WorldWideScience

Sample records for earthquake induced rock

  1. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    Science.gov (United States)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  2. Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load

    International Nuclear Information System (INIS)

    Hernelind, Jan

    2010-08-01

    Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell

  3. Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load

    Energy Technology Data Exchange (ETDEWEB)

    Hernelind, Jan (5T Engineering AB (Sweden))

    2010-08-15

    Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell

  4. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    International Nuclear Information System (INIS)

    Read, Rodney S.

    2011-07-01

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  5. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    Energy Technology Data Exchange (ETDEWEB)

    Read, Rodney S. (RSRead Consulting Inc. (Canada))

    2011-07-15

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  6. Rocking motion of structures under earthquakes. Overturning of 2-DOF system

    International Nuclear Information System (INIS)

    Kobayashi, Koichi; Watanabe, Tetsuya; Tanaka, Kihachiro; Tomoda, Akinori

    2011-01-01

    In recent years, huge earthquakes happen, for example, The South Hyogo prefecture Earthquake in 1995, The Mid Niigata Prefecture Earthquake in 2004, The Iwate-Miyagi Nairiku Earthquake in 2008. In The Niigataken Chuetsu-oki Earthquake in 2007, hundreds of drums fell down and water spilled out. A lot of studies about rocking behavior of rigid body had been performed from 1960's. However, these studies were only for a specific condition of the structure size or input vibration characteristics. Therefore, generalizes fall condition for earthquake is required. This paper deals with the analytical and the experimental study of the rocking vibration of 1-DOF rocking system, 2-DOF vibration-rocking system and 2-DOF rocking system under earthquakes. In this study, the equation of motion for each rocking systems are developed. The numerical model of 2-DOF rocking system is evaluated by free rocking experiment. In this paper, 'Overturning Map' which can distinguish whether structures falls or not is proposed. The overturning map of each rocking systems excited by the artificial earthquake wave calculated from the design spectrum is shown. As the result, overturning condition of structures is clarified. (author)

  7. Nucleation speed limit on remote fluid induced earthquakes

    Science.gov (United States)

    Parsons, Thomas E.; Akinci, Aybige; Malignini, Luca

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.

  8. Nucleation speed limit on remote fluid-induced earthquakes

    Science.gov (United States)

    Parsons, Tom; Malagnini, Luca; Akinci, Aybige

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes. PMID:28845448

  9. NEESROCK: A Physical and Numerical Modeling Investigation of Seismically Induced Rock-Slope Failure

    Science.gov (United States)

    Applegate, K. N.; Wartman, J.; Keefer, D. K.; Maclaughlin, M.; Adams, S.; Arnold, L.; Gibson, M.; Smith, S.

    2013-12-01

    Worldwide, seismically induced rock-slope failures have been responsible for approximately 30% of the most significant landslide catastrophes of the past century. They are among the most common, dangerous, and still today, least understood of all seismic hazards. Seismically Induced Rock-Slope Failure: Mechanisms and Prediction (NEESROCK) is a major research initiative that fully integrates physical modeling (geotechnical centrifuge) and advanced numerical simulations (discrete element modeling) to investigate the fundamental mechanisms governing the stability of rock slopes during earthquakes. The research is part of the National Science Foundation-supported Network for Earthquake Engineering Simulation Research (NEES) program. With its focus on fractures and rock materials, the project represents a significant departure from the traditional use of the geotechnical centrifuge for studying soil, and pushes the boundaries of physical modeling in new directions. In addition to advancing the fundamental understanding of the rock-slope failure process under seismic conditions, the project is developing improved rock-slope failure assessment guidelines, analysis procedures, and predictive tools. Here, we provide an overview of the project, present experimental and numerical modeling results, discuss special considerations for the use of synthetic rock materials in physical modeling, and address the suitability of discrete element modeling for simulating the dynamic rock-slope failure process.

  10. Earthquake induced rock shear through a deposition hole when creep is considered - first model. Effect on the canister and the buffer

    Energy Technology Data Exchange (ETDEWEB)

    Hernelind, Jan [5T Engineering AB, Vaesteraas (Sweden)

    2006-08-15

    March, 2000, a study regarding 'Earthquake induced rock shear through a deposition hole' was performed. Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated in a project that includes both laboratory tests and finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. The rock shear has been modeled with finite element calculations with the code ABAQUS. A three-dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place perpendicular to the canister at the quarter point. The shear calculations have been driven to a total shear of 20 cm. This report summarizes the effect of considering creep in the canister for one of the previous cases. Two different creep models have been used - the first one has been suggested by K Pettersson and the second one has been suggested by R Sandstroem. Both have been implemented in the FE-code ABAQUS as a user supplied subroutine CREEP. This report summarizes results obtained by using the first model suggested by K Pettersson. As can be seen from the obtained results using the first creep model (in the following named creep{sub k}p) the effect of creep in copper doesn't affect stresses and strains in the buffer and the steel part very much. However, especially the stresses in the canister are highly affected.

  11. Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments

    Directory of Open Access Journals (Sweden)

    T. Bleier

    2010-09-01

    Full Text Available Analysis of the 2007 M5.4 Alum Rock earthquake near San José California showed that magnetic pulsations were present in large numbers and with significant amplitudes during the 2 week period leading up the event. These pulsations were 1–30 s in duration, had unusual polarities (many with only positive or only negative polarities versus both polarities, and were different than other pulsations observed over 2 years of data in that the pulse sequence was sustained over a 2 week period prior to the quake, and then disappeared shortly after the quake. A search for the underlying physics process that might explain these pulses was was undertaken, and one theory (Freund, 2002 demonstrated that charge carriers were released when various types of rocks were stressed in a laboratory environment. It was also significant that the observed charge carrier generation was transient, and resulted in pulsating current patterns. In an attempt to determine if this phenomenon occurred outside of the laboratory environment, the authors scaled up the physics experiment from a relatively small rock sample in a dry laboratory setting, to a large 7 metric tonne boulder comprised of Yosemite granite. This boulder was located in a natural, humid (above ground setting at Bass Lake, Ca. The boulder was instrumented with two Zonge Engineering, Model ANT4 induction type magnetometers, two Trifield Air Ion Counters, a surface charge detector, a geophone, a Bruker Model EM27 Fourier Transform Infra Red (FTIR spectrometer with Sterling cycle cooler, and various temperature sensors. The boulder was stressed over about 8 h using expanding concrete (Bustartm, until it fractured into three major pieces. The recorded data showed surface charge build up, magnetic pulsations, impulsive air conductivity changes, and acoustical cues starting about 5 h before the boulder actually broke. These magnetic and air conductivity pulse signatures resembled both the laboratory

  12. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    OpenAIRE

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-01-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK “hot dry rock” experimental geothermal...

  13. An overview of a possible approach to calculate rock movements due to earthquakes at Finnish nuclear waste repository sites

    International Nuclear Information System (INIS)

    LaPointe, P.R.; Cladouhos, T.T.

    1999-02-01

    The report outlines a possible approach to estimating rock movements due to earthquakes that may diminish canister safety. The method is based upon an approach developed for studying similar problems in Sweden at three generic Swedish sites. In the first part of the report, the problem of rock movements during earthquakes is described. The second section of the report outlines the approach used to estimate rock movements in Sweden, and discusses how the approach could be adapted to evaluating movements at Finnish repositories. This section also discusses data needs and potential problems in applying the approach in Finland. The next section presents some simple earthquake calculations for the four Finnish sites. These simulations use the discrete fracture network model geometric parameters developed by VTT (Technical Research Centre of Finland) for the use in hydrological calculations. The calculations are not meant for performance assessment purposes for reasons discussed in the report, but are designed to show (1) the importance of fracture size, intensity and orientation on induced displacement magnitudes; (2) the need for additional studies with regards to fracture size and intensity; and (3) the need to resolve issues regarding the role of post-glacial faulting, glacial rebound and tectonic processes in present-day and future earthquakes. (orig.)

  14. An integrated approach for analysing earthquake-induced surface effects: A case study from the Northern Apennines, Italy

    Science.gov (United States)

    Castaldini, D.; Genevois, R.; Panizza, M.; Puccinelli, A.; Berti, M.; Simoni, A.

    This paper illustrates research addressing the subject of the earthquake-induced surface effects by means of a multidisciplinary approach: tectonics, neotectonics, seismology, geology, hydrogeology, geomorphology, soil/rock mechanics have been considered. The research is aimed to verify in areas affected by earthquake-triggered landslides a methodology for the identification of potentially unstable areas. The research was organized according to regional and local scale studies. In order to better emphasise the complexity of the relationships between all the parameters affecting the stability conditions of rock slopes in static and dynamic conditions a new integrated approach, Rock Engineering Systems (RES), was applied in the Northern Apennines. In the paper, the different phases of the research are described in detail and an example of the application of RES method in a sample area is reported. A significant aspect of the study can be seen in its attempt to overcome the exclusively qualitative aspects of research into the relationship between earthquakes and induced surface effects, and to advance the idea of beginning a process by which this interaction can be quantified.

  15. Ozone generation by rock fracture: Earthquake early warning?

    Energy Technology Data Exchange (ETDEWEB)

    Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn [Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2011-11-14

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  16. Review of induced seismic hazard for Hot Dry Rock Project, Rosemanowes, Cornwall

    International Nuclear Information System (INIS)

    Skipp, B.O.; Woo, G.; Eldred, P.J.L.

    1991-01-01

    Geothermal energy installations perturb the earth's crust and so may provoke earthquakes. The 21st Dry Rock (HDR) Geothermal Project at Rosemanowes Quarry in Cornwall has given rise to low level unfelt acoustic emission and possibly small, felt earthquakes. This review of induced seismic hazard study examines the effects that the HDR Project could have on seismic events. Events which are modified by the project, in magnitude and time of occurrence, as well as those which might not have occurred at all were studied. From an examination of the literature and relevant seismicity models, a broad estimate of induced seismic hazard was established. (U.K)

  17. Prediction of strong earthquake motions on rock surface using evolutionary process models

    International Nuclear Information System (INIS)

    Kameda, H.; Sugito, M.

    1984-01-01

    Stochastic process models are developed for prediction of strong earthquake motions for engineering design purposes. Earthquake motions with nonstationary frequency content are modeled by using the concept of evolutionary processes. Discussion is focused on the earthquake motions on bed rocks which are important for construction of nuclear power plants in seismic regions. On this basis, two earthquake motion prediction models are developed, one (EMP-IB Model) for prediction with given magnitude and epicentral distance, and the other (EMP-IIB Model) to account for the successive fault ruptures and the site location relative to the fault of great earthquakes. (Author) [pt

  18. Development of evaluation methods for impact of earthquake-induced slope failure on nearby critical structures. Analysis of behavior of collapsed rock masses using 3-D distinct element method

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Tochigi, Hitoshi; Nakajima, Masato; Shirai, Koji

    2012-01-01

    Recently, importance of evaluation for impact of earthquake-induced slope failure on nearby critical structures is increasing in order to evaluate seismic stability of the slope, in addition to evaluating the possibilities of slope failure. In this study, we presented an examination flow chart to evaluate the impact on structures after slope failure. In the examination flow chart, we assumed the following four considerations; (1) evaluation of the collapse region of the slope, (2) evaluation of behavior of the collapsed rock masses, (3) evaluation of the impact on the structures, (4) examination of the countermeasures. And, for the purpose of using three dimensional distinct element method (DEM) for evaluation of behavior of the collapsed rock masses, we firstly confirmed applicability of DEM to behavior of a mass hurtling down the slope by means of comparing with the model test results. Moreover, we clarified influence of initial position or restitution coefficient of rock masses on final traveling distance of collapsed rock masses. (author)

  19. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  20. Chaotic behavior of earthquakes induced by a nonlinear magma up flow

    International Nuclear Information System (INIS)

    Pelap, F.B.; Kagho, L.Y.; Fogang, C.F.

    2016-01-01

    This paper considers the dynamics of a modified 1D nonlinear spring-block model for earthquake subjected to the strengths induced by the motion of the tectonic plates and the up flow of magma during volcanism. Based on the multiple time scales method, we establish that after the slip, the fault remains active and the frictions increase with the power of the earthquake. We also obtain in the non-resonance case that the appearing probability of an event decreases with these frictions. In the resonance case, the dynamics of harmonic oscillations show that the rocks constituting the block will fracture or resist to the effects induced by the magma motion. Our analytical investigations are complemented by numerical simulations from which it appears that, for given values of the magma thrust strength magnitude, the friction coefficient, the quadratic and cubic nonlinear parameters, the system exhibits chaotic behavior.

  1. Probabilistic Approach to Provide Scenarios of Earthquake-Induced Slope Failures (PARSIFAL Applied to the Alcoy Basin (South Spain

    Directory of Open Access Journals (Sweden)

    Salvatore Martino

    2018-02-01

    Full Text Available The PARSIFAL (Probabilistic Approach to pRovide Scenarios of earthquake-Induced slope FAiLures approach was applied in the basin of Alcoy (Alicante, South Spain, to provide a comprehensive scenario of earthquake-induced landslides. The basin of Alcoy is well known for several historical landslides, mainly represented by earth-slides, that involve urban settlement as well as infrastructures (i.e., roads, bridges. The PARSIFAL overcomes several limits existing in other approaches, allowing the concomitant analyses of: (i first-time landslides (due to both rock-slope failures and shallow earth-slides and reactivations of existing landslides; (ii slope stability analyses of different failure mechanisms; (iii comprehensive mapping of earthquake-induced landslide scenarios in terms of exceedance probability of critical threshold values of co-seismic displacements. Geotechnical data were used to constrain the slope stability analysis, while specific field surveys were carried out to measure jointing and strength conditions of rock masses and to inventory already existing landslides. GIS-based susceptibility analyses were performed to assess the proneness to shallow earth-slides as well as to verify kinematic compatibility to planar or wedge rock-slides and to topples. The experienced application of PARSIFAL to the Alcoy basin: (i confirms the suitability of the approach at a municipality scale, (ii outputs the main role of saturation in conditioning slope instabilities in this case study, (iii demonstrates the reliability of the obtained results respect to the historical data.

  2. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    Science.gov (United States)

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-03-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK "hot dry rock" experimental geothermal site (Rosemanowes, Cornwall). We quantify the evolution of several metrics used to characterise induced seismicity, including the seismic strain partition factor and the "seismogenic index". The results show a low strain partition factor of 0.01% and a low seismogenenic index indicating that aseismic processes dominate. We also analyse the spatio-temporal distribution of hypocentres, using simple models for the evolution of hydraulic diffusivity by (a) isotropic and (b) anisotropic pore-pressure relaxation. The principal axes of the diffusivity or permeability tensor inferred from the spatial distribution of earthquake foci are aligned parallel to the present-day stress field, although the maximum permeability is vertical, whereas the maximum principal stress is horizontal. Our results are consistent with a triggering mechanism that involves (a) seismic shear slip along optimally-oriented pre-existing fractures, (b) a large component of aseismic slip with creep (c) activation of tensile fractures as hydraulic conduits created by both the present-day stress field and by the induced shear slip, both exploiting pre-existing joint sets exposed in borehole data.

  3. Reliability Based assessment of buildings under earthquakes due to gas extraction

    NARCIS (Netherlands)

    Steenbergen, R.D.J.M.; Vrouwenvelder, A.C.W.M.

    2014-01-01

    In the northern part of the Netherlands over de last decades shallow earthquakes are induced due to large scale gas extraction from the Groningen gas field. Earthquakes occur due to the compaction of the reservoir rock, which leads to subsidence at surface and strain build-up in the reservoir rock

  4. Pre-earthquake signals – Part I: Deviatoric stresses turn rocks into a source of electric currents

    Directory of Open Access Journals (Sweden)

    F. T. Freund

    2007-09-01

    Full Text Available Earthquakes are feared because they often strike so suddenly. Yet, there are innumerable reports of pre-earthquake signals. Widespread disagreement exists in the geoscience community how these signals can be generated in the Earth's crust and whether they are early warning signs, related to the build-up of tectonic stresses before major seismic events. Progress in understanding and eventually using these signals has been slow because the underlying physical process or processes are basically not understood. This has changed with the discovery that, when igneous or high-grade metamorphic rocks are subjected to deviatoric stress, dormant electronic charge carriers are activated: electrons and defect electrons. The activation increases the number density of mobile charge carriers in the rocks and, hence, their electric conductivity. The defect electrons are associated with the oxygen anion sublattice and are known as positive holes or pholes for short. The boundary between stressed and unstressed rock acts a potential barrier that lets pholes pass but blocks electrons. Therefore, like electrons and ions in an electrochemical battery, the stress-activated electrons and pholes in the "rock battery" have to flow out in different directions. When the circuit is closed, the battery currents can flow. The discovery of such stress-activated currents in crustal rocks has far-reaching implications for understanding pre-earthquake signals.

  5. Displaced rocks, strong motion, and the mechanics of shallow faulting associated with the 1999 Hector Mine, California, earthquake

    Science.gov (United States)

    Michael, Andrew J.; Ross, Stephanie L.; Stenner, Heidi D.

    2002-01-01

    The paucity of strong-motion stations near the 1999 Hector Mine earthquake makes it impossible to make instrumental studies of key questions about near-fault strong-motion patterns associated with this event. However, observations of displaced rocks allow a qualitative investigation of these problems. By observing the slope of the desert surface and the frictional coefficient between these rocks and the desert surface, we estimate the minimum horizontal acceleration needed to displace the rocks. Combining this information with observations of how many rocks were displaced in different areas near the fault, we infer the level of shaking. Given current empirical shaking attenuation relationships, the number of rocks that moved is slightly lower than expected; this implies that slightly lower than expected shaking occurred during the Hector Mine earthquake. Perhaps more importantly, stretches of the fault with 4 m of total displacement at the surface displaced few nearby rocks on 15?? slopes, suggesting that the horizontal accelerations were below 0.2g within meters of the fault scarp. This low level of shaking suggests that the shallow parts of this rupture did not produce strong accelerations. Finally, we did not observe an increased incidence of displaced rocks along the fault zone itself. This suggests that, despite observations of fault-zone-trapped waves generated by aftershocks of the Hector Mine earthquake, such waves were not an important factor in controlling peak ground acceleration during the mainshock.

  6. Energy budgets of mining-induced earthquakes and their interactions with nearby stopes

    Science.gov (United States)

    McGarr, A.

    2000-01-01

    In the early 1960's, N.G.W. Cook, using an underground network of geophones, demonstrated that most Witwatersrand tremors are closely associated with deep level gold mining operations. He also showed that the energy released by the closure of the tabular stopes at depths of the order of 2 km was more than sufficient to account for the mining-induced earthquakes. I report here updated versions of these two results based on more modern underground data acquired in the Witwatersrand gold fields. Firstly, an extensive suite of in situ stress data indicate that the ambient state of crustal stress here is close to the failure state in the absence of mining even though the tectonic setting is thoroughly stable. Mining initially stabilizes the rock mass by reducing the pore fluid pressure from its initial hydrostatic state to nearly zero. The extensive mine excavations, as Cook showed, concentrate the deviatoric stresses, in localized regions of the abutments, back into a failure state resulting in seismicity. Secondly, there appears to be two distinct types of mining-induced earthquakes: the first is strongly coupled to the mining and involves shear failure plus a coseismic volume reduction; the second type is not evidently coupled to any particular mine face, shows purely deviatoric failure, and is presumably caused by more regional changes in the state of stress due to mining. Thirdly, energy budgets for mining induced earthquakes of both types indicate that, of the available released energy, only a few per cent is radiated by the seismic waves with the majority being consumed in overcoming fault friction. Published by Elsevier Science Ltd.In the early 1960's, N.G.W. Cook, using an underground network of geophones, demonstrated that most Witwatersrand tremors are closely associated with deep level gold mining operations. He also showed that the energy released by the closure of the tabular stopes at depths of the order of 2 km was more than sufficient to account for the

  7. Constraints on behaviour of a mining‐induced earthquake inferred from laboratory rock mechanics experiments

    Science.gov (United States)

    McGarr, Arthur F.; Johnston, Malcolm J.; Boettcher, M.; Heesakkers, V.; Reches, Z.

    2013-01-01

    On December 12, 2004, an earthquake of magnitude 2.2, located in the TauTona Gold Mine at a depth of about 3.65 km in the ancient Pretorius fault zone, was recorded by the in-mine borehole seismic network, yielding an excellent set of ground motion data recorded at hypocentral distances of several km. From these data, the seismic moment tensor, indicating mostly normal faulting with a small implosive component, and the radiated energy were measured; the deviatoric component of the moment tensor was estimated to be M0 = 2.3×1012 N·m and the radiated energy ER = 5.4×108 J. This event caused extensive damage along tunnels within the Pretorius fault zone. What rendered this earthquake of particular interest was the underground investigation of the complex pattern of exposed rupture surfaces combined with laboratory testing of rock samples retrieved from the ancient fault zone (Heesakkers et al.2011a, 2011b). Event 12/12 2004 was the result of fault slip across at least four nonparallel fault surfaces; 25 mm of slip was measured at one location on the rupture segment that is most parallel with a fault plane inferred from the seismic moment tensor, suggesting that this segment accounted for much of the total seismic deformation. By applying a recently developed technique based on biaxial stick-slip friction experiments (McGarr2012, 2013) to the seismic results, together with the 25 mm slip observed underground, we estimated a maximum slip rate of at least 6.6 m/s, which is consistent with the observed damage to tunnels in the rupture zone. Similarly, the stress drop and apparent stress were found to be correspondingly high at 21.9 MPa and 6.6 MPa, respectively. The ambient state of stress, measured at the approximate depth of the earthquake but away from the influence of mining, in conjunction with laboratory measurements of the strength of the fault zone cataclasites, indicates that during rupture of the M 2.2 event, the normal stress acting on the large-slip fault

  8. Public perceptions and acceptance of induced earthquakes related to energy development

    International Nuclear Information System (INIS)

    McComas, Katherine A.; Lu, Hang; Keranen, Katie M.; Furtney, Maria A.; Song, Hwansuck

    2016-01-01

    Growing awareness of the potential for some energy-related activities to induce earthquakes has created a need to understand how the public evaluates the risks of induced earthquakes versus the benefits of energy development. To address this need, this study presents a web survey that used a between-subjects factorial experimental design to explore the views of 325 U.S. adults, who were asked about their experiences with earthquakes; risk perceptions related to different causes of earthquakes (e.g., natural versus induced); and acceptability of earthquakes depending on the benefits, beneficiaries, and decision making process. The results found that participants had more negative feelings toward induced versus naturally occurring earthquakes. Although they judged no earthquake as “acceptable,” participants rated induced earthquakes significantly less acceptable than naturally occurring ones. Attributing the benefits to the provision of renewable energy or climate change mitigation did not increase induced earthquake acceptability, and no particular beneficiary made earthquakes more acceptable, although private companies as beneficiaries made earthquakes less acceptable. Finally, induced earthquake acceptability was significantly higher when people believed that people like them had a voice in the decision to implement the technology that caused the earthquake, underscoring the importance of public engagement in the development of energy technologies. - Highlights: • Human induced earthquakes were perceived as more negative than natural earthquakes. • Attributing benefits to renewable energy did not increase earthquake acceptability. • Acceptability was highest after a procedurally fair decision making process. • Acceptability was lowest following an expert-driven decision.

  9. Earthquake chemical precursors in groundwater: a review

    Science.gov (United States)

    Paudel, Shukra Raj; Banjara, Sushant Prasad; Wagle, Amrita; Freund, Friedemann T.

    2018-03-01

    We review changes in groundwater chemistry as precursory signs for earthquakes. In particular, we discuss pH, total dissolved solids (TDS), electrical conductivity, and dissolved gases in relation to their significance for earthquake prediction or forecasting. These parameters are widely believed to vary in response to seismic and pre-seismic activity. However, the same parameters also vary in response to non-seismic processes. The inability to reliably distinguish between changes caused by seismic or pre-seismic activities from changes caused by non-seismic activities has impeded progress in earthquake science. Short-term earthquake prediction is unlikely to be achieved, however, by pH, TDS, electrical conductivity, and dissolved gas measurements alone. On the other hand, the production of free hydroxyl radicals (•OH), subsequent reactions such as formation of H2O2 and oxidation of As(III) to As(V) in groundwater, have distinctive precursory characteristics. This study deviates from the prevailing mechanical mantra. It addresses earthquake-related non-seismic mechanisms, but focused on the stress-induced electrification of rocks, the generation of positive hole charge carriers and their long-distance propagation through the rock column, plus on electrochemical processes at the rock-water interface.

  10. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin

    2017-12-21

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  11. The mechanism of earthquake

    Science.gov (United States)

    Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The

  12. Rotation of vertically oriented objects during earthquakes

    Science.gov (United States)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  13. A preliminary regional assessment of earthquake-induced landslide susceptibility for Vrancea Seismic Region

    Science.gov (United States)

    Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta

    2015-04-01

    In seismically-active regions, earthquakes may trigger landslides enhancing the short-to-long term slope denudation and sediment delivery and conditioning the general landscape evolution. Co-seismic slope failures present in general a low frequency - high magnitude pattern which should be addressed accordingly by landslide hazard assessment, with respect to the generally more frequent precipitation-triggered landslides. The Vrancea Seismic Region, corresponding to the curvature sector of the Eastern Romanian Carpathians, represents the most active sub-crustal (focal depth > 50 km) earthquake province of Europe. It represents the main seismic energy source throughout Romania with significant transboundary effects recorded as far as Ukraine and Bulgaria. During the last 300 years, the region featured 14 earthquakes with M>7, among which seven events with magnitude above 7.5 and three between 7.7 and 7.9. Apart from the direct damages, the Vrancea earthquakes are also responsible for causing numerous other geohazards, such as ground fracturing, groundwater level disturbances and possible deep-seated landslide occurrences (rock slumps, rock-block slides, rock falls, rock avalanches). The older deep-seated landslides (assumed to have been) triggered by earthquakes usually affect the entire slope profile. They often formed landslide dams strongly influencing the river morphology and representing potential threats (through flash-floods) in case of lake outburst. Despite the large potential of this research issue, the correlation between the region's seismotectonic context and landslide predisposing factors has not yet been entirely understood. Presently, there is a lack of information provided by the geohazards databases of Vrancea that does not allow us to outline the seismic influence on the triggering of slope failures in this region. We only know that the morphology of numerous large, deep-seated and dormant landslides (which can possibly be reactivated in future

  14. Passive seismic monitoring of natural and induced earthquakes: case studies, future directions and socio-economic relevance

    Science.gov (United States)

    Bohnhoff, Marco; Dresen, Georg; Ellsworth, William L.; Ito, Hisao; Cloetingh, Sierd; Negendank, Jörg

    2010-01-01

    An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.

  15. Deformation of conjugate compliant fault zones induced by the 2013 Mw7.7 Baluchistan (Pakistan) earthquake

    Science.gov (United States)

    Dutta, Rishabh; Wang, Teng; Feng, Guangcai; Harrington, Jonathan; Vasyura-Bathke, Hannes; Jónsson, Sigurjón

    2017-04-01

    Strain localizations in compliant fault zones (with elastic moduli lower than the surrounding rocks) induced by nearby earthquakes have been detected using geodetic observations in a few cases in the past. Here we observe small-scale changes in interferometric Synthetic Aperture Radar (InSAR) measurements along multiple conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake. After removing the main coseismic deformation signal in the interferograms and correcting them for topography-related phase, we observe 2-3 cm signal along several conjugate faults that are 15-30 km from the mainshock fault rupture. These conjugate compliant faults have strikes of N30°E and N45°W. The sense of motion indicates left-lateral deformation across the N30°E faults and right-lateral deformation across the N45°W faults, which suggests the conjugate faults were subjected to extensional coseismic stresses along the WSW-ENE direction. The spacing between the different sets of faults is around 5 to 8 km. We explain the observed strain localizations as an elastic response of the compliant conjugate faults induced by the Baluchistan earthquake. Using 3D Finite Element models (FEM), we impose coseismic static displacements due to the earthquake along the boundaries of the FEM domain to reproduce the coseismic stress changes acting across the compliant faults. The InSAR measurements are used to constrain the geometry and rigidity variations of the compliant faults with respect to the surrounding rocks. The best fitting models show the compliant fault zones to have a width of 0.5 km to 2 km and a reduction of the shear modulus by a factor of 3 to 4. Our study yields similar values as were found for compliant fault zones near the 1992 Landers and the 1999 Hector Mine earthquakes in California, although here the strain localization is occurring on more complex conjugate sets of faults.

  16. Toward a comprehensive areal model of earthquake-induced landslides

    Science.gov (United States)

    Miles, S.B.; Keefer, D.K.

    2009-01-01

    This paper provides a review of regional-scale modeling of earthquake-induced landslide hazard with respect to the needs for disaster risk reduction and sustainable development. Based on this review, it sets out important research themes and suggests computing with words (CW), a methodology that includes fuzzy logic systems, as a fruitful modeling methodology for addressing many of these research themes. A range of research, reviewed here, has been conducted applying CW to various aspects of earthquake-induced landslide hazard zonation, but none facilitate comprehensive modeling of all types of earthquake-induced landslides. A new comprehensive areal model of earthquake-induced landslides (CAMEL) is introduced here that was developed using fuzzy logic systems. CAMEL provides an integrated framework for modeling all types of earthquake-induced landslides using geographic information systems. CAMEL is designed to facilitate quantitative and qualitative representation of terrain conditions and knowledge about these conditions on the likely areal concentration of each landslide type. CAMEL is highly modifiable and adaptable; new knowledge can be easily added, while existing knowledge can be changed to better match local knowledge and conditions. As such, CAMEL should not be viewed as a complete alternative to other earthquake-induced landslide models. CAMEL provides an open framework for incorporating other models, such as Newmark's displacement method, together with previously incompatible empirical and local knowledge. ?? 2009 ASCE.

  17. An Analytical Solution for Block Toppling Failure of Rock Slopes during an Earthquake

    Directory of Open Access Journals (Sweden)

    Songfeng Guo

    2017-09-01

    Full Text Available Toppling failure is one of the most common failure types in the field. It always occurs in rock masses containing a group of dominant discontinuities dipping into the slope. Post-earthquake investigation has shown that many toppling rock slope failures have occurred during earthquakes. In this study, an analytical solution is presented on the basis of limit equilibrium analysis. The acceleration of seismic load as well as joint persistence within the block base, were considered in the analysis. The method was then applied into a shake table test of an anti-dip layered slope model. As predicted from the analytical method, blocks topple or slide from slope crest to toe progressively and the factor of safety decreases as the inputting acceleration increases. The results perfectly duplicate the deformation features and stability condition of the physical model under the shake table test. It is shown that the presented method is more universal than the original one and can be adopted to evaluate the stability of the slope with potential toppling failure under seismic loads.

  18. The Geological Susceptibility of Induced Earthquakes in the Duvernay Play

    Science.gov (United States)

    Pawley, Steven; Schultz, Ryan; Playter, Tiffany; Corlett, Hilary; Shipman, Todd; Lyster, Steven; Hauck, Tyler

    2018-02-01

    Presently, consensus on the incorporation of induced earthquakes into seismic hazard has yet to be established. For example, the nonstationary, spatiotemporal nature of induced earthquakes is not well understood. Specific to the Western Canada Sedimentary Basin, geological bias in seismogenic activation potential has been suggested to control the spatial distribution of induced earthquakes regionally. In this paper, we train a machine learning algorithm to systemically evaluate tectonic, geomechanical, and hydrological proxies suspected to control induced seismicity. Feature importance suggests that proximity to basement, in situ stress, proximity to fossil reef margins, lithium concentration, and rate of natural seismicity are among the strongest model predictors. Our derived seismogenic potential map faithfully reproduces the current distribution of induced seismicity and is suggestive of other regions which may be prone to induced earthquakes. The refinement of induced seismicity geological susceptibility may become an important technique to identify significant underlying geological features and address induced seismic hazard forecasting issues.

  19. Earthquake-induced liquefaction in Ferland, Quebec

    International Nuclear Information System (INIS)

    Tuttle, M.; Seeber, L.

    1991-02-01

    Detailed geological investigations are under way at a number of liquefaction sites in the Ferland-Boilleau valley, Quebec, where sand boils, ground cracks and liquefaction-related damages to homes were documented immediately following the Ms=6.0, Mblg=6.5 Saguenay earthquake of November 25, 1988. To date, results obtained from these subsurface investigations of sand boils at two sites in Ferland, located about 26 km from the epicentre, indicate that: the Saguenay earthquake induced liquefaction in late-Pleistocene and Holocene sediments which was recorded as sand dikes, sills and vents in near-surface sediments and soils; earthquake-induced liquefaction and ground failure have occurred in this area at least three times in the past 10,000 years; and, the size and morphology of liquefaction features and the liquefaction susceptibility of source layers of the features may be indicative of the intensity of ground shaking. These preliminary results are very promising and suggest that with continued research liquefaction features will become a useful tool in glaciated terrains, such as northeastern North America, for determining not only the timing and location but also the size of past earthquakes

  20. Coping with earthquakes induced by fluid injection

    Science.gov (United States)

    McGarr, Arthur F.; Bekins, Barbara; Burkardt, Nina; Dewey, James W.; Earle, Paul S.; Ellsworth, William L.; Ge, Shemin; Hickman, Stephen H.; Holland, Austin F.; Majer, Ernest; Rubinstein, Justin L.; Sheehan, Anne

    2015-01-01

    Large areas of the United States long considered geologically stable with little or no detected seismicity have recently become seismically active. The increase in earthquake activity began in the mid-continent starting in 2001 (1) and has continued to rise. In 2014, the rate of occurrence of earthquakes with magnitudes (M) of 3 and greater in Oklahoma exceeded that in California (see the figure). This elevated activity includes larger earthquakes, several with M > 5, that have caused significant damage (2, 3). To a large extent, the increasing rate of earthquakes in the mid-continent is due to fluid-injection activities used in modern energy production (1, 4, 5). We explore potential avenues for mitigating effects of induced seismicity. Although the United States is our focus here, Canada, China, the UK, and others confront similar problems associated with oil and gas production, whereas quakes induced by geothermal activities affect Switzerland, Germany, and others.

  1. What is the earthquake fracture energy?

    Science.gov (United States)

    Di Toro, G.; Nielsen, S. B.; Passelegue, F. X.; Spagnuolo, E.; Bistacchi, A.; Fondriest, M.; Murphy, S.; Aretusini, S.; Demurtas, M.

    2016-12-01

    The energy budget of an earthquake is one of the main open questions in earthquake physics. During seismic rupture propagation, the elastic strain energy stored in the rock volume that bounds the fault is converted into (1) gravitational work (relative movement of the wall rocks bounding the fault), (2) in- and off-fault damage of the fault zone rocks (due to rupture propagation and frictional sliding), (3) frictional heating and, of course, (4) seismic radiated energy. The difficulty in the budget determination arises from the measurement of some parameters (e.g., the temperature increase in the slipping zone which constraints the frictional heat), from the not well constrained size of the energy sinks (e.g., how large is the rock volume involved in off-fault damage?) and from the continuous exchange of energy from different sinks (for instance, fragmentation and grain size reduction may result from both the passage of the rupture front and frictional heating). Field geology studies, microstructural investigations, experiments and modelling may yield some hints. Here we discuss (1) the discrepancies arising from the comparison of the fracture energy measured in experiments reproducing seismic slip with the one estimated from seismic inversion for natural earthquakes and (2) the off-fault damage induced by the diffusion of frictional heat during simulated seismic slip in the laboratory. Our analysis suggests, for instance, that the so called earthquake fracture energy (1) is mainly frictional heat for small slips and (2), with increasing slip, is controlled by the geometrical complexity and other plastic processes occurring in the damage zone. As a consequence, because faults are rapidly and efficiently lubricated upon fast slip initiation, the dominant dissipation mechanism in large earthquakes may not be friction but be the off-fault damage due to fault segmentation and stress concentrations in a growing region around the fracture tip.

  2. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable.

    Science.gov (United States)

    Huang, Yihe; Ellsworth, William L; Beroza, Gregory C

    2017-08-01

    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses.

  3. Safety requirements for buildings under induced earthquakes due to gas extraction

    NARCIS (Netherlands)

    Steenbergen, R.D.J.M.; Vrouwenvelder, A.C.W.M.

    2017-01-01

    In the Dutch province of Groningen over the last year shallow earthquakes are induced due to large scale gas extraction from the gas field at 3 km depth. The induced earthquakes differ from the better known tectonic earthquakes all over the world, caused by movement of the earth at large depths. The

  4. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    Science.gov (United States)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  5. Ground Motion Characteristics of Induced Earthquakes in Central North America

    Science.gov (United States)

    Atkinson, G. M.; Assatourians, K.; Novakovic, M.

    2017-12-01

    The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in

  6. DYFI data for Induced Earthquake Studies

    Data.gov (United States)

    Department of the Interior — The significant rise in seismicity rates in Oklahoma and Kansas (OK–KS) in the last decade has led to an increased interest in studying induced earthquakes. Although...

  7. Potentially induced earthquakes during the early twentieth century in the Los Angeles Basin

    Science.gov (United States)

    Hough, Susan E.; Page, Morgan T.

    2016-01-01

    Recent studies have presented evidence that early to mid‐twentieth‐century earthquakes in Oklahoma and Texas were likely induced by fossil fuel production and/or injection of wastewater (Hough and Page, 2015; Frohlich et al., 2016). Considering seismicity from 1935 onward, Hauksson et al. (2015) concluded that there is no evidence for significant induced activity in the greater Los Angeles region between 1935 and the present. To explore a possible association between earthquakes prior to 1935 and oil and gas production, we first revisit the historical catalog and then review contemporary oil industry activities. Although early industry activities did not induce large numbers of earthquakes, we present evidence for an association between the initial oil boom in the greater Los Angeles area and earthquakes between 1915 and 1932, including the damaging 22 June 1920 Inglewood and 8 July 1929 Whittier earthquakes. We further consider whether the 1933 Mw 6.4 Long Beach earthquake might have been induced, and show some evidence that points to a causative relationship between the earthquake and activities in the Huntington Beach oil field. The hypothesis that the Long Beach earthquake was either induced or triggered by an foreshock cannot be ruled out. Our results suggest that significant earthquakes in southern California during the early twentieth century might have been associated with industry practices that are no longer employed (i.e., production without water reinjection), and do not necessarily imply a high likelihood of induced earthquakes at the present time.

  8. Investigating Earthquake-induced Landslides­a Historical Review

    Science.gov (United States)

    Keefer, D. K.; Geological Survey, Us; Park, Menlo; Usa, Ca

    Although earthquake-induced landslides have been described in documents for more than 3700 years, accounts from earthquakes before the late eighteenth century are incomplete concerning landslide numbers and vague concerning landslide character- istics. They are thus typically misleading concerning the true abundance of landslides and range of landslide characteristics. Beginning with studies of the 1783 Calabria, Italy earthquake, more complete and precise data concerning the occurrence of land- slides in earthquakes have become available. The historical development of knowl- edge concerning landslides triggered by earthquakes can be divided into several peri- ods. The first period, from 1783 until the first application of aerial photography, was characterized by ground-based studies of earthquake effects, typically carried out by formal scientific commissions. These formal studies typically identified a large, but not necessarily comprehensive, sampling of localities where landslides had occurred. In some, but not all cases, landslide characteristics were also described in enough de- tail that the general range of landslide characteristics could begin to be determined. More recently, some nineteenth to mid-twentieth century earthquakes have been stud- ied using retrospective analyses, in which the landslide occurrences associated with the event are inferred years to decades later, using contemporary accounts, mapping from aerial photographs, statistical studies, and (or) geotechnical analyses. The first use of aerial photographs to map earthquake effects immediately after the event prob- ably occurred in 1948. Since that time, the use of aerial photography has greatly facil- itated the compilation of post-earthquake landslide inventories, although because of the limitations of aerial photography, ground-based field studies continue to be cru- cial in preparing accurate and comprehensive landslide maps. Beginning with a small California earthquake in 1957

  9. Measuring the size of an earthquake

    Science.gov (United States)

    Spence, W.; Sipkin, S.A.; Choy, G.L.

    1989-01-01

    Earthquakes range broadly in size. A rock-burst in an Idaho silver mine may involve the fracture of 1 meter of rock; the 1965 Rat Island earthquake in the Aleutian arc involved a 650-kilometer length of the Earth's crust. Earthquakes can be even smaller and even larger. If an earthquake is felt or causes perceptible surface damage, then its intensity of shaking can be subjectively estimated. But many large earthquakes occur in oceanic areas or at great focal depths and are either simply not felt or their felt pattern does not really indicate their true size.

  10. Presentation and Analysis of a Worldwide Database of Earthquake-Induced Landslide Inventories : Earthquake-Induced Landslide Inventories

    NARCIS (Netherlands)

    Tanyas, Hakan; Van Westen, Cees J.; Allstadt, Kate E.; Anna Nowicki Jessee, M.; Görüm, Tolga; Jibson, Randall W.; Godt, Jonathan W.; Sato, Hiroshi P.; Schmitt, Robert G.; Marc, Odin; Hovius, Niels

    2017-01-01

    Earthquake‐induced landslide (EQIL) inventories are essential tools to extend our knowledge of the relationship between earthquakes and the landslides they can trigger. Regrettably, such inventories are difficult to generate and therefore scarce, and the available ones differ in terms of their

  11. Investigation of influence of falling rock size and shape on traveling distance due to earthquake

    International Nuclear Information System (INIS)

    Tochigi, Hitoshi

    2010-01-01

    In evaluation of seismic stability of surrounding slope in a nuclear power plant, as a part of residual risk evaluation, it is essential to confirm the effects of surrounding slope failure on a important structure, when slope failure probability is not sufficiently small for extremely large earthquake. So evaluation of slope failure potential based on a falling rocks analyses considering slope failure using discontinuous model such as distinct element method(DEM) will be employed in near future. But, these slope collapse analysis by discontinuous model needs determination of input data of falling rock size and shape, and some problems about determination method of these size and shape condition and analysis accuracy are remained. In this study, the results of slope collapse experiment by shaking table and numerical simulation of this experiment by DEM is conducted to clarify the influence of falling rock size and shape on traveling distance. As a results, it is indicated that more massive and larger rock model gives safety side evaluation for traveling distance. (author)

  12. Earthquake-induced ground failures in Italy from a reviewed database

    Science.gov (United States)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2014-04-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  13. Friction of hard surfaces and its application in earthquakes and rock slope stability

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we discuss the friction models for hard surfaces and their applications in earth sciences. The rate and state friction (RSF) model, which is basically modified form of the classical Amontons-Coulomb friction laws, is widely used for explaining the crustal earthquakes and the rock slope failures. Yet the RSF model has further been modified by considering the role of temperature at the sliding interface known as the rate, state and temperature friction (RSTF) model. Further, if the pore pressure is also taken into account then it is stated as the rate, state, temperature and pore pressure friction (RSTPF) model. All the RSF models predict a critical stiffness as well as a critical velocity at which sliding behavior becomes stable/unstable. The friction models are also used for predicting time of failure of the rock mass on an inclined plane. Finally, the limitation and possibilities of the proposed friction models are also highlighted.

  14. Exploration of the role of permeability and effective stress transfer effects on Earthquakes Migration in a Fault Zone induced by a Fluid Injection in the nearby host rock: Experimental and Numerical Result.

    Science.gov (United States)

    Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.

    2016-12-01

    Although it has long been known that anthropogenic fluid injections can induce earthquakes, the mechanisms involved are still poorly understood and our ability to assess the seismic hazard associated to the production of geothermal energy or unconventional hydrocarbon remains limited. Here we present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). A dense network of sensors recorded fluid pressure, flow-rate, deformation and seismic activity. Injections followed an extended leak-off test protocol. Failure in the host rock was observed for a pressure of 4.4 MPa associated to a strike-slip-to-reverse reactivation of a pre-existing fracture. Magnitude -4.2 to -3.8 seismic events were located in the fault zone 3.5-to->10m away from the injection showing focal mechanisms in reasonable agreement with a strike-slip reactivation of the fault structures. We first used fully coupled hydro-mechanical numerical modeling to quantify the injection source parameters (state of stress, size of the rupture patch and size of the pressurized patch). We applied an injection loading protocol characterized by an imposed flow rate-vs-time history according to the volume of fluid injected in-situ, to match calculated and measured pressure and displacement variations at the injection source. We then used a larger model including the fault zone to discuss how predominant the effects of stress transfer mechanisms causing a purely mechanical fault activation can be compared to the effects of effective stress variations associated to fluid propagation in the fault structures. Preliminary results are that calculated slipping patches are much higher than the one estimated from seismicity, respectively 0.3m and <10-6m, and that the dimensions of the pressurized zone hardly matches with the distance of the earthquakes.

  15. Earthquake effect on the geological environment

    International Nuclear Information System (INIS)

    Kawamura, Makoto

    1999-01-01

    Acceleration caused by the earthquake, changes in the water pressure, and the rock-mass strain were monitored for a series of 344 earthquakes from 1990 to 1998 at Kamaishi In Situ Test Site. The largest acceleration was registered to be 57.14 gal with the earthquake named 'North coast of Iwate Earthquake' (M4.4) occurred in June, 1996. Changes of the water pressure were recorded with 27 earthquakes; the largest change was -0.35 Kgt/cm 2 . The water-pressure change by earthquake was, however, usually smaller than that caused by rainfall in this area. No change in the electric conductivity or pH of ground water was detected before and after the earthquake throughout the entire period of monitoring. The rock-mass strain was measured with a extensometer whose detection limit was of the order of 10 -8 to 10 -9 degrees and the remaining strain of about 2.5x10 -9 degrees was detected following the 'Offshore Miyagi Earthquake' (M5.1) in October, 1997. (H. Baba)

  16. Gas and Dust Phenomena of Mega-earthquakes and the Cause

    Science.gov (United States)

    Yue, Z.

    2013-12-01

    dense natural (methane) gas suddenly escaped from deep crust traps along deep fault zones. References Yue, ZQ, 2009. The source of energy power directly causing the May 12 Wenchuan Earthquake: Huge extremely pressurized natural gases trapped in deep Longmen Shan faults. News Journal of China Society of Rock Mechanics and Engineering, 86 (2009 (2)), 45-50. Yue, ZQ, 2010. Features and mechanism of coseismic surface ruptures by Wenchuan Earthquake. in Rock Stress and Earthquake, edited by Furen Xie, Taylor & Francis Group, London, ISBN 978-0-415-60165-8, 761-768. Yue, ZQ, 2013a. Natural gas eruption mechanism for earthquake landslides: illustrated with comparison between Donghekou and Papandayan Rockslide-debris flows. in Earthquake-induced Landslides, K. Ugai et al. (eds.), Springer-Verlage Berlin, Chapter 51: pp. 485-494 Yue ZQ, 2013b. On incorrectness in elastic rebound theory for cause of earthquakes. Paper No. S20-003 of Session S20, Proceedings of the 13th International Conference on Fracture, June 16-21, Beijing. Yue ZQ, 2013c. On nature of earthquakes with cause of compressed methane gas expansion and migration in crustal rocks, in Proceedings of Fifth Biot Conference on Poromechanics in Memory of Karl von Terzaghi (1883-1963), July 10-12, Vienna, edited by C. Hellmich et al, @ASCE, pp. 507-516.

  17. Mining-induced earthquakes monitored during pit closure in the Midlothian Coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, D.W.; Richards, J.A.; Wild, P.W. [British Geological Survey, Edinburgh (United Kingdom). Global Seismology and Geomagnetism Group

    1998-06-01

    The British Geological Survey installed a seismometer network to monitor earthquakes around Rosslyn Chapel in the Midlothian Coalfield from November 1987 until January 1990. Accurate locations were obtained for 247 events and a close spatial and temporal association with concurrent coal mining, with a rapid decay of earthquake activity following pit closure, was demonstrated, indicating a mining-induced cause. Residual stress from past mining appears to have been an important factor in generating seismicity, and observations indicate that limiting the width of the workings or rate of extraction may significantly reduce or eliminate mining-induced earthquake activity. A frequency-magnitude analysis indicates a relatively high abundance of small events in this coalfield area. The maximum magnitude of a mining-induced earthquake likely to have been experienced during the life of the coalfield (maximum credible magnitude) was 3.0 M-L, although an extreme event (maximum possible magnitude) as large as 3.4 M-L was remotely possible. Significant seismic amplification was observed at Rosslyn Chapel, which is founded on sand and gravel, compared with a nearby bedrock site. As a consequence, relatively small magnitude events caused high, and occasionally damaging, seismic intensities at the chapel.

  18. Seismic response of rock joints and jointed rock mass

    International Nuclear Information System (INIS)

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs

  19. Geomorphic changes induced by the April-May 2015 earthquake sequence in the Pharak-Khumbu area (Nepal): preliminary assessments.

    Science.gov (United States)

    Fort, Monique

    2016-04-01

    Landsliding is a common process shaping mountain slopes. There are various potential landslide triggers (rainfall, bank erosion, earthquakes) and their effectiveness depends on their distribution, frequency and magnitude. In a Himalayan context, the effects of monsoon rainfall can be assessed every year whereas the unpredictability and low frequency of large earthquakes make their role in triggering slope instability more obscure. A 7.8 magnitude earthquake struck central Nepal (Gorkha District) on 25 April 2015 and was followed by many aftershocks exceeding magnitude 5, including another strong 7.3 magnitude earthquake on May 12, 2015 (Dolakha District). This seismic crisis provides an exceptional opportunity to assess the disruptions that earthquakes may cause in "regular" geomorphic systems controlled by rainfall. Here we present field observations carried out in the Pharak-Khumbu area (East Nepal, Dudh Kosi catchment) before and after the April-May 2015 earthquakes. The Pharak, a "middle mountains" (2000-4500 m) area, is affected by monsoon rains (3000 m/yr at 2500 m) and characterised by steep hillslopes, shaped by different geomorphic processes according to slope height and aspect, rock type and strength, inherited landforms, stream connectivity and current land use changes. This study focuses on the south of Lukla (Phakding District), and more specifically on the Khari Khola catchment and its surroundings. The area lies at the transition between the Higher Himalayan crystallines and the Lesser Himalayan meta-sediments. On the basis of our diachronic observations (March and November 2015), we surveyed and mapped new earthquake-induced slope instabilities such as rock falls, rockslides, landslides and debris flows and a combination of several of them. Interviews with local people also helped to assess the exact timing of some events. While the first M 7.8 earthquake produced significant impacts in the northern Khumbu area, the M 7.3 aftershock seems to have

  20. Geomorphic and Geologic Controls of Geohazards induced by Nepal's 2015 Gorkha Earthquake

    Science.gov (United States)

    Kargel, J. S.; Leonard, G. J.; Shugar, D. H.; Haritashya, U.K.; Bevington, A.; Fielding, E. J.; Fujita, K.; Geertsema, M.; Miles, E. S.; Steiner, J.; hide

    2015-01-01

    The Gorkha earthquake (Magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing approx.9,000 and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision makers. We mapped 4,312 co-seismic and post-seismic landslides. We also surveyed 491 glacier lakes for earthquake damage, but found only 9 landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.

  1. Development of uniform hazard response spectra for rock sites considering line and point sources of earthquakes

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Kushwaha, H.S.

    2001-12-01

    Traditionally, the seismic design basis ground motion has been specified by normalised response spectral shapes and peak ground acceleration (PGA). The mean recurrence interval (MRI) used to computed for PGA only. It is shown that the MRI associated with such response spectra are not the same at all frequencies. The present work develops uniform hazard response spectra i.e. spectra having the same MRI at all frequencies for line and point sources of earthquakes by using a large number of strong motion accelerograms recorded on rock sites. Sensitivity of the number of the results to the changes in various parameters has also been presented. This work is an extension of an earlier work for aerial sources of earthquakes. These results will help to determine the seismic hazard at a given site and the associated uncertainities. (author)

  2. Identified EM Earthquake Precursors

    Science.gov (United States)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  3. Hypocentre estimation of induced earthquakes in Groningen

    NARCIS (Netherlands)

    Spetzler, J.; Dost, Bernard

    2017-01-01

    Induced earthquakes due to gas production have taken place in the province of Groningen in the northeast of The Netherlands since 1986. In the first years of seismicity, a sparse seismological network with large station distances from the seismogenic area in Groningen was used. The location of

  4. A simulation of earthquake induced undrained pore pressure ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Plains, Kandla River and Gulf of Kachch, between .... We consider the role of induced pore pressure ... location of the Bhuj earthquake epicentre as estimated by US Geological Survey. .... war R 2001 Changes in Ocean; GIS @ development 5.

  5. Correlation between hypocenter depth, antecedent precipitation and earthquake-induced landslide spatial distribution

    Science.gov (United States)

    Fukuoka, Hiroshi; Watanabe, Eisuke

    2017-04-01

    Since Keefer published the paper on earthquake magnitude and affected area, maximum epicentral/fault distance of induced landslide distribution in 1984, showing the envelope of plots, a lot of studies on this topic have been conducted. It has been generally supposed that landslides have been triggered by shallow quakes and more landslides are likely to occur with heavy rainfalls immediately before the quake. In order to confirm this, we have collected 22 case records of earthquake-induced landslide distribution in Japan and examined the effect of hypocenter depth and antecedent precipitation. Earthquake magnitude by JMA (Japan Meteorological Agency) of the cases are from 4.5 to 9.0. Analysis on hycpocenter depth showed the deeper quake cause wider distribution. Antecedent precipitation was evaluated using the Soil Water Index (SWI), which was developed by JMA for issuing landslide alert. We could not find meaningful correlation between SWI and the earthquake-induced landslide distribution. Additionally, we found that smaller minimum size of collected landslides results in wider distribution especially between 1,000 to 100,000 m2.

  6. Landslides triggered by the 1946 Ancash earthquake, Peru

    Science.gov (United States)

    Kampherm, T. S.; Evans, S. G.; Valderrama Murillo, P.

    2009-04-01

    The 1946 M7.3 Ancash Earthquake triggered a large number of landslides in an epicentral area that straddled the Continental Divide of South America in the Andes of Peru. A small number of landslides were described in reconnaissance reports by E. Silgado and Arnold Heim published shortly after the earthquake, but further details of the landslides triggered by the earthquake have not been reported since. Utilising field traverses, aerial photograph interpretation and GIS, our study mapped 45 landslides inferred to have been triggered by the event. 83% were rock avalanches involving Cretaceous limestones interbedded with shales. The five largest rock/debris avalanches occurred at Rio Llama (est. vol. 37 M m3), Suytucocha (est. vol., 13.5 Mm3), Quiches (est. vol. 10.5 Mm3 ), Pelagatos (est. vol. 8 Mm3), and Shundoy (est. vol. 8 Mm3). The Suytucocha, Quiches, and Pelagatos landslides were reported by Silgado and Heim. Rock slope failure was most common on slopes with a southwest aspect, an orientation corresponding to the regional dip direction of major planar structures in the Andean foreland belt (bedding planes and thrust faults). In valleys oriented transverse to the NW-SE structural grain of the epicentral area, south-westerly dipping bedding planes combined with orthogonal joint sets to form numerous wedge failures. Many initial rock slope failures were transformed into rock/debris avalanches by the entrainment of colluvium in their path. At Acobamba, a rock avalanche that transformed into a debris avalanche (est. vol. 4.3 Mm3) overwhelmed a village resulting in the deaths of 217 people. The cumulative volume-frequency plot shows a strong power law relation below a marked rollover, similar in form to that derived for landslides triggered by the 1994 Northridge Earthquake. The total volume of the 45 landslides is approximately 93 Mm3. The data point for the Ancash Earthquake plots near the regression line calculated by Keefer (1994), and modified by Malamud et al

  7. A method to assess collision hazard of falling rock due to slope collapse application of DEM on modeling of earthquake triggered slope failure for nuclear power plants

    International Nuclear Information System (INIS)

    Nakase, Hitoshi; Cao, Guoqiang; Tabei, Kazuto; Tochigi, Hitoshi; Matsushima, Takashi

    2015-01-01

    Risk evaluation of slope failure against nuclear power plants, which is induced by unexpectedly large earthquakes, has been urgent need for disaster prevention measures. Specially, for risk evaluation of slope failure, understanding of information such as traveling distances, collision velocities, and collision energies is very important. Discrete Element Method (DEM) such as particle simulation method contributes important role on predicting the detailed behavior of slope failure physics. In this study, instead of accurately predicting the complicated behavior of sliding and falling for each rock, we introduce the DEM modeling to evaluate the average traveling distance of collapsed rocks and its statistical variability. First, we conduct the validation test of the proposed DEM model on the basis of reconstruction of experiment results. Next, we conducted the parametric studies to examine sensitivities of important parameters. Finally, validity of the proposed method is evaluated and its applicability and technical assignments are also discussed. (author)

  8. Evaluation of the conservativeness of the methodology for estimating earthquake-induced movements of fractures intersecting canisters

    International Nuclear Information System (INIS)

    La Pointe, Paul R.; Cladouhos, Trenton T.; Outters, Nils; Follin, Sven

    2000-04-01

    This study evaluates the parameter sensitivity and the conservativeness of the methodology outlined in TR 99-03. Sensitivity analysis focuses on understanding how variability in input parameter values impacts the calculated fracture displacements. These studies clarify what parameters play the greatest role in fracture movements, and help define critical values of these parameters in terms of canister failures. The thresholds or intervals of values that lead to a certain level of canister failure calculated in this study could be useful for evaluating future candidate sites. Key parameters include: 1. magnitude/frequency of earthquakes; 2. the distance of the earthquake from the canisters; 3. the size and aspect ratio of fractures intersecting canisters; and 4. the orientation of the fractures. The results of this study show that distance and earthquake magnitude are the most important factors, followed by fracture size. Fracture orientation is much less important. Regression relations were developed to predict induced fracture slip as a function of distance and either earthquake magnitude or slip on the earthquake fault. These regression relations were validated by using them to estimate the number of canister failures due to single damaging earthquakes at Aberg, and comparing these estimates with those presented in TR 99-03. The methodology described in TR 99-03 employs several conservative simplifications in order to devise a numerically feasible method to estimate fracture movements due to earthquakes outside of the repository over the next 100,000 years. These simplifications include: 1. fractures are assumed to be frictionless and cohesionless; 2. all energy transmitted to the fracture by the earthquake is assumed to produce elastic deformation of the fracture; no energy is diverted into fracture propagation; and 3. shielding effects of other fractures between the earthquake and the fracture are neglected. The numerical modeling effectively assumes that the

  9. Evaluation of the conservativeness of the methodology for estimating earthquake-induced movements of fractures intersecting canisters

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Cladouhos, Trenton T. [Golder Associates Inc., Las Vegas, NV (United States); Outters, Nils; Follin, Sven [Golder Grundteknik KB, Stockholm (Sweden)

    2000-04-01

    This study evaluates the parameter sensitivity and the conservativeness of the methodology outlined in TR 99-03. Sensitivity analysis focuses on understanding how variability in input parameter values impacts the calculated fracture displacements. These studies clarify what parameters play the greatest role in fracture movements, and help define critical values of these parameters in terms of canister failures. The thresholds or intervals of values that lead to a certain level of canister failure calculated in this study could be useful for evaluating future candidate sites. Key parameters include: 1. magnitude/frequency of earthquakes; 2. the distance of the earthquake from the canisters; 3. the size and aspect ratio of fractures intersecting canisters; and 4. the orientation of the fractures. The results of this study show that distance and earthquake magnitude are the most important factors, followed by fracture size. Fracture orientation is much less important. Regression relations were developed to predict induced fracture slip as a function of distance and either earthquake magnitude or slip on the earthquake fault. These regression relations were validated by using them to estimate the number of canister failures due to single damaging earthquakes at Aberg, and comparing these estimates with those presented in TR 99-03. The methodology described in TR 99-03 employs several conservative simplifications in order to devise a numerically feasible method to estimate fracture movements due to earthquakes outside of the repository over the next 100,000 years. These simplifications include: 1. fractures are assumed to be frictionless and cohesionless; 2. all energy transmitted to the fracture by the earthquake is assumed to produce elastic deformation of the fracture; no energy is diverted into fracture propagation; and 3. shielding effects of other fractures between the earthquake and the fracture are neglected. The numerical modeling effectively assumes that the

  10. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    Science.gov (United States)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  11. Assessment of earthquake-induced tsunami hazard at a power plant site

    International Nuclear Information System (INIS)

    Ghosh, A.K.

    2008-01-01

    This paper presents a study of the tsunami hazard due to submarine earthquakes at a power plant site on the east coast of India. The paper considers various sources of earthquakes from the tectonic information, and records of past earthquakes and tsunamis. Magnitude-frequency relationship for earthquake occurrence rate and a simplified model for tsunami run-up height as a function of earthquake magnitude and the distance between the source and site have been developed. Finally, considering equal likelihood of generation of earthquakes anywhere on each of the faults, the tsunami hazard has been evaluated and presented as a relationship between tsunami height and its mean recurrence interval (MRI). Probability of exceedence of a certain wave height in a given period of time is also presented. These studies will be helpful in making an estimate of the tsunami-induced flooding potential at the site

  12. Fossil rocks of slow earthquake detected by thermal diffusion length

    Science.gov (United States)

    Hashimoto, Yoshitaka; Morita, Kiyohiko; Okubo, Makoto; Hamada, Yohei; Lin, Weiren; Hirose, Takehiro; Kitamura, Manami

    2016-04-01

    Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area per second (Q (J/m^2/s), the product of friction coefficient, normal stress and slip velocity) and slip duration (t(s)) to fit the diffusion pattern. Thermal diffusivity (0.98*10^8m^2/s) and thermal conductivity (2.0 w/mK) were measured. In the result, 2000-2500J/m^2/s of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~10^4-~10^5s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~10^8-~10^11J, which is consistent with rupture area of 10^5-10^8m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the

  13. Earthquake-induced soft-sediment deformations and seismically amplified erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey)

    KAUST Repository

    Avsar, Ulas

    2016-06-06

    Earthquake-triggered landslides amplify erosion rates in catchments, i.e. catchment response to seismic shocks (CR). In addition to historical eyewitness accounts of muddy rivers implying CRs after large earthquakes, several studies have quantitatively reported increased sediment concentrations in rivers after earthquakes. However, only a few paleolimnological studies could detect CRs within lacustrine sedimentary sequences as siliciclastic-enriched intercalations within background sedimentation. Since siliciclastic-enriched intercalations can easily be of non-seismic origin, their temporal correlation with nearby earthquakes is crucial to assign a seismic triggering mechanism. In most cases, either uncertainties in dating methods or the lack of recent seismic activity has prevented reliable temporal correlations, making the seismic origin of observed sedimentary events questionable. Here, we attempt to remove this question mark by presenting sedimentary traces of CRs in the 370-year-long varved sequence of Köyceğiz Lake (SW Turkey) that we compare with estimated peak ground acceleration (PGA) values of several nearby earthquakes. We find that earthquakes exceeding estimated PGA values of ca. 20 cm/s2 can induce soft-sediment deformations (SSD), while CRs seem only to be triggered by PGA levels higher than 70 cm/s2. In Köyceğiz Lake, CRs produce Cr- and Ni-enriched sedimentation due to the seismically mobilized soils derived from ultramafic rocks in the catchment. Given the varve chronology, the residence time of the seismically mobilized material in the catchment is determined to be 5 to 10 years.

  14. Dissecting the roles of ROCK isoforms in stress-induced cell detachment.

    Science.gov (United States)

    Shi, Jianjian; Surma, Michelle; Zhang, Lumin; Wei, Lei

    2013-05-15

    The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1(-/-) and ROCK2(-/-) mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin cytoskeleton and cell adhesion. Here, we present additional insights into the roles of ROCK1 and ROCK2 in regulating stress-induced impairment of cell-matrix and cell-cell adhesion. In response to doxorubicin, ROCK1(-/-) MEFs showed significant preservation of both focal adhesions and adherens junctions, while ROCK2(-/-) MEFs exhibited impaired focal adhesions but preserved adherens junctions compared with the wild-type MEFs. Additionally, inhibition of focal adhesion or adherens junction formations by chemical inhibitors abolished the anti-detachment effects of ROCK1 deletion. Finally, ROCK1(-/-) MEFs, but not ROCK2(-/-) MEFs, also exhibited preserved central stress fibers and reduced cell detachment in response to serum starvation. These results add new insights into a novel mechanism underlying the anti-detachment effects of ROCK1 deletion mediated by reduced peripheral actomyosin contraction and increased actin stabilization to promote cell-cell and cell-matrix adhesion. Our studies further support the differential roles of ROCK isoforms in regulating stress-induced loss of central stress fibers and focal adhesions as well as cell detachment.

  15. Numerical Analyses of Earthquake Induced Liquefaction and Deformation Behaviour of an Upstream Tailings Dam

    Directory of Open Access Journals (Sweden)

    Muhammad Auchar Zardari

    2017-01-01

    Full Text Available Much of the seismic activity of northern Sweden consists of micro-earthquakes occurring near postglacial faults. However, larger magnitude earthquakes do occur in Sweden, and earthquake statistics indicate that a magnitude 5 event is likely to occur once every century. This paper presents dynamic analyses of the effects of larger earthquakes on an upstream tailings dam at the Aitik copper mine in northern Sweden. The analyses were performed to evaluate the potential for liquefaction and to assess stability of the dam under two specific earthquakes: a commonly occurring magnitude 3.6 event and a more extreme earthquake of magnitude 5.8. The dynamic analyses were carried out with the finite element program PLAXIS using a recently implemented constitutive model called UBCSAND. The results indicate that the magnitude 5.8 earthquake would likely induce liquefaction in a limited zone located below the ground surface near the embankment dikes. It is interpreted that stability of the dam may not be affected due to the limited extent of the liquefied zone. Both types of earthquakes are predicted to induce tolerable magnitudes of displacements. The results of the postseismic slope stability analysis, performed for a state after a seismic event, suggest that the dam is stable during both the earthquakes.

  16. Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes

    Science.gov (United States)

    Liu, Ching-Yi; Chia, Yeeping; Chuang, Po-Yu; Chiu, Yung-Chia; Tseng, Tai-Lin

    2018-03-01

    Changes in groundwater level during earthquakes have been reported worldwide. In this study, field observations of co-seismic groundwater-level changes in wells under different aquifer conditions and sampling intervals due to near-field earthquake events in Taiwan are presented. Sustained changes, usually observed immediately after earthquakes, are found in the confined aquifer. Oscillatory changes due to the dynamic strain triggered by passing earthquake waves can only be recorded by a high-frequency data logger. While co-seismic changes recover rapidly in an unconfined aquifer, they can sustain for months or longer in a confined aquifer. Three monitoring wells with long-term groundwater-level data were examined to understand the association of co-seismic changes with local hydrogeological conditions. The finite element software ABAQUS is used to simulate the pore-pressure changes induced by the displacements due to fault rupture. The calculated co-seismic change in pore pressure is related to the compressibility of the formation. The recovery rate of the change is rapid in the unconfined aquifer due to the hydrostatic condition at the water table, but slow in the confined aquifer due to the less permeable confining layer. Fracturing of the confining layer during earthquakes may enhance the dissipation of pore pressure and induce the discharge of the confined aquifer. The study results indicated that aquifer characteristics play an important role in determining groundwater-level changes during and after earthquakes.

  17. Fault lubrication during earthquakes.

    Science.gov (United States)

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved.

  18. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  19. Impact of earthquake-induced tsunamis on public health

    Science.gov (United States)

    Mavroulis, Spyridon; Mavrouli, Maria; Lekkas, Efthymios; Tsakris, Athanassios

    2017-04-01

    Tsunamis are caused by rapid sea floor displacement during earthquakes, landslides and large explosive eruptions in marine environment setting. Massive amounts of sea water in the form of devastating surface waves travelling hundreds of kilometers per hour have the potential to cause extensive damage to coastal infrastructures, considerable loss of life and injury and emergence of infectious diseases (ID). This study involved an extensive and systematic literature review of 50 research publications related to public health impact of the three most devastating tsunamis of the last 12 years induced by great earthquakes, namely the 2004 Sumatra-Andaman earthquake (moment magnitude Mw 9.2), the 2009 Samoa earthquake (Mw 8.1) and the 2011 Tōhoku (Japan) earthquake (Mw 9.0) in the Indian, Western Pacific and South Pacific Oceans respectively. The inclusion criteria were literature type comprising journal articles and official reports, natural disaster type including tsunamis induced only by earthquakes, population type including humans, and outcome measure characterized by disease incidence increase. The potential post-tsunami ID are classified into 11 groups including respiratory, pulmonary, wound-related, water-borne, skin, vector-borne, eye, fecal-oral, food-borne, fungal and mite-borne ID. Respiratory infections were detected after all the above mentioned tsunamis. Wound-related, skin and water-borne ID were observed after the 2004 and 2011 tsunamis, while vector-borne, fecal-oral and eye ID were observed only after the 2004 tsunami and pulmonary, food-borne and mite-borne ID were diagnosed only after the 2011 tsunami. Based on available age and genre data, it is concluded that the most vulnerable population groups are males, children (age ≤ 15 years) and adults (age ≥ 65 years). Tetanus and pneumonia are the deadliest post-tsunami ID. The detected risk factors include (1) lowest socioeconomic conditions, poorly constructed buildings and lack of prevention

  20. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  1. Lichenometry dating of rock collapse related to the great Lisbon Earthquake (1755) at the SE part of Spain

    Science.gov (United States)

    Perez-Lopez, Raul; Rodriguez-Pascua, Miguel Angel; Silva, Pablo G.; Bischoff, James L.; Owen, Lewis A.; Giner-Robles, Jorge L.; Díez-Herrero, Andres

    2010-05-01

    "De una montaña, se desprendió una parte" (A large part of a mountain has fallen down). This sentence was extracted from an ancient text written at the end of the 18th Century, in relation with the great Earthquake of Lisbon in 1755 (Martínez-Solares, 2001), and describing the rock collapse recorded near the small town of Agramón, 50 km southeastward of Albacete city (SE of Spain). Up to now, archaeologists have suggested this rock collapse to the archaeological site of "El Tolmo de Minateda", a small butte (420 m long) of calcarenitic sandstone bedrock with a flat top and scarped cliffs (20m high) bordering the butte. This ancient city was habited by several civilizations from Bronze Ages to modern times (i.e. Iberians, Roman, Visigoths, Muslims, Medieval ages, etc.). The landscape of this area is characterized by a flat terrain with isolated relict structural buttes consisting of Late Neogene marine sandstones created by differential erosion. The site exhibits three different stages of massive rock collapse. The oldest is located at the north of the site while the younger is located at the south part of the site and affecting Visigothic stone carved tombs. Archaeologists have postulated that the youngest of these was triggered by the Lisbon earthquake of 1755. We have carried out a lichenometric analysis over the free-faces of the rock blocks, with the aim of testing the postulate. For our purpose, we have calculated the calibrated growth curve for Aspicilia Radiosa (Hoff.), which yields a linear growth of 0.2425 mm per yr (R2 = 0.97, N=20). This growth rate was determined for the time interval from 800 BP yrs to the present by two different approaches: (1) rates obtained from cemetery measurements (200 yrs BP) and (2) rates determined from well-dated archaeological monuments (200-800 yrs BP). Our analysis revealed that the age of the rock-falling was in the year 1754 AD ±4. Thus, our results confirm that this collapse of ca. 5000 m3 of volume was triggered

  2. Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption

    Science.gov (United States)

    Bonali, F. L.

    2013-11-01

    It was studied how tectonic earthquake-induced static stress changes could have contributed to favouring the 22 December 2012 major eruption at Copahue volcano, Chile. Numerical modelling indicates that the vertical N60°E-striking magma pathway below Copahue was affected by a normal stress reduction induced by the Mw 8.8 Chile earthquake of 27 February 2010. A sensitivity analysis suggests that N-, NE- and E-striking vertical planes are affected by normal stress decrease (maximum at the NE-striking plane), and that also a possible inclined N60°E plane is affected by this reduction. Copahue did not have any magmatic event since 2000. Seismic signals of awakening started in April 2012 and the first volcanic event occurred on July 2012. Thus, it is here suggested a possible earthquake-induced feedback effect on the crust below the volcanic arc up to at least 3 years after a large subduction earthquake, favouring new eruptions.

  3. Source mechanism inversion and ground motion modeling of induced earthquakes in Kuwait - A Bayesian approach

    Science.gov (United States)

    Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.

    2016-12-01

    The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high enough to cause damage to local structures without using seismic design criteria.

  4. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1993-01-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p number-sign 1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p number-sign 1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells

  5. Characterizing potentially induced earthquake rate changes in the Brawley Seismic Zone, southern California

    Science.gov (United States)

    Llenos, Andrea L.; Michael, Andrew J.

    2016-01-01

    The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.

  6. Strain-dependent Damage Evolution and Velocity Reduction in Fault Zones Induced by Earthquake Rupture

    Science.gov (United States)

    Zhong, J.; Duan, B.

    2009-12-01

    Low-velocity fault zones (LVFZs) with reduced seismic velocities relative to the surrounding wall rocks are widely observed around active faults. The presence of such a zone will affect rupture propagation, near-field ground motion, and off-fault damage in subsequent earth-quakes. In this study, we quantify the reduction of seismic velocities caused by dynamic rup-ture on a 2D planar fault surrounded by a low-velocity fault zone. First, we implement the damage rheology (Lyakhovsky et al. 1997) in EQdyna (Duan and Oglesby 2006), an explicit dynamic finite element code. We further extend this damage rheology model to include the dependence of strains on crack density. Then, we quantify off-fault continuum damage distribution and velocity reduction induced by earthquake rupture with the presence of a preexisting LVFZ. We find that the presence of a LVFZ affects the tempo-spatial distribu-tions of off-fault damage. Because lack of constraint in some damage parameters, we further investigate the relationship between velocity reduction and these damage prameters by a large suite of numerical simulations. Slip velocity, slip, and near-field ground motions computed from damage rheology are also compared with those from off-fault elastic or elastoplastic responses. We find that the reduction in elastic moduli during dynamic rupture has profound impact on these quantities.

  7. Tsunamigenic earthquake simulations using experimentally derived friction laws

    Science.gov (United States)

    Murphy, S.; Di Toro, G.; Romano, F.; Scala, A.; Lorito, S.; Spagnuolo, E.; Aretusini, S.; Festa, G.; Piatanesi, A.; Nielsen, S.

    2018-03-01

    Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth as a result of different pre-stress and frictional conditions. A wealth of earthquakes of different sizes and different source features (e.g. rupture duration) can be generated in subduction zones, including tsunami earthquakes, some of which can produce extreme tsunamigenic events. Here, we offer a geological perspective principally accounting for depth-dependent frictional conditions, while adopting a simplified distribution of on-fault tectonic pre-stress. We combine a lithology-controlled, depth-dependent experimental friction law with 2D elastodynamic rupture simulations for a Tohoku-like subduction zone cross-section. Subduction zone fault rocks are dominantly incohesive and clay-rich near the surface, transitioning to cohesive and more crystalline at depth. By randomly shifting along fault dip the location of the high shear stress regions ("asperities"), moderate to great thrust earthquakes and tsunami earthquakes are produced that are quite consistent with seismological, geodetic, and tsunami observations. As an effect of depth-dependent friction in our model, slip is confined to the high stress asperity at depth; near the surface rupture is impeded by the rock-clay transition constraining slip to the clay-rich layer. However, when the high stress asperity is located in the clay-to-crystalline rock transition, great thrust earthquakes can be generated similar to the Mw 9 Tohoku (2011) earthquake.

  8. Communicating Earthquake Preparedness: The Influence of Induced Mood, Perceived Risk, and Gain or Loss Frames on Homeowners' Attitudes Toward General Precautionary Measures for Earthquakes.

    Science.gov (United States)

    Marti, Michèle; Stauffacher, Michael; Matthes, Jörg; Wiemer, Stefan

    2018-04-01

    Despite global efforts to reduce seismic risk, actual preparedness levels remain universally low. Although earthquake-resistant building design is the most efficient way to decrease potential losses, its application is not a legal requirement across all earthquake-prone countries and even if, often not strictly enforced. Risk communication encouraging homeowners to take precautionary measures is therefore an important means to enhance a country's earthquake resilience. Our study illustrates that specific interactions of mood, perceived risk, and frame type significantly affect homeowners' attitudes toward general precautionary measures for earthquakes. The interdependencies of the variables mood, risk information, and frame type were tested in an experimental 2 × 2 × 2 design (N = 156). Only in combination and not on their own, these variables effectively influence attitudes toward general precautionary measures for earthquakes. The control variables gender, "trait anxiety" index, and alteration of perceived risk adjust the effect. Overall, the group with the strongest attitudes toward general precautionary actions for earthquakes are homeowners with induced negative mood who process high-risk information and gain-framed messages. However, the conditions comprising induced negative mood, low-risk information and loss-frame and induced positive mood, low-risk information and gain-framed messages both also significantly influence homeowners' attitudes toward general precautionary measures for earthquakes. These results mostly confirm previous findings in the field of health communication. For practitioners, our study emphasizes that carefully compiled communication measures are a powerful means to encourage precautionary attitudes among homeowners, especially for those with an elevated perceived risk. © 2017 Society for Risk Analysis.

  9. Numerical Analyses of the Influence of Blast-Induced Damaged Rock Around Shallow Tunnels in Brittle Rock

    Science.gov (United States)

    Saiang, David; Nordlund, Erling

    2009-06-01

    Most of the railway tunnels in Sweden are shallow-seated (rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr-Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.

  10. Induced earthquakes. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection.

    Science.gov (United States)

    Keranen, K M; Weingarten, M; Abers, G A; Bekins, B A; Ge, S

    2014-07-25

    Unconventional oil and gas production provides a rapidly growing energy source; however, high-production states in the United States, such as Oklahoma, face sharply rising numbers of earthquakes. Subsurface pressure data required to unequivocally link earthquakes to wastewater injection are rarely accessible. Here we use seismicity and hydrogeological models to show that fluid migration from high-rate disposal wells in Oklahoma is potentially responsible for the largest swarm. Earthquake hypocenters occur within disposal formations and upper basement, between 2- and 5-kilometer depth. The modeled fluid pressure perturbation propagates throughout the same depth range and tracks earthquakes to distances of 35 kilometers, with a triggering threshold of ~0.07 megapascals. Although thousands of disposal wells operate aseismically, four of the highest-rate wells are capable of inducing 20% of 2008 to 2013 central U.S. seismicity. Copyright © 2014, American Association for the Advancement of Science.

  11. Electromagnetic radiation induced by mining rock failure

    Energy Technology Data Exchange (ETDEWEB)

    Frid, V. [Geological and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva (Israel 84105); Vozoff, K. [V& amp; A Geoscience, POB 996 Spit Junction (NSW Australia 2088)

    2005-10-17

    Anticipating roof fall in mine workings has been a problem for centuries. The focus in the search for early warning indicators has been on observing seismic (acoustic) events prior to the fall. These precursors have been studied in great detail at many places, but none has been fully successful. So far, no valid, effective early warning system based on low-frequency seismic precursors has been established. In this paper, we investigated a promising new technique, which is not yet completely understood or been widely tested in mines. The new method is the sensing of the embryonic stages of roof fall by detection of high frequency electromagnetic radiation (EMR) emitted from rock microcracks. Two examples of combined observations of EMR and low frequency acoustic emission prior to roof fall at Moonee Colliery are presented. Anomalously high EMR was detected more than 1 h before roof fall, giving a significant time advantage over the first indicators of low frequency acoustic emission. Analysis of Benioff strain release diagrams of EMR emanating from developing medium scale failure in the mine enabled us to fill the 'gap' between previously known microscale (rock fracture in lab) and macroscale (earthquake) EMR observations, and to conclude that indeed a common fundamental relationship must lie behind this multi-scale phenomenon. (author)

  12. MODEL OF TECTONIC EARTHQUAKE PREPARATION AND OCCURRENCE AND ITS PRECURSORS IN CONDITIONS OF CRUSTAL STRETCHING

    Directory of Open Access Journals (Sweden)

    R. M. Semenov

    2018-01-01

    Full Text Available In connection with changes in the stress-strain state of the Earth's crust, various physical and mechanical processes, including destruction, take place in the rocks and are accompanied by tectonic earthquakes. Different models have been proposed to describe earthquake preparation and occurrence, depending on the mechanisms and the rates of geodynamic processes. One of the models considers crustal stretching that is characteristic of formation of rift structures. The model uses the data on rock samples that are stretched until destruction in a special laboratory installation. Based on the laboratory modeling, it is established that the samples are destroyed in stages that are interpreted as stages of preparation and occurrence of an earthquake source. The preparation stage of underground tremors is generally manifested by a variety of temporal (long-, medium- and short-term precursors. The main shortcoming of micro-modeling is that, considering small sizes of the investigated samples, it is impossible to reveal a link between the plastic extension of rocks (taking place in the earthquake hypocenter and the rock rupture. Plasticity is the ability of certain rocks to change shape and size irreversibly, while the rock continuity is maintained, in response to applied external forces. In order to take into account the effect of plastic deformation of rocks on earthquake preparation and occurrence, we propose not to refer to the diagrams showing stretching of the rock samples, but use a typical diagram of metal stretching, which can be obtained when testing a metal rod for breakage (Fig. 1. The diagram of metal stretching as a function of the relative elongation (to some degree of approximation and taking into account the coefficient of plasticity can be considered as a model of preparation and occurrence of an earthquake source in case of rifting. The energy released in the period immediately preceding the earthquake contributes to the emergence of

  13. Tokai earthquakes and Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Komura, Hiroo

    1981-01-01

    Kanto district and Shizuoka Prefecture are designated as ''Observation strengthening districts'', where the possibility of earthquake occurrence is high. Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., is at the center of this district. Nuclear power stations are vulnerable to earthquakes, and if damages are caused by earthquakes in nuclear power plants, the most dreadful accidents may occur. The Chubu Electric Power Co. underestimates the possibility and scale of earthquakes and the estimate of damages, and has kept on talking that the rock bed of the power station site is strong, and there is not the fear of accidents. However the actual situation is totally different from this. The description about earthquakes and the rock bed in the application of the installation of No.3 plant was totally rewritten after two years safety examination, and the Ministry of International Trade and Industry approved the application in less than two weeks thereafter. The rock bed is geologically evaluated in this paper, and many doubtful points in the application are pointed out. In addition, there are eight active faults near the power station site. The aseismatic design of the Hamaoka Nuclear Power Station assumes the acceleration up to 400 gal, but it may not be enough. The Hamaoka Nuclear Power Station is intentionally neglected in the estimate of damages in Shizuoka Prefecture. (Kako, I.)

  14. Ionization and Corona Discharges from Stressed Rocks

    Science.gov (United States)

    Winnick, M. J.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Freund, F. T.

    2008-12-01

    Pre-earthquake signals have long been observed and documented, though they have not been adequately explained scientifically. These signals include air ionization, occasional flashes of light from the ground, radio frequency emissions, and effects on the ionosphere that occur hours or even days before large earthquakes. The theory that rocks function as p-type semiconductors when deviatoric stresses are applied offers a mechanism for this group of earthquake precursors. When an igneous or high-grade metamorphic rock is subjected to deviatoric stresses, peroxy bonds that exist in the rock's minerals as point defects dissociate, releasing positive hole charge carriers. The positive holes travel by phonon-assisted electron hopping from the stressed into and through the unstressed rock volume and build up a positive surface charge. At sufficiently large electric fields, especially along edges and sharp points of the rock, air molecules become field-ionized, loosing an electron to the rock surface and turning into airborne positive ions. This in turn can lead to corona discharges, which manifest themselves by flashes of light and radio frequency emissions. We applied concentrated stresses to one end of a block of gabbro, 30 x 15 x 10 cm3, inside a shielded Faraday cage and observed positive ion currents through an air gap about 25 cm from the place where the stresses were applied, punctuated by short bursts, accompanied by flashes of light and radio frequency emissions characteristic of a corona discharge. These observations may serve to explain a range of pre-earthquake signals, in particular changes in air conductivity, luminous phenomena, radio frequency noise, and ionospheric perturbations.

  15. Examination of earthquake Ground Motion in the deep underground environment of Japan

    International Nuclear Information System (INIS)

    Goto, J.; Tsuchi, H.; Mashimo, M.

    2009-01-01

    Among the possible impacts of earthquakes on the geological disposal system, ground motion is not included in the criteria for selecting a candidate repository site because, in general, ground motion deep underground is considered to be smaller than at the surface. Also, after backfilling/closure, the repository moves together with the surrounding rock. We have carried out a detailed examination of earthquake ground motion deep underground using extensive data from recent observation networks to support the above assumption. As a result, it has been reconfirmed that earthquake ground motion deep underground is relatively smaller than at the surface. Through detailed analysis of data, we have identified the following important parameters for evaluating earthquake ground motion deep underground: depth and velocity distribution of the rock formations of interest, the intensity of the short period component of earthquakes and incident angle of seismic waves to the rock formations. (authors)

  16. Dissecting the roles of ROCK isoforms in stress-induced cell detachment

    OpenAIRE

    Shi, Jianjian; Surma, Michelle; Zhang, Lumin; Wei, Lei

    2013-01-01

    The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1 ?/? and ROCK2?/? mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin...

  17. Fracture analysis of concrete gravity dam under earthquake induced ...

    African Journals Online (AJOL)

    Michael Horsfall

    Fracture analysis of concrete gravity dam under earthquake induced loads. 1. ABBAS MANSOURI;. 2 ... 1 Civil Engineering, Islamic Azad University (South Branch of Tehran)Tehran, Iran ..... parameter has on the results of numerical calculations. In this analysis ... with the help of Abaqus software (Abaqus theory manual ...

  18. Use of spectral gamma ray as a lithology guide for fault rocks: A case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4).

    Science.gov (United States)

    Amara Konaté, Ahmed; Pan, Heping; Ma, Huolin; Qin, Zhen; Guo, Bo; Yevenyo Ziggah, Yao; Kounga, Claude Ernest Moussounda; Khan, Nasir; Tounkara, Fodé

    2017-10-01

    The main purpose of the Wenchuan Earthquake Fault Scientific drilling project (WFSD) was to produce an in-depth borehole into the Yingxiu-Beichuan (YBF) and Anxian-Guanxian faults in order to gain a much better understanding of the physical and chemical properties as well as the mechanical faulting involved. Five boreholes, namely WFSD-1, WFSD-2, WFSD-3P, WFSD-3 and WFSD-4, were drilled during the project entirety. This study, therefore, presents first-hand WFSD-4 data on the lithology (original rocks) and fault rocks that have been obtained from the WFSD project. In an attempt to determine the physical properties and the clay minerals of the lithology and fault rocks, this study analyzed the spectral gamma ray logs (Total gamma ray, Potassium, Thorium and Uranium) recorded in WFSD-4 borehole on the Northern segment of the YBF. The obtained results are presented as cross-plots and statistical multi log analysis. Both lithology and fault rocks show a variability of spectral gamma ray (SGR) logs responses and clay minerals. This study has shown the capabilities of the SGR logs for well-logging of earthquake faults and proves that SGR logs together with others logs in combination with drill hole core description is a useful method of lithology and fault rocks characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Damage-induced nonassociated inelastic flow in rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Bodner, S.R.; Brodsky, N.S.; Fossum, A.F.; Munson, D.E.

    1993-01-01

    The multi-mechanism deformation coupled fracture model recently developed by CHAN, et al. (1992), for describing time-dependent, pressure-sensitive inelastic flow and damage evolution in crystalline solids was evaluated against triaxial creep experiments on rock salt. Guided by experimental observations, the kinetic equation and the flow law for damage-induced inelastic flow in the model were modified to account for the development of damage and inelastic dilatation in the transient creep regime. The revised model was then utilized to obtain the creep response and damage evolution in rock salt as a function of confining pressure and stress difference. Comparison between model calculation and experiment revealed that damage-induced inelastic flow is nonassociated, dilatational, and contributes significantly to the macroscopic strain rate observed in rock salt deformed at low confining pressures. The inelastic strain rate and volumetric strain due to damage decrease with increasing confining pressures, and all are suppressed at sufficiently high confining pressures

  20. The guideline and practical procedures for earthquake-resistant design of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Watabe, M.

    1985-01-01

    The Guideline for the aseismic design of nuclear reactor facilities, revised in 1981, is introduced. The basic philosophy entails structural integrity against a major earthquake, rigid structure for less deformation and foundation on rock. The classification of facilities is then explained. Some practical examples are tabulated. In the light of the above classifications, evaluation procedures for aseismic design are defined. Design basis earthquake ground motions, S1 and S2, are defined. S1 is the maximum possible earthquake ground motion, while S2 is the maximum credible one. The relation between active faults and S1, S2 motions is explained, seismic forces induced by S1 and S2 are expressed in terms of response spectra. Static seismic coefficient procedures are also applied to evaluate seismic forces, as a minimum guide-line based on dynamic analysis. Combinations of seismic forces and allowable limits are then explained. In the second part of the paper, seismic analysis for reactor buildings as a part of design practice is outlined. There are three major key points in practical aseismic design. The first one is input design earthquake motions, in which soil/foundation interaction problems are also included. In practice, ground motions at the free field rock surface have to be convoluted or deconvoluted to obtain base rock motions, which are applied to estimate input design earthquake motions by way of finite element analysis or a lumped mass lattice model. Also introduced is dynamic modelling of the reactor building with its non-linear behaviour represented by plastic deformation of reinforced concrete members as well as by uplift characteristics of foundations. Then an evaluation of aseismic safety is introduced. (author)

  1. Modelling end-glacial earthquakes at Olkiluoto

    International Nuclear Information System (INIS)

    Faelth, B.; Hoekmark, H.

    2011-02-01

    The objective of this study is to obtain estimates of the possible effects that post-glacial seismic events in three verified deformation zones (BFZ100, BFZ021/099 and BFZ214) at the Olkiluoto site may have on nearby fractures in terms of induced fracture shear displacement. The study is carried out by use of large-scale models analysed dynamically with the three dimensional distinct element code 3DEC. Earthquakes are simulated in a schematic way; large planar discontinuities representing earthquake faults are surrounded by a number of smaller discontinuities which represent rock fractures in which shear displacements potentially could be induced by the effects of the slipping fault. Initial stresses, based on best estimates of the present-day in situ stresses and on state-of-the-art calculations of glacially-induced stresses, are applied. The fault rupture is then initiated at a pre-defined hypocentre and programmed to propagate outward along the fault plane with a specified rupture velocity until it is arrested at the boundary of the prescribed rupture area. Fault geometries, fracture orientations, in situ stress model and material property parameter values are based on data obtained from the Olkiluoto site investigations. Glacially-induced stresses are obtained from state-of-the-art ice-crust/mantle finite element analyses. The response of the surrounding smaller discontinuities, i.e. the induced fracture shear displacement, is the main output from the simulations

  2. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  3. Limiting the Magnitude of Potential Injection-Induced Seismicity Associated With Waste-Water Disposal, Hydraulic Fracturing and CO2 Sequestration

    Science.gov (United States)

    Zoback, Mark

    2017-04-01

    In this talk, I will address the likelihood for fault slip to occur in response to fluid injection and the likely magnitude of potentially induced earthquakes. First, I will review a methodology that applies Quantitative Risk Assessment to calculate the probability of a fault exceeding Mohr-Coulomb slip criteria. The methodology utilizes information about the local state of stress, fault strike and dip and the estimated pore pressure perturbation to predict the probability of the fault slip as a function of time. Uncertainties in the input parameters are utilized to assess the probability of slip on known faults due to the predictable pore pressure perturbations. Application to known faults in Oklahoma has been presented by Walsh and Zoback (Geology, 2016). This has been updated with application to the previously unknown faults associated with M >5 earthquakes in the state. Second, I will discuss two geologic factors that limit the magnitudes of earthquakes (either natural or induced) in sedimentary sequences. Fundamentally, the layered nature of sedimentary rocks means that seismogenic fault slip will be limited by i) the velocity strengthening frictional properties of clay- and carbonate-rich rock sequences (Kohli and Zoback, JGR, 2013; in prep) and ii) viscoplastic stress relaxation in rocks with similar composition (Sone and Zoback, Geophysics, 2013a, b; IJRM, 2014; Rassouli and Zoback, in prep). In the former case, if fault slip is triggered in these types of rocks, it would likely be aseismic due the velocity strengthening behavior of faults. In the latter case, the stress relaxation could result in rupture termination in viscoplastic formations. In both cases, the stratified nature of sedimentary rock sequences could limit the magnitude of potentially induced earthquakes. Moreover, even when injection into sedimentary rocks initiates fault slip, earthquakes large enough to cause damage will usually require slip on faults sufficiently large that they extend

  4. Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias

    Science.gov (United States)

    Dempsey, David; Suckale, Jenny

    2016-05-01

    Induced seismicity is of increasing concern for oil and gas, geothermal, and carbon sequestration operations, with several M > 5 events triggered in recent years. Modeling plays an important role in understanding the causes of this seismicity and in constraining seismic hazard. Here we study the collective properties of induced earthquake sequences and the physics underpinning them. In this first paper of a two-part series, we focus on the directivity ratio, which quantifies whether fault rupture is dominated by one (unilateral) or two (bilateral) propagating fronts. In a second paper, we focus on the spatiotemporal and magnitude-frequency distributions of induced seismicity. We develop a model that couples a fracture mechanics description of 1-D fault rupture with fractal stress heterogeneity and the evolving pore pressure distribution around an injection well that triggers earthquakes. The extent of fault rupture is calculated from the equations of motion for two tips of an expanding crack centered at the earthquake hypocenter. Under tectonic loading conditions, our model exhibits a preference for unilateral rupture and a normal distribution of hypocenter locations, two features that are consistent with seismological observations. On the other hand, catalogs of induced events when injection occurs directly onto a fault exhibit a bias toward ruptures that propagate toward the injection well. This bias is due to relatively favorable conditions for rupture that exist within the high-pressure plume. The strength of the directivity bias depends on a number of factors including the style of pressure buildup, the proximity of the fault to failure and event magnitude. For injection off a fault that triggers earthquakes, the modeled directivity bias is small and may be too weak for practical detection. For two hypothetical injection scenarios, we estimate the number of earthquake observations required to detect directivity bias.

  5. Source Parameters from Full Moment Tensor Inversions of Potentially Induced Earthquakes in Western Canada

    Science.gov (United States)

    Wang, R.; Gu, Y. J.; Schultz, R.; Kim, A.; Chen, Y.

    2015-12-01

    During the past four years, the number of earthquakes with magnitudes greater than three has substantially increased in the southern section of Western Canada Sedimentary Basin (WCSB). While some of these events are likely associated with tectonic forces, especially along the foothills of the Canadian Rockies, a significant fraction occurred in previously quiescent regions and has been linked to waste water disposal or hydraulic fracturing. A proper assessment of the origin and source properties of these 'induced earthquakes' requires careful analyses and modeling of regional broadband data, which steadily improved during the past 8 years due to recent establishments of regional broadband seismic networks such as CRANE, RAVEN and TD. Several earthquakes, especially those close to fracking activities (e.g. Fox creek town, Alberta) are analyzed. Our preliminary full moment tensor inversion results show maximum horizontal compressional orientations (P-axis) along the northeast-southwest orientation, which agree with the regional stress directions from borehole breakout data and the P-axis of historical events. The decomposition of those moment tensors shows evidence of strike-slip mechanism with near vertical fault plane solutions, which are comparable to the focal mechanisms of injection induced earthquakes in Oklahoma. Minimal isotropic components have been observed, while a modest percentage of compensated-linear-vector-dipole (CLVD) components, which have been linked to fluid migraition, may be required to match the waveforms. To further evaluate the non-double-couple components, we compare the outcomes of full, deviatoric and pure double couple (DC) inversions using multiple frequency ranges and phases. Improved location and depth information from a novel grid search greatly assists the identification and classification of earthquakes in potential connection with fluid injection or extraction. Overall, a systematic comparison of the source attributes of

  6. Meteorite Impact "Earthquake" Features (Rock Liquefaction, Surface Wave Deformations, Seismites) from Ground Penetrating Radar (GPR) and Geoelectric Complex Resistivity/Induced Polarization (IP) Measurements, Chiemgau (Alpine Foreland, Southeast Germany)

    Science.gov (United States)

    Ernstson, K.; Poßekel, J.

    2017-12-01

    Densely spaced GPR and complex resistivity measurements on a 30,000 square meters site in a region of enigmatic sinkhole occurrences in unconsolidated Quaternary sediments have featured unexpected and highlighting results from both a meteorite impact research and an engineering geology point of view. The GPR measurements and a complex resistivity/IP electrical imaging revealed extended subrosion depressions related with a uniformly but in various degrees of intensity deformed loamy and gravelly ground down to at least 10 m depth. Two principle observations could be made from both the GPR high-resolution measurements and the more integrating resistivity and IP soundings with both petrophysical evidences in good complement. Subrosion can be shown to be the result of prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Funnel-shaped structures with diameters up to 25 m near the surface and reaching down to the floating ground water level at 10 m depth were measured. GPR radargrams could trace prominent gravelly-material transport bottom-up within the funnels. Seen in both GPR tomography and resistivity/IP sections more or less the whole investigated area is overprinted by wavy deformations of the unconsolidated sediments with wavelengths of the order of 5 - 10 m and amplitudes up to half a meter, likewise down to 10 m depth. Substantial earthquakes are not known in this region. Hence, the observed heavy underground disorder is considered the result of the prominent earthquake shattering that must have occurred during the Holocene (Bronze Age/Celtic era) Chiemgau meteorite impact event that produced a 60 km x 30 km sized crater strewn field directly hosting the investigated site. Depending on depth and size of floating aquifers local concentrations of rock liquefaction and seismic surface waves (probably LOVE waves) to produce the wavy deformations could develop, when the big

  7. The Rheological Evolution of Brittle-Ductile Transition Rocks During the Earthquake Cycle: Evidence for a Ductile Precursor to Pseudotachylyte in an Extensional Fault System, South Mountains, Arizona

    Science.gov (United States)

    Stewart, Craig A.; Miranda, Elena A.

    2017-12-01

    We investigate how the rheological evolution of shear zone rocks from beneath the brittle-ductile transition (BDT) is affected by coeval ductile shear and pseudotachylyte development associated with seismicity during the earthquake cycle. We focus our study on footwall rocks of the South Mountains core complex, and we use electron backscatter diffraction (EBSD) analyses to examine how strain is localized in granodiorite mylonites both prior to and during pseudotachylyte development beneath the BDT. In mylonites that are host to pseudotachylytes, deformation is partitioned into quartz, where quartz exhibits crystallographic-preferred orientation patterns and microstructures indicative of dynamic recrystallization during dislocation creep. Grain size reduction during dynamic recrystallization led to the onset of grain boundary sliding (GBS) accommodated by fluid-assisted grain size-sensitive (GSS) creep, localizing strain in quartz-rich layers prior to pseudotachylyte development. The foliation-parallel zones of GBS in the host mylonites, and the presence of GBS traits in polycrystalline quartz survivor clasts indicate that GBS zones were the ductile precursors to in situ pseudotachylyte generation. During pseudotachylyte development, strain was partitioned into the melt phase, and GSS deformation in the survivor clasts continued until crystallization of melt impeded flow, inducing pseudotachylyte development in other GBS zones. We interpret the coeval pseudotachylytes with ductile precursors as evidence of seismic events near the BDT. Grain size piezometry yields high differential stresses in both host mylonites ( 160 MPa) and pseudotachylyte survivor clasts (> 200 MPa), consistent with high stresses during interseismic and coseismic phases of the earthquake cycle, respectively.

  8. Multi-component observation in deep boreholes, and its applications to earthquake prediction research and rock mechanics

    International Nuclear Information System (INIS)

    Ishii, Hiroshi

    2014-01-01

    The Tono Research Institute of Earthquake Science (TRIES) has developed a multicomponent instrument that can be operated in deep boreholes (e.g., those one km in depth). It is equipped with stress meters, strain meters, tilt meters, seismometers, magnetometers, and thermometers; in addition, these sensors can be arbitrarily combined. The stress meters, which were developed recently, can observe stress and strain; in the future, data obtained from these sensors will offer new information on seismology and rock mechanics. The size of typical probe is 12 cm diameter 7.8 m total length and 290 kg total weight. It consists of many meters in tandem connection. (authors)

  9. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults

    Science.gov (United States)

    Norbeck, Jack H.; Horne, Roland N.

    2018-05-01

    The maximum expected earthquake magnitude is an important parameter in seismic hazard and risk analysis because of its strong influence on ground motion. In the context of injection-induced seismicity, the processes that control how large an earthquake will grow may be influenced by operational factors under engineering control as well as natural tectonic factors. Determining the relative influence of these effects on maximum magnitude will impact the design and implementation of induced seismicity management strategies. In this work, we apply a numerical model that considers the coupled interactions of fluid flow in faulted porous media and quasidynamic elasticity to investigate the earthquake nucleation, rupture, and arrest processes for cases of induced seismicity. We find that under certain conditions, earthquake ruptures are confined to a pressurized region along the fault with a length-scale that is set by injection operations. However, earthquakes are sometimes able to propagate as sustained ruptures outside of the zone that experienced a pressure perturbation. We propose a faulting criterion that depends primarily on the state of stress and the earthquake stress drop to characterize the transition between pressure-constrained and runaway rupture behavior.

  10. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  11. Numerical Modeling of Earthquake-Induced Landslide Using an Improved Discontinuous Deformation Analysis Considering Dynamic Friction Degradation of Joints

    Science.gov (United States)

    Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang

    2016-12-01

    Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.

  12. Earthquake forewarning — A multidisciplinary challenge from the ground up to space

    Science.gov (United States)

    Freund, Friedemann

    2013-08-01

    Most destructive earthquakes nucleate at between 5-7 km and about 35-40 km depth. Before earthquakes, rocks are subjected to increasing stress. Not every stress increase leads to rupture. To understand pre-earthquake phenomena we note that igneous and high-grade metamorphic rocks contain defects which, upon stressing, release defect electrons in the oxygen anion sublattice, known as positive holes. These charge carriers are highly mobile, able to flow out of stressed rocks into surrounding unstressed rocks. They form electric currents, which emit electromagnetic radiation, sometimes in pulses, sometimes sustained. The arrival of positive holes at the ground-air interface can lead to air ionization, often exclusively positive. Ionized air rising upward can lead to cloud condensation. The upward flow of positive ions can lead to instabilities in the mesosphere, to mesospheric lightning, to changes in the Total Electron Content (TEC) at the lower edge of the ionosphere, and electric field turbulences. Advances in deciphering the earthquake process can only be achieved in a broadly multidisciplinary spirit.

  13. Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake

    Directory of Open Access Journals (Sweden)

    T. Bleier

    2009-04-01

    Full Text Available Several electromagnetic signal types were observed prior to and immediately after 30 October 2007 (Local Time M5.4 earthquake at Alum Rock, Ca with an epicenter ~15 km NE of San Jose Ca. The area where this event occurred had been monitored since November 2005 by a QuakeFinder magnetometer site, unit 609, 2 km from the epicenter. This instrument is one of 53 stations of the QuakeFinder (QF California Magnetometer Network-CalMagNet. This station included an ultra low frequency (ULF 3-axis induction magnetometer, a simple air conductivity sensor to measure relative airborne ion concentrations, and a geophone to identify the arrival of the P-wave from an earthquake. Similar in frequency content to the increased ULF activity reported two weeks prior to the Loma Prieta M7.0 quake in 1989 (Fraser-Smith, 1990, 1991, the QF station detected activity in the 0.01–12 Hz bands, but it consisted of an increasing number of short duration (1 to 30 s duration pulsations. The pulsations peaked around 13 days prior to the event. The amplitudes of the pulses were strong, (3–20 nT, compared to the average ambient noise at the site, (10–250 pT, which included a component arising from the Bay Area Rapid Transit (BART operations. The QF station also detected different pulse shapes, e.g. negative or positive only polarity, with some pulses including a combination of positive and negative. Typical pulse counts over the previous year ranged from 0–15 per day, while the count rose to 176 (east-west channel on 17 October, 13 days prior to the quake. The air conductivity sensor saturated for over 14 h during the night and morning prior to the quake, which occurred at 20:29 LT. Anomalous IR signatures were also observed in the general area, within 50 km of the epicenter, during the 2 weeks prior to the quake. These three simultaneous EM phenomena were compared with data collected over a 1–2-year period at the site. The data was also compared against accounts of air

  14. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    Science.gov (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  15. Landslides triggered by the 8 October 2005 Kashmir earthquake

    Science.gov (United States)

    Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A.

    2008-01-01

    The 8 October 2005 Kashmir earthquake triggered several thousand landslides. These were mainly rock falls and debris falls, although translational rock and debris slides also occurred. In addition, a sturzstrom (debris avalanche) comprising ??? 80??million m3 buried four villages and blocked streams to create two lakes. Although landsliding occurred throughout the region, covering an area of > 7500??km2, the failures were highly concentrated, associated with six geomorphic-geologic-anthropogenic settings, including natural failures in (1) highly fractured carbonate rocks comprising the lowest beds in the hanging wall of the likely earthquake fault; (2) Tertiary siliciclastic rocks along antecedent drainages that traverse the Hazara-Kashmir Syntaxis; (3) steep (> 50??) slopes comprising Precambrian and Lower Paleozoic rocks; (4) very steep (?? 50??) lower slopes of fluvially undercut Quaternary valley fills; and (5) ridges and spur crests. The sixth setting was associated with road construction. Extensive fissuring in many of the valley slopes together with the freshly mobilized landslide debris constitutes a potential hazard in the coming snowmelt and monsoon seasons. This study supports the view that earthquake-triggered landslides are highly concentrated in specific zones associated with the lithology, structure, geomorphology, topography, and human presence. ?? 2007 Elsevier B.V. All rights reserved.

  16. Earthquakes, fluid pressures and rapid subduction zone metamorphism

    Science.gov (United States)

    Viete, D. R.

    2013-12-01

    High-pressure/low-temperature (HP/LT) metamorphism is commonly incomplete, meaning that large tracts of rock can remain metastable at blueschist- and eclogite-facies conditions for timescales up to millions of years [1]. When HP/LT metamorphism does take place, it can occur over extremely short durations (the role of fluids in providing heat for metamorphism [2] or catalyzing metamorphic reactions [1]. Earthquakes in subduction zone settings can occur to depths of 100s of km. Metamorphic dehydration and the associated development of elevated pore pressures in HP/LT metamorphic rocks has been identified as a cause of earthquake activity at such great depths [3-4]. The process of fracturing/faulting significantly increases rock permeability, causing channelized fluid flow and dissipation of pore pressures [3-4]. Thus, deep subduction zone earthquakes are thought to reflect an evolution in fluid pressure, involving: (1) an initial increase in pore pressure by heating-related dehydration of subduction zone rocks, and (2) rapid relief of pore pressures by faulting and channelized flow. Models for earthquakes at depth in subduction zones have focussed on the in situ effects of dehydration and then sudden escape of fluids from the rock mass following fracturing [3-4]. On the other hand, existing models for rapid and incomplete metamorphism in subduction zones have focussed only on the effects of heating and/or hydration with the arrival of external fluids [1-2]. Significant changes in pressure over very short timescales should result in rapid mineral growth and/or disequilibrium texture development in response to overstepping of mineral reaction boundaries. The repeated process of dehydration-pore pressure development-earthquake-pore pressure relief could conceivably produce a record of episodic HP/LT metamorphism driven by rapid pressure pulses. A new hypothesis is presented for the origins of HP/LT metamorphism: that HP/LT metamorphism is driven by effective pressure

  17. Evaluation of seismic stability of nuclear power plants on weathered soft rocks

    International Nuclear Information System (INIS)

    Ogata, Nobuhide; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    Soft rocks such as weathered rocks or low cemented sedimentary rocks spread all over the country. If it is possible to construct nuclear power plants on such soft rocks, there will be more available sites for nuclear power plants. The investigation on the following research items was carried out. (1) Geological survey and the application of test methods on soft rocks. (2) Methods and application of laboratory and in-situ tests on soft rocks. (3) Response analysis of a reactor building and foundation ground during earthquake. (4) Stability analysis of soft rock ground as the foundation of a nuclear power plant regarding both earthquake and long-term settlement. From the results of the investigation, it became evident that the seismic stability of a nuclear power plant on weathered soft rocks can be assured enough. (author)

  18. Superconducting Gravimeters Detect Gravity Fluctuations Induced by Mw 5.7 Earthquake Along South Pacific Rise Few Hours Before the 2011 Mw 9.0 Tohoku-Oki Earthquake

    Directory of Open Access Journals (Sweden)

    Keliang Zhang Jin Ma

    2014-01-01

    Full Text Available Gravity changes sometimes appear before a big earthquake. To determine the possible sources is important for recognizing the mechanism and further geodynamic studies. During the first two hours on March 11 before the Mw 9.0 Tohoku-Oki earthquake, the non-tidal gravity time series of superconducting gravimeters worldwide showed low-frequency (< 0.10 Hz fluctuations with amplitude of ~1 to 4 × 10-8 ms-2 lasting ~10 - 20 minutes. Through comparing global seismicity with the arrival times of seismic waves, we find that the fluctuations were induced by the Mw 5.7 earthquake that occurred at 0:14:54.68 at (53.27°S, 118.18°W along the eastern South Pacific Rise. Several body waves such as P, S are clearly recorded in the station with ~400 km distance to the hypocenter. The fluctuations are in response to the waves that propagate with a velocity of about 4 km s-1. Their amplitudes are proportional to the inverse of the epicentral distances even though the fluctuations of European sites were overlapped with waves associated with a smaller, i.e., Mw 2.6, event in Europe during this period. That is, the Mw 5.7 earthquake induced remarkable gravity fluctuations over long distances at stations all over the world. As such, the foreshocks with larger magnitudes occurred before the Mw 9.0 earthquake would have more significant influence on the gravity recordings and the seismic-wave induced component should be removed during the analysis of anomalies prior to a great earthquake in future studies.

  19. Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm

    Science.gov (United States)

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-03-01

    The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.

  20. Modeling earthquake magnitudes from injection-induced seismicity on rough faults

    Science.gov (United States)

    Maurer, J.; Dunham, E. M.; Segall, P.

    2017-12-01

    It is an open question whether perturbations to the in-situ stress field due to fluid injection affect the magnitudes of induced earthquakes. It has been suggested that characteristics such as the total injected fluid volume control the size of induced events (e.g., Baisch et al., 2010; Shapiro et al., 2011). On the other hand, Van der Elst et al. (2016) argue that the size distribution of induced earthquakes follows Gutenberg-Richter, the same as tectonic events. Numerical simulations support the idea that ruptures nucleating inside regions with high shear-to-effective normal stress ratio may not propagate into regions with lower stress (Dieterich et al., 2015; Schmitt et al., 2015), however, these calculations are done on geometrically smooth faults. Fang & Dunham (2013) show that rupture length on geometrically rough faults is variable, but strongly dependent on background shear/effective normal stress. In this study, we use a 2-D elasto-dynamic rupture simulator that includes rough fault geometry and off-fault plasticity (Dunham et al., 2011) to simulate earthquake ruptures under realistic conditions. We consider aggregate results for faults with and without stress perturbations due to fluid injection. We model a uniform far-field background stress (with local perturbations around the fault due to geometry), superimpose a poroelastic stress field in the medium due to injection, and compute the effective stress on the fault as inputs to the rupture simulator. Preliminary results indicate that even minor stress perturbations on the fault due to injection can have a significant impact on the resulting distribution of rupture lengths, but individual results are highly dependent on the details of the local stress perturbations on the fault due to geometric roughness.

  1. Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression

    Directory of Open Access Journals (Sweden)

    Takahiro Ebata

    2017-01-01

    Full Text Available The physical properties of the extracellular matrix (ECM, such as stiffness, are involved in the determination of the characteristics of cancer cells, including chemotherapy sensitivity. Resistance to chemotherapy is often linked to dysfunction of tumor suppressor p53; however, it remains elusive whether the ECM microenvironment interferes with p53 activation in cancer cells. Here, we show that, in MCF-7 breast cancer cells, extracellular stiffness influences p53 activation induced by the antitumor drug doxorubicin. Cell growth inhibition by doxorubicin was increased in response to ECM rigidity in a p53-dependent manner. The expression of Rho-associated coiled coil-containing protein kinase (ROCK 2, which induces the activation of myosin II, was significantly higher when cells were cultured on stiffer ECM substrates. Knockdown of ROCK2 expression or pharmacological inhibition of ROCK decreased doxorubicin-induced p53 activation. Our results suggest that a soft ECM causes downregulation of ROCK2 expression, which drives resistance to chemotherapy by repressing p53 activation.

  2. Strong-motion characteristics and source process during the Suruga Bay earthquake in 2009 through observed records on rock sites

    International Nuclear Information System (INIS)

    Shiba, Yoshiaki; Sato, Hiroaki; Kuriyama, Masayuki

    2010-01-01

    On 11 August 2009, a moderate earthquake of M 6.5 occurred in the Suruga Bay region, south of Shizuoka prefecture. During this event, JMA Seismic Intensity reached 6 lower in several cities around the hypocenter, and at Hamaoka nuclear power plant of Chubu Electric Power reactors were automatically shutdown due to large ground motions. Though the epicenter is located at the eastern edge of source area for the assumed great Tokai earthquake of M 8, this event is classified into the intra-plate (intra-slab) earthquake, due to its focal depth lower than that of the plate boundary and fault geometry supposed from the moment tensor solution. Dense strong-motion observation network has been deployed mainly on the rock outcrops by our institute around the source area, and the waveform data of the main shock and several aftershocks were obtained at 13 stations within 100 km from the hypocenter. The observed peak ground motions and velocity response spectral amplitudes are both obviously larger than the empirical attenuation relations derived from the inland and plate-boundary earthquake data, which displays the characteristics of the intra-slab earthquake faulting. Estimated acceleration source spectra of the main shock also exhibit the short period level about 1.7 times larger than the average of those for past events, and it corresponds with the additional term in the attenuation curve of the peak ground acceleration for the intra-plate earthquake. Detailed source process of the main shock is inferred using the inversion technique. The initial source model is assumed to be composed of two distinct fault planes according to the minute aftershock distribution. Estimated source model shows that large slip occurred near the hypocenter and at the boundary region between two fault planes where the rupture transfers from primary to secondary fault. Furthermore the broadband source inversion using velocity motions in the frequency up to 5 Hz demonstrates the high effective

  3. A Crowdsourcing-based Taiwan Scientific Earthquake Reporting System

    Science.gov (United States)

    Liang, W. T.; Lee, J. C.; Lee, C. F.

    2017-12-01

    To collect immediately field observations for any earthquake-induced ground damages, such as surface fault rupture, landslide, rock fall, liquefaction, and landslide-triggered dam or lake, etc., we are developing an earthquake damage reporting system which particularly relies on school teachers as volunteers after taking a series of training courses organized by this project. This Taiwan Scientific Earthquake Reporting (TSER) system is based on the Ushahidi mapping platform, which has been widely used for crowdsourcing on different purposes. Participants may add an app-like icon for mobile devices to this website at https://ies-tser.iis.sinica.edu.tw. Right after a potential damaging earthquake occurred in the Taiwan area, trained volunteers will be notified/dispatched to the source area to carry out field surveys and to describe the ground damages through this system. If the internet is available, they may also upload some relevant images in the field right away. This collected information will be shared with all public after a quick screen by the on-duty scientists. To prepare for the next strong earthquake, we set up a specific project on TSER for sharing spectacular/remarkable geologic features wherever possible. This is to help volunteers get used to this system and share any teachable material on this platform. This experimental, science-oriented crowdsourcing system was launched early this year. Together with a DYFI-like intensity reporting system, Taiwan Quake-Catcher Network, and some online games and teaching materials, the citizen seismology has been much improved in Taiwan in the last decade. All these constructed products are now either operated or promoted at the Taiwan Earthquake Research Center (TEC). With these newly developed platforms and materials, we are aiming not only to raise the earthquake awareness and preparedness, but also to encourage public participation in earthquake science in Taiwan.

  4. Stress drop estimates and hypocenter relocations of induced earthquakes near Fox Creek, Alberta

    Science.gov (United States)

    Clerc, F.; Harrington, R. M.; Liu, Y.; Gu, Y. J.

    2016-12-01

    This study investigates the physical differences between induced and naturally occurring earthquakes using a sequence of events potentially induced by hydraulic fracturing near Fox Creek, Alberta. We perform precise estimations of static stress drop to determine if the range of values is low compared to values estimated for naturally occurring events, as has been suggested by previous studies. Starting with the Natural Resources Canada earthquake catalog and using waveform data from regional networks, we use a spectral ratio method to calculate the static stress drop values of a group of relocated earthquakes occurring in close proximity to hydraulic fracturing wells from December 2013 to June 2015. The spectral ratio method allows us to precisely constrain the corner frequencies of the amplitude spectra by eliminating the path and site effects of co-located event pairs. Our estimated stress drop values range from 0.1 - 149 MPa over the full range of observed magnitudes, Mw 1.5-4, which are on the high side of the typical reported range of tectonic events, but consistent with other regional studies [Zhang et al., 2016; Wang et al., 2016]. , Stress drops values range from 11 to 93 MPa and appear to be scale invariant over the magnitude range Mw 3 - 4, and are less well constrained at lower magnitudes due to noise and bandwidth limitations. We observe no correlation between event stress drop and hypocenter depth or distance from the wells. Relocated hypocenters cluster around corresponding injection wells and form fine-scale lineations, suggesting the presence and orientation of fault planes. We conclude that neither the range of stress drops nor their scaling with respect to magnitude can be used to conclusively discriminate induced and tectonic earthquakes, as stress drop values may be greatly affected by the regional setting. Instead, the double-difference relocations may be a more reliable indicator of induced seismicity.

  5. Seismic‐hazard forecast for 2016 including induced and natural earthquakes in the central and eastern United States

    Science.gov (United States)

    Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Llenos, Andrea L.; Ellsworth, William L.; Michael, Andrew J.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2016-01-01

    The U.S. Geological Survey (USGS) has produced a one‐year (2016) probabilistic seismic‐hazard assessment for the central and eastern United States (CEUS) that includes contributions from both induced and natural earthquakes that are constructed with probabilistic methods using alternative data and inputs. This hazard assessment builds on our 2016 final model (Petersen et al., 2016) by adding sensitivity studies, illustrating hazard in new ways, incorporating new population data, and discussing potential improvements. The model considers short‐term seismic activity rates (primarily 2014–2015) and assumes that the activity rates will remain stationary over short time intervals. The final model considers different ways of categorizing induced and natural earthquakes by incorporating two equally weighted earthquake rate submodels that are composed of alternative earthquake inputs for catalog duration, smoothing parameters, maximum magnitudes, and ground‐motion models. These alternatives represent uncertainties on how we calculate earthquake occurrence and the diversity of opinion within the science community. In this article, we also test sensitivity to the minimum moment magnitude between M 4 and M 4.7 and the choice of applying a declustered catalog with b=1.0 rather than the full catalog with b=1.3. We incorporate two earthquake rate submodels: in the informed submodel we classify earthquakes as induced or natural, and in the adaptive submodel we do not differentiate. The alternative submodel hazard maps both depict high hazard and these are combined in the final model. Results depict several ground‐shaking measures as well as intensity and include maps showing a high‐hazard level (1% probability of exceedance in 1 year or greater). Ground motions reach 0.6g horizontal peak ground acceleration (PGA) in north‐central Oklahoma and southern Kansas, and about 0.2g PGA in the Raton basin of Colorado and New Mexico, in central Arkansas, and in

  6. Predicting rock bursts in mines

    Science.gov (United States)

    Spall, H.

    1979-01-01

    In terms of lives lost, rock bursts in underground mines can be as hazardous as earthquakes on the surface. So it is not surprising that fo the last 40 years the U.S Bureau of Mines has been using seismic methods for detecting areas in underground mines where there is a high differential stress which could lead to structural instability of the rock mass being excavated.

  7. RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions.

    Science.gov (United States)

    Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua

    2018-01-01

    Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro , human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the

  8. Effects of earthquakes on the deep repository for spent fuel in Sweden based on case studies and preliminary model results

    International Nuclear Information System (INIS)

    Baeckblom, Goeran; Munier, Raymond

    2002-06-01

    seismically rather silent and will remain so in the foreseeable future. Seismic hazard has been calculated for Sweden and it is concluded that Peak Ground Accelerations (PGA) greater than 2 m/s 2 is very unlikely the next coming 50-year period, in which the repository is planned to be constructed and operated. Damage due to shaking is very rare in underground facilities. Where such damage has occurred, the rock is either very poor or subject to very high stresses. None of these conditions will prevail in the Swedish repository. Most damage is also correlated to the presence of faults and the spent fuel will not be deposited in or close to important faults. Mining-induced earthquakes are known to cause damages in the mines. At the repository site it might be possible to experience local rock burst problems due to heterogeneous rock strengths and varying rock stresses. It is expected that these events, in case they appear, will take place when the tunnels are excavated rather than at the time of canister deposition. Earthquake impact during the post-closure phase: The present seismic activity in Sweden is expected to increase considerably in connection to the retreat of ice sheets in future glaciations. Peak ground accelerations may exceed 2 m/s 2 in association to large earthquakes. However, the effects of shaking, such as fallouts, cracking of lining are reduced since all tunnels will be backfilled by crushed rock and bentonite. The presence of the repository will not trigger earthquakes as the extraction ratio of the openings is very low compared to open stopes in a mine. There are also evidences for mines at great depth, that backfilling lower the mining-induced seismic activity compared to the situation when tunnels are not backfilled. The buffer and canister shake as a solid body without producing excess shear stresses or liquefaction of the buffer. Water-level changes will occur due to earthquakes but most of the changes are temporary and water-levels will return to

  9. Recent Earthquakes Mark the Onset of Induced Seismicity in Northeastern Pennsylvania

    Science.gov (United States)

    Martone, P.; Nikulin, A.; Pietras, J.

    2017-12-01

    The link between induced seismicity and injection of hydraulic fracturing wastewater has largely been accepted and corroborated through case studies in Colorado, Arkansas, Texas, and Oklahoma. To date, induced seismicity has largely impacted hydrocarbon-producing regions in the Central United States, while the seismic response in Eastern states, like Pennsylvania, has been relatively muted. In recent years, Pennsylvania exponentially increased hydrocarbon production from the Marcellus and Utica Shales and our results indicate that this activity has triggered an onset of induced seismicity in areas of the state where no previous seismic activity was reported. Three recent earthquakes in Northeastern Pennsylvania directly correlate to hydraulic fracturing activity, though USGS NEIC earthquake catalog locations have vertical errors up to 31km. We present signal analysis results of recorded waveforms of the three identified events and results of a high-precision relocation effort and improvements to the regional velocity model aimed at constraining the horizontal and vertical error in hypocenter position. We show that at least one event is positioned directly along the wellbore track of an active well and correlate its timing to the hydraulic fracturing schedule. Results show that in the absence of wastewater disposal in this area, it is possible to confidently make the connection between the hydraulic fracturing process and induced seismicity.

  10. Mixing induced reactive transport in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Martinez-Landa, Lurdes; Carrera, Jesus; Dentz, Marco; Fernàndez-Garcia, Daniel; Nardí, Albert; Saaltink, Maarten W.

    2012-01-01

    In this paper the solute retention properties of crystalline fractured rocks due to mixing-induced geochemical reactions are studied. While fractured media exhibit paths of fast flow and transport and thus short residence times for conservative solutes, at the same time they promote mixing and dilution due to strong heterogeneity, which leads to sharp concentration contrasts. Enhanced mixing and dilution have a double effect that favors crystalline fractured media as a possible host medium for nuclear waste disposal. Firstly, peak radionuclide concentrations are attenuated and, secondly, mixing-induced precipitation reactions are enhanced significantly, which leads to radionuclide immobilization. An integrated framework is presented for the effective modeling of these flow, transport and reaction phenomena, and the interaction between them. In a simple case study, the enhanced dilution and precipitation potential of fractured crystalline rocks are systematically studied and quantified and contrasted it to retention and attenuation in an equivalent homogeneous formation.

  11. Assessment of stone columns as a mitigation technique of liquefaction-induced effects during Italian earthquakes (May 2012).

    Science.gov (United States)

    Forcellini, Davide; Tarantino, Angelo Marcello

    2014-01-01

    Soil liquefaction has been observed worldwide during recent major earthquakes with induced effects responsible for much of the damage, disruption of function, and considerable replacement expenses for structures. The phenomenon has not been documented in recent time with such damage in Italian context before the recent Emilia-Romagna Earthquake (May 2012). The main lateral spreading and vertical deformations affected the stability of many buildings and impacted social life inducing valuable lessons on liquefaction risk assessment and remediation. This paper aims first of all to reproduce soil response to liquefaction-induced lateral effects and thus to evaluate stone column mitigation technique effectiveness by gradually increasing the extension of remediation, in order to achieve a satisfactory lower level of permanent deformations. The study is based on the use of a FE computational interface able to analyse the earthquake-induced three-dimensional pore pressure generation adopting one of the most credited nonlinear theories in order to assess realistically the displacements connected to lateral spreading.

  12. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  13. Body-wave seismic interferometry applied to earthquake- and storm-induced wavefield

    NARCIS (Netherlands)

    Ruigrok, E.N.

    2012-01-01

    Seismology is the study of the vibration of the Earth. Seismologists pay much attention to the main source of Earth vibration: earthquakes. But also other seismic sources, like mining blasts, ocean storms and windmills, are studied. All these sources induce seismic waves, which can eventually be

  14. 2017 One‐year seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes

    Science.gov (United States)

    Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Shumway, Allison; McNamara, Daniel E.; Williams, Robert; Llenos, Andrea L.; Ellsworth, William L.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2017-01-01

    We produce a one‐year 2017 seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes that updates the 2016 one‐year forecast; this map is intended to provide information to the public and to facilitate the development of induced seismicity forecasting models, methods, and data. The 2017 hazard model applies the same methodology and input logic tree as the 2016 forecast, but with an updated earthquake catalog. We also evaluate the 2016 seismic‐hazard forecast to improve future assessments. The 2016 forecast indicated high seismic hazard (greater than 1% probability of potentially damaging ground shaking in one year) in five focus areas: Oklahoma–Kansas, the Raton basin (Colorado/New Mexico border), north Texas, north Arkansas, and the New Madrid Seismic Zone. During 2016, several damaging induced earthquakes occurred in Oklahoma within the highest hazard region of the 2016 forecast; all of the 21 moment magnitude (M) ≥4 and 3 M≥5 earthquakes occurred within the highest hazard area in the 2016 forecast. Outside the Oklahoma–Kansas focus area, two earthquakes with M≥4 occurred near Trinidad, Colorado (in the Raton basin focus area), but no earthquakes with M≥2.7 were observed in the north Texas or north Arkansas focus areas. Several observations of damaging ground‐shaking levels were also recorded in the highest hazard region of Oklahoma. The 2017 forecasted seismic rates are lower in regions of induced activity due to lower rates of earthquakes in 2016 compared with 2015, which may be related to decreased wastewater injection caused by regulatory actions or by a decrease in unconventional oil and gas production. Nevertheless, the 2017 forecasted hazard is still significantly elevated in Oklahoma compared to the hazard calculated from seismicity before 2009.

  15. Rock avalanches clusters along the northern Chile coastal scarp

    Science.gov (United States)

    Crosta, G. B.; Hermanns, R. L.; Dehls, J.; Lari, S.; Sepulveda, S.

    2017-07-01

    Rock avalanche clusters can be relevant indicators of the evolution of specific regions. They can be used to define: the type and intensity of triggering events, their recurrence and potential probability of occurrence, the progressive damage of the rock mass, the mechanisms of transport and deposition, as well as the environmental conditions at the time of occurrence. This paper tackles these subjects by analyzing two main clusters of rock avalanches (each event between 0.6 and 30 Mm3), separated by few kilometers and located along the coastal scarp of Northern Chile, south of Iquique. It lies, hence, within a seismic area characterized by a long seismic gap that ended on April 1st, 2014 with a Mw 8.2 earthquake. The scar position, high along the coastal cliff, supports seismic triggering for these clusters. The deposits' relative positions are used to obtain the sequence of rock avalanching events for each cluster. The progressive decrease of volume in the sequence of rock avalanches forming each cluster fits well the theoretical models for successive slope failures. These sequences seem to agree with those derived by dating the deposits with ages spanning between 4 kyr and 60 kyr. An average uplift rate of 0.2 mm/yr in the last 40 kyr is estimated for the coastal plain giving a further constraint to the rock avalanche deposition considering the absence of reworking of the deposits. Volume estimates and datings allow the estimation of an erosion rate contribution of about 0.098-0.112 mm km- 2 yr- 1 which is well comparable to values presented in the literature for earthquake induced landslides. We have carried out numerical modeling in order to analyze the mobility of the rock avalanches and examine the environmental conditions that controlled the runout. In doing so, we have considered the sequence of individual rock avalanches within the specific clusters, thus including in the models the confining effect caused by the presence of previous deposits. Bingham

  16. A STUDY ON THE EARTHQUAKE RESPONSE AND EARTHQUAKE RESISTANT DESIGN METHOD OF AN OPEN TYPE WHARF WITH PNEUMATIC CAISSONS

    Science.gov (United States)

    Oishi, Masahiko; Nagao, Takashi; Shigeki, Kouji; Ouchi, Masatoshi; Sato, Yuske; Kinomiya, Osamu

    Seismic response of an open type wharf with pneumatic caisson was clarified using a dynamic finite element method. As a result, rocking behavior of caisson foundations were observed and applicability of a frame model analysis to the earthquake resistant design of a wharf was suggested. Authors proposed the framework of earthquake resistant design method of the wharf including the evaluation method of response acceleration of the wharf.

  17. Pre-earthquake signals – Part II: Flow of battery currents in the crust

    Directory of Open Access Journals (Sweden)

    F. T. Freund

    2007-09-01

    Full Text Available When rocks are subjected to stress, dormant electronic charge carriers are activated. They turn the stressed rock volume into a battery, from where currents can flow out. The charge carriers are electrons and defect electrons, also known as positive holes or pholes for short. The boundary between stressed and unstressed rock acts as a potential barrier that lets pholes pass but blocks electrons. One can distinguish two situations in the Earth's crust: (i only pholes spread out of a stressed rock volume into the surrounding unstressed rocks. This is expected to lead to a positive surface charge over a wide area around the future epicenter, to perturbations in the ionosphere, to stimulated infrared emission from the ground, to ionization of the near-ground air, to cloud formation and to other phenomena that have been reported to precede major earthquakes. (ii both pholes and electrons flow out of the stressed rock volume along different paths, sideward into the relatively cool upper layers of the crust and downward into the hot lower crust. This situation, which is likely to be realized late in the earthquake preparation process, is necessary for the battery circuit to close and for transient electric currents to flow. If burst-like, these currents should lead to the emission of low frequency electromagnetic radiation. Understanding how electronic charge carriers are stress-activated in rocks, how they spread or flow probably holds the key to deciphering a wide range of pre-earthquake signals. It opens the door to a global earthquake early warning system, provided resources are pooled through a concerted and constructive community effort, including seismologists, with international participation.

  18. Characteristic behavior of underground and semi-underground structure at earthquake

    International Nuclear Information System (INIS)

    Sawada, Yoshihiro; Komada, Hiroya

    1985-01-01

    An appropriate earthquake-resistant repository design is required to ensure the safety of the radioactive wastes (shallow or deep ground disposal of low- and high-level wastes, respectively). It is particularly important to understand the propagation characteristics of seismic waves and the behaviors of underground hollow structures at the time of an earthquake. This report deals with seismologic observations of rock beds and undergound structures. The maximum acceleration deep under the ground is found to be about 1/2 - 1/3 of that at the ground surface or along the rock bed in the horizontal direction and about 1/1 - 1/2 in the longitudinal direction. A large attenuation cannot be expected in shallow ground. The decrease in displacement amplitude is small compared to that in acceleration. The attenuation effect is larger for a small earthquake and at a short hypocentral distance. The attenuation factor reaches a maximum at a depth of several tens of meters. The seismic spectrum under the ground is flatter than that at the surface. The maximum acceleration along the side wall of a cavity is almost the same as that in the surrounding rock bed. An underground cavity shows complicated phase characteristics at the time of a small earthquake at a short hypocentral distance. (Nogami, K.)

  19. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    Science.gov (United States)

    Zhao, Bo; Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  20. Numerical simulations of earthquake effects on tunnels for generic nuclear waste repositories

    International Nuclear Information System (INIS)

    Wahi, K.K.; Trent, B.C.; Maxwell, D.E.; Pyke, R.M.; Young, C.; Ross-Brown, D.M.

    1980-12-01

    The objectives of this generic study were to use numerical modeling techniques to determine under what conditions seismic waves generated by an earthquake might cause instability to an underground opening, or cause fracturing and joint movement that would lead to an increase in the permeability of the rock mass. Three different rock types (salt, granite, and shale) were considered as host media for the repository located at a depth of 600 meters. Special material models were developed to account for the nonlinear material behavior of each rock type. The sensitivity analysis included variations in the in situ stress ratio, joint geometry, pore pressures, and the presence or absence of a fault. Three different sets of earthquake motions were used to excite the rock mass. The calculations were performed using the STEALTH codes in a three-stage process. It was concluded that the methodology is suitable for studying the effects of earthquakes on underground openings. In general, the study showed that moderate earthquakes (up to 0.41 g) did not cause instability of the tunnel or major fracturing of the rock mass. A rock-burst tremor with accelerations up to 0.95 g, however, was found to be amplified around the tunnel, and fracturing occurred as a result of the seismic loading in salt and granite. In shale, even moderate seismic loading resulted in tunnel collapse. Other questions appraised in the study include the stability of granite tunnels under various combinations of joint geometry and in situ stress states, and the overall stability of tunnels in shale subject to the thermomechanical loading conditions anticipated in an underground waste repository

  1. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  2. Magnetic properties of cores from the Wenchuan Earthquake Fault Scientific Drilling Hole-2 (WFSD-2), China

    Science.gov (United States)

    Zhang, L., Jr.; Sun, Z.; Li, H.; Cao, Y.; Ye, X.; Wang, L.; Zhao, Y.; Han, S.

    2015-12-01

    During an earthquake, seismic slip and frictional heating may cause the physical and chemical alterations of magnetic minerals within the fault zone. Rock magnetism provides a method for understanding earthquake dynamics. The Wenchuan earthquake Fault Scientific Drilling Project (WFSD) started right after 2008 Mw7.9 Wenchuan earthquake, to investigate the earthquake faulting mechanism. Hole 2 (WFSD-2) is located in the Pengguan Complex in the Bajiaomiao village (Dujiangyan, Sichuan), and reached the Yingxiu-Beichuan fault (YBF). We measured the surface magnetic susceptibility of the cores in WFSD-2 from 500 m to 1530 m with an interval of 1 cm. Rocks at 500-599.31 m-depth and 1211.49-1530 m-depth are from the Neoproterozoic Pengguang Complex while the section from 599.31 m to 1211.49 m is composed of Late Triassic sediments. The magnetic susceptibility values of the first part of the Pengguan Complex range from 1 to 25 × 10-6 SI, while the second part ranges from 10 to 200 × 10-6 SI, which indicate that the two parts are not from the same rock units. The Late Triassic sedimentary rocks have a low magnetic susceptibility values, ranging from -5 to 20 × 10-6 SI. Most fault zones coincide with the high value of magnetic susceptibility in the WFSD-2 cores. Fault rocks, mainly fault breccia, cataclasite, gouge and pseudotachylite within the WFSD-2 cores, and mostly display a significantly higher magnetic susceptibility than host rocks (5:1 to 20:1). In particular, in the YBF zone of the WFSD-2 cores (from 600 to 960 m), dozens of stages with high values of magnetic susceptibility have been observed. The multi-layered fault rocks with high magnetic susceptibility values might indicate that the YBF is a long-term active fault. The magnetic susceptibility values change with different types of fault rocks. The gouge and pseudotachylite have higher values of magnetic susceptibility than other fault rocks. Other primary rock magnetism analyses were then performed to

  3. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy)

    Science.gov (United States)

    di Giovambattista, R.; Tyupkin, Yu

    The cyclic migration of weak earthquakes (M 2.2) which occurred during the yearprior to the October 15, 1996 (M = 4.9) Reggio Emilia earthquake isdiscussed in this paper. The onset of this migration was associated with theoccurrence of the October 10, 1995 (M = 4.8) Lunigiana earthquakeabout 90 km southwest from the epicenter of the Reggio Emiliaearthquake. At least three series of earthquakes migrating from theepicentral area of the Lunigiana earthquake in the northeast direction wereobserved. The migration of earthquakes of the first series terminated at adistance of about 30 km from the epicenter of the Reggio Emiliaearthquake. The earthquake migration of the other two series halted atabout 10 km from the Reggio Emilia epicenter. The average rate ofearthquake migration was about 200-300 km/year, while the time ofrecurrence of the observed cycles varied from 68 to 178 days. Weakearthquakes migrated along the transversal fault zones and sometimesjumped from one fault to another. A correlation between the migratingearthquakes and tidal variations is analysed. We discuss the hypothesis thatthe analyzed area is in a state of stress approaching the limit of thelong-term durability of crustal rocks and that the observed cyclic migrationis a result of a combination of a more or less regular evolution of tectonicand tidal variations.

  4. Proposal of methodology of tsunami accident sequence analysis induced by earthquake using DQFM methodology

    International Nuclear Information System (INIS)

    Muta, Hitoshi; Muramatsu, Ken

    2017-01-01

    Since the Fukushima-Daiichi nuclear power station accident, the Japanese regulatory body has improved and upgraded the regulation of nuclear power plants, and continuous effort is required to enhance risk management in the mid- to long term. Earthquakes and tsunamis are considered as the most important risks, and the establishment of probabilistic risk assessment (PRA) methodologies for these events is a major issue of current PRA. The Nuclear Regulation Authority (NRA) addressed the PRA methodology for tsunamis induced by earthquakes, which is one of the methodologies that should be enhanced step by step for the improvement and maturity of PRA techniques. The AESJ standard for the procedure of seismic PRA for nuclear power plants in 2015 provides the basic concept of the methodology; however, details of the application to the actual plant PRA model have not been sufficiently provided. This study proposes a detailed PRA methodology for tsunamis induced by earthquakes using the DQFM methodology, which contributes to improving the safety of nuclear power plants. Furthermore, this study also states the issues which need more research. (author)

  5. Typhoon-driven landsliding induces earthquakes: example of the 2009 Morakot typhoon

    Science.gov (United States)

    Steer, Philippe; Jeandet, Louise; Cubas, Nadaya; Marc, Odin; Meunier, Patrick; Hovius, Niels; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.; Liang, Wen-Tzong; Theunissen, Thomas; Chiang, Shou-Hao

    2017-04-01

    Extreme rainfall events can trigger numerous landslides in mountainous areas and a prolonged increase of river sediment load. The resulting mass transfer at the Earth surface in turn induces stress changes at depth, which could be sufficient to trigger shallow earthquakes. The 2009 Morakot typhoon represents a good case study as it delivered 3 m of precipitation in 3 days and caused some of the most intense erosion ever recorded. Analysis of seismicity time-series before and after the Morakot typhoon reveals a systematic increase of shallow (i.e. 0-15 km of depth) earthquake frequency in the vicinity of the areas displaying a high spatial density of landslides. This step-like increase in frequency lasts for at least 2-3 years and does not follow an Omori-type aftershock sequence. Rather, it is associated to a step change of the Gutenberg-Richter b-value of the earthquake catalog. Both changes occurred in mountainous areas of southwest Taiwan, where typhoon Morakot caused extensive landsliding. These spatial and temporal correlations strongly suggest a causal relationship between the Morakot-triggered landslides and the increase of earthquake frequency and their associated b-value. We propose that the progressive removal of landslide materials from the steep mountain landscape by river sediment transport acts as an approximately constant increase of the stress rate with respect to pre-typhoon conditions, and that this in turn causes a step-wise increase in earthquake frequency. To test this hypothesis, we investigate the response of a rate-and-state fault to stress changes using a 2-D continuum elasto-dynamic model. Consistent with the results of Ader et al. (2013), our preliminary results show a step-like increase of earthquake frequency in response to a step-like decrease of the fault normal stress. We also investigate the sensitivity of the amplitude and time-scale of the earthquake frequency increase to the amplitude of the normal stress change and to

  6. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Thoeny, R.

    2014-01-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  7. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Thoeny, R.

    2014-07-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  8. Effects of earthquakes on the deep repository for spent fuel in Sweden based on case studies and preliminary model results

    Energy Technology Data Exchange (ETDEWEB)

    Baeckblom, Goeran [Conrox, Djursholm (Sweden); Munier, Raymond [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2002-06-01

    seismically rather silent and will remain so in the foreseeable future. Seismic hazard has been calculated for Sweden and it is concluded that Peak Ground Accelerations (PGA) greater than 2 m/s{sup 2} is very unlikely the next coming 50-year period, in which the repository is planned to be constructed and operated. Damage due to shaking is very rare in underground facilities. Where such damage has occurred, the rock is either very poor or subject to very high stresses. None of these conditions will prevail in the Swedish repository. Most damage is also correlated to the presence of faults and the spent fuel will not be deposited in or close to important faults. Mining-induced earthquakes are known to cause damages in the mines. At the repository site it might be possible to experience local rock burst problems due to heterogeneous rock strengths and varying rock stresses. It is expected that these events, in case they appear, will take place when the tunnels are excavated rather than at the time of canister deposition. Earthquake impact during the post-closure phase: The present seismic activity in Sweden is expected to increase considerably in connection to the retreat of ice sheets in future glaciations. Peak ground accelerations may exceed 2 m/s{sup 2} in association to large earthquakes. However, the effects of shaking, such as fallouts, cracking of lining are reduced since all tunnels will be backfilled by crushed rock and bentonite. The presence of the repository will not trigger earthquakes as the extraction ratio of the openings is very low compared to open stopes in a mine. There are also evidences for mines at great depth, that backfilling lower the mining-induced seismic activity compared to the situation when tunnels are not backfilled. The buffer and canister shake as a solid body without producing excess shear stresses or liquefaction of the buffer. Water-level changes will occur due to earthquakes but most of the changes are temporary and water-levels will

  9. Dynamic Source Parameters of the 2008 Wenchuan 8.0, China, Earthquake

    Science.gov (United States)

    Yu, X.; Zhang, W.

    2013-12-01

    On May 12, 2008, a huge earthquake with magnitude Ms 8.0 occurred in the Wenchuan, Sichuan Province of China. This event was the most devastating earthquake in the mainland of China since the Great 1976 M7.8 Tangshan earthquake. It resulted in tremendous losses of life and property. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and "quake lakes" which formed by landslide-induced reservoirs. This earthquake occurred along the Longmenshan fault, as the result of motion on a northeast striking reverse fault or thrust fault on the northwestern margin of the Sichuan Basin. The earthquake's epicenter and focal-mechanism are consistent with it having occurred as the result of movement on the Longmenshan fault or a tectonically related fault. The earthquake reflects tectonic stresses resulting from the convergence of crustal material slowly moving from the high Tibetan Plateau, to the west, against strong crust underlying the Sichuan Basin and southeastern China. In this study, the spatial and temporal distribution of the stress on the fault plane of this great earthquake is estimated from the inversion results (Qin & Zhang, 2013) by solving the elastodynamic equations. Then, the dynamic source parameters are determined and the relations between the shear stress and the slip, the shear stress and the slip-rate for all grid positions on the fault are investigated. Finally, the frictional law for the source rupture is inferred from the dynamic source parameters. Based on the obtained dynamic source parameters, we try to rebuild the dynamic rupture process of this event and discuss the characteristics of this great earthquake.

  10. Chemical and Physical Characteristics of Pulverized Granitic Rock Adjacent to the San Andreas, Garlock and San Jacinto Faults: Implications for Earthquake Physics

    Science.gov (United States)

    Rockwell, T. K.; Sisk, M.; Stillings, M.; Girty, G.; Dor, O.; Wechsler, N.; Ben-Zion, Y.

    2008-12-01

    We present new detailed analyses of pulverized granitic rocks from sections adjacent to the San Andreas, Garlock and San Jacinto faults in southern California. Along the San Andreas and Garlock faults, the Tejon Lookout Granite is pulverized in all exposures within about 100 m of both faults. Along the Clark strand of the San Jacinto fault in Horse Canyon, the pulverization of granitic rocks is highly asymmetric, with a much broader zone of pulverization along the southwest side of the Clark fault. In areas where the granite is injected as dyke rock into schist, only the granitic rock shows pulverization, demonstrating the control of rock type on the pulverization process. Chemical analyses indicate little or no weathering in the bulk of the rock, although XRD analysis shows the presence of smectite, illite, and minor kaolinite in the clay-sized fraction. Weathering products may dominate in the less than 1 micron fraction. The average grain size in all samples of pulverized granitic rock range between about 20 and 200 microns (silt to fine sand), with the size distribution in part a function of proximity to the primary slip zone. The San Andreas fault samples are generally finer than those collected from along the Garlock or San Jacinto faults. The particle size distribution for all samples is non-fractal, with a distinct slope break in the 60-100 micron range, which suggests that pulverization is not a consequence of direct shear. This average particle size is quite coarser than previous reports, which we attribute to possible measurement errors in the prior work. Our data and observations suggest that dynamic fracturing in the wall rock of these three major faults only accounts for 1% or less of the earthquake energy budget.

  11. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta

    Science.gov (United States)

    Wang, Ruijia; Gu, Yu Jeffrey; Schultz, Ryan; Zhang, Miao; Kim, Ahyi

    2017-08-01

    On 2016 January 12, an intraplate earthquake with an initial reported local magnitude (ML) of 4.8 shook the town of Fox Creek, Alberta. While there were no reported damages, this earthquake was widely felt by the local residents and suspected to be induced by the nearby hydraulic-fracturing (HF) operations. In this study, we determine the earthquake source parameters using moment tensor inversions, and then detect and locate the associated swarm using a waveform cross-correlation based method. The broad-band seismic recordings from regional arrays suggest a moment magnitude (M) 4.1 for this event, which is the largest in Alberta in the past decade. Similar to other recent M ∼ 3 earthquakes near Fox Creek, the 2016 January 12 earthquake exhibits a dominant strike-slip (strike = 184°) mechanism with limited non-double-couple components (∼22 per cent). This resolved focal mechanism, which is also supported by forward modelling and P-wave first motion analysis, indicates an NE-SW oriented compressional axis consistent with the maximum compressive horizontal stress orientations delineated from borehole breakouts. Further detection analysis on industry-contributed recordings unveils 1108 smaller events within 3 km radius of the epicentre of the main event, showing a close spatial-temporal relation to a nearby HF well. The majority of the detected events are located above the basement, comparable to the injection depth (3.5 km) on the Duvernay shale Formation. The spatial distribution of this earthquake cluster further suggests that (1) the source of the sequence is an N-S-striking fault system and (2) these earthquakes were induced by an HF well close to but different from the well that triggered a previous (January 2015) earthquake swarm. Reactivation of pre-existing, N-S oriented faults analogous to the Pine Creek fault zone, which was reported by earlier studies of active source seismic and aeromagnetic data, are likely responsible for the occurrence of the

  12. What controls the maximum magnitude of injection-induced earthquakes?

    Science.gov (United States)

    Eaton, D. W. S.

    2017-12-01

    Three different approaches for estimation of maximum magnitude are considered here, along with their implications for managing risk. The first approach is based on a deterministic limit for seismic moment proposed by McGarr (1976), which was originally designed for application to mining-induced seismicity. This approach has since been reformulated for earthquakes induced by fluid injection (McGarr, 2014). In essence, this method assumes that the upper limit for seismic moment release is constrained by the pressure-induced stress change. A deterministic limit is given by the product of shear modulus and the net injected fluid volume. This method is based on the assumptions that the medium is fully saturated and in a state of incipient failure. An alternative geometrical approach was proposed by Shapiro et al. (2011), who postulated that the rupture area for an induced earthquake falls entirely within the stimulated volume. This assumption reduces the maximum-magnitude problem to one of estimating the largest potential slip surface area within a given stimulated volume. Finally, van der Elst et al. (2016) proposed that the maximum observed magnitude, statistically speaking, is the expected maximum value for a finite sample drawn from an unbounded Gutenberg-Richter distribution. These three models imply different approaches for risk management. The deterministic method proposed by McGarr (2014) implies that a ceiling on the maximum magnitude can be imposed by limiting the net injected volume, whereas the approach developed by Shapiro et al. (2011) implies that the time-dependent maximum magnitude is governed by the spatial size of the microseismic event cloud. Finally, the sample-size hypothesis of Van der Elst et al. (2016) implies that the best available estimate of the maximum magnitude is based upon observed seismicity rate. The latter two approaches suggest that real-time monitoring is essential for effective management of risk. A reliable estimate of maximum

  13. Marmara Island earthquakes, of 1265 and 1935; Turkey

    Directory of Open Access Journals (Sweden)

    Y. Altınok

    2006-01-01

    Full Text Available The long-term seismicity of the Marmara Sea region in northwestern Turkey is relatively well-recorded. Some large and some of the smaller events are clearly associated with fault zones known to be seismically active, which have distinct morphological expressions and have generated damaging earthquakes before and later. Some less common and moderate size earthquakes have occurred in the vicinity of the Marmara Islands in the west Marmara Sea. This paper presents an extended summary of the most important earthquakes that have occurred in 1265 and 1935 and have since been known as the Marmara Island earthquakes. The informative data and the approaches used have therefore the potential of documenting earthquake ruptures of fault segments and may extend the records kept on earthquakes far before known history, rock falls and abnormal sea waves observed during these events, thus improving hazard evaluations and the fundamental understanding of the process of an earthquake.

  14. Three dimensional viscoelastic simulation on dynamic evolution of stress field in North China induced by the 1966 Xingtai earthquake

    Science.gov (United States)

    Chen, Lian-Wang; Lu, Yuan-Zhong; Liu, Jie; Guo, Ruo-Mei

    2001-09-01

    Using three dimensional (3D) viscoelastic finite element method (FEM) we study the dynamic evolution pattern of the coseismic change of Coulomb failure stress and postseismic change, on time scale of hundreds years, of rheological effect induced by the M S=7.2 Xingtai earthquake on March 22, 1966. Then, we simulate the coseismic disturbance in stress field in North China and dynamic change rate on one-year scale caused by the Xingtai earthquake and Tangshan earthquake during 15 years from 1966 to 1980. Finally, we discuss the triggering of a strong earthquake to another future strong earthquake.

  15. 2008 Gordon Research Conference on Rock Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, James G.; Gray, Nancy Ryan

    2009-09-21

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical

  16. Preliminary analysis of the potential for thermally-induced rock fracture around high-level waste containers

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1976-01-01

    The major results are: the development of parametric formulations relating the potential for thermally induced fracturing in the high-level radioactive waste repository concept to the elastic and thermal properties of the site rock and the depth of the excavation, and the recognition of a need to determine the actual ''failure envelope'' for any potential site rock in the laboratory and adjust the parametric relations appropriately. Analysis of five rock types indicated that none would experience elastic/brittle failure due to the thermal stresses induced by the introduction of a 5 kW heat source. However, the rock strengths and elastic properties are laboratory values and not in situ values

  17. Comparison of the Structurally Controlled Landslides Numerical Model Results to the M 7.2 2013 Bohol Earthquake Co-seismic Landslides

    Science.gov (United States)

    Macario Galang, Jan Albert; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2015-04-01

    The M 7.2 October 15, 2013 Bohol earthquake is the most destructive earthquake to hit the Philippines since 2012. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". Its name, taken after the barangay (village) where the fault is best exposed and was first seen. The earthquake resulted in 209 fatalities and over 57 billion USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparedness against this type of landslide therefore, relies heavily on the identification of fracture-related unstable slopes. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations or discontinuity sets were mapped in the field with the aid of a 2012 IFSAR Digital Terrain Model (DTM) with 5-meter pixel resolution and software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. The results were compared to a post-earthquake landslide inventory of 456 landslides. Out the total number of landslides identified from post-earthquake high-resolution imagery, 366 or 80% intersect the structural-controlled hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow paths, located structurally-controlled unstable zones can be used to mark unsafe areas for settlement. The method can be further improved with the

  18. Rock properties and their effect on thermally-induced displacements and stresses

    International Nuclear Information System (INIS)

    Chan, T.; Hood, M.; Board, M.

    1980-02-01

    A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (1) temperature independent, (2) temperature dependent thermal and thermomechanical properties and (3) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions for rock stresses is the in-situ modulus

  19. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2006-10-01

    The effect on the canister of an earthquake induced 20 cm rock shear with the shear rate 1 m/s along a fracture intersecting a deposition hole in a KBS-V repository has been investigated for a number of different shear cases and for different properties of the buffer material. The scenarios have been modelled with the finite element method and calculations have been done using the code ABAQUS. D-element models of the rock, the buffer and the canister have been used. Contact elements that can model separation have been used for the interfaces between the buffer and the rock and the interfaces between the buffer and the canister. The influence of mainly the following factors has been investigated: 1. Inclination of the intersecting fracture. 2. Shear direction when the fracture is not horizontal (inclination deviates from 90 deg). 3. Location of the shear plane when the inclination is 90 deg. 4. Magnitude of the shear displacement. 5. Bentonite type. 6. Bentonite density. 7. Transformation of the buffer to illite or cemented bentonite. The results from the calculations show that all these factors have important influence on the damage of the canister but the influence is for most factors not easily described since there are mutual interferences between the different factors. Plastic strain larger than 1% was reached in the copper already at 10 cm shear in all cases with Na- and Ca- bentonite. However, for several cases of Na-bentonite and one case of Ca-bentonite such plastic strain was only reached in the lid. The plastic strain in the steel was generally smaller than in the copper mainly due to the higher yield stress in the steel. For all cases of Na-bentonite except one and for about half of the Ca-bentonite cases the plastic strain in the steel was smaller than 1% after 10 cm shear. The shear inclination 45 deg was more harmful for the copper tube than the shear inclination 90 deg when tension shear was considered. At the shear inclinations 45 deg and 22.5 deg

  20. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Hernelind, Jan [5T Engineering AB, Vaesteraas (Sweden)

    2006-10-15

    The effect on the canister of an earthquake induced 20 cm rock shear with the shear rate 1 m/s along a fracture intersecting a deposition hole in a KBS-V repository has been investigated for a number of different shear cases and for different properties of the buffer material. The scenarios have been modelled with the finite element method and calculations have been done using the code ABAQUS. D-element models of the rock, the buffer and the canister have been used. Contact elements that can model separation have been used for the interfaces between the buffer and the rock and the interfaces between the buffer and the canister. The influence of mainly the following factors has been investigated: 1. Inclination of the intersecting fracture. 2. Shear direction when the fracture is not horizontal (inclination deviates from 90 deg). 3. Location of the shear plane when the inclination is 90 deg. 4. Magnitude of the shear displacement. 5. Bentonite type. 6. Bentonite density. 7. Transformation of the buffer to illite or cemented bentonite. The results from the calculations show that all these factors have important influence on the damage of the canister but the influence is for most factors not easily described since there are mutual interferences between the different factors. Plastic strain larger than 1% was reached in the copper already at 10 cm shear in all cases with Na- and Ca- bentonite. However, for several cases of Na-bentonite and one case of Ca-bentonite such plastic strain was only reached in the lid. The plastic strain in the steel was generally smaller than in the copper mainly due to the higher yield stress in the steel. For all cases of Na-bentonite except one and for about half of the Ca-bentonite cases the plastic strain in the steel was smaller than 1% after 10 cm shear. The shear inclination 45 deg was more harmful for the copper tube than the shear inclination 90 deg when tension shear was considered. At the shear inclinations 45 deg and 22.5 deg

  1. Structural analysis of cataclastic rock of active fault damage zones: An example from Nojima and Arima-Takatsuki fault zones (SW Japan)

    Science.gov (United States)

    Satsukawa, T.; Lin, A.

    2016-12-01

    Most of the large intraplate earthquakes which occur as slip on mature active faults induce serious damages, in spite of their relatively small magnitudes comparing to subduction-zone earthquakes. After 1995 Kobe Mw7.2 earthquake, a number of studies have been done to understand the structure, physical properties and dynamic phenomenon of active faults. However, the deformation mechanics and related earthquake generating mechanism in the intraplate active fault zone are still poorly understood. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for reconstructing the complex framework of brittle deformation. Here, we present two examples of active fault damage zones: Nojima fault and Arima-Takatsuki active fault zone in the southwest Japan. We perform field investigations, combined with meso-and micro-structural analyses of fault-related rocks, which provide the important information in reconstructing the long-term seismic faulting behavior and tectonic environment. Our study shows that in both sites, damage zone is observed in over 10m, which is composed by the host rocks, foliated and non-foliated cataclasites, fault gouge and fault breccia. The slickenside striations in Asano fault, the splay fault of Nojima fault, indicate a dextral movement sense with some normal components. Whereas, those of Arima-Takatsuki active fault shows a dextral strike-slip fault with minor vertical component. Fault gouges consist of brown-gray matrix of fine grains and composed by several layers from few millimeters to a few decimeters. It implies that slip is repeated during millions of years, as the high concentration and physical interconnectivity of fine-grained minerals in brittle fault rocks produce the fault's intrinsic weakness in the crust. Therefore, faults rarely express only on single, discrete deformation episode, but are the cumulative result of several superimposed slip events.

  2. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  3. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  4. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data

    Science.gov (United States)

    Lanza, Nina L.; Ollila, Ann M.; Cousin, Agnes; Wiens, Roger C.; Clegg, Samuel M.; Mangold, Nicolas; Bridges, Nathan; Cooper, Daniel; Schmidt, Mariek E.; Berger, Jeffrey; Arvidson, Raymond E.; Melikechi, Noureddine; Newsom, Horton E.; Tokar, Robert; Hardgrove, Craig; Mezzacappa, Alissa; Jackson, Ryan S.; Clark, Benton C.; Forni, Olivier; Maurice, Sylvestre; Nachon, Marion; Anderson, Ryan B.; Blank, Jennifer; Deans, Matthew; Delapp, Dorothea; Léveillé, Richard; McInroy, Rhonda; Martinez, Ronald; Meslin, Pierre-Yves; Pinet, Patrick

    2015-01-01

    Surface compositional features on rocks such as coatings and weathering rinds provide important information about past aqueous environments and water–rock interactions. The search for these features represents an important aspect of the Curiosity rover mission. With its unique ability to do fine-scale chemical depth profiling, the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) onboard Curiosity can be used to both identify and analyze rock surface alteration features. In this study we analyze a terrestrial manganese-rich rock varnish coating on a basalt rock in the laboratory with the ChemCam engineering model to determine the LIBS signature of a natural rock coating. Results show that there is a systematic decrease in peak heights for elements such as Mn that are abundant in the coating but not the rock. There is significant spatial variation in the relative abundance of coating elements detected by LIBS depending on where on the rock surface sampled; this is due to the variability in thickness and spatial discontinuities in the coating. Similar trends have been identified in some martian rock targets in ChemCam data, suggesting that these rocks may have coatings or weathering rinds on their surfaces.

  5. A development of an evaluation flow chart for seismic stability of rock slopes based on relations between safety factor and sliding failure

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Ishimaru, Makoto

    2010-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake- induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is needed to evaluate the seismic stability of surrounding slopes against extremely strong ground motions. In order to evaluate the seismic stability of surrounding slopes, the most conventional method is to compare safety factors on an expected sliding surface, which is calculated from the stability analysis based on the limit equilibrium concept, to a critical value which judges stability or instability. The method is very effective to examine whether or not the sliding surface is safe. However, it does not mean that the sliding surface falls whenever the safety factor becomes smaller than the critical value during an earthquake. Therefore the authors develop a new evaluation flow chart for the seismic stability of rock slopes based on relations between safety factor and sliding failure. Furthermore, the developed flow chart was validated by comparing two kinds of safety factors calculated from a centrifuge test result concerned with a rock slope. (author)

  6. Fan-structure wave as a source of earthquake instability

    Science.gov (United States)

    Tarasov, Boris

    2015-04-01

    Today frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength at confined compression corresponding to the seismogenic layer. This determines the lithospheric strength and the primary earthquake mechanism associated with frictional stick-slip instability on pre-existing faults. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism the rock failure, associated with consecutive creation of small slabs (known as 'domino-blocks') from the intact rock in the rupture tip, is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new domino-blocks), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the lower limit of the lithospheric strength and favours the generation of new faults in pristine rocks in preference to frictional stick-slip instability along pre-existing faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created

  7. Radon observation for earthquake prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wakita, Hiroshi [Tokyo Univ. (Japan)

    1998-12-31

    Systematic observation of groundwater radon for the purpose of earthquake prediction began in Japan in late 1973. Continuous observations are conducted at fixed stations using deep wells and springs. During the observation period, significant precursory changes including the 1978 Izu-Oshima-kinkai (M7.0) earthquake as well as numerous coseismic changes were observed. At the time of the 1995 Kobe (M7.2) earthquake, significant changes in chemical components, including radon dissolved in groundwater, were observed near the epicentral region. Precursory changes are presumably caused by permeability changes due to micro-fracturing in basement rock or migration of water from different sources during the preparation stage of earthquakes. Coseismic changes may be caused by seismic shaking and by changes in regional stress. Significant drops of radon concentration in groundwater have been observed after earthquakes at the KSM site. The occurrence of such drops appears to be time-dependent, and possibly reflects changes in the regional stress state of the observation area. The absence of radon drops seems to be correlated with periods of reduced regional seismic activity. Experience accumulated over the two past decades allows us to reach some conclusions: 1) changes in groundwater radon do occur prior to large earthquakes; 2) some sites are particularly sensitive to earthquake occurrence; and 3) the sensitivity changes over time. (author)

  8. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  9. Environmental impact of the landslides caused by the 12 May 2008, Wenchuan, China earthquake

    Science.gov (United States)

    Highland, Lynn; Sun, Ping; Edited by Margottini, Claudio; Canuti, Paolo; Sassa, Kyoji

    2013-01-01

    The magnitude 7.9 (Mw) Wenchuan, China, earthquake of May 12, 2008 caused at least 88,000 deaths of which one third are estimated to be due to the more than 56,000 earthquake-induced landslides. The affected area is mountainous, featuring densely-vegetated, steep slopes through which narrowly confined rivers and streams flow. Numerous types of landslides occurred in the area, including rock avalanches, rock falls, translational and rotational slides, lateral spreads and debris flows. Some landslides mobilized hundreds of million cubic meters of material, often resulting in the damming of rivers and streams, impacting river ecosystems and morphology. Through an extensive search of both Chinese- and English-language publications we provide a summary of pertinent research on environmental effects, emphasizing key findings. Environmental effects caused by landslides include the alteration of agriculture, changes to natural ecosystems, changes in river morphology due to landslide dams and other effects such as sedimentation and flooding. Damage by landslides to the giant panda reserve infrastructure and habitat, was severe, threatening the survival of one of the world’s rarest species. The Panda reserves are of national significance to China, and to the vital tourism economy of the region. One of the major impacts to both the natural and built environment is the complete relocation of some human populations and infrastructure to new areas, resulting in the abandonment of towns and other areas that were damaged by the earthquake and landslides. The landslide effects have affected the biodiversity of the affected area, and it has been hypothesized that strict forest preservation measures taken in the years preceding the earthquake resulted in a reduction of the environmental damage to the area.

  10. Time-history simulation of civil architecture earthquake disaster relief- based on the three-dimensional dynamic finite element method

    Directory of Open Access Journals (Sweden)

    Liu Bing

    2014-10-01

    Full Text Available Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems.

  11. Studies of the subsurface effects of earthquakes

    International Nuclear Information System (INIS)

    Marine, I.W.

    1980-01-01

    As part of the National Terminal Waste Storage Program, the Savannah River Laboratory is conducting a series of studies on the subsurface effects of earthquakes. This report summarizes three subcontracted studies. (1) Earthquake damage to underground facilities: the purpose of this study was to document damage and nondamage caused by earthquakes to tunnels and shallow underground openings; to mines and other deep openings; and to wells, shafts, and other vertical facilities. (2) Earthquake related displacement fields near underground facilities: the study included an analysis of block motion, an analysis of the dependence of displacement on the orientation and distance of joints from the earthquake source, and displacement related to distance and depth near a causative fault as a result of various shapes, depths, and senses of movement on the causative fault. (3) Numerical simulation of earthquake effects on tunnels for generic nuclear waste repositories: the objective of this study was to use numerical modeling to determine under what conditions seismic waves might cause instability of an underground opening or create fracturing that would increase the permeability of the rock mass

  12. Landslides Triggered by the 12 May 2008, M 7.9 Wenchuan, China Earthquake

    Science.gov (United States)

    Harp, E.; Jibson, R.; Godt, J.

    2009-04-01

    The 12 May 2008, M 7.9 Wenchuan earthquake in eastern Sichuan Province of China triggered tens of thousands of rock falls, rock slides, rock avalanches, and deep, complex, landslides. Of the approximately 87,000 deaths caused by the earthquake, more than 20,000 have been attributed to landsides. Numerous villages were buried by large landslides. Air-blasts resulting from the rapid failure and movement of landslides were observed and documented from numerous eye-witness accounts. More than 100 landslide-dammed lakes were created by the earthquake, 33 of which were evaluated to determine if spillway construction was necessary to minimize flooding by future breaching of the landslide dams. Spillways were ultimately constructed on at least 16 landslide dams. Preliminary observations in the field and from satellite imagery indicate that the most common types of landslides were rock falls and rock slides that ranged in size from several hundred cubic meters to several hundred thousand cubic meters in volume. There were hundreds to perhaps as many as one thousand landslides exceeding 1 million cubic meters in volume. The largest landslide identified using Jaxa's Alos/Prism satellite imagery (2.5 m resolution) is nearly 1 billion cubic meters in volume and is located approximately 12 km north-northeast of the city of Hanwang. This landslide appears to have resulted from the failure of a 1.5-km section of ridge crest that now occupies most of the adjacent valley to the northeast; its toe spills over the next ridge crest to the northeast. The satellite imagery of 4 June 2008 shows two small lakes dammed by the slide debris. Within the mountainous areas in the near-field zone of shaking, rock slides dammed chains of lakes in many drainages. Sections of streams 2-3 km long have been completely covered by rock debris as of the 4 June imagery The debris from the triggered landslides is being redistributed rapidly by post-earthquake rainfall. A 100-year rainstorm in September

  13. Influence of the Elastic Dilatation of Mining-Induced Unloading Rock Mass on the Development of Bed Separation

    Directory of Open Access Journals (Sweden)

    Weibing Zhu

    2018-03-01

    Full Text Available Understanding how mining-induced strata movement, fractures, bed separation, and ground subsidence evolve is an area of great importance for the underground coal mining industry, particularly for disaster control and sustainable mining. Based on the rules of mining-induced strata movement and stress evolution, accumulative dilatation of mining-induced unloading rock mass is first proposed in this paper. Triaxial unloading tests and theoretical calculation were used to investigate the influence of elastic dilatation of mining-induced unloading rock mass on the development of bed separation in the context of district No. 102 where a layer of super-thick igneous sill exists in the Haizi colliery. It is shown that the elastic dilatation coefficient of mining-induced unloading hard rocks and coal were 0.9~1.0‰ and 2.63‰ respectively under the axial load of 16 MPa, which increased to 1.30~1.59‰ and 4.88‰ when the axial load was 32 MPa. After successively excavating working faces No. 1022 and No. 1024, the elastic dilatation of unloading rock mass was 157.9 mm, which represented approximately 6.3% of the mining height, indicating the elastic dilatation of mining-induced unloading rock mass has a moderate influence on the development of bed separation. Drill hole detection results after grouting, showed that only 0.33 m of the total grouting filling thickness (1.67 m was located in the fracture zone and bending zone, which verified the result from previous drill hole detection that only small bed separation developed beneath the igneous sill. Therefore, it was concluded that the influences of elastic dilatation of mining-induced unloading rock mass and bulking of caved rock mass jointly contributed to the small bed separation space beneath the igneous sill. Since the accurate calculation of the unloading dilatation of rock mass is the fundamental basis for quantitative calculation of bed separation and surface subsidence, this paper is expected

  14. Incoherent SSI Analysis of Reactor Building using 2007 Hard-Rock Coherency Model

    International Nuclear Information System (INIS)

    Kang, Joo-Hyung; Lee, Sang-Hoon

    2008-01-01

    Many strong earthquake recordings show the response motions at building foundations to be less intense than the corresponding free-field motions. To account for these phenomena, the concept of spatial variation, or wave incoherence was introduced. Several approaches for its application to practical analysis and design as part of soil-structure interaction (SSI) effect have been developed. However, conventional wave incoherency models didn't reflect the characteristics of earthquake data from hard-rock site, and their application to the practical nuclear structures on the hard-rock sites was not justified sufficiently. This paper is focused on the response impact of hard-rock coherency model proposed in 2007 on the incoherent SSI analysis results of nuclear power plant (NPP) structure. A typical reactor building of pressurized water reactor (PWR) type NPP is modeled classified into surface and embedded foundations. The model is also assumed to be located on medium-hard rock and hard-rock sites. The SSI analysis results are obtained and compared in case of coherent and incoherent input motions. The structural responses considering rocking and torsion effects are also investigated

  15. Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

    OpenAIRE

    Bo Cao; Shengmei Yang; Song Ye

    2017-01-01

    Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combin...

  16. Fragmentation of wall rock garnets during deep crustal earthquakes

    NARCIS (Netherlands)

    Austrheim, Håkon; Dunkel, Kristina G.; Plümper, Oliver; Ildefonse, Benoît; Liu, Yang; Jamtveit, Bjørn

    2017-01-01

    Fractures and faults riddle the Earth's crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic

  17. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments.

    Science.gov (United States)

    Marques, Joana; Gonçalves, João; Oliveira, Cláudia; Favero-Longo, Sergio E; Paz-Bermúdez, Graciela; Almeida, Rubim; Prieto, Beatriz

    2016-10-01

    Contradictory evidence from biogeomorphological studies has increased the debate on the extent of lichen contribution to differential rock surface weathering in both natural and cultural settings. This study, undertaken in Côa Valley Archaeological Park, aimed at evaluating the effect of rock surface orientation on the weathering ability of dominant lichens. Hyphal penetration and oxalate formation at the lichen-rock interface were evaluated as proxies of physical and chemical weathering, respectively. A new protocol of pixel-based supervised image classification for the analysis of periodic acid-Schiff stained cross-sections of colonized schist revealed that hyphal spread of individual species was not influenced by surface orientation. However, hyphal spread was significantly higher in species dominant on northwest facing surfaces. An apparently opposite effect was noticed in terms of calcium oxalate accumulation at the lichen-rock interface; it was detected by Raman spectroscopy and complementary X-ray microdiffraction on southeast facing surfaces only. These results suggest that lichen-induced physical weathering may be most severe on northwest facing surfaces by means of an indirect effect of surface orientation on species abundance, and thus dependent on the species, whereas lichen-induced chemical weathering is apparently higher on southeast facing surfaces and dependent on micro-environmental conditions, giving only weak support to the hypothesis that lichens are responsible for the currently observed pattern of rock-art distribution in Côa Valley. Assumptions about the drivers of open-air rock-art distribution patterns elsewhere should also consider the micro-environmental controls of lichen-induced weathering, to avoid biased measures of lichen contribution to rock-art deterioration. © 2016 by the Ecological Society of America.

  18. Forecasting Induced Seismicity Using Saltwater Disposal Data and a Hydromechanical Earthquake Nucleation Model

    Science.gov (United States)

    Norbeck, J. H.; Rubinstein, J. L.

    2017-12-01

    The earthquake activity in Oklahoma and Kansas that began in 2008 reflects the most widespread instance of induced seismicity observed to date. In this work, we demonstrate that the basement fault stressing conditions that drive seismicity rate evolution are related directly to the operational history of 958 saltwater disposal wells completed in the Arbuckle aquifer. We developed a fluid pressurization model based on the assumption that pressure changes are dominated by reservoir compressibility effects. Using injection well data, we established a detailed description of the temporal and spatial variability in stressing conditions over the 21.5-year period from January 1995 through June 2017. With this stressing history, we applied a numerical model based on rate-and-state friction theory to generate seismicity rate forecasts across a broad range of spatial scales. The model replicated the onset of seismicity, the timing of the peak seismicity rate, and the reduction in seismicity following decreased disposal activity. The behavior of the induced earthquake sequence was consistent with the prediction from rate-and-state theory that the system evolves toward a steady seismicity rate depending on the ratio between the current and background stressing rates. Seismicity rate transients occurred over characteristic timescales inversely proportional to stressing rate. We found that our hydromechanical earthquake rate model outperformed observational and empirical forecast models for one-year forecast durations over the period 2008 through 2016.

  19. ROCK GLACIERS IN THE KOLYMA HIGHLAND

    Directory of Open Access Journals (Sweden)

    A. A. Galanin

    2012-01-01

    Full Text Available Based on remote mapping and field studies inGrand Rapids, Tumansky,Hasynsky,Del-Urechen Ridges as well as Dukchinsky and Kilgansky Mountain Massifs there were identified about 1160 landforms which morphologically are similar to the rock glaciers or they develop in close association with them. Besides tongue-shaped cirque rock glaciers originated due to ablation, a large number of lobate-shaped slope-associated rock glaciers were recognized. Significant quantity of such forms are developing within the active neotectonic areas, in zones of seismic-tectonic badland and in association with active earthquakes-controlling faults. Multiplication of regional data on volcanic-ash-chronology, lichenometry, Schmidt Hammer Test, pollen spectra and single radiocarbon data, most of the active rock glaciers were preliminary attributed to the Late Holocene.

  20. Spatial and size distributions of garnets grown in a pseudotachylyte generated during a lower crust earthquake

    Science.gov (United States)

    Clerc, Adriane; Renard, François; Austrheim, Håkon; Jamtveit, Bjørn

    2018-05-01

    In the Bergen Arc, western Norway, rocks exhumed from the lower crust record earthquakes that formed during the Caledonian collision. These earthquakes occurred at about 30-50 km depth under granulite or amphibolite facies metamorphic conditions. Coseismic frictional heating produced pseudotachylytes in this area. We describe pseudotachylytes using field data to infer earthquake magnitude (M ≥ 6.6), low dynamic friction during rupture propagation (μd earthquake arrest. High resolution 3D X-ray microtomography imaging reveals the microstructure of a pseudotachylyte sample, including numerous garnets and their corona of plagioclase that we infer have crystallized in the pseudotachylyte. These garnets 1) have dendritic shapes and are surrounded by plagioclase coronae almost fully depleted in iron, 2) have a log-normal volume distribution, 3) increase in volume with increasing distance away from the pseudotachylyte-host rock boundary, and 4) decrease in number with increasing distance away from the pseudotachylyte -host rock boundary. These characteristics indicate fast mineral growth, likely within seconds. We propose that these new quantitative criteria may assist in the unambiguous identification of pseudotachylytes in the field.

  1. Field Investigation of Surface Deformation Induced by the 2016 Meinong Earthquake and its Implications to Regional Geological Structures

    Science.gov (United States)

    Yi, De-Cheng; Chuang, Ray Y.; Lin, Ching-Weei

    2017-04-01

    We demonstrate mapping results of a newly-identified active folding-associated fault in southwestern Taiwan, which was triggered by the distant ML 6.6 Meinong earthquake in 2016. The 14.6-km-deep main shock occurred in Meinong at 3:57 (GMT +08) on February 6th while a series of 21-27 km deep aftershocks were induced after 160 seconds in Guanmiao, where is 25km NW away from the epicenter of the main shock. The focal mechanism of the Meinong main shock shows a westward oblique thrust with the fault plane of 275°/42°/17° (strike/dip/rake) but Guanmiao aftershocks show the N-S striking eastward normal movement. The study area locates at an on-going fold-and-thrust belt close to the deformation front of Taiwan orogeny with high rates of convergence, uplift and erosion. The geology of SW Taiwan is characterized by the 3-km-thick mudstones with high fluid pressure underlying the loose sedimentary rocks forming mud diapirs or mud-core anticlines. The significance of the Meinong earthquake is (1) aftershocks are far away from the main shock, and (2) the surface cracks partially distributed systematically along lineaments observed from InSAR, which has never been recognized as geological structures before. This study aims to establish possible kinematic processes of shallow deformation induced by the Meinong earthquake. We mapped surface cracks around the lineaments by using hand-held GPS and measured surface cracks by the compass and vernier. Among 249 kinematic data measured from 244 observed surface cracks and ruptures, the type of deformation was mostly identified as dilation or lateral translation and only 4 data were compressional deformation. The overall surface displacement moved to the northwest and west, consistent with the regional coseismic movement. The opening of the surface cracks range from 0.5 to 105 mm and 85% of them are less than 10 mm. Preseismic deformed features such as failure of the retaining wall were also observed along the western and eastern

  2. A suite of exercises for verifying dynamic earthquake rupture codes

    Science.gov (United States)

    Harris, Ruth A.; Barall, Michael; Aagaard, Brad T.; Ma, Shuo; Roten, Daniel; Olsen, Kim B.; Duan, Benchun; Liu, Dunyu; Luo, Bin; Bai, Kangchen; Ampuero, Jean-Paul; Kaneko, Yoshihiro; Gabriel, Alice-Agnes; Duru, Kenneth; Ulrich, Thomas; Wollherr, Stephanie; Shi, Zheqiang; Dunham, Eric; Bydlon, Sam; Zhang, Zhenguo; Chen, Xiaofei; Somala, Surendra N.; Pelties, Christian; Tago, Josue; Cruz-Atienza, Victor Manuel; Kozdon, Jeremy; Daub, Eric; Aslam, Khurram; Kase, Yuko; Withers, Kyle; Dalguer, Luis

    2018-01-01

    We describe a set of benchmark exercises that are designed to test if computer codes that simulate dynamic earthquake rupture are working as intended. These types of computer codes are often used to understand how earthquakes operate, and they produce simulation results that include earthquake size, amounts of fault slip, and the patterns of ground shaking and crustal deformation. The benchmark exercises examine a range of features that scientists incorporate in their dynamic earthquake rupture simulations. These include implementations of simple or complex fault geometry, off‐fault rock response to an earthquake, stress conditions, and a variety of formulations for fault friction. Many of the benchmarks were designed to investigate scientific problems at the forefronts of earthquake physics and strong ground motions research. The exercises are freely available on our website for use by the scientific community.

  3. Method for forecasting an earthquake from precursor signals

    International Nuclear Information System (INIS)

    Farnworth, D.F.

    1996-01-01

    A method for forecasting an earthquake from precursor signals by employing characteristic first electromagnetic signals, second, seismically induced electromagnetic signals, seismically induced mechanical signals, and infrasonic acoustic signals which have been observed to precede an earthquake. From a first electromagnetic signal, a magnitude, depth beneath the surface of the earth, distance, latitude, longitude, and first and second forecasts of the time of occurrence of the impending earthquake may be derived. From a second, seismically induced electromagnetic signal and the mechanical signal, third and fourth forecasts of the time of occurrence of an impending earthquake determined from the analysis above, a magnitude, depth beneath the surface of the earth and fourth and fifth forecasts of the time of occurrence of the impending earthquake may be derived. The forecasts of time available from the above analyses range from up to five weeks to substantially within one hour in advance of the earthquake. (author)

  4. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    I. Wong

    2004-01-01

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M and O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes

  5. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  6. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    Science.gov (United States)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  7. A mechanism for radon decline prior to the 1978 Izu-Oshima-Kinkai earthquake in Japan

    International Nuclear Information System (INIS)

    Tsunomori, F.; Kuo, T.

    2010-01-01

    Precursory changes in the radon concentration of groundwater were observed by prior to the 1978 Izu-Oshima-Kinkai earthquake of magnitude 7.0. Mechanisms for interpreting the anomalous radon decrease are examined in this paper. The SKE-1 well is situated in a volcanic-rock fractured aquifer of limited recharge. Given these geological conditions, the dilation of brittle rock mass occurred at a rate faster than the recharge of groundwater and gas saturation developed in newly created cracks preceding the earthquake. Radon volatilization into the gas phase can explain the anomalous decrease of radon precursory to the 1978 earthquake. To support the hypothesis, vapor-liquid two-phase radon-partitioning experiments were conducted at formation temperature (14 deg. C) using formation water from the SKE-1 well. Experimental data indicated that the decrease in radon concentration from 483 ± 3 count/min to 439 ± 7 count/min required a gas saturation of 2.35% developed in rock cracks through the dilatancy process.

  8. Geological control of earthquake induced landslide in El Salvador

    Science.gov (United States)

    Tsige Aga, Meaza

    2010-05-01

    Geological control of earthquake induced landslides in El Salvador. M., Tsige(1), I., Garcia-Flórez(1), R., Mateos(2) (1)Universidad Complutense de Madrid, Facultad de Geología, Madrid, Spain, (meaza@geo.ucm.es) (2)IGME, Mallorca El Salvador is located at one of the most seismically active areas en Central America, and suffered severe damage and loss of life in historical and recent earthquakes, as a consequence of earthquake induced landslides. The most common landslides were shallow disrupted soil-slides on steep slopes and were particularly dense in the central part of the country. Most of them are cited in the recent mechanically weak volcanic pyroclastic deposits known as "Tierra Blanca" and "Tierra Color Café" which are prone to seismic wave amplification and are supposed to have contributed to the triggering of some of the hundreds of landslides related to the 2001 (Mw = 7.6 and Mw = 6.7), seismic events. The earthquakes also triggered numerous deep large scale landslides responsible for the enormous devastation of villages and towns and are the source for the current high seismic hazard as well. Many of these landslides are located at distances more than 50 and 100 km from the focal distance, although some of them occurred at near field. Until now there has been little effort to explain the causes and concentration of the deep large-scale landslides especially their distribution, failure mechanism and post-rapture behavior of the landslide mass (long run-out). It has been done a field investigation of landslides, geological materiales and interpretation of aerial photographs taken before and after the two 2001 (Mw= 7.6 and Mw= 6.7) El Salvador earthquakes. The result of the study showed that most of the large-scale landslides occured as coherent block slides with the sliding surface parallel to a pre-existing fractures and fault planes (La Leona, Barriolera, El Desague, Jiboa landslides). Besides that the pre-existing fractures are weak zones controlling

  9. 2016-2017 Update of Hydraulic Fracturing Induced Earthquakes near Fox Creek, Alberta

    Science.gov (United States)

    Wang, R.; Gu, Y. J.; Zhang, M.

    2017-12-01

    With a reported Richter magnitude (ML) of 4.8, the January 12, 2016 earthquake near Fox Creek is the largest event in Alberta during the past decade. This event led to the suspension of a nearby hydraulic fracturing well, in compliance with the provincial "traffic-light" protocol. In previous study, we examine the hypocenter location and focal mechanism of this earthquake, and the results support an anthropogenic origin. Since then (until August 2017), no event reached ML=4, while several ML>3 events occurred in the Fox Creek area. Their focal mechanisms are consistent with the ones from previous events that were induced by hydraulic fracturing, suggesting a strike-slip mechanism with either N-S or E-W trending fault. In 2017, the near-source station (distance Fox Creek region.

  10. Estimation of strong motions on free rock surface. Identification of soil structures and strong motions on free rock surface in Kashiwazaki-Kariwa nuclear power plant during the 2007 Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Saguchi, Koichiro; Masaki, Kazuaki; Irikura, Kojiro

    2009-01-01

    Very strong ground motions (maximum acceleration 993 cm/s 2 in the borehole seismometer point of -255m in depth) were observed in the Kashiwazaki Kariwa Nuclear Power Plant during the Niigataken Chuetsu-oki Earthquake on July 16, 2007. In this study, we tried to develop new method, which can simulate waveforms on free rock surface by using the bore hole records. We identified the underground structure model at the Service Hall from aftershock records observed in vertical array, using the simulated annealing method (Ingber(1989)). Based on numerical experiments it is identified that S-wave velocity and Q values of individual layers are inverted very well. Strong motion records of main shock observed by the bore hole seismometers were simulated by using one-dimensional multiple reflection method. In this study, non-linear effect is considered by introducing non-linear coefficient c(f) for under coming wave from surface. The maximum acceleration and phase characteristics in simulated waveforms are similar to the observed one. It means that our method is useful for simulate strong motion in non-linear region. Finally, strong motions on the free rock surface at the Service Hall during the main shock are simulated. The maximum acceleration of EW component on free rock surface is estimated to be 1,207 cm/s 2 . (author)

  11. High‐frequency induced polarization measurements of hydrocarbon‐bearing rocks

    DEFF Research Database (Denmark)

    Burtman, Vladimir; Endo, Masashi; Zhdanov, Michael S.

    2011-01-01

    We have investigated induced polarization (IP) effects in hydrocarbon‐bearing artificial rocks at frequencies greater than 100 Hz. We have examined the instrumental and electrode phase responses of Zonge International's complex resistivity (CR) system, and optimized the performance of the Zonge s......, and suggest the necessity to account for IP effects in the interpretations of electromagnetic data, particularly in induction logging data....

  12. Earthquake rupture at focal depth, part II: mechanics of the 2004 M2.2 earthquake along the Pretorius Fault, TauTona Mine, South Africa

    Science.gov (United States)

    Heesakkers, V.; Murphy, S.; Lockner, D.A.; Reches, Z.

    2011-01-01

    We analyze here the rupture mechanics of the 2004, M2.2 earthquake based on our observations and measurements at focal depth (Part I). This event ruptured the Archean Pretorius fault that has been inactive for at least 2 Ga, and was reactivated due to mining operations down to a depth of 3.6 km depth. Thus, it was expected that the Pretorius fault zone will fail similarly to an intact rock body independently of its ancient healed structure. Our analysis reveals a few puzzling features of the M2.2 rupture-zone: (1) the earthquake ruptured four, non-parallel, cataclasite bearing segments of the ancient Pretorius fault-zone; (2) slip occurred almost exclusively along the cataclasite-host rock contacts of the slipping segments; (3) the local in-situ stress field is not favorable to slip along any of these four segments; and (4) the Archean cataclasite is pervasively sintered and cemented to become brittle and strong. To resolve these observations, we conducted rock mechanics experiments on the fault-rocks and host-rocks and found a strong mechanical contrast between the quartzitic cataclasite zones, with elastic-brittle rheology, and the host quartzites, with damage, elastic–plastic rheology. The finite-element modeling of a heterogeneous fault-zone with the measured mechanical contrast indicates that the slip is likely to reactivate the ancient cataclasite-bearing segments, as observed, due to the strong mechanical contrast between the cataclasite and the host quartzitic rock.

  13. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure method eliminates the deconvolution calculations and the related assumption -regarding type and direction of earthquake waves- required in the direct method. The substructure method is computationally efficient because the two substructures-the structure and the soil region- are analyzed separately; and, more important, it permits taking advantage of the important feature that response to earthquake ground motion is essentially contained in the lower few natural modes of vibration of the structure on fixed base. For sites where essentially similar soils extend to large depths and there is no obvious rigid boundary such as a soil-rock interface, numerical results for earthquake response of a nuclear reactor structure are presented to demonstrate that the commonly used finite element method may lead to unacceptable errors; but the substructure method leads to reliable results

  14. Simulation of rock fragmentation induced by a tunnel boring machine disk cutter

    Directory of Open Access Journals (Sweden)

    Huiyun Li

    2016-05-01

    Full Text Available A constitutive model based on the Johnson–Cook material model and the extended Drucker–Prager strength criterion was implemented in LS-DYNA to simulate the rock failure process induced by a single disk cutter of a tunnel boring machine. The normal, rolling, and side forces were determined by numerical tests. The simulation results showed that the normal and rolling forces increased with increasing penetration while the side force changed little. The normal force also increased under the conditions of confining pressures. The damage region of rock and cutting forces were also obtained by simulation of two disk cutters acting in tandem with different cutting spacings. The optimum ratio of cutter spacing to penetration depth determined from numerical modeling agrees well with that obtained by linear cutting machine tests. The average normal and rolling forces acting on the first cutter are slightly greater than those acting on the second when the cutting disk spacing is relatively small. The numerical modeling was verified to accurately capture the fragmentation of rock induced by disk cutter.

  15. Microseism Induced by Transient Release of In Situ Stress During Deep Rock Mass Excavation by Blasting

    Science.gov (United States)

    Yang, Jianhua; Lu, Wenbo; Chen, Ming; Yan, Peng; Zhou, Chuangbing

    2013-07-01

    During deep rock mass excavation with the method of drill and blast, accompanying the secession of rock fragments and the formation of a new free surface, in situ stress on this boundary is suddenly released within several milliseconds, which is termed the transient release of in situ stress. In this process, enormous strain energy around the excavation face is instantly released in the form of kinetic energy and it inevitably induces microseismic events in surrounding rock masses. Thus, blasting excavation-induced microseismic vibrations in high-stress rock masses are attributed to the combined action of explosion and the transient release of in situ stress. The intensity of stress release-induced microseisms, which depends mainly on the magnitude of the in situ stress and the dimension of the excavation face, is comparable to that of explosion-induced vibrations. With the methods of time-energy density analysis, amplitude spectrum analysis, and finite impulse response (FIR) digital filter, microseismic vibrations induced by the transient release of in situ stress were identified and separated from recorded microseismic signals during a blast of deep rock masses in the Pubugou Hydropower Station. The results show that the low-frequency component in the microseismic records results mainly from the transient release of in situ stress, while the high-frequency component originates primarily from explosion. In addition, a numerical simulation was conducted to demonstrate the occurrence of microseismic events by the transient release of in situ stress, and the results seem to have confirmed fairly well the separated vibrations from microseismic records.

  16. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  17. The effect of vertical earthquake component on the uplift of the nuclear reactor building

    International Nuclear Information System (INIS)

    Kobayashi, Toshio

    1986-01-01

    During a strong earthquake, the base mat of a nuclear reactor building may be lifted partially by the response overturning moment. And it causes geometrical nonlinear interaction between the base mat and rock foundation beneath it. In order to avoid this uplift phenomena, the base mat and/or plan of the building is enlarged in some cases. These special design need more cost and/or time in construction. In the evaluation of the uplift phenomena, a parameter ''η'' named ''contact ratio'' is used defined as the ratio of compression stress zone area of base mat for total area of base mat. Usually this contact ratio is calculated under the combination of the maximum overturning moment obtained by the linear earthquake response analysis and the normal force by the gravity considering the effect of the vertical earthquake component. In this report, the effect of vertical earthquake component for the uplift phenomena is studied and it concludes that the vertical earthquake component gives little influence on the contact ratio. In order to obtain more reasonable contact retio, the nonlinear rocking analysis subjected to horizontal and vertical earthquake motions simultaneously is proposed in this report. As the second best method, the combination of the maximum overturning moment obtained by linear analysis and the normal force by only the gravity without the vertical earthquake effect is proposed. (author)

  18. Structure of the Koyna-Warna Seismic Zone, Maharashtra, India: A possible model for large induced earthquakes elsewhere

    Science.gov (United States)

    Catchings, Rufus D.; Dixit, M.M.; Goldman, Mark R.; Kumar, S.

    2015-01-01

    The Koyna-Warna area of India is one of the best worldwide examples of reservoir-induced seismicity, with the distinction of having generated the largest known induced earthquake (M6.3 on 10 December 1967) and persistent moderate-magnitude (>M5) events for nearly 50 years. Yet, the fault structure and tectonic setting that has accommodated the induced seismicity is poorly known, in part because the seismic events occur beneath a thick sequence of basalt layers. On the basis of the alignment of earthquake epicenters over an ~50 year period, lateral variations in focal mechanisms, upper-crustal tomographic velocity images, geophysical data (aeromagnetic, gravity, and magnetotelluric), geomorphic data, and correlation with similar structures elsewhere, we suggest that the Koyna-Warna area lies within a right step between northwest trending, right-lateral faults. The sub-basalt basement may form a local structural depression (pull-apart basin) caused by extension within the step-over zone between the right-lateral faults. Our postulated model accounts for the observed pattern of normal faulting in a region that is dominated by north-south directed compression. The right-lateral faults extend well beyond the immediate Koyna-Warna area, possibly suggesting a more extensive zone of seismic hazards for the central India area. Induced seismic events have been observed many places worldwide, but relatively large-magnitude induced events are less common because critically stressed, preexisting structures are a necessary component. We suggest that releasing bends and fault step-overs like those we postulate for the Koyna-Warna area may serve as an ideal tectonic environment for generating moderate- to large- magnitude induced (reservoir, injection, etc.) earthquakes.

  19. Consideration on the Mechanism of Microwave Emission Due to Rock Fracture

    Science.gov (United States)

    Takano, Tadashi; Sugita, Seiji; Yoshida, Shingo; Maeda, Takashi

    2010-05-01

    Microwave emission due to rock fracture was found at 300 MHz, 2 GHz, and 22 GHz, and its power was calibrated in laboratory for the first time in the world. The observed waveform is impulsive, and contains correspondent frequency component inside the envelope at each frequency band. At such high frequencies, the electro-magnetic signal power can be calibrated as a radiating wave with high accuracy. Accordingly, it was verified that a substantial power is emitted. The microwave emission phenomena were also observed on occasions of hypervelocity impact, and esteemed as phenomena generally associated with material destruction. Earthquakes and volcanic activities are association with rock fractures so that the microwave is expected to be emitted. Actually, the e emission was confirmed by the data analysis of the brightness temperature obtained by a remote sensing satellite, which flew over great earthquakes of Wuenchan and Sumatra, and great volcanic eruptions of Reventador and Chanten. It is important to show the microwave emission during rock fracture in natural phenomena. Therefore, the field test to detect the microwave due to the collapse of a crater cliff was planned and persecuted at the volcano of Miyake-jima about 100 km south of Tokyo. Volcanic activity may be more convenient than an earthquake because of the known location and time. As a result, they observed the microwave emission which was strongly correlated with the cliff collapses. Despite of the above-mentioned phenomenological fruits, the reason of the microwave emission is not fixed yet. We have investigated the mechanism of the emission in consideration of the obtained data in rock fracture experiments so far and the study results on material destruction by hypervelocity impact. This paper presents the proposal of the hypothesis and resultant discussions. The microwave sensors may be useful to monitor natural hazards such as an earthquake or a volcanic eruption, because the microwave due to rock

  20. Cooperative earthquake research between the United States and the People's Republic of China

    Energy Technology Data Exchange (ETDEWEB)

    Russ, D.P.; Johnson, L.E.

    1986-01-01

    This paper describes cooperative research by scientists of the US and the People's Republic of China (PRC) which has resulted in important new findings concerning the fundamental characteristics of earthquakes and new insight into mitigating earthquake hazards. There have been over 35 projects cooperatively sponsored by the Earthquake Studies Protocol in the past 5 years. The projects are organized into seven annexes, including investigations in earthquake prediction, intraplate faults and earthquakes, earthquake engineering and hazards investigation, deep crustal structure, rock mechanics, seismology, and data exchange. Operational earthquake prediction experiments are currently being developed at two primary sites: western Yunnan Province near the town of Xiaguan, where there are several active faults, and the northeast China plain, where the devastating 1976 Tangshan earthquake occurred.

  1. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  2. Acoustic remote monitoring of rock and concrete structures for nuclear waste repositories

    International Nuclear Information System (INIS)

    Young, R.P.

    2000-01-01

    Excavation and thermally induced damage is of significance for many types of engineering structures but no more so than in the case of nuclear waste repository design. My research and that of my group, formally at Queen's University Canada and Keele University UK and now at the University of Liverpool UK, has focused on the development of acoustic techniques for the in situ detection and quantification of induced damage and fracturing. The application of earthquake seismology to this problem has provided the opportunity to study the micro mechanics of damage mechanisms in situ and provide validation data for predictive geomechanical models used for engineering design. Since 1987 I have been a principal investigator at Atomic Energy of Canada's Underground Research Laboratory (URL), responsible for the development of acoustic emission techniques (AE). In the last twelve years, the application of acoustic techniques to rock damage assessment has been pioneered by my group at the URL and successfully applied in several other major international projects including the ZEDEX, Retrieval and Prototype repository experiments at the Aspo Hard Rock Laboratory (HRL) of SKB Sweden. In this paper I describe what information is available by remote acoustic monitoring of rock and concrete structures and demonstrate this with reference to two international scientific experiments carried out at the URL Canada and the HRL Sweden. (author)

  3. Effect of earthquake and faulting on the hydrological environment

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hironobu [Japan Nuclear Cycle Development Inst., Toki, Gifu (Japan). Tono Geoscience Center; Sakai, Ryutaro

    1999-12-01

    The effects of earthquakes and active faults on the geological environment have been studied at the Tono Geoscience Center. The Hyogoken-Nanbu earthquake (January 17, 1995; M7.2) in Kobe and Awaji island caused significant changes in hydrology, involving a large amount of groundwater discharge in low-lying land and drastic water-table lowering (during only about 2-4 months) in elevated land near the epicenter. Simulation of the groundwater behavior in the vicinity of the Nojima fault was analysed to evaluate permeability enhancements. Calculated values such as water level changes were matched in a time series with the hydrological observed data in order to optimize this simulation model. Results indicate that the increase of hydraulic conductivity (5 x 10{sup -3} cm/s in weathered granitic rocks) and 1 x 10{sup -5} cm/s in fresh granitic rocks would produce a lowering of the water level at EL 180 m, and increase of discharge at less than EL 100 m, within four months after the earthquake. The study also suggested that the change in the hydraulic conductivity in the Nojima fault could not depend on the change in geological hydrology. (author)

  4. Measurement of earthquake-induced shear strain in sandy gravel

    International Nuclear Information System (INIS)

    Ohkawa, I.; Futaki, M.; Yamanouchi, H.

    1989-01-01

    The nuclear power reactor buildings have been constructed on the hard rock ground formed in or before the Tertiary in Japan. This is mainly because the nuclear reactor building is much heavier than the common buildings and requires a large bearing capacity of the underlying soil deposit, and additionally the excessive deformation in soil deposit might cause damage in reactor building and subsequently cause the malfunction of the internal important facilities. Another reason is that the Quaternary soil deposit is not fully known with respect to its dynamic property. The gravel, and the sandy gravel, the representative soils of the Quaternary, have been believed to be suitable soil deposits to support the foundation of a common building, although the soils have rarely been investigated so closely on their physical properties quantitatively. In this paper, the dynamic deformability, i.e., the shear stress-strain relationship of the Quaternary diluvial soil deposit is examined through the earthquake ground motion measurement using accelerometers, pore-pressure meters, the specific devices developed in this research work. The objective soil deposit in this research is the sandy gravel of the diluvial and the alluvial

  5. Earthquake induced landslide hazard field observatory in the Avcilar peninsula

    Science.gov (United States)

    Bigarre, Pascal; Coccia, Stella; Theoleyre, Fiona; Ergintav, Semih; Özel, Oguz; Yalçinkaya, Esref; Lenti, Luca; Martino, Salvatore; Gamba, Paolo; Zucca, Francesco; Moro, Marco

    2015-04-01

    Earthquake-triggered landslides have an increasing disastrous impact in seismic regions due to the fast growing urbanization and infrastructures. Just considering disasters from the last fifteen years, among which the 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2011 Tohoku earthquake, these events generated tens of thousands of coseismic landslides. Those resulted in amazing death toll and considerable damages, affecting the regional landscape including its hydrological main features. Despite a strong impetus in research during past decades, knowledge on those geohazards is still fragmentary, while databases of high quality observational data are lacking. These phenomena call for further collaborative researches aiming eventually to enhance preparedness and crisis management. The MARSITE project gathers research groups in a comprehensive monitoring activity developed in the Sea of Marmara Region, one of the most densely populated parts of Europe and rated at high seismic risk level since the 1999 Izmit and Duzce devastating earthquakes. Besides the seismic threat, landslides in Turkey and in this region constitute an important source of loss. The 6th Work Package of MARSITE project gathers 9 research groups to study earthquake-induced landslides focusing on two sub-regional areas of high interest among which the Cekmece-Avcilar peninsula, located westwards of Istanbul, as a highly urbanized concentrated landslide prone area, showing high susceptibility to both rainfalls while affected by very significant seismic site effects. A multidisciplinary research program based on pre-existing studies has been designed with objectives and tasks linked to constrain and tackle progressively some challenging issues related to data integration, modeling, monitoring and mapping technologies. Since the start of the project, progress has been marked on several important points as follows. The photogeological interpretation and analysis of ENVISAT-ERS DIn

  6. Rainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Y. Li

    2012-08-01

    Full Text Available A GIS-based method for the assessment of landslide susceptibility in a selected area of Qingchuan County in China is proposed by using the back-propagation Artificial Neural Network model (ANN. Landslide inventory was derived from field investigation and aerial photo interpretation. 473 landslides occurred before the Wenchuan earthquake (which were thought as rainfall-induced landslides (RIL in this study, and 885 earthquake-induced landslides (EIL were recorded into the landslide inventory map. To understand the different impacts of rainfall and earthquake on landslide occurrence, we first compared the variations between landslide spatial distribution and conditioning factors. Then, we compared the weight variation of each conditioning factor derived by adjusting ANN structure and factors combination respectively. Last, the weight of each factor derived from the best prediction model was applied to the entire study area to produce landslide susceptibility maps.

    Results show that slope gradient has the highest weight for landslide susceptibility mapping for both RIL and EIL. The RIL model built with four different factors (slope gradient, elevation, slope height and distance to the stream shows the best success rate of 93%; the EIL model built with five different factors (slope gradient, elevation, slope height, distance to the stream and distance to the fault has the best success rate of 98%. Furthermore, the EIL data was used to verify the RIL model and the success rate is 92%; the RIL data was used to verify the EIL model and the success rate is 53%.

  7. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure eliminates the deconvolution calculations and the related assumption-regarding type and direction of earthquake waves-required in the direct method. (Auth.)

  8. Tidal controls on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  9. Earthquake simulation, actual earthquake monitoring and analytical methods for soil-structure interaction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H T [Seismic Center, Electric Power Research Institute, Palo Alto, CA (United States)

    1988-07-01

    Approaches for conducting in-situ soil-structure interaction experiments are discussed. High explosives detonated under the ground can generate strong ground motion to induce soil-structure interaction (SSI). The explosive induced data are useful in studying the dynamic characteristics of the soil-structure system associated with the inertial aspect of the SSI problem. The plane waves generated by the explosives cannot adequately address the kinematic interaction associated with actual earthquakes because of he difference in wave fields and their effects. Earthquake monitoring is ideal for obtaining SSI data that can address all aspects of the SSI problem. The only limitation is the level of excitation that can be obtained. Neither the simulated earthquake experiments nor the earthquake monitoring experiments can have exact similitude if reduced scale test structures are used. If gravity effects are small, reasonable correlations between the scaled model and the prototype can be obtained provided that input motion can be scaled appropriately. The key product of the in-situ experiments is the data base that can be used to qualify analytical methods for prototypical applications. (author)

  10. Laboratory generated M -6 earthquakes

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.; Lockner, David A.; Beeler, Nicholas M.

    2014-01-01

    We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.

  11. Effect of rock joint roughness on its cyclic shear behavior

    Directory of Open Access Journals (Sweden)

    S.M. Mahdi Niktabar

    2017-12-01

    Full Text Available Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris (PoP. Regular joints were simulated by keeping regular asperity with asperity angles of 15°–15° and 30°–30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°–30° and 15°–45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm × 298 mm × 125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.

  12. The Sasso Pizzuto landslide dam and seismically induced rockfalls along the Nera River gorge (Central Italy).

    Science.gov (United States)

    Romeo, Saverio; Di Matteo, Lucio; Melelli, Laura; Cencetti, Corrado; Dragoni, Walter; Fredduzzi, Andrea; De Rosa, Pierluigi

    2017-04-01

    The seismically induced landslides are among the most destructive and dangerous effects of an earthquake. In the Italian contest, this is also documented by a national catalogue that collects data related to earthquake-induced ground failures in the last millennium (CEDIT database). In particular, Central Italy has been affected by several historical landslides triggered by significant earthquakes, the last of which occurred in August-October 2016, representing the Italian strongest event after the 1980 Irpinia earthquake (Mw 6.9). The study presents the effects of recent seismically induced rockfalls occurred within the Central Italy seismic sequence (October 30, 2016) along the Nera River gorge between Umbria and Marche. The study area is completely included in the Monti Sibillini National Park, where the highest mountain chain in the Umbrian-Marchean Apennine is located. Most of rockfalls have affected the "Maiolica" formation, a stratified and fractured pelagic limestone dating to the Early Cretaceous. The seismic sequence produced diffuse instabilities along the SP 209 road within the Nera River gorge: boulders, debris accumulations and diffuse rockfalls have been mapped. Most of boulders have size ranging from 0.3 to 2.0 m in diameter. Although several strong quakes (Mw > 5) occurred during the August-October sequence, only the main quake triggered the Sasso Pizzuto rockfall producing a landslide dam along the Nera River. The landslide appears to have originated as a wedge failure, which evolved to free fall when the rock block lost the contact with the stable rock mass. In other words, the quake produced the "explosion" of the rock wall allowing the rockfall process. Once the rock mass reached the toe of the slope, it was broken triggering a rock avalanche that obstructed both the Nera River and SP 209 road. With the aim to estimate the total volume of involved rock, a field survey was carried out by using a laser rangefinder. Remote measures were acquired

  13. The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity

    Science.gov (United States)

    Diehl, T.; Kraft, T.; Kissling, E.; Wiemer, S.

    2017-09-01

    In July 2013, a sequence of more than 340 earthquakes was induced by reservoir stimulations and well-control procedures following a gas kick at a deep geothermal drilling project close to the city of St. Gallen, Switzerland. The sequence culminated in an ML 3.5 earthquake, which was felt within 10-15 km from the epicenter. High-quality earthquake locations and 3-D reflection seismic data acquired in the St. Gallen project provide a unique data set, which allows high-resolution studies of earthquake triggering related to the injection of fluids into macroscopic fault zones. In this study, we present a high-precision earthquake catalog of the induced sequence. Absolute locations are constrained by a coupled hypocenter-velocity inversion, and subsequent double-difference relocations image the geometry of the ML 3.5 rupture and resolve the spatiotemporal evolution of seismicity. A joint interpretation of earthquake and seismic data shows that the majority of the seismicity occurred in the pre-Mesozoic basement, hundreds of meters below the borehole and the targeted Mesozoic sequence. We propose a hydraulic connectivity between the reactivated fault and the borehole, likely through faults mapped by seismic data. Despite the excellent quality of the seismic data, the association of seismicity with mapped faults remains ambiguous. In summary, our results document that the actual hydraulic properties of a fault system and hydraulic connections between its fault segments are complex and may not be predictable upfront. Incomplete knowledge of fault structures and stress heterogeneities within highly complex fault systems additionally challenge the degree of predictability of induced seismicity related to underground fluid injections.

  14. Gravity-induced rock mass damage related to large en masse rockslides: Evidence from Vajont

    Science.gov (United States)

    Paronuzzi, Paolo; Bolla, Alberto

    2015-04-01

    The Vajont landslide is a well-known, reservoir-induced slope failure that occurred on 9 October 1963 and was characterized by an 'en masse' sliding motion that triggered various large waves, determining catastrophic consequences for the nearby territory and adjacent villages. During the Vajont dam construction, and especially after the disaster, some researchers identified widespread field evidence of heavy rock mass damage involving the presumed prehistoric rockslide and/or the 1963 failed mass. This paper describes evidence of heavy gravitational damage, including (i) folding, (ii) fracturing, (iii) faulting, and (iv) intact rock disintegration. The gravity-induced rock mass damage (GRMD) characterizes the remnants of the basal shear zone, still resting on the large detachment surface, and the 1963 failed rock mass. The comprehensive geological study of the 1963 Vajont landslide, based on the recently performed geomechanical survey (2006-present) and on the critical analysis of the past photographic documentation (1959-1964), allows us to recognize that most GRMD evidence is related to the prehistoric multistage Mt. Toc rockslide. The 1963 catastrophic en masse remobilization induced an increase to the prehistoric damage, reworking preexisting structures and creating additional gravity-driven features (folds, fractures, faults, and rock fragmentation). The gravity-induced damage was formed during the slope instability phases that preceded the collapse (static or quasi-static GRMD) and also as a consequence of the sliding motion and of the devastating impact between the failed blocks (dynamic GRMD). Gravitational damage originated various types of small drag folds such as flexures, concentric folds, chevron, and kink-box folds, all having a radius of 1-5 m. Large buckle folds (radius of 10-50 m) are related to the dynamic damage and were formed during the en masse motion as a consequence of deceleration and impact processes that involved the sliding mass. Prior

  15. Induced Seismicity

    Science.gov (United States)

    Keranen, Katie M.; Weingarten, Matthew

    2018-05-01

    The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.

  16. Investigating landslides caused by earthquakes - A historical review

    Science.gov (United States)

    Keefer, D.K.

    2002-01-01

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides. This paper traces the historical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquake are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession of post-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing "retrospective" analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, synthesis of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  17. Dynamic response of tunnels in jointed rocks

    International Nuclear Information System (INIS)

    Heuze, F.E.; Shaffer, R.J.; Walton, O.R.; Maddix, D.M.

    1992-03-01

    We describe the application of the Discrete Element Method (DEM) to the dynamic analysis of the response of tunnels in jointed rocks to earthquake loading. In situations where large motions of many blocks and collapse occur, the discontinuum-based DEM approach appears superior to other methods of analysis

  18. Dynamic response of underground openings in discontinuous rock

    International Nuclear Information System (INIS)

    Asmis, H.W.

    1984-02-01

    This report examines the behaviour of underground openings in discontinuous rock in response to seismic waves associated with either earthquakes or rock bursts. A literature search revealed that well-constructed underground structures, such as would be expected for nuclear fuel waste disposal vaults, underground pumped-storage or nuclear plants, have an extremely high resistance to damage from seismic motion. To complement these qualitative results, it was necessary to examine the basic mechanisms of the entire progression of seismic motion, from wave generation and propagation, to wave interaction with the underground opening. From these investigations, it was found that unless a seismic event occurs very close to the installation, the stresses generated will be low with respect to the excavation stresses, because high stress waves are rapidly attenuated in travelling through rock. As well, an earthquake may generate extremely high accelerations, but is limited in the maximum amount of stress that it can create. The question, however, of the actual specific nature of underground seismic motions still remains essentially unanswered, although it is expected that there is a reduction in peak motions with depth due to the effect of the free surface of the earth

  19. Earthquake-induced soft-sediment deformations and seismically amplified erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey)

    KAUST Repository

    Avsar, Ulas; Jonsson, Sigurjon; Avşar, Ö zgü r; Schmidt, Sabine

    2016-01-01

    sequence of Köyceğiz Lake (SW Turkey) that we compare with estimated peak ground acceleration (PGA) values of several nearby earthquakes. We find that earthquakes exceeding estimated PGA values of ca. 20 cm/s2 can induce soft-sediment deformations (SSD

  20. A Preliminary Analysis on the Dynamics of the Ms8.0 Great Wenchuan, Sichuan, China Earthquake

    Science.gov (United States)

    Zhang, W.

    2008-12-01

    On May 12, 2008, a huge earthquake with magnitude Ms8.0 occurred in the Wenhuan, Sichuan Province of China. This event was the most devastating earthquake in the mainland of China since the 1976 M7.8 Tangshan earthquake. It resulted in tremendous losses of life and property. So far, there are 69,181 persons killed, and 18,522 still missing. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and "quake lakes" which formed by landslide-induced reservoirs. This earthquake occurred along the Longmenshan fault, as the result of motion on a northeast striking reverse fault or thrust fault on the northwestern margin of the Sichuan Basin. The earthquake's epicenter and focal-mechanism are consistent with it having occurred as the result of movement on the Longmenshan fault or a tectonically related fault. The earthquake reflects tectonic stresses resulting from the convergence of crustal material slowly moving from the high Tibetan Plateau, to the west, against strong crust underlying the Sichuan Basin and southeastern China. In this study, the spatial and temporal distribution of the stress on the fault plane of this great earthquake is estimated from the inversion results (Chen Ji, 2008) by solving the elastodynamic equations. Then, the dynamic source parameters are determined and the relations between the shear stress and the slip, the shear stress and the slip-rate for all grid positions on the fault are investigated. Finally, the frictional law for the source rupture is inferred from the dynamic source parameters. Based on the obtained dynamic source parameters, we try to rebuild the dynamic rupture process of this event and discuss the characteristics of this great earthquake.

  1. Microseismic data records fault activation before and after a Mw 4.1 induced earthquake

    Science.gov (United States)

    Eyre, T.; Eaton, D. W. S.

    2017-12-01

    Several large earthquakes (Mw 4) have been observed in the vicinity of the town of Fox Creek, Alberta. These events have been determined to be induced earthquakes related to hydraulic fracturing in the region. The largest of these has a magnitude Mw = 4.1, and is associated with a hydraulic-fracturing treatment close to Crooked Lake, about 30 km west of Fox Creek. The underlying factors that lead to localization of the high numbers of hydraulic fracturing induced events in this area remain poorly understood. The treatment that is associated with the Mw 4.1 event was monitored by 93 shallow three-level borehole arrays of sensors. Here we analyze the temporal and spatial evolution of the microseismic and seismic data recorded during the treatment. Contrary to expected microseismic event clustering parallel to the principal horizontal stress (NE - SW), the events cluster along obvious fault planes that align both NNE - SSW and N - S. As the treatment well is oriented N - S, it appears that each stage of the treatment intersects a new portion of the fracture network, causing seismicity to occur. Focal-plane solutions support a strike-slip failure along these faults, with nodal planes aligning with the microseismic cluster orientations. Each fault segment is activated with a cluster of microseismicity in the centre, gradually extending along the fault as time progresses. Once a portion of a fault is active, further seismicity can be induced, regardless if the present stage is distant from the fault. However, the large events seem to occur in regions with a gap in the microseismicity. Interestingly, most of the seismicity is located above the reservoir, including the larger events. Although a shallow-well array is used, these results are believed to have relatively high depth resolution, as the perforation shots are correctly located with an average error of 26 m in depth. This information contradicts previously held views that large induced earthquakes occur primarily

  2. Near-surface structural model for deformation associated with the February 7, 1812, New Madrid, Missouri, earthquake

    Science.gov (United States)

    Odum, J.K.; Stephenson, W.J.; Shedlock, K.M.; Pratt, T.L.

    1998-01-01

    The February 7, 1812, New Madrid, Missouri, earthquake (M [moment magnitude] 8) was the third and final large-magnitude event to rock the northern Mississippi Embayment during the winter of 1811-1812. Although ground shaking was so strong that it rang church bells, stopped clocks, buckled pavement, and rocked buildings up and down the eastern seaboard, little coseismic surface deformation exists today in the New Madrid area. The fault(s) that ruptured during this event have remained enigmatic. We have integrated geomorphic data documenting differential surficial deformation (supplemented by historical accounts of surficial deformation and earthquake-induced Mississippi River waterfalls and rapids) with the interpretation of existing and recently acquired seismic reflection data, to develop a tectonic model of the near-surface structures in the New Madrid, Missouri, area. This model consists of two primary components: a northnorthwest-trending thrust fault and a series of northeast-trending, strike-slip, tear faults. We conclude that the Reelfoot fault is a thrust fault that is at least 30 km long. We also infer that tear faults in the near surface partitioned the hanging wall into subparallel blocks that have undergone differential displacement during episodes of faulting. The northeast-trending tear faults bound an area documented to have been uplifted at least 0.5 m during the February 7, 1812, earthquake. These faults also appear to bound changes in the surface density of epicenters that are within the modern seismicity, which is occurring in the stepover zone of the left-stepping right-lateral strike-slip fault system of the modern New Madrid seismic zone.

  3. Groundwater oxygen isotope anomaly before the M6.6 Tottori earthquake in Southwest Japan.

    Science.gov (United States)

    Onda, Satoki; Sano, Yuji; Takahata, Naoto; Kagoshima, Takanori; Miyajima, Toshihiro; Shibata, Tomo; Pinti, Daniele L; Lan, Tefang; Kim, Nak Kyu; Kusakabe, Minoru; Nishio, Yoshiro

    2018-03-19

    Geochemical monitoring of groundwater in seismically-active regions has been carried out since 1970s. Precursors were well documented, but often criticized for anecdotal or fragmentary signals, and for lacking a clear physico-chemical explanation for these anomalies. Here we report - as potential seismic precursor - oxygen isotopic ratio anomalies of +0.24‰ relative to the local background measured in groundwater, a few months before the Tottori earthquake (M 6.6) in Southwest Japan. Samples were deep groundwater located 5 km west of the epicenter, packed in bottles and distributed as drinking water between September 2015 and July 2017, a time frame which covers the pre- and post-event. Small but substantial increase of 0.07‰ was observed soon after the earthquake. Laboratory crushing experiments of aquifer rock aimed to simulating rock deformation under strain and tensile stresses were carried out. Measured helium degassing from the rock and 18 O-shift suggest that the co-seismic oxygen anomalies are directly related to volumetric strain changes. The findings provide a plausible physico-chemical basis to explain geochemical anomalies in water and may be useful in future earthquake prediction research.

  4. Echo-sounding method aids earthquake hazard studies

    Science.gov (United States)

    ,

    1995-01-01

    Dramatic examples of catastrophic damage from an earthquake occurred in 1989, when the M 7.1 Lorna Prieta rocked the San Francisco Bay area, and in 1994, when the M 6.6 Northridge earthquake jolted southern California. The surprising amount and distribution of damage to private property and infrastructure emphasizes the importance of seismic-hazard research in urbanized areas, where the potential for damage and loss of life is greatest. During April 1995, a group of scientists from the U.S. Geological Survey and the University of Tennessee, using an echo-sounding method described below, is collecting data in San Antonio Park, California, to examine the Monte Vista fault which runs through this park. The Monte Vista fault in this vicinity shows evidence of movement within the last 10,000 years or so. The data will give them a "picture" of the subsurface rock deformation near this fault. The data will also be used to help locate a trench that will be dug across the fault by scientists from William Lettis & Associates.

  5. Dynamic stability and failure modes of slopes in discontinuous rock mass

    International Nuclear Information System (INIS)

    Shimizu, Yasuhiro; Aydan, O.; Ichikawa, Yasuaki; Kawamoto, Toshikazu.

    1988-01-01

    The stability of rock slopes during earthquakes are of great concern in rock engineering works such as highway, dam, and nuclear power station constructions. As rock mass in nature is usually discontinuous, the stability of rock slopes will be geverned by the spatial distribution of discontinuities in relation with the geometry of slope and their mechanical properties rather than the rock element. The authors have carried out some model tests on discontinuous rock slopes using three different model tests techniques in order to investigate the dynamic behaviour and failure modes of the slopes in discontinuous rock mass. This paper describes the findings and observations made on model rock slopes with various discontinuity patterns and slope geometry. In addition some stability criterions are developed and the calculated results are compared with those of experiments. (author)

  6. Stress triggering of the Lushan M7. 0 earthquake by the Wenchuan Ms8. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Wu Jianchao

    2013-08-01

    Full Text Available The Wenchuan Ms8. 0 earthquake and the Lushan M7. 0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8. 0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan M7. 0 earthquake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 – 0. 152 bar in the source of the Lushan M7. 0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7. 0 earthquake was most likely triggered by the coulomb failure stress change.

  7. Investigating Landslides Caused by Earthquakes A Historical Review

    Science.gov (United States)

    Keefer, David K.

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated withearthquake-induced landslides. This paper traces thehistorical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquakes are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession ofpost-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing ``retrospective'' analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, syntheses of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  8. Engineering geological aspect of Gorkha Earthquake 2015, Nepal

    Science.gov (United States)

    Adhikari, Basanta Raj; Andermann, Christoff; Cook, Kristen

    2016-04-01

    Strong shaking by earthquake causes massif landsliding with severe effects on infrastructure and human lives. The distribution of landslides and other hazards are depending on the combination of earthquake and local characteristics which influence the dynamic response of hillslopes. The Himalayas are one of the most active mountain belts with several kilometers of relief and is very prone to catastrophic mass failure. Strong and shallow earthquakes are very common and cause wide spread collapse of hillslopes, increasing the background landslide rate by several magnitude. The Himalaya is facing many small and large earthquakes in the past i.e. earthquakes i.e. Bihar-Nepal earthquake 1934 (Ms 8.2); Large Kangra earthquake of 1905 (Ms 7.8); Gorkha earthquake 2015 (Mw 7.8). The Mw 7.9 Gorkha earthquake has occurred on and around the main Himalayan Thrust with a hypocentral depth of 15 km (GEER 2015) followed by Mw 7.3 aftershock in Kodari causing 8700+ deaths and leaving hundreds of thousands of homeless. Most of the 3000 aftershocks located by National Seismological Center (NSC) within the first 45 days following the Gorkha Earthquake are concentrated in a narrow 40 km-wide band at midcrustal to shallow depth along the strike of the southern slope of the high Himalaya (Adhikari et al. 2015) and the ground shaking was substantially lower in the short-period range than would be expected for and earthquake of this magnitude (Moss et al. 2015). The effect of this earthquake is very unique in affected areas by showing topographic effect, liquefaction and land subsidence. More than 5000 landslides were triggered by this earthquake (Earthquake without Frontiers, 2015). Most of the landslides are shallow and occurred in weathered bedrock and appear to have mobilized primarily as raveling failures, rock slides and rock falls. Majority of landslides are limited to a zone which runs east-west, approximately parallel the lesser and higher Himalaya. There are numerous cracks in

  9. Scale dependence of rock friction at high work rate.

    Science.gov (United States)

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its

  10. 78 FR 19004 - Scientific Earthquake Studies Advisory Committee

    Science.gov (United States)

    2013-03-28

    ... Hazards Program. Focus topics for this meeting include induced seismicity, earthquake early warning and... DEPARTMENT OF THE INTERIOR U.S. Geological Survey [GX13GG009950000] Scientific Earthquake Studies... Law 106-503, the Scientific Earthquake Studies Advisory Committee (SESAC) will hold its next meeting...

  11. A Discrete Element Method Approach to Progressive Localization of Damage in Granular Rocks and Associated Seismicity

    Science.gov (United States)

    Vora, H.; Morgan, J.

    2017-12-01

    Brittle failure in rock under confined biaxial conditions is accompanied by release of seismic energy, known as acoustic emissions (AE). The objective our study is to understand the influence of elastic properties of rock and its stress state on deformation patterns, and associated seismicity in granular rocks. Discrete Element Modeling is used to simulate biaxial tests on granular rocks of defined grain size distribution. Acoustic Energy and seismic moments are calculated from microfracture events as rock is taken to conditions of failure under different confining pressure states. Dimensionless parameters such as seismic b-value and fractal parameter for deformation, D-value, are used to quantify seismic character and distribution of damage in rock. Initial results suggest that confining pressure has the largest control on distribution of induced microfracturing, while fracture energy and seismic magnitudes are highly sensitive to elastic properties of rock. At low confining pressures, localized deformation (low D-values) and high seismic b-values are observed. Deformation at high confining pressures is distributed in nature (high D-values) and exhibit low seismic b-values as shearing becomes the dominant mode of microfracturing. Seismic b-values and fractal D-values obtained from microfracturing exhibit a linear inverse relationship, similar to trends observed in earthquakes. Mode of microfracturing in our simulations of biaxial compression tests show mechanistic similarities to propagation of fractures and faults in nature.

  12. Calculation of displacements on fractures intersecting canisters induced by earthquakes: Aberg, Beberg and Ceberg examples

    Energy Technology Data Exchange (ETDEWEB)

    LaPointe, P.R.; Cladouhos, T. [Golder Associates Inc. (Sweden); Follin, S. [Golder Grundteknik KB (Sweden)

    1999-01-01

    -wide earthquake source parameter database upon which the relations between surface rupture length, subsurface fault displacement and fault width (depth for vertical faults) is representative of Swedish earthquakes. Results of the calculations are presented in several ways. A canister is considered to be damaged or to have failed if a fracture intersecting the canister has an instantaneous or cumulative slip greater than 0.1m. Canisters may fail during a single earthquake, or due to the cumulative effects of multiple smaller earthquakes. Failure percentages for single earthquakes for a 100,000-year period range from a high of 0.59% for Aberg to a low of 0.03% for Ceberg. Failure for cumulative effects only vary from 0.056% for Aberg to 0.004% for Ceberg. Additional investigation of the single earthquakes that cause unacceptable slippage suggests that their probability of occurrence over a 100,000 year time period is very low, but that their consequences are more severe in that they tend to damage multiple canisters. When a damaging earthquake occurs, an average of from 0.4% to 1.8% of the canisters experience induced slips greater than 0.1m, the higher number representative of Aberg, and the lower value representative of Ceberg. Although earthquakes were simulated at distances over 100 km from the canister positions, single earthquakes that produced displacements greater than 0.1 m were confined to the immediate vicinity of the repository. A plot for the Ceberg simulations shows that over 95% of the single, damaging earthquakes are within I km of the canister that they damage, and 99% are within 2.5 km. The maximum distance for the simulations was approximately 31 km. This suggests that the vast majority of faults that might potentially produce damaging earthquakes lie with a few kilometers of the repository. The simulations suggest that faults tens or hundreds of kilometers distant from the canisters are very unlikely to produce damage due to single earthquake events 39 refs, 36

  13. Evaluation of Earthquake-Induced Effects on Neighbouring Faults and Volcanoes: Application to the 2016 Pedernales Earthquake

    Science.gov (United States)

    Bejar, M.; Alvarez Gomez, J. A.; Staller, A.; Luna, M. P.; Perez Lopez, R.; Monserrat, O.; Chunga, K.; Herrera, G.; Jordá, L.; Lima, A.; Martínez-Díaz, J. J.

    2017-12-01

    It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the short-term behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with a useful tool to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Space geodesy is now routinely used following an earthquake to image the displacement of the ground and estimate the rupture geometry and the distribution of slip. Using the obtained source model, it is possible to evaluate the remaining moment deficit and to infer the stress changes on nearby faults and volcanoes produced by the earthquake, which can be used to identify which faults and volcanoes are brought closer to failure or activation. Although these procedures are commonly used today, the transference of these results to the authorities managing the post-disaster situation is not straightforward and thus its usefulness is reduced in practice. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after an earthquake. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 SAR and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip. Then we use this model to evaluate the moment deficit on the subduction interface and changes of stress on the surrounding faults and volcanoes. The results are compared with the seismic and volcanic events that have occurred after the earthquake. We discuss potential and limits of the methodology and the lessons learnt from discussion with local authorities.

  14. Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India

    Science.gov (United States)

    Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Misra, Surajit; Roy, Sukanta; Singh, Santosh K.; Sinha, Amalendu; Gupta, Harsh; Bansal, B. K.; Nayak, Shailesh

    2017-08-01

    Reservoir triggered earthquakes have been occurring in the Koyna area, western India for the past five decades. Triaxial tests carried out on 181 core samples of Archaean granitoids underlying the Deccan Traps provide valuable constraints on rock strength properties in the Koyna seismogenic zone for the first time. The data include measurements on granite gneiss, granite, migmatitic gneiss and mylonitised granite gneiss obtained from boreholes KBH-3, KBH-4A, KBH-5 and KBH-7 located in the western and eastern margins of the seismic zone. Salient results are as follows. (i) Increase of rock strength with increasing confining pressure allow determination of the linearized failure envelopes from which the cohesive strength and angle of internal friction are calculated. (ii) Variable differential stresses at different depths are the manifestations of deformation partitioning in close association of fault zone(s) or localized fracture zones. (iii) Fractures controlled by naturally developed weak planes such as cleavage and fabric directly affect the rock strength properties, but the majority of failure planes developed during triaxial tests is not consistent with the orientations of pre-existing weak planes. The failure planes may, therefore, represent other planes of weakness induced by ongoing seismic activity. (iv) Stress-strain curves confirm that axial deformation is controlled by the varying intensity of pre-existing shear in the granitoids, viz., mylonite, granite gneiss and migmatitic gneiss. (v) Frequent occurrences of low magnitude earthquakes may be attributed to low and variable rock strength of the granitoids, which, in turn, is modified by successive seismic events.

  15. Comprehensive Understanding of the Zipingpu Reservoir to the Ms8.0 Wenchuan Earthquake

    Science.gov (United States)

    Cheng, H.; Pang, Y. J.; Zhang, H.; Shi, Y.

    2014-12-01

    After the Wenchuan earthquake occurred, whether the big earthquake triggered by the storage of the Zipingpu Reservoir has attracted wide attention in international academic community. In addition to the qualitative discussion, many scholars also adopted the quantitative analysis methods to calculate the stress changes, but due to the different results, they draw very different conclusions. Here, we take the dispute of different teams in the quantitative calculation of Zipingpu reservoir as a starting point. In order to find out the key influence factors of quantitative calculation and know about the existing uncertainty elements during the numerical simulation, we analyze factors which may cause the differences. The preliminary results show that the calculation methods (analytical method or numerical method), dimension of models (2-D or 3-D), diffusion model, diffusion coefficient and focal mechanism are the main factors resulted in the differences, especially the diffusion coefficient of the fractured rock mass. The change of coulomb failure stress of the epicenter of Wenchuan earthquake attained from 2-D model is about 3 times of that of 3-D model. And it is not reasonable that only considering the fault permeability (assuming the permeability of rock mass as infinity) or only considering homogeneous isotropic rock mass permeability (ignoring the fault permeability). The different focal mechanisms also could dramatically affect the change of coulomb failure stress of the epicenter of Wenchuan earthquake, and the differences can research 2-7 times. And the differences the change of coulomb failure stress can reach several hundreds times, when selecting different diffusion coefficients. According to existing research that the magnitude of coulomb failure stress change is about several kPa, we could not rule out the possibility that the Zipingpu Reservoir may trigger the 2008 Wenchuan earthquake. However, for the background stress is not clear and coulomb failure

  16. Induced Polarization Surveying for Acid Rock Screening in Highway Design

    Science.gov (United States)

    Butler, K. E.; Al, T.; Bishop, T.

    2004-05-01

    Highway and pipeline construction agencies have become increasingly vigilant in their efforts to avoid cutting through sulphide-bearing bedrock that has potential to produce acid rock drainage. Blasting and fragmentation of such rock increases the surface area available for sulphide oxidation and hence increases the risk of acid rock drainage unless the rock contains enough natural buffering capacity to neutralize the pH. In December, 2001, the New Brunswick Department of Transportation (NBOT) sponsored a field trial of geophysical surveying in order to assess its suitability as a screening tool for locating near-surface sulphides along proposed highway alignments. The goal was to develop a protocol that would allow existing programs of drilling and geochemical testing to be targeted more effectively, and provide design engineers with the information needed to reduce rock cuts where necessary and dispose of blasted material in a responsible fashion. Induced polarization (IP) was chosen as the primary geophysical method given its ability to detect low-grade disseminated mineralization. The survey was conducted in dipole-dipole mode using an exploration-style time domain IP system, dipoles 8 to 25 m in length, and six potential dipoles for each current dipole location (i.e. n = 1 - 6). Supplementary information was provided by resistivity and VLF-EM surveys sensitive to lateral changes in electrical conductivity, and by magnetic field surveying chosen for its sensitivity to the magnetic susceptibility of pyrrhotite. Geological and geochemical analyses of samples taken from several IP anomalies located along 4.3 line-km of proposed highway confirmed the effectiveness of the screening technique. IP pseudosections from a region of metamorphosed shales and volcaniclastic rocks identified discrete, well-defined mineralized zones. Stronger, overlapping, and more laterally extensive IP anomalies were observed over a section of graphitic and sulphide-bearing metasedimentary

  17. Slope instabilities triggered by the 2011 Lorca earthquake (M{sub w} 5.1): a comparison and revision of hazard assessments of earthquake-triggered landslides in Murcia; Inestabilidades de ladera provocadas por el terremoto de Lorca de 2011 (Mw 5,1): comparacion y revision de estudios de peligrosidad de movimientos de ladera por efecto sismico en Murcia

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Peces, M. J.; Garcia-Mayordomo, J.; Martinez-Diaz, J. J.; Tsige, M.

    2012-11-01

    The Lorca basin has been the object of recent research aimed at studying the phenomenon of earthquake induced landslides and their assessment within the context of different seismic scenarios, bearing in mind the influence of soil and topographical amplification effects. Nevertheless, it was not until the Lorca earthquakes of 11 May 2011 that it became possible to adopt a systematic approach to the problem. We provide here an inventory of slope instabilities triggered by the Lorca earthquakes comprising 100 cases, mainly small rock and soil falls (1 to 100 m{sup 3}). The distribution of these instabilities is compared to two different earthquake-triggered landslide hazard maps: one considering the occurrence of the most probable earthquake for a 475-yr return period in the Lorca basin (M{sub w} = 5.0), which was previously published on the basis of a low-resolution digital elevation model (DEM), and a second one matching the occurrence of the M{sub w} = 5.1 2011 Lorca earthquake, which was undertaken using a higher resolution DEM. The most frequent Newmark displacement values related to the slope failures triggered by the 2011 Lorca earthquakes are smaller than 2 cm in both hazard scenarios and coincide with areas where significant soil and topographical seismic amplification effects have occurred.

  18. Response spectra by blind faults for design purpose of stiff structures on rock site

    International Nuclear Information System (INIS)

    Hiroyuki Mizutani; Kenichi Kato; Masayuki Takemura; Kazuhiko Yashiro; Kazuo Dan

    2005-01-01

    The goal of this paper is to propose the response spectra by blind faults for seismic design of nuclear power facilities. It is impossible to evaluate earthquake ground motions from blind faults, because the size and the location of blind fault cannot be identified even if the detailed geological surveys are conducted. From the viewpoint of seismic design, it is crucial to investigate the upper level of earthquake ground motions due to blind faults. In this paper, 41 earthquakes that occurred in the upper crust in Japan and California are selected and classified into the active and the blind fault types. On the basis of near-source strong motion records observed on rock sites, upper level of response spectra by blind faults is examined. The estimated upper level is as follows: the peak ground acceleration is 450 cm/s 2 , the flat level of the acceleration response spectra is 1200 cm/s 2 , and the flat level of the velocity response spectra is 100 cm/s on rock sites with shear wave velocity Vs of about 700 m/s. The upper level can envelop the observed response spectra in near-source region on rock sites. (authors)

  19. Comparison of Structurally Controlled Landslide Hazard Simulation to the Co-seismic Landslides Caused by the M 7.2 2013 Bohol Earthquake.

    Science.gov (United States)

    Galang, J. A. M. B.; Eco, R. C.; Lagmay, A. M. A.

    2014-12-01

    The M_w 7.2 October 15, 2013 Bohol earthquake is one of the more destructive earthquake to hit the Philippines in the 21st century. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". The earthquake resulted in 209 fatalities and over 57 million USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparations for this type of landslides rely heavily on the identification of fracture-related slope instability. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations of discontinuity sets were mapped using remote sensing techniques with the aid of a Digital Terrain Model (DTM) obtained in 2012. The DTM used is an IFSAR derived image with a 5-meter pixel resolution and approximately 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. Separately, a manually derived landslide inventory has been performed using post-earthquake satellite images and LIDAR. The results were compared to the landslide inventory which identified at least 873 landslides. Out of the 873 landslides identified through the inventory, 786 or 90% intersect the simulated structural-controlled landslide hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow

  20. Earthquake source properties from instrumented laboratory stick-slip

    Science.gov (United States)

    Kilgore, Brian D.; McGarr, Arthur F.; Beeler, Nicholas M.; Lockner, David A.; Thomas, Marion Y.; Mitchell, Thomas M.; Bhat, Harsha S.

    2017-01-01

    Stick-slip experiments were performed to determine the influence of the testing apparatus on source properties, develop methods to relate stick-slip to natural earthquakes and examine the hypothesis of McGarr [2012] that the product of stiffness, k, and slip duration, Δt, is scale-independent and the same order as for earthquakes. The experiments use the double-direct shear geometry, Sierra White granite at 2 MPa normal stress and a remote slip rate of 0.2 µm/sec. To determine apparatus effects, disc springs were added to the loading column to vary k. Duration, slip, slip rate, and stress drop decrease with increasing k, consistent with a spring-block slider model. However, neither for the data nor model is kΔt constant; this results from varying stiffness at fixed scale.In contrast, additional analysis of laboratory stick-slip studies from a range of standard testing apparatuses is consistent with McGarr's hypothesis. kΔt is scale-independent, similar to that of earthquakes, equivalent to the ratio of static stress drop to average slip velocity, and similar to the ratio of shear modulus to wavespeed of rock. These properties result from conducting experiments over a range of sample sizes, using rock samples with the same elastic properties as the Earth, and scale-independent design practices.

  1. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  2. Rock fracture grouting with microbially induced carbonate precipitation

    Science.gov (United States)

    Minto, James M.; MacLachlan, Erica; El Mountassir, Gráinne; Lunn, Rebecca J.

    2016-11-01

    Microbially induced carbonate precipitation has been proposed for soil stabilization, soil strengthening, and permeability reduction as an alternative to traditional cement and chemical grouts. In this paper, we evaluate the grouting of fine aperture rock fractures with calcium carbonate, precipitated through urea hydrolysis, by the bacteria Sporosarcina pasteurii. Calcium carbonate was precipitated within a small-scale and a near field-scale (3.1 m2) artificial fracture consisting of a rough rock lower surfaces and clear polycarbonate upper surfaces. The spatial distribution of the calcium carbonate precipitation was imaged using time-lapse photography and the influence on flow pathways revealed from tracer transport imaging. In the large-scale experiment, hydraulic aperture was reduced from 276 to 22 μm, corresponding to a transmissivity reduction of 1.71 × 10-5 to 8.75 × 10-9 m2/s, over a period of 12 days under constantly flowing conditions. With a modified injection strategy a similar three orders of magnitude reduction in transmissivity was achieved over a period of 3 days. Calcium carbonate precipitated over the entire artificial fracture with strong adhesion to both upper and lower surfaces and precipitation was controlled to prevent clogging of the injection well by manipulating the injection fluid velocity. These experiments demonstrate that microbially induced carbonate precipitation can successfully be used to grout a fracture under constantly flowing conditions and may be a viable alternative to cement based grouts when a high level of hydraulic sealing is required and chemical grouts when a more durable grout is required.

  3. Numerical analysis of the effects induced by normal faults and dip angles on rock bursts

    Science.gov (United States)

    Jiang, Lishuai; Wang, Pu; Zhang, Peipeng; Zheng, Pengqiang; Xu, Bin

    2017-10-01

    The study of mining effects under the influences of a normal fault and its dip angle is significant for the prediction and prevention of rock bursts. Based on the geological conditions of panel 2301N in a coalmine, the evolution laws of the strata behaviors of the working face affected by a fault and the instability of the fault induced by mining operations with the working face of the footwall and hanging wall advancing towards a normal fault are studied using UDEC numerical simulation. The mechanism that induces rock burst is revealed, and the influence characteristics of the fault dip angle are analyzed. The results of the numerical simulation are verified by conducting a case study regarding the microseismic events. The results of this study serve as a reference for the prediction of rock bursts and their classification into hazardous areas under similar conditions.

  4. Rock mechanics contributions from defense programs

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1992-02-01

    An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth's interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges

  5. Simulation of the earthquake-induced collapse of a school building in Turkey in 2011 Van Earthquake

    NARCIS (Netherlands)

    Bal, Ihsan Engin; Smyrou, Eleni

    2016-01-01

    Collapses of school or dormitory buildings experienced in recent earthquakes raise the issue of safety as a major challenge for decision makers. A school building is ‘just another structure’ technically speaking, however, the consequences of a collapse in an earthquake could lead to social reactions

  6. Experimental Study on a Self-Centering Earthquake-Resistant Masonry Pier with a Structural Concrete Column

    Directory of Open Access Journals (Sweden)

    Lijun Niu

    2017-01-01

    Full Text Available This paper proposes a slotting construction strategy to avoid shear behavior of multistory masonry buildings. The aspect ratio of masonry piers increases via slotting between spandrels and piers, so that the limit state of piers under an earthquake may be altered from shear to rocking. Rocking piers with a structural concrete column (SCC form a self-centering earthquake-resistant system. The in-plane lateral rocking behavior of masonry piers subjected to an axial force is predicted, and an experimental study is conducted on two full-scale masonry piers with an SCC, which consist of a slotting pier and an original pier. Meanwhile, a comparison of the rocking modes of masonry piers with an SCC and without an SCC was conducted in the paper. Experimental verification indicates that the slotting strategy achieves a change of failure modes from shear to rocking, and this resistant system with an SCC incorporates the self-centering and high energy dissipation properties. For the slotting pier, a lateral story drift ratio of 2.5% and a high displacement ductility of approximately 9.7 are obtained in the test, although the lateral strength decreased by 22.3% after slotting. The predicted lateral strength of the rocking pier with an SCC has a margin of error of 5.3%.

  7. Frictional melt generated by the 2008 Mw 7.9 Wenchuan earthquake and its faulting mechanisms

    Science.gov (United States)

    Wang, H.; Li, H.; Si, J.; Sun, Z.; Zhang, L.; He, X.

    2017-12-01

    Fault-related pseudotachylytes are considered as fossil earthquakes, conveying significant information that provide improved insight into fault behaviors and their mechanical properties. The WFSD project was carried out right after the 2008 Wenchuan earthquake, detailed research was conducted in the drilling cores. 2 mm rigid black layer with fresh slickenlines was observed at 732.6 m in WFSD-1 cores drilled at the southern Yingxiu-Beichuan fault (YBF). Evidence of optical microscopy, FESEM and FIB-TEM show it's frictional melt (pseudotachylyte). In the northern part of YBF, 4 mm fresh melt was found at 1084 m with similar structures in WFSD-4S cores. The melts contain numerous microcracks. Considering that (1) the highly unstable property of the frictional melt (easily be altered or devitrified) under geological conditions; (2) the unfilled microcracks; (3) fresh slickenlines and (4) recent large earthquake in this area, we believe that 2-4 mm melt was produced by the 2008 Wenchuan earthquake. This is the first report of fresh pseudotachylyte with slickenlines in natural fault that generated by modern earthquake. Geochemical analyses show that fault rocks at 732.6 m are enriched in CaO, Fe2O3, FeO, H2O+ and LOI, whereas depleted in SiO2. XRF results show that Ca and Fe are enriched obviously in the 2.5 cm fine-grained fault rocks and Ba enriched in the slip surface. The melt has a higher magnetic susceptibility value, which may due to neoformed magnetite and metallic iron formed in fault frictional melt. Frictional melt visible in both southern and northern part of YBF reveals that frictional melt lubrication played a major role in the Wenchuan earthquake. Instead of vesicles and microlites, numerous randomly oriented microcracks in the melt, exhibiting a quenching texture. The quenching texture suggests the frictional melt was generated under rapid heat-dissipation condition, implying vigorous fluid circulation during the earthquake. We surmise that during

  8. An in-situ stimulation experiment in crystalline rock - assessment of induced seismicity levels during stimulation and related hazard for nearby infrastructure

    Science.gov (United States)

    Gischig, Valentin; Broccardo, Marco; Amann, Florian; Jalali, Mohammadreza; Esposito, Simona; Krietsch, Hannes; Doetsch, Joseph; Madonna, Claudio; Wiemer, Stefan; Loew, Simon; Giardini, Domenico

    2016-04-01

    A decameter in-situ stimulation experiment is currently being performed at the Grimsel Test Site in Switzerland by the Swiss Competence Center for Energy Research - Supply of Electricity (SCCER-SoE). The underground research laboratory lies in crystalline rock at a depth of 480 m, and exhibits well-documented geology that is presenting some analogies with the crystalline basement targeted for the exploitation of deep geothermal energy resources in Switzerland. The goal is to perform a series of stimulation experiments spanning from hydraulic fracturing to controlled fault-slip experiments in an experimental volume approximately 30 m in diameter. The experiments will contribute to a better understanding of hydro-mechanical phenomena and induced seismicity associated with high-pressure fluid injections. Comprehensive monitoring during stimulation will include observation of injection rate and pressure, pressure propagation in the reservoir, permeability enhancement, 3D dislocation along the faults, rock mass deformation near the fault zone, as well as micro-seismicity. The experimental volume is surrounded by other in-situ experiments (at 50 to 500 m distance) and by infrastructure of the local hydropower company (at ~100 m to several kilometres distance). Although it is generally agreed among stakeholders related to the experiments that levels of induced seismicity may be low given the small total injection volumes of less than 1 m3, detailed analysis of the potential impact of the stimulation on other experiments and surrounding infrastructure is essential to ensure operational safety. In this contribution, we present a procedure how induced seismic hazard can be estimated for an experimental situation that is untypical for injection-induced seismicity in terms of injection volumes, injection depths and proximity to affected objects. Both, deterministic and probabilistic methods are employed to estimate that maximum possible and the maximum expected induced

  9. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  10. Evaluation of Seismic Behavior of Steel Braced Frames with Controlled Rocking System and Energy Dissipating Fuses

    Directory of Open Access Journals (Sweden)

    Hassan Amirzehni

    2016-12-01

    Full Text Available The self-centering rocking steel braced frames are new type of seismic lateral-force resisting systems that are developed with aim to limiting structural damages, minimizing residual drifts on systems and creating easy and inexpensive reconstruction capability, after sever earthquakes. In Steel braced frames with controlled rocking system, column bases on seismic resisting frame are not attached to the foundation and the frame allowed to rock freely. The task of restoring the rotated frame to its initial location is on post-tensioned cables, which attaches top of the frame to foundation. The design of post tensioned stands and braced frame members is such that during earthquakes they remain in elastic region. Seismic energy, dissipates by plastic deformations in replaceable elements on each rock of frame. In current research work, the seismic behavior of this type of lateral resisting systems is evaluated. The research conducted on a one bay steel braced frame with controlled rocking system that is analyzed using nonlinear dynamic time history analysis (NLTHA procedure. The frame is subjected to JMA-Kobe and Northridge ground motions records that are scaled to unit, 1.2 and 1.5 times of maximum considered earthquake (MCE ground motion level intensity. Extracted results show that seismic behavior of this type of lateral force resisting systems are so desirable even under MCE ground motion levels. The only anxiety is about occurring fatigue in post-tensioned strands that endangers overall stability of system.

  11. YaAn earthquake increases blood pressure among hospitalized patients.

    Science.gov (United States)

    Li, Chuanwei; Luo, Xiaoli; Zhang, Wen; Zhou, Liang; Wang, Hongyong; Zeng, Chunyu

    YaAn, a city in Sichuan province, China, was struck by a major earthquake measuring 7.0 on the Richter scale on April 20, 2013. This study sought to investigate the impact of YaAn earthquake on the blood pressure (BP) among hospitalized patients in the department of cardiology. We enrolled 52 hospitalized patients who were admitted to our hospital at least three days before the day of earthquake in 2013 (disaster group) as compared with 52 patients during April 20, 2014 (nondisaster group). BP was measured three times per day and the prescription of antihypertensive medicine was recorded. The earthquake induced a 3.3 mm Hg significant increase in the mean postdisaster systolic blood pressure (SBP) in the disaster group as compared with the nondisaster group. SBP at admission was positively associated with the elevated SBP in the logistic regression model (odds ratio (OR) = 1.09, 95% confidence interval (CI):1.016-1.168, p = 0.015), but not other potential influencing factors, including antihypertensive medicine, sex, age, and body weight, excluding β-blockers. Patients with β-blockers prescription at the time of earthquake showed a blunt response to earthquake-induced SBP elevation than those who were taking other antihypertensive drugs (OR = 0.128, 95% CI: 0.019-0.876, p = 0.036). The YaAn earthquake induced significant increase in SBP even at a distance from the epicenter among hospitalized patients. The findings demonstrate that pure psychological components seem to be a cause of the pressor response and β-blockers might be better in controlling disaster-induced hypertension.

  12. Acoustic, electromagnetic, neutron emissions from fracture and earthquakes

    CERN Document Server

    Lacidogna, Giuseppe; Manuello, Amedeo

    2015-01-01

    This book presents the relevant consequences of recently discovered and interdisciplinary phenomena, triggered by local mechanical instabilities. In particular, it looks at emissions from nano-scale mechanical instabilities such as fracture, turbulence, buckling and cavitation, focussing on vibrations at the TeraHertz frequency and Piezonuclear reactions. Future applications for this work could include earthquake precursors, climate change, energy production, and cellular biology. A series of fracture experiments on natural rocks demonstrates that the TeraHertz vibrations are able to induce fission reactions on medium weight elements accompanied by neutron emissions. The same phenomenon appears to have occurred in several different situations, particularly in the chemical evolution of the Earth and Solar System, through seismicity (rocky planets) and storms (gaseous planets). As the authors explore, these phenomena can also explain puzzles related to the history of our planet, like the ocean formation or th...

  13. Remotely-triggered Slip in Mexico City Induced by the September 2017 Mw=7.1 Puebla Earthquake.

    Science.gov (United States)

    Solano Rojas, D. E.; Havazli, E.; Cabral-Cano, E.; Wdowinski, S.

    2017-12-01

    Mw=7.1 Puebla earthquake induced fast soil consolidation, which remotely triggered slip on the preexisting subsidence-related faults. The slip observed during this earthquake represents a hazard that needs to be considered in future urban development plans of Mexico City.

  14. Liquefaction induced by modern earthquakes as a key to paleoseismicity: A case study of the 1988 Saguenay event

    International Nuclear Information System (INIS)

    Tuttle, M.; Cowie, P.; Wolf, L.

    1992-01-01

    Liquefaction features, including sand dikes, sills, and sand-filled craters, that formed at different distances from the epicenter of the 1988 (Mw 5.9) Saguenay earthquake are compared with one another and with older features. Modern liquefaction features decrease in size with increasing distance from the Saguenay epicenter. This relationship suggests that the size of liquefaction features may be used to determine source zones of past earthquakes and to estimate attenuation of seismic energy. Pre-1988 liquefaction features are cross-cut by the 1988 features. Although similar in morphology to the modern features, the pre-1988 features are more weathered and considerably larger in size. The larger pre-1988 features are located in the Ferland area, whereas the smallest pre-1988 feature occurs more than 37 km to the southwest. This spatial distribution of different size features suggests that an unidentified earthquake source zone (in addition to the one that generated the Saguenay earthquake) may exist in the Laurentide-Saguenay region. Structural relationships of the liquefaction features indicate that one, possibly two, earthquakes induced liquefaction in the region prior to 1988. The age of only one pre-1988 feature is well-constrained at 340 ± 70 radiocarbon years BP. If the 1663 earthquake was responsible for the formation of this feature, this event may have been centered in the Laurentide-Saguenay region rather than in the Charlevoix seismic zone

  15. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    International Nuclear Information System (INIS)

    Hakami, Eva

    2011-05-01

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  16. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva [Geosigma AB, Uppsala (Sweden)

    2011-05-15

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  17. Urban Landslides Induced by the 2004 Niigata-Chuetsu Earthquake

    Science.gov (United States)

    Kamai, T.; Trandafir, A. C.; Sidle, R. C.

    2005-05-01

    Landslides triggered by the Chuetsu earthquake occurred in artificial slopes of some new developments in suburban Nagaoka, the largest city in the affected area. The landslides occurred in hilly terrain of the eastern part of Nagaoka between the alluvial plain and Tertiary folded mountains of Yamakoshi. Although the extent of landslides in urban Nagaoka was small compared with landslides on natural slopes (especially near Yamakoshi), they represent an important case study for urban landslide disasters. Slope instabilities in urban residential areas were classified as: A) landslides in steep embankments; B) landslides in gently sloping artificial valley fills; C) re-activation of old landslides; and D) liquefaction in deep artificial valley fills. All these failures occurred in relatively uniform suburban landscapes, which were significantly modified from the original landforms. Recent destructive earthquakes in Japan caused similar types of slope failures in urban regions, suggesting that lessons from past earthquakes were not implemented. The greatest damage due to type-A failures occurred in the 25-yr old Takamachi residential area, where about 70 of 522 homes were judged to be uninhabitable. Before development, this area was an isolated hill (90 m elevation) with an adjacent terrace (60 m elevation) consisting of gravel, sand, and silt of the lower to middle Pleistocene deposits. Development earthworks removed the hill crest and created a wide plateau (70 m elevation); excavated soil was placed on the perimeter as an embankment. During the earthquake, the embankment slope collapsed, including retaining walls, perimeter road, and homes. The most serious damage occurred in five places around the margin of the plateau corresponding to shallow valley fills (5 to 8 m thick). Earthquake response analyses using an equivalent linear model indicated the amplification of seismic waves at the surface of embankment slopes, and the peak earthquake acceleration exceeded 1 G

  18. Relaxation creep model of impending earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Morgounov, V. A. [Russian Academy of Sciences, Institute of Physics of the Earth, Moscow (Russian Federation)

    2001-04-01

    The alternative view of the current status and perspective of seismic prediction studies is discussed. In the problem of the ascertainment of the uncertainty relation Cognoscibility-Unpredictability of Earthquakes, priorities of works on short-term earthquake prediction are defined due to the advantage that the final stage of nucleation of earthquake is characterized by a substantial activation of the process while its strain rate increases by the orders of magnitude and considerably increased signal-to-noise ratio. Based on the creep phenomenon under stress relaxation conditions, a model is proposed to explain different images of precursors of impending tectonic earthquakes. The onset of tertiary creep appears to correspond to the onset of instability and inevitably fails unless it unloaded. At this stage, the process acquires the self-regulating character to the greatest extent the property of irreversibility, one of the important components of prediction reliability. Data in situ suggest a principal possibility to diagnose the process of preparation by ground measurements of acoustic and electromagnetic emission in the rocks under constant strain in the condition of self-relaxed stress until the moment of fracture are discussed in context. It was obtained that electromagnetic emission precedes but does not accompany the phase of macrocrak development.

  19. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy.

    Science.gov (United States)

    Rothschild, Pierre-Raphaël; Salah, Sawsen; Berdugo, Marianne; Gélizé, Emmanuelle; Delaunay, Kimberley; Naud, Marie-Christine; Klein, Christophe; Moulin, Alexandre; Savoldelli, Michèle; Bergin, Ciara; Jeanny, Jean-Claude; Jonet, Laurent; Arsenijevic, Yvan; Behar-Cohen, Francine; Crisanti, Patricia

    2017-08-18

    In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.

  20. Aftershocks of the India Republic Day Earthquake: the MAEC/ISTAR Temporary Seismograph Network

    Science.gov (United States)

    Bodin, P.; Horton, S.; Johnston, A.; Patterson, G.; Bollwerk, J.; Rydelek, P.; Steiner, G.; McGoldrick, C.; Budhbhatti, K. P.; Shah, R.; Macwan, N.

    2001-05-01

    The MW=7.7 Republic Day (26 January, 2001) earthquake on the Kachchh in western India initiated a strong sequence of small aftershocks. Seventeen days following the mainshock, we deployed a network of portable digital event recorders as a cooperative project of the Mid America Earthquake Center in the US and the Institute for Scientific and Technological Advanced Research. Our network consisted of 8 event-triggered Kinemetrics K2 seismographs with 6 data channels (3 accelerometer, 3 Mark L-28/3d seismometer) sampled at 200 Hz, and one continuously-recording Guralp CMG40TD broad-band seismometer sampled at 220 Hz. This network was in place for 18 days. Underlying our network deployment was the notion that because of its tectonic and geologic setting the Republic Day earthquake and its aftershocks might have source and/or propagation characteristics common to earthquakes in stable continental plate-interiors rather than those on plate boundaries or within continental mobile belts. Thus, our goals were to provide data that could be used to compare the Republic Day earthquake with other earthquakes. In particular, the objectives of our network deployment were: (1) to characterize the spatial distribution and occurrence rates of aftershocks, (2) to examine source characteristics of the aftershocks (stress-drops, focal mechanisms), (3) to study the effect of deep unconsolidated sediment on wave propagation, and (4) to determine if other faults (notably the Allah Bundh) were simultaneously active. Most of our sites were on Jurassic bedrock, and all were either free-field, or on the floor of light structures built on rock or with a thin soil cover. However, one of our stations was on a section of unconsolidated sediments hundreds of meters thick adjacent to a site that was subjected to shaking-induced sediment liquefaction during the mainshock. The largest aftershock reported by global networks was an MW=5.9 event on January 28, prior to our deployment. The largest

  1. Natural Gas Extraction, Earthquakes and House Prices

    OpenAIRE

    Hans R.A. Koster; Jos N. van Ommeren

    2015-01-01

    The production of natural gas is strongly increasing around the world. Long-run negative external effects of extraction are understudied and often ignored in social) cost-benefit analyses. One important example is that natural gas extraction leads to soil subsidence and subsequent induced earthquakes that may occur only after a couple of decades. We show that induced earthquakes that are noticeable to residents generate substantial non-monetary economic effects, as measured by their effects o...

  2. Generalized statistical mechanics approaches to earthquakes and tectonics

    Science.gov (United States)

    Papadakis, Giorgos; Michas, Georgios

    2016-01-01

    Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes. PMID:28119548

  3. Segmentation and Classification of Nepal Earthquake Induced Landslides Using SENTINEL-1 Product

    Science.gov (United States)

    Kunwar, Saket

    2016-06-01

    On April 26, 2015, an earthquake of magnitude 7.8 on the Richter scale occurred, with epicentre at Barpak (28°12'20''N,84°44'19''E), Nepal. Landslides induced due to the earthquake and its aftershock added to the natural disaster claiming more than 9000 lives. Landslides represented as lines that extend from the head scarp to the toe of the deposit were mapped by the staff of the British Geological Survey and is available freely under Open Data Commons Open Database License(ODC-ODbL) license at the Humanitarian Data Exchange Program. This collection of 5578 landslides is used as preliminary ground truth in this study with the aim of producing polygonal delineation of the landslides from the polylines via object oriented segmentation. Texture measures from Sentinel-1a Ground Range Detected (GRD) Amplitude data and eigenvalue-decomposed Single Look Complex (SLC) polarimetry product are stacked for this purpose. This has also enabled the investigation of landslide properties in the H-Alpha plane, while developing a classification mechanism for identifying the occurrence of landslides.

  4. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    Science.gov (United States)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-12-01

    acceleration (up to 25 m/s2 during ~0.1 s). Thus, the weakening distance, dc, is reached within the initial acceleration spike. These observations are not unique, and similar weakening-acceleration associations were reported in stick-slip, rotary shear, and impact shear experiments. These studies greatly differ from each other in slip distance, normal stress, acceleration, and slip-velocities with the outstanding commonality of abrupt loading and intense acceleration. We propose that impact loading induces extremely high strain-rates that significantly increase rock brittleness, fracture tendency, and fragmentation. We envision that these processes intensify fault wear as manifested in ELSE experiments by extremely high initial wear-rates. This intense, early wear generates a layer of fine-grain gouge that reduces the fault strength by powder-lubrication. Our analysis indicates that rapid acceleration associated with earthquake rupture accelerates fault weakening and shortens the weakening-distance.

  5. Anomalous radon emission as precursor of medium to strong earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Zoran, Maria [National Institute of R& D for Optoelectronics, MG5 Bucharest -Magurele, 077125 Romania (Romania)

    2016-03-25

    Anomalous radon (Rn{sup 222}) emissions enhanced by forthcoming earthquakes is considered to be a precursory phenomenon related to an increased geotectonic activity in seismic areas. Rock microfracturing in the Earth’s crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurred before the occurrence of medium and strong earthquakes. This paper aims to investigate temporal variations of radon concentration levels in air near or in the ground by the use of solid state nuclear track detectors (SSNTD) CR-39 and LR-115 in relation with some important seismic events recorded in Vrancea region, Romania.

  6. Earth-Atmospheric Coupling Prior to Strong Earthquakes Analyzed by IR Remote Sensing Data

    Science.gov (United States)

    Freund, F.; Ouzounov, D.

    2001-12-01

    Earth-atmosphere interactions during major earthquakes (M>5) are the subject of this study. A mechanism has recently been proposed to account for the appearance of hole-type electronic charge carriers in rocks subjected to transient stress [Freund, 2000]. If such charge carriers are activated in the crust prior to large earthquakes, the predictable consequences are: injection of currents into the rocks, low frequency electromagnetic emission, changes in ground potentials, corona discharges with attendant light emission from high points at the surface of the Earth, and possibly an enhanced emission in the 8-12 μ m region similar to the thermal emission observed during laboratory rock deformation experiments [Geng et al., 1999]. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission & Reflection radiometer) onboard NASA's TERRA satellite launched in Dec. 1999 we have begun analyzing vertical atmospheric profiles, land surface and kinetic temperatures. We looked for correlations between atmospheric dynamics and solid Earth processes prior to the Jan. 13, 2001 earthquake in El Salvador (M=7.6) and the Jan. 26, 2001 Gujarat earth-quake in India (M=7.7). With MODIS covering the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km) we find evidence for a thermal anomaly pattern related to the pre-seismic activity. We also find evidence for changes in the aerosol content and atmospheric instability parameters, possibly due to changes in the ground potential that cause ion emission and lead to the formation of a thin near-ground aerosol layer. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index.

  7. Geotechnical aspects in the epicentral region of the 2011, Mw5.8 Mineral, Virginia earthquake

    Science.gov (United States)

    Green, Russell A.; Lasley, Samuel; Carter, Mark W.; Munsey, Jeffrey W.; Maurer, Brett W.; Tuttle, Martitia P.

    2015-01-01

    A reconnaissance team documented the geotechnical and geological aspects in the epicentral region of the Mw (moment magnitude) 5.8 Mineral, Virginia (USA), earthquake of 23 August 2011. Tectonically and seismically induced ground deformations, evidence of liquefaction, rock slides, river bank slumps, ground subsidence, performance of earthen dams, damage to public infrastructure and lifelines, and other effects of the earthquake were documented. This moderate earthquake provided the rare opportunity to collect data to help assess current geoengineering practices in the region, as well as to assess seismic performance of the aging infrastructure in the region. Ground failures included two marginal liquefaction sites, a river bank slump, four minor rockfalls, and a ~4-m-wide, ~12-m-long, ~0.3-m-deep subsidence on a residential property. Damage to lifelines included subsidence of the approaches for a bridge and a water main break to a heavily corroded, 5-cm-diameter valve in Mineral, Virginia. Observed damage to dams, landfills, and public-use properties included a small, shallow slide in the temporary (“working”) clay cap of the county landfill, damage to two earthen dams (one in the epicentral region and one further away near Bedford, Virginia), and substantial structural damage to two public school buildings.

  8. Static stress drop of the largest recorded M 4.6 hydraulic fracturing induced earthquake and its aftershock pattern in the northern Montney Play, British Columbia, Canada

    Science.gov (United States)

    Wang, B.; Harrington, R. M.; Liu, Y.; Kao, H.

    2016-12-01

    The largest suspected fracking-induced earthquake to date occurred near Fort St. John, British Columbia on August 17, 2015, with a reported magnitude of Mw 4.6. Here we estimate the static stress released by the mainshock and the five cataloged aftershocks using new data from eight broadband seismometers installed approximately 50km from the hypocenter of the mainshock, at distances much closer than the Natural Resources Canada regional seismic stations. The estimated cross-correlation coefficient among the 5 cataloged earthquakes is 0.35 or greater. We will present seismic moment (M0) and spectral corner frequency (fc) values estimated using both individual earthquake spectra and spectral ratios to correct for travel-path attenuation and site effects. Static stress drop and scaled energy value calculations based on the estimated moment and corner frequency values will be presented, as well as focal mechanisms for the largest events with adequate station coverage. We will also use a multi-station matched-filter approach to detect additional uncataloged earthquakes on continuous waveforms for a period of two months after the mainshock. Using the results of the matched-filter approach, we will present the aftershock magnitude distribution and locations. The results of our detection and location calculations will be compared to reported fracking parameters, such as fluid injection pressure and duration, to determine their correlation with the spatial and temporal distribution of aftershocks. The objective of this study is to relate operational parameters to earthquake occurrence in order to help to develop procedures to understand the mechanisms responsible for fracking induced earthquakes, their relation to the maximum induced magnitude, and to reduce potential hazards of anthropogenically induced seismic activity.

  9. Metrics for comparing dynamic earthquake rupture simulations

    Science.gov (United States)

    Barall, Michael; Harris, Ruth A.

    2014-01-01

    Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.

  10. Earthquake induced landslide hazard: a multidisciplinary field observatory in the Marmara SUPERSITE

    Science.gov (United States)

    Bigarré, Pascal

    2014-05-01

    Earthquake-triggered landslides have an increasing disastrous impact in seismic regions due to the fast growing urbanization and infrastructures. Just considering disasters from the last fifteen years, among which the 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2011 Tohoku earthquake, these events generated tens of thousands of coseismic landslides. Those resulted in amazing death toll and considerable damages, affecting the regional landscape including its hydrological main features. Despite a strong impetus in research during past decades, knowledge on those geohazards is still fragmentary, while databases of high quality observational data are lacking. These phenomena call for further collaborative researches aiming eventually to enhance preparedness and crisis management. As one of the three SUPERSITE concept FP7 projects dealing with long term high level monitoring of major natural hazards at the European level, the MARSITE project gathers research groups in a comprehensive monitoring activity developed in the Sea of Marmara Region, one of the most densely populated parts of Europe and rated at high seismic risk level since the 1999 Izmit and Duzce devastating earthquakes. Besides the seismic threat, landslides in Turkey and in this region constitute an important source of loss. The 1999 Earthquake caused extensive landslides while tsunami effects were observed during the post-event surveys in several places along the coasts of the Izmit bay. The 6th Work Package of MARSITE project gathers 9 research groups to study earthquake-induced landslides focusing on two sub-regional areas of high interest. First, the Cekmece-Avcilar peninsula, located westwards of Istanbul, is a highly urbanized concentrated landslide prone area, showing high susceptibility to both rainfalls while affected by very significant seismic site effects. Second, the off-shore entrance of the Izmit Gulf, close to the termination of the surface rupture of the 1999 earthquake

  11. Prospect of shale gas recovery enhancement by oxidation-induced rock burst

    Directory of Open Access Journals (Sweden)

    Lijun You

    2017-11-01

    Full Text Available By horizontal well multi-staged fracturing technology, shale rocks can be broken to form fracture networks via hydraulic force and increase the production rate of shale gas wells. Nonetheless, the fracturing stimulation effect may be offset by the water phase trapping damage caused by water retention. In this paper, a technique in transferring the negative factor of fracturing fluid retention into a positive factor of changing the gas existence state and facilitating shale cracking was discussed using the easy oxidation characteristics of organic matter, pyrite and other minerals in shale rocks. Furthermore, the prospect of this technique in tackling the challenges of large retention volume of hydraulic fracturing fluid in shale gas reservoirs, high reservoir damage risks, sharp production decline rate of gas wells and low gas recovery, was analyzed. The organic matter and pyrite in shale rocks can produce a large number of dissolved pores and seams to improve the gas deliverability of the matrix pore throats to the fracture systems. Meanwhile, in the oxidation process, released heat and increased pore pressure will make shale rock burst, inducing expansion and extension of shale micro-fractures, increasing the drainage area and shortening the gas flowing path in matrix, and ultimately, removing reservoir damage and improving gas recovery. To sum up, the technique discussed in the paper can be used to “break” shale rocks via hydraulic force and to “burst” shale rocks via chemical oxidation by adding oxidizing fluid to the hydraulic fracturing fluid. It can thus be concluded that this method can be a favorable supplementation for the conventional hydraulic fracturing of shale gas reservoirs. It has a broad application future in terms of reducing costs and increasing profits, maintaining plateau shale gas production and improving shale gas recovery.

  12. Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir

    Science.gov (United States)

    Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2014-12-01

    In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar

  13. Nature of Pre-Earthquake Phenomena and their Effects on Living Organisms.

    Science.gov (United States)

    Freund, Friedemann; Stolc, Viktor

    2013-06-06

    Earthquakes occur when tectonic stresses build up deep in the Earth before catastrophic rupture. During the build-up of stress, processes that occur in the crustal rocks lead to the activation of highly mobile electronic charge carriers. These charge carriers are able to flow out of the stressed rock volume into surrounding rocks. Such outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, it will lead to short EM pulses. If the outflow is continuous, the currents may fluctuate, generating EM emissions over a wide frequency range. Only ultralow and extremely low frequency (ULF/ELF) waves travel through rock and can reach the Earth surface. The outflowing charge carriers are (i) positively charged and (ii) highly oxidizing. When they arrive at the Earth surface from below, they build up microscopic electric fields, strong enough to field-ionize air molecules. As a result, the air above the epicentral region of an impending major earthquake often becomes laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans. In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals. When the charge carriers flow into water, they oxidize water to hydrogen peroxide. This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals.

  14. Ambient vibrations of unstable rock slopes - insights from numerical modeling

    Science.gov (United States)

    Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat

    2017-04-01

    The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.

  15. Precursory slow-slip loaded the 2009 L'Aquila earthquake sequence

    Science.gov (United States)

    Borghi, A.; Aoudia, A.; Javed, F.; Barzaghi, R.

    2016-05-01

    Slow-slip events (SSEs) are common at subduction zone faults where large mega earthquakes occur. We report here that one of the best-recorded moderate size continental earthquake, the 2009 April 6 moment magnitude (Mw) 6.3 L'Aquila (Italy) earthquake, was preceded by a 5.9 Mw SSE that originated from the decollement beneath the reactivated normal faulting system. The SSE is identified from a rigorous analysis of continuous GPS stations and occurred on the 12 February and lasted for almost two weeks. It coincided with a burst in the foreshock activity with small repeating earthquakes migrating towards the main-shock hypocentre as well as with a change in the elastic properties of rocks in the fault region. The SSE has caused substantial stress loading at seismogenic depths where the magnitude 4.0 foreshock and Mw 6.3 main shock nucleated. This stress loading is also spatially correlated with the lateral extent of the aftershock sequence.

  16. Studies on Fourier amplitude spectra of accelerograms recorded on rock sites

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Rao, K.S.

    1990-01-01

    Fourier spectra of 54 earthquake accelerograms recorded on rock sites in the U.S.A. have been analysed. These could be used in generation of synthetic accelerogramms for seismic design. (author). 19 figs., 1 tab., 1 appendix, 19 re fs

  17. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar

    2018-04-17

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  18. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon

    2018-01-01

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  19. Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals

    Science.gov (United States)

    Grant, Rachel A.; Halliday, Tim; Balderer, Werner P.; Leuenberger, Fanny; Newcomer, Michelle; Cyr, Gary; Freund, Friedemann T.

    2011-01-01

    Prior to major earthquakes many changes in the environment have been documented. Though often subtle and fleeting, these changes are noticeable at the land surface, in water, in the air, and in the ionosphere. Key to understanding these diverse pre-earthquake phenomena has been the discovery that, when tectonic stresses build up in the Earth’s crust, highly mobile electronic charge carriers are activated. These charge carriers are defect electrons on the oxygen anion sublattice of silicate minerals, known as positive holes, chemically equivalent to O− in a matrix of O2−. They are remarkable inasmuch as they can flow out of the stressed rock volume and spread into the surrounding unstressed rocks. Travelling fast and far the positive holes cause a range of follow-on reactions when they arrive at the Earth’s surface, where they cause air ionization, injecting massive amounts of primarily positive air ions into the lower atmosphere. When they arrive at the rock-water interface, they act as •O radicals, oxidizing water to hydrogen peroxide. Other reactions at the rock-water interface include the oxidation or partial oxidation of dissolved organic compounds, leading to changes of their fluorescence spectra. Some compounds thus formed may be irritants or toxins to certain species of animals. Common toads, Bufo bufo, were observed to exhibit a highly unusual behavior prior to a M6.3 earthquake that hit L’Aquila, Italy, on April 06, 2009: a few days before the seismic event the toads suddenly disappeared from their breeding site in a small lake about 75 km from the epicenter and did not return until after the aftershock series. In this paper we discuss potential changes in groundwater chemistry prior to seismic events and their possible effects on animals. PMID:21776211

  20. Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals

    Directory of Open Access Journals (Sweden)

    Friedemann T. Freund

    2011-06-01

    Full Text Available Prior to major earthquakes many changes in the environment have been documented. Though often subtle and fleeting, these changes are noticeable at the land surface, in water, in the air, and in the ionosphere. Key to understanding these diverse pre-earthquake phenomena has been the discovery that, when tectonic stresses build up in the Earth’s crust, highly mobile electronic charge carriers are activated. These charge carriers are defect electrons on the oxygen anion sublattice of silicate minerals, known as positive holes, chemically equivalent to O– in a matrix of O2–. They are remarkable inasmuch as they can flow out of the stressed rock volume and spread into the surrounding unstressed rocks. Travelling fast and far the positive holes cause a range of follow-on reactions when they arrive at the Earth’s surface, where they cause air ionization, injecting massive amounts of primarily positive air ions into the lower atmosphere. When they arrive at the rock-water interface, they act as •O radicals, oxidizing water to hydrogen peroxide. Other reactions at the rock-water interface include the oxidation or partial oxidation of dissolved organic compounds, leading to changes of their fluorescence spectra. Some compounds thus formed may be irritants or toxins to certain species of animals. Common toads, Bufo bufo, were observed to exhibit a highly unusual behavior prior to a M6.3 earthquake that hit L’Aquila, Italy, on April 06, 2009: a few days before the seismic event the toads suddenly disappeared from their breeding site in a small lake about 75 km from the epicenter and did not return until after the aftershock series. In this paper we discuss potential changes in groundwater chemistry prior to seismic events and their possible effects on animals.

  1. Presentation and analysis of a worldwide database of earthquake-induced landslide inventories

    Science.gov (United States)

    Tanyas, Hakan; van Westen, Cees J.; Allstadt, Kate E.; Nowicki Jessee, M. Anna; Gorum, Tolga; Jibson, Randall W.; Godt, Jonathan W.; Sato, Hiroshi P.; Schmitt, Robert G.; Marc, Odin; Hovius, Niels

    2017-01-01

    Earthquake-induced landslide (EQIL) inventories are essential tools to extend our knowledge of the relationship between earthquakes and the landslides they can trigger. Regrettably, such inventories are difficult to generate and therefore scarce, and the available ones differ in terms of their quality and level of completeness. Moreover, access to existing EQIL inventories is currently difficult because there is no centralized database. To address these issues, we compiled EQIL inventories from around the globe based on an extensive literature study. The database contains information on 363 landslide-triggering earthquakes and includes 66 digital landslide inventories. To make these data openly available, we created a repository to host the digital inventories that we have permission to redistribute through the U.S. Geological Survey ScienceBase platform. It can grow over time as more authors contribute their inventories. We analyze the distribution of EQIL events by time period and location, more specifically breaking down the distribution by continent, country, and mountain region. Additionally, we analyze frequency distributions of EQIL characteristics, such as the approximate area affected by landslides, total number of landslides, maximum distance from fault rupture zone, and distance from epicenter when the fault plane location is unknown. For the available digital EQIL inventories, we examine the underlying characteristics of landslide size, topographic slope, roughness, local relief, distance to streams, peak ground acceleration, peak ground velocity, and Modified Mercalli Intensity. Also, we present an evaluation system to help users assess the suitability of the available inventories for different types of EQIL studies and model development.

  2. A study on rock mass behaviour induced by shaft sinking in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tsusaka, Kimikazu; Tokiwa, Tetsuya; Inagaki, Daisuke; Hatsuyama, Yoshihiro; Koike, Masashi; Ijiri, Yuji

    2012-01-01

    Japan Atomic Energy Agency has been excavating three deep shafts through soft sedimentary rock in the Horonobe Underground Research Laboratory. In this paper, the authors discussed rock mass behaviour induced by a 6.5 m diameter shaft sinking. They conducted geological mapping in an excavation face and boreholes digged around the shaft wall, field measurements such as convergence measurements and monitoring of rock displacements using multi-interval borehole extensometers around a shaft at around 160 m and 220 m in depths, and three-dimensional numerical analysis which models the shaft excavation procedure such as timing of installation of support elements and setting and removal of a concrete form. As a result, it was clarified that remarkably large compressive strains occurred within about 1 m into the shaft wall in a radial direction since the rock mass behaviour was controlled by the concrete lining and that the behaviour would predominantly be induced by the fractures closing which opened significantly and propagated during excavation steps before the installation of a concrete lining and the directions where the strains occurred heavily depended on the fracture orientation around the shaft. (author)

  3. Sealing of rock joints by induced calcite precipitation. A case study from Bergeforsen hydro power plant

    International Nuclear Information System (INIS)

    Hakami, E.; Qvarfort, U.; Ekstav, A.

    1991-01-01

    The possibilities of sealing rock fractures by injecting water saturated with calcite solution, and hereby inducing a calcite precipitation inside the fracture, is investigated. The way of reaction and the amount of calcite precipitation will depend on the saturation of calcium carbonate in the water, the temperature, the pH and the CO 2 -pressure. There is experience of lime-saturated water injection in the rock foundation below the dam at Bergeforsens power plant (1955-1968). It was observed that the consumption of injected lime water decreased with time. A possible reason to the decrease in lime water consumption is that calcite has precipitated such that the permeability of the rock in general is lowered. Another explanation to this could be that calcite precipitation is concentrated to the fractures surrounding the injection holes, thus preventing the lime water from penetrating further into the rock. It is recommended that further studies of the fracture fillings in drill cores from Bergeforsen is performed. The aim of such study should be to determine the extent of induced calcite precipitation and to investigate its chemical and physical properties. (authors)

  4. Retrospective stress-forecasting of earthquakes

    Science.gov (United States)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  5. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanlei [Materials; amp, Department; NorthEast; Omenya, Fredrick [NorthEast; Yan, Pengfei [Environmental; Luo, Langli [Environmental; Whittingham, M. Stanley [NorthEast; Wang, Chongmin [Environmental; Zhou, Guangwen [Materials; amp, Department; NorthEast

    2017-10-20

    For the first time, the (003) cracking is observed and determined to be the major cracking mechanism for the primary particles of Ni-rich layered dioxides as the positive electrode for Li-ion batteries. Using transmission electron microscopy techniques, here we show that the propagation and fracturing of platelet-like rock-salt phase along the (003) plane of the layered oxide are the leading cause for the cracking of primary particles. The fracturing of the rock-salt platelet is induced by the stress discontinuity between the parent layered oxide and the rock-salt phase. The high nickel content is considered to be the key factor for the formation of the rock-salt platelet and thus the (003) cracking. The (003)-type cracking can be a major factor for the structural degradation and associated capacity fade of the layered positive electrode.

  7. Heat induced fracturing of rock in an existing uniaxial stress field

    International Nuclear Information System (INIS)

    Mathis, J.; Stephansson, O.; Bjarnason, B.; Hakami, H.; Herdocia, A.; Mattila, U.; Singh, U.

    1986-01-01

    This study was initiated under the premise that it may be possible to determine the state of stress in the earth's crust by heat induced fracturing of the rock surrounding a borehole. The theory involved is superficially simple, involving the superposition of the stress field around a borehole due to the existing virgin stresses and the uniform stress field of thermally loaded rock as induced by a heater. Since the heat stress field is uniform, varying only in magnitude and gradient as a function of heater input, fracturing should be controlled by the non-uniform virgin stress field. To determine if the method was, in fact, feasible, a series of laboratory test were conducted. These tests consisted of physically loading center drilled cubes of rock, 0.3 m on a side, uniaxially from 0 to 25 MPa. The blocks were then thermally loaded with a nominally rated 3.7 kW heater until failure occurred. Results from these laboratory tests were then compared to analytical studies of the problem, i.e., finite element and discrete theoretical analysis. Overall, results were such that the method is likely eliminated as a stress measurement technique. The immediate development of a thermal compressive zone on the borehole wall overlaps the tensile zone created by the uniaxial stress field, forcing the failure is thus controlled largely by the power input of the heater, being retarded by the small compressive stresses genrated by the uniaxial stress field. This small retardation effect is of such low magnitude that the retardation effect is of such low magnitude that the fracture time is relatively insensitive to the local virgin stress field. (authors)

  8. Modelling end-glacial earthquakes at Olkiluoto. Expansion of the 2010 study

    Energy Technology Data Exchange (ETDEWEB)

    Faelth, B.; Hoekmark, H. [Clay Technology AB, Lund (Sweden)

    2012-02-15

    The present report is an extension of Posiva working report 2011-13: 'Modelling end-glacial earthquakes at Olkiluoto'. The modelling methodology and most parameter values are identical to those used in that report. The main objective is the same: to obtain conservative estimates of fracture shear displacements induced by end-glacial earthquakes occurring on verified deformation zones at the Olkiluoto site. The remotely activated rock fractures (with their fracture centres positioned at different distances around the potential earthquake fault being considered) are called 'target fractures'. As in the previous report, all target fractures were assumed to be perfectly planar and circular with a radius of 75 m. Compared to the previous study, the result catalogue is more complete. One additional deformation zone (i.e. potential earthquake fault) has been included (BFZ039), whereas one deformation zone that appeared to produce only insignificant target fracture disturbances (BFZ214) is omitted. For each of the three zones considered here (BFZ021, BFZ039, and BFZ100), four models, each with a different orientation of the target fractures surrounding the fault, are analysed. Three of these four sets were included in the previous report, however not as systematically as here where each of the four fracture orientations is tried in all fracture positions. As in the previous study, seismic moments and moment magnitudes are as high as reasonably possible, given the sizes and orientations of the zones, i.e., the earthquakes release the largest possible amount of strain energy. The strain energy release is restricted only by a low residual fault shear strength applied to suppress post-rupture fault oscillations. Moment magnitudes are: 5.8 (BFZ021), 3.9 (BFZ039) and 4.3 (BFZ100). For the BFZ100 model, the sensitivity of the results to variations in fracture shear strength is checked. The BFZ021 and BFZ100 models are analyzed for two additional in situ stress

  9. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    Science.gov (United States)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  10. Forced vibration tests of a model foundation on rock ground

    International Nuclear Information System (INIS)

    Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.

    1983-01-01

    The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)

  11. Spectral Shapes for accelerograms recorded at rock sites

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Muralidharan, N.; Sharma, R.D.

    1986-01-01

    Earthquake accelerograms recorded on rock sites have been analysed to develop site-specific response spectra for use in aseismic design. Normalized pseudo absolute acceleration spectra for various values of damping, pertinent to nuclear power plant design in particular are presented. Various ground motion parameters, viz. peak displacement, velocity acceleration (including v/a, ad/v 2 and the ratios of the three orthogonal components) for fifty four accelerograms are examined through motion time histories to be used in structural response analysis. The analysis presented in this paper aims at specifying site specific response spectra for earthquake resistant design of structures and generation of spectrum compatible accelerograms. The salient features of the data set have been discussed. (author)

  12. Earthquakes in Switzerland and surrounding regions during 2006

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.; Deichmann, N.; Braunmiller, J.; Clinton, J.; Husen, S.; Faeh, D.; Giardini, D.; Kaestli, P.; Kradolfer, U.; Wiemer, S

    2007-12-15

    This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2006. During this period, 572 earthquakes and 91 quarry blasts were detected and located in the region under consideration. Of these earthquakes, two occurred in conjunction with the construction of the new Gotthard railway tunnel and 165 were induced artificially by the stimulation of a proposed geothermal reservoir beneath the city of Basel. With 20 events with {mu}{sub {iota}} {>=} 2.5, five of which were artificially induced, the seismic activity in the year 2006 was far below the average over the previous 31 years. Nevertheless, six events were felt by the public, most prominently the strongest of the induced Basel events ({mu}{sub {iota}} 3.4), which caused some non-structural building damage. Noteworthy are also the two earthquakes near Cortaillod ({mu}{sub {iota}} 3.2), on the shore of Lake Neuchatel, and in Val Mora ({mu}{sub {iota}} 3.5), between the Engadin and Val Muestair, as well as the 42 aftershocks of the {mu}{sub {iota}} 4.9 Vallorcine earthquake, between Martigny and Chamonix, of September 2005. (author)

  13. Earthquakes in Switzerland and surrounding regions during 2006

    International Nuclear Information System (INIS)

    Baer, M.; Deichmann, N.; Braunmiller, J.; Clinton, J.; Husen, S.; Faeh, D.; Giardini, D.; Kaestli, P.; Kradolfer, U.; Wiemer, S.

    2007-01-01

    This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2006. During this period, 572 earthquakes and 91 quarry blasts were detected and located in the region under consideration. Of these earthquakes, two occurred in conjunction with the construction of the new Gotthard railway tunnel and 165 were induced artificially by the stimulation of a proposed geothermal reservoir beneath the city of Basel. With 20 events with Μ ι ≥ 2.5, five of which were artificially induced, the seismic activity in the year 2006 was far below the average over the previous 31 years. Nevertheless, six events were felt by the public, most prominently the strongest of the induced Basel events (Μ ι 3.4), which caused some non-structural building damage. Noteworthy are also the two earthquakes near Cortaillod (Μ ι 3.2), on the shore of Lake Neuchatel, and in Val Mora (Μ ι 3.5), between the Engadin and Val Muestair, as well as the 42 aftershocks of the Μ ι 4.9 Vallorcine earthquake, between Martigny and Chamonix, of September 2005. (author)

  14. Automated radon-thoron monitoring for earthquake prediction research

    International Nuclear Information System (INIS)

    Shapiro, M.H.; Melvin, J.D.; Copping, N.A.; Tombrello, T.A.; Whitcomb, J.H.

    1980-01-01

    This paper describes an automated instrument for earthquake prediction research which monitors the emission of radon ( 222 Rn) and thoron ( 220 Rn) from rock. The instrument uses aerosol filtration techniques and beta counting to determine radon and thoron levels. Data from the first year of operation of a field prototype suggest an annual cycle in the radon level at the site which is related to thermoelastic strains in the crust. Two anomalous increases in the radon level of short duration have been observed during the first year of operation. One anomaly appears to have been a precursor for a nearby earthquake (2.8 magnitude, Richter scale), and the other may have been associated with changing hydrological conditions resulting from heavy rainfall

  15. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  16. Rock Cycle Sagas: The STRATegy COLUMN for Precollege Science Teachers.

    Science.gov (United States)

    Metzger, Ellen Pletcher

    1994-01-01

    Reviews The Best of BAESI: Earth Science Activities & Recommended Resources from the Bay Area Earth Science Institute. The Best of BAESI is divided into two parts. Part I contains 19 classroom activities on topographic maps, rocks and minerals, earthquakes, volcanoes, and plate tectonics. Part II describes resources and identifies government…

  17. Lichenometric age measured on rock-falls related to historic seismicity affecting Lorca and its surroundings (Murcia, SE Spain); Datacion mediante liquenometria de los desprendimientos rocosos asociados a la sismicidad historica en Lorca (Murcia, SE de Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Martin-Gonzalez, F.; Martinez-Diaz, J. J.; Rodriguez-Pascua, M. A.

    2012-11-01

    During the earthquake at Lorca (Murcia, SE Spain) in 2011 (5.2 Mw, 4km depth) several rock-falls occurred, mobilizing an estimated volume of close to 2,000 m3. All these rock-falls took place within the Estancias and La Tercia mountain ranges, the topography of which is composed of Tortonian calcarenitic sandstones with steep scarps more than 30 m in height. We have conducted a lichenometric study to obtain the age of the ancient rock-falls within the Las Estancias Range. We have assumed an annual growth rate of 0.24 mm for lichen species classified as calcicolous and related to warm climatic conditions. Our aim was to corroborate the hypothesis that seismic events triggered these massive rock-falls. The city of Lorca had experienced two nearfield historic earthquakes (1674 EMS VIII and 1818 EMS VI) and one far-field tremor during the great Lisbon earthquake in 1755 (EMS VI). Results obtained here indicate that the earthquakes of 1674 and 2011 were quite similar, except that the 1674 one mobilised a greater quantity and twenty times the volume of blocks mobilised during the 2011 earthquake. Therefore, we conclude that the size of the earthquake of 1674 was possibly between 6.0 < M < 6.8, assuming similar focal and seismotectonic conditions to those of the instrumentally measured earthquake of 2011. (Author) 34 refs.

  18. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  19. Ground-Motion Simulations of the 2008 Ms8.0 Wenchuan, China, Earthquake Using Empirical Green's Function Method

    Science.gov (United States)

    Zhang, W.; Zhang, Y.; Yao, X.

    2010-12-01

    On May 12, 2008, a huge earthquake with magnitude Ms8.0 occurred in the Wenhuan, Sichuan Province of China. This event was the most devastating earthquake in the mainland of China since the 1976 M7.8 Tangshan earthquake. It resulted in tremendous losses of life and property. There were about 90,000 persons killed. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and “quake lakes” which formed by landslide-induced reservoirs. This earthquake occurred along the Longmenshan fault, as the result of motion on a northeast striking reverse fault or thrust fault on the northwestern margin of the Sichuan Basin. The earthquake's epicenter and focal-mechanism are consistent with it having occurred as the result of movement on the Longmenshan fault or a tectonically related fault. The earthquake reflects tectonic stresses resulting from the convergence of crustal material slowly moving from the high Tibetan Plateau, to the west, against strong crust underlying the Sichuan Basin and southeastern China. In this study, we simulate the near-field strong ground motions of this great event based on the empirical Green’s function method (EGF). Referring to the published inversion source models, at first, we assume that there are three asperities on the rupture area and choose three different small events as the EGFs. Then, we identify the parameters of the source model using a genetic algorithm (GA). We calculate the synthetic waveforms based on the obtained source model and compare with the observed records. Our result shows that for most of the synthetic waveforms agree very well with the observed ones. The result proves the validity and the stability of the method. Finally, we forward the near-field strong ground motions near the source region and try to explain the damage distribution caused by the great earthquake.

  20. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  1. Composite mechanism of the Büyükçekmece (Turkey) landslide as conditioning factor for earthquake-induced mobility

    Science.gov (United States)

    Martino, S.; Lenti, L.; Bourdeau, C.

    2018-05-01

    Earthquake-induced displacements of landslides are significantly conditioned by their 1D and 2D interactions with seismic waves, as currently proven by several studies. Nevertheless, the role of a more complex geological setting, responsible for a heterogeneous composition of the landslide mass, can significantly influence these phenomena. The heterogeneity can also depend on multiple phases of the landslide activity, responsible for dislodging the whole landslide mass into submasses, each one delimited by secondary scarps and characterized by individual mobility. Hence, in the framework of the European project "MARSite - Marmara Supersite: new directions in seismic hazard assessment through focused Earth observation in the Marmara Supersite", the Büyükçekmece landslide, located approximately 30 km W of Istanbul (Turkey), was considered as a case study. This landslide involves a large mass of approximately 140 million cubic metres, composed of silty clays, tuffs and sands ascribable to Cenozoic geological formations. The landslide is characterized by multiple phases of activity with a composite rototranslational mechanism, which created seven submasses delimited by secondary scarps. The scheme of water circulation in the landslide slope, based on piezometer data as well as on a geological survey, accounts for two flow nets: the first, shallower flow net is located in superficial sandy deposits, outcropping in the dislodged landslide submasses; the second, deeper flow net is located in the main sliding surface. A slope stability analysis following a global limit equilibrium approach provided a distribution of the pseudostatic coefficient vs. pore water pressure. The results show that the stability of the landslide submasses increases moving downslope, and reactivations are expected in the case of earthquakes with a return period between 475 and 2475 yr, according to the local seismic hazard. Dynamic numerical modelling was also performed using the stress

  2. Novel determination of radon-222 velocity in deep subsurface rocks, and the feasibility to using radon as an earthquake precursor

    Science.gov (United States)

    Zafrir, Hovav; Benhorin, Yochy; Malik, Uri; Chemo, Chaim

    2016-04-01

    An enhanced radon monitoring system was designed in order to study shallow versus deep subsurface processes affecting the appearance of radon anomalies. The method is based on the assumption that the climatic influence is limited since its energy decreases with the decrease in thickness of the geological cover whereby its effect is reduced to a negligible value at depth. Hence, lowering gamma and alpha detectors into deep boreholes and monitoring their temporal variations relative to a reference couple at shallow depths of 10-40 m eliminates the ambient thermal and pressure-induced contribution from the total radon time series. It allows highlighting the residual portion of the radon signals that might be associated with the geodynamic processes. The primary technological key is the higher sensitivity of the gamma detectors - in comparison to the solid-state alpha detectors, which are also suitable for threading into narrow boreholes in parallel to the narrow gamma detector (Zafrir et al., 2013*). The unique achievements of the novel system that was installed at the Sde Eliezer site close to the Hula Valley western border fault (HWBF) in northern Israel are: a) Determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m per hour on average; b) Distinguishing between the diurnal periodical effect of the ambient temperature and the semi-diurnal effect of the ambient pressure on the radon temporal spectrum; c) Identification of a radon random pre-seismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone. * Zafrir, H., Barbosa, S.M. and Malik, U., 2013. Differentiation between the effect of temperature and pressure on radon within the subsurface geological media, Radiat. Meas., 49, 39-56. doi:10.1016/j.radmeas.2012.11.019.

  3. Overturning behaviour of nuclear power plant structures during earthquakes

    International Nuclear Information System (INIS)

    Dalal, J.S.; Perumalswami, P.R.

    1977-01-01

    Nuclear power plant structures are designed to withstand severe postulated seismic forces. Structures subjected to such forces may be found to ''overturn'', if the factor of safety is computed in the traditional way, treating these forces as static. This study considers the transient nature of the problem and draws distinction between rocking, tipping and overturning. Responses of typical nuclear power plant structures to earthquake motions are used to assess their overturning potential more realistically. Structures founded on both rock and soil are considered. It is demonstrated that the traditional factor of safety, when smaller than unity, indicates only minimal base rotations and not necessarily overturning. (auth.)

  4. Results of Monitoring at Olkiluoto in 2010. Rock Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, M [ed.; Siren, T

    2011-12-15

    The rock mechanical monitoring at Olkiluoto concentrates on the assessment of potential tectonic movements and stability of the bedrock. The construction of ONKALO is not expected to induce large-scale movements of the rock blocks or affect the rate of isostatic uplift but the evaluation of any tectonic events is important for the safety assessment. The monitoring consists of seismic measurements, GPS measurements and precise levelling campaigns at Olkiluoto and vicinity and extensometer and convergence measurements carried out in ONKALO. Posiva established a local seismic network of six stations on the island of Olkiluoto in 2002. After that the number of seismic stations has increased gradually. In 2010 the permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2010.

  5. Results of Monitoring at Olkiluoto in 2010. Rock Mechanics

    International Nuclear Information System (INIS)

    Lahti, M.; Siren, T.

    2011-12-01

    The rock mechanical monitoring at Olkiluoto concentrates on the assessment of potential tectonic movements and stability of the bedrock. The construction of ONKALO is not expected to induce large-scale movements of the rock blocks or affect the rate of isostatic uplift but the evaluation of any tectonic events is important for the safety assessment. The monitoring consists of seismic measurements, GPS measurements and precise levelling campaigns at Olkiluoto and vicinity and extensometer and convergence measurements carried out in ONKALO. Posiva established a local seismic network of six stations on the island of Olkiluoto in 2002. After that the number of seismic stations has increased gradually. In 2010 the permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2010

  6. Characteristics of a Sensitive Well Showing Pre-Earthquake Water-Level Changes

    Science.gov (United States)

    King, Chi-Yu

    2018-04-01

    Water-level data recorded at a sensitive well next to a fault in central Japan between 1989 and 1998 showed many coseismic water-level drops and a large (60 cm) and long (6-month) pre-earthquake drop before a rare local earthquake of magnitude 5.8 on 17 March 1997, as well as 5 smaller pre-earthquake drops during a 7-year period prior to this earthquake. The pre-earthquake changes were previously attributed to leakage through the fault-gouge zone caused by small but broad-scaled crustal-stress increments. These increments now seem to be induced by some large slow-slip events. The coseismic changes are attributed to seismic shaking-induced fissures in the adjacent aquitards, in addition to leakage through the fault. The well's high-sensitivity is attributed to its tapping a highly permeable aquifer, which is connected to the fractured side of the fault, and its near-critical condition for leakage, especially during the 7 years before the magnitude 5.8 earthquake.

  7. Changes in groundwater chemistry before two consecutive earthquakes in Iceland

    KAUST Repository

    Skelton, Alasdair

    2014-09-21

    Groundwater chemistry has been observed to change before earthquakes and is proposed as a precursor signal. Such changes include variations in radon count rates1, 2, concentrations of dissolved elements3, 4, 5 and stable isotope ratios4, 5. Changes in seismic wave velocities6, water levels in boreholes7, micro-seismicity8 and shear wave splitting9 are also thought to precede earthquakes. Precursor activity has been attributed to expansion of rock volume7, 10, 11. However, most studies of precursory phenomena lack sufficient data to rule out other explanations unrelated to earthquakes12. For example, reproducibility of a precursor signal has seldom been shown and few precursors have been evaluated statistically. Here we analyse the stable isotope ratios and dissolved element concentrations of groundwater taken from a borehole in northern Iceland between 2008 and 2013. We find that the chemistry of the groundwater changed four to six months before two greater than magnitude 5 earthquakes that occurred in October 2012 and April 2013. Statistical analyses indicate that the changes in groundwater chemistry were associated with the earthquakes. We suggest that the changes were caused by crustal dilation associated with stress build-up before each earthquake, which caused different groundwater components to mix. Although the changes we detect are specific for the site in Iceland, we infer that similar processes may be active elsewhere, and that groundwater chemistry is a promising target for future studies on the predictability of earthquakes.

  8. Changes in groundwater chemistry before two consecutive earthquakes in Iceland

    KAUST Repository

    Skelton, Alasdair; André n, Margareta; Kristmannsdó ttir, Hrefna; Stockmann, Gabrielle; Mö rth, Carl-Magnus; Sveinbjö rnsdó ttir, Á rny; Jonsson, Sigurjon; Sturkell, Erik; Guð rú nardó ttir, Helga Rakel; Hjartarson, Hreinn; Siegmund, Heike; Kockum, Ingrid

    2014-01-01

    Groundwater chemistry has been observed to change before earthquakes and is proposed as a precursor signal. Such changes include variations in radon count rates1, 2, concentrations of dissolved elements3, 4, 5 and stable isotope ratios4, 5. Changes in seismic wave velocities6, water levels in boreholes7, micro-seismicity8 and shear wave splitting9 are also thought to precede earthquakes. Precursor activity has been attributed to expansion of rock volume7, 10, 11. However, most studies of precursory phenomena lack sufficient data to rule out other explanations unrelated to earthquakes12. For example, reproducibility of a precursor signal has seldom been shown and few precursors have been evaluated statistically. Here we analyse the stable isotope ratios and dissolved element concentrations of groundwater taken from a borehole in northern Iceland between 2008 and 2013. We find that the chemistry of the groundwater changed four to six months before two greater than magnitude 5 earthquakes that occurred in October 2012 and April 2013. Statistical analyses indicate that the changes in groundwater chemistry were associated with the earthquakes. We suggest that the changes were caused by crustal dilation associated with stress build-up before each earthquake, which caused different groundwater components to mix. Although the changes we detect are specific for the site in Iceland, we infer that similar processes may be active elsewhere, and that groundwater chemistry is a promising target for future studies on the predictability of earthquakes.

  9. Cosmogenic Nuclide Exposure Dating of the Tiltill Rock Avalanche, Yosemite National Park

    Science.gov (United States)

    Ford, K. R.; Pluhar, C. J.; Stone, J. O.; Stock, G. M.; Zimmerman, S. R.

    2013-12-01

    Yosemite National Park serves as an excellent natural laboratory for studying rock falls and rock avalanches because these are the main processes modifying the nearly vertical slopes of this recently glaciated landscape. Mass wasting represents a significant hazard in the region and the database of previous rock falls and other mass wasting events in Yosemite is extensive, dating back to the mid-1800s. However, this record is too short to capture the recurrence characteristics and triggering mechanisms of the very largest events, necessitating studies of the geologic record of mass wasting. Rock falls and rock avalanches are readily dated by cosmogenic nuclide methods due to their instantaneous formation, and results can be tied to triggering events such as seismic activity (e.g. Stock et al., 2009). Here, we apply exposure dating to the Holocene Tiltill rock avalanche north of Hetch Hetchy Reservoir. The deposit comprises what appear to be two separate lobes of rock and debris, yielding a total volume of ~3.1 x 106 m3. Assuming an erosion rate of 0.0006 cm/yr and neglecting snowpack shielding, preliminary data suggest a mean exposure age of 11,000 + 600 year B.P. for both deposits, indicating that they were emplaced in a single event. The age of the Tiltill 'slide' is similar to earthquakes on the Owens Valley Fault between 10,800 + 600 and 10,200 + 200 cal year B.P. (Bacon, 2007) and the White Mountain Fault, ~10,000 cal year B.P. (Reheis, 1996; DePolo, 1989). Given that movement on the Owens Valley fault in 1872 caused a number of rock falls in Yosemite and the coincidence of ages between the Tiltill 'slide' and paleoseismic events, a large earthquake in Eastern Sierra Nevada may have triggered this event. Other trigger events are also possibilities, but only through compilation of a database of large rock avalanches can statistically significant groupings of events begin to demonstrate whether seismic triggering is a dominant process.

  10. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  11. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Qingqiao [Renal Department of Internal Medicine, The Third Hospital of Wuhan (China); Xia, Yuanyu, E-mail: xiayuanyu.wh@gmail.com [Renal Department of Internal Medicine, The Third Hospital of Wuhan (China); Wang, Guan [Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University (China)

    2016-09-02

    As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders.

  12. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway.

    Science.gov (United States)

    Yin, Qingqiao; Xia, Yuanyu; Wang, Guan

    2016-09-02

    As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Is earthquake rate in south Iceland modified by seasonal loading?

    Science.gov (United States)

    Jonsson, S.; Aoki, Y.; Drouin, V.

    2017-12-01

    Several temporarily varying processes have the potential of modifying the rate of earthquakes in the south Iceland seismic zone, one of the two most active seismic zones in Iceland. These include solid earth tides, seasonal meteorological effects and influence from passing weather systems, and variations in snow and glacier loads. In this study we investigate the influence these processes may have on crustal stresses and stressing rates in the seismic zone and assess whether they appear to be influencing the earthquake rate. While historical earthquakes in the south Iceland have preferentially occurred in early summer, this tendency is less clear for small earthquakes. The local earthquake catalogue (going back to 1991, magnitude of completeness M6+ earthquakes, which occurred in June 2000 and May 2008. Standard Reasenberg earthquake declustering or more involved model independent stochastic declustering algorithms are not capable of fully eliminating the aftershocks from the catalogue. We therefore inspected the catalogue for the time period before 2000 and it shows limited seasonal tendency in earthquake occurrence. Our preliminary results show no clear correlation between earthquake rates and short-term stressing variations induced from solid earth tides or passing storms. Seasonal meteorological effects also appear to be too small to influence the earthquake activity. Snow and glacier load variations induce significant vertical motions in the area with peak loading occurring in Spring (April-May) and maximum unloading in Fall (Sept.-Oct.). Early summer occurrence of historical earthquakes therefore correlates with early unloading rather than with the peak unloading or unloading rate, which appears to indicate limited influence of this seasonal process on the earthquake activity.

  14. CRITICAL REVIEW OF THE ARTICLE«MAGNETOPLASTICITY AND THE PHYSICS OF EARTHQUAKES. IS IT POSSIBLE TO PREVENT A CATASTROPHE»

    Directory of Open Access Journals (Sweden)

    Bychkov S.V.

    2017-12-01

    Full Text Available In the magazine [1] an article by A.L. Buchachenko was published, devoted to solving the problem of earthquakes forecasting and preventing in the light of magnetoplasticity phenomenon. According to the author's hypothesis, magnetoplasticity is a possible source of earthquakes, and through this physical phenomenon it is possible to control the course of shocks, weakening their energy to an acceptable level, thereby preventing catastrophic destruction of settlements. In the article reviewed, the magnetoplasticity phenomenon idea originality with reference to the rock mass is noted and at the same time an analysis of this idea weak points is given, resulting from the author following the erroneous hypothesis of geophysicists and seismologists old school. Researchers of the old school believe that earthquakes’ deformation energy gradually, over a long period of time, measured by years and centuries, accumulates in the rock massif in the course of its deformation caused by the Earth plates (blocks movement with subsequent emission of a colossal amount of energy in a short period of time, seconds and minutes. In addition, explaining the essence of the rock massif catastrophic destruction due to the magnetoplasticity phenomenon, the author does not give a convincing source of the magnetic field origin that is necessary for this phenomenon generation, which, in fact, transfers the magnetoplasticity from the alleged source of earthquakes into one of its possible consequences, which agrees very well with the mine rocks deformation explosion hypothesis [2, 5].

  15. Temporal stress changes caused by earthquakes: A review

    Science.gov (United States)

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-01-01

    Earthquakes can change the stress field in the Earth’s lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth’s crust at plate boundaries is “strong” or “weak.” Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  16. ASSESSMENT OF EARTHQUAKE HAZARDS ON WASTE LANDFILLS

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    Earthquake hazards may arise as a result of: (a) transient ground deformation, which is induced due to seismic wave propagation, and (b) permanent ground deformation, which is caused by abrupt fault dislocation. Since the adequate performance of waste landfills after an earthquake is of outmost...... importance, the current study examines the impact of both types of earthquake hazards by performing efficient finite-element analyses. These took also into account the potential slip displacement development along the geosynthetic interfaces of the composite base liner. At first, the development of permanent...

  17. Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

    Directory of Open Access Journals (Sweden)

    Bo Cao

    2017-10-01

    Full Text Available Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combining remote sensing (RS, a geographic information system (GIS, and hydrological modeling. The Tangjiashan dammed lake induced by the Wenchuan earthquake was selected as the case for study. The elevation-versus-reservoir capacity curve was first calculated using the seed-growing algorithm based on digital elevation model (DEM data. The simulated annealing algorithm was applied to train the hydrological modeling parameters according to the historical hydrologic data. Then, the downstream water elevation variational process under different collapse capacity conditions was performed based on the obtained parameters. Finally, the downstream potential impact area was estimated by the highest water elevation values at different hydrologic sections. Results show that a flood with a collapse elevation of at least 680 m will impact the entire downstream region of Beichuan town. We conclude that spatial information technology combined with hydrological modeling can accurately predict and demonstrate the potential impact area with limited data resources. This paper provides a better guide for future immediate responses to dammed lake hazard mitigation.

  18. Temporal variation of soil gas compositions for earthquake surveillance in Taiwan

    International Nuclear Information System (INIS)

    Walia, Vivek; Yang, Tsanyao Frank; Lin, Shih-Jung; Kumar, Arvind; Fu, Ching-Chou; Chiu, Jun-Ming; Chang, Hsaio-Hsien; Wen, Kuo-Liang; Chen, Cheng-Hong

    2013-01-01

    The present study is proposed to investigate temporal variations of soil–gas composition in the vicinity of different fault zones in Taiwan. To carry out the investigations, variations of soil–gases compositions were measured at continuous earthquake monitoring stations along Hsincheng and Hsinhua faults in Hsinchu and Tainan areas, respectively. Before selecting a monitoring site, the occurrence of deeper gas emanation was investigated by the soil–gas surveys and followed by continuous monitoring of some selected sites with respect to tectonic activity to check the sensitivity of the sites. Based on the results of long term geochemical monitoring at the established monitoring stations we can divide the studied area in two different tectonic zones. We proposed tectonic based model for earthquake forecasting in Taiwan and tested it for some big earthquakes occurred during observation period i.e. 2009–2010. Based on the anomalous signatures from particular monitoring stations we are in a state to identify the area for impending earthquakes of magnitude ≥5 and we have tested it for some earthquakes which rocked the country during that period. It can be concluded from above results that the stress/strain transmission for a particular earthquake is hindered by different tectonic settings of the region under study. - Highlights: ► Variations of soil–gases composition is studied at two different faults of Taiwan. ► Tectonic based model for earthquake forecasting in Taiwan was proposed and tested. ► Selection criteria to identify threshold earthquakes have been defined. ► Stress/strain transmission for earthquake may be hindered by tectonic settings

  19. DEVELOPMENT OF USER-FRIENDLY SIMULATION SYSTEM OF EARTHQUAKE INDUCED URBAN SPREADING FIRE

    Science.gov (United States)

    Tsujihara, Osamu; Gawa, Hidemi; Hayashi, Hirofumi

    In the simulation of earthquake induced urban spreading fire, the produce of the analytical model of the target area is required as well as the analysis of spreading fire and the presentati on of the results. In order to promote the use of the simulation, it is important that the simulation system is non-intrusive and the analysis results can be demonstrated by the realistic presentation. In this study, the simulation system is developed based on the Petri-net algorithm, in which the easy operation can be realized in the modeling of the target area of the simulation through the presentation of analytical results by realistic 3-D animation.

  20. Thermal alteration of pyrite to pyrrhotite during earthquakes : New evidence of seismic slip in the rock record

    NARCIS (Netherlands)

    Yang, Tao; Dekkers, Mark J.; Chen, Jianye

    Seismic slip zones convey important information on earthquake energy dissipation and rupture processes. However, geological records of earthquakes along exhumed faults remain scarce. They can be traced with a variety of methods that establish the frictional heating of seismic slip, although each has

  1. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes

    NARCIS (Netherlands)

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio

    2015-01-01

    Rupture fronts can cause fault displacement, reaching speeds up to several ms-1 within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in

  2. Seismicity Pattern Changes before the M = 4.8 Aeolian Archipelago (Italy Earthquake of August 16, 2010

    Directory of Open Access Journals (Sweden)

    Salvatore Gambino

    2014-01-01

    Full Text Available We investigated the seismicity patterns associated with an M=4.8 earthquake recorded in the Aeolian Archipelago on 16, August, 2010, by means of the region-time-length (RTL algorithm. This earthquake triggered landslides at Lipari; a rock fall on the flanks of the Vulcano, Lipari, and Salina islands, and some damages to the village of Lipari. The RTL algorithm is widely used for investigating precursory seismicity changes before large and moderate earthquakes. We examined both the spatial and temporal characteristics of seismicity changes in the Aeolian Archipelago region before the M=4.8 earthquake. The results obtained reveal 6-7 months of seismic quiescence which started about 15 months before the earthquake. The spatial distribution shows an extensive area characterized by seismic quiescence that suggests a relationship between quiescence and the Aeolian Archipelago regional tectonics.

  3. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    problems which began to discuss only during the last time. Earthquakes often precede volcanic eruptions. According to Darwin, the earthquake-induced shock may be a common mechanism of the simultaneous eruptions of the volcanoes separated by long distances. In particular, Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…'. According to Darwin the crust is a system where fractured zones, and zones of seismic and volcanic activities interact. Darwin formulated the task of considering together the processes studied now as seismology and volcanology. However the difficulties are such that the study of interactions between earthquakes and volcanoes began only recently and his works on this had relatively little impact on the development of geosciences. In this report, we discuss how the latest data on seismic and volcanic events support the Darwin's observations and ideas about the 1835 Chilean earthquake. The material from researchspace. auckland. ac. nz/handle/2292/4474 is used. We show how modern mechanical tests from impact engineering and simple experiments with weakly-cohesive materials also support his observations and ideas. On the other hand, we developed the mathematical theory of the earthquake-induced catastrophic wave phenomena. This theory allow to explain the most important aspects the Darwin's earthquake reports. This is achieved through the simplification of fundamental governing equations of considering problems to strongly-nonlinear wave equations. Solutions of these equations are constructed with the help of analytic and numerical techniques. The solutions can model different strongly-nonlinear wave phenomena which generate in a variety of physical context. A comparison with relevant experimental observations is also presented.

  4. Y-12 site-specific earthquake response analysis and soil liquefaction assessment

    International Nuclear Information System (INIS)

    Ahmed, S.B.; Hunt, R.J.; Manrod, W.E. III.

    1995-01-01

    A site-specific earthquake response analysis and soil liquefaction assessment were performed for the Oak Ridge Y-12 Plant. The main purpose of these studies was to use the results of the analyses for evaluating the safety of the performance category -1, -2, and -3 facilities against the natural phenomena seismic hazards. Earthquake response was determined for seven (7), one dimensional soil columns (Fig. 12) using two horizontal components of the PC-3 design basis 2000-year seismic event. The computer program SHAKE 91 (Ref. 7) was used to calculate the absolute response accelerations on top of ground (soil/weathered shale) and rock outcrop. The SHAKE program has been validated for horizontal response calculations at periods less than 2.0 second at several sites and consequently is widely accepted in the geotechnical earthquake engineering area for site response analysis

  5. Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa

    Science.gov (United States)

    Heesakkers, V.; Murphy, S.; Reches, Z.

    2011-12-01

    We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25-30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the `principal slip zone' (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white `rock-flour' formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in

  6. Intermediate-Depth Subduction Earthquakes Recorded by Pseudotachylyte in Dry Eclogite-Facies Oceanic Lithosphere from the Alps

    Science.gov (United States)

    Scambelluri, M.; Pennacchioni, G.; Gilio, M.; Bestmann, M.

    2016-12-01

    While geophysical studies and laboratory experiments provide much information on subduction earthquakes, field studies identifying the rock types for earthquake development and the deep seismogenic environments are still scarce. To date, fluid overpressure and volume decrease during hydrous mineral breakdown the widely favoured trigger of subduction earthquakes in serpentinized lithospheric mantle and hydrated low-velocity layers atop slabs. Here we document up to 40 cm-thick pseudotachylyte (PST) in Alpine oceanic gabbro and peridotite (2-2.5 GPa-550-620°C), the analogue of a modern cold subducting oceanic lithosphere. These rocks mostly remained unaltered dry systems; only very minor domains (<1%) record partial hydration and static eclogitic metamorphism. Meta-peridotite shows high-pressure olivine + antigorite (garnet + zoisite + chlorite after mantle plagioclase); meta-gabbro develops omphacite + zoisite + talc + chloritoid + garnet. Abundant syn-eclogitic pseudotachylyte cut the dry gabbro-peridotite and the eclogitized domains. In meta-peridotite, PST shows olivine, orthopyroxene, spinel microliths and clasts of high-pressure olivine + antigorite and garnet + zoisite + chlorite aggregates. In metagabbro, microfaults in damage zones near PST cut brecciated igneous pyroxene cemented by omphacite. In unaltered gabbro, glassy PST contains micron-scale garnet replacing plagioclase microliths during, or soon after, PST cooling. In the host rock, garnet coronas between igneous olivine and plagioclase only occur near PST and between closely spaced PST veins. Absence of garnet away from PST indicates that garnet growth was triggered by mineral seeds and by heat released by PST. The above evidence shows that pseudotachylyte formed at eclogite-facies conditions. In such setting, strong, dry, metastable gabbro-peridotite concentrate stress to generate large intermediate depth subduction earthquakes without much involvement of free fluid.

  7. Earthquake-induced deformations on ice-stream landforms in Kuusamo, eastern Finnish Lapland

    Science.gov (United States)

    Sutinen, Raimo; Hyvönen, Eija; Middleton, Maarit; Airo, Meri-Liisa

    2018-01-01

    Kuusamo in eastern Finnish Lapland is characterized by ice-streamlined landforms as well as clusters of historical and recent earthquakes (Mw landslides, earth flows as well as kettle holes (craters), on the fluted surfaces within the Kuusamo ice-stream fan. We found these deformations to be a common feature on the Archean granitoid gneisses and within a 20 km wide and NW-SE oriented corridor between the major intrusives, the Iivaara nepheline syenite and the Näränkävaara gabbro. Of the paleolandslides, liquefaction morphologies were generally developed on the distal slopes (1.3-2.8%; 0.75-1.6°) of the streamlined forms. Sedimentary anisotropy, obtained with azimuthal electrical conductivity (σa; skin depth down to 3-6 m), of the deformed flutes significantly deviated from the non-deformed (clean) ones. The fields of the Pulju moraine, a subglacial landform, formed a grounding zone for the ice-streaming SW of the paleolandslide cluster. We therefore propose that both subglacial and postglacial earthquake-induced landforms are present in Kuusamo. No PGFs could be verified in the Kuusamo area, yet gravity, airborne magnetic, and LiDAR morphological lineaments suggest that the old Paleoproterozoic structures have been reactivated as strike-slip faults, due to the lithospheric plate stresses and glacio-isostatic adjustment (GIA).

  8. A Modified Split Hopkinson Pressure Bar Approach for Mimicking Dynamic Oscillatory Stress Fluctuations During Earthquake Rupture

    Science.gov (United States)

    Braunagel, M. J.; Griffith, W. A.

    2017-12-01

    Past experimental work has demonstrated that rock failure at high strain rates occurs by fragmentation rather than discrete fracture and is accompanied by a dramatic increase in rock strength. However, these observations are difficult to reconcile with the assertion that pulverized rocks in fault zones are the product of impulsive stresses during the passage of earthquake ruptures, as the distance from the principal slip zones of some pulverized rock is too great to exceed fragmentation transition. One potential explanation to this paradox that has been suggested is that repeated loading over the course of multiple earthquake ruptures may gradually reduce the pulverization threshold, in terms of both strain rate and strength. We propose that oscillatory loading during a single earthquake rupture may further lower these pulverization thresholds, and that traditional dynamic experimental approaches, such as the Split Hopkinson Pressure Bar (SHPB) wherein load is applied as a single, smooth, sinusoidal compressive wave, may not reflect natural loading conditions. To investigate the effects of oscillatory compressive loading expected during earthquake rupture propagation, we develop a controlled cyclic loading model on a SHPB apparatus utilizing two striker bars connected by an elastic spring. Unlike traditional SHPB experiments that utilize a gas gun to fire a projectile bar and generate a single compressive wave on impact with the incident bar, our modified striker bar assembly oscillates while moving down the gun barrel and generates two separate compressive pulses separated by a lag time. By modeling the modified assembly as a mass-spring-mass assembly accelerating due to the force of the released gas, we can predict the compression time of the spring upon impact and therefore the time delay between the generation of the first and second compressive waves. This allows us to predictably control load cycles with durations of only a few hundred microseconds. Initial

  9. Assessment of rock mechanical properties and seismic slope stability in variably weathered layered basalts

    Science.gov (United States)

    Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome

    2016-04-01

    A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation

  10. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.

    2004-01-01

    The December 22, 2003, San Simeon, California, (M6.5) earthquake caused damage to houses, road surfaces, and underground utilities in Oceano, California. The community of Oceano is approximately 50 miles (80 km) from the earthquake epicenter. Damage at this distance from a M6.5 earthquake is unusual. To understand the causes of this damage, the U.S. Geological Survey conducted extensive subsurface exploration and monitoring of aftershocks in the months after the earthquake. The investigation included 37 seismic cone penetration tests, 5 soil borings, and aftershock monitoring from January 28 to March 7, 2004. The USGS investigation identified two earthquake hazards in Oceano that explain the San Simeon earthquake damage?site amplification and liquefaction. Site amplification is a phenomenon observed in many earthquakes where the strength of the shaking increases abnormally in areas where the seismic-wave velocity of shallow geologic layers is low. As a result, earthquake shaking is felt more strongly than in surrounding areas without similar geologic conditions. Site amplification in Oceano is indicated by the physical properties of the geologic layers beneath Oceano and was confirmed by monitoring aftershocks. Liquefaction, which is also commonly observed during earthquakes, is a phenomenon where saturated sands lose their strength during an earthquake and become fluid-like and mobile. As a result, the ground may undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves displacement of large blocks of ground down gentle slopes or towards stream channels. The USGS investigation indicates that the shallow geologic units beneath Oceano are very susceptible to liquefaction. They include young sand dunes and clean sandy artificial fill that was used to bury and convert marshes into developable lots. Most of

  11. Latur earthquake and its impact on the aseismic design of structures in India

    Energy Technology Data Exchange (ETDEWEB)

    Basu, P C [Atomic Energy Regulatory Board (India)

    1995-07-01

    The Latur earthquake occurred on September 30, 1995. The epicentre was located near the Killari village of Latur District which is situated in the stable continental region of Southern Peninsular India. The earthquake caused a wide range of damage though its magnitude (MS) was 6.4. Intensive damage survey was carried out and a number of geophysical and seismological studies had been undertaken. It has been concluded from the results, available so far from these studies, that the hypocentre of the earthquake was on the lineament dipping NW-SE. The rock matrix in the hypocentral region was weakened due to the presence of fluid and rupture of this weak region caused the event. The ground motion produced by the earthquake was of complex nature comprising of horizontal and vertical component. The ground acceleration in the epicentral region was estimated as 0.2 g. Latur earthquake raised several issues with respect to aseismic design of structures in India which need further deliberation. These issues are related to seismic zoning of India, determination of design basis ground motion, design/detailing of structures, etc. (author)

  12. Latur earthquake and its impact on the aseismic design of structures in India

    International Nuclear Information System (INIS)

    Basu, P.C.

    1995-01-01

    The Latur earthquake occurred on September 30, 1995. The epicentre was located near the Killari village of Latur District which is situated in the stable continental region of Southern Peninsular India. The earthquake caused a wide range of damage though its magnitude (MS) was 6.4. Intensive damage survey was carried out and a number of geophysical and seismological studies had been undertaken. It has been concluded from the results, available so far from these studies, that the hypocentre of the earthquake was on the lineament dipping NW-SE. The rock matrix in the hypocentral region was weakened due to the presence of fluid and rupture of this weak region caused the event. The ground motion produced by the earthquake was of complex nature comprising of horizontal and vertical component. The ground acceleration in the epicentral region was estimated as 0.2 g. Latur earthquake raised several issues with respect to aseismic design of structures in India which need further deliberation. These issues are related to seismic zoning of India, determination of design basis ground motion, design/detailing of structures, etc. (author)

  13. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  14. A study of earthquake-induced building detection by object oriented classification approach

    Science.gov (United States)

    Sabuncu, Asli; Damla Uca Avci, Zehra; Sunar, Filiz

    2017-04-01

    Among the natural hazards, earthquakes are the most destructive disasters and cause huge loss of lives, heavily infrastructure damages and great financial losses every year all around the world. According to the statistics about the earthquakes, more than a million earthquakes occur which is equal to two earthquakes per minute in the world. Natural disasters have brought more than 780.000 deaths approximately % 60 of all mortality is due to the earthquakes after 2001. A great earthquake took place at 38.75 N 43.36 E in the eastern part of Turkey in Van Province on On October 23th, 2011. 604 people died and about 4000 buildings seriously damaged and collapsed after this earthquake. In recent years, the use of object oriented classification approach based on different object features, such as spectral, textural, shape and spatial information, has gained importance and became widespread for the classification of high-resolution satellite images and orthophotos. The motivation of this study is to detect the collapsed buildings and debris areas after the earthquake by using very high-resolution satellite images and orthophotos with the object oriented classification and also see how well remote sensing technology was carried out in determining the collapsed buildings. In this study, two different land surfaces were selected as homogenous and heterogeneous case study areas. In the first step of application, multi-resolution segmentation was applied and optimum parameters were selected to obtain the objects in each area after testing different color/shape and compactness/smoothness values. In the next step, two different classification approaches, namely "supervised" and "unsupervised" approaches were applied and their classification performances were compared. Object-based Image Analysis (OBIA) was performed using e-Cognition software.

  15. Earthquake swarms reveal submarine magma unrest induced by distant mega-earthquakes: Andaman Sea region

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Vaněk, Jiří

    2016-01-01

    Roč. 116, February (2016), s. 155-163 ISSN 1367-9120 Institutional support: RVO:67985530 Keywords : earthquake swarms * magma migration * submarine volcanic arc Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.335, year: 2016

  16. Integrated core-log interpretation of Wenchuan earthquake Fault Scientific Drilling project borehole 4 (WFSD-4)

    Science.gov (United States)

    Konaté, Ahmed Amara; Pan, Heping; Ma, Huolin; Qin, Zhen; Traoré, Alhouseiny

    2017-08-01

    Understanding slip behavior of active fault is a fundamental problem in earthquake investigations. Well logs and cores data provide direct information of physical properties of the fault zones at depth. The geological exploration of the Wenchuan earthquake Scientific Fault drilling project (WFSD) targeted the Yingxiu-Beichuan fault and the Guanxian Anxian fault, respectively. Five boreholes (WFSD-1, WFSD-2, WFSD-3P WFSD-3 and WFSD-4) were drilled and logged with geophysical tools developed for the use in petroleum industry. WFSD-1, WFSD-2 and WFSD-3 in situ logging data have been reported and investigated by geoscientists. Here we present for the first time, the integrated core-log studies in the Northern segment of Yingxiu-Beichuan fault (WFSD-4) thereby characterizing the physical properties of the lithologies(original rocks), fault rocks and the presumed slip zone associated with the Wenchuan earthquake. We also present results from the comparison of WFSD-4 to those obtained from WFSD-1, WFSD-3 and other drilling hole in active faults. This study show that integrated core-log study would help in understanding the slip behavior of active fault.

  17. New geological perspectives on earthquake recurrence models

    International Nuclear Information System (INIS)

    Schwartz, D.P.

    1997-01-01

    In most areas of the world the record of historical seismicity is too short or uncertain to accurately characterize the future distribution of earthquakes of different sizes in time and space. Most faults have not ruptured once, let alone repeatedly. Ultimately, the ability to correctly forecast the magnitude, location, and probability of future earthquakes depends on how well one can quantify the past behavior of earthquake sources. Paleoseismological trenching of active faults, historical surface ruptures, liquefaction features, and shaking-induced ground deformation structures provides fundamental information on the past behavior of earthquake sources. These studies quantify (a) the timing of individual past earthquakes and fault slip rates, which lead to estimates of recurrence intervals and the development of recurrence models and (b) the amount of displacement during individual events, which allows estimates of the sizes of past earthquakes on a fault. When timing and slip per event are combined with information on fault zone geometry and structure, models that define individual rupture segments can be developed. Paleoseismicity data, in the form of timing and size of past events, provide a window into the driving mechanism of the earthquake engine--the cycle of stress build-up and release

  18. Magnetic paleointensities in fault pseudotachylytes and implications for earthquake lightnings

    Science.gov (United States)

    Leibovitz, Natalie Ruth

    Fault pseudotachylytes commonly form by frictional melting due to seismic slip. These fine-grained clastic rocks result from melt quenching and may show a high concentration of fine ferromagnetic grains. These grains are potentially excellent recorders of the rock natural remanent magnetization (NRM). The magnetization processes of fault pseudotachylytes are complex and may include the following: i) near coseismic thermal remanent magnetization (TRM) acquired upon cooling of the melt; ii) coseismic lightning induced remanent magnetization (LIRM) caused by earthquake lightnings (EQL); iii) post seismic chemical remanent magnetization (CRM) related to both devitrification and alteration. Deciphering these magnetization components is crucial to the interpretation of paleointensities to see if coseismic phenomena such as EQL's were recorded within these rocks. Hence the paleomagnetic record of fault pseudotachylytes provides an independent set of new constraints on coseismic events. Fault pseudotachylytes from the Santa Rosa Mountains, California host a magnetic assemblage dominated by stoichiometric magnetite, formed from the breakdown of ferromagnesian silicates and melt oxidation at high temperature. Magnetite grain size in these pseudotachylytes compares to that of magnetite formed in friction experiments. Paleomagnetic data on these 59 Ma-old fault rocks reveal not only anomalous magnetization directions, inconsistent with the coseismic geomagnetic field, but also anomalously high magnetization intensities. Here we discuss results of rock magnetism and paleointensity experiments designed to quantify the intensity of coseismic magnetizing fields. The REM' paleointensity method, previously tested on meteorites, is particularly well suited to investigate NRMs resulting from non-conventional and multiple magnetization processes. Overall findings indicate an isothermal remanent magnetization (IRM) in some, but not all, specimens taken from four different Santa Rosa

  19. RECENT STRONG EARTHQUAKES IN CENTRAL ASIA: REGULAR TECTONOPHYSICAL FEATURES OF LOCATIONS IN THE STRUCTURE AND GEODYNAMICS OF THE LITHOSPHERE. PART 1. MAIN GEODYNAMIC FACTORS PREDETERMINING LOCATIONS OF STRONG EARTHQUAKES IN THE STRUCTURE OF THE LITHOSPHER

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2015-01-01

    Full Text Available Studying locations of strong earthquakes (М≥8 in space and time in Central Asia has been among top prob-lems for many years and still remains challenging for international research teams. The authors propose a new ap-proach that requires changing the paradigm of earthquake focus – solid rock relations, while this paradigm is a basis for practically all known physical models of earthquake foci. This paper describes the first step towards developing a new concept of the seismic process, including generation of strong earthquakes, with reference to specific geodynamic features of the part of the study region wherein strong earthquakes were recorded in the past two centuries. Our analysis of the locations of М≥8 earthquakes shows that in the past two centuries such earthquakes took place in areas of the dynamic influence of large deep faults in the western regions of Central Asia. In the continental Asia, there is a clear submeridional structural boundary (95–105°E between the western and eastern regions, and this is a factor controlling localization of strong seismic events in the western regions. Obviously, the Indostan plate’s pressure from the south is an energy source for such events. The strong earthquakes are located in a relatively small part of the territory of Central Asia (i.e. the western regions, which is significantly different from its neighbouring areas at the north, east and west, as evidenced by its specific geodynamic parameters. (1 The crust is twice as thick in the western regions than in the eastern regions. (2 In the western regions, the block structures re-sulting from the crust destruction, which are mainly represented by lense-shaped forms elongated in the submeridio-nal direction, tend to dominate. (3 Active faults bordering large block structures are characterized by significant slip velocities that reach maximum values in the central part of the Tibetan plateau. Further northward, slip velocities decrease

  20. Experimental evidence on formation of imminent and short-term hydrochemical precursors for earthquakes

    International Nuclear Information System (INIS)

    Du Jianguo; Amita, Kazuhiro; Ohsawa, Shinji; Zhang Youlian; Kang Chunli; Yamada, Makoto

    2010-01-01

    The formation of imminent hydrochemical precursors of earthquakes is investigated by the simulation for water-rock reaction in a brittle aquifer. Sixty-one soaking experiments were carried out with granodiorite and trachyandesite grains of different sizes and three chemically-distinct waters for 6 to 168 h. The experimental data demonstrate that water-rock reaction can result in both measurable increases and decreases of ion concentrations in short times and that the extents of hydrochemical variations are controlled by the grain size, dissolution and secondary mineral precipitation, as well as the chemistry of the rock and groundwater. The results indicate that water-rock reactions in brittle aquifers and aquitards may be an important genetic mechanism of hydrochemical seismic precursors when the aquifers and aquitards are fractured in response to tectonic stress.

  1. Estimation of historical earthquake intensities and intensity-PGA relationship for wooden house damages

    International Nuclear Information System (INIS)

    Choi, In-Kil; Seo, Jeong-Moon

    2002-01-01

    A series of tests and dynamic analyses on Korean traditional wooden houses was performed for the intensity estimation of the typical large historical earthquake records. Static and cyclic lateral load tests on the wooden frames were performed to assess the lateral load capacity of wooden frames. The shaking table tests on two 1:4 scaled models of a Korean ancient commoner's house made of fresh pine lumber were performed. Typical earthquake time histories recorded on soil and rock sites were used as input for the tests. The prototypical wooden house was analyzed for multiple time histories which match Ohsaki's ground response spectra. Seismic analyses comprise the aging of lumber and different soil condition. The relationship between the earthquake intensity and the peak ground acceleration (PGA) is proposed for the wooden house damages based on the results of this study. The intensity of major Korean historical earthquake records related with house collapses was quantitatively estimated to be MM VIII

  2. Dynamic Response of AP1000 Nuclear Island Due to Safe Shutdown Earthquake Loading

    Directory of Open Access Journals (Sweden)

    Gan Buntara S.

    2017-01-01

    Full Text Available AP1000 is a standard nuclear power plant developed by Westinghouse and its partners by using an advanced passive safety feature. Among the five principle building structures, namely the nuclear island, turbine building, annex building, diesel generator building and radwaste building, the safety of the nuclear island building is the most concerned. This paper investigates the dynamic response of the nuclear island building of the AP1000 plant subjected to safe shutdown earthquake loadings. A finite element model for the building, which is assumed to be built in a hard-rock base, is developed and its dynamic response is computed with the aid of the commercial finite element package ANSYS. The dynamic characteristics, including the natural frequencies, the vibration modes, and the time histories for displacements, velocities, and accelerations of the building are obtained for two typical safe shutdown earthquakes, El Centro and Kobe earthquakes. The dynamic behavior of the building due to the earthquakes and its safety is examined and highlighted.

  3. Probabilistic approach to rock fall hazard assessment: potential of historical data analysis

    Directory of Open Access Journals (Sweden)

    C. Dussauge-Peisser

    2002-01-01

    Full Text Available We study the rock fall volume distribution for three rock fall inventories and we fit the observed data by a power-law distribution, which has recently been proposed to describe landslide and rock fall volume distributions, and is also observed for many other natural phenomena, such as volcanic eruptions or earthquakes. We use these statistical distributions of past events to estimate rock fall occurrence rates on the studied areas. It is an alternative to deterministic approaches, which have not proved successful in predicting individual rock falls. The first one concerns calcareous cliffs around Grenoble, French Alps, from 1935 to 1995. The second data set is gathered during the 1912–1992 time window in Yosemite Valley, USA, in granite cliffs. The third one covers the 1954–1976 period in the Arly gorges, French Alps, with metamorphic and sedimentary rocks. For the three data sets, we find a good agreement between the observed volume distributions and a fit by a power-law distribution for volumes larger than 50 m3 , or 20 m3 for the Arly gorges. We obtain similar values of the b exponent close to 0.45 for the 3 data sets. In agreement with previous studies, this suggests, that the b value is not dependant on the geological settings. Regarding the rate of rock fall activity, determined as the number of rock fall events with volume larger than 1 m3 per year, we find a large variability from one site to the other. The rock fall activity, as part of a local erosion rate, is thus spatially dependent. We discuss the implications of these observations for the rock fall hazard evaluation. First, assuming that the volume distributions are temporally stable, a complete rock fall inventory allows for the prediction of recurrence rates for future events of a given volume in the range of the observed historical data. Second, assuming that the observed volume distribution follows a power-law distribution without cutoff at small or large scales, we can

  4. Probabilistic approach to rock fall hazard assessment: potential of historical data analysis

    Science.gov (United States)

    Dussauge-Peisser, C.; Helmstetter, A.; Grasso, J.-R.; Hantz, D.; Desvarreux, P.; Jeannin, M.; Giraud, A.

    We study the rock fall volume distribution for three rock fall inventories and we fit the observed data by a power-law distribution, which has recently been proposed to describe landslide and rock fall volume distributions, and is also observed for many other natural phenomena, such as volcanic eruptions or earthquakes. We use these statistical distributions of past events to estimate rock fall occurrence rates on the studied areas. It is an alternative to deterministic approaches, which have not proved successful in predicting individual rock falls. The first one concerns calcareous cliffs around Grenoble, French Alps, from 1935 to 1995. The second data set is gathered during the 1912-1992 time window in Yosemite Valley, USA, in granite cliffs. The third one covers the 1954-1976 period in the Arly gorges, French Alps, with metamorphic and sedimentary rocks. For the three data sets, we find a good agreement between the observed volume distributions and a fit by a power-law distribution for volumes larger than 50 m3 , or 20 m3 for the Arly gorges. We obtain similar values of the b exponent close to 0.45 for the 3 data sets. In agreement with previous studies, this suggests, that the b value is not dependant on the geological settings. Regarding the rate of rock fall activity, determined as the number of rock fall events with volume larger than 1 m3 per year, we find a large variability from one site to the other. The rock fall activity, as part of a local erosion rate, is thus spatially dependent. We discuss the implications of these observations for the rock fall hazard evaluation. First, assuming that the volume distributions are temporally stable, a complete rock fall inventory allows for the prediction of recurrence rates for future events of a given volume in the range of the observed historical data. Second, assuming that the observed volume distribution follows a power-law distribution without cutoff at small or large scales, we can extrapolate these

  5. Recognition of Earthquake-Induced Damage in the Abakainon Necropolis (NE Sicily): Results From Geomorphological, Geophysical and Numerical Analyses

    Science.gov (United States)

    Bottari, C.; Albano, M.; Capizzi, P.; D'Alessandro, A.; Doumaz, F.; Martorana, R.; Moro, M.; Saroli, M.

    2018-01-01

    Seismotectonic activity and slope instability are a permanent threat in the archaeological site of Abakainon and in the nearby village of Tripi in NE Sicily. In recent times, signs of an ancient earthquake have been identified in the necropolis of Abakainon which dating was ascertained to the first century AD earthquake. The site is located on a slope of Peloritani Mts. along the Tindari Fault Line and contains evidence for earthquake-induced landslide, including fallen columns and blocks, horizontal shift and counter slope tilting of the tomb basements. In this paper, we used an integrated geomorphological and geophysical analysis to constrain the landslide. The research was directed to the acquisition of deep geological data for the reconstruction of slope process and the thickness of mobilized materials. The applied geophysical techniques included seismic refraction tomography and electrical resistivity tomography. The surveys were performed to delineate the sliding surface and to assess approximately the thickness of mobilized materials. The geophysical and geomorphologic data confirmed the presence of different overlapped landslides in the studied area. Moreover, a numerical simulation of the slope under seismic loads supports the hypothesis of a mobilization of the landslide mass in case of strong earthquakes (PGA > 0.3 g). However, numerical results highlight that the main cause of destruction for the Abakainon necropolis is the amplification of the seismic waves, occasionally accompanied by surficial sliding.

  6. Subsurface geologic features of the 2011 central Virginia earthquakes revealed by airborne geophysics

    Science.gov (United States)

    Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K

    2014-01-01

    Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.

  7. Model testing on rainfall-induced landslide of loose soil in Wenchuan earthquake region

    Directory of Open Access Journals (Sweden)

    H. Fang

    2012-03-01

    Full Text Available This study investigates the formation process of rainfall-induced landslide for slopes composed of loose soil in the Wenchuan earthquake region. Experimental investigations have been performed on the landslide's formation and the variation of the controlling soil parameters under various artificial rainfall conditions. The landslide triggering mechanisms can be described in the following way. Firstly, the large porosity of the loose soil facilitated the infiltration of water, which increased the pore water pressure and reduced the shear strength of the soil significantly. In addition, the rainfalls probably caused the concentration of finer particles at a certain depth of the valley slopes. This concentration within the soil increased the pore water pressure significantly, and consequently reduced both the porosity ratio and permeability. Therefore, when the pore water pressure reached a critical state, the effective shear strength of the soil diminished, inducing the landslide's formation.

  8. Assessment of liquefaction potential during earthquakes by arias intensity

    Science.gov (United States)

    Kayen, R.E.; Mitchell, J.K.

    1997-01-01

    An Arias intensity approach to assess the liquefaction potential of soil deposits during earthquakes is proposed, using an energy-based measure of the severity of earthquake-shaking recorded on seismograms of the two horizontal components of ground motion. Values representing the severity of strong motion at depth in the soil column are associated with the liquefaction resistance of that layer, as measured by in situ penetration testing (SPT, CPT). This association results in a magnitude-independent boundary that envelopes initial liquefaction of soil in Arias intensity-normalized penetration resistance space. The Arias intensity approach is simple to apply and has proven to be highly reliable in assessing liquefaction potential. The advantages of using Arias intensity as a measure of earthquake-shaking severity in liquefaction assessment are: Arias intensity is derived from integration of the entire seismogram wave form, incorporating both the amplitude and duration elements of ground motion; all frequencies of recorded motion are considered; and Arias intensity is an appropriate measure to use when evaluating field penetration test methodologies that are inherently energy-based. Predictor equations describing the attenuation of Arias intensity as a function of earthquake magnitude and source distance are presented for rock, deep-stiff alluvium, and soft soil sites.

  9. Results of monitoring at Olkiluoto in 2009. Rock mechanics

    International Nuclear Information System (INIS)

    Lahti, M.; Hakala, M.

    2010-09-01

    The rock mechanical monitoring at Olkiluoto concentrates on the assessment of potential tectonic movements and stability of the bedrock. The construction of ONKALO is not expected to induce large-scale movements of the rock blocks or affect the rate of isostatic uplift but the evaluation of any tectonic events is important for the safety assessment. The monitoring consists of seismic measurements, GPS measurements and precise levelling campaigns at Olkiluoto and vicinity and additionally extensometer and convergence measurements carried out in ONKALO. Posiva established a local seismic network of six stations on the island of Olkiluoto in 2002. The number of seismic stations has increased gradually being in 2009 altogether 14. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semi-regional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale. The smaller target area is s called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. All the expected excavation induced events assumingly occur within this volume. At the moment the seismic ONKALO block includes 10 seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. The seismic network has operated continuously in 2009 and during the year altogether 1256 events have been located in the Olkiluoto area. Most of them (1161) are explosions that occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (1135 events)

  10. Development of spectral shapes and attenuation relations from accelerograms recorded on rock and soil sites

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Rao, K.S.; Kushwaha, H.S.

    1998-06-01

    Earthquake accelerograms recorded on rock and soil sites have been analysed. Site-specific response spectra and peak ground acceleration attenuation relations have been developed. This report presents the normalised pseudo-absolute acceleration spectra for various values of damping and for various confidence levels. Scaling laws have been developed for the response spectra. The present results are based on a large database and comparison has been made with earlier results. These results will be useful in the earthquake resistant design of structures. (author)

  11. Magnetic paleointensities recorded in fault pseudotachylytes and implications for earthquake lightnings

    Science.gov (United States)

    Leibovitz, Natalie; Ferré, Eric; Geissman, John; Gattacceca, Jérôme

    2015-04-01

    Fault pseudotachylytes commonly form by frictional melting due to seismic slip. These fine-grained clastic rocks result from melt quenching and may show a high concentration of fine ferromagnetic grains. These grains are potentially excellent recorders of the rock natural remanent magnetization (NRM). The magnetization processes of fault pseudotachylytes are complex and may include the following: i) near coseismic thermal remanent magnetization (TRM) acquired upon cooling of the melt; ii) coseismic lightning induced remanent magnetization (LIRM) caused by earthquake lightnings (EQL); iii) post seismic chemical remanent magnetization (CRM) related to both devitrification and alteration. Deciphering these magnetization components is crucial to the interpretation of microstructures and the timing of microstructural development. Hence the paleomagnetic record of fault pseudotachylytes provides an independent set of new constraints on coseismic and post-seismic deformation. Fault pseudotachylytes from the Santa Rosa Mountains, California host a magnetic assemblage dominated by stoichiometric magnetite, formed from the breakdown of ferromagnesian silicates and melt oxidation at high temperature. Magnetite grain size in these pseudotachylytes compares to that of magnetites formed in friction experiments. Paleomagnetic data on these 59 Ma-old fault rocks reveal not only anomalous magnetization directions, inconsistent with the coseismic geomagnetic field, but also anomalously high magnetization intensities. Here we discuss preliminary results of paleointensity experiments designed to quantify the intensity of coseismic magnetizing fields. The REM' paleointensity method is particularly well suited to investigate NRMs resulting from non-conventional and multiple magnetization processes. The anomalously high NRM recorded in a few, but not all, specimens points to LIRM as the dominant origin of magnetization.

  12. Effect of Interaction and Rocking Motion on The Earthquake Response of Buildings

    Directory of Open Access Journals (Sweden)

    Gholamreza Havaei

    2015-03-01

    Full Text Available Usually structures are designed under codes based on the assumption that the soil stiffness is infinite, so the foundation rests firmly on the soil. In many cases, the overturning moment due to the lateral forces may exceed the resisting moment due to the gravity forces. Thus, this may cause a foundation uplift because in reality the soil stiffness is not infinite and the structure stands up under gravity forces. The phenomenon of foundation uplifting and its impact on the soil are known as the rocking motion.This study investigates the influence of the rocking motion and interaction by the yielding base plates on the nonlinear behavior of steel structures under dynamic analysis. More specifically, Three- five and seven -storied structuresare designed with ordinary ductility, then the structuresare analyzed in rigid and deformable base plate cases with using the ABAQUS software.The results show that the rocking motion and Interaction decrease the response of buildings such as the base shear, the axial force of columns and the strain energy but also increase the natural period.

  13. State Vector: A New Approach to Prediction of the Failure of Brittle Heterogeneous Media and Large Earthquakes

    Science.gov (United States)

    Yu, Huai-Zhong; Yin, Xiang-Chu; Zhu, Qing-Yong; Yan, Yu-Ding

    2006-12-01

    The concept of state vector stems from statistical physics, where it is usually used to describe activity patterns of a physical field in its manner of coarsegrain. In this paper, we propose an approach by which the state vector was applied to describe quantitatively the damage evolution of the brittle heterogeneous systems, and some interesting results are presented, i.e., prior to the macro-fracture of rock specimens and occurrence of a strong earthquake, evolutions of the four relevant scalars time series derived from the state vectors changed anomalously. As retrospective studies, some prominent large earthquakes occurred in the Chinese Mainland (e.g., the M 7.4 Haicheng earthquake on February 4, 1975, and the M 7.8 Tangshan earthquake on July 28, 1976, etc) were investigated. Results show considerable promise that the time-dependent state vectors could serve as a kind of precursor to predict earthquakes.

  14. Compositional, mechanical and transport properties of carbonate fault rocks and the seismic cycle in limestone terrains : A case study of surface exposures on the Longmenshan Fault, Sichuan, China

    NARCIS (Netherlands)

    Chen, Jianye

    2015-01-01

    Destructive earthquakes are common in tectonically active regions dominated by carbonate cover rocks. The catastrophic Wenchuan earthquake that struck Sichuan, China, also affected a section of carbonate cover terrain. Numerous studies have focused on characterizing the compositional, transport and

  15. Earthquakes as collapse precursors at the Han-sur-Lesse Cave in the Belgian Ardennes

    Science.gov (United States)

    Camelbeeck, Thierry; Quinif, Yves; Verheyden, Sophie; Vanneste, Kris; Knuts, Elisabeth

    2018-05-01

    Collapse activation is an ongoing process in the evolution of karstic networks related to the weakening of cave vaults. Because collapses are infrequent, few have been directly observed, making it challenging to evaluate the role of external processes in their initiation and triggering. Here, we study the two most recent collapses in the Dôme chamber of the Han-sur-Lesse Cave (Belgian Ardenne) that occurred on or shortly after 3rd December 1828 and between the 13th and 14th of March 1984. Because of the low probability that the two earthquakes that generated the strongest ground motions in Han-sur-Lesse since 1800, on 23rd February 1828 (Mw = 5.1 in Central Belgium) and 8th November 1983 (Mw = 4.8 in Liège) occurred by coincidence less than one year before these collapses, we suggest that the collapses are related to these earthquakes. We argue that the earthquakes accelerated the cave vault instability, leading to the collapses by the action of other factors weakening the host rock. In particular, the 1828 collapse was likely triggered by a smaller Mw = 4.2 nearby earthquake. The 1984 collapse followed two months of heavy rainfall that would have increased water infiltration and pressure in the rock mass favoring destabilization of the cave ceiling. Lamina counting of a stalagmite growing on the 1828 debris dates the collapse at 1826 ± 9 CE, demonstrating the possibility of dating previous collapses with a few years of uncertainty. Furthermore, our study opens new perspectives for studying collapses and their chronology both in the Han-sur-Lesse Cave and in other karstic networks. We suggest that earthquake activity could play a stronger role than previously thought in initiating cave collapses.

  16. Dislocation motion and the microphysics of flash heating and weakening of faults during earthquakes

    NARCIS (Netherlands)

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio

    2016-01-01

    Earthquakes are the result of slip along faults and are due to the decrease of rock frictional strength (dynamic weakening) with increasing slip and slip rate. Friction experiments simulating the abrupt accelerations (>>10 m/s2), slip rates (~1 m/s), and normal stresses (>>10 MPa) expected at the

  17. Overview of the geologic effects of the November 14, 2016, Mw 7.8 Kaikoura, New Zealand, earthquake

    Science.gov (United States)

    Jibson, Randall W.; Allstadt, Kate E.; Rengers, Francis K.; Godt, Jonathan W.

    2018-03-30

    The November 14, 2016, Kaikoura, New Zealand, earthquake (moment magnitude [Mw] 7.8) triggered more than 10,000 landslides over an area of about 12,000 square kilometers in the northeastern part of the South Island of New Zealand. In collaboration with GNS Science (the Institute of Geological and Nuclear Science Limited), we conducted ground and helicopter reconnaissance of the affected areas and assisted in rapid hazard evaluation. The majority of the triggered landslides were shallow- to moderate-depth (1–10 meters), highly disrupted falls and slides in rock and debris from Lower Cretaceous graywacke sandstone in the Seaward Kaikoura Range. Deeper, more coherent landslides in weak Upper Cretaceous to Neogene sedimentary rock also were numerous in the gentler topography south and inland (west) of the Seaward Kaikoura Range. The principal ground-failure hazards from the earthquake were the hundreds of valley-blocking landslides, many of which impounded lakes and ponds that posed potential downstream flooding hazards. Both large and small landslides also blocked road and rail corridors in many locations, including the main north-south highway (State Highway 1), which was still closed in October 2017. As part of our investigation, we compared post-earthquake field observations to the output of models used to estimate near-real-time landslide probabilities following earthquakes. The models generally over-predicted landslide occurrence and thus need further refinement.

  18. Modelling earth current precursors in earthquake prediction

    Directory of Open Access Journals (Sweden)

    R. Di Maio

    1997-06-01

    Full Text Available This paper deals with the theory of earth current precursors of earthquake. A dilatancy-diffusion-polarization model is proposed to explain the anomalies of the electric potential, which are observed on the ground surface prior to some earthquakes. The electric polarization is believed to be the electrokinetic effect due to the invasion of fluids into new pores, which are opened inside a stressed-dilated rock body. The time and space variation of the distribution of the electric potential in a layered earth as well as in a faulted half-space is studied in detail. It results that the surface response depends on the underground conductivity distribution and on the relative disposition of the measuring dipole with respect to the buried bipole source. A field procedure based on the use of an areal layout of the recording sites is proposed, in order to obtain the most complete information on the time and space evolution of the precursory phenomena in any given seismic region.

  19. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan fault, Sichuan Province, China

    Science.gov (United States)

    Dang, Jiaxiang; Zhou, Yongsheng; He, Changrong; Ma, Shengli

    2018-06-01

    There are two co-seismic bedrock surface ruptures from the Mw 7.9 Wenchuan earthquake in the northern and central parts of the Beichuan-Yingxiu fault, Sichuan Province, southwest China. In this study, we report on the macrostructure of the fault rocks and results from X-ray powder diffraction analysis of minerals from rocks in the fault zone. The most recent fault gouge (the gouge produced by the most recent co-seismic fault movement) in all the studied outcrops is dark or grayish-black, totally unconsolidated and ultrafine-grained. Older fault gouges in the same outcrops are grayish or yellowish and weakly consolidated. X-ray powder diffraction analysis results show that mineral assemblages in both the old fault gouge and the new fault gouge are more complicated than the mineral assemblages in the bedrock as the fault gouge is rich in clay minerals. The fault gouge inherited its major rock-forming minerals from the parent rocks, but the clay minerals in the fault gouge were generated in the fault zone and are therefore authigenic and synkinematic. In profiles across the fault, clay mineral abundances increase as one traverses from the bedrock to the breccia to the old gouge and from the old gouge to the new gouge. Quartz and illite are found in all collected gouge samples. The dominant clay minerals in the new fault gouge are illite and smectite along the northern part of the surface rupture and illite/smectite mixed-layer clay in the middle part of the rupture. Illite/smectite mixed-layer clay found in the middle part of the rupture indicates that fault slip was accompanied by K-rich fluid circulation. The existence of siderite, anhydrite, and barite in the northern part of the rupture suggests that fault slip at this locality was accompanied by acidic fluids containing ions of Fe, Ca, and Ba.

  20. Earthquake Disaster of Yogyakarta and Central Java, and Disaster Reduction, Indonesia

    Directory of Open Access Journals (Sweden)

    Sutikno Sutikno

    2016-05-01

    Full Text Available This paper discussed on earthquake disaster and its reduction of Yogyakarta and Central Java, Indonesia. The study area is located at relatively a short distance from subduction zone of India-Australian and Eurasian plates. Geologically this area is characterized by fault and graben structure, and geomorphologically is composed of block mountain, karsts topography and fluvio-volcanic plain. Aim of this paper is to evaluate the spatial distribution of the damage area, the environmental impacts, and to discuss the risk reduction of earthquake disaster scientifically and practically. In this paper to determine the hazard susceptibility zone and their environmental impact used geologic, geomorphologic, land use map, remote sensing image interpretation, and field observation. Discussion on the earthquake disaster risk reduction based on the hazard susceptibility and the characteristic of the human settlement and facilities. The result of this study shows that: i.the high damage area associate with distribution of the fault structures and the lithology; ii. mass-movement, lowering of groundwater, rising new springs, liquefaction, cracking of rocks and land surface; iii. structural non structural efforts are used for earthquake disaster reduction.

  1. Earthquakes and depleted gas reservoirs: which comes first?

    Science.gov (United States)

    Mucciarelli, M.; Donda, F.; Valensise, G.

    2015-10-01

    While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, so far, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The 20 and 29 May 2012 earthquakes in Emilia, northern Italy (Mw 6.1 and 6.0), raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold and thrust belt. We compared the location, depth and production history of 455 gas wells drilled along the Ferrara-Romagna arc, a large hydrocarbon reserve in the southeastern Po Plain (northern Italy), with the location of the inferred surface projection of the causative faults of the 2012 Emilia earthquakes and of two pre-instrumental damaging earthquakes. We found that these earthquake sources fall within a cluster of sterile wells, surrounded by productive wells at a few kilometres' distance. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. To validate our hypothesis we performed two different statistical tests (binomial and Monte Carlo) on the relative distribution of productive and sterile wells, with respect to seismogenic faults. Our findings have important practical implications: (1) they may allow major seismogenic sources to be singled out within large active thrust systems; (2) they suggest that reservoirs hosted in smaller anticlines are more likely to be intact; and (3) they also suggest that in order to minimize the hazard of triggering significant earthquakes, all new gas storage facilities should use exploited reservoirs rather than sterile hydrocarbon traps or aquifers.

  2. Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes

    Science.gov (United States)

    Tanekou, G. B.; Fogang, C. F.; Kengne, R.; Pelap, F. B.

    2018-04-01

    We examine the dynamical behaviours of the "single mass-spring" model for earthquakes considering lubrication pressure effects on pre-existing faults and viscous fractional damping. The lubrication pressure supports a part of the load, thereby reducing the normal stress and the associated friction across the gap. During the co-seismic phase, all of the strain accumulated during the inter-seismic duration does not recover; a fraction of this strain remains as a result of viscous relaxation. Viscous damping friction makes it possible to study rocks at depth possessing visco-elastic behaviours. At increasing depths, rock deformation gradually transitions from brittle to ductile. The fractional derivative is based on the properties of rocks, including information about previous deformation events ( i.e., the so-called memory effect). Increasing the fractional derivative can extend or delay the transition from stick-slip oscillation to a stable equilibrium state and even suppress it. For the single block model, the interactions of the introduced lubrication pressure and viscous damping are found to give rise to oscillation death, which corresponds to aseismic fault behaviour. Our result shows that the earthquake occurrence increases with increases in both the damping coefficient and the lubrication pressure. We have also revealed that the accumulation of large stresses can be controlled via artificial lubrication.

  3. Soft-sediment deformation in New Zealand: Structures resulting from the 2010/11 Christchurch earthquakes and comparison with Pleistocene sediments of the Taupo Volcanic Zone (TVZ)

    Science.gov (United States)

    Scholz, C.; Downs, D. T.; Gravley, D.; Quigley, M.; Rowland, J. V.

    2011-12-01

    The distinction between seismites and other event-related soft-sediment deformation is a challenging problem. Recognition and interpretation is aided by comparison of recent examples produced during known seismic events and those generated experimentally. Seismites are important features, once recognized in a rock, for interpretations of paleotectonic environment, tectonic relationships of sediments in basins, sedimentary facies analysis, evaluation of earthquake frequency and hazard and consequent land managment. Two examples of soft-sediment deformation, potentially generated through ground shaking and associated liquefaction, are described from within the TVZ: 1) Near Matata on the western margin of the Whakatane Graben. This location has a complicated en-echelon fault history and large earthquakes occur from time to time (e.g., 1987 ML6.3 Edgecumbe event). The structures occur in ~550 ka volcanic sediments, and represent soft-sediment deformation within stratigraphically-bounded layers. Based on paleoenvironment, appearance, and diagnostic criteria described by other authors (Sims 1975; Hempton and Dewey 1983), we interpret these features to have formed by ground shaking related to an earthquake and/or possibly accompanying large volcanic eruptions, rather than by slope failure. 2) Near Taupo, 3 km from the active Kaiapo fault. Lakeward dipping, nearly horizontal lacustrine sediments overlay Taupo Ignimbrite (1.8 ka). At one outcrop the lake beds have subsided into the underlying substrate resulting in kidney-shaped features. These structures formed as a result of liquefaction of the underlying substrate, which may have been caused by ground shaking related to either seismic or volcanic activity. However, inferred time relationships are more consistent with seismic-induced ground shaking. We compare and contrast the form and geometry of the above structures with seismites generated during the recent Christchurch earthquakes (Sep. 2010 and Feb. 2011). Hempton, M

  4. Parameters and a magnitude moment relationship from small earthquakes observed during hydraulic fracturing experiments in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, C.

    1982-04-01

    Using source parameters estimated from seismic spectra and magnitudes estimated from coda lengths, we demonstrate that the log-linear relationship between moment and magnitude holds for events with magnitudes as low as -6. Using, as a data set, events induced by hydraulic fracturing experiments at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) geothermal site, we find that the relationship between magnitude M and seismic moment (Mo) is log (Mo) = 17.27+0.77 M Moreover, the linear relationship between seismic moment and source radius (r) holds for the Fenton Hill microearthquakes. Analyses of the Fenton Hill data yield the following relationship. log (r) = 2.28+0.19 log (Mo)

  5. The EM Earthquake Precursor

    Science.gov (United States)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    directional techniques were employed, resulting in three mapped, potential epicenters. The remaining, weaker signals presented similar directionality results to more epicentral locations. In addition, the directional results of the Timpson field tests lead to the design and construction of a third prototype antenna. In a laboratory setting, experiments were created to fail igneous rock types within a custom-designed Faraday Cage. An antenna emplaced within the cage detected EM emissions, which were both reproducible and distinct, and the laboratory results paralleled field results. With a viable system and continuous monitoring, a fracture cycle could be established and observed in real-time. Sequentially, field data would be reviewed quickly for assessment; thus, leading to a much improved earthquake forecasting capability. The EM precursor determined by this method may surpass all prior precursor claims, and the general public will finally receive long overdue forecasting.

  6. Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells.

    Science.gov (United States)

    Dos Santos, Alessandra Antunes; López-Granero, Caridad; Farina, Marcelo; Rocha, João B T; Bowman, Aaron B; Aschner, Michael

    2018-03-01

    Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD + /NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA. Copyright © 2018. Published by Elsevier Ltd.

  7. Earthquake damage to underground facilities and earthquake related displacement fields

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1982-01-01

    The potential seismic risk for an underground facility is considered in the evaluation of its location and design. The possible damage resulting from either large-scale displacements or high accelerations should be considered in evaluating potential sites of underground facilities. Scattered through the available literature are statements to the effect that below a few hundred meters shaking and damage in mines is less than at the surface; however, data for decreased damage underground have not been completely reported or explained. In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  8. Response spectra for nuclear structures on rock sites considering the near-fault directivity effect

    Institute of Scientific and Technical Information of China (English)

    Xu Longiun; Yang Shengchao; Xie Lili

    2010-01-01

    Near-fault ground motions, potentially with large amplitude and typical velocity pulses, may significantly impact the performance of a wide range of structures. The current study is aimed at evaluating the safety implications of the near-fault effect on nuclear power plant facilities designed according to the Chinese code. To this end, a set of near-fault ground motions at rock sites with typical forward-directivity effect is examined with special emphasis on several key parameters and response spectra. Spectral comparison of the selected records with the Chinese and other code design spectra was conducted. The bi-normalized response spectra in terms of different comer periods are utilized to derive nuclear design spectra. It is concluded that nuclear design spectra on rock sites derived from typical rupture directivity records are significantly influenced both by the earthquake magnitude and the rupture distance. The nuclear design spectra specified in the code needs to be adjusted to reflect the near-fault directivity effect of large earthquakes.

  9. The Acheron rock avalanche deposit, Canterbury, New Zealand : age and implications for dating landslides

    International Nuclear Information System (INIS)

    Smith, G.M.; Bell, D.H.; Davies, T.R.H.

    2012-01-01

    New radiocarbon ages for wood samples retrieved from the base of the Acheron rock avalanche near Porters Pass, Canterbury, show a clustering of ages between 1370 and 1101 yr BP. This is significantly dissimilar to the established radiocarbon age of 500 ± 69 yr BP (NZ547), from weathering-rind thickness measurements and from lichen studies. This contradiction impacts on current calibrations of lichenometric and weathering-rind dating methods, which has serious implications for landslide and earthquake dates based on them. A 500-600 yr BP earthquake event along the Porters Pass-Amberley Fault Zone has been dated in an adjacent trench and is consistent with previous dates but does not correspond to the Acheron rock avalanche emplacement as previously proposed. The landslide may have been caused by either a Porters Pass Fault event (1100-800 yr BP) or by the better-constrained Round Top event (1010 ± 50 yr BP) on the Alpine Fault. (author). 30 refs., 13 figs., 2 tabs.

  10. Time-lapse imaging of fault properties at seismogenic depth using repeating earthquakes, active sources and seismic ambient noise

    Science.gov (United States)

    Cheng, Xin

    2009-12-01

    The time-varying stress field of fault systems at seismogenic depths plays the mort important role in controlling the sequencing and nucleation of seismic events. Using seismic observations from repeating earthquakes, controlled active sources and seismic ambient noise, five studies at four different fault systems across North America, Central Japan, North and mid-West China are presented to describe our efforts to measure such time dependent structural properties. Repeating and similar earthquakes are hunted and analyzed to study the post-seismic fault relaxation at the aftershock zone of the 1984 M 6.8 western Nagano and the 1976 M 7.8 Tangshan earthquakes. The lack of observed repeating earthquakes at western Nagano is attributed to the absence of a well developed weak fault zone, suggesting that the fault damage zone has been almost completely healed. In contrast, the high percentage of similar and repeating events found at Tangshan suggest the existence of mature fault zones characterized by stable creep under steady tectonic loading. At the Parkfield region of the San Andreas Fault, repeating earthquake clusters and chemical explosions are used to construct a scatterer migration image based on the observation of systematic temporal variations in the seismic waveforms across the occurrence time of the 2004 M 6 Parkfield earthquake. Coseismic fluid charge or discharge in fractures caused by the Parkfield earthquake is used to explain the observed seismic scattering properties change at depth. In the same region, a controlled source cross-well experiment conducted at SAFOD pilot and main holes documents two large excursions in the travel time required for a shear wave to travel through the rock along a fixed pathway shortly before two rupture events, suggesting that they may be related to pre-rupture stress induced changes in crack properties. At central China, a tomographic inversion based on the theory of seismic ambient noise and coda wave interferometry

  11. Geotechnical hazards from large earthquakes and heavy rainfalls

    CERN Document Server

    Kazama, Motoki; Lee, Wei

    2017-01-01

    This book is a collection of papers presented at the International Workshop on Geotechnical Natural Hazards held July 12–15, 2014, in Kitakyushu, Japan. The workshop was the sixth in the series of Japan–Taiwan Joint Workshops on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, held under the auspices of the Asian Technical Committee No. 3 on Geotechnology for Natural Hazards of the International Society for Soil Mechanics and Geotechnical Engineering. It was co-organized by the Japanese Geotechnical Society and the Taiwanese Geotechnical Society. The contents of this book focus on geotechnical and natural hazard-related issues in Asia such as earthquakes, tsunami, rainfall-induced debris flows, slope failures, and landslides. The book contains the latest information and mitigation technology on earthquake- and rainfall-induced geotechnical natural hazards. By dissemination of the latest state-of-the-art research in the area, the information contained in this book will help researchers, des...

  12. May 1970 Huaraz, Peru Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1970, an earthquake-induced rock and snow avalanche on Mt. Huascaran, Peru, buried the towns of Yungay and Ranrahirca. The magnitude 7.8 earthquake killed 66,794...

  13. Multiple remote-sensing assessment of the catastrophic collapse in Langtang Valley induced by the 2015 Gorkha earthquake

    Science.gov (United States)

    Nagai, Hiroto; Watanabe, Manabu; Tomii, Naoya; Tadono, Takeo; Suzuki, Shinichi

    2017-11-01

    The main shock of the 2015 Gorkha Earthquake in Nepal induced numerous avalanches, rockfalls, and landslides in Himalayan mountain regions. A major village in the Langtang Valley was destroyed and numerous people were victims of a catastrophic avalanche event, which consisted of snow, ice, rock, and blast wind. Understanding the hazard process mainly depends on limited witness accounts, interviews, and an in situ survey after a monsoon season. To record the immediate situation and to understand the deposition process, we performed an assessment by means of satellite-based observations carried out no later than 2 weeks after the event. The avalanche-induced sediment deposition was delineated with the calculation of decreasing coherence and visual interpretation of amplitude images acquired from the Phased Array-type L-band Synthetic Aperture Radar-2 (PALSAR-2). These outline areas are highly consistent with that delineated from a high-resolution optical image of WorldView-3 (WV-3). The delineated sediment areas were estimated as 0.63 km2 (PALSAR-2 coherence calculation), 0.73 km2 (PALSAR-2 visual interpretation), and 0.88 km2 (WV-3). In the WV-3 image, surface features were classified into 10 groups. Our analysis suggests that the avalanche event contained a sequence of (1) a fast splashing body with an air blast, (2) a huge, flowing muddy mass, (3) less mass flowing from another source, (4) a smaller amount of splashing and flowing mass, and (5) splashing mass without flowing on the east and west sides. By means of satellite-derived pre- and post-event digital surface models, differences in the surface altitudes of the collapse events estimated the total volume of the sediments as 5.51 ± 0.09 × 106 m3, the largest mass of which are distributed along the river floor and a tributary water stream. These findings contribute to detailed numerical simulation of the avalanche sequences and source identification; furthermore, altitude measurements after ice and snow

  14. Can Dams and Reservoirs Cause Earthquakes?

    Indian Academy of Sciences (India)

    induced earthquakes in that region. Figure 1. A cartoon to illus- trate the spatial relation- ships between dam, reser- ... learning experience for us graduate students. Thus, on that ... infallibility and persuasiveness as in Euclidean geometry. The.

  15. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    International Nuclear Information System (INIS)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions

  16. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    Energy Technology Data Exchange (ETDEWEB)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  17. Indoor radon and earthquake

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time on the basis of the Spitak earthquake of December 1988 (Armenia, December 1988) experience it is found out that the earthquake causes intensive and prolonged radon splashes which, rapidly dispersing in the open space of close-to-earth atmosphere, are contrastingly displayed in covered premises (dwellings, schools, kindergartens) even if they are at considerable distance from the earthquake epicenter, and this multiplies the radiation influence on the population. The interval of splashes includes the period from the first fore-shock to the last after-shock, i.e. several months. The area affected by radiation is larger vs. Armenia's territory. The scale of this impact on population is 12 times higher than the number of people injured in Spitak, Leninakan and other settlements (toll of injured - 25 000 people, radiation-induced diseases in people - over 300 000). The influence of radiation directly correlates with the earthquake force. Such a conclusion is underpinned by indoor radon monitoring data for Yerevan since 1987 (120 km from epicenter) 5450 measurements and multivariate analysis with identification of cause-and-effect linkages between geo dynamics of indoor radon under stable and conditions of Earth crust, behavior of radon in different geological mediums during earthquakes, levels of room radon concentrations and effective equivalent dose of radiation impact of radiation dose on health and statistical data on public health provided by the Ministry of Health. The following hitherto unexplained facts can be considered as consequences of prolonged radiation influence on human organism: long-lasting state of apathy and indifference typical of the population of Armenia during the period of more than a year after the earthquake, prevalence of malignant cancer forms in disaster zones, dominating lung cancer and so on. All urban territories of seismically active regions are exposed to the threat of natural earthquake-provoked radiation influence

  18. The 2009 Samoa-Tonga great earthquake triggered doublet

    Science.gov (United States)

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  19. Development of spectral shapes and attenuation relations from accelerograms recorded on rock and soil sites

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, A K; Rao, K S; Kushwaha, H S [Reactor Safety Div., Bhabha Atomic Research Centre, Mumbai (India)

    1998-06-01

    Earthquake accelerograms recorded on rock and soil sites have been analysed. Site-specific response spectra and peak ground acceleration attenuation relations have been developed. This report presents the normalised pseudo-absolute acceleration spectra for various values of damping and for various confidence levels. Scaling laws have been developed for the response spectra. The present results are based on a large database and comparison has been made with earlier results. These results will be useful in the earthquake resistant design of structures. (author) 22 refs., 7 figs., 5 tabs.

  20. Actions at Kashiwazaki Kariwa Nuclear Power Station after the Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Orita, Shuichi

    2009-01-01

    'The Niigataken Chuetsu-oki Earthquake in 2007' occurred on July 16, 2007, and seismic motions beyond those of the design basis earthquake were recorded at Kashiwazaki Kariwa nuclear power station located near the epicenter. After the earthquake, inspections and seismic response analyses have been being performed to grasp seismic induced impacts on structures, systems and components (SSCs). In addition, re-definition of design basis earthquake, upgrading, management against disasters have been also being conducted. (author)

  1. Gas migration in argillaceous rock

    International Nuclear Information System (INIS)

    Alonso, E. E.; Olivella, S.

    2007-01-01

    The intrinsic gas permeability of fractured argillaceous rocks depends on the current structure of micro-cracks and fissures of the rock. They are a consequence of the initial state and the subsequent deformations induced by stress and gas pressure changes. Stresses are also coupled with fluid pressures and, therefore, gas flow and mechanical behaviour are intensely coupled. Laboratory experiments, aimed at determining intrinsic permeability, show the relevant effect of volumetric deformations induced by isotropic, as well as deviatoric stress changes. The relevance, in practice, of the flow-mechanical coupling is illustrated by means of some results obtained during the performance of the drift scale test (DST) in fractured tuff in the Yucca Mountain facility. The technique of embedding discontinuities in continuum thermo-hydro-mechanical elements is capable of reproducing observed features of gas flow migration in clayey rocks. An example is described. It is believed that the developed approach provides a powerful computational procedure to handle complex gas phenomena in clayey rocks. (author)

  2. Charge Generation and Propagation in Igneous Rocks

    Science.gov (United States)

    Freund, Friedemann

    2002-01-01

    Various electrical phenomena have been reported prior to or concurrent with earthquakes such as resistivity changes, ground potentials, electromagnetic (EM), and luminous signals. Doubts have been raised as to whether some of these phenomena are real and indeed precursory. One of the reasons for uncertainty is that, despite decades of intense work, there is still no physically coherent model. Using low- to medium-velocity impacts to measure electrical signals with microsecond time resolution, it has now been observed that when dry gabbro and diorite cores are impacted at relatively low velocities, approximately 100 m/s, highly mobile charge carriers are generated in a small volume near the impact point. They spread through the rocks, causing electric potentials exceeding +400 mV, EM, and light emission. As the charge cloud spreads, the rock becomes momentarily conductive. When a dry granite block is impacted at higher velocity, approximately 1.5 km/s, the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. After the sound waves have passed, the surface of the granite block becomes positively charged, suggesting the same charge carriers as observed during the low-velocity impact experiments, expanding from within the bulk. During the next 2-3 ms the surface potential oscillates, indicating pulses of electrons injected from ground and contact electrodes. The observations are consistent with positive holes, e.g., defect electrons in the O(2-) sublattice, traveling via the O 2p-dominated valence band of the silicate minerals. Before activation, the positive holes lay dormant in the form of electrically inactive positive hole pairs (PHP), chemically equivalent to peroxy links, O3X/OO\\XO3, with X=Si(4+), Al(3+), etc. PHPs are introduced into the minerals by way of hydroxyl,O3X-OH, which all nominally anhydrous minerals incorporate when crystallizing in H2O-laden environments. The fact that positive holes can be

  3. Earthquake induced rock shear through a deposition hole - modelling of three scale tests for validation of models

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2012-01-01

    Document available in extended abstract form only. Three model shear tests of very high quality simulating a horizontal rock shear through a KBS-3V deposition hole in the centre of a canister were performed 1986. The tests simulated a deposition hole in the scale 1:10 with reference density of the buffer, very stiff confinement simulating the rock, and a solid bar of copper simulating the canister. The three tests were almost identical with exception of the rate of shear, which was varied between 0.031 and 160 mm/s, i.e. with a factor of more than 5000, and the density of the bentonite, which differed slightly. The tests were very well documented. Shear force, shear rate, total stress in the bentonite, strain in the copper and the movement of the top of the simulated canister were measured continuously during the shear. After finished shear the equipment was dismantled and careful sampling of the bentonite with measurement of water ratio and density were made. The deformed copper 'canister' was also carefully measured after the test. The tests have been modelled with the finite element code Abaqus with the same models and techniques that were used for the full scale cases in the Swedish safety assessment SR-Site. The results have been compared with the measured results, which has yielded very valuable information about the relevancy of the material models and the modelling technique. An elastic-plastic material model was used for the bentonite where the stress-strain relations have been derived from laboratory tests. The material model is also described in another article to this conference. The material model is made a function of both the density and the strain rate at shear. Since the shear is fast and takes place under undrained conditions, the density is not changed during the tests. However, strain rate varies largely with both the location of the elements and time. This can be taken into account in Abaqus by making the material model a function of the strain

  4. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    Science.gov (United States)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  5. The Alaska earthquake, March 27, 1964: lessons and conclusions

    Science.gov (United States)

    Eckel, Edwin B.

    1970-01-01

    One of the greatest earthquakes of all time struck south-central Alaska on March 27, 1964. Strong motion lasted longer than for most recorded earthquakes, and more land surface was dislocated, vertically and horizontally, than by any known previous temblor. Never before were so many effects on earth processes and on the works of man available for study by scientists and engineers over so great an area. The seismic vibrations, which directly or indirectly caused most of the damage, were but surface manifestations of a great geologic event-the dislocation of a huge segment of the crust along a deeply buried fault whose nature and even exact location are still subjects for speculation. Not only was the land surface tilted by the great tectonic event beneath it, with resultant seismic sea waves that traversed the entire Pacific, but an enormous mass of land and sea floor moved several tens of feet horizontally toward the Gulf of Alaska. Downslope mass movements of rock, earth, and snow were initiated. Subaqueous slides along lake shores and seacoasts, near-horizontal movements of mobilized soil (“landspreading”), and giant translatory slides in sensitive clay did the most damage and provided the most new knowledge as to the origin, mechanics, and possible means of control or avoidance of such movements. The slopes of most of the deltas that slid in 1964, and that produced destructive local waves, are still as steep or steeper than they were before the earthquake and hence would be unstable or metastable in the event of another great earthquake. Rockslide avalanches provided new evidence that such masses may travel on cushions of compressed air, but a widely held theory that glaciers surge after an earthquake has not been substantiated. Innumerable ground fissures, many of them marked by copious emissions of water, caused much damage in towns and along transportation routes. Vibration also consolidated loose granular materials. In some coastal areas, local

  6. Faulting within the Mount St. Helens conduit and implications for volcanic earthquakes

    Science.gov (United States)

    Pallister, John S.; Cashman, Katharine V.; Hagstrum, Jonathan T.; Beeler, Nicholas M.; Moran, Seth C.; Denlinger, Roger P.

    2013-01-01

    The 2004–2008 eruption of Mount St. Helens produced seven dacite spines mantled by cataclastic fault rocks, comprising an outer fault core and an inner damage zone. These fault rocks provide remarkable insights into the mechanical processes that accompany extrusion of degassed magma, insights that are useful in forecasting dome-forming eruptions. The outermost part of the fault core consists of finely comminuted fault gouge that is host to 1- to 3-mm-thick layers of extremely fine-grained slickenside-bearing ultracataclasite. Interior to the fault core, there is an ∼2-m-thick damage zone composed of cataclastic breccia and sheared dacite, and interior to the damage zone, there is massive to flow-banded dacite lava of the spine interior. Structures and microtextures indicate entirely brittle deformation, including rock breakage, tensional dilation, shearing, grain flow, and microfaulting, as well as gas and fluid migration through intergranular pores and fractures in the damage zone. Slickenside lineations and consistent orientations of Riedel shears indicate upward shear of the extruding spines against adjacent conduit wall rocks.Paleomagnetic directions, demagnetization paths, oxide mineralogy, and petrology indicate that cataclasis took place within dacite in a solidified steeply dipping volcanic conduit at temperatures above 500 °C. Low water content of matrix glass is consistent with brittle behavior at these relatively high temperatures, and the presence of tridymite indicates solidification depths of <1 km. Cataclasis was coincident with the eruption’s seismogenic zone at <1.5 km.More than a million small and low-frequency “drumbeat” earthquakes with coda magnitudes (Md) <2.0 and frequencies <5 Hz occurred during the 2004–2008 eruption. Our field data provide a means with which to estimate slip-patch dimensions for shear planes and to compare these with estimates of slip patches based on seismic moments and shear moduli for dacite rock and

  7. Frictional property of rocks in the Izu-Bonin-Mariana Forearc under high temperature and pressure conditions

    Science.gov (United States)

    Hyodo, G.; Takahashi, M.; Saito, S.; Hirose, T.

    2014-12-01

    The Kanto region in central Japan lies atop of three tectonic plates: the North American Plate, the Pacific Plate, and the Philippine Sea Plate. The collision and subduction of the Izu-Bonin-Mariana (IBM) arc on the Philippine Sea Plate into the Kanto region results in occurring the different type of earthquakes, including seismic slip (e.g., the Kanto earthquake) and aseismic creep (i.e., slow earthquakes around the Boso peninsula). The seismic and aseismic slip seems to generate side by side at almost same depth (probably nearly same P-T conditions). This study focus on frictional property of incoming materials to be subducted into the Kanto region, in order to examine a hypothesis that the different types of slips arise from different input materials. Thus, we have performed friction experiments on rocks that constitute the IBM forearc using a high P-T gas medium apparatus at AIST. We sampled five rocks (marl, boninite, andesite, sheared serpentinite and serpentinized dunite) recovered from the IBM forearc by Leg 125, Ocean Drilling Program (ODP Site 784, 786). The rocks were crushed and sieved into 10˜50 µm in grain size. Experiments were conducted at temperature of 300○C, confining pressure of 156 MPa, pore pressure of 60 MPa and axial displacement rates of 0.1 and 1 µm/s. For marl, andesite and boninite, a periodic stick-slip behavior appears at 1 µm/s. Rise time of the stick-slip behaviors are quite long (3.1, 9.9 and 14.2 sec, for marl, andesite and boninite, respectively). We called such events as a "slow stick-slip". Similar slow stick-slip behaviors were observed in previous studies (Noda and Shimamoto, 2010; Okazaki, 2013; Kaproth and Marone, 2013), but this is first time to recognize this characteristic slip behavior in sedimentary and igneous rocks. Although it is difficult to discuss the diverse slip behaviors observed at the Kanto region based on our limited experimental results, we will examine the conditions where the transition between

  8. Earthquakes trigger the loss of groundwater biodiversity

    Science.gov (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; di Cioccio, Alessia; di Lorenzo, Tiziana; Petitta, Marco; di Carlo, Piero

    2014-09-01

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and ``ecosystem engineers'', we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  9. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  10. Numerical modeling of liquefaction-induced failure of geo-structures subjected to earthquakes

    International Nuclear Information System (INIS)

    Rapti, Ioanna

    2016-01-01

    The increasing importance of performance-based earthquake engineering analysis points out the necessity to assess quantitatively the risk of liquefaction. In this extreme scenario of soil liquefaction, devastating consequences are observed, e.g. excessive settlements, lateral spreading and slope instability. The present PhD thesis discusses the global dynamic response and interaction of an earth structure-foundation system, so as to determine quantitatively the collapse mechanism due to foundation's soil liquefaction. As shear band generation is a potential earthquake-induced failure mode in such structures, the FE mesh dependency of results of dynamic analyses is thoroughly investigated and an existing regularization method is evaluated. The open-source FE software developed by EDF R and D, called Code-Aster, is used for the numerical simulations, while soil behavior is represented by the ECP constitutive model, developed at Centrale-Supelec. Starting from a simplified model of 1D SH wave propagation in a soil column with coupled hydro-mechanical nonlinear behavior, the effect of seismic hazard and soil's permeability on liquefaction is assessed. Input ground motion is a key component for soil liquefaction apparition, as long duration of main shock can lead to important nonlinearity and extended soil liquefaction. Moreover, when a variation of permeability as function of liquefaction state is considered, changes in the dissipation phase of excess pore water pressure and material behavior are observed, which do not follow a single trend. The effect of a regularization method with enhanced kinematics approach, called first gradient of dilation model, on 1D SH wave propagation is studied through an analytical solution. Deficiencies of the use of this regularization method are observed and discussed, e.g. spurious waves apparition in the soil's seismic response. Next, a 2D embankment-type model is simulated and its dynamic response is evaluated in dry, fully drained

  11. The evolution of hillslope strength following large earthquakes

    Science.gov (United States)

    Brain, Matthew; Rosser, Nick; Tunstall, Neil

    2017-04-01

    Earthquake-induced landslides play an important role in the evolution of mountain landscapes. Earthquake ground shaking triggers near-instantaneous landsliding, but has also been shown to weaken hillslopes, preconditioning them for failure during subsequent seismicity and/or precipitation events. The temporal evolution of hillslope strength during and following primary seismicity, and if and how this ultimately results in failure, is poorly constrained due to the rarity of high-magnitude earthquakes and limited availability of suitable field datasets. We present results obtained from novel geotechnical laboratory tests to better constrain the mechanisms that control strength evolution in Earth materials of differing rheology. We consider how the strength of hillslope materials responds to ground-shaking events of different magnitude and if and how this persists to influence landslide activity during interseismic periods. We demonstrate the role of stress path and stress history, strain rate and foreshock and aftershock sequences in controlling the evolution of hillslope strength and stability. Critically, we show how hillslopes can be strengthened rather than weakened in some settings, challenging conventional assumptions. On the basis of our laboratory data, we consider the implications for earthquake-induced geomorphic perturbations in mountain landscapes over multiple timescales and in different seismogenic settings.

  12. Development of tipping-over analysis of cask subjected to earthquake strong motion

    International Nuclear Information System (INIS)

    Shirai, Koji; Ito, Chihiro; Ryu, Hiroshi

    1993-01-01

    Since a cask is vertically oriented during loading in cask-storage, it is necessary to investigate the integrity of the cask against tipping-over during strong earthquakes. The rocking and sliding behavior of the cask during strong earthquakes can be analyzed as a dynamic vibration problem for a rigid cylinder. In this paper, in order to clarify the tipping-over characteristics of a cask during strong earthquakes, the authors applied the Distinct Element Method (DEM) to the seismic response analysis of the cask. DEM was introduced by Cundall P.A. in 1971. It is based on the use of an explicit numerical scheme. The cask was considered to be a rigid polygonal element, which satisfied the equation of motion and the law of action and reaction. They examined the applicability of this code by comparison with experimental results obtained from shaking table tests using scale model casks considering the dimension of a 100 ton class full-scale cask

  13. Advancements in near real time mapping of earthquake and rainfall induced landslides in the Avcilar Peninsula, Marmara Region

    Science.gov (United States)

    Coccia, Stella

    2014-05-01

    Stella COCCIA (1), Fiona THEOLEYRE (1), Pascal BIGARRE(1) , Semih ERGINTAV(2), Oguz OZEL(3) and Serdar ÖZALAYBEY(4) (1) National Institute of Industrial Environment and Risks (INERIS) Nancy, France, (2) Kandilli Observatory and Earthquake Research Institute (KOERI), Istanbul, Turkey, (3) Istanbul University (IU), Istanbul, Turkey, (4) TUBITAK MAM, Istanbul, Turkey The European Project MARsite (http://marsite.eu/), started in 2012 and leaded by the KOERI, aims to improve seismic risk evaluation and preparedness to face the next dreadful large event expected for the next three decades. MARsite is thus expected to move a "step forward" the most advanced monitoring technologies, and offering promising open databases to the worldwide scientific community in the frame of other European environmental large-scale infrastructures, such as EPOS (http://www.epos-eu.org/ ). Among the 11 work packages (WP), the main aim of the WP6 is to study seismically-induced landslide hazard, by using and improving observing and monitoring systems in geological, hydrogeotechnical and seismic onshore and offshore areas. One of the WP6 specific study area is the Avcilar Peninsula, situated between Kucukcekmece and Buyukcekmece Lakes in the north-west of the region of Marmara. There, more than 400 landslides are located. According to geological and geotechnical investigations and studies, soil movements of this area are related to underground water and pore pressure changes, seismic forces arising after earthquakes and decreasing sliding strength in fissured and heavily consolidated clays. The WP6 includes various tasks and one of these works on a methodology to develop a dynamic system to create combined earthquake and rainfall induced landslides hazard maps at near real time and automatically. This innovative system could be used to improve the prevention strategy as well as in disaster management and relief operations. Base on literature review a dynamic GIS platform is used to combine

  14. A Decade of Induced Slip on the Causative Fault of the 2015 Mw 4.0 Venus Earthquake, Northeast Johnson County, Texas

    Science.gov (United States)

    Scales, Monique M.; DeShon, Heather R.; Magnani, M. Beatrice; Walter, Jacob I.; Quinones, Louis; Pratt, Thomas L.; Hornbach, Matthew J.

    2017-10-01

    On 7 May 2015, a Mw 4.0 earthquake occurred near Venus, northeast Johnson County, Texas, in an area of the Bend Arch-Fort Worth Basin that reports long-term, high-volume wastewater disposal and that has hosted felt earthquakes since 2009. In the weeks following the Mw 4.0 earthquake, we deployed a local seismic network and purchased nearby active-source seismic reflection data to capture additional events, characterize the causative fault, and explore potential links between ongoing industry activity and seismicity. Hypocenter relocations of the resulting local earthquake catalog span 4-6 km depth and indicate a fault striking 230°, dipping to the west, consistent with a nodal plane of the Mw 4.0 regional moment tensor. Fault plane solutions indicate normal faulting, with B axes striking parallel to maximum horizontal compressive stress. Seismic reflection data image the reactivated basement fault penetrating the Ordovician disposal layer and Mississippian production layer, but not displacing post-Lower Pennsylvanian units. Template matching at regional seismic stations indicates that low-magnitude earthquakes with similar waveforms began in April 2008, with increasing magnitude over time. Pressure data from five saltwater disposal wells within 5 km of the active fault indicate a disposal formation that is 0.9-4.8 MPa above hydrostatic. We suggest that the injection of 28,000,000 m3 of wastewater between 2006 and 2015 at these wells led to an increase in subsurface pore fluid pressure that contributed to inducing this long-lived earthquake sequence. The 2015 Mw 4.0 event represents the largest event in the continuing evolution of slip on the causative fault.

  15. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  16. Seismic properties of the Longmen Shan complex: Implications for the moment magnitude of the great 2008 Wenchuan earthquake in China

    Science.gov (United States)

    Sun, Shengsi; Ji, Shaocheng; Wang, Qian; Wang, Hongcai; Long, Changxing; Salisbury, Matthew

    2012-09-01

    The 12 May 2008 Wenchuan earthquake is the largest active tectonic event reported to date in Sichuan (China). We have experimentally calibrated, up to 800 MPa, seismic and elastic properties of 12 representative samples from the Longmen Shan complex in which this great earthquake took place and its coseismic ruptures nucleated and propagated. Most of the samples show little Vp or Vs anisotropy at pressures above the microcrack-closure pressure (Pc = 200-300 MPa), and so the variation of anisotropy with pressure provides important hints for the preferred orientation of microcracks in the nonlinear poroelastic regime below Pc. Geothermal and rheological profiles indicate that the focal depth (~ 19 km) corresponds to the base of the schizosphere, below which the Longmen Shan complex switches from the brittle to ductile behavior. The investigation reveals that the crust of the Longmen Shan range consists of 4 layers from the surface to the Moho: Layer 1: Vp < 4.88 km/s (0-3 km thick, sedimentary rocks such as limestone, sandstone, conglomerate, and mudstone); Layer 2: Vp = 5.95-6.25 km/s (25-28 km thick, felsic rocks); Layer 3: Vp = 6.55 km/s (10 km thick, 67.5% felsic and 32.5% mafic rocks); and Layer 4: Vp = 6.90 km/s (8 km thick, 20.0% felsic and 80.0% mafic rocks). The average Vp/Vs ratio of 1.71 or Poisson's ratio of 0.24 calculated for the whole crust is consistent with the results measured using teleseismic receiver function techniques. This study also offers necessary information for broadband simulations of strong ground motions in the assessment and forecast of earthquake hazards in the region. Furthermore, the study, which yields a moment magnitude of 7.9-8.0 given the variation in the dip of the coseismic ruptures and the uncertainty in the depth to which the coseismic rupture may propagate downwards below the depth of the mainshock hypocenter, presents the first accurate quantification of the 2008 Wenchuan earthquake's size.

  17. Case Studies of Rock Bursts Under Complicated Geological Conditions During Multi-seam Mining at a Depth of 800 m

    Science.gov (United States)

    Zhao, Tong-bin; Guo, Wei-yao; Tan, Yun-liang; Yin, Yan-chun; Cai, Lai-sheng; Pan, Jun-feng

    2018-05-01

    A serious rock burst ("4.19" event) occurred on 19 April 2016 in the No. 4 working face of the No. 10 coal seam in Da'anshan Coal Mine, Jingxi Coalfield. According to the China National Seismological Network, a 2.7 magnitude earthquake was simultaneously recorded in this area. The "4.19" event resulted in damage to the entire longwall face and two gateways that were 105 m in long. In addition, several precursor bursts and mine earthquakes had occurred between October 2014 and April 2016 in the two uphill roadways and the No. 4 working face. In this paper, the engineering geological characteristics and in situ stress field are provided, and then the rock burst distributions are introduced. Next, the temporal and spatial characteristics, geological and mining conditions, and other related essential information are reviewed in detail. The available evidence and possible explanations for the rock burst mechanisms are also presented and discussed. Based on the description and analysis of these bursts, a detailed classification system of rock burst mechanisms is established. According to the main causes and different disturbance stresses (i.e., high/low disturbance stresses and far-field/near-field high disturbance stresses), there are a total of nine types of rock bursts. Thus, some guidelines for controlling or mitigating different types of rock bursts are provided. These experiences and strategies not only provide an essential reference for understanding the different rock burst mechanisms, but also build a critical foundation for selecting mitigation measures and optimizing the related technical parameters during mining or tunnelling under similar conditions.

  18. Electromagnetic Emissions During Rock-fracturing Experiments Inside Magnetic Field Free Space

    Science.gov (United States)

    Wang, H.; Zhou, J.; Zhu, T.; Jin, H.

    2012-12-01

    Abnormal electromagnetic emission (EME) signal is one type of the most important precursors before earthquake, which has been widely observed and recorded before large earthquake, but the physical mechanism underlying the phenomenon is unclear and under controversy. Monitoring the EME signals during rock-fracturing experiments in laboratory is an effective way to study the phenomena and their underlying mechanism. Electromagnetic noise is everywhere because industrial and civilian electrical equipments have been widely used, which make difficulties to the in-lab experiments and field monitoring. To avoid the interference from electromagnetic noise, electromagnetic experiments must be carried out inside shielded space. Magnetic Field Free Space (MFFS) was constructed by Institute of Geophysics, China Earthquake Administration in 1980s. MFFS is a near-spherical polyhedron 'space' with 26 faces and inside diameter about 2.3 m. It is enclosed by 8-layer permalloy 1J85 for shielding magnetic field and 2-layer purified aluminium for shielding electric field. MFFS mainly shields static magnetic field by a factor of 160-4000 for the magnetic signals with the frequencies ranging from 0.01 Hz to 10 Hz. The intensity of magnetic field inside the space is less than 20 nT and its fluctuation is less than 0.3 nT in 90 hours. MFFS can dramatically shield EME signals in the frequency range of EME antennas utilized in our experiments, (several to ~320) kHz, by at least 90%, based on observation. Rock specimens (granite, marble) were fractured by two ways inside MFFS. 1) Cuboid bulk specimens were drilled, filled with static cracking agent, and then dilated from inside until fracture. 2) Cylindrical rock specimens were stressed until fracture by using a non-magnetic rock testing machine with the maximum testing force 300kN. EME, acoustic emission (AE) and strain signals were collected synchronously by the same data acquisitor, Acoustic Emission Workstation made by Physical Acoustics

  19. Earthquake precursory events around epicenters and local active faults

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S. B.; Haydari Azad, F.

    2013-05-01

    The chain of underground events which are triggered by seismic activities and physical/chemical interactions prior to a shake in the earth's crust may produce surface and above surface phenomena. During the past decades many researchers have been carried away to seek the possibility of short term earthquake prediction using remote sensing data. Currently, there are several theories about the preparation stages of earthquakes most of which stress on raises in heat and seismic waves as the main signs of an impending earthquakes. Their differences only lie in the secondary phenomena which are triggered by these events. In any case, with the recent advances in remote sensing sensors and techniques now we are able to provide wider, more accurate monitoring of land, ocean and atmosphere. Among all theoretical factors, changes in Surface Latent Heat Flux (SLHF), Sea & Land Surface Temperature (SST & LST) and surface chlorophyll-a are easier to record from earth observing satellites. SLHF is the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere. Abnormal variations in this factor have been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. In case of oceanic earthquakes, higher temperature at the ocean beds may lead to higher amount of Chl-a on the sea surface. On the other hand, it has been also said that the leak of Radon gas which occurs as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT). We have chosen to perform a statistical, long-term, and short-term approach by considering the reoccurrence intervals of past

  20. A Mw 6.3 earthquake scenario in the city of Nice (southeast France): ground motion simulations

    Science.gov (United States)

    Salichon, Jérome; Kohrs-Sansorny, Carine; Bertrand, Etienne; Courboulex, Françoise

    2010-07-01

    The southern Alps-Ligurian basin junction is one of the most seismically active zone of the western Europe. A constant microseismicity and moderate size events (3.5 case of an offshore Mw 6.3 earthquake located at the place where two moderate size events (Mw 4.5) occurred recently and where a morphotectonic feature has been detected by a bathymetric survey. We used a stochastic empirical Green’s functions (EGFs) summation method to produce a population of realistic accelerograms on rock and soil sites in the city of Nice. The ground motion simulations are calibrated on a rock site with a set of ground motion prediction equations (GMPEs) in order to estimate a reasonable stress-drop ratio between the February 25th, 2001, Mw 4.5, event taken as an EGF and the target earthquake. Our results show that the combination of the GMPEs and EGF techniques is an interesting tool for site-specific strong ground motion estimation.

  1. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges

    Science.gov (United States)

    Jin, Zhibin; Pei, Shiling; Li, Xiaozhen; Liu, Hongyan; Qiang, Shizhong

    2016-11-01

    The running safety of railway vehicles on bridges can be negatively affected by earthquake events. This phenomenon has traditionally been investigated with only the lateral ground excitation component considered. This paper presented results from a numerical investigation on the contribution of vertical ground motion component to the derailment of vehicles on simply-supported bridges. A full nonlinear wheel-rail contact model was used in the investigation together with the Hertzian contact theory and nonlinear creepage theory, which allows the wheel to jump vertically and separate from the rail. The wheel-rail relative displacement was used as the criterion for derailment events. A total of 18 ground motion records were used in the analysis to account for the uncertainty of ground motions. The results showed that inclusion of vertical ground motion will likely increase the chance of derailment. It is recommended to include vertical ground motion component in earthquake induced derailment analysis to ensure conservative estimations. The derailment event on bridges was found to be more closely related to the deck acceleration rather than the ground acceleration.

  2. Pain after earthquake

    Directory of Open Access Journals (Sweden)

    Angeletti Chiara

    2012-06-01

    Full Text Available Abstract Introduction On 6 April 2009, at 03:32 local time, an Mw 6.3 earthquake hit the Abruzzi region of central Italy causing widespread damage in the City of L Aquila and its nearby villages. The earthquake caused 308 casualties and over 1,500 injuries, displaced more than 25,000 people and induced significant damage to more than 10,000 buildings in the L'Aquila region. Objectives This observational retrospective study evaluated the prevalence and drug treatment of pain in the five weeks following the L'Aquila earthquake (April 6, 2009. Methods 958 triage documents were analysed for patients pain severity, pain type, and treatment efficacy. Results A third of pain patients reported pain with a prevalence of 34.6%. More than half of pain patients reported severe pain (58.8%. Analgesic agents were limited to available drugs: anti-inflammatory agents, paracetamol, and weak opioids. Reduction in verbal numerical pain scores within the first 24 hours after treatment was achieved with the medications at hand. Pain prevalence and characterization exhibited a biphasic pattern with acute pain syndromes owing to trauma occurring in the first 15 days after the earthquake; traumatic pain then decreased and re-surged at around week five, owing to rebuilding efforts. In the second through fourth week, reports of pain occurred mainly owing to relapses of chronic conditions. Conclusions This study indicates that pain is prevalent during natural disasters, may exhibit a discernible pattern over the weeks following the event, and current drug treatments in this region may be adequate for emergency situations.

  3. The Hyogoken-Nanbu Earthquake and its characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Irikura, Kojiro [Kyoto Univ., Uji (Japan). Disaster Prevention Research Inst.

    1997-03-01

    We applied the empirical Green`s function method for simulating strong ground motions during the 1995 Hyogo-ken Nanbu earthquake at less and heavily damaged sites in near-source area, where the mainshock records were not obtained. We had reasonable levels of ground motions with peak acceleration of about 1,000 gals and peak velocity of 130 cm/s at the heavily damaged sites, whereas about 300 gals and 60 cm/sat the rock site in near-fault area. Since both the damaged sites and rock site are affected by almost the same forward directivity effects, the difference between them is mainly due to the basin edge effect. We concluded that the destructive motions were caused by the multiplier effect of both the forward rupture directivity and basin edge effects. Special care should be taken to ground motions amplified by the coupling of the source and geological structure effects when mapping seismic hazards in urbanized areas. (J.P.N.)

  4. The Hyogoken-Nanbu Earthquake and its characteristics

    International Nuclear Information System (INIS)

    Irikura, Kojiro

    1997-01-01

    We applied the empirical Green's function method for simulating strong ground motions during the 1995 Hyogo-ken Nanbu earthquake at less and heavily damaged sites in near-source area, where the mainshock records were not obtained. We had reasonable levels of ground motions with peak acceleration of about 1,000 gals and peak velocity of 130 cm/s at the heavily damaged sites, whereas about 300 gals and 60 cm/sat the rock site in near-fault area. Since both the damaged sites and rock site are affected by almost the same forward directivity effects, the difference between them is mainly due to the basin edge effect. We concluded that the destructive motions were caused by the multiplier effect of both the forward rupture directivity and basin edge effects. Special care should be taken to ground motions amplified by the coupling of the source and geological structure effects when mapping seismic hazards in urbanized areas. (J.P.N.)

  5. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  6. Rock fill in a KBS-3 repository. Rock material for filling of shafts and ramps in a KBS-3V repository in the closure phase

    International Nuclear Information System (INIS)

    Pusch, Roland

    2008-09-01

    The content of large blocks in blasted rock makes it impossible to fill and compact the material effectively unless those larger than about 500 mm are removed. Tunnel Boring Machine (TBM) muck gives flat chips, that are usually not longer than a couple of decimeters, and serves better as backfill. The granulometrical composition of both types can be more suitable for effective compaction by crushing, which is hence a preferable process. Use of unsorted, unprocessed blasted rock can only be accepted if the density and physical properties, like self-compaction, are not important. Crushing of blasted rock and TBM muck for backfilling can be made in one or two steps depending on the required gradation. Placement of rock fill is best made by use of tractors with blades that push the material forwards over already placed and compacted material. The dry density of well graded rock fill effectively compacted by very heavy vibratory rollers can be as high as 2,400 kg/m3. For road compaction by ordinary vibratory rollers common dry density values are in the interval 2,050 to 2,200 kg m 3 . Blasted rock dumped and moved on site by tractors can get an average dry density of 1,600-1,800 kg/m3 without compaction. Crushed, blasted rock and TBM muck placed by tractors in horizontal layers and compacted by 5-10 t vibrating rollers in the lower part of the rooms, and moved by tractors to form inclined layers compacted by vibrating plates in the upper part, would get a dry density of 1,900-2,000 kg/m 3 . Flushing water over the rock fill in conjunction with the compaction work gives more effective densification than dry compaction. Based on recorded settlement of Norwegian rock fill dams constructed with water flushing it is estimated that the self-compaction of a 5 m high backfill of crushed rock or TBM muck causes a settlement of the top of the backfill of about 8 mm while a 200 m high shaft fill would undergo compression by more than half a meter. Repeated, strong earthquakes may

  7. Rock fill in a KBS-3 repository. Rock material for filling of shafts and ramps in a KBS-3V repository in the closure phase

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland (Geodevelopment International AB/SWECO AB, Lund (Sweden))

    2008-09-15

    The content of large blocks in blasted rock makes it impossible to fill and compact the material effectively unless those larger than about 500 mm are removed. Tunnel Boring Machine (TBM) muck gives flat chips, that are usually not longer than a couple of decimeters, and serves better as backfill. The granulometrical composition of both types can be more suitable for effective compaction by crushing, which is hence a preferable process. Use of unsorted, unprocessed blasted rock can only be accepted if the density and physical properties, like self-compaction, are not important. Crushing of blasted rock and TBM muck for backfilling can be made in one or two steps depending on the required gradation. Placement of rock fill is best made by use of tractors with blades that push the material forwards over already placed and compacted material. The dry density of well graded rock fill effectively compacted by very heavy vibratory rollers can be as high as 2,400 kg/m3. For road compaction by ordinary vibratory rollers common dry density values are in the interval 2,050 to 2,200 kg m3. Blasted rock dumped and moved on site by tractors can get an average dry density of 1,600-1,800 kg/m3 without compaction. Crushed, blasted rock and TBM muck placed by tractors in horizontal layers and compacted by 5-10 t vibrating rollers in the lower part of the rooms, and moved by tractors to form inclined layers compacted by vibrating plates in the upper part, would get a dry density of 1,900-2,000 kg/m3. Flushing water over the rock fill in conjunction with the compaction work gives more effective densification than dry compaction. Based on recorded settlement of Norwegian rock fill dams constructed with water flushing it is estimated that the self-compaction of a 5 m high backfill of crushed rock or TBM muck causes a settlement of the top of the backfill of about 8 mm while a 200 m high shaft fill would undergo compression by more than half a meter. Repeated, strong earthquakes may

  8. Estimating shaking-induced casualties and building damage for global earthquake events: a proposed modelling approach

    Science.gov (United States)

    So, Emily; Spence, Robin

    2013-01-01

    Recent earthquakes such as the Haiti earthquake of 12 January 2010 and the Qinghai earthquake on 14 April 2010 have highlighted the importance of rapid estimation of casualties after the event for humanitarian response. Both of these events resulted in surprisingly high death tolls, casualties and survivors made homeless. In the Mw = 7.0 Haiti earthquake, over 200,000 people perished with more than 300,000 reported injuries and 2 million made homeless. The Mw = 6.9 earthquake in Qinghai resulted in over 2,000 deaths with a further 11,000 people with serious or moderate injuries and 100,000 people have been left homeless in this mountainous region of China. In such events relief efforts can be significantly benefitted by the availability of rapid estimation and mapping of expected casualties. This paper contributes to ongoing global efforts to estimate probable earthquake casualties very rapidly after an earthquake has taken place. The analysis uses the assembled empirical damage and casualty data in the Cambridge Earthquake Impacts Database (CEQID) and explores data by event and across events to test the relationships of building and fatality distributions to the main explanatory variables of building type, building damage level and earthquake intensity. The prototype global casualty estimation model described here uses a semi-empirical approach that estimates damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings. This approach accounts for the effect of the very different types of buildings (by climatic zone, urban or rural location, culture, income level etc), on casualties. The resulting casualty parameters were tested against the overall casualty data from several historical earthquakes in CEQID; a reasonable fit was found.

  9. One Basin, One Stress Regime, One Orientation of Seismogenic Basement Faults, Variable Spatio-Temporal Slip Histories: Lessons from Fort Worth Basin Induced Earthquake Sequences

    Science.gov (United States)

    DeShon, H. R.; Brudzinski, M.; Frohlich, C.; Hayward, C.; Jeong, S.; Hornbach, M. J.; Magnani, M. B.; Ogwari, P.; Quinones, L.; Scales, M. M.; Stump, B. W.; Sufri, O.; Walter, J. I.

    2017-12-01

    years prior to the onset of earthquakes. No log-linear relationship to cumulative injection is found for DFW, Azle or Irving-Dallas. Analysis of Cleburne is ongoing. We explore the implications of these relationships toward understanding the physical mechanism(s) of induced earthquakes and in design of effective mitigation strategies.

  10. Rock magnetic expression of fluid infiltration in the Yingxiu-Beichuan fault (Longmen Shan thrust belt, China)

    NARCIS (Netherlands)

    Yang, T.; Yang, Xiaosong; Duan, Qingbao; Chen, J.; Dekkers, M.J.

    Fluid infiltration within fault zones is an important process in earthquake rupture. Magnetic properties of fault rocks convey essential clues pertaining to physicochemical processes in fault zones. In 2011, two shallow holes (134 and 54 m depth, respectively) were drilled into the Yingxiu-Beichuan

  11. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    Science.gov (United States)

    Serata, S.

    2006-12-01

    The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical

  12. Earthquake-induced landslide-susceptibility mapping using an artificial neural network

    Directory of Open Access Journals (Sweden)

    S. Lee

    2006-01-01

    Full Text Available The purpose of this study was to apply and verify landslide-susceptibility analysis techniques using an artificial neural network and a Geographic Information System (GIS applied to Baguio City, Philippines. The 16 July 1990 earthquake-induced landslides were studied. Landslide locations were identified from interpretation of aerial photographs and field survey, and a spatial database was constructed from topographic maps, geology, land cover and terrain mapping units. Factors that influence landslide occurrence, such as slope, aspect, curvature and distance from drainage were calculated from the topographic database. Lithology and distance from faults were derived from the geology database. Land cover was identified from the topographic database. Terrain map units were interpreted from aerial photographs. These factors were used with an artificial neural network to analyze landslide susceptibility. Each factor weight was determined by a back-propagation exercise. Landslide-susceptibility indices were calculated using the back-propagation weights, and susceptibility maps were constructed from GIS data. The susceptibility map was compared with known landslide locations and verified. The demonstrated prediction accuracy was 93.20%.

  13. A non-accelerating foreshock sequence followed by a short period of quiescence for a large inland earthquake

    Science.gov (United States)

    Doi, I.; Kawakata, H.

    2012-12-01

    Laboratory experiments [e.g. Scholz, 1968; Lockner et al., 1992] and field observations [e.g. Dodge et al., 1996; Helmstetter and Sornette, 2003; Bouchon et al., 2011] have elucidated part of foreshock behavior and mechanism, but we cannot identify foreshocks while they are occurring. Recently, in Japan, a dense seismic network, Hi-net (High Sensitivity Seismograph Network), provides continuous waveform records for regional seismic events. The data from this network enable us to analyze small foreshocks which occur on long period time scales prior to a major event. We have an opportunity to grasp the more detailed pattern of foreshock generation. Using continuous waveforms recorded at a seismic station located in close proximity to the epicenter of the 2008 Iwate-Miyagi inland earthquake, we conducted a detailed investigation of its foreshocks. In addition to the two officially recognized foreshocks, calculation of cross-correlation coefficients between the continuous waveform record and one of the previously recognized foreshocks revealed that 20 micro foreshocks occurred within the same general area. Our analysis also shows that all of these foreshocks occurred within the same general area relative to the main event. Over the two week period leading up to the Iwate-Miyagi earthquake, such foreshocks only occurred during the last 45 minutes, specifically over a 35 minute period followed by a 10 minute period of quiescence just before the mainshock. We found no evidence of acceleration of this foreshock sequence. Rock fracturing experiments using a constant loading rate or creep tests have consistently shown that the occurrence rate of small fracturing events (acoustic emissions; AEs) increases before the main rupture [Scholz, 1968]. This accelerative pattern of preceding events was recognized in case of the 1999 Izmit earthquake [Bouchon et al., 2011]. Large earthquakes however need not be accompanied by acceleration of foreshocks if a given fault's host rock

  14. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin; Ampuero, Jean Paul; Mai, Paul Martin; Cappa, Fré dé ric

    2017-01-01

    the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes

  15. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  16. Implications of fault constitutive properties for earthquake prediction.

    Science.gov (United States)

    Dieterich, J H; Kilgore, B

    1996-04-30

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  17. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  18. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    Science.gov (United States)

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  19. Earthquake induced liquefaction hazard, probability and risk assessment in the city of Kolkata, India: its historical perspective and deterministic scenario

    Science.gov (United States)

    Nath, Sankar Kumar; Srivastava, Nishtha; Ghatak, Chitralekha; Adhikari, Manik Das; Ghosh, Ambarish; Sinha Ray, S. P.

    2018-01-01

    Liquefaction-induced ground failure is one amongst the leading causes of infrastructure damage due to the impact of large earthquakes in unconsolidated, non-cohesive, water saturated alluvial terrains. The city of Kolkata is located on the potentially liquefiable alluvial fan deposits of Ganga-Bramhaputra-Meghna Delta system with subsurface litho-stratigraphic sequence comprising of varying percentages of clay, cohesionless silt, sand, and gravel interbedded with decomposed wood and peat. Additionally, the region has moderately shallow groundwater condition especially in the post-monsoon seasons. In view of burgeoning population, there had been unplanned expansion of settlements in the hazardous geological, geomorphological, and hydrological conditions exposing the city to severe liquefaction hazard. The 1897 Shillong and 1934 Bihar-Nepal earthquakes both of M w 8.1 reportedly induced Modified Mercalli Intensity of IV-V and VI-VII respectively in the city reportedly triggering widespread to sporadic liquefaction condition with surface manifestation of sand boils, lateral spreading, ground subsidence, etc., thus posing a strong case for liquefaction potential analysis in the terrain. With the motivation of assessing seismic hazard, vulnerability, and risk of the city of Kolkata through a consorted federal funding stipulated for all the metros and upstart urban centers in India located in BIS seismic zones III, IV, and V with population more than one million, an attempt has been made here to understand the liquefaction susceptibility condition of Kolkata under the impact of earthquake loading employing modern multivariate techniques and also to predict deterministic liquefaction scenario of the city in the event of a probabilistic seismic hazard condition with 10% probability of exceedance in 50 years and a return period of 475 years. We conducted in-depth geophysical and geotechnical investigations in the city encompassing 435 km2 area. The stochastically

  20. Collaborative Research: failure of RockMasses from Nucleation and Growth of Microscopic Defects and Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Klein, William [Boston Univ., MA (United States)

    2016-09-12

    Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structure of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.

  1. Observations of an ionospheric perturbation arising from the Coalinga earthquake of May 2, 1983

    International Nuclear Information System (INIS)

    Wolcott, J.H.; Simons, D.J.; Lee, D.D.; Nelson, R.A.

    1984-01-01

    An ionospheric perturbation that was produced by the Coalinga earthquake of May 2, 1983, was detected by a network of high-frequency radio links in northern California. The ionospheric refraction regions of all five HF propagation paths, at distances between 160 and 285 km (horizontal range) from the epicenter, were affected by a ground-motion-induced acoustic pulse that propagated to ionospheric heights. The acoustic pulse was produced by the earthquake-induced seismic waves rather than the vertical ground motion above the epicenter. These observations appear to be the first ionospheric disturbances to be reported this close to an earthquake epicenter

  2. Signals of ENPEMF Used in Earthquake Prediction

    Science.gov (United States)

    Hao, G.; Dong, H.; Zeng, Z.; Wu, G.; Zabrodin, S. M.

    2012-12-01

    The signals of Earth's natural pulse electromagnetic field (ENPEMF) is a combination of the abnormal crustal magnetic field pulse affected by the earthquake, the induced field of earth's endogenous magnetic field, the induced magnetic field of the exogenous variation magnetic field, geomagnetic pulsation disturbance and other energy coupling process between sun and earth. As an instantaneous disturbance of the variation field of natural geomagnetism, ENPEMF can be used to predict earthquakes. This theory was introduced by A.A Vorobyov, who expressed a hypothesis that pulses can arise not only in the atmosphere but within the Earth's crust due to processes of tectonic-to-electric energy conversion (Vorobyov, 1970; Vorobyov, 1979). The global field time scale of ENPEMF signals has specific stability. Although the wave curves may not overlap completely at different regions, the smoothed diurnal ENPEMF patterns always exhibit the same trend per month. The feature is a good reference for observing the abnormalities of the Earth's natural magnetic field in a specific region. The frequencies of the ENPEMF signals generally locate in kilo Hz range, where frequencies within 5-25 kilo Hz range can be applied to monitor earthquakes. In Wuhan, the best observation frequency is 14.5 kilo Hz. Two special devices are placed in accordance with the S-N and W-E direction. Dramatic variation from the comparison between the pulses waveform obtained from the instruments and the normal reference envelope diagram should indicate high possibility of earthquake. The proposed detection method of earthquake based on ENPEMF can improve the geodynamic monitoring effect and can enrich earthquake prediction methods. We suggest the prospective further researches are about on the exact sources composition of ENPEMF signals, the distinction between noise and useful signals, and the effect of the Earth's gravity tide and solid tidal wave. This method may also provide a promising application in

  3. In situ Laser Induced Breakdown Spectroscopy as a tool to discriminate volcanic rocks and magmatic series, Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Roux, C.P.M., E-mail: clement.roux@u-bourgogne.fr [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47 870, F-21078 Dijon Cedex (France); Rakovský, J.; Musset, O. [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47 870, F-21078 Dijon Cedex (France); Monna, F. [Laboratoire ARTéHIS, UMR 6298 CNRS-Université de Bourgogne, 6 Boulevard Gabriel, F-21000 Dijon (France); Buoncristiani, J.-F.; Pellenard, P.; Thomazo, C. [Laboratoire Biogéosciences, UMR 6282 CNRS-Université de Bourgogne, 6 Boulevard Gabriel, F-21000 Dijon (France)

    2015-01-01

    This study evaluates the potentialities of a lab-made pLIBS (portable Laser-Induced Breakdown Spectroscopy) to sort volcanic rocks belonging to various magmatic series. An in-situ chemical analysis of 19 atomic lines, including Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Na, Si, Sr and Ti, from 21 sampled rocks was performed during a field exploration in Iceland. Iceland was chosen both for the various typologies of volcanic rocks and the rugged conditions in the field in order to test the sturdiness of the pLIPS. Elemental compositions were also measured using laboratory ICP-AES measurements on the same samples. Based on these latter results, which can be used to identify three different groups of volcanic rocks, a classification model was built in order to sort pLIBS data and to categorize unknown samples. Using a reliable statistical scheme applied to LIBS compositional data, the classification capability of the pLIBS system is clearly demonstrated (90–100% success rate). Although this prototype does not provide quantitative measurements, its use should be of particular interest for future geological field investigations. - Highlights: • Portable LIBS applied to field geology • Fast semi-quantitative geochemical analysis of volcanic rocks and magmatic series • Discriminant analysis and statistical treatments for LIBS compositional data.

  4. Landslide maps and seismic noise: Rockmass weakening caused by shallow earthquakes

    Science.gov (United States)

    Uchida, Tara; Marc, Odin; Sens-Schönfelder, Christoph; Sawazaki, Kaoru; Hobiger, Manuel; Hovius, Niels

    2015-04-01

    Some studies have suggested that the shaking and deformation associated with earthquake would result in a temporary increased hillslope erodibility. However very few data have been able to clarify such effect. We present integrated geomorphic data constraining an elevated landslide rate following 4 continental shallow earthquakes, the Mw 6.9 Finisterre (1993), the Mw 7.6 ChiChi (1999), the Mw 6.6 Niigata (2004) and the Mw 6.8 Iwate-Miyagi (2008) earthquakes. We constrained the magnitude, the recovery time and somewhat the mechanism at the source of this higher landslide risk. We provide some evidences excluding aftershocks or rain forcing intensity as possible mechanism and leaving subsurface weakening as the most likely. The landslide data suggest that this ground strength weakening is not limited to the soil cover but also affect the shallow bedrock. Additionally, we used ambient noise autocorrelation techniques to monitor shallow subsurface seismic velocity within the epicentral area of three of those earthquakes. For most stations we observe a velocity drop followed by a recovery processes of several years in fair agreement with the recovery time estimated based on landslide observation. Thus a common processes could alter the strength of the first 10m of soil/rock and simultaneously drive the landslide rate increase and the seismic velocity drop. The ability to firmly demonstrate this link require additional constraints on the seismic signal interpretation but would provide a very useful tool for post-earthquake risk managment.

  5. Strong ground motion of the 2016 Kumamoto earthquake

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, H.; Morikawa, N.; Fujiwara, H.

    2016-12-01

    The 2016 Kumamoto earthquake that is composed of Mw 6.1 and Mw 7.1 earthquakes respectively occurred in the Kumamoto region at 21:26 on April 14 and 28 hours later at 1:25 on April 16, 2016 (JST). These earthquakes are considered to rupture mainly the Hinagu fault zone for the Mw 6.1 event and the Futagawa fault zone for the Mw 7.1 event, respectively, where the Headquarter for Earthquake Research Promotion performed the long-term evaluation as well as seismic hazard assessment prior to the 2016 Kumamoto earthquake. Strong shakings with seismic intensity 7 in the JMA scale were observed at four times in total: Mashiki town for the Mw 6.1 and Mw 7.1 events, Nishihara village for the Mw 7.1 event, and NIED/KiK-net Mashiki (KMMH16) for the Mw 7.1 event. KiK-net Mashiki (KMMH16) recorded peak ground acceleration more than 1000 cm/s/s, and Nishihara village recorded peak ground velocity more than 250 cm/s. Ground motions were observed wider area for the Mw 7.1 event than the Mw 6.1 event. Peak ground accelerations and peak ground velocities of K-NET/KiK-net stations are consistent with the ground motion prediction equations by Si and Midorikawa (1999). Peak ground velocities at longer distance than 200 km attenuate slowly, which can be attributed to the large Love wave with a dominant period around 10 seconds. 5%-damped pseudo spectral velocity of the Mashiki town shows a peak at period of 1-2 s that exceeds ground motion response of JR Takatori of the 1995 Kobe earthquake and the Kawaguchi town of the 2004 Chuetsu earthquake. 5%-damped pseudo spectral velocity of the Nishihara village shows 350 cm/s peak at period of 3-4 s that is similar to the several stations in Kathmandu basin by Takai et al. (2016) during the 2015 Gorkha earthquake in Nepal. Ground motions at several stations in Oita exceed the ground motion prediction equations due to an earthquake induced by the Mw 7.1 event. Peak ground accelerations of K-NET Yufuin (OIT009) records 90 cm/s/s for the Mw 7

  6. Assessment of rock mass decay in artificial slopes

    NARCIS (Netherlands)

    Huisman, M.

    2006-01-01

    This research investigates the decay of rock masses underlying slopes, and seeks to quantify the relations of such decay with time and geotechnical parameters of the slope and rock mass. Decay can greatly affect the geotechnical properties of rocks within engineering timescales, and may induce a

  7. Prospective testing of Coulomb short-term earthquake forecasts

    Science.gov (United States)

    Jackson, D. D.; Kagan, Y. Y.; Schorlemmer, D.; Zechar, J. D.; Wang, Q.; Wong, K.

    2009-12-01

    Earthquake induced Coulomb stresses, whether static or dynamic, suddenly change the probability of future earthquakes. Models to estimate stress and the resulting seismicity changes could help to illuminate earthquake physics and guide appropriate precautionary response. But do these models have improved forecasting power compared to empirical statistical models? The best answer lies in prospective testing in which a fully specified model, with no subsequent parameter adjustments, is evaluated against future earthquakes. The Center of Study of Earthquake Predictability (CSEP) facilitates such prospective testing of earthquake forecasts, including several short term forecasts. Formulating Coulomb stress models for formal testing involves several practical problems, mostly shared with other short-term models. First, earthquake probabilities must be calculated after each “perpetrator” earthquake but before the triggered earthquakes, or “victims”. The time interval between a perpetrator and its victims may be very short, as characterized by the Omori law for aftershocks. CSEP evaluates short term models daily, and allows daily updates of the models. However, lots can happen in a day. An alternative is to test and update models on the occurrence of each earthquake over a certain magnitude. To make such updates rapidly enough and to qualify as prospective, earthquake focal mechanisms, slip distributions, stress patterns, and earthquake probabilities would have to be made by computer without human intervention. This scheme would be more appropriate for evaluating scientific ideas, but it may be less useful for practical applications than daily updates. Second, triggered earthquakes are imperfectly recorded following larger events because their seismic waves are buried in the coda of the earlier event. To solve this problem, testing methods need to allow for “censoring” of early aftershock data, and a quantitative model for detection threshold as a function of

  8. Life-event stress induced by the Great East Japan Earthquake was associated with relapse in ulcerative colitis but not Crohn's disease: a retrospective cohort study

    Science.gov (United States)

    Shiga, Hisashi; Miyazawa, Teruko; Kinouchi, Yoshitaka; Takahashi, Seiichi; Tominaga, Gen; Takahashi, Hiroki; Takagi, Sho; Obana, Nobuya; Kikuchi, Tatsuya; Oomori, Shinya; Nomura, Eiki; Shiraki, Manabu; Sato, Yuichirou; Takahashi, Shuichiro; Umemura, Ken; Yokoyama, Hiroshi; Endo, Katsuya; Kakuta, Yoichi; Aizawa, Hiroki; Matsuura, Masaki; Kimura, Tomoya; Kuroha, Masatake; Shimosegawa, Tooru

    2013-01-01

    Objective Stress is thought to be one of the triggers of relapses in patients with inflammatory bowel disease (IBD). We examined the rate of relapse in IBD patients before and after the Great East Japan Earthquake. Design A retrospective cohort study. Settings 13 hospitals in Japan. Participants 546 ulcerative colitis (UC) and 357 Crohn's disease (CD) patients who received outpatient and inpatient care at 13 hospitals located in the area that were seriously damaged by the earthquake. Data on patient's clinical characteristics, disease activity and deleterious effects of the earthquake were obtained from questionnaires and hospital records. Primary outcome We evaluated the relapse rate (from inactive to active) across two consecutive months before and two consecutive months after the earthquake. In this study, we defined ‘active’ as conditions with a partial Mayo score=2 or more (UC) or a Harvey-Bradshaw index=6 or more (CD). Results Among the UC patients, disease was active in 167 patients and inactive in 379 patients before the earthquake. After the earthquake, the activity scores increased significantly (p<0.0001). A total of 86 patients relapsed (relapse rate=15.8%). The relapse rate was about twice that of the corresponding period in the previous year. Among the CD patients, 86 patients had active disease and 271 had inactive disease before the earthquake. After the earthquake, the activity indices changed little. A total of 25 patients experienced a relapse (relapse rate=7%). The relapse rate did not differ from that of the corresponding period in the previous year. Multivariate analyses revealed that UC, changes in dietary oral intake and anxiety about family finances were associated with the relapse. Conclusions Life-event stress induced by the Great East Japan Earthquake was associated with relapse in UC but not CD. PMID:23396562

  9. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.

    Science.gov (United States)

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu

    2015-10-01

    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.

  10. Frequency–magnitude distribution of -3.7 < M(subW) < 1 mining-induced earthquakes around a mining front and b value invariance with post-blast time

    CSIR Research Space (South Africa)

    Naoi, M

    2014-10-01

    Full Text Available Geophysics Frequency–Magnitude Distribution of -3.7 B MW B 1 mining-induced earthquakes around a mining front and b value invariance with post-blast time Makoto Naoi,1 Masao Nakatani,1 Shigeki Horiuchi,2 Yasuo Yabe,3 Joachim Philipp,4 Thabang Kgarume... Ogasawara 11 1 Earthquake Research Institute, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan. E-mail: naoi@eri.u-tokyo.ac.jp 2 Home Seismometer Corp., 4-36, Uenohara, Shirakawa, Fukushima 961-0026, Japan. 3 Research Center...

  11. Hybrid Simulations of the Broadband Ground Motions for the 2008 MS8.0 Wenchuan, China, Earthquake

    Science.gov (United States)

    Yu, X.; Zhang, W.

    2012-12-01

    The Ms8.0 Wenchuan earthquake occurred on 12 May 2008 at 14:28 Beijing Time. It is the largest event happened in the mainland of China since the 1976, Mw7.6, Tangshan earthquake. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and "quake lakes" which formed by landslide-induced reservoirs. These resulted in tremendous losses of life and property. Casualties numbered more than 80,000 people, and there were major economic losses. However, this earthquake is the first Ms 8 intraplate earthquake with good close fault strong motion coverage. Over four hundred strong motion stations of the National Strong Motion Observation Network System (NSMONS) recorded the mainshock. Twelve of them located within 20 km of the fault traces and another 33 stations located within 100 km. These observations, accompanying with the hundreds of GPS vectors and multiple ALOS INSAR images, provide an unprecedented opportunity to study the rupture process of such a great intraplate earthquake. In this study, we calculate broadband near-field ground motion synthetic waveforms of this great earthquake using a hybrid broadband ground-motion simulation methodology, which combines a deterministic approach at low frequencies (f < 1.0 Hz) with a theoretic Green's function calculation approach at high frequency ( ~ 10.0 Hz). The fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time that were obtained by an inversion kinematic source model. At the same time, based on the aftershock data, we analyze the site effects for the near-field stations. Frequency-dependent site-amplification values for each station are calculated using genetic algorithms. For the calculation of the synthetic waveforms, at first, we carry out simulations using the hybrid methodology for the frequency up to 10.0 Hz. Then, we consider for

  12. Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean earthquake.

    Science.gov (United States)

    Delorey, Andrew A; Chao, Kevin; Obara, Kazushige; Johnson, Paul A

    2015-10-01

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth's stress state. Earth's stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth's elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.

  13. Seismic performance evaluation of an infilled rocking wall frame structure through quasi-static cyclic testing

    Science.gov (United States)

    Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin

    2018-04-01

    Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.

  14. Frequency-volume Statistics of Rock Falls: Examples From France, Italy and California

    Science.gov (United States)

    Dussauge-Peisser, C.; Guzzetti, F.; Wieczorek, G. F.

    There is accumulating evidence that the distribution of rock-fall volume exhibits power law (fractal) statistics in different physiographic and geologic environments. We have studied the frequency-volume statistics of rock falls in three areas: Grenoble, France; Umbria, Italy; and Yosemite Valley, California, USA. We present a compari- son of the datasets currently available. For the Grenoble area a catalogue of rock falls between 1248 and 1995 occurred along a 120 km long limestone cliff. The dataset contains information on 105 rock-fall events ranging in size from 3xE-2 to 5xE8 m3. Only the time window 1935-1995 is considered in the study, involving 87 events from 1E-2 to 1E6 m3. The cumulative frequency-volume statistics follow a power-law (frac- tal) relationship with exponent b = -0.4 over the range 50 m3 Yosemite Valley the database contains information on historical (1851-2001) rock falls (122), rock slides (251) and prehistoric rock avalanches (5). For Yosemite, the non-cumulative frequency-volume statistics of rock falls and rock slides are very sim- ilar and correlate well with a power-law (fractal) relation with exponent beta = -1.4, over the range 30 m3 rock avalanches. We discuss the implications of such a power law fitting the data for rock-fall hazard assessment. We also discuss the variation of the b and beta exponents for natural events and earthquake triggered events.

  15. Promise and problems in using stress triggering models for time-dependent earthquake hazard assessment

    Science.gov (United States)

    Cocco, M.

    2001-12-01

    Earthquake stress changes can promote failures on favorably oriented faults and modify the seismicity pattern over broad regions around the causative faults. Because the induced stress perturbations modify the rate of production of earthquakes, they alter the probability of seismic events in a specified time window. Comparing the Coulomb stress changes with the seismicity rate changes and aftershock patterns can statistically test the role of stress transfer in earthquake occurrence. The interaction probability may represent a further tool to test the stress trigger or shadow model. The probability model, which incorporate stress transfer, has the main advantage to include the contributions of the induced stress perturbation (a static step in its present formulation), the loading rate and the fault constitutive properties. Because the mechanical conditions of the secondary faults at the time of application of the induced load are largely unkown, stress triggering can only be tested on fault populations and not on single earthquake pairs with a specified time delay. The interaction probability can represent the most suitable tool to test the interaction between large magnitude earthquakes. Despite these important implications and the stimulating perspectives, there exist problems in understanding earthquake interaction that should motivate future research but at the same time limit its immediate social applications. One major limitation is that we are unable to predict how and if the induced stress perturbations modify the ratio between small versus large magnitude earthquakes. In other words, we cannot distinguish between a change in this ratio in favor of small events or of large magnitude earthquakes, because the interaction probability is independent of magnitude. Another problem concerns the reconstruction of the stressing history. The interaction probability model is based on the response to a static step; however, we know that other processes contribute to

  16. Sendai-Okura earthquake swarm induced by the 2011 Tohoku-Oki earthquake in the stress shadow of NE Japan: Detailed fault structure and hypocenter migration

    Science.gov (United States)

    Yoshida, Keisuke; Hasegawa, Akira

    2018-05-01

    We investigated the distribution and migration of hypocenters of an earthquake swarm that occurred in Sendai-Okura (NE Japan) 15 days after the 2011 M9.0 Tohoku-Oki earthquake, despite the decrease in shear stress due to the static stress change. Hypocenters of 2476 events listed in the JMA catalogue were relocated based on the JMA unified catalogue data in conjunction with data obtained by waveform cross correlation. Hypocenter relocation was successful in delineating several thin planar structures, although the original hypocenters presented a cloud-like distribution. The hypocenters of this swarm event migrated a