. We derive the source rupture process of the earthquake using the kinematic waveform inversion method with the multisegment fault model from strong-motion data of 21 stations (0.05-0.35 Hz). The inversion result suggests the rupture initiates in the epicentral area near the Humps fault, and then propagates northeastward along several faults, until the offshore Needles fault. The Mw 7.8 event is a mixture of right-lateral strike and reverse slip, and the maximum slip is approximately 19 m. The synthetic waveforms reproduce the characteristics of the observed ones well. In addition, we synthesize the coseismic offsets distribution of the ruptured region from the slips of upper subfaults in the fault model, which is roughly consistent with the surface breaks observed in the field survey.

  14. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.

    1983-03-01

    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  15. Strong ground motion in Port-au-Prince, Haiti, during the M7.0 12 January 2010 Haiti earthquake

    Science.gov (United States)

    Hough, Susan E; Given, Doug; Taniguchi, Tomoyo; Altidor, J.R.; Anglade, Dieuseul; Mildor, S-L.

    2011-01-01

    No strong motion records are available for the 12 January 2010 M7.0 Haiti earthquake. We use aftershock recordings as well as detailed considerations of damage to estimate the severity and distribution of mainshock shaking in Port-au-Prince. Relative to ground motions at a hard - rock reference site, peak accelerations are amplified by a factor of approximately 2 at sites on low-lying deposits in central Port-au-Prince and by a factor of 2.5 - 3.5 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplification along the ridge cannot be explained by sediment - induced amplification , but is consistent with predicted topographic amplification by a steep, narrow ridge. Although damage was largely a consequence of poor construction , the damage pattern inferred from analysis of remote sensing imagery provides evidence for a correspondence between small-scale (0.1 - 1.0 km) topographic relief and high damage. Mainshock shaking intensity can be estimated crudely from a consideration of macroseismic effects . We further present detailed, quantitative analysis of the marks left on a tile floor by an industrial battery rack displaced during the mainshock, at the location where we observed the highest weak motion amplifications. Results of this analysis indicate that mainshock shaking was significantly higher at this location (~0.5 g , MMI VIII) relative to the shaking in parts of Port-au-Prince that experienced light damage. Our results further illustrate how observations of rigid body horizontal displacement during earthquakes can be used to estimate peak ground accelerations in the absence of instrumental data .

  16. Attenuation Characteristics of Strong Motions during the 2016 Kumamoto Earthquakes including Near-Field Records

    Science.gov (United States)

    Si, H.; Koketsu, K.; Miyake, H.; Ibrahim, R.

    2016-12-01

    During the two major earthquakes occurred in Kumamoto prefecture, at 21:26 on 14 April, 2016 (Mw 6.2, GCMT), and at 1:25 on 16 April, 2016 (Mw7.0, GCMT), a large number of strong ground motions were recorded, including those very close to the surface fault. In this study, we will discuss the attenuation characteristics of strong ground motions observed during the earthquakes. The data used in this study are mainly observed by K-NET, KiK-net, Osaka University, JMA and Kumamoto prefecture. The 5% damped acceleration response spectra (GMRotI50) are calculated based on the method proposed by Boore et al. (2006). PGA and PGV is defined as the larger one among the PGAs and PGVs of two horizontal components. The PGA, PGV, and GMRotI50 data were corrected to the bedrock with Vs of 1.5km/s based on the method proposed by Si et al. (2016) using the average shear wave velocity (Vs30) and the thickness of sediments over the bedrock. The thickness is estimated based on the velocity structure model provided by J-SHIS. We use a source model proposed by Koketsu et al. (2016) to calculate the fault distance and the median distance (MED) which defined as the closest distance from a station to the median line of the fault plane (Si et al., 2014). We compared the observed PGAs, PGVs, and GMRotI50 with the GMPEs developed in Japan using MED (Si et al., 2014). The predictions by the GMPEs are generally consistent with the observations during the two Kumamoto earthquakes. The results of the comparison also indicated that, (1) strong motion records from the earthquake on April 14th are generally consistent with the predictions by GMPE, however, at the periods of 0.5 to 2 seconds, several records close to the fault plane show larger amplitudes than the predictions by GMPE, including the KiK-net station Mashiki (KMMH16); (2) for the earthquake on April 16, the PGAs and GMRotI50 at periods from 0.1s to 0.4s with short distance from the fault plane are slightly smaller than the predictions by

  17. Rapid estimation of the economic consequences of global earthquakes

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2011-01-01

    The U.S. Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, operational since mid 2007, rapidly estimates the most affected locations and the population exposure at different levels of shaking intensities. The PAGER system has significantly improved the way aid agencies determine the scale of response needed in the aftermath of an earthquake. For example, the PAGER exposure estimates provided reasonably accurate assessments of the scale and spatial extent of the damage and losses following the 2008 Wenchuan earthquake (Mw 7.9) in China, the 2009 L'Aquila earthquake (Mw 6.3) in Italy, the 2010 Haiti earthquake (Mw 7.0), and the 2010 Chile earthquake (Mw 8.8). Nevertheless, some engineering and seismological expertise is often required to digest PAGER's exposure estimate and turn it into estimated fatalities and economic losses. This has been the focus of PAGER's most recent development. With the new loss-estimation component of the PAGER system it is now possible to produce rapid estimation of expected fatalities for global earthquakes (Jaiswal and others, 2009). While an estimate of earthquake fatalities is a fundamental indicator of potential human consequences in developing countries (for example, Iran, Pakistan, Haiti, Peru, and many others), economic consequences often drive the responses in much of the developed world (for example, New Zealand, the United States, and Chile), where the improved structural behavior of seismically resistant buildings significantly reduces earthquake casualties. Rapid availability of estimates of both fatalities and economic losses can be a valuable resource. The total time needed to determine the actual scope of an earthquake disaster and to respond effectively varies from country to country. It can take days or sometimes weeks before the damage and consequences of a disaster can be understood both socially and economically. The objective of the U.S. Geological Survey's PAGER system is

  18. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures

  19. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  20. Probabilistic seismic assessment of base-isolated NPPs subjected to strong ground motions of Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer; Hayah, Nadin Abu; Kim, Doo Kie [Dept. of Civil and Environmental Engineering, Kunsan National University, Kunsan (Korea, Republic of); Cho, Sung Gook [R and D Center, JACE KOREA Company, Gyeonggido (Korea, Republic of)

    2014-10-15

    The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  1. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moczo, P.; Kristek, J.; Pazak, P.; Balazovjech, M.; Moczo, P.; Kristek, J.; Galis, M.

    2007-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. We present alternative formulations of equation of motion for a smooth elastic continuum. We then develop alternative formulations for a canonical problem with a welded material interface and free surface. We continue with a model of an earthquake source. We complete the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelastic media, and brief review of strong formulations of the equation of motion. What follows is a block of chapters on the finite-difference and finite-element methods. We develop FD targets for the free surface and welded material interface. We then present various FD schemes for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid and mainly optimally-accurate FD schemes. We also present alternative formulations of the FE method. We include the FD and FE implementations of the traction-at-split-nodes method for simulation of dynamic rupture propagation. The FD modeling is applied to the model of the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the hybrid FD-FE method. The hybrid

  2. Estimation of strong motions on free rock surface. Identification of soil structures and strong motions on free rock surface in Kashiwazaki-Kariwa nuclear power plant during the 2007 Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Saguchi, Koichiro; Masaki, Kazuaki; Irikura, Kojiro

    2009-01-01

    Very strong ground motions (maximum acceleration 993 cm/s 2 in the borehole seismometer point of -255m in depth) were observed in the Kashiwazaki Kariwa Nuclear Power Plant during the Niigataken Chuetsu-oki Earthquake on July 16, 2007. In this study, we tried to develop new method, which can simulate waveforms on free rock surface by using the bore hole records. We identified the underground structure model at the Service Hall from aftershock records observed in vertical array, using the simulated annealing method (Ingber(1989)). Based on numerical experiments it is identified that S-wave velocity and Q values of individual layers are inverted very well. Strong motion records of main shock observed by the bore hole seismometers were simulated by using one-dimensional multiple reflection method. In this study, non-linear effect is considered by introducing non-linear coefficient c(f) for under coming wave from surface. The maximum acceleration and phase characteristics in simulated waveforms are similar to the observed one. It means that our method is useful for simulate strong motion in non-linear region. Finally, strong motions on the free rock surface at the Service Hall during the main shock are simulated. The maximum acceleration of EW component on free rock surface is estimated to be 1,207 cm/s 2 . (author)

  3. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  4. Application of High Performance Computing to Earthquake Hazard and Disaster Estimation in Urban Area

    Directory of Open Access Journals (Sweden)

    Muneo Hori

    2018-02-01

    Full Text Available Integrated earthquake simulation (IES is a seamless simulation of analyzing all processes of earthquake hazard and disaster. There are two difficulties in carrying out IES, namely, the requirement of large-scale computation and the requirement of numerous analysis models for structures in an urban area, and they are solved by taking advantage of high performance computing (HPC and by developing a system of automated model construction. HPC is a key element in developing IES, as it needs to analyze wave propagation and amplification processes in an underground structure; a model of high fidelity for the underground structure exceeds a degree-of-freedom larger than 100 billion. Examples of IES for Tokyo Metropolis are presented; the numerical computation is made by using K computer, the supercomputer of Japan. The estimation of earthquake hazard and disaster for a given earthquake scenario is made by the ground motion simulation and the urban area seismic response simulation, respectively, for the target area of 10,000 m × 10,000 m.

  5. Earthquake cycle modeling of multi-segmented faults: dynamic rupture and ground motion simulation of the 1992 Mw 7.3 Landers earthquake.

    Science.gov (United States)

    Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.

    2017-12-01

    We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the

  6. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    Science.gov (United States)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  7. Bayesian estimation of source parameters and associated Coulomb failure stress changes for the 2005 Fukuoka (Japan) Earthquake

    Science.gov (United States)

    Dutta, Rishabh; Jónsson, Sigurjón; Wang, Teng; Vasyura-Bathke, Hannes

    2018-04-01

    Several researchers have studied the source parameters of the 2005 Fukuoka (northwestern Kyushu Island, Japan) earthquake (Mw 6.6) using teleseismic, strong motion and geodetic data. However, in all previous studies, errors of the estimated fault solutions have been neglected, making it impossible to assess the reliability of the reported solutions. We use Bayesian inference to estimate the location, geometry and slip parameters of the fault and their uncertainties using Interferometric Synthetic Aperture Radar and Global Positioning System data. The offshore location of the earthquake makes the fault parameter estimation challenging, with geodetic data coverage mostly to the southeast of the earthquake. To constrain the fault parameters, we use a priori constraints on the magnitude of the earthquake and the location of the fault with respect to the aftershock distribution and find that the estimated fault slip ranges from 1.5 to 2.5 m with decreasing probability. The marginal distributions of the source parameters show that the location of the western end of the fault is poorly constrained by the data whereas that of the eastern end, located closer to the shore, is better resolved. We propagate the uncertainties of the fault model and calculate the variability of Coulomb failure stress changes for the nearby Kego fault, located directly below Fukuoka city, showing that the main shock increased stress on the fault and brought it closer to failure.

  8. Preliminary analysis of strong-motion recordings from the 28 September 2004 Parkfield, California earthquake

    Science.gov (United States)

    Shakal, A.; Graizer, V.; Huang, M.; Borcherdt, R.; Haddadi, H.; Lin, K.-W.; Stephens, C.; Roffers, P.

    2005-01-01

    The Parkfield 2004 earthquake yielded the most extensive set of strong-motion data in the near-source region of a magnitude 6 earthquake yet obtained. The recordings of acceleration and volumetric strain provide an unprecedented document of the near-source seismic radiation for a moderate earthquake. The spatial density of the measurements alon g the fault zone and in the linear arrays perpendicular to the fault is expected to provide an exceptional opportunity to develop improved models of the rupture process. The closely spaced measurements should help infer the temporal and spatial distribution of the rupture process at much higher resolution than previously possible. Preliminary analyses of the peak a cceleration data presented herein shows that the motions vary significantly along the rupture zone, from 0.13 g to more than 2.5 g, with a map of the values showing that the larger values are concentrated in three areas. Particle motions at the near-fault stations are consistent with bilateral rupture. Fault-normal pulses similar to those observed in recent strike-slip earthquakes are apparent at several of the stations. The attenuation of peak ground acceleration with distance is more rapid than that indicated by some standard relationships but adequately fits others. Evidence for directivity in the peak acceleration data is not strong. Several stations very near, or over, the rupturing fault recorded relatively low accelerations. These recordings may provide a quantitative basis to understand observations of low near-fault shaking damage that has been reported in other large strike-slip earthquak.

  9. The ShakeOut earthquake source and ground motion simulations

    Science.gov (United States)

    Graves, R.W.; Houston, Douglas B.; Hudnut, K.W.

    2011-01-01

    The ShakeOut Scenario is premised upon the detailed description of a hypothetical Mw 7.8 earthquake on the southern San Andreas Fault and the associated simulated ground motions. The main features of the scenario, such as its endpoints, magnitude, and gross slip distribution, were defined through expert opinion and incorporated information from many previous studies. Slip at smaller length scales, rupture speed, and rise time were constrained using empirical relationships and experience gained from previous strong-motion modeling. Using this rupture description and a 3-D model of the crust, broadband ground motions were computed over a large region of Southern California. The largest simulated peak ground acceleration (PGA) and peak ground velocity (PGV) generally range from 0.5 to 1.0 g and 100 to 250 cm/s, respectively, with the waveforms exhibiting strong directivity and basin effects. Use of a slip-predictable model results in a high static stress drop event and produces ground motions somewhat higher than median level predictions from NGA ground motion prediction equations (GMPEs).

  10. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  11. Prediction of strong ground motion based on scaling law of earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1991-01-01

    In order to predict more practically strong ground motion, it is important to study how to use a semi-empirical method in case of having no appropriate observation records for actual small-events as empirical Green's functions. We propose a prediction procedure using artificially simulated small ground motions as substitute for the actual motions. First, we simulate small-event motion by means of stochastic simulation method proposed by Boore (1983) in considering pass effects such as attenuation, and broadening of waveform envelope empirically in the objective region. Finally, we attempt to predict the strong ground motion due to a future large earthquake (M 7, Δ = 13 km) using the same summation procedure as the empirical Green's function method. We obtained the results that the characteristics of the synthetic motion using M 5 motion were in good agreement with those by the empirical Green's function method. (author)

  12. Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide

    Science.gov (United States)

    Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.

    2017-12-01

    GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.

  13. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  14. Linearized motion estimation for articulated planes.

    Science.gov (United States)

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  15. Source mechanism inversion and ground motion modeling of induced earthquakes in Kuwait - A Bayesian approach

    Science.gov (United States)

    Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.

    2016-12-01

    The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high enough to cause damage to local structures without using seismic design criteria.

  16. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz

  17. Report of Earthquake Drills with Experiences of Ground Motion in Childcare for Young Children, Japan

    Science.gov (United States)

    Yamada, N.

    2013-12-01

    After the Great East Japan Earthquake of 2011, this disaster has become one of the opportunities to raise awareness of earthquake and tsunami disaster prevention, and the improvement of disaster prevention education is to be emphasized. The influences of these bring the extension to the spatial axis in Japan, and also, it is important to make a development of the education with continuous to the expansion of time axes. Although fire or earthquake drills as the disaster prevention education are often found in Japan, the children and teachers only go from school building to outside. Besides, only the shortness of the time to spend for the drill often attracts attention. The complementary practice education by the cooperation with experts such as the firefighting is practiced, but the verification of the effects is not enough, and it is the present conditions that do not advance to the study either. Although it is expected that improvement and development of the disaster prevention educations are accomplished in future, there are a lot of the problems. Our target is construction and utilization of material contributing to the education about "During the strong motion" in case of the earthquake which may experience even if wherever of Japan. One of the our productions is the handicraft shaking table to utilize as teaching tools of the education to protect the body which is not hurt at the time of strong motion. This made much of simplicity than high reproduction of the earthquake ground motions. We aimed to helping the disaster prevention education including not only the education for young children but also for the school staff and their parents. In this report, the focusing on a way of the non-injured during the time of the earthquake ground motion, and adopting activity of the play, we are going to show the example of the framework of earthquake disaster prevention childcare through the virtual experience. This presentation has a discussion as a practice study with

  18. Evaluation of seismic source, ground motion, tsunami based on the Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Our source models for the Mw9.0 Tohoku earthquake either inferred using tsunami data or from seismic data are featured with large slip along the Japan Trench. Our results indicated that the tsunami water levels at the Fukushima Daiichi and Daini NPPs were dominated by the large slip along the Japan Trench. Our analysis suggested that the difference in water levels at these two sites were caused by the waveform overlap effects due to delays of rupture starting times and wave propagation time. It also follows that the short period ground motions recorded during such an Mw9.0 mega thrust earthquake were comparable with those of an Mw8.0 earthquake. (author)

  19. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    Science.gov (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  20. Robust motion estimation using connected operators

    OpenAIRE

    Salembier Clairon, Philippe Jean; Sanson, H

    1997-01-01

    This paper discusses the use of connected operators for robust motion estimation The proposed strategy involves a motion estimation step extracting the dominant motion and a ltering step relying on connected operators that remove objects that do not fol low the dominant motion. These two steps are iterated in order to obtain an accurate motion estimation and a precise de nition of the objects fol lowing this motion This strategy can be applied on the entire frame or on individual connected c...

  1. Estimating economic losses from earthquakes using an empirical approach

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2013-01-01

    We extended the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) empirical fatality estimation methodology proposed by Jaiswal et al. (2009) to rapidly estimate economic losses after significant earthquakes worldwide. The requisite model inputs are shaking intensity estimates made by the ShakeMap system, the spatial distribution of population available from the LandScan database, modern and historic country or sub-country population and Gross Domestic Product (GDP) data, and economic loss data from Munich Re's historical earthquakes catalog. We developed a strategy to approximately scale GDP-based economic exposure for historical and recent earthquakes in order to estimate economic losses. The process consists of using a country-specific multiplicative factor to accommodate the disparity between economic exposure and the annual per capita GDP, and it has proven successful in hindcast-ing past losses. Although loss, population, shaking estimates, and economic data used in the calibration process are uncertain, approximate ranges of losses can be estimated for the primary purpose of gauging the overall scope of the disaster and coordinating response. The proposed methodology is both indirect and approximate and is thus best suited as a rapid loss estimation model for applications like the PAGER system.

  2. Bayesian Estimation of Source Parameters and Associated Coulomb Failure Stress Changes for the 2005 Fukuoka (Japan) Earthquake

    KAUST Repository

    Dutta, Rishabh

    2017-12-20

    Several researchers have studied the source parameters of the 2005 Fukuoka (northwestern Kyushu Island, Japan) earthquake (MW 6.6) using teleseismic, strong motion and geodetic data. However, in all previous studies, errors of the estimated fault solutions have been neglected, making it impossible to assess the reliability of the reported solutions. We use Bayesian inference to estimate the location, geometry and slip parameters of the fault and their uncertainties using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. The offshore location of the earthquake makes the fault parameter estimation challenging, with geodetic data coverage mostly to the southeast of the earthquake. To constrain the fault parameters, we use a priori constraints on the magnitude of the earthquake and the location of the fault with respect to the aftershock distribution and find that the estimated fault slip ranges from 1.5 m to 2.5 m with decreasing probability. The marginal distributions of the source parameters show that the location of the western end of the fault is poorly constrained by the data whereas that of the eastern end, located closer to the shore, is better resolved. We propagate the uncertainties of the fault model and calculate the variability of Coulomb failure stress changes for the nearby Kego fault, located directly below Fukuoka city, showing that the mainshock increased stress on the fault and brought it closer to failure.

  3. Analysis of the Source and Ground Motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla Earthquakes

    Science.gov (United States)

    Melgar, D.; Sahakian, V. J.; Perez-Campos, X.; Quintanar, L.; Ramirez-Guzman, L.; Spica, Z.; Espindola, V. H.; Ruiz-Angulo, A.; Cabral-Cano, E.; Baltay, A.; Geng, J.

    2017-12-01

    The September 2017 Tehuantepec and Puebla earthquakes were intra-slab earthquakes that together caused significant damage in broad regions of Mexico, including the states of Oaxaca, Chiapas, Morelos, Puebla, Mexico, and Mexico City. Ground motions in Mexico City have approximately the same angle of incidence from both earthquakes and potentially sample similar paths close to the city. We examine site effects and source terms by analysis of residuals between Ground-Motion Prediction Equations (GMPEs) and observed ground motions for both of these events at stations from the Servicio Sismólogico Nacional, Instituto de Ingeniería, and the Instituto de Geofísica Red del Valle de Mexico networks. GMPEs are a basis for seismic design, but also provide median ground motion values to act as a basis for comparison of individual earthquakes and site responses. First, we invert for finite-fault slip inversions for Tehuantepec with high-rate GPS, static GPS, tide gauge and DART buoy data, and for Puebla with high-rate GPS and strong motion data. Using the distance from the stations with ground motion observations to the derived slip models, we use the GMPEs of Garcia et al. (2005), Zhao et al. (2006), and Abrahamson, Silva and Kamai (2014), to compute predicted values of peak ground acceleration and velocity (PGA and PGV) and response spectral accelerations (SA). Residuals between observed and predicted ground motion parameters are then computed for each recording, and are decomposed into event and site components using a mixed effects regression. We analyze these residuals as an adjustment away from median ground motions in the region to glean information about the earthquake source properties, as well as local site response in and outside of the Mexico City basin. The event and site terms are then compared with available values of stress drop for the two earthquakes, and Vs30 values for the sites, respectively. This analysis is useful in determining which GMPE is most

  4. Effect of earthquake and tsunami. Ground motion and tsunami observed at nuclear power station

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou

    2012-01-01

    Fukushima Daiichi and Daini Nuclear Power Stations (NPSs) were struck by the earthquake off the pacific coast in the Tohoku District, which occurred at 14:46 on March 11, 2011. Afterwards, tsunamis struck the Tohoku District. In terms of the earthquake observed at the Fukushima NPSs, the acceleration response spectra of the earthquake movement observed on the basic board of reactor buildings exceeded the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss for partial periodic bands at the Fukushima Daiichi NPS. As for the Fukushima Daini NPS, the acceleration response spectra of the earthquake movement observed on the basic board of the reactor buildings was below the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss. Areas inundated by Tsunami at each NPS were investigated and tsunami inversion analysis was made to build tsunami source model to reproduce tide record, tsunami height, crustal movement and inundated area, based on tsunami observation records in the wide areas from Hokkaido to Chiba prefectures. Tsunami heights of Fukushima Daiichi and Daini NPSs were recalculated as O.P. +13m and +9m respectively and tsunami peak height difference was attributed to the extent of superposition of tsunami waves of tsunami earthquake type of wave source in the area along interplane trench off the coast in the Fukushima prefecture and interplane earthquake type of wave source in rather deep interplate area off the coast in the Miyagi prefecture. (T. Tanaka)

  5. Reducing process delays for real-time earthquake parameter estimation - An application of KD tree to large databases for Earthquake Early Warning

    Science.gov (United States)

    Yin, Lucy; Andrews, Jennifer; Heaton, Thomas

    2018-05-01

    Earthquake parameter estimations using nearest neighbor searching among a large database of observations can lead to reliable prediction results. However, in the real-time application of Earthquake Early Warning (EEW) systems, the accurate prediction using a large database is penalized by a significant delay in the processing time. We propose to use a multidimensional binary search tree (KD tree) data structure to organize large seismic databases to reduce the processing time in nearest neighbor search for predictions. We evaluated the performance of KD tree on the Gutenberg Algorithm, a database-searching algorithm for EEW. We constructed an offline test to predict peak ground motions using a database with feature sets of waveform filter-bank characteristics, and compare the results with the observed seismic parameters. We concluded that large database provides more accurate predictions of the ground motion information, such as peak ground acceleration, velocity, and displacement (PGA, PGV, PGD), than source parameters, such as hypocenter distance. Application of the KD tree search to organize the database reduced the average searching process by 85% time cost of the exhaustive method, allowing the method to be feasible for real-time implementation. The algorithm is straightforward and the results will reduce the overall time of warning delivery for EEW.

  6. Quantifying uncertainty in NDSHA estimates due to earthquake catalogue

    Science.gov (United States)

    Magrin, Andrea; Peresan, Antonella; Vaccari, Franco; Panza, Giuliano

    2014-05-01

    The procedure for the neo-deterministic seismic zoning, NDSHA, is based on the calculation of synthetic seismograms by the modal summation technique. This approach makes use of information about the space distribution of large magnitude earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g., morphostructural features and ongoing deformation processes identified by earth observations). Hence the method does not make use of attenuation models (GMPE), which may be unable to account for the complexity of the product between seismic source tensor and medium Green function and are often poorly constrained by the available observations. NDSHA defines the hazard from the envelope of the values of ground motion parameters determined considering a wide set of scenario earthquakes; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In NDSHA uncertainties are not statistically treated as in PSHA, where aleatory uncertainty is traditionally handled with probability density functions (e.g., for magnitude and distance random variables) and epistemic uncertainty is considered by applying logic trees that allow the use of alternative models and alternative parameter values of each model, but the treatment of uncertainties is performed by sensitivity analyses for key modelling parameters. To fix the uncertainty related to a particular input parameter is an important component of the procedure. The input parameters must account for the uncertainty in the prediction of fault radiation and in the use of Green functions for a given medium. A key parameter is the magnitude of sources used in the simulation that is based on catalogue informations, seismogenic zones and seismogenic nodes. Because the largest part of the existing catalogues is based on macroseismic intensity, a rough estimate

  7. Modelling of the ground motion at Russe site (NE Bulgaria) due to the Vrancea earthquakes

    International Nuclear Information System (INIS)

    Kouteva, Mihaela; Panza, Giuliano F.; Paskaleva, Ivanka; Romanelli, Fabio

    2001-11-01

    An approach, capable of synthesising strong ground motion from a basic understanding of fault mechanism and of seismic wave propagation in the Earth, is applied to model the seismic input at a set of 25 sites along a chosen profile at Russe, NE Bulgaria, due to two intermediate-depth Vrancea events (August 30, 1986, Mw=7.2, and May 30, 1990, Mw=6.9). According to our results, once a strong ground motion parameter has been selected to characterise the ground motion, it is necessary to investigate the relationships between its values and the features of the earthquake source, the path to the site and the nature of the site. Therefore, a proper seismic hazard assessment requires an appropriate parametric study to define the different ground shaking scenarios corresponding to the relevant seismogenic zones affecting the given site. Site response assessment is provided simultaneously in frequency and space domains, and thus the applied procedure differs from the traditional engineering approach that discusses the site as a single point. The applied procedure can be efficiently used to estimate the ground motion for different purposes like microzonation, urban planning, retrofitting or insurance of the built environment. (author)

  8. Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A.D.

    Science.gov (United States)

    Obermeier, S.F.; Dickenson, S.E.

    2000-01-01

    interpreted levels of shaking are considerably lower than current estimates in the technical literature that use theoretical and statistical models to predict ground motions of subduction earthquakes in the Cascadia region. Because of the influence of estimated ground motions from Cascadia subduction-zone earthquakes on seismic hazard evaluations, more paleoliquefaction and geotechnical field studies are needed to definitively bracket the strength of shaking. With further work, it should be possible to extend the record of seismic shaking through much of Holocene time in large portions of Washington and Oregon.

  9. Earthquake early warning system using real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  10. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz. This document, Volume IV, provides Appendix 8.B, Laboratory Investigations of Dynamic Properties of Reference Sites

  11. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    Science.gov (United States)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  12. Ground motion for the design basis earthquake at the Savannah River Site, South Carolina based on a deterministic approach

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Silva, W.J.; Stephenson, D.E.

    1991-01-01

    Ground motion assessments are presented for evaluation of the seismic safety of K-Reactor at the Savannah River Site. Two earthquake sources were identified as the most significant to seismic hazard at the site, a M 7.5 earthquake occurring at Charleston, South Carolina, and a M 5 event occurring in the site vicinity. These events control the low frequency and high frequency portions of the spectrum, respectively. Three major issues were identified in the assessment of ground motions for the Savannah River site; specification of the appropriate stress drop for the Charleston source earthquake, specification of the appropriate levels of soil damping at large depths for site response analyses, and the appropriateness of western US recordings for specification of ground motions in the eastern US

  13. Seismic-resistant design of nuclear power stations in Japan, earthquake country. Lessons learned from Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Irikura, Kojiro

    2008-01-01

    The new assessment (back-check) of earthquake-proof safety was being conducted at Kashiwazaki-Kariwa Nuclear Power Plants, Tokyo Electric Co. in response to a request based on the guideline for reactor evaluation for seismic-resistant design code, revised in 2006, when the 2007 Chuetsu-oki Earthquake occurred and brought about an unexpectedly huge tremor in this area, although the magnitude of the earthquake was only 6.8 but the intensity of earthquake motion exceeded 2.5-fold more than supposed. This paper introduces how and why the guideline for seismic-resistant design of nuclear facilities was revised in 2006, the outline of the Chuetsu-oki Earthquake, and preliminary findings and lessons learned from the Earthquake. The paper specifically discusses on (1) how we may specify in advance geologic active faults as has been overlooked this time, (2) how we can make adequate models for seismic origin from which we can extract its characteristics, and (3) how the estimation of strong ground motion simulation may be possible for ground vibration level of a possibly overlooked fault. (S. Ohno)

  14. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties

  15. Performance of Irikura's Recipe Rupture Model Generator in Earthquake Ground Motion Simulations as Implemented in the Graves and Pitarka Hybrid Approach.

    Energy Technology Data Exchange (ETDEWEB)

    Pitarka, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-22

    We analyzed the performance of the Irikura and Miyake (2011) (IM2011) asperity-­ based kinematic rupture model generator, as implemented in the hybrid broadband ground-­motion simulation methodology of Graves and Pitarka (2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0 -­ 20Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-­West2 Project (NGA-­West2) ground-­motion prediction equations (GMPEs) over the frequency band 0.1–10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-­fault distances (<12km) and at long periods (>1s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1 – 3 sec where the IM2011 motions are about 20 – 30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1 – 3 second bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study.

  16. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions

  17. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  18. Displaced rocks, strong motion, and the mechanics of shallow faulting associated with the 1999 Hector Mine, California, earthquake

    Science.gov (United States)

    Michael, Andrew J.; Ross, Stephanie L.; Stenner, Heidi D.

    2002-01-01

    The paucity of strong-motion stations near the 1999 Hector Mine earthquake makes it impossible to make instrumental studies of key questions about near-fault strong-motion patterns associated with this event. However, observations of displaced rocks allow a qualitative investigation of these problems. By observing the slope of the desert surface and the frictional coefficient between these rocks and the desert surface, we estimate the minimum horizontal acceleration needed to displace the rocks. Combining this information with observations of how many rocks were displaced in different areas near the fault, we infer the level of shaking. Given current empirical shaking attenuation relationships, the number of rocks that moved is slightly lower than expected; this implies that slightly lower than expected shaking occurred during the Hector Mine earthquake. Perhaps more importantly, stretches of the fault with 4 m of total displacement at the surface displaced few nearby rocks on 15?? slopes, suggesting that the horizontal accelerations were below 0.2g within meters of the fault scarp. This low level of shaking suggests that the shallow parts of this rupture did not produce strong accelerations. Finally, we did not observe an increased incidence of displaced rocks along the fault zone itself. This suggests that, despite observations of fault-zone-trapped waves generated by aftershocks of the Hector Mine earthquake, such waves were not an important factor in controlling peak ground acceleration during the mainshock.

  19. Expectable Earthquakes and their ground motions in the Van Norman Reservoirs Area

    Science.gov (United States)

    Wesson, R.L.; Page, R.A.; Boore, D.M.; Yerkes, R.F.

    1974-01-01

    The upper and lower Van Norman dams, in northwesternmost San Fernando Valley about 20 mi (32 km) northwest of downtown Los Angeles, were severely damaged during the 1971 San Fernando earthquake. An investigation of the geologic-seismologic setting of the Van Norman area indicates that an earthquake of at least M 7.7 may be expected in the Van Norman area. The expectable transitory effects in the Van Norman area of such an earthquake are as follows: peak horizontal acceleration of at least 1.15 g, peak velocity of displacement of 4.43 ft/sec (135 cm/sec), peak displacement of 2.3 ft (70 cm), and duration of shaking at accelerations greater than 0.05 g, 40 sec. A great earthquake (M 8+) on the San Andreas fault, 25 mi distant, also is expectable. Transitory effects in the Van Norman area from such an earthquake are estimated as follows: peak horizontal acceleration of 0.5 g, peak velocity of 1.97 ft/sec (60 cm/sec), displacement of 1.31 ft (40 cm), and duration of shaking at accelerations greater than 0.05 g, 80 sec. The permanent effects of the expectable local earthquake could include simultaneous fault movement at the lower damsite, the upper damsite, and the site proposed for a replacement dam halfway between the upper and lower dams. The maximum differential displacements due to such movements are estimated at 16.4 ft (5 m) at the lower damsite and about 9.6 ft (2.93 m) at the upper and proposed damsites. The 1971 San Fernando earthquake (M 6?) was accompanied by the most intense ground motions ever recorded instrumentally for a natural earthquake. At the lower Van Norman dam, horizontal accelerations exceeded 0.6 g, and shaking greater than 0.25 g lasted for about 13 see; at Pacoima dam, 6 mi (10 km) northeast of the lower dam, high-frequency peak horizontal accelerations of 1.25 g were recorded in two directions, and shaking greater than 0.25 g lasted for about 7 sec. Permanent effects of the earthquake include slope failures in the embankments of the upper

  20. Demonstration of pb-PSHA with Ras-Elhekma earthquake, Egypt

    Directory of Open Access Journals (Sweden)

    Elsayed Fergany

    2017-06-01

    Full Text Available The main goal of this work is to: (1 argue for the importance of a physically-based probabilistic seismic hazard analysis (pb-PSHA methodology and show examples to support the argument from recent events, (2 demonstrate the methodology with the ground motion simulations of May 28, 1998, Mw = 5.5 Ras-Elhekma earthquake, north Egypt. The boundaries for the possible rupture parameters that may have been identified prior to the 1998 Ras-Elhekma earthquake were estimated. A range of simulated ground-motions for the Ras-Elhekma earthquake was “predicted” for frequency 0.5–25 Hz at three sites, where the large earthquake was recorded, with average epicentral distances of 220 km. The best rupture model of the 1998 Ras-Elhekma earthquake was identified by calculated the goodness of fit between observed and synthesized records at sites FYM, HAG, and KOT. We used the best rupture scenario of the 1998 earthquake to synthesize the ground motions at interested sites where the main shock was not recorded. Based on the good fit of simulated and observed seismograms, we concluded that this methodology can provide realistic ground motion of an earthquake and highly recommended for engineering purposes in advance or foregoing large earthquakes at non record sites. We propose that there is a need for this methodology for good-representing the true hazard with reducing uncertainties.

  1. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  2. Overview of the relations earthquake source parameters and the specification of strong ground motion for design purposes

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-08-01

    One of the most important steps in the seismic design process is the specification of the appropriate ground motion to be input into the design analysis. From the point-of-view of engineering design analysis, the important parameters are peak ground acceleration, spectral shape and peak spectral levels. In a few cases, ground displacement is a useful parameter. The earthquake is usually specified by giving its magnitude and either the epicentral distance or the distance of the closest point on the causitive fault to the site. Typically, the appropriate ground motion parameters are obtained using the specified magnitude and distance in equations obtained from regression analysis among the appropriate variables. Two major difficulties with such an approach are: magnitude is not the best parameter to use to define the strength of an earthquake, and little near-field data is available to establish the appropriate form for the attenuation of the ground motion with distance, source size and strength. These difficulties are important for designing a critical facility; i.e., one for which a very low risk of exceeding the design ground motion is required. Examples of such structures are nuclear power plants, schools and hospitals. for such facilities, a better understanding of the relation between the ground motion and the important earthquake source parameters could be very useful for several reasons

  3. Real Time Earthquake Information System in Japan

    Science.gov (United States)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  4. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    Science.gov (United States)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground

  5. Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-11-01

    This report develops and applies a method for estimating strong earthquake ground motion. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Specifically considered are ground motions resulting from earthquakes with magnitudes from 5 to 8, fault distances from 0 to 500 km, and frequencies from 1 to 35 Hz. The two main objectives were: (1) to develop generic relations for estimating ground motion appropriate for site screening; and (2) to develop a guideline for conducting a thorough site investigation needed to define the seismic design basis. For the first objective, an engineering model was developed to predict the expected ground motion on rock sites, with an additional set of amplification factors to account for the response of the soil column over rock at soil sites. The results incorporate best estimates of ground motion as well as the randomness and uncertainty associated with those estimates. For the second objective, guidelines were developed for gathering geotechnical information at a site and using this information in calculating site response. As a part of this development, an extensive set of geotechnical and seismic investigations was conducted at three reference sites. Together, the engineering model and guidelines provide the means to select and assess the seismic suitability of a site

  6. Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  7. Ground-Motion Simulations of the 2008 Ms8.0 Wenchuan, China, Earthquake Using Empirical Green's Function Method

    Science.gov (United States)

    Zhang, W.; Zhang, Y.; Yao, X.

    2010-12-01

    On May 12, 2008, a huge earthquake with magnitude Ms8.0 occurred in the Wenhuan, Sichuan Province of China. This event was the most devastating earthquake in the mainland of China since the 1976 M7.8 Tangshan earthquake. It resulted in tremendous losses of life and property. There were about 90,000 persons killed. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and “quake lakes” which formed by landslide-induced reservoirs. This earthquake occurred along the Longmenshan fault, as the result of motion on a northeast striking reverse fault or thrust fault on the northwestern margin of the Sichuan Basin. The earthquake's epicenter and focal-mechanism are consistent with it having occurred as the result of movement on the Longmenshan fault or a tectonically related fault. The earthquake reflects tectonic stresses resulting from the convergence of crustal material slowly moving from the high Tibetan Plateau, to the west, against strong crust underlying the Sichuan Basin and southeastern China. In this study, we simulate the near-field strong ground motions of this great event based on the empirical Green’s function method (EGF). Referring to the published inversion source models, at first, we assume that there are three asperities on the rupture area and choose three different small events as the EGFs. Then, we identify the parameters of the source model using a genetic algorithm (GA). We calculate the synthetic waveforms based on the obtained source model and compare with the observed records. Our result shows that for most of the synthetic waveforms agree very well with the observed ones. The result proves the validity and the stability of the method. Finally, we forward the near-field strong ground motions near the source region and try to explain the damage distribution caused by the great earthquake.

  8. Estimation of Surface Deformation due to Pasni Earthquake Using SAR Interferometry

    Science.gov (United States)

    Ali, M.; Shahzad, M. I.; Nazeer, M.; Kazmi, J. H.

    2018-04-01

    Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.

  9. Application of τc*Pd in earthquake early warning

    Science.gov (United States)

    Huang, Po-Lun; Lin, Ting-Li; Wu, Yih-Min

    2015-03-01

    Rapid assessment of damage potential and size of an earthquake at the station is highly demanded for onsite earthquake early warning. We study the application of τc*Pd for its estimation on the earthquake size using 123 events recorded by the borehole stations of KiK-net in Japan. The new type of earthquake size determined by τc*Pd is more related to the damage potential. We find that τc*Pd provides another parameter to measure the size of earthquake and the threshold to warn strong ground motion.

  10. Estimating the Direct Economic Damage of the Earthquake in Haiti

    OpenAIRE

    Cavallo, Eduardo; Powell, Andrew; Becerra, Oscar

    2010-01-01

    This paper uses simple regression techniques to make an initial assessment of the monetary damages caused by the January 12, 2010 earthquake that struck Haiti. Damages are estimated for a disaster with both 200,000 and 250,000 total dead and missing (i.e., the range of mortality that the earthquake is estimated to have caused) using Haiti’s economic and demographic data. The base estimate is US$8.1bn for a death toll of 250,000, but for several reasons this may be a lower- bound estimate. An ...

  11. Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks

    Science.gov (United States)

    Polet, J.; Thio, H. K.; Kremer, M.

    2009-12-01

    The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting “strike” of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure

  12. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  13. PET motion correction using PRESTO with ITK motion estimation

    International Nuclear Information System (INIS)

    Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon

    2014-01-01

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  14. Earthquake early warning using P-waves that appear after initial S-waves

    Science.gov (United States)

    Kodera, Y.

    2017-12-01

    As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al

  15. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    Science.gov (United States)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  16. The study of key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring

    Science.gov (United States)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai

    2016-08-01

    This paper has studied the key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring. The validations show that the consistence of the coordinate system must be considered firstly to exclude the system bias between GNSS and strong-motion. The GNSS sampling rate is suggested about 1-5 Hz, and we should give the strong-motion's baseline shift with a larger dynamic noise as its variation is very swift. The initialization time of solving the baseline shift is less than one minute, and ambiguity resolution strategy is not greatly improved the solution. The data quality is very important for the solution, we advised to use multi-frequency and multi-system observations. These ideas give an important guide for real-time earthquake monitoring and early warning by the tight integration of GNSS and strong-motion records.

  17. The strong motion amplitudes from Himalayan earthquakes and a pilot study for the deterministic first order microzonation of Delhi City

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Panza, G.F.; Gusev, A.A.; Vaccari, F.

    2001-09-01

    The interdependence among the strong-motion amplitude, earthquake magnitude and hypocentral distance has been established (Parvez et al. 2001) for the Himalayan region using the dataset of six earthquakes, two from Western and four from Eastern Himalayas (M w =5.2-7.2) recorded by strong-motion networks in the Himalayas. The level of the peak strong motion amplitudes in the Eastern Himalayas is three fold larger than that in the Western Himalayas, in terms of both peak acceleration and peak velocities. In the present study, we include the strong motion data of Chamoli earthquake (M w =6.5) of 1999 from the western sub-region to see whether this event supports the regional effects and we find that the new result fits well with our earlier prediction in the Western Himalayas. The minimum estimates of peak acceleration for the epicentral zone of M w =7.5-8.5 events is A peak =0.25-0.4 g for the Western Himalayas and as large as A peak =1.0-1.6 g for the Eastern Himalayas. Similarly, the expected minimum epicentral values of V peak for M w =8 are 35 cm/s for Western and 112 cm/s for Eastern Himalayas. The presence of unusually high levels of epicentral amplitudes for the eastern subregion also agrees well with the macroseismic evidence (Parvez et al. 2001). Therefore, these results represent systematic regional effects, and may be considered as a basis for future regionalized seismic hazard assessment in the Himalayan region. Many metropolitan and big cities of India are situated in the severe hazard zone just south of the Himalayas. A detailed microzonation study of these sprawling urban centres is therefore urgently required for gaining a better understanding of ground motion and site effects in these cities. An example of the study of site effects and microzonation of a part of metropolitan Delhi is presented based on a detailed modelling along a NS cross sections from the Inter State Bus Terminal (ISBT) to Sewanagar. Full synthetic strong motion waveforms have been

  18. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  19. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    Science.gov (United States)

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  20. Acceleration and volumetric strain generated by the Parkfield 2004 earthquake on the GEOS strong-motion array near Parkfield, California

    Science.gov (United States)

    Borcherdt, Rodger D.; Johnston, Malcolm J.S.; Dietel, Christopher; Glassmoyer, Gary; Myren, Doug; Stephens, Christopher

    2004-01-01

    An integrated array of 11 General Earthquake Observation System (GEOS) stations installed near Parkfield, CA provided on scale broad-band, wide-dynamic measurements of acceleration and volumetric strain of the Parkfield earthquake (M 6.0) of September 28, 2004. Three component measurements of acceleration were obtained at each of the stations. Measurements of collocated acceleration and volumetric strain were obtained at four of the stations. Measurements of velocity at most sites were on scale only for the initial P-wave arrival. When considered in the context of the extensive set of strong-motion recordings obtained on more than 40 analog stations by the California Strong-Motion Instrumentation Program (Shakal, et al., 2004 http://www.quake.ca.gov/cisn-edc) and those on the dense array of Spudich, et al, (1988), these recordings provide an unprecedented document of the nature of the near source strong motion generated by a M 6.0 earthquake. The data set reported herein provides the most extensive set of near field broad band wide dynamic range measurements of acceleration and volumetric strain for an earthquake as large as M 6 of which the authors are aware. As a result considerable interest has been expressed in these data. This report is intended to describe the data and facilitate its use to resolve a number of scientific and engineering questions concerning earthquake rupture processes and resultant near field motions and strains. This report provides a description of the array, its scientific objectives and the strong-motion recordings obtained of the main shock. The report provides copies of the uncorrected and corrected data. Copies of the inferred velocities, displacements, and Psuedo velocity response spectra are provided. Digital versions of these recordings are accessible with information available through the internet at several locations: the National Strong-Motion Program web site (http://agram.wr.usgs.gov/), the COSMOS Virtual Data Center Web site

  1. Near Fault Strong Ground Motion Records in the Kathmandu Valley during the 2015 Gorkha Nepal Earthquake

    Science.gov (United States)

    Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M. R.; Sasatani, T.

    2015-12-01

    Kathmandu is the capital of Nepal and is located in the Kathmandu Valley, which is formed by soft lake sediments of Plio-Pleistocene origin. Large earthquakes in the past have caused significant damage as the seismic waves were amplified in the soft sediments. To understand the site effect of the valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). On 25 April 2015, a large interplate earthquake Mw 7.8 occurred in the Himalayan Range of Nepal. The focal area estimated was about 200 km long and 150 km wide, with a large slip area under the Kathmandu Valley where our strong motion observation stations were installed. The strong ground motions were observed during this large damaging earthquake. The maximum horizontal peak ground acceleration at the rock site was 271 cm s-2, and the maximum horizontal peak ground velocity at the sediment sites reached 112 cm s-1. We compared these values with the empirical attenuation formula for strong ground motions. We found the peak accelerations were smaller and the peak velocities were approximately the same as the predicted values. The rock site KTP motions are less affected by site amplification and were analysed further. The horizontal components were rotated to the fault normal (N205E) and fault parallel (N115E) directions using the USGS fault model. The velocity waveforms at KTP showed about 5 s triangular pulses on the N205E and the up-down components; however the N115E component was not a triangular pulse but one cycle sinusoidal wave. The velocity waveforms at KTP were integrated to derive the displacement waveforms. The derived displacements at KTP are characterized by a monotonic step on the N205E normal and up-down components. The displacement waveforms of KTP show permanent displacements of 130 cm in the fault

  2. What should be learned from the 2011 off the Pacific coast of Tohoku Earthquake to formulate the standard seismic motion of a nuclear power plant

    International Nuclear Information System (INIS)

    Nozu, Atsushi

    2017-01-01

    Although inter plate earthquake is also taken into account in the formulation of standard seismic motion of a nuclear power plant, the lessons of the 2011 off the Pacific coast of Tohoku Earthquake are not fully utilized in the evaluation of the strong motion record. This paper discussed the following three points. (1) During the 2011 off the Pacific coast of Tohoku Earthquake, sharp pulses generated from a narrow area (SPGA: strong motion pulse generation area) on the fault plane determined the maximum amplitude of the earthquake ground motion at the nuclear power plant. (2) In order to accurately calculate this pulse, the current SMGA model is insufficient. (3) The seismic motion evaluated on the assumption that the SPGA is close to a nuclear power plant can exceed the assumption made by power companies. From the studies so far, it is clear that the current SMGA model cannot accurately calculate pulse waves with a time width of 1 to 2 seconds that is technically important, and its causes are clear. For this reason, the SMGA model is not suitable as a seismic source model for establishing the standard seismic motion of a nuclear power plant. It is necessary to have a model that can reproduce the earthquake ground motion due to the 2011 off the Pacific coast of Tohoku Earthquake, in an accuracy of SPGA model or higher. Pulse waves with a time width of 1 to 2 seconds that simultaneously bring about large accelerations and speeds are likely accompany plasticization and cause major damage. (A.O.)

  3. Development of tipping-over analysis of cask subjected to earthquake strong motion

    International Nuclear Information System (INIS)

    Shirai, Koji; Ito, Chihiro; Ryu, Hiroshi

    1993-01-01

    Since a cask is vertically oriented during loading in cask-storage, it is necessary to investigate the integrity of the cask against tipping-over during strong earthquakes. The rocking and sliding behavior of the cask during strong earthquakes can be analyzed as a dynamic vibration problem for a rigid cylinder. In this paper, in order to clarify the tipping-over characteristics of a cask during strong earthquakes, the authors applied the Distinct Element Method (DEM) to the seismic response analysis of the cask. DEM was introduced by Cundall P.A. in 1971. It is based on the use of an explicit numerical scheme. The cask was considered to be a rigid polygonal element, which satisfied the equation of motion and the law of action and reaction. They examined the applicability of this code by comparison with experimental results obtained from shaking table tests using scale model casks considering the dimension of a 100 ton class full-scale cask

  4. Methods for prediction of strong earthquake ground motion. Final technical report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Trifunac, M.D.

    1977-09-01

    The purpose of this report is to summarize the results of the work on characterization of strong earthquake ground motion. The objective of this effort has been to initiate presentation of simple yet detailed methodology for characterization of strong earthquake ground motion for use in licensing and evaluation of operating Nuclear Power Plants. This report will emphasize the simplicity of the methodology by presenting only the end results in a format that may be useful for the development of the site specific criteria in seismic risk analysis, for work on the development of modern standards and regulatory guides, and for re-evaluation of the existing power plant sites

  5. Spatiotemporal seismic velocity change in the Earth's subsurface associated with large earthquake: contribution of strong ground motion and crustal deformation

    Science.gov (United States)

    Sawazaki, K.

    2016-12-01

    It is well known that seismic velocity of the subsurface medium changes after a large earthquake. The cause of the velocity change is roughly attributed to strong ground motion (dynamic strain change), crustal deformation (static strain change), and fracturing around the fault zone. Several studies have revealed that the velocity reduction down to several percent concentrates at the depths shallower than several hundred meters. The amount of velocity reduction correlates well with the intensity of strong ground motion, which indicates that the strong motion is the primary cause of the velocity reduction. Although some studies have proposed contributions of coseismic static strain change and fracturing around fault zone to the velocity change, separation of their contributions from the site-related velocity change is usually difficult. Velocity recovery after a large earthquake is also widely observed. The recovery process is generally proportional to logarithm of the lapse time, which is similar to the behavior of "slow dynamics" recognized in laboratory experiments. The time scale of the recovery is usually months to years in field observations, while it is several hours in laboratory experiments. Although the factor that controls the recovery speed is not well understood, cumulative strain change due to post-seismic deformation, migration of underground water, mechanical and chemical reactions on the crack surface could be the candidate. In this study, I summarize several observations that revealed spatiotemporal distribution of seismic velocity change due to large earthquakes; especially I focus on the case of the M9.0 2011 Tohoku earthquake. Combining seismograms of Hi-net (high-sensitivity) and KiK-net (strong motion), geodetic records of GEONET and the seafloor GPS/Acoustic ranging, I investigate contribution of the strong ground motion and crustal deformation to the velocity change associated with the Tohoku earthquake, and propose a gross view of

  6. Earthquake ground motion research in Sapporo city; Sapporoshi ni okeru jishindo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sasatani, T [Hokkaido University, Sapporo (Japan)

    1997-10-22

    The Research Group on Earthquake Ground Motion in Sapporo City established in May 1996 has inaugurated collection of information on ground structures and observations of strong earthquakes in Sapporo City. The Research Group on Earthquake Ground Motion in Sapporo City has carried out geological investigations, electric logging and PS logging to date in three boring holes each with a depth of about 100 m, 200 m and 600 m. According to the result of the logging in the new Ishikari Bay port (600-m deep hole), the S-wave velocity has increased slowly as it starts from the ground surface to greater depths, but showed no noticeable velocity boundaries in this range of the depth. The Sapporo municipal office has drilled three observation wells (500-m deep) for the purpose of determining focal points of microtremors directly under the city area. Hole-bottom observation has been inaugurated since the beginning of this year. According to comparison of the results of loggings at great depths, a depth at which the S-wave velocity reaches about 700 m/s becomes greater toward the sea area. The result of calculations on amplification characteristics of the SH wave on rock beds revealed that a seismic wave of about 0.5 Hz is amplified by a little more than two times. 1 ref., 5 figs., 1 tab.

  7. Estimating annualized earthquake losses for the conterminous United States

    Science.gov (United States)

    Jaiswal, Kishor S.; Bausch, Douglas; Chen, Rui; Bouabid, Jawhar; Seligson, Hope

    2015-01-01

    We make use of the most recent National Seismic Hazard Maps (the years 2008 and 2014 cycles), updated census data on population, and economic exposure estimates of general building stock to quantify annualized earthquake loss (AEL) for the conterminous United States. The AEL analyses were performed using the Federal Emergency Management Agency's (FEMA) Hazus software, which facilitated a systematic comparison of the influence of the 2014 National Seismic Hazard Maps in terms of annualized loss estimates in different parts of the country. The losses from an individual earthquake could easily exceed many tens of billions of dollars, and the long-term averaged value of losses from all earthquakes within the conterminous U.S. has been estimated to be a few billion dollars per year. This study estimated nationwide losses to be approximately $4.5 billion per year (in 2012$), roughly 80% of which can be attributed to the States of California, Oregon and Washington. We document the change in estimated AELs arising solely from the change in the assumed hazard map. The change from the 2008 map to the 2014 map results in a 10 to 20% reduction in AELs for the highly seismic States of the Western United States, whereas the reduction is even more significant for Central and Eastern United States.

  8. Technical features of a low-cost earthquake alert system

    International Nuclear Information System (INIS)

    Harben, P.

    1991-01-01

    The concept and features of an Earthquake Alert System (EAS) involving a distributed network of strong motion sensors is discussed. The EAS analyzes real-time data telemetered to a central facility and issues an areawide warning of a large earthquake in advance of the spreading elastic wave energy. A low-cost solution to high-cost estimates for installation and maintenance of a dedicated EAS is presented that makes use of existing microseismic stations. Using the San Francisco Bay area as an example, we show that existing US Geological Survey microseismic monitoring stations are of sufficient density to form the elements of a prototype EAS. By installing strong motion instrumentation and a specially developed switching device, strong ground motion can be telemetered in real-time to the central microseismic station on the existing communication channels. When a large earthquake occurs, a dedicated real-time central processing unit at the central microseismic station digitizes and analyzes the incoming data and issues a warning containing location and magnitude estimations. A 50-station EAS of this type in the San Francisco Bay area should cost under $70,000 to install and less than $5,000 annually to maintain

  9. Brief communication "Fast-track earthquake risk assessment for selected urban areas in Turkey"

    Directory of Open Access Journals (Sweden)

    D. Kepekci

    2011-02-01

    Full Text Available This study is presented as a contribution to earthquake disaster mitigation studies for selected cities in Turkey. The risk evaluations must be based on earthquake hazard analysis and city information. To estimate the ground motion level, data for earthquakes with a magnitude greater than 4.5 and an epicenter location within a 100-km radius of each city were used for the period from 1900 to 2006, as recorded at the Kandilli Observatory and Earthquake Research Institute. Probabilistic seismic hazard analysis for each city was carried out using Poisson probabilistic approaches. Ground motion level was estimated as the probability of a given degree of acceleration with a 10% exceedence rate during a 50-year time period for each city. The risk level of each city was evaluated using the number of houses, the per-capita income of city residents, population, and ground motion levels. The maximum risk level obtained for the cities was taken as a reference value for relative risk assessment, and other risk values were estimated relative to the maximum risk level. When the selected cities were classified according to their relative risk levels, the five most risky cities were found to be, in descending order of risk, Istanbul, Izmir, Ankara, Bursa, and Kocaeli.

  10. Spatial Distribution of the Coefficient of Variation for the Paleo-Earthquakes in Japan

    Science.gov (United States)

    Nomura, S.; Ogata, Y.

    2015-12-01

    Renewal processes, point prccesses in which intervals between consecutive events are independently and identically distributed, are frequently used to describe this repeating earthquake mechanism and forecast the next earthquakes. However, one of the difficulties in applying recurrent earthquake models is the scarcity of the historical data. Most studied fault segments have few, or only one observed earthquake that often have poorly constrained historic and/or radiocarbon ages. The maximum likelihood estimate from such a small data set can have a large bias and error, which tends to yield high probability for the next event in a very short time span when the recurrence intervals have similar lengths. On the other hand, recurrence intervals at a fault depend on the long-term slip rate caused by the tectonic motion in average. In addition, recurrence times are also fluctuated by nearby earthquakes or fault activities which encourage or discourage surrounding seismicity. These factors have spatial trends due to the heterogeneity of tectonic motion and seismicity. Thus, this paper introduces a spatial structure on the key parameters of renewal processes for recurrent earthquakes and estimates it by using spatial statistics. Spatial variation of mean and variance parameters of recurrence times are estimated in Bayesian framework and the next earthquakes are forecasted by Bayesian predictive distributions. The proposal model is applied for recurrent earthquake catalog in Japan and its result is compared with the current forecast adopted by the Earthquake Research Committee of Japan.

  11. Sloshing of water in torus pressure-suppression pool of boiling water reactors under earthquake ground motions

    International Nuclear Information System (INIS)

    Aslam, M.; Godden, W.G.; Scalise, D.T.

    1978-08-01

    This report presents an analytical and experimental investigation into the sloshing of water in torus tanks under horizontal earthquake ground motions. This study was motivated because of the use of torus tanks for pressure-suppression pools in Boiling Water Reactors. Such a pressure-suppression pool would typically have 80 ft and 140 ft inside and outside diameters, a 30 ft diameter section, and a water depth of 15 ft. A general finite element analysis was developed for all axisymmetric tanks and a computer program was written to obtain time-history plots of sloshing displacements of water and dynamic pressures. Tests were carried out on a 1/60th scale model under sinusoidal as well as simulated earthquake ground motions. Tests and analytical results regarding natural frequencies, surface water displacements, and dynamic pressures were compared and a good agreement was found within the range of displacements studied. The computer program gave satisfactory results within a maximum range of sloshing displacements in the full-size prototype of 30 in. which is greater than the value obtained under the full intensity of the El Centro earthquake (N-S component 1940). The range of linear behavior was studied experimentally by subjecting the torus model to increasing intensities of the El Centro earthquake

  12. A new M w estimation parameter for use in earthquake early warning systems

    Science.gov (United States)

    Wang, Zijun; Zhao, Boming

    2018-01-01

    We propose a method that employs the squared displacement integral ( ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.

  13. Rapid estimation of the moment magnitude of large earthquake from static strain changes

    Science.gov (United States)

    Itaba, S.

    2014-12-01

    The 2011 off the Pacific coast of Tohoku earthquake, of moment magnitude (Mw) 9.0, occurred on March 11, 2011. Based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency announced just after earthquake occurrence was 7.9, and it was considerably smaller than an actual value. On the other hand, using nine borehole strainmeters of Geological Survey of Japan, AIST, we estimated a fault model with Mw 8.7 for the earthquake on the boundary between the Pacific and North American plates. This model can be estimated about seven minutes after the origin time, and five minute after wave arrival. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami (e.g., Ohta et al., 2012). Our simple method of using strain steps is one of the strong methods for rapid estimation of the magnitude of great earthquakes.

  14. Assessing the impact of Syrian refugees on earthquake fatality estimations in southeast Turkey

    Science.gov (United States)

    Wilson, Bradley; Paradise, Thomas

    2018-01-01

    The influx of millions of Syrian refugees into Turkey has rapidly changed the population distribution along the Dead Sea Rift and East Anatolian fault zones. In contrast to other countries in the Middle East where refugees are accommodated in camp environments, the majority of displaced individuals in Turkey are integrated into local cities, towns, and villages - placing stress on urban settings and increasing potential exposure to strong earthquake shaking. Yet displaced populations are often unaccounted for in the census-based population models used in earthquake fatality estimations. This study creates a minimally modeled refugee gridded population model and analyzes its impact on semi-empirical fatality estimations across southeast Turkey. Daytime and nighttime fatality estimates were produced for five fault segments at earthquake magnitudes 5.8, 6.4, and 7.0. Baseline fatality estimates calculated from census-based population estimates for the study area varied in scale from tens to thousands of fatalities, with higher death totals in nighttime scenarios. Refugee fatality estimations were analyzed across 500 semi-random building occupancy distributions. Median fatality estimates for refugee populations added non-negligible contributions to earthquake fatalities at four of five fault locations, increasing total fatality estimates by 7-27 %. These findings communicate the necessity of incorporating refugee statistics into earthquake fatality estimations in southeast Turkey and the ongoing importance of placing environmental hazards in their appropriate regional and temporal context.

  15. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  16. Fundamental questions of earthquake statistics, source behavior, and the estimation of earthquake probabilities from possible foreshocks

    Science.gov (United States)

    Michael, Andrew J.

    2012-01-01

    Estimates of the probability that an ML 4.8 earthquake, which occurred near the southern end of the San Andreas fault on 24 March 2009, would be followed by an M 7 mainshock over the following three days vary from 0.0009 using a Gutenberg–Richter model of aftershock statistics (Reasenberg and Jones, 1989) to 0.04 using a statistical model of foreshock behavior and long‐term estimates of large earthquake probabilities, including characteristic earthquakes (Agnew and Jones, 1991). I demonstrate that the disparity between the existing approaches depends on whether or not they conform to Gutenberg–Richter behavior. While Gutenberg–Richter behavior is well established over large regions, it could be violated on individual faults if they have characteristic earthquakes or over small areas if the spatial distribution of large‐event nucleations is disproportional to the rate of smaller events. I develop a new form of the aftershock model that includes characteristic behavior and combines the features of both models. This new model and the older foreshock model yield the same results when given the same inputs, but the new model has the advantage of producing probabilities for events of all magnitudes, rather than just for events larger than the initial one. Compared with the aftershock model, the new model has the advantage of taking into account long‐term earthquake probability models. Using consistent parameters, the probability of an M 7 mainshock on the southernmost San Andreas fault is 0.0001 for three days from long‐term models and the clustering probabilities following the ML 4.8 event are 0.00035 for a Gutenberg–Richter distribution and 0.013 for a characteristic‐earthquake magnitude–frequency distribution. Our decisions about the existence of characteristic earthquakes and how large earthquakes nucleate have a first‐order effect on the probabilities obtained from short‐term clustering models for these large events.

  17. Safe-Taipei a Program Project for Strong Motions, Active Faults, and Earthquakes in the Taipei Metropolitan Area

    Science.gov (United States)

    Wang, Jeen-Hwa

    Strong collision between the Eurasian and Philippine Sea Plates causes high seismicity in the Taiwan region, which is often attacked by large earthquakes. Several cities, including three mega-cities, i.e., Taipei, Taichung, and Kaoshung, have been constructed on western Taiwan, where is lying on thick sediments. These cities, with a high-population density, are usually a regional center of culture, economics, and politics. Historically, larger-sized earthquakes, e.g. the 1935 Hsingchu—Taichung earthquake and the 1999 Chi—Chi earthquake, often caused serious damage on the cities. Hence, urban seismology must be one of the main subjects of Taiwan's seismological community. Since 2005, a program project, sponsored by Academia Sinica, has been launched to investigate seismological problems in the Taipei Metropolitan Area. This program project is performed during the 2005—2007 period. The core research subjects are: (1) the deployment of the Taipei Down-hole Seismic Array; (2) the properties of earthquakes and active faults in the area; (3) the seismogenic-zone structures, including the 3-D velocity and Q structures, of the area; (4) the characteristics of strong-motions and sites affects; and (5) strong-motion prediction. In addition to academic goals, the results obtained from the program project will be useful for seismic hazard mitigation not only for the area but also for others.

  18. Adjoint Inversion for Extended Earthquake Source Kinematics From Very Dense Strong Motion Data

    Science.gov (United States)

    Ampuero, J. P.; Somala, S.; Lapusta, N.

    2010-12-01

    Addressing key open questions about earthquake dynamics requires a radical improvement of the robustness and resolution of seismic observations of large earthquakes. Proposals for a new generation of earthquake observation systems include the deployment of “community seismic networks” of low-cost accelerometers in urban areas and the extraction of strong ground motions from high-rate optical images of the Earth's surface recorded by a large space telescope in geostationary orbit. Both systems could deliver strong motion data with a spatial density orders of magnitude higher than current seismic networks. In particular, a “space seismometer” could sample the seismic wave field at a spatio-temporal resolution of 100 m, 1 Hz over areas several 100 km wide with an amplitude resolution of few cm/s in ground velocity. The amount of data to process would be immensely larger than what current extended source inversion algorithms can handle, which hampers the quantitative assessment of the cost-benefit trade-offs that can guide the practical design of the proposed earthquake observation systems. We report here on the development of a scalable source imaging technique based on iterative adjoint inversion and its application to the proof-of-concept of a space seismometer. We generated synthetic ground motions for M7 earthquake rupture scenarios based on dynamic rupture simulations on a vertical strike-slip fault embedded in an elastic half-space. A range of scenarios include increasing levels of complexity and interesting features such as supershear rupture speed. The resulting ground shaking is then processed accordingly to what would be captured by an optical satellite. Based on the resulting data, we perform source inversion by an adjoint/time-reversal method. The gradient of a cost function quantifying the waveform misfit between data and synthetics is efficiently obtained by applying the time-reversed ground velocity residuals as surface force sources, back

  19. A global building inventory for earthquake loss estimation and risk management

    Science.gov (United States)

    Jaiswal, K.; Wald, D.; Porter, K.

    2010-01-01

    We develop a global database of building inventories using taxonomy of global building types for use in near-real-time post-earthquake loss estimation and pre-earthquake risk analysis, for the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) program. The database is available for public use, subject to peer review, scrutiny, and open enhancement. On a country-by-country level, it contains estimates of the distribution of building types categorized by material, lateral force resisting system, and occupancy type (residential or nonresidential, urban or rural). The database draws on and harmonizes numerous sources: (1) UN statistics, (2) UN Habitat's demographic and health survey (DHS) database, (3) national housing censuses, (4) the World Housing Encyclopedia and (5) other literature. ?? 2010, Earthquake Engineering Research Institute.

  20. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  1. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  2. Global building inventory for earthquake loss estimation and risk management

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David; Porter, Keith

    2010-01-01

    We develop a global database of building inventories using taxonomy of global building types for use in near-real-time post-earthquake loss estimation and pre-earthquake risk analysis, for the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program. The database is available for public use, subject to peer review, scrutiny, and open enhancement. On a country-by-country level, it contains estimates of the distribution of building types categorized by material, lateral force resisting system, and occupancy type (residential or nonresidential, urban or rural). The database draws on and harmonizes numerous sources: (1) UN statistics, (2) UN Habitat’s demographic and health survey (DHS) database, (3) national housing censuses, (4) the World Housing Encyclopedia and (5) other literature.

  3. Conventional estimating method of earthquake response of mechanical appendage system

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Suzuki, Kohei

    1981-01-01

    Generally, for the estimation of the earthquake response of appendage structure system installed in main structure system, the method of floor response analysis using the response spectra at the point of installing the appendage system has been used. On the other hand, the research on the estimation of the earthquake response of appendage system by the statistical procedure based on probability process theory has been reported. The development of a practical method for simply estimating the response is an important subject in aseismatic engineering. In this study, the method of estimating the earthquake response of appendage system in the general case that the natural frequencies of both structure systems were different was investigated. First, it was shown that floor response amplification factor was able to be estimated simply by giving the ratio of the natural frequencies of both structure systems, and its statistical property was clarified. Next, it was elucidated that the procedure of expressing acceleration, velocity and displacement responses with tri-axial response spectra simultaneously was able to be applied to the expression of FRAF. The applicability of this procedure to nonlinear system was examined. (Kako, I.)

  4. Assessing the impact of Syrian refugees on earthquake fatality estimations in southeast Turkey

    Directory of Open Access Journals (Sweden)

    B. Wilson

    2018-01-01

    Full Text Available The influx of millions of Syrian refugees into Turkey has rapidly changed the population distribution along the Dead Sea Rift and East Anatolian fault zones. In contrast to other countries in the Middle East where refugees are accommodated in camp environments, the majority of displaced individuals in Turkey are integrated into local cities, towns, and villages – placing stress on urban settings and increasing potential exposure to strong earthquake shaking. Yet displaced populations are often unaccounted for in the census-based population models used in earthquake fatality estimations. This study creates a minimally modeled refugee gridded population model and analyzes its impact on semi-empirical fatality estimations across southeast Turkey. Daytime and nighttime fatality estimates were produced for five fault segments at earthquake magnitudes 5.8, 6.4, and 7.0. Baseline fatality estimates calculated from census-based population estimates for the study area varied in scale from tens to thousands of fatalities, with higher death totals in nighttime scenarios. Refugee fatality estimations were analyzed across 500 semi-random building occupancy distributions. Median fatality estimates for refugee populations added non-negligible contributions to earthquake fatalities at four of five fault locations, increasing total fatality estimates by 7–27 %. These findings communicate the necessity of incorporating refugee statistics into earthquake fatality estimations in southeast Turkey and the ongoing importance of placing environmental hazards in their appropriate regional and temporal context.

  5. Fast Computation of Ground Motion Shaking Map base on the Modified Stochastic Finite Fault Modeling

    Science.gov (United States)

    Shen, W.; Zhong, Q.; Shi, B.

    2012-12-01

    Rapidly regional MMI mapping soon after a moderate-large earthquake is crucial to loss estimation, emergency services and planning of emergency action by the government. In fact, many countries show different degrees of attention on the technology of rapid estimation of MMI , and this technology has made significant progress in earthquake-prone countries. In recent years, numerical modeling of strong ground motion has been well developed with the advances of computation technology and earthquake science. The computational simulation of strong ground motion caused by earthquake faulting has become an efficient way to estimate the regional MMI distribution soon after earthquake. In China, due to the lack of strong motion observation in network sparse or even completely missing areas, the development of strong ground motion simulation method has become an important means of quantitative estimation of strong motion intensity. In many of the simulation models, stochastic finite fault model is preferred to rapid MMI estimating for its time-effectiveness and accuracy. In finite fault model, a large fault is divided into N subfaults, and each subfault is considered as a small point source. The ground motions contributed by each subfault are calculated by the stochastic point source method which is developed by Boore, and then summed at the observation point to obtain the ground motion from the entire fault with a proper time delay. Further, Motazedian and Atkinson proposed the concept of Dynamic Corner Frequency, with the new approach, the total radiated energy from the fault and the total seismic moment are conserved independent of subfault size over a wide range of subfault sizes. In current study, the program EXSIM developed by Motazedian and Atkinson has been modified for local or regional computations of strong motion parameters such as PGA, PGV and PGD, which are essential for MMI estimating. To make the results more reasonable, we consider the impact of V30 for the

  6. Visualization of strong around motion calculated from the numerical simulation of Hyogo-ken Nanbu earthquake; Suchi simulation de miru Hyogoken nanbu jishin no kyoshindo

    Energy Technology Data Exchange (ETDEWEB)

    Furumura, T [Hokkaido Univ. of Education, Sapporo (Japan); Koketsu, K [The University of Tokyo, Tokyo (Japan). Earthquake Research Institute

    1996-10-01

    Hyogo-ken Nanbu earthquake with a focus in the Akashi straits has given huge earthquake damages in and around Awaji Island and Kobe City in 1995. It is clear that the basement structure, which is steeply deepened at Kobe City from Rokko Mountains towards the coast, and the focus under this related closely to the local generation of strong ground motion. Generation process of the strong ground motion was discussed using 2D and 3D numerical simulation methods. The 3D pseudospectral method was used for the calculation. Space of 51.2km{times}25.6km{times}25.6km was selected for the calculation. This space was discretized with the lattice interval of 200m. Consequently, it was found that the basement structure with a steeply deepened basement, soft and weak geological structure thickly deposited on the basement, and earthquake faults running under the boundary of base rock and sediments related greatly to the generation of strong ground motion. Numerical simulation can be expected to predict the strong ground motion by shallow earthquakes. 9 refs., 7 figs.

  7. Data analysis for seismic motion characteristics

    International Nuclear Information System (INIS)

    Ishimaru, Tsuneari; Kohriya, Yorihide

    2002-10-01

    This data analysis is aimed at studying the characteristics of amplification of acceleration amplitude from deep underground to the surface, and is one of several continuous studies on the effects of earthquake motion. Seismic wave records were observed via a center array located in Shibata-cho, Miyagi Prefecture, which is part of the Kumagai-Gumi Array System for Strong Earthquake Motion (KASSEM) located on the Pacific coast in Miyagi and Fukushima Prefectures. Using acceleration waves obtained from earthquake observations, the amplification ratios of maximum acceleration amplitude and of root mean square acceleration amplitude which were based on the deepest observation point were estimated. Comparison between the seismic motion amplification characteristics of this study were made with the analyzed data at the Kamaishi-Mine (Kamaishi Miyagi Prefecture). The obtained results are as follows. The amplification ratios estimated from maximum acceleration amplitude and root mean square acceleration amplitude are almost constant in soft rock formations. However, amplification ratios at the surface in diluvium and alluvium are about three to four times larger than the ratios in soft rock formations. The amplification ratios estimated from root mean square acceleration amplitude are less dispersed than the ratios estimated from maximum acceleration amplitude. Comparing the results of this analysis with the results obtained at the Kamaishi-Mine, despite the difference in the rock types and the geologic formations at the observation points, there is a tendency for the amplification ratios at both points to be relatively small in the rock foundation and gradually increase toward the ground surface. (author)

  8. A methodology to estimate earthquake effects on fractures intersecting canister holes

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.; Wallmann, P.; Thomas, A.; Follin, S. [Golder Assocites Inc. (Sweden)

    1997-03-01

    A literature review and a preliminary numerical modeling study were carried out to develop and demonstrate a method for estimating displacements on fractures near to or intersecting canister emplacement holes. The method can be applied during preliminary evaluation of candidate sites prior to any detailed drilling or underground excavation, utilizing lineament maps and published regression relations between surface rupture trace length and earthquake magnitude, rupture area and displacements. The calculated displacements can be applied to lineament traces which are assumed to be faults and may be the sites for future earthquakes. Next, a discrete fracture model is created for secondary faulting and jointing in the vicinity of the repository. These secondary fractures may displace due to the earthquake on the primary faults. The three-dimensional numerical model assumes linear elasticity and linear elastic fracture mechanics which provides a conservative displacement estimate, while still preserving realistic fracture patterns. Two series of numerical studies were undertaken to demonstrate how the methodology could be implemented and how results could be applied to questions regarding site selection and performance assessment. The first series illustrates how earthquake damage to a hypothetical repository for a specified location (Aespoe) could be estimated. A second series examined the displacements induced by earthquakes varying in magnitude from 6.0 to 8.2 as a function of how close the earthquake was in relation to the repository. 143 refs, 25 figs, 7 tabs.

  9. A methodology to estimate earthquake effects on fractures intersecting canister holes

    International Nuclear Information System (INIS)

    La Pointe, P.; Wallmann, P.; Thomas, A.; Follin, S.

    1997-03-01

    A literature review and a preliminary numerical modeling study were carried out to develop and demonstrate a method for estimating displacements on fractures near to or intersecting canister emplacement holes. The method can be applied during preliminary evaluation of candidate sites prior to any detailed drilling or underground excavation, utilizing lineament maps and published regression relations between surface rupture trace length and earthquake magnitude, rupture area and displacements. The calculated displacements can be applied to lineament traces which are assumed to be faults and may be the sites for future earthquakes. Next, a discrete fracture model is created for secondary faulting and jointing in the vicinity of the repository. These secondary fractures may displace due to the earthquake on the primary faults. The three-dimensional numerical model assumes linear elasticity and linear elastic fracture mechanics which provides a conservative displacement estimate, while still preserving realistic fracture patterns. Two series of numerical studies were undertaken to demonstrate how the methodology could be implemented and how results could be applied to questions regarding site selection and performance assessment. The first series illustrates how earthquake damage to a hypothetical repository for a specified location (Aespoe) could be estimated. A second series examined the displacements induced by earthquakes varying in magnitude from 6.0 to 8.2 as a function of how close the earthquake was in relation to the repository. 143 refs, 25 figs, 7 tabs

  10. Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M ≈ 3 earthquakes in 2015 and 2017

    Science.gov (United States)

    Dahm, Torsten; Heimann, Sebastian; Funke, Sigward; Wendt, Siegfried; Rappsilber, Ivo; Bindi, Dino; Plenefisch, Thomas; Cotton, Fabrice

    2018-05-01

    On April 29, 2017 at 0:56 UTC (2:56 local time), an M W = 2.8 earthquake struck the metropolitan area between Leipzig and Halle, Germany, near the small town of Markranstädt. The earthquake was felt within 50 km from the epicenter and reached a local intensity of I 0 = IV. Already in 2015 and only 15 km northwest of the epicenter, a M W = 3.2 earthquake struck the area with a similar large felt radius and I 0 = IV. More than 1.1 million people live in the region, and the unusual occurrence of the two earthquakes led to public attention, because the tectonic activity is unclear and induced earthquakes have occurred in neighboring regions. Historical earthquakes south of Leipzig had estimated magnitudes up to M W ≈ 5 and coincide with NW-SE striking crustal basement faults. We use different seismological methods to analyze the two recent earthquakes and discuss them in the context of the known tectonic structures and historical seismicity. Novel stochastic full waveform simulation and inversion approaches are adapted for the application to weak, local earthquakes, to analyze mechanisms and ground motions and their relation to observed intensities. We find NW-SE striking normal faulting mechanisms for both earthquakes and centroid depths of 26 and 29 km. The earthquakes are located where faults with large vertical offsets of several hundred meters and Hercynian strike have developed since the Mesozoic. We use a stochastic full waveform simulation to explain the local peak ground velocities and calibrate the method to simulate intensities. Since the area is densely populated and has sensitive infrastructure, we simulate scenarios assuming that a 12-km long fault segment between the two recent earthquakes is ruptured and study the impact of rupture parameters on ground motions and expected damage.

  11. Assessing the Utility of Strong Motion Data to Determine Static Ground Displacements During Great Megathrust Earthquakes: Tohoku and Iquique

    Science.gov (United States)

    Herman, M. W.; Furlong, K. P.; Hayes, G. P.; Benz, H.

    2014-12-01

    Strong motion accelerometers can record large amplitude shaking on-scale in the near-field of large earthquake ruptures; however, numerical integration of such records to determine displacement is typically unstable due to baseline changes (i.e., distortions in the zero value) that occur during strong shaking. We use datasets from the 2011 Mw 9.0 Tohoku earthquake to assess whether a relatively simple empirical correction scheme (Boore et al., 2002) can return accurate displacement waveforms useful for constraining details of the fault slip. The coseismic deformation resulting from the Tohoku earthquake was recorded by the Kiban Kyoshin network (KiK-net) of strong motion instruments as well as by a dense network of high-rate (1 Hz) GPS instruments. After baseline correcting the KiK-net records and integrating to displacement, over 85% of the KiK-net borehole instrument waveforms and over 75% of the KiK-net surface instrument waveforms match collocated 1 Hz GPS displacement time series. Most of the records that do not match the GPS-derived displacements following the baseline correction have large, systematic drifts that can be automatically identified by examining the slopes in the first 5-10 seconds of the velocity time series. We apply the same scheme to strong motion records from the 2014 Mw 8.2 Iquique earthquake. Close correspondence in both direction and amplitude between coseismic static offsets derived from the integrated strong motion time series and those predicted from a teleseismically-derived finite fault model, as well as displacement amplitudes consistent with InSAR-derived results, suggest that the correction scheme works successfully for the Iquique event. In the absence of GPS displacements, these strong motion-derived offsets provide constraints on the overall distribution of slip on the fault. In addition, the coseismic strong motion-derived displacement time series (50-100 s long) contain a near-field record of the temporal evolution of the

  12. Study on the Forecast of Ground Motion Parameters from Real Time Earthquake Information Based on Wave Form Data at the Front Site

    OpenAIRE

    萩原, 由訓; 源栄, 正人; 三辻, 和弥; 野畑, 有秀; Yoshinori, HAGIWARA; Masato, MOTOSAKA; Kazuya, MITSUJI; Arihide, NOBATA; (株)大林組 技術研究所; 東北大学大学院工学研究科; 山形大学地域教育文化学部生活総合学科生活環境科学コース; (株)大林組 技術研究所; Obayashi Corporation Technical Research Institute; Graduate School of Eng., Tohoku University; Faculty of Education, Art and Science, Yamagata University

    2011-01-01

    The Japan Meteorological Agency(JMA) provides Earthquake Early Warnings(EEW) for advanced users from August 1, 2006. Advanced EEW users can forecaste seismic ground motion (example: Seismic Intensity, Peak Ground Acceleration) from information of the earthquake in EEW. But there are limits to the accuracy and the earliness of the forecasting. This paper describes regression equation to decrease the error and to increase rapidity of the forecast of ground motion parameters from Real Time Earth...

  13. 2001 Bhuj, India, earthquake engineering seismoscope recordings and Eastern North America ground-motion attenuation relations

    Science.gov (United States)

    Cramer, C.H.; Kumar, A.

    2003-01-01

    Engineering seismoscope data collected at distances less than 300 km for the M 7.7 Bhuj, India, mainshock are compatible with ground-motion attenuation in eastern North America (ENA). The mainshock ground-motion data have been corrected to a common geological site condition using the factors of Joyner and Boore (2000) and a classification scheme of Quaternary or Tertiary sediments or rock. We then compare these data to ENA ground-motion attenuation relations. Despite uncertainties in recording method, geological site corrections, common tectonic setting, and the amount of regional seismic attenuation, the corrected Bhuj dataset agrees with the collective predictions by ENA ground-motion attenuation relations within a factor of 2. This level of agreement is within the dataset uncertainties and the normal variance for recorded earthquake ground motions.

  14. Stochastic strong motion generation using slip model of 21 and 22 May 1960 mega-thrust earthquakes in the main cities of Central-South Chile

    Science.gov (United States)

    Ruiz, S.; Ojeda, J.; DelCampo, F., Sr.; Pasten, C., Sr.; Otarola, C., Sr.; Silva, R., Sr.

    2017-12-01

    In May 1960 took place the most unusual seismic sequence registered instrumentally. The Mw 8.1, Concepción earthquake occurred May, 21, 1960. The aftershocks of this event apparently migrated to the south-east, and the Mw 9.5, Valdivia mega-earthquake occurred after 33 hours. The structural damage produced by both events is not larger than other earthquakes in Chile and lower than crustal earthquakes of smaller magnitude. The damage was located in the sites with shallow soil layers of low shear wave velocity (Vs). However, no seismological station recorded this sequence. For that reason, we generate synthetic acceleration times histories for strong motion in the main cities affected by these events. We use 155 points of vertical surface displacements recopiled by Plafker and Savage in 1968, and considering the observations of this authors and local residents we separated the uplift and subsidence information associated to the first earthquake Mw 8.1 and the second mega-earthquake Mw 9.5. We consider the elastic deformation propagation, assume realist lithosphere geometry, and compute a Bayesian method that maximizes the probability density a posteriori to obtain the slip distribution. Subsequently, we use a stochastic method of generation of strong motion considering the finite fault model obtained for both earthquakes. We considered the incidence angle of ray to the surface, free surface effect and energy partition for P, SV and SH waves, dynamic corner frequency and the influence of site effect. The results show that the earthquake Mw 8.1 occurred down-dip the slab, the strong motion records are similar to other Chilean earthquake like Tocopilla Mw 7.7 (2007). For the Mw 9.5 earthquake we obtain synthetic acceleration time histories with PGA values around 0.8 g in cities near to the maximum asperity or that have low velocity soil layers. This allows us to conclude that strong motion records have important influence of the shallow soil deposits. These records

  15. 3D Ground-Motion Simulations for Magnitude 9 Earthquakes on the Cascadia Megathrust: Sedimentary Basin Amplification, Rupture Directivity, and Ground-Motion Variability

    Science.gov (United States)

    Frankel, A. D.; Wirth, E. A.; Marafi, N.; Vidale, J. E.; Stephenson, W. J.

    2017-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for Mw 9 earthquakes on the Cascadia subduction zone by combining synthetics from 3D finite-difference simulations at low frequencies (≤ 1 Hz) and stochastic synthetics at high frequencies (≥ 1 Hz). These synthetic ground motions are being used to evaluate building response, liquefaction, and landslides, as part of the M9 Project of the University of Washington, in collaboration with the U.S. Geological Survey. The kinematic rupture model is composed of high stress drop sub-events with Mw 8, similar to those observed in the Mw 9.0 Tohoku, Japan and Mw 8.8 Maule, Chile earthquakes, superimposed on large background slip with lower slip velocities. The 3D velocity model is based on active and passive-source seismic tomography studies, seismic refraction and reflection surveys, and geologic constraints. The Seattle basin portion of the model has been validated by simulating ground motions from local earthquakes. We have completed 50 3D simulations of Mw 9 earthquakes using a variety of hypocenters, slip distributions, sub-event locations, down-dip limits of rupture, and other parameters. For sites not in deep sedimentary basins, the response spectra of the synthetics for 0.1-6.0 s are similar, on average, to the values from the BC Hydro ground motion prediction equations (GMPE). For periods of 7-10 s, the synthetic response spectra exceed these GMPE, partially due to the shallow dip of the plate interface. We find large amplification factors of 2-5 for response spectra at periods of 1-10 s for locations in the Seattle and Tacoma basins, relative to sites outside the basins. This amplification depends on the direction of incoming waves and rupture directivity. The basin amplification is caused by surface waves generated at basin edges from incoming S-waves, as well as amplification and focusing of S-waves and surface waves by the 3D basin structure. The inter-event standard deviation of response spectral

  16. Sloshing of water in annular pressure-suppression pool of boiling water reactors under earthquake ground motions

    International Nuclear Information System (INIS)

    Aslam, M.; Godden, W.G.; Scalise, D.T.

    1979-10-01

    This report presents an analytical investigation of the sloshing response of water in annular-circular as well as simple-circular tanks under horizontal earthquake ground motions, and the results are verified with tests. This study was motivated because of the use of annular tanks for pressure-suppression pools in Boiling Water Reactors. Such a pressure-suppression pool would typically have 80 ft and 120 ft inside and outside diameters and a water depth of 20 ft. The analysis was based upon potential flow theory and a computer program was written to obtain time-history plots of sloshing displacements of water and the dynamic pressures. Tests were carried out on 1/80th and 1/15th scale models under sinusoidal as well as simulated earthquake ground motions. Tests and analytical results regarding the natural frequencies, surface water displacements, and dynamic pressures were compared and a good agreement was found for relatively small displacements. The computer program gave satisfactory results as long as the maximum water surface displacements were less than 30 in., which is roughly the value obtained under full intensity of El Centro earthquake

  17. Report of the U.S. Nuclear Regulatory Commission Piping Review Committee. Summary and evaluation of historical strong-motion earthquake seismic response and damage to aboveground industrial piping

    International Nuclear Information System (INIS)

    1985-04-01

    The primary purpose of this report is to collect in one reference document the observation and experience that has been developed with regard to the seismic behavior of aboveground, building-supported, industrial-type process piping (similar to piping used in nuclear power plants) in strong-motion earthquakes. The report will also contain observations regarding the response of piping in strong-motion experimental tests and appropriate conclusions regarding the behavior of such piping in large earthquakes. Recommendations are included covering the future design of such piping to resist earthquake motion damage based on observed behavior in large earthquakes and simulated shake table testing. Since available detailed data on the behavior of aboveground (building-supported) piping are quite limited, this report will draw heavily on the observations and experiences of experts in the field. In Section 2 of this report, observed earthquake damage to aboveground piping in a number of large-motion earthquakes is summarized. In Section 3, the available experience from strong-motion testing of piping in experimental facilities is summarized. In Section 4 are presented some observations that attempt to explain the observed response of piping to strong-motion excitation from actual earthquakes and shake table testing. Section 5 contains the conclusions based on this study and recommendations regarding the future seismic design of piping based on the observed strong-motion behavior and material developed for the NPC Piping Review Committee. Finally, in Section 6 the references used in this study are presented. It should be understood that the use of the term piping in this report, in general, is limited to piping supported by building structures. It does not include behavior of piping buried in soil media. It is believed that the seismic behavior of buried piping is governed primarily by the deformation of the surrounding soil media and is not dependent on the inertial response

  18. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  19. Determination of Design Basis Earthquake ground motion

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1997-01-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  20. Source and ground-motion parameters of the 2011 Lorca earthquake; Parametros de la fuente y del movimiento del suelo del terremoto de Lorca de 2011

    Energy Technology Data Exchange (ETDEWEB)

    Alguacil de la Blanca, G.; Vidal Sanchez, F.; Stich, D.; Mancilla Perez, F. L.; Lopez Comino, J. A.; Morales Soto, J.; Navarro Bernal, M.

    2012-07-01

    113 events of the Lorca seismic series has been relocated by using Double difference algorithm and data from both temporary and permanent seismic networks. Relocations yield shallow hypo central distribution of aftershocks with a {approx}5 km long, NE-SW trending, placed SW of the mainshock, suggesting a SW propagating rupture along the Alhama de Murcia fault. Similar oblique reverse faulting mechanism has been obtained for three largest events. Source parameters of these three earthquakes have been estimated. Horizontal ground motion was estimated at 11 city points whose local structure was known by SPAC experiments. A set of ground motion parameters (PGA, PGV, AI, CAV, SI, SA and SV) here calculated, have higher values at these points respect to the ones at LOR station. All parameter values are also above the expected values for Euro -Mediterranean earthquakes with local intensity VIII (EMS). Nevertheless, SD values are unusually short and less than the reference ones. Higher values of the response spectra of acceleration and velocity are given for periods of less than 0.7 s, with maximum spectral acceleration at 0.15 s and velocity at 0.5 s. The elastic input energy spectrum is well connected to the shake destructiveness in each place. Equivalent velocity > 60 cm/s is found in almost all sites and > 100 cm/s (for periods 0.3 to 0.6 s) in someone. Factors such as proximity, and focal mechanism and ground response characteristics explain the high ground motion parameter values obtained in Lorca sites and show the great influence of the source and site conditions on the characteristics of strong ground motion in the vicinity of the rupture. (Author) 68 refs.

  1. Earthquake Early Warning in Japan - Result of recent two years -

    Science.gov (United States)

    Shimoyama, T.; Doi, K.; Kiyomoto, M.; Hoshiba, M.

    2009-12-01

    Japan Meteorological Agency(JMA) started to provide Earthquake Early Warning(EEW) to the general public in October 2007. It was followed by provision of EEW to a limited number of users who understand the technical limit of EEW and can utilize it for automatic control from August 2006. Earthquake Early Warning in Japan definitely means information of estimated amplitude and arrival time of a strong ground motion after fault rupture occurred. In other words, the EEW provided by JMA is defined as a forecast of a strong ground motion before the strong motion arrival. EEW of JMA is to enable advance countermeasures to disasters caused by strong ground motions with providing a warning message of anticipating strong ground motion before the S wave arrival. However, due to its very short available time period, there should need some measures and ideas to provide rapidly EEW and utilize it properly. - EEW is issued to general public when the maximum seismic intensity 5 lower (JMA scale) or greater is expected. - EEW message contains origin time, epicentral region name, and names of areas (unit is about 1/3 to 1/4 of one prefecture) where seismic intensity 4 or greater is expected. Expected arrival time is not included because it differs substantially even in one unit area. - EEW is to be broadcast through the broadcasting media(TV, radio and City Administrative Disaster Management Radio), and is delivered to cellular phones through cell broadcast system. For those who would like to know the more precise estimation and smaller earthquake information at their point of their properties, JMA allows designated private companies to provide forecast of strong ground motion, in which the estimation of a seismic intensity as well as arrival time of S-wave are contained, at arbitrary places under the JMA’s technical assurance. From October, 2007 to August, 2009, JMA issued 11 warnings to general public expecting seismic intensity “5 lower” or greater, including M=7.2 inland

  2. Estimation of strong ground motion

    International Nuclear Information System (INIS)

    Watabe, Makoto

    1993-01-01

    Fault model has been developed to estimate a strong ground motion in consideration of characteristics of seismic source and propagation path of seismic waves. There are two different approaches in the model. The first one is a theoretical approach, while the second approach is a semi-empirical approach. Though the latter is more practical than the former to be applied to the estimation of input motions, it needs at least the small-event records, the value of the seismic moment of the small event and the fault model of the large event

  3. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz

    2010-01-01

    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  4. Vehicle ego-motion estimation with geometric algebra

    NARCIS (Netherlands)

    Mark, W. van der; Fontijne, D.; Dorst, L.; Groen, F.C.A.

    2003-01-01

    A method for estimating ego-motion with vehicle mounted stereo cameras is presented. This approach is based on finding corresponding features in stereo images and tracking them between succeeding stereo frames. Our approach estimates stereo ego-motion with geometric algebra techniques. Starting with

  5. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    Science.gov (United States)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  6. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 1, Main report

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds

  7. Base response arising from free-field motions

    International Nuclear Information System (INIS)

    Whitley, J.R.; Morgan, J.R.; Hall, W.J.; Newmark, N.M.

    1977-01-01

    A procedure is illustrated in this paper for deriving (estimating) from a free-field record the horizontal base motions of a building, including horizontal rotation and translation. More specifically the goal was to compare results of response calculations based on derived accelerations with the results of calculations based on recorded accelerations. The motions are determined by assuming that an actual recorded ground wave transits a rigid base of a given dimension. Calculations given in the paper were made employing the earthquake acceleration time histories of the Hollywood storage building and the adjacent P.E. lot for the Kern County (1952) and San Fernando (1971) earthquakes. (Auth.)

  8. Application of a net-based baseline correction scheme to strong-motion records of the 2011 Mw 9.0 Tohoku earthquake

    Science.gov (United States)

    Tu, Rui; Wang, Rongjiang; Zhang, Yong; Walter, Thomas R.

    2014-06-01

    The description of static displacements associated with earthquakes is traditionally achieved using GPS, EDM or InSAR data. In addition, displacement histories can be derived from strong-motion records, allowing an improvement of geodetic networks at a high sampling rate and a better physical understanding of earthquake processes. Strong-motion records require a correction procedure appropriate for baseline shifts that may be caused by rotational motion, tilting and other instrumental effects. Common methods use an empirical bilinear correction on the velocity seismograms integrated from the strong-motion records. In this study, we overcome the weaknesses of an empirically based bilinear baseline correction scheme by using a net-based criterion to select the timing parameters. This idea is based on the physical principle that low-frequency seismic waveforms at neighbouring stations are coherent if the interstation distance is much smaller than the distance to the seismic source. For a dense strong-motion network, it is plausible to select the timing parameters so that the correlation coefficient between the velocity seismograms of two neighbouring stations is maximized after the baseline correction. We applied this new concept to the KiK-Net and K-Net strong-motion data available for the 2011 Mw 9.0 Tohoku earthquake. We compared the derived coseismic static displacement with high-quality GPS data, and with the results obtained using empirical methods. The results show that the proposed net-based approach is feasible and more robust than the individual empirical approaches. The outliers caused by unknown problems in the measurement system can be easily detected and quantified.

  9. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Volume 2 of the ''Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems'' contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included

  10. Peak ground motion distribution in Romania due to Vrancea earthquakes

    International Nuclear Information System (INIS)

    Grecu, B.; Rizescu, M.; Radulian, M.; Mandrescu, N.; Moldovan, I.-A.; Bonjer, K.-P

    2002-01-01

    Vrancea is a particular seismic region situated at the SE-Carpathians bend (Romania). It is characterized by persistent seismicity in a concentrated focal volume, at depths of 60-200 km, with 2 to 3 major earthquakes per century (M W >7). The purpose of our study is to investigate in detail the ground motion patterns for small and moderate Vrancea events (M W = 3.5 to 5.3) occurred during 1999, taking advantage of the unique data set offered by the Calixto'99 Project and the permanent Vrancea-K2 network (150 stations). The observed patterns are compared with available macroseismic maps of large Vrancea earthquakes, showing similar general patterns elongated in the NE-SW direction which mimic the S-waves source radiation, but patches with pronounced maxima are also evidenced rather far from the epicenter, at the NE and SW edges of the Focsani sedimentary basin, as shown firstly by Atanasiu (1961). This feature is also visible on instrumental data of strong events (Mandrescu and Radulian, 1999) as well as for moderate events recently recorded by digital K2 network (Bonjer et al., 2001) and correlates with the distribution of predominant response frequencies of shallow sedimentary layers. The influence of the local structure and/or focussing effects, caused by deeper lithospheric structure, on the observed site effects and the implications on the seismic hazard assessment for Vrancea earthquakes are discussed. (authors)

  11. Slip reactivation during the 2011 Tohoku earthquake: Dynamic rupture and ground motion simulations

    Science.gov (United States)

    Galvez, P.; Dalguer, L. A.

    2013-12-01

    The 2011 Mw9 Tohoku earthquake generated such as vast geophysical data that allows studying with an unprecedented resolution the spatial-temporal evolution of the rupture process of a mega thrust event. Joint source inversion of teleseismic, near-source strong motion and coseismic geodetic data , e.g [Lee et. al, 2011], reveal an evidence of slip reactivation process at areas of very large slip. The slip of snapshots of this source model shows that after about 40 seconds the big patch above to the hypocenter experienced an additional push of the slip (reactivation) towards the trench. These two possible repeating slip exhibited by source inversions can create two waveform envelops well distinguished in the ground motion pattern. In fact seismograms of the KiK-Net Japanese network contained this pattern. For instance a seismic station around Miyagi (MYGH10) has two main wavefronts separated between them by 40 seconds. A possible physical mechanism to explain the slip reactivation could be a thermal pressurization process occurring in the fault zone. In fact, Kanamori & Heaton, (2000) proposed that for large earthquakes frictional melting and fluid pressurization can play a key role of the rupture dynamics of giant earthquakes. If fluid exists in a fault zone, an increase of temperature can rise up the pore pressure enough to significantly reduce the frictional strength. Therefore, during a large earthquake the areas of big slip persuading strong thermal pressurization may result in a second drop of the frictional strength after reaching a certain value of slip. Following this principle, we adopt for slip weakening friction law and prescribe a certain maximum slip after which the friction coefficient linearly drops down again. The implementation of this friction law has been done in the latest unstructured spectral element code SPECFEM3D, Peter et. al. (2012). The non-planar subduction interface has been taken into account and place on it a big asperity patch inside

  12. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone

    Science.gov (United States)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis

    2015-04-01

    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the

  13. Estimating shaking-induced casualties and building damage for global earthquake events: a proposed modelling approach

    Science.gov (United States)

    So, Emily; Spence, Robin

    2013-01-01

    Recent earthquakes such as the Haiti earthquake of 12 January 2010 and the Qinghai earthquake on 14 April 2010 have highlighted the importance of rapid estimation of casualties after the event for humanitarian response. Both of these events resulted in surprisingly high death tolls, casualties and survivors made homeless. In the Mw = 7.0 Haiti earthquake, over 200,000 people perished with more than 300,000 reported injuries and 2 million made homeless. The Mw = 6.9 earthquake in Qinghai resulted in over 2,000 deaths with a further 11,000 people with serious or moderate injuries and 100,000 people have been left homeless in this mountainous region of China. In such events relief efforts can be significantly benefitted by the availability of rapid estimation and mapping of expected casualties. This paper contributes to ongoing global efforts to estimate probable earthquake casualties very rapidly after an earthquake has taken place. The analysis uses the assembled empirical damage and casualty data in the Cambridge Earthquake Impacts Database (CEQID) and explores data by event and across events to test the relationships of building and fatality distributions to the main explanatory variables of building type, building damage level and earthquake intensity. The prototype global casualty estimation model described here uses a semi-empirical approach that estimates damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings. This approach accounts for the effect of the very different types of buildings (by climatic zone, urban or rural location, culture, income level etc), on casualties. The resulting casualty parameters were tested against the overall casualty data from several historical earthquakes in CEQID; a reasonable fit was found.

  14. W-phase estimation of first-order rupture distribution for megathrust earthquakes

    Science.gov (United States)

    Benavente, Roberto; Cummins, Phil; Dettmer, Jan

    2014-05-01

    Estimating the rupture pattern for large earthquakes during the first hour after the origin time can be crucial for rapid impact assessment and tsunami warning. However, the estimation of coseismic slip distribution models generally involves complex methodologies that are difficult to implement rapidly. Further, while model parameter uncertainty can be crucial for meaningful estimation, they are often ignored. In this work we develop a finite fault inversion for megathrust earthquakes which rapidly generates good first order estimates and uncertainties of spatial slip distributions. The algorithm uses W-phase waveforms and a linear automated regularization approach to invert for rupture models of some recent megathrust earthquakes. The W phase is a long period (100-1000 s) wave which arrives together with the P wave. Because it is fast, has small amplitude and a long-period character, the W phase is regularly used to estimate point source moment tensors by the NEIC and PTWC, among others, within an hour of earthquake occurrence. We use W-phase waveforms processed in a manner similar to that used for such point-source solutions. The inversion makes use of 3 component W-phase records retrieved from the Global Seismic Network. The inverse problem is formulated by a multiple time window method, resulting in a linear over-parametrized problem. The over-parametrization is addressed by Tikhonov regularization and regularization parameters are chosen according to the discrepancy principle by grid search. Noise on the data is addressed by estimating the data covariance matrix from data residuals. The matrix is obtained by starting with an a priori covariance matrix and then iteratively updating the matrix based on the residual errors of consecutive inversions. Then, a covariance matrix for the parameters is computed using a Bayesian approach. The application of this approach to recent megathrust earthquakes produces models which capture the most significant features of

  15. Adaptive vehicle motion estimation and prediction

    Science.gov (United States)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  16. CyberShake-derived ground-motion prediction models for the Los Angeles region with application to earthquake early warning

    Science.gov (United States)

    Bose, Maren; Graves, Robert; Gill, David; Callaghan, Scott; Maechling, Phillip J.

    2014-01-01

    Real-time applications such as earthquake early warning (EEW) typically use empirical ground-motion prediction equations (GMPEs) along with event magnitude and source-to-site distances to estimate expected shaking levels. In this simplified approach, effects due to finite-fault geometry, directivity and site and basin response are often generalized, which may lead to a significant under- or overestimation of shaking from large earthquakes (M > 6.5) in some locations. For enhanced site-specific ground-motion predictions considering 3-D wave-propagation effects, we develop support vector regression (SVR) models from the SCEC CyberShake low-frequency (415 000 finite-fault rupture scenarios (6.5 ≤ M ≤ 8.5) for southern California defined in UCERF 2.0. We use CyberShake to demonstrate the application of synthetic waveform data to EEW as a ‘proof of concept’, being aware that these simulations are not yet fully validated and might not appropriately sample the range of rupture uncertainty. Our regression models predict the maximum and the temporal evolution of instrumental intensity (MMI) at 71 selected test sites using only the hypocentre, magnitude and rupture ratio, which characterizes uni- and bilateral rupture propagation. Our regression approach is completely data-driven (where here the CyberShake simulations are considered data) and does not enforce pre-defined functional forms or dependencies among input parameters. The models were established from a subset (∼20 per cent) of CyberShake simulations, but can explain MMI values of all >400 k rupture scenarios with a standard deviation of about 0.4 intensity units. We apply our models to determine threshold magnitudes (and warning times) for various active faults in southern California that earthquakes need to exceed to cause at least ‘moderate’, ‘strong’ or ‘very strong’ shaking in the Los Angeles (LA) basin. These thresholds are used to construct a simple and robust EEW algorithm: to

  17. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy

    Science.gov (United States)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia

    2011-01-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  18. Content Adaptive True Motion Estimator for H.264 Video Compression

    Directory of Open Access Journals (Sweden)

    P. Kulla

    2007-12-01

    Full Text Available Content adaptive true motion estimator for H.264 video coding is a fast block-based matching estimator with implemented multi-stage approach to estimate motion fields between two image frames. It considers the theory of 3D scene objects projection into 2D image plane for selection of motion vector candidates from the higher stages. The stages of the algorithm and its hierarchy are defined upon motion estimation reliability measurement (image blocks including two different directions of spatial gradient, blocks with one dominant spatial gradient and blocks including minimal spatial gradient. Parameters of the image classification into stages are set adaptively upon image structure. Due to search strategy are the estimated motion fields more corresponding to a true motion in an image sequence as in the case of conventional motion estimation algorithms that use fixed sets of motion vector candidates from tight neighborhood.

  19. A new estimate for present-day Cocos-Caribbean Plate motion: Implications for slip along the Central American Volcanic Arc

    Science.gov (United States)

    DeMets, Charles

    Velocities from 153 continuously-operating GPS sites on the Caribbean, North American, and Pacific plates are combined with 61 newly estimated Pacific-Cocos seafloor spreading rates and additional marine geophysical data to derive a new estimate of present-day Cocos-Caribbean plate motion. A comparison of the predicted Cocos-Caribbean direction to slip directions of numerous shallow-thrust subduction earthquakes from the Middle America trench between Costa Rica and Guatemala shows the slip directions to be deflected 10° clockwise from the plate convergence direction, supporting the hypothesis that frequent dextral strike-slip earthquakes along the Central American volcanic arc result from partitioning of oblique Cocos-Caribbean plate convergence. Linear velocity analysis for forearc locations in Nicaragua and Guatemala predicts 14±2 mm yr-1 of northwestward trench-parallel slip of the forearc relative to the Caribbean plate, possibly decreasing in magnitude in El Salvador and Guatemala, where extension east of the volcanic arc complicates the tectonic setting.

  20. Seismic response of the Pickering pressure relief duct to the 1985 Nahanni earthquake

    International Nuclear Information System (INIS)

    Ghobarah, A.

    1995-05-01

    The objective of this study is to examine the structural response of the Pickering pressure relief duct when subjected to the ground motion records of the 1985 Nahanni earthquake (December 23, 05:16 GMT, Site 1 - Iverson, N.W.T.). It also includes an estimate of the possible impact on the nuclear safety function of the duct. The structural models developed in an earlier study were used in this analysis. The response to the earthquake ground motion was determined on the basis of the estimated capacities of various components of the duct. The ability of the structure to fulfill its nuclear safety function is discussed. (author). 6 refs., 1 tab., 17 figs

  1. Use of Ground Motion Simulations of a Historical Earthquake for the Assessment of Past and Future Urban Risks

    Science.gov (United States)

    Kentel, E.; Çelik, A.; karimzadeh Naghshineh, S.; Askan, A.

    2017-12-01

    Erzincan city located in the Eastern part of Turkey at the conjunction of three active faults is one of the most hazardous regions in the world. In addition to several historical events, this city has experienced one of the largest earthquakes during the last century: The 27 December 1939 (Ms=8.0) event. With limited knowledge of the tectonic structure by then, the city center was relocated to the North after the 1939 earthquake by almost 5km, indeed closer to the existing major strike slip fault. This decision coupled with poor construction technologies, led to severe damage during a later event that occurred on 13 March 1992 (Mw=6.6). The 1939 earthquake occurred in the pre-instrumental era in the region with no available local seismograms whereas the 1992 event was only recorded by 3 nearby stations. There are empirical isoseismal maps from both events indicating indirectly the spatial distribution of the damage. In this study, we focus on this region and present a multidisciplinary approach to discuss the different components of uncertainties involved in the assessment and mitigation of seismic risk in urban areas. For this initial attempt, ground motion simulation of the 1939 event is performed to obtain the anticipated ground motions and shaking intensities. Using these quantified results along with the spatial distribution of the observed damage, the relocation decision is assessed and suggestions are provided for future large earthquakes to minimize potential earthquake risks.

  2. The deadly Morelos-Puebla, Mexico Intraslab Earthquake of 19 September 2017 (Mw7.1): Was the Earthquake Unexpected and Were the Ground Motions and Damage Pattern in Mexico City Abnormal?

    Science.gov (United States)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Cruz-Atienza, V. M.; Ordaz, M.; Hjorleifsdottir, V.; Iglesias, A.

    2017-12-01

    On 19 September 2017, thirty two years after the 1985 Michoacan interplate earthquake (Mw8.0), the city was once again devastated but this time by a Mw7.1 intraslab earthquake. The 2017 earthquake was located near the border of the states of Morelos and Puebla (18.410N, -98.710E; H=57 km), to SSE of Mexico City, at a hypocentral distance of about 127 km. It caused great panic in Mexico City, collapse of 44 buildings, and severely damaged many others. More than 200 persons were killed in the city. It was the second most destructive earthquake in the history of Mexico City, next only to the 1985 earthquake. A strong-motion station at CU located on basalt lava flows on main campus UNAM has been in continuous operation since 1964. PGA of 59 gal at CU during the 2017 earthquake is the largest ever, two times greater than that recorded during the 1985 earthquake (29 gal). The 2017 earthquake raised questions that are critical in fathoming the seismic vulnerability of the city and in its reconstruction. Was such an intraslab earthquake (Mw 7 at a hypocentral distance of 127 km) unexpected? Were the recorded ground motions in the city unusually high for such an earthquake? Why did the damage pattern during the earthquake differ from that observed during the 1985 earthquake? The earthquake was the closest M>5 intraslab earthquake to Mexico City ever recorded. However, Mw 5.9 events have occurred in recent years in the vicinity of the 2017 earthquake (R 145 km). Three Mw≥6.9 earthquakes have occurred since 1964 in the distance range 184-225 km. Thus, Mw and R of the earthquake was not surprising. However, a comparison of Fourier acceleration spectra at CU of 10 intraslab earthquakes with largest PGA, reduced to a common distance of R=127 km, shows that the amplitudes of the 2017 events were abnormally high in 1-2s range. Spectra of intraslab events at CU are enriched at higher frequencies relative to interplate ones because of closer distance, greater depth and higher

  3. Ground-Motion Simulations of Scenario Earthquakes on the Hayward Fault

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Graves, R; Larsen, S; Ma, S; Rodgers, A; Ponce, D; Schwartz, D; Simpson, R; Graymer, R

    2009-03-09

    We compute ground motions in the San Francisco Bay area for 35 Mw 6.7-7.2 scenario earthquake ruptures involving the Hayward fault. The modeled scenarios vary in rupture length, hypocenter, slip distribution, rupture speed, and rise time. This collaborative effort involves five modeling groups, using different wave propagation codes and domains of various sizes and resolutions, computing long-period (T > 1-2 s) or broadband (T > 0.1 s) synthetic ground motions for overlapping subsets of the suite of scenarios. The simulations incorporate 3-D geologic structure and illustrate the dramatic increase in intensity of shaking for Mw 7.05 ruptures of the entire Hayward fault compared with Mw 6.76 ruptures of the southern two-thirds of the fault. The area subjected to shaking stronger than MMI VII increases from about 10% of the San Francisco Bay urban area in the Mw 6.76 events to more than 40% of the urban area for the Mw 7.05 events. Similarly, combined rupture of the Hayward and Rodgers Creek faults in a Mw 7.2 event extends shaking stronger than MMI VII to nearly 50% of the urban area. For a given rupture length, the synthetic ground motions exhibit the greatest sensitivity to the slip distribution and location inside or near the edge of sedimentary basins. The hypocenter also exerts a strong influence on the amplitude of the shaking due to rupture directivity. The synthetic waveforms exhibit a weaker sensitivity to the rupture speed and are relatively insensitive to the rise time. The ground motions from the simulations are generally consistent with Next Generation Attenuation ground-motion prediction models but contain long-period effects, such as rupture directivity and amplification in shallow sedimentary basins that are not fully captured by the ground-motion prediction models.

  4. Application and API for Real-time Visualization of Ground-motions and Tsunami

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.

    2015-12-01

    Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are

  5. New characteristics of intensity assessment of Sichuan Lushan "4.20" M s7.0 earthquake

    Science.gov (United States)

    Sun, Baitao; Yan, Peilei; Chen, Xiangzhao

    2014-08-01

    The post-earthquake rapid accurate assessment of macro influence of seismic ground motion is of significance for earthquake emergency relief, post-earthquake reconstruction and scientific research. The seismic intensity distribution map released by the Lushan earthquake field team of the China Earthquake Administration (CEA) five days after the strong earthquake ( M7.0) occurred in Lushan County of Sichuan Ya'an City at 8:02 on April 20, 2013 provides a scientific basis for emergency relief, economic loss assessment and post-earthquake reconstruction. In this paper, the means for blind estimation of macroscopic intensity, field estimation of macro intensity, and review of intensity, as well as corresponding problems are discussed in detail, and the intensity distribution characteristics of the Lushan "4.20" M7.0 earthquake and its influential factors are analyzed, providing a reference for future seismic intensity assessments.

  6. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-12-01

    Tsunami concerns have increased in the world after the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Consequently, tsunami models have been developed rapidly in the last few years. One of the advanced tsunami models is the GeoClaw tsunami model introduced by LeVeque (2011). This model is adaptive and consistent. Because of different sources of uncertainties in the model, observations are needed to improve model prediction through a data assimilation framework. Model inputs are earthquake parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while the smoother operates smoothing to estimate the earthquake parameters. This method reduces the error produced by uncertain inputs. In addition, state-parameter EnKF is implemented to estimate earthquake parameters. Although number of observations is small, estimated parameters generates a better tsunami prediction than the model. Methods and results of prediction experiments in the Red Sea are presented and the prospect of developing an operational tsunami prediction system in the Red Sea is discussed.

  7. Markerless motion estimation for motion-compensated clinical brain imaging

    Science.gov (United States)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  8. Effects of Huge Earthquakes on Earth Rotation and the length of Day

    Directory of Open Access Journals (Sweden)

    Changyi Xu

    2013-01-01

    Full Text Available We calculated the co-seismic Earth rotation changes for several typical great earthquakes since 1960 based on Dahlen¡¦s analytical expression of Earth inertia moment change, the excitation functions of polar motion and, variation in the length of a day (ΔLOD. Then, we derived a mathematical relation between polar motion and earthquake parameters, to prove that the amplitude of polar motion is independent of longitude. Because the analytical expression of Dahlen¡¦s theory is useful to theoretically estimate rotation changes by earthquakes having different seismic parameters, we show results for polar motion and ΔLOD for various types of earthquakes in a comprehensive manner. The modeled results show that the seismic effect on the Earth¡¦s rotation decreases gradually with increased latitude if other parameters are unchanged. The Earth¡¦s rotational change is symmetrical for a 45° dip angle and the maximum changes appear at the equator and poles. Earthquakes at a medium dip angle and low latitudes produce large rotation changes. As an example, we calculate the polar motion and ΔLOD caused by the 2011 Tohoku-Oki Earthquake using two different fault models. Results show that a fine slip fault model is useful to compute co-seismic Earth rotation change. The obtained results indicate Dahlen¡¦s method gives good approximations for computation of co-seismic rotation changes, but there are some differences if one considers detailed fault slip distributions. Finally we analyze and discuss the co-seismic Earth rotation change signal using GRACE data, showing that such a signal is hard to be detected at present, but it might be detected under some conditions. Numerical results of this study will serve as a good indicator to check if satellite observations such as GRACE can detect a seismic rotation change when a great earthquake occur.

  9. Earthquake Ground Motion Selection

    Science.gov (United States)

    2012-05-01

    Nonlinear analyses of soils, structures, and soil-structure systems offer the potential for more accurate characterization of geotechnical and structural response under strong earthquake shaking. The increasing use of advanced performance-based desig...

  10. Benefits of multidisciplinary collaboration for earthquake casualty estimation models: recent case studies

    Science.gov (United States)

    So, E.

    2010-12-01

    Earthquake casualty loss estimation, which depends primarily on building-specific casualty rates, has long suffered from a lack of cross-disciplinary collaboration in post-earthquake data gathering. An increase in our understanding of what contributes to casualties in earthquakes involve coordinated data-gathering efforts amongst disciplines; these are essential for improved global casualty estimation models. It is evident from examining past casualty loss models and reviewing field data collected from recent events, that generalized casualty rates cannot be applied globally for different building types, even within individual countries. For a particular structure type, regional and topographic building design effects, combined with variable material and workmanship quality all contribute to this multi-variant outcome. In addition, social factors affect building-specific casualty rates, including social status and education levels, and human behaviors in general, in that they modify egress and survivability rates. Without considering complex physical pathways, loss models purely based on historic casualty data, or even worse, rates derived from other countries, will be of very limited value. What’s more, as the world’s population, housing stock, and living and cultural environments change, methods of loss modeling must accommodate these variables, especially when considering casualties. To truly take advantage of observed earthquake losses, not only do damage surveys need better coordination of international and national reconnaissance teams, but these teams must integrate difference areas of expertise including engineering, public health and medicine. Research is needed to find methods to achieve consistent and practical ways of collecting and modeling casualties in earthquakes. International collaboration will also be necessary to transfer such expertise and resources to the communities in the cities which most need it. Coupling the theories and findings from

  11. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy)

    KAUST Repository

    Imperatori, W.; Mai, Paul Martin

    2012-01-01

    We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.

  12. Interactive inverse kinematics for human motion estimation

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome

    2009-01-01

    We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation....

  13. Adaptive Motion Estimation Processor for Autonomous Video Devices

    Directory of Open Access Journals (Sweden)

    Dias T

    2007-01-01

    Full Text Available Motion estimation is the most demanding operation of a video encoder, corresponding to at least 80% of the overall computational cost. As a consequence, with the proliferation of autonomous and portable handheld devices that support digital video coding, data-adaptive motion estimation algorithms have been required to dynamically configure the search pattern not only to avoid unnecessary computations and memory accesses but also to save energy. This paper proposes an application-specific instruction set processor (ASIP to implement data-adaptive motion estimation algorithms that is characterized by a specialized datapath and a minimum and optimized instruction set. Due to its low-power nature, this architecture is highly suitable to develop motion estimators for portable, mobile, and battery-supplied devices. Based on the proposed architecture and the considered adaptive algorithms, several motion estimators were synthesized both for a Virtex-II Pro XC2VP30 FPGA from Xilinx, integrated within an ML310 development platform, and using a StdCell library based on a 0.18 μm CMOS process. Experimental results show that the proposed architecture is able to estimate motion vectors in real time for QCIF and CIF video sequences with a very low-power consumption. Moreover, it is also able to adapt the operation to the available energy level in runtime. By adjusting the search pattern and setting up a more convenient operating frequency, it can change the power consumption in the interval between 1.6 mW and 15 mW.

  14. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  15. Summary of earthquake experience database

    International Nuclear Information System (INIS)

    1999-01-01

    Strong-motion earthquakes frequently occur throughout the Pacific Basin, where power plants or industrial facilities are included in the affected areas. By studying the performance of these earthquake-affected (or database) facilities, a large inventory of various types of equipment installations can be compiled that have experienced substantial seismic motion. The primary purposes of the seismic experience database are summarized as follows: to determine the most common sources of seismic damage, or adverse effects, on equipment installations typical of industrial facilities; to determine the thresholds of seismic motion corresponding to various types of seismic damage; to determine the general performance of equipment during earthquakes, regardless of the levels of seismic motion; to determine minimum standards in equipment construction and installation, based on past experience, to assure the ability to withstand anticipated seismic loads. To summarize, the primary assumption in compiling an experience database is that the actual seismic hazard to industrial installations is best demonstrated by the performance of similar installations in past earthquakes

  16. Evaluation of the recorded ground motions for the unusual earthquake of 13 August 2006 ( M w 5.3) in Michoacán México

    Science.gov (United States)

    Ramírez-Gaytán, Alejandro; Jaimes, Miguel A.; Bandy, William L.; Huerfano, Victor M.; Salido-Ruiz, Ricardo A.

    2015-10-01

    The focal mechanism of the moderate earthquake of 13 August 2006 M w = 5.3, which occurred in the border coastal area between Michoacán and Colima, México, is unusual. As shown by the Global Centroid Moment Tensor (CMT) project and the Servicio Sismológico Nacional de Mexico (SSN), the thrust mechanism is striking almost perpendicularly to the majority of earthquakes occurring along the subduction zone of the Mexican Pacific continental margin which commonly strike nearly parallel to the trench. The purpose of this study is to analyze the observed ground motions of this particular event relative to those of the common events. First, we apply the H/V technique to verify that the stations involved in this study are nearly free of site effects. Then, we compare the observed ground motions with (i) three empirical ground motion prediction equations (GMPEs) appropriate for the region, (ii) ground motions of four real earthquakes with the common mechanism, and (iii) the Fourier spectrum of a selected common event.

  17. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  18. Continuous estimates on the earthquake early warning magnitude by use of the near-field acceleration records

    Science.gov (United States)

    Li, Jun; Jin, Xing; Wei, Yongxiang; Zhang, Hongcai

    2013-10-01

    In this article, the seismic records of Japan's Kik-net are selected to measure the acceleration, displacement, and effective peak acceleration of each seismic record within a certain time after P wave, then a continuous estimation is given on earthquake early warning magnitude through statistical analysis method, and Wenchuan earthquake record is utilized to check the method. The results show that the reliability of earthquake early warning magnitude continuously increases with the increase of the seismic information, the biggest residual happens if the acceleration is adopted to fit earthquake magnitude, which may be caused by rich high-frequency components and large dispersion of peak value in acceleration record, the influence caused by the high-frequency components can be effectively reduced if the effective peak acceleration and peak displacement is adopted, it is estimated that the dispersion of earthquake magnitude obviously reduces, but it is easy for peak displacement to be affected by long-period drifting. In various components, the residual enlargement phenomenon at vertical direction is almost unobvious, thus it is recommended in this article that the effective peak acceleration at vertical direction is preferred to estimate earthquake early warning magnitude. Through adopting Wenchuan strong earthquake record to check the method mentioned in this article, it is found that this method can be used to quickly, stably, and accurately estimate the early warning magnitude of this earthquake, which shows that this method is completely applicable for earthquake early warning.

  19. Improving PAGER's real-time earthquake casualty and loss estimation toolkit: a challenge

    Science.gov (United States)

    Jaiswal, K.S.; Wald, D.J.

    2012-01-01

    We describe the on-going developments of PAGER’s loss estimation models, and discuss value-added web content that can be generated related to exposure, damage and loss outputs for a variety of PAGER users. These developments include identifying vulnerable building types in any given area, estimating earthquake-induced damage and loss statistics by building type, and developing visualization aids that help locate areas of concern for improving post-earthquake response efforts. While detailed exposure and damage information is highly useful and desirable, significant improvements are still necessary in order to improve underlying building stock and vulnerability data at a global scale. Existing efforts with the GEM’s GED4GEM and GVC consortia will help achieve some of these objectives. This will benefit PAGER especially in regions where PAGER’s empirical model is less-well constrained; there, the semi-empirical and analytical models will provide robust estimates of damage and losses. Finally, we outline some of the challenges associated with rapid casualty and loss estimation that we experienced while responding to recent large earthquakes worldwide.

  20. Rapid earthquake characterization using MEMS accelerometers and volunteer hosts following the M 7.2 Darfield, New Zealand, Earthquake

    Science.gov (United States)

    Lawrence, J. F.; Cochran, E.S.; Chung, A.; Kaiser, A.; Christensen, C. M.; Allen, R.; Baker, J.W.; Fry, B.; Heaton, T.; Kilb, Debi; Kohler, M.D.; Taufer, M.

    2014-01-01

    We test the feasibility of rapidly detecting and characterizing earthquakes with the Quake‐Catcher Network (QCN) that connects low‐cost microelectromechanical systems accelerometers to a network of volunteer‐owned, Internet‐connected computers. Following the 3 September 2010 M 7.2 Darfield, New Zealand, earthquake we installed over 180 QCN sensors in the Christchurch region to record the aftershock sequence. The sensors are monitored continuously by the host computer and send trigger reports to the central server. The central server correlates incoming triggers to detect when an earthquake has occurred. The location and magnitude are then rapidly estimated from a minimal set of received ground‐motion parameters. Full seismic time series are typically not retrieved for tens of minutes or even hours after an event. We benchmark the QCN real‐time detection performance against the GNS Science GeoNet earthquake catalog. Under normal network operations, QCN detects and characterizes earthquakes within 9.1 s of the earthquake rupture and determines the magnitude within 1 magnitude unit of that reported in the GNS catalog for 90% of the detections.

  1. Evaluation of Soil-Structure Interaction on the Seismic Response of Liquid Storage Tanks under Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Mostafa Farajian

    2017-03-01

    Full Text Available Soil-structure interaction (SSI could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks (namely, broad and slender, with aspect ratios of height to radius equal to 0.6 and 1.85 founded on half-space soil is scrutinized under different earthquake ground motions. For a better comparison, the six considered ground motions are classified, based on their pulse-like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Additionally, four types of soils are used to consider a wide variety of soil properties. To this end, after deriving the equations of motion, MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to a decrease in the impulsive displacement, overturning moment, and normalized base shear, the sloshing (or convective displacement is not affected by such effects due to its long period.

  2. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    Science.gov (United States)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  3. Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake

    Science.gov (United States)

    Yang, Ting; Gurnis, Michael; Zhan, Zhongwen

    2017-07-01

    The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu-Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu-Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated 680 km deep, 30 May 2015 Mw 7.9 Bonin Islands earthquake, which lies east of the well-defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat.

  4. Websim3d: A Web-based System for Generation, Storage and Dissemination of Earthquake Ground Motion Simulations.

    Science.gov (United States)

    Olsen, K. B.

    2003-12-01

    Synthetic time histories from large-scale 3D ground motion simulations generally constitute large 'data' sets which typically require 100's of Mbytes or Gbytes of storage capacity. For the same reason, getting access to a researchers simulation output, for example for an earthquake engineer to perform site analysis, or a seismologist to perform seismic hazard analysis, can be a tedious procedure. To circumvent this problem we have developed a web-based ``community model'' (websim3D) for the generation, storage, and dissemination of ground motion simulation results. Websim3D allows user-friendly and fast access to view and download such simulation results for an earthquake-prone area. The user selects an earthquake scenario from a map of the region, which brings up a map of the area where simulation data is available. Now, by clicking on an arbitrary site location, synthetic seismograms and/or soil parameters for the site can be displayed at fixed or variable scaling and/or downloaded. Websim3D relies on PHP scripts for the dynamic plots of synthetic seismograms and soil profiles. Although not limited to a specific area, we illustrate the community model for simulation results from the Los Angeles basin, Wellington (New Zealand), and Mexico.

  5. A reconnaissance assessment of probabilistic earthquake accelerations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Perkins, D.M.; Thenhaus, P.C.; Hanson, S.L.; Algermissen, S.T.

    1986-01-01

    We have made two interim assessments of the probabilistic ground-motion hazard for the potential nuclear-waste disposal facility at the Nevada Test Site (NTS). The first assessment used historical seismicity and generalized source zones and source faults in the immediate vicinity of the facility. This model produced relatively high probabilistic ground motions, comparable to the higher of two earlier estimates, which was obtained by averaging seismicity in a 400-km-radius circle around the site. The high ground-motion values appear to be caused in part by nuclear-explosion aftershocks remaining in the catalog even after the explosions themselves have been removed. The second assessment used particularized source zones and source faults in a region substantially larger than NTS to provide a broad context of probabilistic ground motion estimates at other locations of the study region. Source faults are mapped or inferred faults having lengths of 5 km or more. Source zones are defined by boundaries separating fault groups on the basis of direction and density. For this assessment, earthquake recurrence has been estimated primarily from historic seismicity prior to nuclear testing. Long-term recurrence for large-magnitude events is constrained by geological estimates of recurrence in a regime in which the large-magnitude earthquakes would occur with predominately normal mechanisms. 4 refs., 10 figs

  6. Online wave estimation using vessel motion measurements

    DEFF Research Database (Denmark)

    H. Brodtkorb, Astrid; Nielsen, Ulrik D.; J. Sørensen, Asgeir

    2018-01-01

    parameters and motion transfer functions are required as input. Apart from this the method is signal-based, with no assumptions on the wave spectrum shape, and as a result it is computationally efficient. The algorithm is implemented in a dynamic positioning (DP)control system, and tested through simulations......In this paper, a computationally efficient online sea state estimation algorithm isproposed for estimation of the on site sea state. The algorithm finds the wave spectrum estimate from motion measurements in heave, roll and pitch by iteratively solving a set of linear equations. The main vessel...

  7. Estimation of interplate coupling along Nankai trough considering the block motion model based on onland GNSS and seafloor GPS/A observation data using MCMC method

    Science.gov (United States)

    Kimura, H.; Ito, T.; Tadokoro, K.

    2017-12-01

    Introduction In southwest Japan, Philippine sea plate is subducting under the overriding plate such as Amurian plate, and mega interplate earthquakes has occurred at about 100 years interval. There is no occurrence of mega interplate earthquakes in southwest Japan, although it has passed about 70 years since the last mega interplate earthquakes: 1944 and 1946 along Nankai trough, meaning that the strain has been accumulated at plate interface. Therefore, it is essential to reveal the interplate coupling more precisely for predicting or understanding the mechanism of next occurring mega interplate earthquake. Recently, seafloor geodetic observation revealed the detailed interplate coupling distribution in expected source region of Nankai trough earthquake (e.g., Yokota et al. [2016]). In this study, we estimated interplate coupling in southwest Japan, considering block motion model and using seafloor geodetic observation data as well as onland GNSS observation data, based on Markov Chain Monte Carlo (MCMC) method. Method Observed crustal deformation is assumed that sum of rigid block motion and elastic deformation due to coupling at block boundaries. We modeled this relationship as a non-linear inverse problem that the unknown parameters are Euler pole of each block and coupling at each subfault, and solved them simultaneously based on MCMC method. Input data we used in this study are 863 onland GNSS observation data and 24 seafloor GPS/A observation data. We made some block division models based on the map of active fault tracing and selected the best model based on Akaike's Information Criterion (AIC): that is consist of 12 blocks. Result We find that the interplate coupling along Nankai trough has heterogeneous spatial distribution, strong at the depth of 0 to 20km at off Tokai region, and 0 to 30km at off Shikoku region. Moreover, we find that observed crustal deformation at off Tokai region is well explained by elastic deformation due to subducting Izu Micro

  8. Estimating Source Duration for Moderate and Large Earthquakes in Taiwan

    Science.gov (United States)

    Chang, Wen-Yen; Hwang, Ruey-Der; Ho, Chien-Yin; Lin, Tzu-Wei

    2017-04-01

    Estimating Source Duration for Moderate and Large Earthquakes in Taiwan Wen-Yen Chang1, Ruey-Der Hwang2, Chien-Yin Ho3 and Tzu-Wei Lin4 1 Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan, ROC 2Department of Geology, Chinese Culture University, Taipei, Taiwan, ROC 3Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan, ROC 4Seismology Center, Central Weather Bureau, Taipei, Taiwan, ROC ABSTRACT To construct a relationship between seismic moment (M0) and source duration (t) was important for seismic hazard in Taiwan, where earthquakes were quite active. In this study, we used a proposed inversion process using teleseismic P-waves to derive the M0-t relationship in the Taiwan region for the first time. Fifteen earthquakes with MW 5.5-7.1 and focal depths of less than 40 km were adopted. The inversion process could simultaneously determine source duration, focal depth, and pseudo radiation patterns of direct P-wave and two depth phases, by which M0 and fault plane solutions were estimated. Results showed that the estimated t ranging from 2.7 to 24.9 sec varied with one-third power of M0. That is, M0 is proportional to t**3, and then the relationship between both of them was M0=0.76*10**23(t)**3 , where M0 in dyne-cm and t in second. The M0-t relationship derived from this study was very close to those determined from global moderate to large earthquakes. For further understanding the validity in the derived relationship, through the constructed relationship of M0-, we inferred the source duration of the 1999 Chi-Chi (Taiwan) earthquake with M0=2-5*10**27 dyne-cm (corresponding to Mw = 7.5-7.7) to be approximately 29-40 sec, in agreement with many previous studies for source duration (28-42 sec).

  9. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  10. Long-period ground motions at near-regional distances caused by the PL wave from, inland earthquakes: Observation and numerical simulation of the 2004 Mid-Niigata, Japan, Mw6.6 earthquake

    Science.gov (United States)

    Furumura, T.; Kennett, B. L. N.

    2017-12-01

    We examine the development of large, long-period ground motions at near-regional distances (D=50-200 km) generated by the PL wave from large, shallow inland earthquakes, based on the analysis of strong motion records and finite-difference method (FDM) simulations of seismic wave propagation. PL wave can be represented as leaking modes of the crustal waveguide and are commonly observed at regional distances between 300 to 1000 km as a dispersed, long-period signal with a dominant period of about 20 s. However, observations of recent earthquakes at the dense K-NET and KiK-net strong motion networks in Japan demonstrate the dominance of the PL wave at near-regional (D=50-200 km) distances as, e.g., for the 2004 Mid Niigata, Japan, earthquake (Mw6.6; h=13 km). The observed PL wave signal between P and S wave shows a large, dispersed wave packet with dominant period of about T=4-10 s with amplitude almost comparable to or larger than the later arrival of the S and surface waves. Thus, the early arrivals of the long-period PL wave immediately after P wave can enhance resonance with large-scale constructions such as high-rise buildings and large oil-storage tanks etc. with potential for disaster. Such strong effects often occurred during the 2004 Mid Niigata earthquakes and other large earthquakes which occurred nearby the Kanto (Tokyo) basin. FDM simulation of seismic wave propagation employing realistic 3-D sedimentary structure models demonstrates the process by which the PL wave develops at near-regional distances from shallow, crustal earthquakes by constructive interference of the P wave in the long-period band. The amplitude of the PL wave is very sensitive to low-velocity structure in the near-surface. Lowered velocities help to develop large SV-to-P conversion and weaken the P-to-SV conversion at the free surface. Both effects enhance the multiple P reflections in the crustal waveguide and prevent the leakage of seismic energy into the mantle. However, a very

  11. Major earthquakes occur regularly on an isolated plate boundary fault.

    Science.gov (United States)

    Berryman, Kelvin R; Cochran, Ursula A; Clark, Kate J; Biasi, Glenn P; Langridge, Robert M; Villamor, Pilar

    2012-06-29

    The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.

  12. Three-Dimensional Finite Difference Simulation of Ground Motions from the August 24, 2014 South Napa Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.

  13. Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates

    Science.gov (United States)

    Wang, Pei-Ling; Engelhart, Simon E.; Wang, Kelin; Hawkes, Andrea D.; Horton, Benjamin P.; Nelson, Alan R.; Witter, Robert C.

    2013-01-01

    Past earthquake rupture models used to explain paleoseismic estimates of coastal subsidence during the great A.D. 1700 Cascadia earthquake have assumed a uniform slip distribution along the megathrust. Here we infer heterogeneous slip for the Cascadia margin in A.D. 1700 that is analogous to slip distributions during instrumentally recorded great subduction earthquakes worldwide. The assumption of uniform distribution in previous rupture models was due partly to the large uncertainties of then available paleoseismic data used to constrain the models. In this work, we use more precise estimates of subsidence in 1700 from detailed tidal microfossil studies. We develop a 3-D elastic dislocation model that allows the slip to vary both along strike and in the dip direction. Despite uncertainties in the updip and downdip slip extensions, the more precise subsidence estimates are best explained by a model with along-strike slip heterogeneity, with multiple patches of high-moment release separated by areas of low-moment release. For example, in A.D. 1700, there was very little slip near Alsea Bay, Oregon (~44.4°N), an area that coincides with a segment boundary previously suggested on the basis of gravity anomalies. A probable subducting seamount in this area may be responsible for impeding rupture during great earthquakes. Our results highlight the need for more precise, high-quality estimates of subsidence or uplift during prehistoric earthquakes from the coasts of southern British Columbia, northern Washington (north of 47°N), southernmost Oregon, and northern California (south of 43°N), where slip distributions of prehistoric earthquakes are poorly constrained.

  14. Motion estimation by data assimilation in reduced dynamic models

    International Nuclear Information System (INIS)

    Drifi, Karim

    2013-01-01

    Motion estimation is a major challenge in the field of image sequence analysis. This thesis is a study of the dynamics of geophysical flows visualized by satellite imagery. Satellite image sequences are currently underused for the task of motion estimation. A good understanding of geophysical flows allows a better analysis and forecast of phenomena in domains such as oceanography and meteorology. Data assimilation provides an excellent framework for achieving a compromise between heterogeneous data, especially numerical models and observations. Hence, in this thesis we set out to apply variational data assimilation methods to estimate motion on image sequences. As one of the major drawbacks of applying these assimilation techniques is the considerable computation time and memory required, we therefore define and use a model reduction method in order to significantly decrease the necessary computation time and the memory. We then explore the possibilities that reduced models provide for motion estimation, particularly the possibility of strictly imposing some known constraints on the computed solutions. In particular, we show how to estimate a divergence free motion with boundary conditions on a complex spatial domain [fr

  15. Lagrangian speckle model and tissue-motion estimation--theory.

    Science.gov (United States)

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.

  16. Deterministic ground motion modelling at Russe, NE Bulgaria, associated to the Vrancea intermediate-depth earthquakes

    CERN Document Server

    Kouteva, M; Paskaleva, I; Romanelli, F

    2003-01-01

    An analytical deterministic technique, based on the detailed knowledge of the seismic source process and of the propagation of seismic waves, has been applied to generate synthetic seismic signals at Russe, NE Bulgaria, associated to the strongest intermediate-depth Vrancea earthquakes, which occurred during the last century (1940, 1977, 1986 and 1990). The obtained results show that all ground motion components contribute significantly to the seismic loading and that the seismic source parameters influence the shape and the amplitude of the seismic signal. The approach we used proves that realistic seismic input (also at remote distances) can be constructed via waveform modelling, considering all the possible factors influencing the ground motion.

  17. Using Simulated Ground Motions to Constrain Near-Source Ground Motion Prediction Equations in Areas Experiencing Induced Seismicity

    Science.gov (United States)

    Bydlon, S. A.; Dunham, E. M.

    2016-12-01

    Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified

  18. Fast image interpolation for motion estimation using graphics hardware

    Science.gov (United States)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  19. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    Science.gov (United States)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  20. Assessment of potential strong ground motions in the city of Rome

    Directory of Open Access Journals (Sweden)

    L. Malagnini

    1994-06-01

    Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions

  1. Seismic fragility analysis of a CANDU containment structure for near-fault ground motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Choun, Young Sun; Seo, Jeong Moon; Ahn, Seong Moon

    2005-01-01

    The R. G. 1.60 spectrum used for the seismic design of Korean nuclear power plants provides a generally conservative design basis due to its broadband nature. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near these faults. The probability based scenario earthquakes were identified as near-field earthquakes. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. It is necessary to estimate the near-fault ground motion effects on the nuclear power plant structures and components located near the faults. In this study, the seismic fragility analysis of a CANDU containment structure was performed based on the results of nonlinear dynamic time-history analyses

  2. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    KAUST Repository

    Bydlon, Samuel A.

    2015-03-21

    ©2015. American Geophysical Union. All Rights Reserved. We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ∼20km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length. Key Points Fault roughness, not material heterogeneity, dominates rupture process Introduce parameter that can be used to quantify near-fault scattering Scattering affects the duration and amplitude of high-frequency ground motions

  3. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    Science.gov (United States)

    Takai, Nobuo; Shigefuji, Michiko; Rajaure, Sudhir; Bijukchhen, Subeg; Ichiyanagi, Masayoshi; Dhital, Megh Raj; Sasatani, Tsutomu

    2016-01-01

    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

  4. A comparison of two methods for earthquake source inversion using strong motion seismograms

    Directory of Open Access Journals (Sweden)

    G. C. Beroza

    1994-06-01

    Full Text Available In this paper we compare two time-domain inversion methods that have been widely applied to the problem of modeling earthquake rupture using strong-motion seismograms. In the multi-window method, each point on the fault is allowed to rupture multiple times. This allows flexibility in the rupture time and hence the rupture velocity. Variations in the slip-velocity function are accommodated by variations in the slip amplitude in each time-window. The single-window method assumes that each point on the fault ruptures only once, when the rupture front passes. Variations in slip amplitude are allowed and variations in rupture velocity are accommodated by allowing the rupture time to vary. Because the multi-window method allows greater flexibility, it has the potential to describe a wider range of faulting behavior; however, with this increased flexibility comes an increase in the degrees of freedom and the solutions are comparatively less stable. We demonstrate this effect using synthetic data for a test model of the Mw 7.3 1992 Landers, California earthquake, and then apply both inversion methods to the actual recordings. The two approaches yield similar fits to the strong-motion data with different seismic moments indicating that the moment is not well constrained by strong-motion data alone. The slip amplitude distribution is similar using either approach, but important differences exist in the rupture propagation models. The single-window method does a better job of recovering the true seismic moment and the average rupture velocity. The multi-window method is preferable when rise time is strongly variable, but tends to overestimate the seismic moment. Both methods work well when the rise time is constant or short compared to the periods modeled. Neither approach can recover the temporal details of rupture propagation unless the distribution of slip amplitude is constrained by independent data.

  5. The guideline and practical procedures for earthquake-resistant design of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Watabe, M.

    1985-01-01

    The Guideline for the aseismic design of nuclear reactor facilities, revised in 1981, is introduced. The basic philosophy entails structural integrity against a major earthquake, rigid structure for less deformation and foundation on rock. The classification of facilities is then explained. Some practical examples are tabulated. In the light of the above classifications, evaluation procedures for aseismic design are defined. Design basis earthquake ground motions, S1 and S2, are defined. S1 is the maximum possible earthquake ground motion, while S2 is the maximum credible one. The relation between active faults and S1, S2 motions is explained, seismic forces induced by S1 and S2 are expressed in terms of response spectra. Static seismic coefficient procedures are also applied to evaluate seismic forces, as a minimum guide-line based on dynamic analysis. Combinations of seismic forces and allowable limits are then explained. In the second part of the paper, seismic analysis for reactor buildings as a part of design practice is outlined. There are three major key points in practical aseismic design. The first one is input design earthquake motions, in which soil/foundation interaction problems are also included. In practice, ground motions at the free field rock surface have to be convoluted or deconvoluted to obtain base rock motions, which are applied to estimate input design earthquake motions by way of finite element analysis or a lumped mass lattice model. Also introduced is dynamic modelling of the reactor building with its non-linear behaviour represented by plastic deformation of reinforced concrete members as well as by uplift characteristics of foundations. Then an evaluation of aseismic safety is introduced. (author)

  6. Tracking using motion estimation with physically motivated inter-region constraints

    KAUST Repository

    Arif, Omar

    2014-09-01

    We propose a method for tracking structures (e.g., ventricles and myocardium) in cardiac images (e.g., magnetic resonance) by propagating forward in time a previous estimate of the structures using a new physically motivated motion estimation scheme. Our method estimates motion by regularizing only within structures so that differing motions among different structures are not mixed. It simultaneously satisfies the physical constraints at the interface between a fluid and a medium that the normal component of the fluid\\'s motion must match the normal component of the medium\\'s motion and the No-Slip condition, which states that the tangential velocity approaches zero near the interface. We show that these conditions lead to partial differential equations with Robin boundary conditions at the interface, which couple the motion between structures. We show that propagating a segmentation across frames using our motion estimation scheme leads to more accurate segmentation than traditional motion estimation that does not use physical constraints. Our method is suited to interactive segmentation, prominently used in commercial applications for cardiac analysis, where segmentation propagation is used to predict a segmentation in the next frame. We show that our method leads to more accurate predictions than a popular and recent interactive method used in cardiac segmentation. © 2014 IEEE.

  7. Building damage concentrated in Longtoushan town during the 2014 Ms. 6.5 Ludian earthquake, Yunnan, China: examination of cause and implications based on ground motion and vulnerability analyses

    Science.gov (United States)

    Wang, Xin; Kurahashi, Susumu; Wu, Hao; Si, Hongjun; Ma, Qiang; Dang, Ji; Tao, Dongwang; Feng, Jiwei; Irikura, Kojiro

    2017-09-01

    Though the 2014 Ludian Earthquake had only a moderate magnitude (Ms 6.5), high-level ground motions of almost 1 g occurred at Longtoushan Town (seismic station 53LLT), which located near the intersection of a conjugate-shaped seismogenic fault. The building damages on the pluvial fan and the river terrace at Longtoushan was clearly different. In order to examine the generation of the large acceleration at 53LLT, the focal mechanisms and the rupture processes of the conjugate-shaped seismogenic fault were determined. We found that there were two continuous impulsive waves in the records of 53LLT that were generated from two different faults, the Baogunao fault and the Xiaohe fault, respectively. Site effects on the pluvial fan and the river terrace at Longtoushan Town and their relations to different building damages were examined. We found that the predominant period at the pluvial fan was about 0.25 s, close to the fundamental natural period of multi-story confined masonry buildings. Ground motions on the pluvial fan and the river terrace were simulated through convolving synthesized bedrock motions with the transfer functions, which were analyzed using the one-dimensional underground velocity structures identified from H/V spectral ratios of ambient noise. Building collapse ratios (CRs) are estimated based on the vulnerability function of the 2008 Wenchuan Earthquake and are compared with the observed values. We found that the observed building CRs on the pluvial fan are much higher than the estimated values. High-level ground shaking that is far beyond the design level was a reason for serious building damage.

  8. Selection of earthquake resistant design criteria for nuclear power plants: Methodology and technical cases: Dislocation models of near-source earthquake ground motion: A review

    International Nuclear Information System (INIS)

    Luco, J.E.

    1987-05-01

    The solutions available for a number of dynamic dislocation fault models are examined in an attempt at establishing some of the expected characteristics of earthquake ground motion in the near-source region. In particular, solutions for two-dimensional anti-plane shear and plane-strain models as well as for three-dimensional fault models in full space, uniform half-space and layered half-space media are reviewed

  9. Latur earthquake and its impact on the aseismic design of structures in India

    Energy Technology Data Exchange (ETDEWEB)

    Basu, P C [Atomic Energy Regulatory Board (India)

    1995-07-01

    The Latur earthquake occurred on September 30, 1995. The epicentre was located near the Killari village of Latur District which is situated in the stable continental region of Southern Peninsular India. The earthquake caused a wide range of damage though its magnitude (MS) was 6.4. Intensive damage survey was carried out and a number of geophysical and seismological studies had been undertaken. It has been concluded from the results, available so far from these studies, that the hypocentre of the earthquake was on the lineament dipping NW-SE. The rock matrix in the hypocentral region was weakened due to the presence of fluid and rupture of this weak region caused the event. The ground motion produced by the earthquake was of complex nature comprising of horizontal and vertical component. The ground acceleration in the epicentral region was estimated as 0.2 g. Latur earthquake raised several issues with respect to aseismic design of structures in India which need further deliberation. These issues are related to seismic zoning of India, determination of design basis ground motion, design/detailing of structures, etc. (author)

  10. Latur earthquake and its impact on the aseismic design of structures in India

    International Nuclear Information System (INIS)

    Basu, P.C.

    1995-01-01

    The Latur earthquake occurred on September 30, 1995. The epicentre was located near the Killari village of Latur District which is situated in the stable continental region of Southern Peninsular India. The earthquake caused a wide range of damage though its magnitude (MS) was 6.4. Intensive damage survey was carried out and a number of geophysical and seismological studies had been undertaken. It has been concluded from the results, available so far from these studies, that the hypocentre of the earthquake was on the lineament dipping NW-SE. The rock matrix in the hypocentral region was weakened due to the presence of fluid and rupture of this weak region caused the event. The ground motion produced by the earthquake was of complex nature comprising of horizontal and vertical component. The ground acceleration in the epicentral region was estimated as 0.2 g. Latur earthquake raised several issues with respect to aseismic design of structures in India which need further deliberation. These issues are related to seismic zoning of India, determination of design basis ground motion, design/detailing of structures, etc. (author)

  11. Study on the characteristics of earthquake ground motion in the Hanshin area based on microtremor measurements; Bido kansoku ni motozuku Hanshin chiiki no jiban shindo tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Seo, K; Yamanaka, H [Tokyo Institute of Technology, Tokyo (Japan)

    1997-05-27

    The Hyogoken-nanbu earthquake in 1995 was a local earthquake that has hit directly a large urban area, having caused damages the greatest since the War mainly in the city of Kobe. The present study has noticed the areas of Sumiyoshi, Nada Ward, Kobe City and Nanbu, Nishinomiya City where damages show different distribution; elucidated the characteristics of earthquake ground motion based on microtremor measurements; and discussed the relation thereof with the earthquake damage distribution. It was verified that microtremors and seismic motions are in rough agreement in the Sumiyoshi area, by comparing and discussing the spectrum ratio between the microtremors and the seismic motions. No correspondence was recognized in the Sumiyoshi area between distribution of the average microtremor spectrum ratio with cycles of 0.2 to 0.8 second and distribution of damages caused by the Hyogoken-nanbu earthquake. The ground characteristics evaluation alone is insufficient to explain distribution of the damages in a relatively wide range in the city of Nishinomiya, for which effects of distance decay should be taken into consideration. 6 refs., 7 figs.

  12. Ground Motion Characteristics of the 2015 Gorkha Earthquake, Survey of Damage to Stone Masonry Structures and Structural Field Tests

    Directory of Open Access Journals (Sweden)

    Rishi Ram Parajuli

    2015-11-01

    Full Text Available On April 25, 2015, a M7.8 earthquake rattled central Nepal; ground motion recorded in Kantipath, Kathmandu, 76.86 km east of the epicenter suggested that the low frequency component was dominant. We consider data from eight aftershocks following the Gorkha earthquake and analyze ground motion characteristics; we found that most of the ground motion records are dominated by low frequencies for events with a moment magnitude greater than 6. The Gorkha earthquake devastated hundreds of thousands of structures. In the countryside, and especially in rural mountainous areas, most of the buildings that collapsed were stone masonry constructions. Detailed damage assessments of stone masonry buildings in Harmi Gorkha had done, with an epicentral distance of about 17 km. Structures were categorized as large, medium and small depending on their plinth area size and number of stories. Most of the structures in the area were damaged; interestingly, all ridge-line structures were heavily damaged. Moreover, Schmidt hammer tests were undertaken to determine the compressive strength of stone masonry, brick masonry with mud mortar for normal buildings and historical monuments. The compressive strengths of stone and brick masonry were found to be 12.38 and 18.75 MPa, respectively. Historical structures constructed with special bricks had a compressive strength of 29.50 MPa. Pullout tests were also conducted to determine the stone masonry-mud mortar bond strength. The cohesive strength of mud mortar and the coefficient of friction were determined.

  13. The application of mean field theory to image motion estimation.

    Science.gov (United States)

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  14. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    Science.gov (United States)

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  15. Estimation of historical earthquake intensities and intensity-PGA relationship for wooden house damages

    International Nuclear Information System (INIS)

    Choi, In-Kil; Seo, Jeong-Moon

    2002-01-01

    A series of tests and dynamic analyses on Korean traditional wooden houses was performed for the intensity estimation of the typical large historical earthquake records. Static and cyclic lateral load tests on the wooden frames were performed to assess the lateral load capacity of wooden frames. The shaking table tests on two 1:4 scaled models of a Korean ancient commoner's house made of fresh pine lumber were performed. Typical earthquake time histories recorded on soil and rock sites were used as input for the tests. The prototypical wooden house was analyzed for multiple time histories which match Ohsaki's ground response spectra. Seismic analyses comprise the aging of lumber and different soil condition. The relationship between the earthquake intensity and the peak ground acceleration (PGA) is proposed for the wooden house damages based on the results of this study. The intensity of major Korean historical earthquake records related with house collapses was quantitatively estimated to be MM VIII

  16. Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation.

    Science.gov (United States)

    Bousse, Alexandre; Manber, Richard; Holman, Beverley F; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F; Thielemans, Kris

    2017-06-01

    Respiratory motion compensation in PET/CT and PET/MRI is essential as motion is a source of image degradation (motion blur, attenuation artifacts). In previous work, we developed a direct method for joint image reconstruction/motion estimation (JRM) for attenuation-corrected (AC) respiratory-gated PET, which uses a single attenuation-map (μ-map). This approach was successfully implemented for respiratory-gated PET/CT, but since it relied on an accurate μ-map for motion estimation, the question of its applicability in PET/MRI is open. The purpose of this work is to investigate the feasibility of JRM in PET/MRI and to assess the robustness of the motion estimation when a degraded μ-map is used. We performed a series of JRM reconstructions from simulated PET data using a range of simulated Dixon MRI sequence derived μ-maps with wrong attenuation values in the lungs, from -100% (no attenuation) to +100% (double attenuation), as well as truncated arms. We compared the estimated motions with the one obtained from JRM in ideal conditions (no noise, true μ-map as an input). We also applied JRM on 4 patient datasets of the chest, 3 of them containing hot lesions. Patient list-mode data were gated using a principal component analysis method. We compared SUV max values of the JRM reconstructed activity images and non motion-corrected images. We also assessed the estimated motion fields by comparing the deformed JRM-reconstructed activity with individually non-AC reconstructed gates. Experiments on simulated data showed that JRM-motion estimation is robust to μ-map degradation in the sense that it produces motion fields similar to the ones obtained when using the true μ-map, regardless of the attenuation errors in the lungs (PET/MRI clinical datasets. It provides a potential alternative to existing methods where the motion fields are pre-estimated from separate MRI measurements. © 2017 University College London (UCL). Medical Physics published by Wiley Periodicals, Inc

  17. Effectiveness of external respiratory surrogates for in vivo liver motion estimation

    International Nuclear Information System (INIS)

    Chang, Kai-Hsiang; Ho, Ming-Chih; Yeh, Chi-Chuan; Chen, Yu-Chien; Lian, Feng-Li; Lin, Win-Li; Yen, Jia-Yush; Chen, Yung-Yaw

    2012-01-01

    Purpose: Due to low frame rate of MRI and high radiation damage from fluoroscopy and CT, liver motion estimation using external respiratory surrogate signals seems to be a better approach to track liver motion in real-time for liver tumor treatments in radiotherapy and thermotherapy. This work proposes a liver motion estimation method based on external respiratory surrogate signals. Animal experiments are also conducted to investigate related issues, such as the sensor arrangement, multisensor fusion, and the effective time period. Methods: Liver motion and abdominal motion are both induced by respiration and are proved to be highly correlated. Contrary to the difficult direct measurement of the liver motion, the abdominal motion can be easily accessed. Based on this idea, our study is split into the model-fitting stage and the motion estimation stage. In the first stage, the correlation between the surrogates and the liver motion is studied and established via linear regression method. In the second stage, the liver motion is estimated by the surrogate signals with the correlation model. Animal experiments on cases of single surrogate signal, multisurrogate signals, and long-term surrogate signals are conducted and discussed to verify the practical use of this approach. Results: The results show that the best single sensor location is at the middle of the upper abdomen, while multisurrogate models are generally better than the single ones. The estimation error is reduced from 0.6 mm for the single surrogate models to 0.4 mm for the multisurrogate models. The long-term validity of the estimation models is quite satisfactory within the period of 10 min with the estimation error less than 1.4 mm. Conclusions: External respiratory surrogate signals from the abdomen motion produces good performance for liver motion estimation in real-time. Multisurrogate signals enhance estimation accuracy, and the estimation model can maintain its accuracy for at least 10 min. This

  18. High-frequency source radiation during the 2011 Tohoku-Oki earthquake, Japan, inferred from KiK-net strong-motion seismograms

    Science.gov (United States)

    Kumagai, Hiroyuki; Pulido, Nelson; Fukuyama, Eiichi; Aoi, Shin

    2013-01-01

    investigate source processes of the 2011 Tohoku-Oki earthquake, we utilized a source location method using high-frequency (5-10 Hz) seismic amplitudes. In this method, we assumed far-field isotropic radiation of S waves, and conducted a spatial grid search to find the best fitting source locations along the subducted slab in each successive time window. Our application of the method to the Tohoku-Oki earthquake resulted in artifact source locations at shallow depths near the trench caused by limited station coverage and noise effects. We then assumed various source node distributions along the plate, and found that the observed seismograms were most reasonably explained when assuming deep source nodes. This result suggests that the high-frequency seismic waves were radiated at deeper depths during the earthquake, a feature which is consistent with results obtained from teleseismic back-projection and strong-motion source model studies. We identified three high-frequency subevents, and compared them with the moment-rate function estimated from low-frequency seismograms. Our comparison indicated that no significant moment release occurred during the first high-frequency subevent and the largest moment-release pulse occurred almost simultaneously with the second high-frequency subevent. We speculated that the initial slow rupture propagated bilaterally from the hypocenter toward the land and trench. The landward subshear rupture propagation consisted of three successive high-frequency subevents. The trenchward propagation ruptured the strong asperity and released the largest moment near the trench.

  19. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake

    KAUST Repository

    Calais, Éric

    2010-10-24

    On 12 January 2010, a Mw7.0 earthquake struck the Port-au-Prince region of Haiti. The disaster killed more than 200,000 people and caused an estimated $8 billion in damages, about 100% of the country?s gross domestic product. The earthquake was initially thought to have ruptured the Enriquillog-Plantain Garden fault of the southern peninsula of Haiti, which is one of two main strike-slip faults inferred to accommodate the 2cmyr -1 relative motion between the Caribbean and North American plates. Here we use global positioning system and radar interferometry measurements of ground motion to show that the earthquake involved a combination of horizontal and contractional slip, causing transpressional motion. This result is consistent with the long-term pattern of strain accumulation in Hispaniola. The unexpected contractional deformation caused by the earthquake and by the pattern of strain accumulation indicates present activity on faults other than the Enriquillog-Plantain Garden fault. We show that the earthquake instead ruptured an unmapped north-dipping fault, called the Léogâne fault. The Léogâne fault lies subparallel tog-but is different fromg-the Enriquillog-Plantain Garden fault. We suggest that the 2010 earthquake may have activated the southernmost front of the Haitian fold-and-thrust belt as it abuts against the Enriquillog-Plantain Garden fault. As the Enriquillog-Plantain Garden fault did not release any significant accumulated elastic strain, it remains a significant seismic threat for Haiti and for Port-au-Prince in particular. © 2010 Macmillan Publishers Limited. All rights reserved.

  20. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake

    KAUST Repository

    Calais, É ric; Freed, Andrew M.; Mattioli, Glen S.; Amelung, Falk; Jonsson, Sigurjon; Jansma, Pamela E.; Hong, Sanghoon; Dixon, Timothy H.; Pré petit, Claude; Momplaisir, Roberte

    2010-01-01

    On 12 January 2010, a Mw7.0 earthquake struck the Port-au-Prince region of Haiti. The disaster killed more than 200,000 people and caused an estimated $8 billion in damages, about 100% of the country?s gross domestic product. The earthquake was initially thought to have ruptured the Enriquillog-Plantain Garden fault of the southern peninsula of Haiti, which is one of two main strike-slip faults inferred to accommodate the 2cmyr -1 relative motion between the Caribbean and North American plates. Here we use global positioning system and radar interferometry measurements of ground motion to show that the earthquake involved a combination of horizontal and contractional slip, causing transpressional motion. This result is consistent with the long-term pattern of strain accumulation in Hispaniola. The unexpected contractional deformation caused by the earthquake and by the pattern of strain accumulation indicates present activity on faults other than the Enriquillog-Plantain Garden fault. We show that the earthquake instead ruptured an unmapped north-dipping fault, called the Léogâne fault. The Léogâne fault lies subparallel tog-but is different fromg-the Enriquillog-Plantain Garden fault. We suggest that the 2010 earthquake may have activated the southernmost front of the Haitian fold-and-thrust belt as it abuts against the Enriquillog-Plantain Garden fault. As the Enriquillog-Plantain Garden fault did not release any significant accumulated elastic strain, it remains a significant seismic threat for Haiti and for Port-au-Prince in particular. © 2010 Macmillan Publishers Limited. All rights reserved.

  1. Improved frame-based estimation of head motion in PET brain imaging

    International Nuclear Information System (INIS)

    Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  2. Improved frame-based estimation of head motion in PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)

    2016-05-15

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  3. Analysis of source spectra, attenuation, and site effects from central and eastern United States earthquakes

    International Nuclear Information System (INIS)

    Lindley, G.

    1998-02-01

    This report describes the results from three studies of source spectra, attenuation, and site effects of central and eastern United States earthquakes. In the first study source parameter estimates taken from 27 previous studies were combined to test the assumption that the earthquake stress drop is roughly a constant, independent of earthquake size. 200 estimates of stress drop and seismic moment from eastern North American earthquakes were combined. It was found that the estimated stress drop from the 27 studies increases approximately as the square-root of the seismic moment, from about 3 bars at 10 20 dyne-cm to 690 bars at 10 25 dyne-cm. These results do not support the assumption of a constant stress drop when estimating ground motion parameters from eastern North American earthquakes. In the second study, broadband seismograms recorded by the United States National Seismograph Network and cooperating stations have been analysed to determine Q Lg as a function of frequency in five regions: the northeastern US, southeastern US, central US, northern Basin and Range, and California and western Nevada. In the third study, using spectral analysis, estimates have been made for the anelastic attenuation of four regional phases, and estimates have been made for the source parameters of 27 earthquakes, including the M b 5.6, 14 April, 1995, West Texas earthquake

  4. Comparing population exposure to multiple Washington earthquake scenarios for prioritizing loss estimation studies

    Science.gov (United States)

    Wood, Nathan J.; Ratliff, Jamie L.; Schelling, John; Weaver, Craig S.

    2014-01-01

    Scenario-based, loss-estimation studies are useful for gauging potential societal impacts from earthquakes but can be challenging to undertake in areas with multiple scenarios and jurisdictions. We present a geospatial approach using various population data for comparing earthquake scenarios and jurisdictions to help emergency managers prioritize where to focus limited resources on data development and loss-estimation studies. Using 20 earthquake scenarios developed for the State of Washington (USA), we demonstrate how a population-exposure analysis across multiple jurisdictions based on Modified Mercalli Intensity (MMI) classes helps emergency managers understand and communicate where potential loss of life may be concentrated and where impacts may be more related to quality of life. Results indicate that certain well-known scenarios may directly impact the greatest number of people, whereas other, potentially lesser-known, scenarios impact fewer people but consequences could be more severe. The use of economic data to profile each jurisdiction’s workforce in earthquake hazard zones also provides additional insight on at-risk populations. This approach can serve as a first step in understanding societal impacts of earthquakes and helping practitioners to efficiently use their limited risk-reduction resources.

  5. Attenuation relations of strong motion in Japan using site classification based on predominant period

    International Nuclear Information System (INIS)

    Toshimasa Takahashi; Akihiro Asano; Hidenobu Okada; Kojiro Irikura; Zhao, J.X.; Zhang Jian; Thio, H.K.; Somerville, P.G.; Yasuhiro Fukushima; Yoshimitsu Fukushima

    2005-01-01

    A spectral acceleration attenuation model for Japan is presented. The data set includes a very large number of strong ground motion records up to the end of 2003. Site class terms, instead of individual site correction terms, are used based on a recent study on site classification for strong motion recording stations in Japan. By using site class terms, tectonic source type effects are identified and accounted in the present model. Effects of faulting mechanism for crustal earthquakes are also accounted for. For crustal and interface earthquakes, a simple form of attenuation model is able to capture the main strong motion characteristics and achieves unbiased estimates. For subduction slab events, a simple distance modification factor is employed to achieve plausible and unbiased prediction. Effects of source depth, tectonic source type, and faulting mechanism for crustal earthquakes are significant. (authors)

  6. a Collaborative Cyberinfrastructure for Earthquake Seismology

    Science.gov (United States)

    Bossu, R.; Roussel, F.; Mazet-Roux, G.; Lefebvre, S.; Steed, R.

    2013-12-01

    One of the challenges in real time seismology is the prediction of earthquake's impact. It is particularly true for moderate earthquake (around magnitude 6) located close to urbanised areas, where the slightest uncertainty in event location, depth, magnitude estimates, and/or misevaluation of propagation characteristics, site effects and buildings vulnerability can dramatically change impact scenario. The Euro-Med Seismological Centre (EMSC) has developed a cyberinfrastructure to collect observations from eyewitnesses in order to provide in-situ constraints on actual damages. This cyberinfrastructure takes benefit of the natural convergence of earthquake's eyewitnesses on EMSC website (www.emsc-csem.org), the second global earthquake information website within tens of seconds of the occurrence of a felt event. It includes classical crowdsourcing tools such as online questionnaires available in 39 languages, and tools to collect geolocated pics. It also comprises information derived from the real time analysis of the traffic on EMSC website, a method named flashsourcing; In case of a felt earthquake, eyewitnesses reach EMSC website within tens of seconds to find out the cause of the shaking they have just been through. By analysing their geographical origin through their IP address, we automatically detect felt earthquakes and in some cases map the damaged areas through the loss of Internet visitors. We recently implemented a Quake Catcher Network (QCN) server in collaboration with Stanford University and the USGS, to collect ground motion records performed by volunteers and are also involved in a project to detect earthquakes from ground motions sensors from smartphones. Strategies have been developed for several social media (Facebook, Twitter...) not only to distribute earthquake information, but also to engage with the Citizens and optimise data collection. A smartphone application is currently under development. We will present an overview of this

  7. Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources

    Science.gov (United States)

    Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.

    2017-09-01

    We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction

  8. Deterministic ground motion modelling at Russe, NE Bulgaria, associated to the Vrancea intermediate-depth earthquakes

    International Nuclear Information System (INIS)

    Kouteva, M.; Paskaleva, I.; Panza, G.F.; Romanelli, F.

    2003-06-01

    An analytical deterministic technique, based on the detailed knowledge of the seismic source process and of the propagation of seismic waves, has been applied to generate synthetic seismic signals at Russe, NE Bulgaria, associated to the strongest intermediate-depth Vrancea earthquakes, which occurred during the last century (1940, 1977, 1986 and 1990). The obtained results show that all ground motion components contribute significantly to the seismic loading and that the seismic source parameters influence the shape and the amplitude of the seismic signal. The approach we used proves that realistic seismic input (also at remote distances) can be constructed via waveform modelling, considering all the possible factors influencing the ground motion. (author)

  9. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  10. A General Method to Estimate Earthquake Moment and Magnitude using Regional Phase Amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E

    2009-11-19

    This paper presents a general method of estimating earthquake magnitude using regional phase amplitudes, called regional M{sub o} or regional M{sub w}. Conceptually, this method uses an earthquake source model along with an attenuation model and geometrical spreading which accounts for the propagation to utilize regional phase amplitudes of any phase and frequency. Amplitudes are corrected to yield a source term from which one can estimate the seismic moment. Moment magnitudes can then be reliably determined with sets of observed phase amplitudes rather than predetermined ones, and afterwards averaged to robustly determine this parameter. We first examine in detail several events to demonstrate the methodology. We then look at various ensembles of phases and frequencies, and compare results to existing regional methods. We find regional M{sub o} to be a stable estimator of earthquake size that has several advantages over other methods. Because of its versatility, it is applicable to many more events, particularly smaller events. We make moment estimates for earthquakes ranging from magnitude 2 to as large as 7. Even with diverse input amplitude sources, we find magnitude estimates to be more robust than typical magnitudes and existing regional methods and might be tuned further to improve upon them. The method yields a more meaningful quantity of seismic moment, which can be recast as M{sub w}. Lastly, it is applied here to the Middle East region using an existing calibration model, but it would be easy to transport to any region with suitable attenuation calibration.

  11. Deterministic earthquake scenarios for the city of Sofia

    International Nuclear Information System (INIS)

    Slavov, S.; Paskaleva, I.; Kouteva, M.; Vaccari, P.; Panza, G.F.

    2002-08-01

    The city of Sofia is exposed to a high seismic risk. Macroseismic intensities in the range of VIII-X (MSK) can be expected in the city. The earthquakes, that can influence the hazard at Sofia, originate either beneath the city or are caused by seismic sources located within a radius of 40km. The city of Sofia is also prone to the remote Vrancea seismic zone in Romania, and particularly vulnerable are the long - period elements of the built environment. The high seismic risk and the lack of instrumental recordings of the regional seismicity makes the use of appropriate credible earthquake scenarios and ground motion modelling approaches for defining the seismic input for the city of Sofia necessary. Complete synthetic seismic signals, due to several earthquake scenarios, were computed along chosen geological profiles crossing the city, applying a hybrid technique, based on the modal summation technique and finite differences. The modelling takes into account simultaneously the geotechnical properties of the site, the position and geometry of the seismic source and the mechanical properties of the propagation medium. Acceleration, velocity and displacement time histories and related quantities of earthquake engineering interest (e.g. response spectra, ground motion amplification along the profiles) have been supplied. The approach applied in this study allows us to obtain the definition of the seismic input at low cost exploiting large quantities of existing data (e.g. geotechnical, geological, seismological). It may be efficiently used to estimate the ground motion for the purposes of microzonation, urban planning, retrofitting or insurance of the built environment, etc. (author)

  12. Uniform risk functionals for characterization of strong earthquake ground motions

    International Nuclear Information System (INIS)

    Anderson, J.G.; Trifunac, M.D.

    1978-01-01

    A uniform risk functional (e.g., Fourier spectrum, response spectrum, duration, etc.) is defined so that the probability that it is exceeded by some earthquake during a selected period of time is independent of the frequency of seismic waves. Such a functional is derived by an independent calculation, at each frequency, for the probability that the quantity being considered will be exceeded. Different aspects of the seismicity can control the amplitude of a uniform risk functional in different frequency ranges, and a uniform risk functional does not necessarily describe the strong shaking from any single earthquake. To be useful for calculating uniform risk functionals, a scaling relationship must provide an independent estimate of amplitudes of the functional in several frequency bands. The scaling relationship of Trifunac (1976) for Fourier spectra satisfies this requirement and further describes the distribution of spectral amplitudes about the mean trend; here, it is applied to find uniform risk Fourier amplitude spectra. In an application to finding the uniform risk spectra at a realistic site, this method is quite sensitive to the description of seismicity. Distinct models of seismicity, all consistent with our current level of knowledge of an area, can give significantly different risk estimates

  13. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  14. 3D ground‐motion simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone: Variability of long‐period (T≥1  s) ground motions and sensitivity to kinematic rupture parameters

    Science.gov (United States)

    Moschetti, Morgan P.; Hartzell, Stephen; Ramirez-Guzman, Leonardo; Frankel, Arthur; Angster, Stephen J.; Stephenson, William J.

    2017-01-01

    We examine the variability of long‐period (T≥1  s) earthquake ground motions from 3D simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone, Utah, from a set of 96 rupture models with varying slip distributions, rupture speeds, slip velocities, and hypocenter locations. Earthquake ruptures were prescribed on a 3D fault representation that satisfies geologic constraints and maintained distinct strands for the Warm Springs and for the East Bench and Cottonwood faults. Response spectral accelerations (SA; 1.5–10 s; 5% damping) were measured, and average distance scaling was well fit by a simple functional form that depends on the near‐source intensity level SA0(T) and a corner distance Rc:SA(R,T)=SA0(T)(1+(R/Rc))−1. Period‐dependent hanging‐wall effects manifested and increased the ground motions by factors of about 2–3, though the effects appeared partially attributable to differences in shallow site response for sites on the hanging wall and footwall of the fault. Comparisons with modern ground‐motion prediction equations (GMPEs) found that the simulated ground motions were generally consistent, except within deep sedimentary basins, where simulated ground motions were greatly underpredicted. Ground‐motion variability exhibited strong lateral variations and, at some sites, exceeded the ground‐motion variability indicated by GMPEs. The effects on the ground motions of changing the values of the five kinematic rupture parameters can largely be explained by three predominant factors: distance to high‐slip subevents, dynamic stress drop, and changes in the contributions from directivity. These results emphasize the need for further characterization of the underlying distributions and covariances of the kinematic rupture parameters used in 3D ground‐motion simulations employed in probabilistic seismic‐hazard analyses.

  15. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense

    2010-01-01

    We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...

  16. Earthquake engineering development before and after the March 4, 1977, Vrancea, Romania earthquake

    International Nuclear Information System (INIS)

    Georgescu, E.-S.

    2002-01-01

    At 25 years since the of the Vrancea earthquake of March, 4th 1977, we can analyze in an open and critical way its impact on the evolution of earthquake engineering codes and protection policies in Romania. The earthquake (M G-R = 7.2; M w = 7.5), produced 1,570 casualties and more than 11,300 injured persons (90% of the victims in Bucharest), seismic losses were estimated at more then USD 2 billions. The 1977 earthquake represented a significant episode of XXth century in seismic zones of Romania and neighboring countries. The INCERC seismic record of March 4, 1977 put, for the first time, in evidence the spectral content of long period seismic motions of Vrancea earthquakes, the duration, the number of cycles and values of actual accelerations, with important effects of overloading upon flexible structures. The seismic coefficients k s , the spectral curve (the dynamic coefficient β r ) and the seismic zonation map, the requirements in the antiseismic design norms were drastically, changed while the microzonation maps of the time ceased to be used, and the specific Vrancea earthquake recurrence was reconsidered based on hazard studies Thus, the paper emphasises: - the existing engineering knowledge, earthquake code and zoning maps requirements until 1977 as well as seismology and structural lessons since 1977; - recent aspects of implementing of the Earthquake Code P.100/1992 and harmonization with Eurocodes, in conjunction with the specific of urban and rural seismic risk and enforcing policies on strengthening of existing buildings; - a strategic view of disaster prevention, using earthquake scenarios and loss assessments, insurance, earthquake education and training; - the need of a closer transfer of knowledge between seismologists, engineers and officials in charge with disaster prevention public policies. (author)

  17. Hazard-to-Risk: High-Performance Computing Simulations of Large Earthquake Ground Motions and Building Damage in the Near-Fault Region

    Science.gov (United States)

    Miah, M.; Rodgers, A. J.; McCallen, D.; Petersson, N. A.; Pitarka, A.

    2017-12-01

    We are running high-performance computing (HPC) simulations of ground motions for large (magnitude, M=6.5-7.0) earthquakes in the near-fault region (steel moment frame buildings throughout the near-fault domain. For ground motions, we are using SW4, a fourth order summation-by-parts finite difference time-domain code running on 10,000-100,000's of cores. Earthquake ruptures are generated using the Graves and Pitarka (2017) method. We validated ground motion intensity measurements against Ground Motion Prediction Equations. We considered two events (M=6.5 and 7.0) for vertical strike-slip ruptures with three-dimensional (3D) basin structures, including stochastic heterogeneity. We have also considered M7.0 scenarios for a Hayward Fault rupture scenario which effects the San Francisco Bay Area and northern California using both 1D and 3D earth structure. Dynamic, inelastic response of canonical buildings is computed with the NEVADA, a nonlinear, finite-deformation finite element code. Canonical buildings include 3-, 9-, 20- and 40-story steel moment frame buildings. Damage potential is tracked by the peak inter-story drift (PID) ratio, which measures the maximum displacement between adjacent floors of the building and is strongly correlated with damage. PID ratios greater 1.0 generally indicate non-linear response and permanent deformation of the structure. We also track roof displacement to identify permanent deformation. PID (damage) for a given earthquake scenario (M, slip distribution, hypocenter) is spatially mapped throughout the SW4 domain with 1-2 km resolution. Results show that in the near fault region building damage is correlated with peak ground velocity (PGV), while farther away (> 20 km) it is better correlated with peak ground acceleration (PGA). We also show how simulated ground motions have peaks in the response spectra that shift to longer periods for larger magnitude events and for locations of forward directivity, as has been reported by

  18. Earthquake Loss Scenarios in the Himalayas

    Science.gov (United States)

    Wyss, M.; Gupta, S.; Rosset, P.; Chamlagain, D.

    2017-12-01

    We estimate quantitatively that in repeats of the 1555 and 1505 great Himalayan earthquakes the fatalities may range from 51K to 549K, the injured from 157K to 1,700K and the strongly affected population (Intensity≥VI) from 15 to 75 million, depending on the details of the assumed earthquake parameters. For up-dip ruptures in the stressed segments of the M7.8 Gorkha 2015, the M7.9 Subansiri 1947 and the M7.8 Kangra 1905 earthquakes, we estimate 62K, 100K and 200K fatalities, respectively. The numbers of strongly affected people we estimate as 8, 12, 33 million, in these cases respectively. These loss calculations are based on verifications of the QLARM algorithms and data set in the cases of the M7.8 Gorkha 2015, the M7.8 Kashmir 2005, the M6.6 Chamoli 1999, the M6.8 Uttarkashi 1991 and the M7.8 Kangra 1905 earthquakes. The requirement of verification that was fulfilled in these test cases was that the reported intensity field and the fatality count had to match approximately, using the known parameters of the earthquakes. The apparent attenuation factor was a free parameter and ranged within acceptable values. Numbers for population were adjusted for the years in question from the latest census. The hour of day was assumed to be at night with maximum occupation. The assumption that the upper half of the Main Frontal Thrust (MFT) will rupture in companion earthquakes to historic earthquakes in the down-dip half is based on the observations of several meters of displacement in trenches across the MFT outcrop. Among mitigation measures awareness with training and adherence to construction codes rank highest. Retrofitting of schools and hospitals would save lives and prevent injuries. Preparation plans for helping millions of strongly affected people should be put in place. These mitigation efforts should focus on an approximately 7 km wide strip along the MFT on the up-thrown side because the strong motions are likely to be doubled. We emphasize that our estimates

  19. Base response arising from free-field motions

    International Nuclear Information System (INIS)

    Whitley, J.R.; Morgan, J.R.; Hall, W.J.; Newmark, N.M.

    1977-01-01

    A procedure is illustrated in this paper for deriving (estimating) from a free-field record the horizontal base motions of a building, including horizontal rotation and translation. More specifically the goal was to compare results of response calculations based on derived accelerations with the results of calculations based on recorded accelerations. The motions are determined by assuming that an actual recorded ground wave transits a rigid base of a given dimension. Calculations given in the paper were made employing the earthquake acceleration time histories of the Hollywood storage building and the adjacent P.E. lot for the Kern County (1952) and San Fernando (1971) earthquakes. For the Kern County earthquake the derived base corner accelerations, including the effect of rotation show generally fair agreement with the spectra computed from the Hollywood storage corner record. For the San Fernando earthquake the agreement between the spectra computed from derived base corner accelerations and that computed from the actual basement corner record is not as good as that for the Kern County earthquake. These limited studies admittedly are hardly a sufficient basis on which to form a judgment, but these differences noted probably can be attributed in part to foundation distortion, building feedback, distance between measurement points, and soil structure interaction; it was not possible to take any of these factors into account in these particular calculations

  20. Hazus® estimated annualized earthquake losses for the United States

    Science.gov (United States)

    Jaiswal, Kishor; Bausch, Doug; Rozelle, Jesse; Holub, John; McGowan, Sean

    2017-01-01

    Large earthquakes can cause social and economic disruption that can be unprecedented to any given community, and the full recovery from these impacts may or may not always be achievable. In the United States (U.S.), the 1994 M6.7 Northridge earthquake in California remains the third costliest disaster in U.S. history; and it was one of the most expensive disasters for the federal government. Internationally, earthquakes in the last decade alone have claimed tens of thousands of lives and caused hundreds of billions of dollars of economic impact throughout the globe (~90 billion U.S. dollars (USD) from 2008 M7.9 Wenchuan China, ~20 billion USD from 2010 M8.8 Maule earthquake in Chile, ~220 billion USD from 2011 M9.0 Tohoku Japan earthquake, ~25 billion USD from 2011 M6.3 Christchurch New Zealand, and ~22 billion USD from 2016 M7.0 Kumamoto Japan). Recent earthquakes show a pattern of steadily increasing damages and losses that are primarily due to three key factors: (1) significant growth in earthquake-prone urban areas, (2) vulnerability of the older building stock, including poorly engineered non-ductile concrete buildings, and (3) an increased interdependency in terms of supply and demand for the businesses that operate among different parts of the world. In the United States, earthquake risk continues to grow with increased exposure of population and development even though the earthquake hazard has remained relatively stable except for the regions of induced seismic activity. Understanding the seismic hazard requires studying earthquake characteristics and locales in which they occur, while understanding the risk requires an assessment of the potential damage from earthquake shaking to the built environment and to the welfare of people—especially in high-risk areas. Estimating the varying degree of earthquake risk throughout the United States is critical for informed decision-making on mitigation policies, priorities, strategies, and funding levels in the

  1. A refined Frequency Domain Decomposition tool for structural modal monitoring in earthquake engineering

    Science.gov (United States)

    Pioldi, Fabio; Rizzi, Egidio

    2017-07-01

    Output-only structural identification is developed by a refined Frequency Domain Decomposition ( rFDD) approach, towards assessing current modal properties of heavy-damped buildings (in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type II bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames (with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field" (22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.

  2. Realistic modelling of observed seismic motion in complex sedimentary basins

    International Nuclear Information System (INIS)

    Faeh, D.; Panza, G.F.

    1994-03-01

    Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy) earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content) of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The total energy of ground motion, determined from our numerical simulation in Rome, is in very good agreement with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50km-100km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations permit the estimate of the maximum and average spectral amplification for specific sites, i.e. are a very powerful tool for accurate micro-zonation. (author). 38 refs, 19 figs, 1 tab

  3. A Motion Estimation Algorithm Using DTCWT and ARPS

    Directory of Open Access Journals (Sweden)

    Unan Y. Oktiawati

    2013-09-01

    Full Text Available In this paper, a hybrid motion estimation algorithm utilizing the Dual Tree Complex Wavelet Transform (DTCWT and the Adaptive Rood Pattern Search (ARPS block is presented. The proposed algorithm first transforms each video sequence with DTCWT. The frame n of the video sequence is used as a reference input and the frame n+2 is used to find the motion vector. Next, the ARPS block search algorithm is carried out and followed by an inverse DTCWT. The motion compensation is then carried out on each inversed frame n and motion vector. The results show that PSNR can be improved for mobile device without depriving its quality. The proposed algorithm also takes less memory usage compared to the DCT-based algorithm. The main contribution of this work is a hybrid wavelet-based motion estimation algorithm for mobile devices. Other contribution is the visual quality scoring system as used in section 6.

  4. Motion field estimation for a dynamic scene using a 3D LiDAR.

    Science.gov (United States)

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  5. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    Directory of Open Access Journals (Sweden)

    Qingquan Li

    2014-09-01

    Full Text Available This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  6. Coseismic deformation of the 2001 El Salvador and 2002 Denali fault earthquakes from GPS geodetic measurements

    Science.gov (United States)

    Hreinsdottir, Sigrun

    2005-07-01

    GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali

  7. An Adaptive Motion Estimation Scheme for Video Coding

    Directory of Open Access Journals (Sweden)

    Pengyu Liu

    2014-01-01

    Full Text Available The unsymmetrical-cross multihexagon-grid search (UMHexagonS is one of the best fast Motion Estimation (ME algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised.

  8. Sensitivity of Reliability Estimates in Partially Damaged RC Structures subject to Earthquakes, using Reduced Hysteretic Models

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.; Skjærbæk, P. S.

    The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation.......The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation....

  9. Near-real-time and scenario earthquake loss estimates for Mexico

    Science.gov (United States)

    Wyss, M.; Zuñiga, R.

    2017-12-01

    The large earthquakes of 8 September 2017, M8.1, and 19 September 2017, M7.1 have focused attention on the dangers of Mexican seismicity. The near-real-time alerts by QLARM estimated 10 to 300 fatalities and 0 to 200 fatalities, respectively. At the time of this submission the reported death tolls are 96 and 226, respectively. These alerts were issued within 96 and 57 minutes of the occurrence times. For the M8.1 earthquake the losses due to a line model could be calculated. The line with length L=110 km extended from the initial epicenter to the NE, where the USGS had reported aftershocks. On September 19, no aftershocks were available in near-real-time, so a point source had to be used for the quick calculation of likely casualties. In both cases, the casualties were at least an order of magnitude smaller than what they could have been because on 8 September the source was relatively far offshore and on 19 September the hypocenter was relatively deep. The largest historic earthquake in Mexico occurred on 28 March 1787 and likely had a rupture length of 450 km and M8.6. Based on this event, and after verifying our tool for Mexico, we estimated the order of magnitude of a disaster, given the current population, in a maximum credible earthquake along the Pacific coast. In the countryside along the coast we expect approximately 27,000 fatalities and 480,000 injured. In the special case of Mexico City the casualties in a worst possible earthquake along the Pacific plate boundary would likely be counted as five digit numbers. The large agglomerate of the capital with its lake bed soil attracts most attention. Nevertheless, one should pay attention to the fact that the poor, rural segment of society, living in buildings of weak resistance to shaking, are likely to sustain a mortality rate about 20% larger than the population in cities on average soil.

  10. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  11. The calculation of site-dependent earthquake motions -3. The method of fast fourier transform

    International Nuclear Information System (INIS)

    Simpson, I.C.

    1976-10-01

    The method of Fast Fourier transform (FFT) is applied to the problem of the determination of site-dependent earthquake motions, which takes account of local geological effects. A program, VELAY 1, which uses the FFT method has been written and is described in this report. The assumptions of horizontally stratified, homogeneous, isotropic, linearly viscoelastic layers and a normally incident plane seismic wave are made. Several examples are given, using VELAY 1, of modified surface acceleration-time histories obtained using a selected input acceleration-time history and a representative system of soil layers. There is a discussion concerning the soil properties that need to be measured in order to use VELAY 1 (and similar programs described in previous reports) and hence generate site-dependent ground motions suitable for aseismic design of a nuclear power plant at a given site. (author)

  12. Frictional Heat Generation and Slip Duration Estimated From Micro-fault in an Exhumed Accretionary Complex and Their Relations to the Scaling Law for Slow Earthquakes

    Science.gov (United States)

    Hashimoto, Y.; Morita, K.; Okubo, M.; Hamada, Y.; Lin, W.; Hirose, T.; Kitamura, M.

    2015-12-01

    Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area (Q, the product of friction coefficient, normal stress and slip velocity) and slip duration (t) to fit the diffusion pattern. Thermal diffusivity (0.98*10-8m2/s) and thermal conductivity (2.0 W/mK) were measured. In the result, 2000-2500J/m2 of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~104-~105s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~108-~1011J, which is consistent with rupture area of 105-108m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the estimation of rupture area, M0, and

  13. Progress in motion estimation for video format conversion

    NARCIS (Netherlands)

    Haan, de G.

    2000-01-01

    There are now two generations of ICs for motion-compensated video format conversion (MC-VFC). Real-time DSP software for MC-VFC has previously been demonstrated, with the breakthroughs enabling this progress coming from motion estimation. The paper gives an overview.

  14. Re-estimation of Motion and Reconstruction for Distributed Video Coding

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Raket, Lars Lau; Forchhammer, Søren

    2014-01-01

    Transform domain Wyner-Ziv (TDWZ) video coding is an efficient approach to distributed video coding (DVC), which provides low complexity encoding by exploiting the source statistics at the decoder side. The DVC coding efficiency depends mainly on side information and noise modeling. This paper...... proposes a motion re-estimation technique based on optical flow to improve side information and noise residual frames by taking partially decoded information into account. To improve noise modeling, a noise residual motion re-estimation technique is proposed. Residual motion compensation with motion...

  15. Quasi real-time estimation of the moment magnitude of large earthquake from static strain changes

    Science.gov (United States)

    Itaba, S.

    2016-12-01

    The 2011 Tohoku-Oki (off the Pacific coast of Tohoku) earthquake, of moment magnitude 9.0, was accompanied by large static strain changes (10-7), as measured by borehole strainmeters operated by the Geological Survey of Japan in the Tokai, Kii Peninsula, and Shikoku regions. A fault model for the earthquake on the boundary between the Pacific and North American plates, based on these borehole strainmeter data, yielded a moment magnitude of 8.7. On the other hand, based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency (JMA) announced just after earthquake occurrence was 7.9. Such geodetic moment magnitudes, derived from static strain changes, can be estimated almost as rapidly as determinations using seismic waves. I have to verify the validity of this method in some cases. In the case of this earthquake's largest aftershock, which occurred 29 minutes after the mainshock. The prompt report issued by JMA assigned this aftershock a magnitude of 7.3, whereas the moment magnitude derived from borehole strain data is 7.6, which is much closer to the actual moment magnitude of 7.7. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami. Our simple method of using static strain changes is one of the strong methods for rapid estimation of the magnitude of large earthquakes, and useful to improve the accuracy of Earthquake Early Warning.

  16. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  17. Effects of Long-Duration Ground Motions on Liquefaction Hazards

    Science.gov (United States)

    Greenfield, Michael W.

    Soil liquefaction during past earthquakes has caused extensive damage to buildings, bridges, dam, pipelines and other elements of infrastructure. Geotechnical engineers use empirical observations from earthquake case histories in conjunction with soil mechanics to predict the behavior of liquefiable soils. However, current empirical databases are insufficient to evaluate the behavior of soils subject to long-duration earthquakes, such as a possible Mw = 9.0 Cascadia Subduction Zone earthquake. The objective of this research is to develop insight into the triggering and effects of liquefaction due to long-duration ground motions and to provide recommendations for analysis and design. Recorded ground motions from 21 case histories with surficial evidence of liquefaction showed marked differences in soil behavior before and after liquefaction was triggered. In some cases, strong shaking continued for several minutes after the soil liquefied, and a variety of behaviors were observed including dilation pulses, continued softening due to soil fabric degradation, and soil stiffening due to pore pressure dissipation and drainage. Supplemental field and laboratory investigations were performed at three sites that liquefied during the 2011 Mw = 9.0 Tohoku earthquake. The recorded ground motions and field investigation data were used in conjunction with laboratory observations, analytical models, and numerical models to evaluate the behavior of liquefiable soils subjected to long-duration ground motions. Observations from the case histories inspired a framework to predict ground deformations based on the differences in soil behavior before and after liquefaction has triggered. This framework decouples the intensity of shaking necessary to trigger liquefaction from the intensity of shaking that drives deformation by identifying the time when liquefaction triggers. The timing-based framework promises to dramatically reduce the uncertainty in deformation estimates compared to

  18. ELER software - a new tool for urban earthquake loss assessment

    Science.gov (United States)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Erdik, M.

    2010-12-01

    Rapid loss estimation after potentially damaging earthquakes is critical for effective emergency response and public information. A methodology and software package, ELER-Earthquake Loss Estimation Routine, for rapid estimation of earthquake shaking and losses throughout the Euro-Mediterranean region was developed under the Joint Research Activity-3 (JRA3) of the EC FP6 Project entitled "Network of Research Infrastructures for European Seismology-NERIES". Recently, a new version (v2.0) of ELER software has been released. The multi-level methodology developed is capable of incorporating regional variability and uncertainty originating from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. Although primarily intended for quasi real-time estimation of earthquake shaking and losses, the routine is also equally capable of incorporating scenario-based earthquake loss assessments. This paper introduces the urban earthquake loss assessment module (Level 2) of the ELER software which makes use of the most detailed inventory databases of physical and social elements at risk in combination with the analytical vulnerability relationships and building damage-related casualty vulnerability models for the estimation of building damage and casualty distributions, respectively. Spectral capacity-based loss assessment methodology and its vital components are presented. The analysis methods of the Level 2 module, i.e. Capacity Spectrum Method (ATC-40, 1996), Modified Acceleration-Displacement Response Spectrum Method (FEMA 440, 2005), Reduction Factor Method (Fajfar, 2000) and Coefficient Method (ASCE 41-06, 2006), are applied to the selected building types for validation and verification purposes. The damage estimates are compared to the results obtained from the other studies available in the literature, i.e. SELENA v4.0 (Molina et al., 2008) and

  19. Simple procedure for evaluating earthquake response spectra of large-event motions based on site amplification factors derived from smaller-event records

    International Nuclear Information System (INIS)

    Dan, Kazuo; Miyakoshi, Jun-ichi; Yashiro, Kazuhiko.

    1996-01-01

    A primitive procedure was proposed for evaluating earthquake response spectra of large-event motions to make use of records from smaller events. The result of the regression analysis of the response spectra was utilized to obtain the site amplification factors in the proposed procedure, and the formulation of the seismic-source term in the regression analysis was examined. A linear form of the moment magnitude, Mw, is good for scaling the source term of moderate earthquakes with Mw of 5.5 to 7.0, while a quadratic form of Mw and the ω-square source-spectrum model is appropriate for scaling the source term of smaller and greater earthquakes, respectively. (author). 52 refs

  20. Mathematical models for estimating earthquake casualties and damage cost through regression analysis using matrices

    International Nuclear Information System (INIS)

    Urrutia, J D; Bautista, L A; Baccay, E B

    2014-01-01

    The aim of this study was to develop mathematical models for estimating earthquake casualties such as death, number of injured persons, affected families and total cost of damage. To quantify the direct damages from earthquakes to human beings and properties given the magnitude, intensity, depth of focus, location of epicentre and time duration, the regression models were made. The researchers formulated models through regression analysis using matrices and used α = 0.01. The study considered thirty destructive earthquakes that hit the Philippines from the inclusive years 1968 to 2012. Relevant data about these said earthquakes were obtained from Philippine Institute of Volcanology and Seismology. Data on damages and casualties were gathered from the records of National Disaster Risk Reduction and Management Council. This study will be of great value in emergency planning, initiating and updating programs for earthquake hazard reduction in the Philippines, which is an earthquake-prone country.

  1. Demonstration of the Cascadia G‐FAST geodetic earthquake early warning system for the Nisqually, Washington, earthquake

    Science.gov (United States)

    Crowell, Brendan; Schmidt, David; Bodin, Paul; Vidale, John; Gomberg, Joan S.; Hartog, Renate; Kress, Victor; Melbourne, Tim; Santillian, Marcelo; Minson, Sarah E.; Jamison, Dylan

    2016-01-01

    A prototype earthquake early warning (EEW) system is currently in development in the Pacific Northwest. We have taken a two‐stage approach to EEW: (1) detection and initial characterization using strong‐motion data with the Earthquake Alarm Systems (ElarmS) seismic early warning package and (2) the triggering of geodetic modeling modules using Global Navigation Satellite Systems data that help provide robust estimates of large‐magnitude earthquakes. In this article we demonstrate the performance of the latter, the Geodetic First Approximation of Size and Time (G‐FAST) geodetic early warning system, using simulated displacements for the 2001Mw 6.8 Nisqually earthquake. We test the timing and performance of the two G‐FAST source characterization modules, peak ground displacement scaling, and Centroid Moment Tensor‐driven finite‐fault‐slip modeling under ideal, latent, noisy, and incomplete data conditions. We show good agreement between source parameters computed by G‐FAST with previously published and postprocessed seismic and geodetic results for all test cases and modeling modules, and we discuss the challenges with integration into the U.S. Geological Survey’s ShakeAlert EEW system.

  2. Broadband records of earthquakes in deep gold mines and a comparison with results from SAFOD, California

    Science.gov (United States)

    McGarr, Arthur F.; Boettcher, M.; Fletcher, Jon Peter B.; Sell, Russell; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.

    2009-01-01

    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter , where  is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.

  3. Hybrid broadband Ground Motion simulation based on a dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake.

    Science.gov (United States)

    Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.

    2015-12-01

    The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian

  4. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    Science.gov (United States)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  5. Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data

    Science.gov (United States)

    Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter

    2013-01-01

    An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.

  6. Rrsm: The European Rapid Raw Strong-Motion Database

    Science.gov (United States)

    Cauzzi, C.; Clinton, J. F.; Sleeman, R.; Domingo Ballesta, J.; Kaestli, P.; Galanis, O.

    2014-12-01

    We introduce the European Rapid Raw Strong-Motion database (RRSM), a Europe-wide system that provides parameterised strong motion information, as well as access to waveform data, within minutes of the occurrence of strong earthquakes. The RRSM significantly differs from traditional earthquake strong motion dissemination in Europe, which has focused on providing reviewed, processed strong motion parameters, typically with significant delays. As the RRSM provides rapid open access to raw waveform data and metadata and does not rely on external manual waveform processing, RRSM information is tailored to seismologists and strong-motion data analysts, earthquake and geotechnical engineers, international earthquake response agencies and the educated general public. Access to the RRSM database is via a portal at http://www.orfeus-eu.org/rrsm/ that allows users to query earthquake information, peak ground motion parameters and amplitudes of spectral response; and to select and download earthquake waveforms. All information is available within minutes of any earthquake with magnitude ≥ 3.5 occurring in the Euro-Mediterranean region. Waveform processing and database population are performed using the waveform processing module scwfparam, which is integrated in SeisComP3 (SC3; http://www.seiscomp3.org/). Earthquake information is provided by the EMSC (http://www.emsc-csem.org/) and all the seismic waveform data is accessed at the European Integrated waveform Data Archive (EIDA) at ORFEUS (http://www.orfeus-eu.org/index.html), where all on-scale data is used in the fully automated processing. As the EIDA community is continually growing, the already significant number of strong motion stations is also increasing and the importance of this product is expected to also increase. Real-time RRSM processing started in June 2014, while past events have been processed in order to provide a complete database back to 2005.

  7. Ground Motion Prediction Trends For Eastern North America Based on the Next Generation Attenuation East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2010-12-01

    A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have

  8. Design basis ground motion (Ss) required on new regulatory guide

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro

    2013-01-01

    New regulatory guide is enforced on July 8. Here, it is introduced how the design basis ground motion (Ss) for seismic design of nuclear power reactor facilities was revised on the new guide. Ss is formulated as two types of earthquake ground motions, earthquake ground motions with site specific earthquake source and with no such specific source locations. The latter is going to be revised based on the recent observed near source ground motions. (author)

  9. Comparison of the sand liquefaction estimated based on codes and practical earthquake damage phenomena

    Science.gov (United States)

    Fang, Yi; Huang, Yahong

    2017-12-01

    Conducting sand liquefaction estimated based on codes is the important content of the geotechnical design. However, the result, sometimes, fails to conform to the practical earthquake damages. Based on the damage of Tangshan earthquake and engineering geological conditions, three typical sites are chosen. Moreover, the sand liquefaction probability was evaluated on the three sites by using the method in the Code for Seismic Design of Buildings and the results were compared with the sand liquefaction phenomenon in the earthquake. The result shows that the difference between sand liquefaction estimated based on codes and the practical earthquake damage is mainly attributed to the following two aspects: The primary reasons include disparity between seismic fortification intensity and practical seismic oscillation, changes of groundwater level, thickness of overlying non-liquefied soil layer, local site effect and personal error. Meanwhile, although the judgment methods in the codes exhibit certain universality, they are another reason causing the above difference due to the limitation of basic data and the qualitative anomaly of the judgment formulas.

  10. Dynamic Parameters of the 2015 Nepal Gorkha Mw7.8 Earthquake Constrained by Multi-observations

    Science.gov (United States)

    Weng, H.; Yang, H.

    2017-12-01

    Dynamic rupture model can provide much detailed insights into rupture physics that is capable of assessing future seismic risk. Many studies have attempted to constrain the slip-weakening distance, an important parameter controlling friction behavior of rock, for several earthquakes based on dynamic models, kinematic models, and direct estimations from near-field ground motion. However, large uncertainties of the values of the slip-weakening distance still remain, mostly because of the intrinsic trade-offs between the slip-weakening distance and fault strength. Here we use a spontaneously dynamic rupture model to constrain the frictional parameters of the 25 April 2015 Mw7.8 Nepal earthquake, by combining with multiple seismic observations such as high-rate cGPS data, strong motion data, and kinematic source models. With numerous tests we find the trade-off patterns of final slip, rupture speed, static GPS ground displacements, and dynamic ground waveforms are quite different. Combining all the seismic constraints we can conclude a robust solution without a substantial trade-off of average slip-weakening distance, 0.6 m, in contrast to previous kinematical estimation of 5 m. To our best knowledge, this is the first time to robustly determine the slip-weakening distance on seismogenic fault from seismic observations. The well-constrained frictional parameters may be used for future dynamic models to assess seismic hazard, such as estimating the peak ground acceleration (PGA) etc. Similar approach could also be conducted for other great earthquakes, enabling broad estimations of the dynamic parameters in global perspectives that can better reveal the intrinsic physics of earthquakes.

  11. Hysteretic Energy Demand in SDOF Structures Subjected to an Earthquake Excitation: Analytical and Empirical Results

    OpenAIRE

    Taner UÇAR; Onur MERTER

    2018-01-01

    In energy-based seismic design approach, earthquake ground motion is considered as an energy input to structures. The earthquake input energy is the total of energy components such as kinetic energy, damping energy, elastic strain energy and hysteretic energy, which contributes the most to structural damage. In literature, there are many empirical formulas based on the hysteretic model, damping ratio and ductility in order to estimate hysteretic energy, whereas they do not directly consider t...

  12. Ground motion attenuation during M 7.1 Darfield and M 6.2 Christchurch, New Zealand, earthquakes and performance of global Ppedictive models

    Science.gov (United States)

    Segou, Margaret; Kalkan, Erol

    2011-01-01

    The M 7.1 Darfield earthquake occurred 40 km west of Christchurch (New Zealand) on 4 September 2010. Six months after, the city was struck again with an M 6.2 event on 22 February local time (21 February UTC). These events resulted in significant damage to infrastructure in the city and its suburbs. The purpose of this study is to evaluate the performance of global predictive models (GMPEs) using the strong motion data obtained from these two events to improve future seismic hazard assessment and building code provisions for the Canterbury region.The Canterbury region is located on the boundary between the Pacific and Australian plates; its surface expression is the active right lateral Alpine fault (Berryman et al. 1993). Beneath the North Island and the north South Island, the Pacific plate subducts obliquely under the Australian plate, while at the southwestern part of the South Island, a reverse process takes place. Although New Zealand has experienced several major earthquakes in the past as a result of its complex seismotectonic environment (e.g., M 7.1 1888 North Canterbury, M 7.0 1929 Arthur's Pass, and M 6.2 1995 Cass), there was no evidence of prior seismic activity in Christchurch and its surroundings before the September event. The Darfield and Christchurch earthquakes occurred along the previously unmapped Greendale fault in the Canterbury basin, which is covered by Quaternary alluvial deposits (Forsyth et al. 2008). In Figure 1, site conditions of the Canterbury epicentral area are depicted on a VS30 map. This map was determined on the basis of topographic slope calculated from a 1-km grid using the method of Allen and Wald (2007). Also shown are the locations of strong motion stations.The Darfield event was generated as a result of a complex rupture mechanism; the recordings and geodetic data reveal that earthquake consists of three sub-events (Barnhart et al. 2011, page 815 of this issue). The first event was due to rupturing of a blind reverse

  13. A revised ground-motion and intensity interpolation scheme for shakemap

    Science.gov (United States)

    Worden, C.B.; Wald, D.J.; Allen, T.I.; Lin, K.; Garcia, D.; Cua, G.

    2010-01-01

    We describe a weighted-average approach for incorporating various types of data (observed peak ground motions and intensities and estimates from groundmotion prediction equations) into the ShakeMap ground motion and intensity mapping framework. This approach represents a fundamental revision of our existing ShakeMap methodology. In addition, the increased availability of near-real-time macroseismic intensity data, the development of newrelationships between intensity and peak ground motions, and new relationships to directly predict intensity from earthquake source information have facilitated the inclusion of intensity measurements directly into ShakeMap computations. Our approach allows for the combination of (1) direct observations (ground-motion measurements or reported intensities), (2) observations converted from intensity to ground motion (or vice versa), and (3) estimated ground motions and intensities from prediction equations or numerical models. Critically, each of the aforementioned data types must include an estimate of its uncertainties, including those caused by scaling the influence of observations to surrounding grid points and those associated with estimates given an unknown fault geometry. The ShakeMap ground-motion and intensity estimates are an uncertainty-weighted combination of these various data and estimates. A natural by-product of this interpolation process is an estimate of total uncertainty at each point on the map, which can be vital for comprehensive inventory loss calculations. We perform a number of tests to validate this new methodology and find that it produces a substantial improvement in the accuracy of ground-motion predictions over empirical prediction equations alone.

  14. Predictive 3D search algorithm for multi-frame motion estimation

    NARCIS (Netherlands)

    Lim, Hong Yin; Kassim, A.A.; With, de P.H.N.

    2008-01-01

    Multi-frame motion estimation introduced in recent video standards such as H.264/AVC, helps to improve the rate-distortion performance and hence the video quality. This, however, comes at the expense of having a much higher computational complexity. In multi-frame motion estimation, there exists

  15. Attenuation relation for strong motion in Eastern Java based on appropriate database and method

    Science.gov (United States)

    Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska

    2017-07-01

    The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.

  16. On the plant operators performance during earthquake

    International Nuclear Information System (INIS)

    Kitada, Y.; Yoshimura, S.; Abe, M.; Niwa, H.; Yoneda, T.; Matsunaga, M.; Suzuki, T.

    1994-01-01

    There is little data on which to judge the performance of plant operators during and after strong earthquakes. In order to obtain such data to enhance the reliability on the plant operation, a Japanese utility and a power plant manufacturer carried out a vibration test using a shaking table. The purpose of the test was to investigate operator performance, i.e., the quickness and correctness in switch handling and panel meter read-out. The movement of chairs during earthquake as also of interest, because if the chairs moved significantly or turned over during a strong earthquake, some arresting mechanism would be required for the chair. Although there were differences between the simulated earthquake motions used and actual earthquakes mainly due to the specifications of the shaking table, the earthquake motions had almost no influence on the operators of their capability (performance) for operating the simulated console and the personal computers

  17. Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions

    Science.gov (United States)

    Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah

    2018-03-01

    This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.

  18. Estimation of Motion Vector Fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1993-01-01

    This paper presents an approach to the estimation of 2-D motion vector fields from time varying image sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We find the maximum a posteriori solution by simulated annealing. The algorithm generate sample...... fields by means of stochastic relaxation implemented via the Gibbs sampler....

  19. Test suite for image-based motion estimation of the brain and tongue

    Science.gov (United States)

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-03-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that

  20. Earthquake data base for Romania

    International Nuclear Information System (INIS)

    Rizescu, M.; Ghica, D.; Grecu, B.; Popa, M.; Borcia, I. S.

    2002-01-01

    A new earthquake database for Romania is being constructed, comprising complete earthquake information and being up-to-date, user-friendly and rapidly accessible. One main component of the database consists from the catalog of earthquakes occurred in Romania since 984 up to present. The catalog contains information related to locations and other source parameters, when available, and links to waveforms of important earthquakes. The other very important component is the 'strong motion database', developed for strong intermediate-depth Vrancea earthquakes where instrumental data were recorded. Different parameters to characterize strong motion properties as: effective peak acceleration, effective peak velocity, corner periods T c and T d , global response spectrum based intensities were computed and recorded into this database. Also, information on the recording seismic stations as: maps giving their positioning, photographs of the instruments and site conditions ('free-field or on buildings) are included. By the huge volume and quality of gathered data, also by its friendly user interface, the Romania earthquake data base provides a very useful tool for geosciences and civil engineering in their effort towards reducing seismic risk in Romania. (authors)

  1. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    Science.gov (United States)

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  2. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.

    2012-03-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  3. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.; Mai, Paul Martin

    2012-01-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  4. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Journal of Seismology, 1, 237-251. Field, E.H., T.H. Jordan, and C.A. Cornell (2003

  5. Gaussian particle filter based pose and motion estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry.A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the particle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.

  6. A hybrid method for the estimation of ground motion in sedimentary basins: Quantitative modelling for Mexico City

    International Nuclear Information System (INIS)

    Faeh, D.; Suhadolc, P.; Mueller, S.; Panza, G.F.

    1994-04-01

    To estimate the ground motion in two-dimensional, laterally heterogeneous, anelastic media, a hybrid technique has been developed which combines modal summation and the finite difference method. In the calculation of the local wavefield due to a seismic event, both for small and large epicentral distances, it is possible to take into account the sources, path and local soil effects. As practical application we have simulated the ground motion in Mexico City caused by the Michoacan earthquake of September 19, 1985. By studying the one-dimensional response of the two sedimentary layers present in Mexico City, it is possible to explain the difference in amplitudes observed between records for receivers inside and outside the lake-bed zone. These simple models show that the sedimentary cover produces the concentration of high-frequency waves (0.2-0.5 Hz) on the horizontal components of motion. The large amplitude coda of ground motion observed inside the lake-bed zone, and the spectral ratios between signals observed inside and outside the lake-bed zone, can only be explained by two-dimensional models of the sedimentary basin. In such models, the ground motion is mainly controlled by the response of the uppermost clay layer. The synthetic signals explain the major characteristics (relative amplitudes, spectral ratios, and frequency content) of the observed ground motion. The large amplitude coda of the ground motion observed in the lake-bed zone can be explained as resonance effects and the excitation of local surface waves in the laterally heterogeneous clay layer. Also, for the 1985 Michoacan event, the energy contributions of the three subevents are important to explain the observed durations. (author). 39 refs, 15 figs, 1 tab

  7. Estimating tropical vertical motion profile shapes from satellite observations

    Science.gov (United States)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  8. New Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, N.

    2012-12-01

    The Caucasus is a region of numerous natural hazards and ensuing disasters. Analysis of the losses due to past disasters indicates the those most catastrophic in the region have historically been due to strong earthquakes. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration because this parameter gives useful information for Seismic Hazard Assessment. Because of this, many peak ground acceleration attenuation relations have been developed by different authors. Besides, a few attenuation relations were developed for Caucasus region: Ambraseys et al. (1996,2005) which were based on entire European region and they were not focused locally on Caucasus Region; Smit et.al. (2000) that was based on a small amount of acceleration data that really is not enough. Since 2003 construction of Georgian Digital Seismic Network has started with the help of number of International organizations, Projects and Private companies. The works conducted involved scientific as well as organizational activities: Resolving technical problems concerning communication and data transmission. Thus, today we have a possibility to get real time data and make scientific research based on digital seismic data. Generally, ground motion and damage are influenced by the magnitude of the earthquake, the distance from the seismic source to site, the local ground conditions and the characteristics of buildings. Estimation of expected ground motion is a fundamental earthquake hazard assessment. This is the reason why this topic is emphasized in this study. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models are obtained by classical, statistical way, regression analysis. Also site ground conditions are considered because the same earthquake recorded at the same distance may cause different damage

  9. Modeling of a historical earthquake in Erzincan, Turkey (Ms 7.8, in 1939) using regional seismological information obtained from a recent event

    Science.gov (United States)

    Karimzadeh, Shaghayegh; Askan, Aysegul

    2018-04-01

    Located within a basin structure, at the conjunction of North East Anatolian, North Anatolian and Ovacik Faults, Erzincan city center (Turkey) is one of the most hazardous regions in the world. Combination of the seismotectonic and geological settings of the region has resulted in series of significant seismic activities including the 1939 (Ms 7.8) as well as the 1992 (Mw = 6.6) earthquakes. The devastative 1939 earthquake occurred in the pre-instrumental era in the region with no available local seismograms. Thus, a limited number of studies exist on that earthquake. However, the 1992 event, despite the sparse local network at that time, has been studied extensively. This study aims to simulate the 1939 Erzincan earthquake using available regional seismic and geological parameters. Despite several uncertainties involved, such an effort to quantitatively model the 1939 earthquake is promising, given the historical reports of extensive damage and fatalities in the area. The results of this study are expressed in terms of anticipated acceleration time histories at certain locations, spatial distribution of selected ground motion parameters and felt intensity maps in the region. Simulated motions are first compared against empirical ground motion prediction equations derived with both local and global datasets. Next, anticipated intensity maps of the 1939 earthquake are obtained using local correlations between peak ground motion parameters and felt intensity values. Comparisons of the estimated intensity distributions with the corresponding observed intensities indicate a reasonable modeling of the 1939 earthquake.

  10. Rapid estimation of the moment magnitude of the 2011 off the Pacific coast of Tohoku earthquake from coseismic strain steps

    Science.gov (United States)

    Itaba, S.; Matsumoto, N.; Kitagawa, Y.; Koizumi, N.

    2012-12-01

    The 2011 off the Pacific coast of Tohoku earthquake, of moment magnitude (Mw) 9.0, occurred at 14:46 Japan Standard Time (JST) on March 11, 2011. The coseismic strain steps caused by the fault slip of this earthquake were observed in the Tokai, Kii Peninsula and Shikoku by the borehole strainmeters which were carefully set by Geological Survey of Japan, AIST. Using these strain steps, we estimated a fault model for the earthquake on the boundary between the Pacific and North American plates. Our model, which is estimated only from several minutes' strain data, is largely consistent with the final fault models estimated from GPS and seismic wave data. The moment magnitude can be estimated about 6 minutes after the origin time, and 4 minutes after wave arrival. According to the fault model, the moment magnitude of the earthquake is 8.7. On the other hand, based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency announced just after earthquake occurrence was 7.9. Generally coseismic strain steps are considered to be less reliable than seismic waves and GPS data. However our results show that the coseismic strain steps observed by the borehole strainmeters, which were carefully set and monitored, can be relied enough to decide the earthquake magnitude precisely and rapidly. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami. Our simple method of using strain steps is one of the strong methods for rapid estimation of the magnitude of great earthquakes.

  11. Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.

    1990-01-01

    This paper discusses a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a guasi-deterministic construct called the 10,000-year cumulative-slip earthquake that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations engineering analyses to ensure safe performance are included

  12. A long source area of the 1906 Colombia-Ecuador earthquake estimated from observed tsunami waveforms

    Science.gov (United States)

    Yamanaka, Yusuke; Tanioka, Yuichiro; Shiina, Takahiro

    2017-12-01

    The 1906 Colombia-Ecuador earthquake induced both strong seismic motions and a tsunami, the most destructive earthquake in the history of the Colombia-Ecuador subduction zone. The tsunami propagated across the Pacific Ocean, and its waveforms were observed at tide gauge stations in countries including Panama, Japan, and the USA. This study conducted slip inverse analysis for the 1906 earthquake using these waveforms. A digital dataset of observed tsunami waveforms at the Naos Island (Panama) and Honolulu (USA) tide gauge stations, where the tsunami was clearly observed, was first produced by consulting documents. Next, the two waveforms were applied in an inverse analysis as the target waveform. The results of this analysis indicated that the moment magnitude of the 1906 earthquake ranged from 8.3 to 8.6. Moreover, the dominant slip occurred in the northern part of the assumed source region near the coast of Colombia, where little significant seismicity has occurred, rather than in the southern part. The results also indicated that the source area, with significant slip, covered a long distance, including the southern, central, and northern parts of the region.[Figure not available: see fulltext.

  13. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  14. A Study of the correlation of the components of instructure motions during earthquakes

    International Nuclear Information System (INIS)

    Hudjian, A.H.

    1984-01-01

    The San Fernando earthquake of February 9, 1971 generated a large number of records in buildings throughout the Los Angeles basin. The correlation of the components of these instructure motions is studied with the expectation that an understanding of these in-situ motions could be helpful in the seismic analysis of equipment located in structures. Thirty-two buildings are selected that have all three components of motion recorded in the basement, midheight and top of the structure. The correlation coefficients of these motions, as a function of the orientation of recorder, is generated and evaluated. The effects of the structural characteristics on these motions are studied by comparing the top and midheight correlation functions with those of the basement records. Additionally, nine structures, whose design details are available in the technical literature, are selected for more detailed studies. Considering the fact that as-built structures tend to have a multitude of details that lead to non-symmetry, most of the structures studied tended towards increased correlation at the roof level. In a few cases the torsional response was accentuated due to a softening in one principal axis more than in the other as a direct result of structural damage. At midheight the correlation was reduced due to the fact that for highrise buildings the second and higher modes are significant contributors to the total structural response and tend to have a node at about this level for either of the principal axes. This midheight anomaly should not exist for the more rigid structures of nuclear power plant structures since these structures are dominated by the fundamental mode response

  15. Real-Time Detection of Rupture Development: Earthquake Early Warning Using P Waves From Growing Ruptures

    Science.gov (United States)

    Kodera, Yuki

    2018-01-01

    Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.

  16. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    Science.gov (United States)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  17. Our response to the earthquake at Onagawa Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirakawa, Tomoshi

    2008-01-01

    When the Miyagi Offshore earthquake occurred on August 16, 2005, all three units at the Onagawa NPS were shut down automatically according to the Strong Seismic Acceleration' signal. Our inspection after the earthquake confirmed there was no damage to the equipment of the nuclear power plants, but the analysis of the response spectrum observed at the bedrock showed the earthquake had exceeded the 'design-basis earthquake', at certain periods, so that we implemented a review of the seismic safety of plant facilities. In the review, the ground motion of Miyagi Offshore Earthquake which are predicted to occur in the near future were reexamined based on the observation data, and then 'The Ground Motion for Safety Check' surpassing the supposed ground motion of the largest earthquake was established. The seismic safety of plant facilities, important for safety, was assured. At present, No.1 to No.3 units at Onagawa NPS have returned to normal operation. (author)

  18. Tangshan 1976 earthquake: Modelling of the SH-wave motion in the area of Xiji-Langfu

    International Nuclear Information System (INIS)

    Sun, R.

    1995-06-01

    The reasons for the anomalous high macroseismic intensity caused in the Xiji-Langfu area by the Tangshan, 1976 earthquake can be found in its special geological conditions. This area is formed of deep deposits beside the Xiadian fault, that consist mainly of alluvium sands and clays, which are poorly consolidated with high water content. Resonances, excitation of local surface waves and their propagation cause strong amplifications and long durations of signals. Based on simulated strong ground motion, we have computed quantities commonly used for engineering purposes: the maximum amplitude (AMAX) and the total energy of ground motion (W), which is related to the Arias Intensity. AMAX and W do not decrease gradually as the epicentral distance increases, since the low velocities and the thickness of the deposits are responsible for the large increment of the values of AMAX and W inside the basin. On the two sides of the Xiadian fault AMAX and W can vary by 200% and 700% respectively. This computational result can be used to explain the large macroseismic intensity observed in the Xiji-Langfu area, in connection with the Tangshan earthquake. The spectral ratios show that over the whole area significant amplifications occur in the range of frequencies from 0.3 Hz to 1.5 Hz, while the largest amplification is above 6 and takes place around 3 Hz at a distance of about 112 km. from the epicentre. (author). 18 refs, 15 figs, 2 tabs

  19. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    Science.gov (United States)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range

  20. Cerebral palsy characterization by estimating ocular motion

    Science.gov (United States)

    González, Jully; Atehortúa, Angélica; Moncayo, Ricardo; Romero, Eduardo

    2017-11-01

    Cerebral palsy (CP) is a large group of motion and posture disorders caused during the fetal or infant brain development. Sensorial impairment is commonly found in children with CP, i.e., between 40-75 percent presents some form of vision problems or disabilities. An automatic characterization of the cerebral palsy is herein presented by estimating the ocular motion during a gaze pursuing task. Specifically, After automatically detecting the eye location, an optical flow algorithm tracks the eye motion following a pre-established visual assignment. Subsequently, the optical flow trajectories are characterized in the velocity-acceleration phase plane. Differences are quantified in a small set of patients between four to ten years.

  1. Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009

    Science.gov (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie

    2011-01-01

    Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill

  2. Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.

    Science.gov (United States)

    Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun

    2018-02-27

    The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.

  3. A Compact VLSI System for Bio-Inspired Visual Motion Estimation.

    Science.gov (United States)

    Shi, Cong; Luo, Gang

    2018-04-01

    This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.

  4. Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence

    Science.gov (United States)

    Miyake, H.

    2013-12-01

    The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.

  5. Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques

    Science.gov (United States)

    Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.

    2010-03-01

    Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.

  6. Earthquake simulation, actual earthquake monitoring and analytical methods for soil-structure interaction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H T [Seismic Center, Electric Power Research Institute, Palo Alto, CA (United States)

    1988-07-01

    Approaches for conducting in-situ soil-structure interaction experiments are discussed. High explosives detonated under the ground can generate strong ground motion to induce soil-structure interaction (SSI). The explosive induced data are useful in studying the dynamic characteristics of the soil-structure system associated with the inertial aspect of the SSI problem. The plane waves generated by the explosives cannot adequately address the kinematic interaction associated with actual earthquakes because of he difference in wave fields and their effects. Earthquake monitoring is ideal for obtaining SSI data that can address all aspects of the SSI problem. The only limitation is the level of excitation that can be obtained. Neither the simulated earthquake experiments nor the earthquake monitoring experiments can have exact similitude if reduced scale test structures are used. If gravity effects are small, reasonable correlations between the scaled model and the prototype can be obtained provided that input motion can be scaled appropriately. The key product of the in-situ experiments is the data base that can be used to qualify analytical methods for prototypical applications. (author)

  7. Compilation, assessment and expansion of the strong earthquake ground motion data base. Seismic Safety Margins Research Program (SSMRP)

    International Nuclear Information System (INIS)

    Crouse, C.B.; Hileman, J.A.; Turner, B.E.; Martin, G.R.

    1980-09-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications. (author)

  8. History of Modern Earthquake Hazard Mapping and Assessment in California Using a Deterministic or Scenario Approach

    Science.gov (United States)

    Mualchin, Lalliana

    2011-03-01

    Modern earthquake ground motion hazard mapping in California began following the 1971 San Fernando earthquake in the Los Angeles metropolitan area of southern California. Earthquake hazard assessment followed a traditional approach, later called Deterministic Seismic Hazard Analysis (DSHA) in order to distinguish it from the newer Probabilistic Seismic Hazard Analysis (PSHA). In DSHA, seismic hazard in the event of the Maximum Credible Earthquake (MCE) magnitude from each of the known seismogenic faults within and near the state are assessed. The likely occurrence of the MCE has been assumed qualitatively by using late Quaternary and younger faults that are presumed to be seismogenic, but not when or within what time intervals MCE may occur. MCE is the largest or upper-bound potential earthquake in moment magnitude, and it supersedes and automatically considers all other possible earthquakes on that fault. That moment magnitude is used for estimating ground motions by applying it to empirical attenuation relationships, and for calculating ground motions as in neo-DSHA (Z uccolo et al., 2008). The first deterministic California earthquake hazard map was published in 1974 by the California Division of Mines and Geology (CDMG) which has been called the California Geological Survey (CGS) since 2002, using the best available fault information and ground motion attenuation relationships at that time. The California Department of Transportation (Caltrans) later assumed responsibility for printing the refined and updated peak acceleration contour maps which were heavily utilized by geologists, seismologists, and engineers for many years. Some engineers involved in the siting process of large important projects, for example, dams and nuclear power plants, continued to challenge the map(s). The second edition map was completed in 1985 incorporating more faults, improving MCE's estimation method, and using new ground motion attenuation relationships from the latest published

  9. Facial motion parameter estimation and error criteria in model-based image coding

    Science.gov (United States)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  10. On an outline of investigation results of earthquake damage estimation for Akita prefecture; Akitaken jishin higai sotei chosa kekka no gaiyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nogoshi, M [Akita University, Akita (Japan). College of Education

    1997-05-27

    This paper reports an outline of investigation results of earthquake damage estimation carried out in Akita Prefecture. The basic policy for this investigation consists of the following: (1) an indication on existence of a blank area in the Akita off-coast earthquake shall be viewed so importantly that a fault model is set to estimate damages; (2) because most of the earthquakes in history of Akita Prefecture are inland earthquakes with magnitude of about M=7, four earthquakes in the past shall be adopted as the set model; and (3) the central Sea of Japan earthquake in 1983 was an earthquake occurred in the Sea of Japan side and caused a great deal of damages to Akita Prefecture, and its epicenter model and damages were investigated in detail, hence these data shall be utilized in verifying the procedure and method for estimating damages studied in the present investigation. This paper reports finally estimated human damages. With an assumed earthquake as strong as the Tencho earthquake in the year of 830, more than 1000 deaths will occur in the city of Akita; with an earthquake in the scale of the Noshiro earthquake in 1694, more than 50 deaths will be counted in the city of Noshiro; one as strong as the Rikuu earthquake in 1896 will cause about 300 deaths in the cities of Yokote and Omagari, respectively; one with the scale of the 1914 Goushu earthquake will result in about 300 people to be killed in the city of Omagari and about 200 people in the city of Yuzawa; and an earthquake estimated to occur in the blank area off the Akita coast will force 33% of the residents of the Kisakata town to be evacuated from their homes. 1 fig.

  11. Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake constrained by a detailed assessment of macroseismic data

    Science.gov (United States)

    Martin, Stacey; Hough, Susan E.; Hung, Charleen

    2015-01-01

    To augment limited instrumental recordings of the Mw 7.8 Gorkha, Nepal, earthquake on 25 April 2015 (Nepali calendar: 12 Baisakh 2072, Bikram Samvat), we collected 3831 detailed media and first-person accounts of macroseismic effects that include sufficiently detailed information to assign intensities. The resulting intensity map reveals the distribution of shaking within and outside of Nepal, with the key result that shaking intensities throughout the near-field region only exceeded intensity 8 on the 1998 European Macroseismic Scale (EMS-98) in rare instances. Within the Kathmandu Valley, intensities were generally 6–7 EMS. This surprising (and fortunate) result can be explained by the nature of the mainshock ground motions, which were dominated by energy at periods significantly longer than the resonant periods of vernacular structures throughout the Kathmandu Valley. Outside of the Kathmandu Valley, intensities were also generally lower than 8 EMS, but the earthquake took a heavy toll on a number of remote villages, where many especially vulnerable masonry houses collapsed catastrophically in 7–8 EMS shaking. We further reconsider intensities from the 1833 earthquake sequence and conclude that it occurred on the same fault segment as the Gorkha earthquake.

  12. Synthetic strong ground motions for engineering design utilizing empirical Green`s functions

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.J.; Jarpe, S.P.; Kasameyer, P.W.; Foxall, W.

    1996-04-11

    We present a methodology for developing realistic synthetic strong ground motions for specific sites from specific earthquakes. We analyzed the possible ground motion resulting from a M = 7.25 earthquake that ruptures 82 km of the Hayward fault for a site 1.4 km from the fault in the eastern San Francisco Bay area. We developed a suite of 100 rupture scenarios for the Hayward fault earthquake and computed the corresponding strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the statistical distribution of engineering parameters, we introduce a probabilistic component into the deterministic hazard calculation. Engineering parameters of synthesized ground motions agree with those recorded from the 1995 Kobe, Japan and the 1992 Landers, California earthquakes at similar distances and site geologies.

  13. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  14. Crustal block motion model and interplate coupling along Ecuador-Colombia trench based on GNSS observation network

    Science.gov (United States)

    Ito, T.; Mora-Páez, H.; Peláez-Gaviria, J. R.; Kimura, H.; Sagiya, T.

    2017-12-01

    IntroductionEcuador-Colombia trench is located at the boundary between South-America plate, Nazca Plate and Caribrian plate. This region is very complexes such as subducting Caribrian plate and Nazca plate, and collision between Panama and northern part of the Andes mountains. The previous large earthquakes occurred along the subducting boundary of Nazca plate, such as 1906 (M8.8) and 1979 (M8.2). And also, earthquakes occurred inland, too. So, it is important to evaluate earthquake potentials for preparing huge damage due to large earthquake in near future. GNSS observation In the last decade, the GNSS observation was established in Columbia. The GNSS observation is called by GEORED, which is operated by servicing Geologico Colomiano. The purpose of GEORED is research of crustal deformation. The number of GNSS site of GEORED is consist of 60 continuous GNSS observation site at 2017 (Mora et al., 2017). The sampling interval of almost GNSS site is 30 seconds. These GNSS data were processed by PPP processing using GIPSY-OASYS II software. GEORED can obtain the detailed crustal deformation map in whole Colombia. In addition, we use 100 GNSS data at Ecuador-Peru region (Nocquet et al. 2014). Method We developed a crustal block movements model based on crustal deformation derived from GNSS observation. Our model considers to the block motion with pole location and angular velocity and the interplate coupling between each block boundaries, including subduction between the South-American plate and the Nazca plate. And also, our approach of estimation of crustal block motion and coefficient of interplate coupling are based on MCMC method. The estimated each parameter is obtained probably density function (PDF). Result We tested 11 crustal block models based on geological data, such as active fault trace at surface. The optimal number of crustal blocks is 11 for based on geological and geodetic data using AIC. We use optimal block motion model. And also, we estimate

  15. PRISM software—Processing and review interface for strong-motion data

    Science.gov (United States)

    Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter

    2017-11-28

    Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.

  16. The Road to Total Earthquake Safety

    Science.gov (United States)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.

  17. Earthquake response characteristics of large structure 'JOYO' deeply embedded in quaternary ground, (3)

    International Nuclear Information System (INIS)

    Yajima, Hiroshi; Sawada, Yoshihiro; Hanada, Kazutake; Sawada, Makoto.

    1987-01-01

    In order to examine aseismicity of embedded structure and to clarify embedment effect, earthquake observations of the large structure 'JOYO' are carried out which is deeply embedded in quaternary ground, and the results are summarized as follows. (1) Amplification factors of horizontal component in ground surface is about 3 to 4 times against the bedrock. Contrastively on the structure, any amplification is not observed at the underground portion, however, little amplification exists at the ground portion of structure. (2) Transfer function of structure has several predominant peaks at frequencies of 4.3 Hz and 8.0 Hz which are well coincided with values obtained from force excitation tests. It is shown that transfer function between basement and ground surface is similar to that between ground of same level to basement and ground surface, suggesting the behavior of basement to be able to estimate by these under ground earthquake motion. (3) According to earthquake motion analysis using S-R models, without regard to consider or not the side ground stiffness, the calculated response values do not so much differ in each model and mostly correspond with observation data, provided that the underground earthquake motion at same level to basement is used as a input wave. Consequently, the behavior of these deeply embedded structure is subject to setting method of input wave rather than modeling method, and it is very useful in design that the most simple model without side ground stiffness can roughly represent the embedment effect. (author)

  18. Shear-wave velocity compilation for Northridge strong-motion recording sites

    Science.gov (United States)

    Borcherdt, Roger D.; Fumal, Thomas E.

    2002-01-01

    Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.

  19. Preliminary observations from the 3 January 2017, MW 5.6 Manu, Tripura (India) earthquake

    Science.gov (United States)

    Debbarma, Jimmi; Martin, Stacey S.; Suresh, G.; Ahsan, Aktarul; Gahalaut, Vineet K.

    2017-10-01

    On 3 January 2017, a MW 5.6 earthquake occurred in Dhalai district in Tripura (India), at 14:39:03 IST (09:09:03 UTC) with an epicentre at 24.018°N ± 4.9 km and 91.964°E ± 4.4 km, and a focal depth of 31 ± 6.0 km. The focal mechanism solution determined after evaluating data from seismological observatories in India indicated a predominantly strike-slip motion on a steeply dipping plane. The estimated focal depth and focal mechanism solution places this earthquake in the Indian plate that lies beneath the overlying Indo-Burmese wedge. As in the 2016 Manipur earthquake, a strong motion record from Shillong, India, appears to suggest site amplification possibly due to topographic effects. In the epicentral region in Tripura, damage assessed from a field survey and from media reports indicated that the macroseismic intensity approached 6-7 EMS with damage also reported in adjacent parts of Bangladesh. A striking feature of this earthquake were the numerous reports of liquefaction that were forthcoming from fluvial locales in the epicentral region in Tripura, and at anomalous distances farther north in Bangladesh. The occurrence of the 2017 Manu earthquake emphasises the hazard posed by intraplate earthquakes in Tripura and in the neighbouring Bengal basin region where records of past earthquakes are scanty or vague, and where the presence of unconsolidated deltaic sediments and poor implementation of building codes pose a significant societal and economic threat during larger earthquakes in the future.

  20. Variable disparity-motion estimation based fast three-view video coding

    Science.gov (United States)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  1. Constrained motion estimation-based error resilient coding for HEVC

    Science.gov (United States)

    Guo, Weihan; Zhang, Yongfei; Li, Bo

    2018-04-01

    Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.

  2. Characterising large scenario earthquakes and their influence on NDSHA maps

    Science.gov (United States)

    Magrin, Andrea; Peresan, Antonella; Panza, Giuliano F.

    2016-04-01

    The neo-deterministic approach to seismic zoning, NDSHA, relies on physically sound modelling of ground shaking from a large set of credible scenario earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g. morphostructural features and present day deformation processes identified by Earth observations). NDSHA is based on the calculation of complete synthetic seismograms; hence it does not make use of empirical attenuation models (i.e. ground motion prediction equations). From the set of synthetic seismograms, maps of seismic hazard that describe the maximum of different ground shaking parameters at the bedrock can be produced. As a rule, the NDSHA, defines the hazard as the envelope ground shaking at the site, computed from all of the defined seismic sources; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In this way, the standard NDSHA maps permit to account for the largest observed or credible earthquake sources identified in the region in a quite straightforward manner. This study aims to assess the influence of unavoidable uncertainties in the characterisation of large scenario earthquakes on the NDSHA estimates. The treatment of uncertainties is performed by sensitivity analyses for key modelling parameters and accounts for the uncertainty in the prediction of fault radiation and in the use of Green's function for a given medium. Results from sensitivity analyses with respect to the definition of possible seismic sources are discussed. A key parameter is the magnitude of seismic sources used in the simulation, which is based on information from earthquake catalogue, seismogenic zones and seismogenic nodes. The largest part of the existing Italian catalogues is based on macroseismic intensities, a rough estimate of the error in peak values of ground motion can

  3. Earthquakes of Garhwal Himalaya region of NW Himalaya, India: A study of relocated earthquakes and their seismogenic source and stress

    Science.gov (United States)

    R, A. P.; Paul, A.; Singh, S.

    2017-12-01

    Since the continent-continent collision 55 Ma, the Himalaya has accommodated 2000 km of convergence along its arc. The strain energy is being accumulated at a rate of 37-44 mm/yr and releases at time as earthquakes. The Garhwal Himalaya is located at the western side of a Seismic Gap, where a great earthquake is overdue atleast since 200 years. This seismic gap (Central Seismic Gap: CSG) with 52% probability for a future great earthquake is located between the rupture zones of two significant/great earthquakes, viz. the 1905 Kangra earthquake of M 7.8 and the 1934 Bihar-Nepal earthquake of M 8.0; and the most recent one, the 2015 Gorkha earthquake of M 7.8 is in the eastern side of this seismic gap (CSG). The Garhwal Himalaya is one of the ideal locations of the Himalaya where all the major Himalayan structures and the Himalayan Seimsicity Belt (HSB) can ably be described and studied. In the present study, we are presenting the spatio-temporal analysis of the relocated local micro-moderate earthquakes, recorded by a seismicity monitoring network, which is operational since, 2007. The earthquake locations are relocated using the HypoDD (double difference hypocenter method for earthquake relocations) program. The dataset from July, 2007- September, 2015 have been used in this study to estimate their spatio-temporal relationships, moment tensor (MT) solutions for the earthquakes of M>3.0, stress tensors and their interactions. We have also used the composite focal mechanism solutions for small earthquakes. The majority of the MT solutions show thrust type mechanism and located near the mid-crustal-ramp (MCR) structure of the detachment surface at 8-15 km depth beneath the outer lesser Himalaya and higher Himalaya regions. The prevailing stress has been identified to be compressional towards NNE-SSW, which is the direction of relative plate motion between the India and Eurasia continental plates. The low friction coefficient estimated along with the stress inversions

  4. Evaluation of the conservativeness of the methodology for estimating earthquake-induced movements of fractures intersecting canisters

    International Nuclear Information System (INIS)

    La Pointe, Paul R.; Cladouhos, Trenton T.; Outters, Nils; Follin, Sven

    2000-04-01

    This study evaluates the parameter sensitivity and the conservativeness of the methodology outlined in TR 99-03. Sensitivity analysis focuses on understanding how variability in input parameter values impacts the calculated fracture displacements. These studies clarify what parameters play the greatest role in fracture movements, and help define critical values of these parameters in terms of canister failures. The thresholds or intervals of values that lead to a certain level of canister failure calculated in this study could be useful for evaluating future candidate sites. Key parameters include: 1. magnitude/frequency of earthquakes; 2. the distance of the earthquake from the canisters; 3. the size and aspect ratio of fractures intersecting canisters; and 4. the orientation of the fractures. The results of this study show that distance and earthquake magnitude are the most important factors, followed by fracture size. Fracture orientation is much less important. Regression relations were developed to predict induced fracture slip as a function of distance and either earthquake magnitude or slip on the earthquake fault. These regression relations were validated by using them to estimate the number of canister failures due to single damaging earthquakes at Aberg, and comparing these estimates with those presented in TR 99-03. The methodology described in TR 99-03 employs several conservative simplifications in order to devise a numerically feasible method to estimate fracture movements due to earthquakes outside of the repository over the next 100,000 years. These simplifications include: 1. fractures are assumed to be frictionless and cohesionless; 2. all energy transmitted to the fracture by the earthquake is assumed to produce elastic deformation of the fracture; no energy is diverted into fracture propagation; and 3. shielding effects of other fractures between the earthquake and the fracture are neglected. The numerical modeling effectively assumes that the

  5. Evaluation of the conservativeness of the methodology for estimating earthquake-induced movements of fractures intersecting canisters

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Cladouhos, Trenton T. [Golder Associates Inc., Las Vegas, NV (United States); Outters, Nils; Follin, Sven [Golder Grundteknik KB, Stockholm (Sweden)

    2000-04-01

    This study evaluates the parameter sensitivity and the conservativeness of the methodology outlined in TR 99-03. Sensitivity analysis focuses on understanding how variability in input parameter values impacts the calculated fracture displacements. These studies clarify what parameters play the greatest role in fracture movements, and help define critical values of these parameters in terms of canister failures. The thresholds or intervals of values that lead to a certain level of canister failure calculated in this study could be useful for evaluating future candidate sites. Key parameters include: 1. magnitude/frequency of earthquakes; 2. the distance of the earthquake from the canisters; 3. the size and aspect ratio of fractures intersecting canisters; and 4. the orientation of the fractures. The results of this study show that distance and earthquake magnitude are the most important factors, followed by fracture size. Fracture orientation is much less important. Regression relations were developed to predict induced fracture slip as a function of distance and either earthquake magnitude or slip on the earthquake fault. These regression relations were validated by using them to estimate the number of canister failures due to single damaging earthquakes at Aberg, and comparing these estimates with those presented in TR 99-03. The methodology described in TR 99-03 employs several conservative simplifications in order to devise a numerically feasible method to estimate fracture movements due to earthquakes outside of the repository over the next 100,000 years. These simplifications include: 1. fractures are assumed to be frictionless and cohesionless; 2. all energy transmitted to the fracture by the earthquake is assumed to produce elastic deformation of the fracture; no energy is diverted into fracture propagation; and 3. shielding effects of other fractures between the earthquake and the fracture are neglected. The numerical modeling effectively assumes that the

  6. Mechanism of High Frequency Shallow Earthquake Source in Mount Soputan, North Sulawesi

    Directory of Open Access Journals (Sweden)

    Yasa Suparman

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.122Moment tensor analysis had been conducted to understand the source mechanism of earthquakes in Soputan Volcano during October - November 2010 period. The record shows shallow earthquakes with frequency about 5 - 9 Hz. Polarity distribution of P-wave first onset indicates that the recorded earthquakes are predominated by earthquakes where almost at all stations have the same direction of P-wave first motions, and earthquakes with upward first motions.In this article, the source mechanism is described as the second derivative of moment tensor, approached with first motion amplitude inversion of P-wave at some seismic stations. The result of moment tensor decomposition are predominated by earthquakes with big percentage in ISO and CLVD component. Focal mechanism shows that the recorded earthquakes have the same strike in northeast-southwest direction with dip about 400 - 600. The sources of the high frequency shallow earthquakes are in the form of tensile-shear cracks or a combination between crack and tensile faulting.

  7. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    Science.gov (United States)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    -frequency dominant SM parameters PGV and CAV with high correlation. PGA and AI, the high frequency components of the ground motion, are underestimated. Such a difference, on the other hand, does not manifest itself on intensity estimations. PGV and CAV values from the reference and MEMS sensors converge to the same seismic intensity level. Hence a strong motion network with MEMS sensors could be a modest option to produce PGV-based damage impact of an urban area under large magnitude earthquake threats in the immediate vicinity.

  8. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin

    2015-02-03

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  9. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin; Dutta, Rishabh; Jonsson, Sigurjon

    2015-01-01

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  10. Optimization of hierarchical 3DRS motion estimators for picture rate conversion

    OpenAIRE

    Heinrich, A.; Bartels, C.L.L.; Vleuten, van der, R.J.; Cordes, C.N.; Haan, de, G.

    2010-01-01

    There is a continuous pressure to lower the implementation complexity and improve the quality of motion-compensated picture rate conversion methods. Since the concept of hierarchy can be advantageously applied to many motion estimation methods, we have extended and improved the current state-of-the-art motion estimation method in this field, 3-Dimensional Recursive Search (3DRS), with this concept. We have explored the extensive parameter space and present an analysis of the importance and in...

  11. SEISMIC SITE RESPONSE ESTIMATION IN THE NEAR SOURCE REGION OF THE 2009 L’AQUILA, ITALY, EARTHQUAKE

    Science.gov (United States)

    Bertrand, E.; Azzara, R.; Bergamashi, F.; Bordoni, P.; Cara, F.; Cogliano, R.; Cultrera, G.; di Giulio, G.; Duval, A.; Fodarella, A.; Milana, G.; Pucillo, S.; Régnier, J.; Riccio, G.; Salichon, J.

    2009-12-01

    The 6th of April 2009, at 3:32 local time, a Mw 6.3 earthquake hit the Abruzzo region (central Italy) causing more than 300 casualties. The epicenter of the earthquake was 95km NE of Rome and 10km from the center of the city of L’Aquila, the administrative capital of the Abruzzo region. This city has a population of about 70,000 and was severely damaged by the earthquake, the total cost of the buildings damage being estimated around 3 Bn €. Historical masonry buildings particularly suffered from the seismic shaking, but some reinforced concrete structures from more modern construction were also heavily damaged. To better estimate the seismic solicitation of these structures during the earthquake, we deployed temporary arrays in the near source region. Downtown L’Aquila, as well as a rural quarter composed of ancient dwelling-centers located western L’Aquila (Roio area), have been instrumented. The array set up downtown consisted of nearly 25 stations including velocimetric and accelerometric sensors. In the Roio area, 6 stations operated for almost one month. The data has been processed in order to study the spectral ratios of the horizontal component of ground motion at the soil site and at a reference site, as well as the spectral ratio of the horizontal and the vertical movement at a single recording site. Downtown L’Aquila is set on a Quaternary fluvial terrace (breccias with limestone boulders and clasts in a marly matrix), which forms the left bank of the Aterno River and slopes down in the southwest direction towards the Aterno River. The alluvial are lying on lacustrine sediments reaching their maximum thickness (about 250m) in the center of L’Aquila. After De Luca et al. (2005), these quaternary deposits seem to lead in an important amplification factor in the low frequency range (0.5-0.6 Hz). However, the level of amplification varies strongly from one point to the other in the center of the city. This new experimentation allows new and more

  12. Earthquake loss estimation for a gas lifeline transportation system in Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Yamin, L.E.; Arambula, S.; Reyes, J.C. [Universidad de los Andes, Bogota (Colombia). Centro de Innovacion y Desarrollo Tecnologico; Belage, S.; Vega, A.; Gil, W. [TransGas de Occidente S.A., Bogota (Colombia)

    2004-07-01

    Methodologies are needed to estimate the seismic risk facing natural gas distribution systems in Colombia in order to establish insurance strategies, risk assessments and emergency plans. This study estimated the maximum probable losses associated with Colombia's 770 km long gas transportation system which stretches from Mariquita to Cali. The pipeline is vulnerable to seismic events, volcanic eruptions, extreme hydrological conditions, and their associated effects such as landslides, liquefaction and avalanches. A geographic information system (GIS) which includes seismic, volcanic, landslide and liquefaction hazards was used to estimate earthquake loss estimates for the natural gas distribution system. Elastic and inelastic finite element methods were used to evaluate the vulnerability of pipelines, bridges, underground crossings and valves. The results were incorporated into the GIS and were used to quantify the probable maximum losses for the system, the most critical associated event, the system's critical zones and the probable damage scenarios. The information was used to define insurance strategies, emergency and contingency plans. It was concluded that due to natural hazards, the natural gas distribution system is at moderate risk despite the low vulnerability of its components. Volcanic eruptions and large earthquakes could produce indirect phenomena such as landslides and liquefaction which could greatly influence the system and which would require adequate risk management. 14 refs., 1 tab., 8 figs.

  13. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    Science.gov (United States)

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives

  14. Estimation of Source Parameters of Historical Major Earthquakes from 1900 to 1970 around Asia and Analysis of Their Uncertainties

    Science.gov (United States)

    Han, J.; Zhou, S.

    2017-12-01

    Asia, located in the conjoined areas of Eurasian, Pacific, and Indo-Australian plates, is the continent with highest seismicity. Earthquake catalogue on the bases of modern seismic network recordings has been established since around 1970 in Asia and the earthquake catalogue before 1970 was much more inaccurate because of few stations. With a history of less than 50 years of modern earthquake catalogue, researches in seismology are quite limited. After the appearance of improved Earth velocity structure model, modified locating method and high-accuracy Optical Character Recognition technique, travel time data of earthquakes from 1900 to 1970 can be included in research and more accurate locations can be determined for historical earthquakes. Hence, parameters of these historical earthquakes can be obtained more precisely and some research method such as ETAS model can be used in a much longer time scale. This work focuses on the following three aspects: (1) Relocating more than 300 historical major earthquakes (M≥7.0) in Asia based on the Shide Circulars, International Seismological Summary and EHB Bulletin instrumental records between 1900 and 1970. (2) Calculating the focal mechanisms of more than 50 events by first motion records of P wave of ISS. (3) Based on the geological data, tectonic stress field and the result of relocation, inferring focal mechanisms of historical major earthquakes.

  15. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng; Hainzl, Sebastian; Mai, Paul Martin

    2015-01-01

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  16. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng

    2015-11-11

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  17. Motion estimation using point cluster method and Kalman filter.

    Science.gov (United States)

    Senesh, M; Wolf, A

    2009-05-01

    The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal

  18. Motion direction estimation based on active RFID with changing environment

    Science.gov (United States)

    Jie, Wu; Minghua, Zhu; Wei, He

    2018-05-01

    The gate system is used to estimate the direction of RFID tags carriers when they are going through the gate. Normally, it is difficult to achieve and keep a high accuracy in estimating motion direction of RFID tags because the received signal strength of tag changes sharply according to the changing electromagnetic environment. In this paper, a method of motion direction estimation for RFID tags is presented. To improve estimation accuracy, the machine leaning algorithm is used to get the fitting function of the received data by readers which are deployed inside and outside gate respectively. Then the fitted data are sampled to get the standard vector. We compare the stand vector with template vectors to get the motion direction estimation result. Then the corresponding template vector is updated according to the surrounding environment. We conducted the simulation and implement of the proposed method and the result shows that the proposed method in this work can improve and keep a high accuracy under the condition of the constantly changing environment.

  19. Modern earthquake engineering offshore and land-based structures

    CERN Document Server

    Jia, Junbo

    2017-01-01

    This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.

  20. Using structures of the August 24, 2016 Amatrice earthquake affected area as seismoscopes for assessing ground motion characteristics and parameters of the main shock and its largest aftershocks

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck Central Apennines (Italy) resulting in 299 fatalities, 388 injuries and about 3000 homeless in Amatrice wider area. Normal faulting surface ruptures along the western slope of Mt Vettore along with provided focal mechanisms demonstrated a NW-SE striking and SE dipping causative normal fault. The dominant building types in the affected area are unreinforced masonry (URM) and reinforced concrete (RC) buildings. Based on our macroseismic survey in the affected area immediately after the earthquake, RC buildings suffered non-structural damage including horizontal cracking of infill and internal partition walls, detachment of infill walls from the surrounding RC frame and detachment of large plaster pieces from infill walls as well as structural damage comprising soft story failure, symmetrical buckling of rods, compression damage at midheight of columns and bursting of over-stressed columns resulting in partial or total collapse. Damage in RC buildings was due to poor quality of concrete, inadequacy of reinforcement, inappropriate foundation close to the edge of slopes leading to differential settlements, poor workmanship and the destructive effect of vertical ground motions. Damage in URM buildings ranged from cracks and detachment of large plaster pieces from load-bearing walls to destruction due to poor workmanship with randomly placed materials bound by low-strength mortars, the effect of the vertical ground motion, inadequate repair and/or strengthening after previous earthquakes as well as inadequate interventions, additions and extensions to older URM buildings. During field surveying, the authors had the opportunity to observe damage induced not only by the main shock but also by its largest aftershocks (Mw 4.5-5.3) during the first three days of the aftershock sequence (August 24-26). Bearing in mind that: (a) soil conditions in foundations of the affected villages were more or less similar, (b) building damage

  1. Rapid estimation of earthquake magnitude from the arrival time of the peak high‐frequency amplitude

    Science.gov (United States)

    Noda, Shunta; Yamamoto, Shunroku; Ellsworth, William L.

    2016-01-01

    We propose a simple approach to measure earthquake magnitude M using the time difference (Top) between the body‐wave onset and the arrival time of the peak high‐frequency amplitude in an accelerogram. Measured in this manner, we find that Mw is proportional to 2logTop for earthquakes 5≤Mw≤7, which is the theoretical proportionality if Top is proportional to source dimension and stress drop is scale invariant. Using high‐frequency (>2  Hz) data, the root mean square (rms) residual between Mw and MTop(M estimated from Top) is approximately 0.5 magnitude units. The rms residuals of the high‐frequency data in passbands between 2 and 16 Hz are uniformly smaller than those obtained from the lower‐frequency data. Top depends weakly on epicentral distance, and this dependence can be ignored for distances earthquake produces a final magnitude estimate of M 9.0 at 120 s after the origin time. We conclude that Top of high‐frequency (>2  Hz) accelerograms has value in the context of earthquake early warning for extremely large events.

  2. Stress drop estimates and hypocenter relocations of induced earthquakes near Fox Creek, Alberta

    Science.gov (United States)

    Clerc, F.; Harrington, R. M.; Liu, Y.; Gu, Y. J.

    2016-12-01

    This study investigates the physical differences between induced and naturally occurring earthquakes using a sequence of events potentially induced by hydraulic fracturing near Fox Creek, Alberta. We perform precise estimations of static stress drop to determine if the range of values is low compared to values estimated for naturally occurring events, as has been suggested by previous studies. Starting with the Natural Resources Canada earthquake catalog and using waveform data from regional networks, we use a spectral ratio method to calculate the static stress drop values of a group of relocated earthquakes occurring in close proximity to hydraulic fracturing wells from December 2013 to June 2015. The spectral ratio method allows us to precisely constrain the corner frequencies of the amplitude spectra by eliminating the path and site effects of co-located event pairs. Our estimated stress drop values range from 0.1 - 149 MPa over the full range of observed magnitudes, Mw 1.5-4, which are on the high side of the typical reported range of tectonic events, but consistent with other regional studies [Zhang et al., 2016; Wang et al., 2016]. , Stress drops values range from 11 to 93 MPa and appear to be scale invariant over the magnitude range Mw 3 - 4, and are less well constrained at lower magnitudes due to noise and bandwidth limitations. We observe no correlation between event stress drop and hypocenter depth or distance from the wells. Relocated hypocenters cluster around corresponding injection wells and form fine-scale lineations, suggesting the presence and orientation of fault planes. We conclude that neither the range of stress drops nor their scaling with respect to magnitude can be used to conclusively discriminate induced and tectonic earthquakes, as stress drop values may be greatly affected by the regional setting. Instead, the double-difference relocations may be a more reliable indicator of induced seismicity.

  3. Spatial and spectral interpolation of ground-motion intensity measure observations

    Science.gov (United States)

    Worden, Charles; Thompson, Eric M.; Baker, Jack W.; Bradley, Brendon A.; Luco, Nicolas; Wilson, David

    2018-01-01

    Following a significant earthquake, ground‐motion observations are available for a limited set of locations and intensity measures (IMs). Typically, however, it is desirable to know the ground motions for additional IMs and at locations where observations are unavailable. Various interpolation methods are available, but because IMs or their logarithms are normally distributed, spatially correlated, and correlated with each other at a given location, it is possible to apply the conditional multivariate normal (MVN) distribution to the problem of estimating unobserved IMs. In this article, we review the MVN and its application to general estimation problems, and then apply the MVN to the specific problem of ground‐motion IM interpolation. In particular, we present (1) a formulation of the MVN for the simultaneous interpolation of IMs across space and IM type (most commonly, spectral response at different oscillator periods) and (2) the inclusion of uncertain observation data in the MVN formulation. These techniques, in combination with modern empirical ground‐motion models and correlation functions, provide a flexible framework for estimating a variety of IMs at arbitrary locations.

  4. Effects of deep basins on structural collapse during large subduction earthquakes

    Science.gov (United States)

    Marafi, Nasser A.; Eberhard, Marc O.; Berman, Jeffrey W.; Wirth, Erin A.; Frankel, Arthur

    2017-01-01

    Deep sedimentary basins are known to increase the intensity of ground motions, but this effect is implicitly considered in seismic hazard maps used in U.S. building codes. The basin amplification of ground motions from subduction earthquakes is particularly important in the Pacific Northwest, where the hazard at long periods is dominated by such earthquakes. This paper evaluates the effects of basins on spectral accelerations, ground-motion duration, spectral shape, and structural collapse using subduction earthquake recordings from basins in Japan that have similar depths as the Puget Lowland basin. For three of the Japanese basins and the Puget Lowland basin, the spectral accelerations were amplified by a factor of 2 to 4 for periods above 2.0 s. The long-duration subduction earthquakes and the effects of basins on spectral shape combined, lower the spectral accelerations at collapse for a set of building archetypes relative to other ground motions. For the hypothetical case in which these motions represent the entire hazard, the archetypes would need to increase up to 3.3 times its strength to compensate for these effects.

  5. Re‐estimated effects of deep episodic slip on the occurrence and probability of great earthquakes in Cascadia

    Science.gov (United States)

    Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy

    2013-01-01

    Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.

  6. Multicomponent seismic loss estimation on the North Anatolian Fault Zone (Turkey)

    Science.gov (United States)

    karimzadeh Naghshineh, S.; Askan, A.; Erberik, M. A.; Yakut, A.

    2015-12-01

    Seismic loss estimation is essential to incorporate seismic risk of structures into an efficient decision-making framework. Evaluation of seismic damage of structures requires a multidisciplinary approach including earthquake source characterization, seismological prediction of earthquake-induced ground motions, prediction of structural responses exposed to ground shaking, and finally estimation of induced damage to structures. As the study region, Erzincan, a city on the eastern part of Turkey is selected which is located in the conjunction of three active strike-slip faults as North Anatolian Fault, North East Anatolian Fault and Ovacik fault. Erzincan city center is in a pull-apart basin underlain by soft sediments that has experienced devastating earthquakes such as the 27 December 1939 (Ms=8.0) and the 13 March 1992 (Mw=6.6) events, resulting in extensive amount of physical as well as economical losses. These losses are attributed to not only the high seismicity of the area but also as a result of the seismic vulnerability of the constructed environment. This study focuses on the seismic damage estimation of Erzincan using both regional seismicity and local building information. For this purpose, first, ground motion records are selected from a set of scenario events simulated with the stochastic finite fault methodology using regional seismicity parameters. Then, existing building stock are classified into specified groups represented with equivalent single-degree-of-freedom systems. Through these models, the inelastic dynamic structural responses are investigated with non-linear time history analysis. To assess the potential seismic damage in the study area, fragility curves for the classified structural types are derived. Finally, the estimated damage is compared with the observed damage during the 1992 Erzincan earthquake. The results are observed to have a reasonable match indicating the efficiency of the ground motion simulations and building analyses.

  7. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  8. Frequency-Domain Joint Motion and Disparity Estimation Using Steerable Filters

    Directory of Open Access Journals (Sweden)

    Dimitrios Alexiadis

    2018-02-01

    Full Text Available In this paper, the problem of joint disparity and motion estimation from stereo image sequences is formulated in the spatiotemporal frequency domain, and a novel steerable filter-based approach is proposed. Our rationale behind coupling the two problems is that according to experimental evidence in the literature, the biological visual mechanisms for depth and motion are not independent of each other. Furthermore, our motivation to study the problem in the frequency domain and search for a filter-based solution is based on the fact that, according to early experimental studies, the biological visual mechanisms can be modelled based on frequency-domain or filter-based considerations, for both the perception of depth and the perception of motion. The proposed framework constitutes the first attempt to solve the joint estimation problem through a filter-based solution, based on frequency-domain considerations. Thus, the presented ideas provide a new direction of work and could be the basis for further developments. From an algorithmic point of view, we additionally extend state-of-the-art ideas from the disparity estimation literature to handle the joint disparity-motion estimation problem and formulate an algorithm that is evaluated through a number of experimental results. Comparisons with state-of-the-art-methods demonstrate the accuracy of the proposed approach.

  9. A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain

    Directory of Open Access Journals (Sweden)

    Ibn-Elhaj E

    2009-01-01

    Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.

  10. A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain

    Directory of Open Access Journals (Sweden)

    E. M. Ismaili Aalaoui

    2009-02-01

    Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.

  11. Geological and historical evidence of irregular recurrent earthquakes in Japan.

    Science.gov (United States)

    Satake, Kenji

    2015-10-28

    Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).

  12. Shared sensory estimates for human motion perception and pursuit eye movements.

    Science.gov (United States)

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C

    2015-06-03

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.

  13. The 2016 south Alboran earthquake (Mw = 6.4): A reactivation of the Ibero-Maghrebian region?

    Science.gov (United States)

    Buforn, E.; Pro, C.; Sanz de Galdeano, C.; Cantavella, J. V.; Cesca, S.; Caldeira, B.; Udías, A.; Mattesini, M.

    2017-08-01

    On 25 January 2016, an earthquake of magnitude Mw = 6.4 occurred at the southern part of the Alboran Sea, between southern Spain and northern Morocco. This shock was preceded by a foreshock (Mw = 5.1) and followed by a long aftershock sequence. Focal mechanism of main shock has been estimated from slip inversion of body waves at teleseismic distances. Solution corresponds to left-lateral strike-slip motion, showing a complex bilateral rupture, formed by two sub-events, with most energy propagating along a plane oriented N30°E plane dipping to the NW. Relocation of larger events of the aftershock series, show two alignments of epicentres in NE-SW and NNE-SSW direction that intersect at the epicentre of the main shock. We have estimated the focal mechanisms of the largest aftershocks from moment tensor inversion at regional distances. We have obtained two families of focal mechanisms corresponding to strike slip for the NNE-SSW alignment and thrusting motion for the NE-SW alignment. Among the faults present in the area the Al Idrisi fault (or fault zone) may be a good candidate for the source of this earthquake. The study of Coulomb Failure Stress shows that it is possible that the 2016 earthquake was triggered by the previous nearby earthquakes of 1994 (Mw = 5.8) and 2004 (Mw = 6.3). The possible seismic reactivation of the central part of the Ibero-Maghrebian region is an open question, but it is clear that the occurrence of the 2016 earthquake confirms that from 1994 the seismicity of central part of IMR is increasing and that focal mechanism of largest earthquakes in this central part correspond to complex ruptures (or zone of fault).

  14. Estimation of object motion parameters from noisy images.

    Science.gov (United States)

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  15. Methodology for estimating human perception to tremors in high-rise buildings

    Science.gov (United States)

    Du, Wenqi; Goh, Key Seng; Pan, Tso-Chien

    2017-07-01

    Human perception to tremors during earthquakes in high-rise buildings is usually associated with psychological discomfort such as fear and anxiety. This paper presents a methodology for estimating the level of perception to tremors for occupants living in high-rise buildings subjected to ground motion excitations. Unlike other approaches based on empirical or historical data, the proposed methodology performs a regression analysis using the analytical results of two generic models of 15 and 30 stories. The recorded ground motions in Singapore are collected and modified for structural response analyses. Simple predictive models are then developed to estimate the perception level to tremors based on a proposed ground motion intensity parameter—the average response spectrum intensity in the period range between 0.1 and 2.0 s. These models can be used to predict the percentage of occupants in high-rise buildings who may perceive the tremors at a given ground motion intensity. Furthermore, the models are validated with two recent tremor events reportedly felt in Singapore. It is found that the estimated results match reasonably well with the reports in the local newspapers and from the authorities. The proposed methodology is applicable to urban regions where people living in high-rise buildings might feel tremors during earthquakes.

  16. Neuromorphic Configurable Architecture for Robust Motion Estimation

    Directory of Open Access Journals (Sweden)

    Guillermo Botella

    2008-01-01

    Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.

  17. Rotation of vertically oriented objects during earthquakes

    Science.gov (United States)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  18. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    Science.gov (United States)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  19. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    International Nuclear Information System (INIS)

    Wang, Jing; Gu, Xuejun

    2013-01-01

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  20. Prestate of Stress and Fault Behavior During the 2016 Kumamoto Earthquake (M7.3)

    Science.gov (United States)

    Matsumoto, Satoshi; Yamashita, Yusuke; Nakamoto, Manami; Miyazaki, Masahiro; Sakai, Shinichi; Iio, Yoshihisa; Shimizu, Hiroshi; Goto, Kazuhiko; Okada, Tomomi; Ohzono, Mako; Terakawa, Toshiko; Kosuga, Masahiro; Yoshimi, Masayuki; Asano, Youichi

    2018-01-01

    Fault behavior during an earthquake is controlled by the state of stress on the fault. Complex coseismic fault slip on large earthquake faults has recently been observed by dense seismic networks, which complicates strong motion evaluations for potential faults. Here we show the three-dimensional prestress field related to the 2016 Kumamoto earthquake. The estimated stress field reveals a spatially variable state of stress that forced the fault to slip in a direction predicted by the "Wallace and Bott Hypothesis." The stress field also exposes the pre-condition of pore fluid pressure on the fault. Large coseismic slip occurred in the low-pressure part of the fault. However, areas with highly pressured fluid also showed large displacement, indicating that the seismic moment of the earthquake was magnified by fluid pressure. These prerupture data could contribute to improved seismic hazard evaluations.

  1. Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

    Directory of Open Access Journals (Sweden)

    Junjie Ren

    2013-01-01

    Full Text Available Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9 occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF and the Guanxian-Jiangyou fault (GJF. However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS and Interferometric Synthetic Aperture Radar (InSAR data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3 × 1017 N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.

  2. Estimation of recurrence interval of large earthquakes on the central Longmen Shan fault zone based on seismic moment accumulation/release model.

    Science.gov (United States)

    Ren, Junjie; Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 10¹⁷ N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.

  3. Natural Time, Nowcasting and the Physics of Earthquakes: Estimation of Seismic Risk to Global Megacities

    Science.gov (United States)

    Rundle, John B.; Luginbuhl, Molly; Giguere, Alexis; Turcotte, Donald L.

    2018-02-01

    Natural Time ("NT") refers to the concept of using small earthquake counts, for example of M > 3 events, to mark the intervals between large earthquakes, for example M > 6 events. The term was first used by Varotsos et al. (2005) and later by Holliday et al. (2006) in their studies of earthquakes. In this paper, we discuss ideas and applications arising from the use of NT to understand earthquake dynamics, in particular by use of the idea of nowcasting. Nowcasting differs from forecasting, in that the goal of nowcasting is to estimate the current state of the system, rather than the probability of a future event. Rather than focus on an individual earthquake faults, we focus on a defined local geographic region surrounding a particular location. This local region is considered to be embedded in a larger regional setting from which we accumulate the relevant statistics. We apply the nowcasting idea to the practical development of methods to estimate the current state of risk for dozens of the world's seismically exposed megacities, defined as cities having populations of over 1 million persons. We compute a ranking of these cities based on their current nowcast value, and discuss the advantages and limitations of this approach. We note explicitly that the nowcast method is not a model, in that there are no free parameters to be fit to data. Rather, the method is simply a presentation of statistical data, which the user can interpret. Among other results, we find, for example, that the current nowcast ranking of the Los Angeles region is comparable to its ranking just prior to the January 17, 1994 Northridge earthquake.

  4. Estimation of the global regularity of a multifractional Brownian motion

    DEFF Research Database (Denmark)

    Lebovits, Joachim; Podolskij, Mark

    This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a ...... that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of the path....

  5. Detailed site effect estimation in the presence of strong velocity reversals within a small-aperture strong-motion array in Iceland

    KAUST Repository

    Rahpeyma, Sahar

    2016-08-11

    The rock site characterization for earthquake engineering applications in Iceland is common due to the easily exposed older bedrock and more recent volcanic lava rock. The corresponding site amplification is generally assumed to be low but has not been comprehensively quantified, especially for volcanic rock. The earthquake strong-motion of the Mw6.3 Ölfus earthquake on 29 May 2008 and 1705 of its aftershocks recorded on the first small-aperture strong-motion array (ICEARRAY I) in Iceland showed consistent and significant variations in ground motion amplitudes over short distances (<2 km) in an urban area located mostly on lava rock. This study analyses the aftershock recordings to quantify the local site effects using the Horizontal to Vertical Spectral Ratio (HVSR) and Standard Spectral Ratio (SSR) methods. Additionally, microseismic data has been collected at array stations and analyzed using the HVSR method. The results between the methods are consistent and show that while the amplification levels remain relatively low, the predominant frequency varies systematically between stations and is found to correlate with the geological units. In particular, for stations on lava rock the underlying geologic structure is characterized by repeated lava-soil stratigraphy characterized by reversals in the shear wave velocity with depth. As a result, standard modeling of HVSR using vertically incident body waves does not apply. Instead, modeling the soil structure as a two-degree-of-freedom dynamic system is found to capture the observed predominant frequencies of site amplification. The results have important implications for earthquake resistant design of structures on rock sites characterized by velocity reversals. © 2016 Elsevier Ltd

  6. Electromagnetic Energy Released in the Subduction (Benioff) Zone in Weeks Previous to Earthquake Occurrence in Central Peru and the Estimation of Earthquake Magnitudes.

    Science.gov (United States)

    Heraud, J. A.; Centa, V. A.; Bleier, T.

    2017-12-01

    During the past four years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone and are connected with the occurrence of earthquakes within a few kilometers of the source of such pulses. This evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. Additional work has been done and the method has now been expanded to provide the instantaneous energy released at the stress areas on the Benioff zone during the precursory stage, before an earthquake occurs. Collected data from several events and in other parts of the country will be shown in a sequential animated form that illustrates the way energy is released in the ULF part of the electromagnetic spectrum. The process has been extended in time and geographical places. Only pulses associated with the occurrence of earthquakes are taken into account in an area which is highly associated with subduction-zone seismic events and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including the animated data video, constitute additional work towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone. The method is providing clearer evidence that electromagnetic precursors in effect conveys physical and useful information prior to the advent of a seismic event

  7. High frequency, high amplitude and low energy earthquake study of nuclear power plants

    International Nuclear Information System (INIS)

    Bernero, R.M.; Lee, A.J.H.; Sobel, P.A.

    1988-01-01

    Nuclear power plants are designed for a seismic input spectrum based on U.S. acceleration time histories. However, data recorded near several earthquakes, mostly in the Eastern U.S., are richer in high frequency energy. This paper focuses on the evaluation of one of these events, i.e., the 1986 Ohio earthquake approximately 10 miles from the Perry nuclear power plant. The Perry Seismic Category I structures were reanalyzed using the in-structure recorded earthquake motions. The calculated in-structure response spectra and recorded response spectra have the same general trends, which shows the buildings are capable of responding to high frequency earthquake motion. Dynamic stresses calculated using the Ohio earthquake recorded motions are substantially lower than the design stresses. The seismic qualification of a wide sample of equipment was reassessed using the Ohio earthquake recorded motions and the margins were found to be larger than one. The 1986 Ohio earthquake was also shown to possess much lower energy content and ductility demand than the design spectra. For the Perry case, the seismic design was shown to have adequate safety margins to accommodate the 1986 Ohio earthquake, even though the design spectra were exceeded at about 20 Hz. The NRC is evaluating the need to generically modify design spectra in light of the recent high frequency recordings. (orig.)

  8. Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

    Science.gov (United States)

    Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.

    2014-12-01

    Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion

  9. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy)

    KAUST Repository

    Imperatori, W.

    2012-03-01

    In this paper, we investigate ground-motion variability due to different faulting approximations and crustal-model parametrizations in the Messina Straits area (Southern Italy). Considering three 1-D velocity models proposed for this region and a total of 72 different source realizations, we compute broad-band (0-10 Hz) synthetics for Mw 7.0 events using a fault plane geometry recently proposed. We explore source complexity in terms of classic kinematic (constant rise-time and rupture speed) and pseudo-dynamic models (variable rise-time and rupture speed). Heterogeneous slip distributions are generated using a Von Karman autocorrelation function. Rise-time variability is related to slip, whereas rupture speed variations are connected to static stress drop. Boxcar, triangle and modified Yoffe are the adopted source time functions. We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.

  10. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  11. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2016-03-01

    Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.

  12. Regional dependence in earthquake early warning and real time seismology

    International Nuclear Information System (INIS)

    Caprio, M.

    2013-01-01

    An effective earthquake prediction method is still a Chimera. What we can do at the moment, after the occurrence of a seismic event, is to provide the maximum available information as soon as possible. This can help in reducing the impact of the quake on population or and better organize the rescue operations in case of post-event actions. This study strives to improve the evaluation of earthquake parameters shortly after the occurrence of a major earthquake, and the characterization of regional dependencies in Real-Time Seismology. The recent earthquake experience from Tohoku (M 9.0, 11.03.2011) showed how an efficient EEW systems can inform numerous people and thus potentially reduce the economic and human losses by distributing warning messages several seconds before the arrival of seismic waves. In the case of devastating earthquakes, usually, in the first minutes to days after the main shock, the common communications channels can be overloaded or broken. In such cases, a precise knowledge of the macroseismic intensity distribution will represent a decisive contribution in help management and in the valuation of losses. In this work, I focused on improving the adaptability of EEW systems (chapters 1 and 2) and in deriving a global relationship for converting peak ground motion into macroseismic intensity and vice versa (chapter 3). For EEW applications, in chapter 1 we present an evolutionary approach for magnitude estimation for earthquake early warning based on real-time inversion of displacement spectra. The Spectrum Inversion (SI) method estimates magnitude and its uncertainty by inferring the shape of the entire displacement spectral curve based on the part of the spectra constrained by available data. Our method can be applied in any region without the need for calibration. SI magnitude and uncertainty estimates are updated each second following the initial P detection and potentially stabilize within 10 seconds from the initial earthquake detection

  13. Regional dependence in earthquake early warning and real time seismology

    Energy Technology Data Exchange (ETDEWEB)

    Caprio, M.

    2013-07-01

    An effective earthquake prediction method is still a Chimera. What we can do at the moment, after the occurrence of a seismic event, is to provide the maximum available information as soon as possible. This can help in reducing the impact of the quake on population or and better organize the rescue operations in case of post-event actions. This study strives to improve the evaluation of earthquake parameters shortly after the occurrence of a major earthquake, and the characterization of regional dependencies in Real-Time Seismology. The recent earthquake experience from Tohoku (M 9.0, 11.03.2011) showed how an efficient EEW systems can inform numerous people and thus potentially reduce the economic and human losses by distributing warning messages several seconds before the arrival of seismic waves. In the case of devastating earthquakes, usually, in the first minutes to days after the main shock, the common communications channels can be overloaded or broken. In such cases, a precise knowledge of the macroseismic intensity distribution will represent a decisive contribution in help management and in the valuation of losses. In this work, I focused on improving the adaptability of EEW systems (chapters 1 and 2) and in deriving a global relationship for converting peak ground motion into macroseismic intensity and vice versa (chapter 3). For EEW applications, in chapter 1 we present an evolutionary approach for magnitude estimation for earthquake early warning based on real-time inversion of displacement spectra. The Spectrum Inversion (SI) method estimates magnitude and its uncertainty by inferring the shape of the entire displacement spectral curve based on the part of the spectra constrained by available data. Our method can be applied in any region without the need for calibration. SI magnitude and uncertainty estimates are updated each second following the initial P detection and potentially stabilize within 10 seconds from the initial earthquake detection

  14. Observation of aftershocks of the 2003 Tokachi-Oki earthquake for estimation of local site effects

    Science.gov (United States)

    Yamanaka, Hiroaki; Motoki, Kentaro; Etoh, Kiminobu; Murayama, Masanari; Komaba, Nobuhiko

    2004-03-01

    Observation of aftershocks of the 2003 Tokachi-Oki earthquake was conducted in the southern part of the Tokachi basin in Hokkaido, Japan for estimation of local site effects. We installed accelerographs at 12 sites in Chokubetsu, Toyokoro, and Taiki areas, where large strong motion records were obtained during the main shock at stations of the K-NET and KiK-net. The stations of the aftershock observation are situated with different geological conditions and some of the sites were installed on Pleistocene layers as reference sites. The site amplifications are investigated using spectral ratio of S-waves from the aftershocks. The S-wave amplification factor is dominant at a period of about 1 second at the site near the KiK-net site in Toyokoro. This amplification fits well with calculated 1D amplification of S-wave in alluvial layers with a thickness of 50 meters. In addition to the site effects, we detected nonlinear amplification of the soft soils only during the main shock. The site effects at the strong motion site of the K-NET at Chokubetsu have a dominate peak at a period of 0.4 seconds. This amplification is due to soft soils having a thickness of about 13 meters. Contrary to the results at the two areas, site effects are not significantly different at the stations in the Taiki area, because of similarity on surface geological conditions.

  15. Radiotherapy of tumors under respiratory motion. Estimation of the motional velocity field and dose accumulation based on 4D image data

    International Nuclear Information System (INIS)

    Werner, Rene

    2013-01-01

    Respiratory motion represents a major challenge in radiation therapy in general, and especially for the therapy of lung tumors. In recent years and due to the introduction of modern techniques to 'acquire temporally resolved computed tomography images (4D CT images), different approaches have been developed to explicitly account for breathing motion during treatment. An integral component of such approaches is the concept of motion field estimation, which aims at a mathematical description and the computation of the motion sequences represented by the patient's images. As part of a 4D dose calculation/dose accumulation, the resulting vector fields are applied for assessing and accounting for breathing-induced effects on the dose distribution to be delivered. The reliability of related 4D treatment planning concepts is therefore directly tailored to the precision of the underlying motion field estimation process. Taking this into account, the thesis aims at developing optimized methods for the estimation of motion fields using 4D CT images and applying the resulting methods for the analysis of breathing induced dosimetric effects in radiation therapy. The thesis is subdivided into three parts that thematically build upon each other. The first part of the thesis is about the implementation, evaluation and optimization of methods for motion field estimation with the goal of precisely assessing respiratory motion of anatomical and pathological structures represented in a patient's 4D er image sequence; this step is the basis of subsequent developments and analysis parts. Especially non-linear registration techniques prove to be well suited to this purpose. After being optimized for the particular problem at hand, it is shown as part of an extensive multi-criteria evaluation study and additionally taking into account publicly accessible evaluation platforms that such methods allow estimating motion fields with subvoxel accuracy - which means that the developed methods

  16. Measurement of the Parameter Kappa, and Reevaluation of Kappa for Small to Moderate Earthquakes at Seismic Stations in the Vicinity of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Biasi, Glenn; Anderson, John G

    2007-01-01

    The parameter kappa was defined by Anderson and Hough (1984) to describe the high-frequency spectral roll-off of the strong motion seismic spectrum. In the work of Su et al., (1996) the numerical value of kappa estimated for sites near Yucca Mountain was small (∼20 ms). The estimate obtained from these events has been applied through a rigorous methodology to develop design earthquake spectra with magnitude over 5.0. Smaller values of kappa lead to higher estimated ground motions in the methodology used by the Probabilistic Seismic Hazard Analysis (PSHA) for Yucca Mountain. An increase of 10 ms in kappa could result in a substantial decrease in the high frequency level of the predicted ground motions. Any parameter that plays such a critical role deserves close examination. Here, we study kappa and its associated uncertainties. The data set used by Su et al (1996) consisted of 12 M 2.8 to 4.5 earthquakes recorded at temporary stations deployed after the June 1992 Little Skull Mountain earthquake. The kappa elements of that study were revisited by Anderson and Su (MOL.20071203.0134) and substantially confirmed. One weakness of those studies is the limited data used. Few of these stations were on tuff or on Yucca Mountain itself. A decade of Southern Great Basin Digital Seismic Network (SGBDSN) recording has now yielded a larger body of on-scale, well calibrated digital ground motion records suitable for investigating kappa. We use the SGBDSN data to check some of the original assumptions, improve the statistical confidence of the conclusions, and determine values of kappa for stations on or near Yucca Mountain. The outstanding issues in kappa analysis, as they apply to Yucca Mountain, include: (1) The number itself. The kappa estimate near 20 msec from Su et al. (1996) and Anderson and Su (MOL.20071203.0134) is markedly smaller than is considered typical in California (Silva, 1995). The low kappa value has engineering consequences because when it is applied in

  17. Measurement of the Parameter Kappa, and Reevaluation of Kappa for Small to Moderate Earthquakes at Seismic Stations in the Vicinity of Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, Glenn; Anderson, John G

    2007-12-05

    The parameter kappa was defined by Anderson and Hough (1984) to describe the high-frequency spectral roll-off of the strong motion seismic spectrum. In the work of Su et al., (1996) the numerical value of kappa estimated for sites near Yucca Mountain was small (~20 ms). The estimate obtained from these events has been applied through a rigorous methodology to develop design earthquake spectra with magnitude over 5.0. Smaller values of kappa lead to higher estimated ground motions in the methodology used by the Probabilistic Seismic Hazard Analysis (PSHA) for Yucca Mountain. An increase of 10 ms in kappa could result in a substantial decrease in the high frequency level of the predicted ground motions. Any parameter that plays such a critical role deserves close examination. Here, we study kappa and its associated uncertainties. The data set used by Su et al (1996) consisted of 12 M 2.8 to 4.5 earthquakes recorded at temporary stations deployed after the June 1992 Little Skull Mountain earthquake. The kappa elements of that study were revisited by Anderson and Su (MOL.20071203.0134) and substantially confirmed. One weakness of those studies is the limited data used. Few of these stations were on tuff or on Yucca Mountain itself. A decade of Southern Great Basin Digital Seismic Network (SGBDSN) recording has now yielded a larger body of on-scale, well calibrated digital ground motion records suitable for investigating kappa. We use the SGBDSN data to check some of the original assumptions, improve the statistical confidence of the conclusions, and determine values of kappa for stations on or near Yucca Mountain. The outstanding issues in kappa analysis, as they apply to Yucca Mountain, include: 1. The number itself. The kappa estimate near 20 msec from Su et al. (1996) and Anderson and Su (MOL.20071203.0134) is markedly smaller than is considered typical in California (Silva, 1995). The low kappa value has engineering consequences because when it is applied in ground

  18. Broadband Ground Motion Simulation Recipe for Scenario Hazard Assessment in Japan

    Science.gov (United States)

    Koketsu, K.; Fujiwara, H.; Irikura, K.

    2014-12-01

    The National Seismic Hazard Maps for Japan, which consist of probabilistic seismic hazard maps (PSHMs) and scenario earthquake shaking maps (SESMs), have been published every year since 2005 by the Earthquake Research Committee (ERC) in the Headquarter for Earthquake Research Promotion, which was established in the Japanese government after the 1995 Kobe earthquake. The publication was interrupted due to problems in the PSHMs revealed by the 2011 Tohoku earthquake, and the Subcommittee for Evaluations of Strong Ground Motions ('Subcommittee') has been examining the problems for two and a half years (ERC, 2013; Fujiwara, 2014). However, the SESMs and the broadband ground motion simulation recipe used in them are still valid at least for crustal earthquakes. Here, we outline this recipe and show the results of validation tests for it.Irikura and Miyake (2001) and Irikura (2004) developed a recipe for simulating strong ground motions from future crustal earthquakes based on a characterization of their source models (Irikura recipe). The result of the characterization is called a characterized source model, where a rectangular fault includes a few rectangular asperities. Each asperity and the background area surrounding the asperities have their own uniform stress drops. The Irikura recipe defines the parameters of the fault and asperities, and how to simulate broadband ground motions from the characterized source model. The recipe for the SESMs was constructed following the Irikura recipe (ERC, 2005). The National Research Institute for Earth Science and Disaster Prevention (NIED) then made simulation codes along this recipe to generate SESMs (Fujiwara et al., 2006; Morikawa et al., 2011). The Subcommittee in 2002 validated a preliminary version of the SESM recipe by comparing simulated and observed ground motions for the 2000 Tottori earthquake. In 2007 and 2008, the Subcommittee carried out detailed validations of the current version of the SESM recipe and the NIED

  19. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  20. Motion Vector Estimation Using Line-Square Search Block Matching Algorithm for Video Sequences

    Directory of Open Access Journals (Sweden)

    Guo Bao-long

    2004-09-01

    Full Text Available Motion estimation and compensation techniques are widely used for video coding applications but the real-time motion estimation is not easily achieved due to its enormous computations. In this paper, a new fast motion estimation algorithm based on line search is presented, in which computation complexity is greatly reduced by using the line search strategy and a parallel search pattern. Moreover, the accurate search is achieved because the small square search pattern is used. It has a best-case scenario of only 9 search points, which is 4 search points less than the diamond search algorithm. Simulation results show that, compared with the previous techniques, the LSPS algorithm significantly reduces the computational requirements for finding motion vectors, and also produces close performance in terms of motion compensation errors.

  1. Realistic Modeling of Seismic Wave Ground Motion in Beijing City

    Science.gov (United States)

    Ding, Z.; Romanelli, F.; Chen, Y. T.; Panza, G. F.

    Algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of observed macroseismic intensity (1976, Tangshan earthquake). The synthetic three-component seismograms have been computed for the Xiji area and Beijing City. The numerical results show that the thick Tertiary and Quaternary sediments are responsible for the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone in the Xiji area associated with the 1976 Tangshan earthquake as well as with the ground motion recorded in Beijing city in the wake of the 1998 Zhangbei earthquake.

  2. Ship motion-based wave estimation using a spectral residual-calculation

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; H. Brodtkorb, Astrid

    2018-01-01

    This paper presents a study focused on a newly developed procedure for wave spectrum estimation using wave-induced motion recordings from a ship. The particular procedure stands out from other existing, similar ship motion-based pro-cedures by its computational efficiency and - at the same time- ...

  3. Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2004-01-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions

  4. Lower bound earthquake magnitude for probabilistic seismic hazard evaluation

    International Nuclear Information System (INIS)

    McCann, M.W. Jr.; Reed, J.W.

    1990-01-01

    This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified. The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed. (orig.)

  5. First-passage Probability Estimation of an Earthquake Response of Seismically Isolated Containment Buildings

    International Nuclear Information System (INIS)

    Hahm, Dae-Gi; Park, Kwan-Soon; Koh, Hyun-Moo

    2008-01-01

    The awareness of a seismic hazard and risk is being increased rapidly according to the frequent occurrences of the huge earthquakes such as the 2008 Sichuan earthquake which caused about 70,000 confirmed casualties and a 20 billion U.S. dollars economic loss. Since an earthquake load contains various uncertainties naturally, the safety of a structural system under an earthquake excitation has been assessed by probabilistic approaches. In many structural applications for a probabilistic safety assessment, it is often regarded that the failure of a system will occur when the response of the structure firstly crosses the limit barrier within a specified interval of time. The determination of such a failure probability is usually called the 'first-passage problem' and has been extensively studied during the last few decades. However, especially for the structures which show a significant nonlinear dynamic behavior, an effective and accurate method for the estimation of such a failure probability is not fully established yet. In this study, we presented a new approach to evaluate the first-passage probability of an earthquake response of seismically isolated structures. The proposed method is applied to the seismic isolation system for the containment buildings of a nuclear power plant. From the numerical example, we verified that the proposed method shows accurate results with more efficient computational efforts compared to the conventional approaches

  6. Generation of artificial earthquake time histories for seismic design at Hanford, Washington

    International Nuclear Information System (INIS)

    Salmon, M.W.; Kuilanoff, G.

    1991-01-01

    The purpose of the development of artificial time-histories is to provide the designer with ground motion estimates which will meet the requirements of the design guidelines at the Hanford site. In particular, the artificial time histories presented in this paper were prepared to assist designers of the Hanford Waste Vitrification Plant (HWVP) with time histories that envelop the requirements for both a large magnitude earthquake (MI > 6.0) and a small magnitude, near-field earthquake (MI < 5. 0). A background of the requirements for both the large magnitude and small magnitude events is presented in this paper. The work done in generating time histories which produce response spectra matching those of the design seismic events is also presented. Finally, some preliminary results from studies performed using the small-magnitude near-filed earthquake time-history are presented

  7. Remote Sensing and Geographic Information Systems (GIS Contribution to the Inventory of Infrastructure Susceptible to Earthquake and Flooding Hazards in North-Eastern Greece

    Directory of Open Access Journals (Sweden)

    Ioanna Papadopoulou

    2012-09-01

    Full Text Available For civil protection reasons there is a strong need to improve the inventory of areas that are more vulnerable to earthquake ground motions or to earthquake-related secondary effects, such as landslides, liquefaction or soil amplifications. The use of remote sensing and Geographic Information Systems (GIS methods along with the related geo-databases can assist local and national authorities to be better prepared and organized. Remote sensing and GIS techniques are investigated in north-eastern Greece in order to contribute to the systematic, standardized inventory of those areas that are more susceptible to earthquake ground motions, to earthquake-related secondary effects and to tsunami-waves. Knowing areas with aggregated occurrence of causal (“negative” factors influencing earthquake shock and, thus, the damage intensity, this knowledge can be integrated into disaster preparedness and mitigation measurements. The evaluation of satellite imageries, digital topographic data and open source geodata contributes to the acquisition of the specific tectonic, geologic and geomorphologic settings influencing local site conditions in an area and, thus, estimate possible damage to be suffered.

  8. Earthquake source scaling and self-similarity estimation from stacking P and S spectra

    Science.gov (United States)

    Prieto, GermáN. A.; Shearer, Peter M.; Vernon, Frank L.; Kilb, Debi

    2004-08-01

    We study the scaling relationships of source parameters and the self-similarity of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5 to 3.4) recorded by the Anza seismic network in southern California. We compute P, S, and preevent noise spectra from each seismogram using a multitaper technique and approximate source and receiver terms by iteratively stacking the spectra. To estimate scaling relationships, we average the spectra in size bins based on their relative moment. We correct for attenuation by using the smallest moment bin as an empirical Green's function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log spectra agree within their estimated uncertainties after shifting along the ω-3 line expected for self-similarity of the source spectra. We also estimate corner frequencies and radiated energy from the relative source spectra using a simple source model. The ratio between radiated seismic energy and seismic moment (proportional to apparent stress) is nearly constant with increasing moment over the magnitude range of our EGF-corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment, as expected from the observed self-similarity in the spectra. The ratio between P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute moment and energy by calibrating our results to local magnitudes for these earthquakes. This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1 MPa.

  9. Assessment of liquefaction potential during earthquakes by arias intensity

    Science.gov (United States)

    Kayen, R.E.; Mitchell, J.K.

    1997-01-01

    An Arias intensity approach to assess the liquefaction potential of soil deposits during earthquakes is proposed, using an energy-based measure of the severity of earthquake-shaking recorded on seismograms of the two horizontal components of ground motion. Values representing the severity of strong motion at depth in the soil column are associated with the liquefaction resistance of that layer, as measured by in situ penetration testing (SPT, CPT). This association results in a magnitude-independent boundary that envelopes initial liquefaction of soil in Arias intensity-normalized penetration resistance space. The Arias intensity approach is simple to apply and has proven to be highly reliable in assessing liquefaction potential. The advantages of using Arias intensity as a measure of earthquake-shaking severity in liquefaction assessment are: Arias intensity is derived from integration of the entire seismogram wave form, incorporating both the amplitude and duration elements of ground motion; all frequencies of recorded motion are considered; and Arias intensity is an appropriate measure to use when evaluating field penetration test methodologies that are inherently energy-based. Predictor equations describing the attenuation of Arias intensity as a function of earthquake magnitude and source distance are presented for rock, deep-stiff alluvium, and soft soil sites.

  10. Ground motion input in seismic evaluation studies: impacts on risk assessment of uniform hazard spectra

    International Nuclear Information System (INIS)

    Wu, S.C.; Sewell, R.T.

    1996-07-01

    Conservatism and variability in seismic risk estimates are studied: effects of uniform hazard spectrum (UHS) are examined for deriving probabilistic estimates of risk and in-structure demand levels, as compared to the more-exact use of realistic time history inputs (of given probability) that depend explicitly on magnitude and distance. This approach differs from the conventional in its exhaustive treatment of the ground-motion threat and in its more detailed assessment of component responses to that threat. The approximate UH-ISS (in-structure spectrum) obtained based on UHS appear to be very close to the more-exact results directed computed from scenario earthquakes. This conclusion does not depend on site configurations and structural characteristics. Also, UH-ISS has composite shapes and may not correspond to the characteristics possessed a single earthquake. The shape is largely affected by the structural property in most cases and can be derived approximately from the corresponding UHS. Motions with smooth spectra, however, will not have the same damage potential as those of more realistic motions with jagged spectral shapes. As a result, UHS-based analysis may underestimate the real demands in nonlinear structural analyses

  11. Motion estimation of tagged cardiac magnetic resonance images using variational techniques

    Czech Academy of Sciences Publication Activity Database

    Carranza-Herrezuelo, N.; Bajo, A.; Šroubek, Filip; Santamarta, C.; Cristóbal, G.; Santos, A.; Ledesma-Carbayo, M.J.

    2010-01-01

    Roč. 34, č. 6 (2010), s. 514-522 ISSN 0895-6111 Institutional research plan: CEZ:AV0Z10750506 Keywords : medical imaging processing * motion estimation * variational techniques * tagged cardiac magnetic resonance images * optical flow Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.110, year: 2010 http://library.utia.cas.cz/separaty/2010/ZOI/sroubek- motion estimation of tagged cardiac magnetic resonance images using variational techniques.pdf

  12. Common Observations for Near-Source Ground Motions and Seismo-Traveling Ionosphere Disturbances Following the 2011 off the Pacific Coast of Tohoku Earthquake, Japan

    Directory of Open Access Journals (Sweden)

    Bor-Shouh Huang

    2012-01-01

    Full Text Available The time history and spatial dependence of seismic-wave propagation on the ground surface and through the ionosphere following the 2011 off the Pacific coast of Tohoku Earthquake were reconstructed from dense seismic networks and from Global Positioning System (GPS array observations, respectively. Using total electron content (TEC data recorded by a dense GPS receiver network, the near-source ionosphere perturbations induced by this giant earthquake were analyzed and high-resolution images of seismic-wave propagation in the ionosphere are presented. Similar spatial images of ground motions were reconstructed from observations by a dense seismic array. Observations of this event provide, for the first time, the opportunity to compare near-source ground motions with the near-field seismo-traveling ionosphere disturbance (STID excited by the ground motions. Based on the results, the nature of the source rupture and seismic-wave propagation are discussed. Both seismic and ionosphere observations indicate that seismic energy propagated radially outward initially from the hypocenter, but that the circular shape of the propagation front became gradually distorted as the source rupture became extended. Coherent wavefronts from the two analyses show contrasting patterns during the later stage of propagation, possibly due to different patterns of spatial variations in the physical properties of the solid earth and of the ionosphere.

  13. E-DECIDER Rapid Response to the M 6.0 South Napa Earthquake

    Science.gov (United States)

    Glasscoe, M. T.; Parker, J. W.; Pierce, M. E.; Wang, J.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.

    2014-12-01

    E-DECIDER initiated rapid response mode when the California Earthquake Clearinghouse was activated the morning following the M6 Napa earthquake. Data products, including: 1) rapid damage and loss estimates, 2) deformation magnitude and slope change maps, and 3) aftershock forecasts were provided to the Clearinghouse partners within 24 hours of the event via XchangeCore Web Service Data Orchestration sharing. NASA data products were provided to end-users via XchangeCore, EERI and Clearinghouse websites, and ArcGIS online for Napa response, reaching a wide response audience. The E-DECIDER team helped facilitate rapid delivery of NASA products to stakeholders and participated in Clearinghouse Napa earthquake briefings to update stakeholders on product information. Rapid response products from E-DECIDER can be used to help prioritize response efforts shortly after the event has occurred. InLET (Internet Loss Estimation Tool) post-event damage and casualty estimates were generated quickly after the Napa earthquake. InLET provides immediate post-event estimates of casualties and building damage by performing loss/impact simulations using USGS ground motion data and FEMA HAZUS damage estimation technology. These results were provided to E-DECIDER by their collaborators, ImageCat, Inc. and the Community Stakeholder Network (CSN). Strain magnitude and slope change maps were automatically generated when the Napa earthquake appeared on the USGS feed. These maps provide an early estimate of where the deformation has occurred and where damage may be localized. Using E-DECIDER critical infrastructure overlays with damage estimates, decision makers can direct response effort that can be verified later with field reconnaissance and remote sensing-based observations. Earthquake aftershock forecast maps were produced within hours of the event. These maps highlight areas where aftershocks are likely to occur and can also be coupled with infrastructure overlays to help direct response

  14. On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes

    Science.gov (United States)

    Cecioni, Claudia; Bellotti, Giorgio

    2018-01-01

    Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.

  15. Estimation of organ motion for gated PET imaging in small animal using artificial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Yu, Jung Woo; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    The image quality is lowered by reducing of contrast and signal due to breathing and heart motion when acquire Positron Emission Tomography (PET) image of small animal tumor. Therefore motion correction is required for betterment of quantitative estimation of tumor. The gated PET using external monitoring device is commonly used for motion correction. But that method has limitation by reason of detection from the outside. Therefore, we had devised the in-vivo motion assessment. In-vivo motion has been demonstrated in lung, liver and abdomen region of rats by coated molecular sieve. In PET image analysis, count and SNR were drawn in the target region. The motion compensation PET image for optimal gate number was confirmed by FWHM. Artificial motion evaluation of tumor using molecular sieve suggests possibility of motion correction modeling without external monitoring devices because it estimates real internal motion of lung, liver, and abdomen. The purpose of this study was to assess the optimal gates number for each region and to improve quantitative estimation of tumor

  16. Evaluating a kinematic method for generating broadband ground motions for great subduction zone earthquakes: Application to the 2003 Mw 8.3 Tokachi‐Oki earthquake

    Science.gov (United States)

    Wirth, Erin A.; Frankel, Arthur; Vidale, John E.

    2017-01-01

    We compare broadband synthetic seismograms with recordings of the 2003 Mw">MwMw 8.3 Tokachi‐Oki earthquake to evaluate a compound rupture model, in which slip on the fault consists of multiple high‐stress‐drop asperities superimposed on a background slip distribution with longer rise times. Low‐frequency synthetics (frequency (>1  Hz">>1  Hz>1  Hz) stochastic synthetics using a matched filter at 1 Hz. We show that this compound rupture model and overall approach accurately reproduces waveform envelopes and observed response spectral accelerations (SAs) from the Tokachi‐Oki event. We find that sufficiently short subfault rise times (i.e., ∼1  Hz∼1  Hz. This is achieved by either (1) including distinct subevents with short rise times, as may be suggested by the Tokachi‐Oki data, or (2) imposing a fast‐slip velocity over the entire rupture area. We also include a systematic study on the effects of varying several kinematic rupture parameters. We find that simulated strong ground motions are sensitive to the average rupture velocity and coherence of the rupture front, with more coherent ruptures yielding higher response SAs. We also assess the effects of varying the average slip velocity and the character (i.e., area, magnitude, and location) of high‐stress‐drop subevents. Even in the absence of precise constraints on these kinematic rupture parameters, our simulations still reproduce major features in the Tokachi‐Oki earthquake data, supporting its accuracy in modeling future large earthquakes.

  17. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  18. Insights into Ground-Motion Processes from Intensity Data (Invited)

    Science.gov (United States)

    Atkinson, G. M.

    2009-12-01

    Analysis of intensity data gathered from the on-line “Did You Feel It?” (DYFI) questionnaire program (Wald et al., 1999, Seism. Res. L.) provides new insights into both contemporary and historical ground-motion processes; this is particularly important for sparsely-instrumented regions. The value of the DYFI data lies in their vast quantities and large spatial coverage. With thousands to tens of thousands of respondents providing information on the felt and damage characteristics of widely-felt earthquakes, DYFI intensity data provide surprisingly high resolution of ground-motion features. The large data quantities allow techniques such as binning to be used to bring out these features in a statistically-stable way (Atkinson and Wald, 2007, Seism. Res. L.), while correlations of the statistics of DYFI intensities with instrumental ground motions provide the link between intensity and engineering ground-motion parameters (Wald et al., 1999, Earthquake Spectra). This link is largely independent of region if its dependence on earthquake magnitude and distance is taken into account (Kaka and Atkinson, 2007, BSSA). Thus DYFI data provide a valuable tool with which ground motions can be estimated, if their felt and damage effects have been reported. This is useful both for understanding contemporary events in sparsely-instrumented regions, and for re-evaluating historical events, for which only intensity data are available. By using calibrated intensity observations, a number of ground-motion processes can be investigated based on DYFI and/or historical intensity data. For example, intensity data shed light on source scaling issues, and whether source parameters vary regionally. They can also be used to document regional attenuation features, such as the attenuation rate and its variation with distance (Atkinson and Wald, 2007). A key uncertainty in these investigations concerns the effect of spectral shape on intensity; the spectral shape is influenced by site

  19. The 2012 August 27 Mw7.3 El Salvador earthquake: expression of weak coupling on the Middle America subduction zone

    Science.gov (United States)

    Geirsson, Halldor; LaFemina, Peter C.; DeMets, Charles; Hernandez, Douglas Antonio; Mattioli, Glen S.; Rogers, Robert; Rodriguez, Manuel; Marroquin, Griselda; Tenorio, Virginia

    2015-09-01

    Subduction zones exhibit variable degrees of interseismic coupling as resolved by inversions of geodetic data and analyses of seismic energy release. The degree to which a plate boundary fault is coupled can have profound effects on its seismogenic behaviour. Here we use GPS measurements to estimate co- and post-seismic deformation from the 2012 August 27, Mw7.3 megathrust earthquake offshore El Salvador, which was a tsunami earthquake. Inversions of estimated coseismic displacements are in agreement with published seismically derived source models, which indicate shallow (earthquake exceeds the coseismic deformation. Our analysis indicates that the post-seismic deformation is dominated by afterslip, as opposed to viscous relaxation, and we estimate a post-seismic moment release one to eight times greater than the coseismic moment during the first 500 d, depending on the relative location of coseismic versus post-seismic slip on the plate interface. We suggest that the excessive post-seismic motion is characteristic for the El Salvador-Nicaragua segment of the Central American margin and may be a characteristic of margins hosting tsunami earthquakes.

  20. Difference of Horizontal-to-Vertical (H/V) Spectral Ratios of Microtremors and Earthquake Motions: Theory and Observation

    Science.gov (United States)

    Kawase, H.; Nagashima, F.; Matsushima, S.; Sanchez-Sesma, F. J.

    2013-05-01

    Horizontal-to-vertical spectral ratios (HVRs) of microtremors have been traditionally interpreted theoretically as representing the Rayleigh wave ellipticity or just utilized a convenient tool to extract predominant periods of ground. However, based on the diffuse field theory (Sánchez-Sesma et al., 2011) the microtremor H/V spectral ratios (MHVRs) correspond to the square root of the ratio of the imaginary part of horizontal displacement for a horizontally applied unit harmonic load and the imaginary part of vertical displacement for a vertically applied unit load. The same diffuse field concept leads us to derive a simple formula for earthquake HVRs (EHVRs), that is, the ratio of the horizontal motion on the surface for a vertical incidence of S wave divided by the vertical motion on the surface for a vertical incidence of P wave with a fixed coefficient (Kawase et al., 2011). The difference for EHVRs comes from the fact that primary contribution of earthquake motions would be of plane body waves. Traditionally EHVRs are interpreted as the responses of inclined SV wave incidence only for their S wave portions. Without these compact theoretical solutions, EHVRs and MHVRs are either considered to be very similar/equivalent, or totally different in the previous studies. With these theoretical solutions we need to re-focus our attention on the difference of HVRs. Thus we have compared here HVRs at several dozens of strong motion stations in Japan. When we compared observed HVRs we found that EHVRs tend to be higher in general than the MHVRs, especially around their peaks. As previously reported, their general shapes share the common features. Especially their fundamental peak and trough frequencies show quite a good match to each other. However, peaks in EHVRs in the higher frequency range would not show up in MHVRs. When we calculated theoretical HVRs separately at these target sites, their basic characteristics correspond to these observed differences. At this