WorldWideScience

Sample records for earthquake ii ground

  1. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  2. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  3. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  4. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  5. Ground-motion modeling of the 1906 San Francisco Earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events

    Science.gov (United States)

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.

    2008-01-01

    We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  6. Earthquake Ground Motion Selection

    Science.gov (United States)

    2012-05-01

    Nonlinear analyses of soils, structures, and soil-structure systems offer the potential for more accurate characterization of geotechnical and structural response under strong earthquake shaking. The increasing use of advanced performance-based desig...

  7. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy ...

  8. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  9. Strong ground motion prediction using virtual earthquakes.

    Science.gov (United States)

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  10. Modeling of earthquake ground motion in the frequency domain

    Science.gov (United States)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation

  11. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  12. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  13. Determination of Design Basis Earthquake ground motion

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1997-01-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  14. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  15. Prediction of site specific ground motion for large earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1990-01-01

    In this paper, we apply the semi-empirical synthesis method by IRIKURA (1983, 1986) to the estimation of site specific ground motion using accelerograms observed at Kumatori in Osaka prefecture. Target earthquakes used here are a comparatively distant earthquake (Δ=95 km, M=5.6) caused by the YAMASAKI fault and a near earthquake (Δ=27 km, M=5.6). The results obtained are as follows. 1) The accelerograms from the distant earthquake (M=5.6) are synthesized using the aftershock records (M=4.3) for 1983 YAMASAKI fault earthquake whose source parameters have been obtained by other authors from the hypocentral distribution of the aftershocks. The resultant synthetic motions show a good agreement with the observed ones. 2) The synthesis for a near earthquake (M=5.6, we call this target earthquake) are made using a small earthquake which occurred in the neighborhood of the target earthquake. Here, we apply two methods for giving the parameters for synthesis. One method is to use the parameters of YAMASAKI fault earthquake which has the same magnitude as the target earthquake, and the other is to use the parameters obtained from several existing empirical formulas. The resultant synthetic motion with the former parameters shows a good agreement with the observed one, but that with the latter does not. 3) We estimate the source parameters from the source spectra of several earthquakes which have been observed in this site. Consequently we find that the small earthquakes (M<4) as Green's functions should be carefully used because the stress drops are not constant. 4) We propose that we should designate not only the magnitudes but also seismic moments of the target earthquake and the small earthquake. (J.P.N.)

  16. Strong ground motion of the 2016 Kumamoto earthquake

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, H.; Morikawa, N.; Fujiwara, H.

    2016-12-01

    The 2016 Kumamoto earthquake that is composed of Mw 6.1 and Mw 7.1 earthquakes respectively occurred in the Kumamoto region at 21:26 on April 14 and 28 hours later at 1:25 on April 16, 2016 (JST). These earthquakes are considered to rupture mainly the Hinagu fault zone for the Mw 6.1 event and the Futagawa fault zone for the Mw 7.1 event, respectively, where the Headquarter for Earthquake Research Promotion performed the long-term evaluation as well as seismic hazard assessment prior to the 2016 Kumamoto earthquake. Strong shakings with seismic intensity 7 in the JMA scale were observed at four times in total: Mashiki town for the Mw 6.1 and Mw 7.1 events, Nishihara village for the Mw 7.1 event, and NIED/KiK-net Mashiki (KMMH16) for the Mw 7.1 event. KiK-net Mashiki (KMMH16) recorded peak ground acceleration more than 1000 cm/s/s, and Nishihara village recorded peak ground velocity more than 250 cm/s. Ground motions were observed wider area for the Mw 7.1 event than the Mw 6.1 event. Peak ground accelerations and peak ground velocities of K-NET/KiK-net stations are consistent with the ground motion prediction equations by Si and Midorikawa (1999). Peak ground velocities at longer distance than 200 km attenuate slowly, which can be attributed to the large Love wave with a dominant period around 10 seconds. 5%-damped pseudo spectral velocity of the Mashiki town shows a peak at period of 1-2 s that exceeds ground motion response of JR Takatori of the 1995 Kobe earthquake and the Kawaguchi town of the 2004 Chuetsu earthquake. 5%-damped pseudo spectral velocity of the Nishihara village shows 350 cm/s peak at period of 3-4 s that is similar to the several stations in Kathmandu basin by Takai et al. (2016) during the 2015 Gorkha earthquake in Nepal. Ground motions at several stations in Oita exceed the ground motion prediction equations due to an earthquake induced by the Mw 7.1 event. Peak ground accelerations of K-NET Yufuin (OIT009) records 90 cm/s/s for the Mw 7

  17. Ground Motion Characteristics of Induced Earthquakes in Central North America

    Science.gov (United States)

    Atkinson, G. M.; Assatourians, K.; Novakovic, M.

    2017-12-01

    The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in

  18. Characteristics of Earthquake Ground Motion Attenuation in Korea and Japan

    International Nuclear Information System (INIS)

    Choi, In-Kil; Choun, Young-Sun; Nakajima, Masato; Ohtori, Yasuki; Yun, Kwan-Hee

    2006-01-01

    The characteristics of a ground motion attenuation in Korea and Japan were estimated by using the earthquake ground motions recorded at the equal distance observation station by KMA, K-NET and KiK-net of Korea and Japan. The ground motion attenuation equations proposed for Korea and Japan were evaluated by comparing the predicted value for the Fukuoka earthquake with the observed records. The predicted values from the attenuation equations show a good agreement with the observed records and each other. It can be concluded from this study that the ground motion attenuation equations can be used for the prediction of strong ground motion attenuation and for an evaluation of the attenuation equations proposed for Korea

  19. Spatial correlation of probabilistic earthquake ground motion and loss

    Science.gov (United States)

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  20. The limits of earthquake early warning: Timeliness of ground motion estimates

    OpenAIRE

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions aroun...

  1. The Steksovo II burial ground

    Directory of Open Access Journals (Sweden)

    Martianov Vladimir N.

    2014-12-01

    Full Text Available The article is dedicated to the results of many-years’ (1990-2010 excavations on the ancient Mordovian Steksovo II burial ground site. The burial ground had functioned in the 3rd to 13th centuries AD. The investigations revealed hundreds of burials, which enabled the researchers to judge upon the wealth of material items found and the variety of burial rites of the population that had formed the burial ground. The 1st millennium AD is characterized by bi-ritualism, while inhumation is characteristic of the 11-13th-century period; horses’ burials were also discovered. The data of the burial ground make it possible to modify the concept of the stages in ancient Mordovians ethnogenesis. It is generally attributed to the Erzya Mordvins, but in early burials the combination of the Erzya and Moksha ancientries is traced. Complexes of the items of crucial importance for the chronology of the burial are discussed in the article with a representation of statistical data characterizing funeral rites and traditions.

  2. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  3. Evaluation of stability of foundation ground during earthquake, 6

    International Nuclear Information System (INIS)

    Kanatani, Mamoru; Nishi, Koichi

    1988-01-01

    The aseismatic capability of nuclear power plants located on Quaternary grounds, which consist of dense sand or sandy gravel, is heavily dependent on the stability of foundation grounds during earthquakes. In order to investigate into the stability of ground more in detail, it is necessary to develop the nonlinear earthquake response analysis method which can simulate the inelastic behavior of soil. In this report, the newly developed nonlinear response analysis method based on the effective stress, the results of simulation using the results of vibration table test and centrifuge test, and the case studies on two-dimensional soil-structure interaction problems are described. Soil was regarded as the two-phase mixture composed of soil particle skeleton and pore water. In the equation of motion taking their interaction into account, the elastoplastic constitutive equation that can simulate the inelastic deformation behavior of soil at the time of repeated shearing in two or three-dimensional field was introduced, and the analysis code which successively traces the behavior of ground at the time of earthquakes using FEM was developed. (K.I.)

  4. Earthquake hazard zonation using peak ground acceleration (PGA) approach

    International Nuclear Information System (INIS)

    Irwansyah, E; Winarko, E; Rasjid, Z E; Bekti, R D

    2013-01-01

    The objective of this research is to develop seismic hazard area zones in the building infrastructure of the Banda Aceh City Indonesia using peak ground acceleration (PGA) measured using global and local attenuation function. PGA is calculated using attenuation function that describes the correlation between the local ground movement intensity the earthquake magnitude and the distance from the earthquake's epicentre. The data used comes from the earthquake damage catalogue available from the Indonesia meteorology, climatology and geophysics agency (BMKG) with range from year 1973 – 2011. The research methodology consists of six steps, which is developing the grid, calculation of the distance from the epicentre to the centroid of the grid, calculation of PGA values, developing the computer application, plotting the PGA values to the centroid grid, and developing the earthquake hazard zones using kriging algorithm. The conclusion of this research is that the global attenuation function that was developed by [20] can be applied to calculate the PGA values in the city of Banda Aceh. Banda Aceh city in micro scale can be divided into three hazard zones which is low hazard zone with PGA value of 0.8767 gals up to 0.8780 gals, medium hazard zone with PGA values of 0.8781 up to 0.8793 gals and high hazard zone with PGA values of 0.8794 up to 0.8806 gals.

  5. Identification of strong earthquake ground motion by using pattern recognition

    International Nuclear Information System (INIS)

    Suzuki, Kohei; Tozawa, Shoji; Temmyo, Yoshiharu.

    1983-01-01

    The method of grasping adequately the technological features of complex waveform of earthquake ground motion and utilizing them as the input to structural systems has been proposed by many researchers, and the method of making artificial earthquake waves to be used for the aseismatic design of nuclear facilities has not been established in the unified form. In this research, earthquake ground motion was treated as an irregular process with unsteady amplitude and frequency, and the running power spectral density was expressed as a dark and light image on a plane of the orthogonal coordinate system with both time and frequency axes. The method of classifying this image into a number of technologically important categories by pattern recognition was proposed. This method is based on the concept called compound similarity method in the image technology, entirely different from voice diagnosis, and it has the feature that the result of identification can be quantitatively evaluated by the analysis of correlation of spatial images. Next, the standard pattern model of the simulated running power spectral density corresponding to the representative classification categories was proposed. Finally, the method of making unsteady simulated earthquake motion was shown. (Kako, I.)

  6. Evaluation of stability of foundation ground during earthquake, (5)

    International Nuclear Information System (INIS)

    Nishi, Koh-ichi; Kanatani, Mamoru

    1987-01-01

    The Central Research Institute of Electric Power Industry advances the research on the method of evaluating foundation grounds from the standpoint of developing in-situ ground survey testing method and the method of evaluating mechanical properties in the studies on the technology for siting nuclear power stations on Quaternary grounds. The newly developed analytical technique on ground stability by the results of the analytical method for equivalent linear response was already reported. In this paper, the analytical method for nonlinear response to investigate into the more detailed behavior of ground due to strong earthquake motion is reported. In particular, the constitutive relation based on elastoplasticity was newly proposed in order to represent the deformation behavior during cyclic loading, and the examples of its application to the response of horizontally leveled sandy ground to earthquake are described. The dialatancy characteristics of soil are constituted by yield function, plastic potential functioin and hardening function. The material constants in proposed constitutive relation are easily determined by laboratory tests. One-dimensional response analysis was conducted, using the constitutive relation. (Kako, I.)

  7. Ground motions estimates for a cascadia earthquake from liquefaction evidence

    Science.gov (United States)

    Dickenson, S.E.; Obermeier, S.F.

    1998-01-01

    Paleoseismic studies conducted in the coastal regions of the Pacific Northwest in the past decade have revealed evidence of crustal downdropping and subsequent tsunami inundation, attributable to a large earthquake along the Cascadia subduction zone which occurred approximately 300 years ago, and most likely in 1700 AD. In order to characterize the severity of ground motions from this earthquake, we report on results of a field search for seismically induced liquefaction features. The search was made chiefly along the coastal portions of several river valleys in Washington, rivers along the central Oregon coast, as well as on islands in the Columbia River of Oregon and Washington. In this paper we focus only on the results of the Columbia River investigation. Numerous liquefaction features were found in some regions, but not in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors at each site in order to estimate the intensity of ground shaking.

  8. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  9. Ground failure in the 2001 Mw 8.4 southern Peru earthquake

    Science.gov (United States)

    Rondinel-Oviedo, Efrain Alejandro

    On June 23rd 2001 a moment magnitude (M W) 8.4, earthquake shook the southern portion of Peru. This rare large-magnitude event provided a unique opportunity to develop a suite of high quality case histories and also to test and calibrate existing geotechnical earthquake engineering analysis procedures and models against observations from the earthquake. The work presented in this thesis is focused on three topics pertaining to ground failure (i.e., the permanent deformation of the ground resulting from an earthquake) observed during the event: (1) surface ground damage in small basin geometries, (2) seismic compression, and (3) performance of a concrete faced rockfill dam (CFRD) dam. Surface ground strain damage patterns in small basin geometries has previously been typically studied at the large (i.e., geological) scale, but not at the scale of civil engineering infrastructure. During seismic events basin geometries containing soft material confined by stiffer material trap the seismic waves and generate surface waves that travel on the ground along the soft material. Numerical modeling shows that surface waves are generated at basin edges and travel on the ground creating higher duration, higher response (peak ground acceleration, PGA), higher energy (Arias Intensity) and higher angular distortion, especially in zones close to the edges. The impedance contrast between the stiff material and the soft material, and the dip angle play an important role in basin response. Seismic compression (i.e., the shaking induced densification of unsaturated soil) was observed in many highway embankments in the region of the earthquake. In many instances, this phenomenon was exasperated by soil-structure interaction with adjacent bridge or culvert structures. Numerical modeling conducted as part of this research showed (i) a significantly different response when the structure (culvert) is considered, (ii) impedance contrast plays a role in the system responses, and (iii) low

  10. Evaluation of stability of foundation ground during earthquake, (1)

    International Nuclear Information System (INIS)

    Nishi, Koichi; Kanatani, Mamoru; Matsui, Ietaka; Touma, Jun-ichi

    1986-01-01

    The Central Research Institute of Electric Power Industry has advanced the research on the new location technology for nuclear power stations in order to cope with the lack of sites expected in near future. The sites on rock mass are usually used for nuclear power stations, but the location on quaternary ground, particularly on gravel ground, is one of such new technology, to which attention has been paid. It has been pointed out that this location has the advantage in the earthquake response of reactor buildings and equipment, and the prospect to ensure the stability by lowering underground water level and pile penetration has been obtained, therefore, the possibility of its realization is high. At present, the research aiming at the establishment of the method of evaluating foundation ground stability is in progress, and it is expected that the quantitative evaluation means for the aseismatic stability of quaternary ground is obtained. In this paper, the analysis techniques for forecasting the amount of subsidence at the time of earthquakes occurring accompanying the generation of excessive pore water pressure and its disappearance are reported. Also the applicability of the forecasting techniques was experimentally verified. (Kako, I.)

  11. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    Science.gov (United States)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  12. The ShakeOut earthquake source and ground motion simulations

    Science.gov (United States)

    Graves, R.W.; Houston, Douglas B.; Hudnut, K.W.

    2011-01-01

    The ShakeOut Scenario is premised upon the detailed description of a hypothetical Mw 7.8 earthquake on the southern San Andreas Fault and the associated simulated ground motions. The main features of the scenario, such as its endpoints, magnitude, and gross slip distribution, were defined through expert opinion and incorporated information from many previous studies. Slip at smaller length scales, rupture speed, and rise time were constrained using empirical relationships and experience gained from previous strong-motion modeling. Using this rupture description and a 3-D model of the crust, broadband ground motions were computed over a large region of Southern California. The largest simulated peak ground acceleration (PGA) and peak ground velocity (PGV) generally range from 0.5 to 1.0 g and 100 to 250 cm/s, respectively, with the waveforms exhibiting strong directivity and basin effects. Use of a slip-predictable model results in a high static stress drop event and produces ground motions somewhat higher than median level predictions from NGA ground motion prediction equations (GMPEs).

  13. The Loma Prieta, California, Earthquake of October 17, 1989: Strong Ground Motion and Ground Failure

    Science.gov (United States)

    Coordinated by Holzer, Thomas L.

    1992-01-01

    Professional Paper 1551 describes the effects at the land surface caused by the Loma Prieta earthquake. These effects: include the pattern and characteristics of strong ground shaking, liquefaction of both floodplain deposits along the Pajaro and Salinas Rivers in the Monterey Bay region and sandy artificial fills along the margins of San Francisco Bay, landslides in the epicentral region, and increased stream flow. Some significant findings and their impacts were: * Strong shaking that was amplified by a factor of about two by soft soils caused damage at up to 100 kilometers (60 miles) from the epicenter. * Instrumental recordings of the ground shaking have been used to improve how building codes consider site amplification effects from soft soils. * Liquefaction at 134 locations caused $99.2 million of the total earthquake loss of $5.9 billion. Liquefaction of floodplain deposits and sandy artificial fills was similar in nature to that which occurred in the 1906 San Francisco earthquake and indicated that many areas remain susceptible to liquefaction damage in the San Francisco and Monterey Bay regions. * Landslides caused $30 million in earthquake losses, damaging at least 200 residences. Many landslides showed evidence of movement in previous earthquakes. * Recognition of the similarities between liquefaction and landslides in 1906 and 1989 and research in intervening years that established methodologies to map liquefaction and landslide hazards prompted the California legislature to pass in 1990 the Seismic Hazards Mapping Act that required the California Geological Survey to delineate regulatory zones of areas potentially susceptible to these hazards. * The earthquake caused the flow of many streams in the epicentral region to increase. Effects were noted up to 88 km from the epicenter. * Post-earthquake studies of the Marina District of San Francisco provide perhaps the most comprehensive case history of earthquake effects at a specific site developed for

  14. Peak ground motion distribution in Romania due to Vrancea earthquakes

    International Nuclear Information System (INIS)

    Grecu, B.; Rizescu, M.; Radulian, M.; Mandrescu, N.; Moldovan, I.-A.; Bonjer, K.-P

    2002-01-01

    Vrancea is a particular seismic region situated at the SE-Carpathians bend (Romania). It is characterized by persistent seismicity in a concentrated focal volume, at depths of 60-200 km, with 2 to 3 major earthquakes per century (M W >7). The purpose of our study is to investigate in detail the ground motion patterns for small and moderate Vrancea events (M W = 3.5 to 5.3) occurred during 1999, taking advantage of the unique data set offered by the Calixto'99 Project and the permanent Vrancea-K2 network (150 stations). The observed patterns are compared with available macroseismic maps of large Vrancea earthquakes, showing similar general patterns elongated in the NE-SW direction which mimic the S-waves source radiation, but patches with pronounced maxima are also evidenced rather far from the epicenter, at the NE and SW edges of the Focsani sedimentary basin, as shown firstly by Atanasiu (1961). This feature is also visible on instrumental data of strong events (Mandrescu and Radulian, 1999) as well as for moderate events recently recorded by digital K2 network (Bonjer et al., 2001) and correlates with the distribution of predominant response frequencies of shallow sedimentary layers. The influence of the local structure and/or focussing effects, caused by deeper lithospheric structure, on the observed site effects and the implications on the seismic hazard assessment for Vrancea earthquakes are discussed. (authors)

  15. Ground Motion Prediction for Great Interplate Earthquakes in Kanto Basin Considering Variation of Source Parameters

    Science.gov (United States)

    Sekiguchi, H.; Yoshimi, M.; Horikawa, H.

    2011-12-01

    Broadband ground motions are estimated in the Kanto sedimentary basin which holds Tokyo metropolitan area inside for anticipated great interplate earthquakes along surrounding plate boundaries. Possible scenarios of great earthquakes along Sagami trough are modeled combining characteristic properties of the source area and adequate variation in source parameters in order to evaluate possible ground motion variation due to next Kanto earthquake. South to the rupture area of the 2011 Tohoku earthquake along the Japan trench, we consider possible M8 earthquake. The ground motions are computed with a four-step hybrid technique. We first calculate low-frequency ground motions at the engineering basement. We then calculate higher-frequency ground motions at the same position, and combine the lower- and higher-frequency motions using a matched filter. We finally calculate ground motions at the surface by computing the response of the alluvium-diluvium layers to the combined motions at the engineering basement.

  16. Examination of earthquake Ground Motion in the deep underground environment of Japan

    International Nuclear Information System (INIS)

    Goto, J.; Tsuchi, H.; Mashimo, M.

    2009-01-01

    Among the possible impacts of earthquakes on the geological disposal system, ground motion is not included in the criteria for selecting a candidate repository site because, in general, ground motion deep underground is considered to be smaller than at the surface. Also, after backfilling/closure, the repository moves together with the surrounding rock. We have carried out a detailed examination of earthquake ground motion deep underground using extensive data from recent observation networks to support the above assumption. As a result, it has been reconfirmed that earthquake ground motion deep underground is relatively smaller than at the surface. Through detailed analysis of data, we have identified the following important parameters for evaluating earthquake ground motion deep underground: depth and velocity distribution of the rock formations of interest, the intensity of the short period component of earthquakes and incident angle of seismic waves to the rock formations. (authors)

  17. Seismic response of the EBR-II to the Mt. Borah earthquake

    International Nuclear Information System (INIS)

    Gale, J.G.; Lehto, W.K.

    1985-01-01

    On October 28, 1983, an earthquake of magnitude 7.3 occurred in the mountains of central Idaho at a distance of 114-km from the ANL-West site. The earthquake tripped the seismic sensors in the EBR-II reactor shutdown system causing a reactor scram. Visual and operability checks of structures, components, and systems showed no indication of damage or system abnormalities and reactor restart was initiated. As a result of the earthquake, questions arose as to the magnitude of the actual stress levels in critical components and what value of ground acceleration could be experienced without damage to reactor structures. EBR-II was designed prior to implementation of present day requirements for seismic qualification and appropriate analyses had not been conducted. A lumped-mass, finite element model of the primary tank, support structure, and the reactor was generated and analyzed using the response spectrum technique. The analysis showed that the stress levels in the primary tank system were very low during the Mount Borah earthquake and that the system could experience seismic loadings three to four times those of the Mount Borah earthquake without exceeding yield stresses in any of the components

  18. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  19. The limits of earthquake early warning: Timeliness of ground motion estimates

    Science.gov (United States)

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information.

  20. Earthquake-induced ground failures in Italy from a reviewed database

    Science.gov (United States)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2014-04-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  1. Source mechanism inversion and ground motion modeling of induced earthquakes in Kuwait - A Bayesian approach

    Science.gov (United States)

    Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.

    2016-12-01

    The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high enough to cause damage to local structures without using seismic design criteria.

  2. The design procedures on brick building against surface ground deformations due to mining and earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, J.; Yang, S. (China University of Mining and Technology (China))

    1992-05-01

    By analysing the effects of ground motion and deformation on surface buildings, and drawing on the experience of damages caused by the Tangshan and Chenhai earthquakes, the authors discuss the design of brick and concrete buildings which are protected against the damaging effects of both earthquakes and mining activities. 5 figs.

  3. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions

  4. Ground motion following selection of SRS design basis earthquake and associated deterministic approach

    International Nuclear Information System (INIS)

    1991-03-01

    This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart

  5. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    Science.gov (United States)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  6. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  7. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  8. Earthquake response characteristics of large structure 'JOYO' deeply embedded in quaternary ground, (3)

    International Nuclear Information System (INIS)

    Yajima, Hiroshi; Sawada, Yoshihiro; Hanada, Kazutake; Sawada, Makoto.

    1987-01-01

    In order to examine aseismicity of embedded structure and to clarify embedment effect, earthquake observations of the large structure 'JOYO' are carried out which is deeply embedded in quaternary ground, and the results are summarized as follows. (1) Amplification factors of horizontal component in ground surface is about 3 to 4 times against the bedrock. Contrastively on the structure, any amplification is not observed at the underground portion, however, little amplification exists at the ground portion of structure. (2) Transfer function of structure has several predominant peaks at frequencies of 4.3 Hz and 8.0 Hz which are well coincided with values obtained from force excitation tests. It is shown that transfer function between basement and ground surface is similar to that between ground of same level to basement and ground surface, suggesting the behavior of basement to be able to estimate by these under ground earthquake motion. (3) According to earthquake motion analysis using S-R models, without regard to consider or not the side ground stiffness, the calculated response values do not so much differ in each model and mostly correspond with observation data, provided that the underground earthquake motion at same level to basement is used as a input wave. Consequently, the behavior of these deeply embedded structure is subject to setting method of input wave rather than modeling method, and it is very useful in design that the most simple model without side ground stiffness can roughly represent the embedment effect. (author)

  9. Ground motion characteristics of 2007 Niigata-ken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou; Nishimura, Isao; Mizutani, Hiroyuki; Tokumitsu, Ryoichi; Mashimo, Mitsugu; Tanaka, Shinya

    2010-01-01

    Strong motion records of 2007 Niigata-ken Chuetsu-oki earthquake were examined in order to evaluate ground motion characteristics of the earthquake. Ground motions observed at Kashiwazaki Kariwa Nuclear Power Plant site were significantly larger than the response spectra evaluated on the basis of Noda et al. (2002), and the level of the ground motion observed at Arahama area (unit 1-4 side) was approximately twice as large as that at Ominato area (unit 5-7 side). Observation records of the offshore events other than the earthquake were also larger than the response spectra based on Noda et al. (2002), whereas records of the inland events were smaller than those. In addition, these characteristics were also observed in the vicinity of the site through the analysis of the ground motion records obtained by KiK-net. (author)

  10. Uniform risk spectra of strong earthquake ground motion: NEQRISK

    International Nuclear Information System (INIS)

    Lee, V.W.; Trifunac, M.D.

    1987-01-01

    The concept of uniform risk spectra of Anderson and Trifunac (1977) has been generalized to include (1) more refined description of earthquake source zones, (2) the uncertainties in estimating seismicity parameters a and b in log 10 N = a - bM, (3) to consider uncertainties in estimation of maximum earthquake size in each source zone, and to (4) include the most recent results on empirical scaling of strong motion amplitudes at a site. Examples of using to new NEQRISK program are presented and compared with the corresponding case studies of Anderson and Trifunac (1977). The organization of the computer program NEQRISK is also briefly described

  11. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    Science.gov (United States)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  12. Validation of Atmosphere/Ionosphere Signals Associated with Major Earthquakes by Multi-Instrument Space-Borne and Ground Observations

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Parrot, Michel; Liu, J. Y.; Yang, T. F.; Arellano-Baeza, Alonso; Kafatos, M.; Taylor, Patrick

    2012-01-01

    ) eahquakes. Results have revealed the presence of related variations of these parameters implying their connection with the earthquake process. The second phase (B) of this validation included 102 major earthquakes (M>5.9) in Taiwan and Japan. We have found anomalous behavior before all of these events with no false negatives. False alarm ratio for false positives is less then 10% and has been calculated for the same month of the earthquake occurrence for the entire period of analysis (2003-2009). The commonalities for detecting atmospheric/ionospheric anomalies are: i.) Regularly appearance over regions of maximum stress (i.e., along plate boundaries); ii.) Anomaly existence over land and sea; and iii) association with M>5.9 earthquakes not deeper than 100km. Due to their long duration over the same region these anomalies are not consistent with a meteorological origin. Our initial results from the ISTF validation of multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area, one to seven (average) days prior to the largest earthquakes, and suggest that it could be explained by a coupling process between the observed physical parameters and the pre-earthquake preparation processes.

  13. Pre-earthquake signals – Part II: Flow of battery currents in the crust

    Directory of Open Access Journals (Sweden)

    F. T. Freund

    2007-09-01

    Full Text Available When rocks are subjected to stress, dormant electronic charge carriers are activated. They turn the stressed rock volume into a battery, from where currents can flow out. The charge carriers are electrons and defect electrons, also known as positive holes or pholes for short. The boundary between stressed and unstressed rock acts as a potential barrier that lets pholes pass but blocks electrons. One can distinguish two situations in the Earth's crust: (i only pholes spread out of a stressed rock volume into the surrounding unstressed rocks. This is expected to lead to a positive surface charge over a wide area around the future epicenter, to perturbations in the ionosphere, to stimulated infrared emission from the ground, to ionization of the near-ground air, to cloud formation and to other phenomena that have been reported to precede major earthquakes. (ii both pholes and electrons flow out of the stressed rock volume along different paths, sideward into the relatively cool upper layers of the crust and downward into the hot lower crust. This situation, which is likely to be realized late in the earthquake preparation process, is necessary for the battery circuit to close and for transient electric currents to flow. If burst-like, these currents should lead to the emission of low frequency electromagnetic radiation. Understanding how electronic charge carriers are stress-activated in rocks, how they spread or flow probably holds the key to deciphering a wide range of pre-earthquake signals. It opens the door to a global earthquake early warning system, provided resources are pooled through a concerted and constructive community effort, including seismologists, with international participation.

  14. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  15. Implications of ground water chemistry and flow patterns for earthquake studies.

    Science.gov (United States)

    Guangcai, Wang; Zuochen, Zhang; Min, Wang; Cravotta, Charles A; Chenglong, Liu

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for delta18O, deltaD, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57 degrees C to 160 degrees C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas.

  16. A flatfile of ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas

    Science.gov (United States)

    Rennolet, Steven B.; Moschetti, Morgan P.; Thompson, Eric M.; Yeck, William

    2018-01-01

    We have produced a uniformly processed database of orientation-independent (RotD50, RotD100) ground motion intensity measurements containing peak horizontal ground motions (accelerations and velocities) and 5-percent-damped pseudospectral accelerations (0.1–10 s) from more than 3,800 M ≥ 3 earthquakes in Oklahoma and Kansas that occurred between January 2009 and December 2016. Ground motion time series were collected from regional, national, and temporary seismic arrays out to 500 km. We relocated the majority of the earthquake hypocenters using a multiple-event relocation algorithm to produce a set of near-uniformly processed hypocentral locations. Ground motion processing followed standard methods, with the primary objective of reducing the effects of noise on the measurements. Regional wave-propagation features and the high seismicity rate required careful selection of signal windows to ensure that we captured the entire ground motion record and that contaminating signals from extraneous earthquakes did not contribute to the database. Processing was carried out with an automated scheme and resulted in a database comprising more than 174,000 records (https://dx.doi.org/10.5066/F73B5X8N). We anticipate that these results will be useful for improved understanding of earthquake ground motions and for seismic hazard applications.

  17. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  18. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-04-13

    Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes

  19. Ground-motion modeling of the 1906 San Francisco earthquake, part I: Validation using the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; Zoback, M.L.

    2008-01-01

    We compute ground motions for the Beroza (1991) and Wald et al. (1991) source models of the 1989 magnitude 6.9 Loma Prieta earthquake using four different wave-propagation codes and recently developed 3D geologic and seismic velocity models. In preparation for modeling the 1906 San Francisco earthquake, we use this well-recorded earthquake to characterize how well our ground-motion simulations reproduce the observed shaking intensities and amplitude and durations of recorded motions throughout the San Francisco Bay Area. All of the simulations generate ground motions consistent with the large-scale spatial variations in shaking associated with rupture directivity and the geologic structure. We attribute the small variations among the synthetics to the minimum shear-wave speed permitted in the simulations and how they accommodate topography. Our long-period simulations, on average, under predict shaking intensities by about one-half modified Mercalli intensity (MMI) units (25%-35% in peak velocity), while our broadband simulations, on average, under predict the shaking intensities by one-fourth MMI units (16% in peak velocity). Discrepancies with observations arise due to errors in the source models and geologic structure. The consistency in the synthetic waveforms across the wave-propagation codes for a given source model suggests the uncertainty in the source parameters tends to exceed the uncertainty in the seismic velocity structure. In agreement with earlier studies, we find that a source model with slip more evenly distributed northwest and southeast of the hypocenter would be preferable to both the Beroza and Wald source models. Although the new 3D seismic velocity model improves upon previous velocity models, we identify two areas needing improvement. Nevertheless, we find that the seismic velocity model and the wave-propagation codes are suitable for modeling the 1906 earthquake and scenario events in the San Francisco Bay Area.

  20. Broadband Ground Motion Reconstruction for the Kanto Basin during the 1923 Kanto Earthquake

    Science.gov (United States)

    Sekiguchi, Haruko; Yoshimi, Masayuki

    2011-03-01

    Ground motions of the 1923 Kanto Earthquake inside the Kanto Basin are numerically simulated in a wide frequency range (0-10 Hz) based on new knowledge of the earthquake's source processes, the sedimentary structure of the basin, and techniques for generating broadband source models of great earthquakes. The Kanto Earthquake remains one of the most important exemplars for ground motion prediction in Japan due to its size, faulting geometry, and location beneath the densely populated Kanto sedimentary basin. We reconstruct a broadband source model of the 1923 Kanto Earthquake from inversion results by introducing small-scale heterogeneities. The corresponding ground motions are simulated using a hybrid technique comprising the following four calculations: (1) low-frequency ground motion of the engineering basement, modeled using a finite difference method; (2) high-frequency ground motion of the engineering basement, modeled using a stochastic Green's function method; (3) total ground motion of the engineering basement (i.e. 1 + 2); and (4) ground motion at the surface in response to the total basement ground motion. We employ a recently developed three-dimensional (3D) velocity structure model of the Kanto Basin that incorporates prospecting data, microtremor observations and measurements derived from strong ground motion records. Our calculations reveal peak ground velocities (PGV) exceeding 50 cm/s in the area above the fault plane: to the south, where the fault plane is shallowest, PGV reaches 150-200 cm/s at the engineering basement and 200-250 cm/s at the surface. Intensity 7, the maximum value in the Japan Meteorological Agency's intensity scale, is calculated to have occurred widely in Sagami Bay, which corresponds well with observed house-collapse rates due to the 1923 event. The modeling reveals a pronounced forward directivity effect for the area lying above the southern, shallow part of the fault plane. The high PGV and intensity seen above the

  1. Data Files for Ground-Motion Simulations of the 1906 San Francisco Earthquake and Scenario Earthquakes on the Northern San Andreas Fault

    Science.gov (United States)

    Aagaard, Brad T.; Barall, Michael; Brocher, Thomas M.; Dolenc, David; Dreger, Douglas; Graves, Robert W.; Harmsen, Stephen; Hartzell, Stephen; Larsen, Shawn; McCandless, Kathleen; Nilsson, Stefan; Petersson, N. Anders; Rodgers, Arthur; Sjogreen, Bjorn; Zoback, Mary Lou

    2009-01-01

    This data set contains results from ground-motion simulations of the 1906 San Francisco earthquake, seven hypothetical earthquakes on the northern San Andreas Fault, and the 1989 Loma Prieta earthquake. The bulk of the data consists of synthetic velocity time-histories. Peak ground velocity on a 1/60th degree grid and geodetic displacements from the simulations are also included. Details of the ground-motion simulations and analysis of the results are discussed in Aagaard and others (2008a,b).

  2. Addressing earthquakes strong ground motion issues at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Silva, W.J.; Stark, C.L.; Jackson, S.; Smith, R.P.

    1991-01-01

    In the course of reassessing seismic hazards at the Idaho National Engineering Laboratory (INEL), several key issues have been raised concerning the effects of the earthquake source and site geology on potential strong ground motions that might be generated by a large earthquake. The design earthquake for the INEL is an approximate moment magnitude (M w ) 7 event that may occur on the southern portion of the Lemhi fault, a Basin and Range normal fault that is located on the northwestern boundary of the eastern Snake River Plain and the INEL, within 10 to 27 km of several major facilities. Because the locations of these facilities place them at close distances to a large earthquake and generally along strike of the causative fault, the effects of source rupture dynamics (e.g., directivity) could be critical in enhancing potential ground shaking at the INEL. An additional source issue that has been addressed is the value of stress drop to use in ground motion predictions. In terms of site geology, it has been questioned whether the interbedded volcanic stratigraphy beneath the ESRP and the INEL attenuates ground motions to a greater degree than a typical rock site in the western US. These three issues have been investigated employing a stochastic ground motion methodology which incorporates the Band-Limited-White-Noise source model for both a point source and finite fault, random vibration theory and an equivalent linear approach to model soil response

  3. Effect of earthquake and tsunami. Ground motion and tsunami observed at nuclear power station

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou

    2012-01-01

    Fukushima Daiichi and Daini Nuclear Power Stations (NPSs) were struck by the earthquake off the pacific coast in the Tohoku District, which occurred at 14:46 on March 11, 2011. Afterwards, tsunamis struck the Tohoku District. In terms of the earthquake observed at the Fukushima NPSs, the acceleration response spectra of the earthquake movement observed on the basic board of reactor buildings exceeded the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss for partial periodic bands at the Fukushima Daiichi NPS. As for the Fukushima Daini NPS, the acceleration response spectra of the earthquake movement observed on the basic board of the reactor buildings was below the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss. Areas inundated by Tsunami at each NPS were investigated and tsunami inversion analysis was made to build tsunami source model to reproduce tide record, tsunami height, crustal movement and inundated area, based on tsunami observation records in the wide areas from Hokkaido to Chiba prefectures. Tsunami heights of Fukushima Daiichi and Daini NPSs were recalculated as O.P. +13m and +9m respectively and tsunami peak height difference was attributed to the extent of superposition of tsunami waves of tsunami earthquake type of wave source in the area along interplane trench off the coast in the Fukushima prefecture and interplane earthquake type of wave source in rather deep interplate area off the coast in the Miyagi prefecture. (T. Tanaka)

  4. Earthquake Strong Ground Motion Scenario at the 2008 Olympic Games Sites, Beijing, China

    Science.gov (United States)

    Liu, L.; Rohrbach, E. A.; Chen, Q.; Chen, Y.

    2006-12-01

    Historic earthquake record indicates mediate to strong earthquakes have been frequently hit greater Beijing metropolitan area where is going to host the 2008 summer Olympic Games. For the readiness preparation of emergency response to the earthquake shaking for a mega event in a mega city like Beijing in summer 2008, this paper tries to construct the strong ground motion scenario at a number of gymnasium sites for the 2008 Olympic Games. During the last 500 years (the Ming and Qing Dynasties) in which the historic earthquake record are thorough and complete, there are at least 12 earthquake events with the maximum intensity of VI or greater occurred within 100 km radius centered at the Tiananmen Square, the center of Beijing City. Numerical simulation of the seismic wave propagation and surface strong ground motion is carried out by the pseudospectral time domain methods with viscoelastic material properties. To improve the modeling efficiency and accuracy, a multi-scale approach is adapted: the seismic wave propagation originated from an earthquake rupture source is first simulated by a model with larger physical domain with coarser grids. Then the wavefield at a given plane is taken as the source input for the small-scale, fine grid model for the strong ground motion study at the sites. The earthquake source rupture scenario is based on two particular historic earthquake events: One is the Great 1679 Sanhe-Pinggu Earthquake (M~8, Maximum Intensity XI at the epicenter and Intensity VIII in city center)) whose epicenter is about 60 km ENE of the city center. The other one is the 1730 Haidian Earthquake (M~6, Maximum Intensity IX at the epicenter and Intensity VIII in city center) with the epicentral distance less than 20 km away from the city center in the NW Haidian District. The exist of the thick Tertiary-Quaternary sediments (maximum thickness ~ 2 km) in Beijing area plays a critical role on estimating the surface ground motion at the Olympic Games sites, which

  5. Guidelines for earthquake ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab

  6. Guidelines for earthquake ground motion definition for the Eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors

  7. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  8. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  9. A cooperative NRC/CEA research project on earthquake ground motion on soil sites: overview

    International Nuclear Information System (INIS)

    Murphy, A.J.; Mohammadioun, B.

    1989-10-01

    This paper provides an overview of a multi-phase experiment being conducted jointly by the U.S. Nuclear Regulatory Commission and the French Commissariat a l'Energie Atomique. The objective of the experiment is to collect a comprehensive set of data on the propagation of earthquake ground motions vertically through a shallow soil column (on the order of several tens of meters). The data will be used to validate several of the available engineering computer codes for modeling earthquake ground motion. The data set will also be used to develop an improved understanding of the earthquake source function and the potential for non-linear effects controlling the propagation through the shallow soil column

  10. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    Science.gov (United States)

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  11. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  12. Uniform risk functionals for characterization of strong earthquake ground motions

    International Nuclear Information System (INIS)

    Anderson, J.G.; Trifunac, M.D.

    1978-01-01

    A uniform risk functional (e.g., Fourier spectrum, response spectrum, duration, etc.) is defined so that the probability that it is exceeded by some earthquake during a selected period of time is independent of the frequency of seismic waves. Such a functional is derived by an independent calculation, at each frequency, for the probability that the quantity being considered will be exceeded. Different aspects of the seismicity can control the amplitude of a uniform risk functional in different frequency ranges, and a uniform risk functional does not necessarily describe the strong shaking from any single earthquake. To be useful for calculating uniform risk functionals, a scaling relationship must provide an independent estimate of amplitudes of the functional in several frequency bands. The scaling relationship of Trifunac (1976) for Fourier spectra satisfies this requirement and further describes the distribution of spectral amplitudes about the mean trend; here, it is applied to find uniform risk Fourier amplitude spectra. In an application to finding the uniform risk spectra at a realistic site, this method is quite sensitive to the description of seismicity. Distinct models of seismicity, all consistent with our current level of knowledge of an area, can give significantly different risk estimates

  13. Earthquake ground-motion in presence of source and medium heterogeneities

    KAUST Repository

    Vyas, Jagdish Chandra

    2017-01-01

    -motion variability associated with unilateral ruptures based on ground-motion simulations of the MW 7.3 1992 Landers earthquake, eight simplified source models, and a MW 7.8 rupture simulation (ShakeOut) for the San Andreas fault. Our numerical modeling reveals

  14. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon

    2018-01-01

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  15. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar

    2018-04-17

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  16. Earthquake strong ground motion studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, Ivan; Silva, W.; Darragh, R.; Stark, C.; Wright, D.; Jackson, S.; Carpenter, G.; Smith, R.; Anderson, D.; Gilbert, H.; Scott, D.

    1989-01-01

    Site-specific strong earthquake ground motions have been estimated for the Idaho National Engineering Laboratory assuming that an event similar to the 1983 M s 7.3 Borah Peak earthquake occurs at epicentral distances of 10 to 28 km. The strong ground motion parameters have been estimated based on a methodology incorporating the Band-Limited-White-Noise ground motion model coupled with Random Vibration Theory. A 16-station seismic attenuation and site response survey utilizing three-component portable digital seismographs was also performed for a five-month period in 1989. Based on the recordings of regional earthquakes, the effects of seismic attenuation in the shallow crust and along the propagation path and local site response were evaluated. This data combined with a detailed geologic profile developed for each site based principally on borehole data, was used in the estimation of the strong ground motion parameters. The preliminary peak horizontal ground accelerations for individual sites range from approximately 0.15 to 0.35 g. Based on the authors analysis, the thick sedimentary interbeds (greater than 20 m) in the basalt section attenuate ground motions as speculated upon in a number of previous studies

  17. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.

    1983-03-01

    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  18. An open repository of earthquake-triggered ground-failure inventories

    Science.gov (United States)

    Schmitt, Robert G.; Tanyas, Hakan; Nowicki Jessee, M. Anna; Zhu, Jing; Biegel, Katherine M.; Allstadt, Kate E.; Jibson, Randall W.; Thompson, Eric M.; van Westen, Cees J.; Sato, Hiroshi P.; Wald, David J.; Godt, Jonathan W.; Gorum, Tolga; Xu, Chong; Rathje, Ellen M.; Knudsen, Keith L.

    2017-12-20

    Earthquake-triggered ground failure, such as landsliding and liquefaction, can contribute significantly to losses, but our current ability to accurately include them in earthquake-hazard analyses is limited. The development of robust and widely applicable models requires access to numerous inventories of ground failures triggered by earthquakes that span a broad range of terrains, shaking characteristics, and climates. We present an openly accessible, centralized earthquake-triggered groundfailure inventory repository in the form of a ScienceBase Community to provide open access to these data with the goal of accelerating research progress. The ScienceBase Community hosts digital inventories created by both U.S. Geological Survey (USGS) and non-USGS authors. We present the original digital inventory files (when available) as well as an integrated database with uniform attributes. We also summarize the mapping methodology and level of completeness as reported by the original author(s) for each inventory. This document describes the steps taken to collect, process, and compile the inventories and the process for adding additional ground-failure inventories to the ScienceBase Community in the future.

  19. Evaluation of seismic source, ground motion, tsunami based on the Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Our source models for the Mw9.0 Tohoku earthquake either inferred using tsunami data or from seismic data are featured with large slip along the Japan Trench. Our results indicated that the tsunami water levels at the Fukushima Daiichi and Daini NPPs were dominated by the large slip along the Japan Trench. Our analysis suggested that the difference in water levels at these two sites were caused by the waveform overlap effects due to delays of rupture starting times and wave propagation time. It also follows that the short period ground motions recorded during such an Mw9.0 mega thrust earthquake were comparable with those of an Mw8.0 earthquake. (author)

  20. ARMA models for earthquake ground motions. Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Chang, Mark K.; Kwiatkowski, Jan W.; Nau, Robert F.; Oliver, Robert M.; Pister, Karl S.

    1981-02-01

    This report contains an analysis of four major California earthquake records using a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It has been possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters and test the residuals generated by these models. It has also been possible to show the connections, similarities and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed in this report is suitable for simulating earthquake ground motions in the time domain and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. (author)

  1. Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake

    Science.gov (United States)

    Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath

    2016-06-01

    The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.

  2. Earthquake ground motion research in Sapporo city; Sapporoshi ni okeru jishindo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sasatani, T [Hokkaido University, Sapporo (Japan)

    1997-10-22

    The Research Group on Earthquake Ground Motion in Sapporo City established in May 1996 has inaugurated collection of information on ground structures and observations of strong earthquakes in Sapporo City. The Research Group on Earthquake Ground Motion in Sapporo City has carried out geological investigations, electric logging and PS logging to date in three boring holes each with a depth of about 100 m, 200 m and 600 m. According to the result of the logging in the new Ishikari Bay port (600-m deep hole), the S-wave velocity has increased slowly as it starts from the ground surface to greater depths, but showed no noticeable velocity boundaries in this range of the depth. The Sapporo municipal office has drilled three observation wells (500-m deep) for the purpose of determining focal points of microtremors directly under the city area. Hole-bottom observation has been inaugurated since the beginning of this year. According to comparison of the results of loggings at great depths, a depth at which the S-wave velocity reaches about 700 m/s becomes greater toward the sea area. The result of calculations on amplification characteristics of the SH wave on rock beds revealed that a seismic wave of about 0.5 Hz is amplified by a little more than two times. 1 ref., 5 figs., 1 tab.

  3. Near-fault earthquake ground motion prediction by a high-performance spectral element numerical code

    International Nuclear Information System (INIS)

    Paolucci, Roberto; Stupazzini, Marco

    2008-01-01

    Near-fault effects have been widely recognised to produce specific features of earthquake ground motion, that cannot be reliably predicted by 1D seismic wave propagation modelling, used as a standard in engineering applications. These features may have a relevant impact on the structural response, especially in the nonlinear range, that is hard to predict and to be put in a design format, due to the scarcity of significant earthquake records and of reliable numerical simulations. In this contribution a pilot study is presented for the evaluation of seismic ground-motions in the near-fault region, based on a high-performance numerical code for 3D seismic wave propagation analyses, including the seismic fault, the wave propagation path and the near-surface geological or topographical irregularity. For this purpose, the software package GeoELSE is adopted, based on the spectral element method. The set-up of the numerical benchmark of 3D ground motion simulation in the valley of Grenoble (French Alps) is chosen to study the effect of the complex interaction between basin geometry and radiation mechanism on the variability of earthquake ground motion

  4. A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta

    Science.gov (United States)

    Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.

    2015-12-01

    Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.

  5. Can earthquake source inversion benefit from rotational ground motion observations?

    Science.gov (United States)

    Igel, H.; Donner, S.; Reinwald, M.; Bernauer, M.; Wassermann, J. M.; Fichtner, A.

    2015-12-01

    With the prospects of instruments to observe rotational ground motions in a wide frequency and amplitude range in the near future we engage in the question how this type of ground motion observation can be used to solve seismic inverse problems. Here, we focus on the question, whether point or finite source inversions can benefit from additional observations of rotational motions. In an attempt to be fair we compare observations from a surface seismic network with N 3-component translational sensors (classic seismometers) with those obtained with N/2 6-component sensors (with additional colocated 3-component rotational motions). Thus we keep the overall number of traces constant. Synthetic seismograms are calculated for known point- or finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content as a measure how the observations constrain the seismic source properties. The results show that with the 6-C subnetworks the source properties are not only equally well recovered (even that would be benefitial because of the substantially reduced logistics installing N/2 sensors) but statistically significant some source properties are almost always better resolved. We assume that this can be attributed to the fact the (in particular vertical) gradient information is contained in the additional rotational motion components. We compare these effects for strike-slip and normal-faulting type sources. Thus the answer to the question raised is a definite "yes". The challenge now is to demonstrate these effects on real data.

  6. 2001 Bhuj, India, earthquake engineering seismoscope recordings and Eastern North America ground-motion attenuation relations

    Science.gov (United States)

    Cramer, C.H.; Kumar, A.

    2003-01-01

    Engineering seismoscope data collected at distances less than 300 km for the M 7.7 Bhuj, India, mainshock are compatible with ground-motion attenuation in eastern North America (ENA). The mainshock ground-motion data have been corrected to a common geological site condition using the factors of Joyner and Boore (2000) and a classification scheme of Quaternary or Tertiary sediments or rock. We then compare these data to ENA ground-motion attenuation relations. Despite uncertainties in recording method, geological site corrections, common tectonic setting, and the amount of regional seismic attenuation, the corrected Bhuj dataset agrees with the collective predictions by ENA ground-motion attenuation relations within a factor of 2. This level of agreement is within the dataset uncertainties and the normal variance for recorded earthquake ground motions.

  7. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    Science.gov (United States)

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  8. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures

  9. Instantaneous spectrum estimation of earthquake ground motions based on unscented Kalman filter method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.

  10. Seismic hazard in Hawaii: High rate of large earthquakes and probabilistics ground-motion maps

    Science.gov (United States)

    Klein, F.W.; Frankel, A.D.; Mueller, C.S.; Wesson, R.L.; Okubo, P.G.

    2001-01-01

    The seismic hazard and earthquake occurrence rates in Hawaii are locally as high as that near the most hazardous faults elsewhere in the United States. We have generated maps of peak ground acceleration (PGA) and spectral acceleration (SA) (at 0.2, 0.3 and 1.0 sec, 5% critical damping) at 2% and 10% exceedance probabilities in 50 years. The highest hazard is on the south side of Hawaii Island, as indicated by the MI 7.0, MS 7.2, and MI 7.9 earthquakes, which occurred there since 1868. Probabilistic values of horizontal PGA (2% in 50 years) on Hawaii's south coast exceed 1.75g. Because some large earthquake aftershock zones and the geometry of flank blocks slipping on subhorizontal decollement faults are known, we use a combination of spatially uniform sources in active flank blocks and smoothed seismicity in other areas to model seismicity. Rates of earthquakes are derived from magnitude distributions of the modem (1959-1997) catalog of the Hawaiian Volcano Observatory's seismic network supplemented by the historic (1868-1959) catalog. Modern magnitudes are ML measured on a Wood-Anderson seismograph or MS. Historic magnitudes may add ML measured on a Milne-Shaw or Bosch-Omori seismograph or MI derived from calibrated areas of MM intensities. Active flank areas, which by far account for the highest hazard, are characterized by distributions with b slopes of about 1.0 below M 5.0 and about 0.6 above M 5.0. The kinked distribution means that large earthquake rates would be grossly under-estimated by extrapolating small earthquake rates, and that longer catalogs are essential for estimating or verifying the rates of large earthquakes. Flank earthquakes thus follow a semicharacteristic model, which is a combination of background seismicity and an excess number of large earthquakes. Flank earthquakes are geometrically confined to rupture zones on the volcano flanks by barriers such as rift zones and the seaward edge of the volcano, which may be expressed by a magnitude

  11. Report of Earthquake Drills with Experiences of Ground Motion in Childcare for Young Children, Japan

    Science.gov (United States)

    Yamada, N.

    2013-12-01

    After the Great East Japan Earthquake of 2011, this disaster has become one of the opportunities to raise awareness of earthquake and tsunami disaster prevention, and the improvement of disaster prevention education is to be emphasized. The influences of these bring the extension to the spatial axis in Japan, and also, it is important to make a development of the education with continuous to the expansion of time axes. Although fire or earthquake drills as the disaster prevention education are often found in Japan, the children and teachers only go from school building to outside. Besides, only the shortness of the time to spend for the drill often attracts attention. The complementary practice education by the cooperation with experts such as the firefighting is practiced, but the verification of the effects is not enough, and it is the present conditions that do not advance to the study either. Although it is expected that improvement and development of the disaster prevention educations are accomplished in future, there are a lot of the problems. Our target is construction and utilization of material contributing to the education about "During the strong motion" in case of the earthquake which may experience even if wherever of Japan. One of the our productions is the handicraft shaking table to utilize as teaching tools of the education to protect the body which is not hurt at the time of strong motion. This made much of simplicity than high reproduction of the earthquake ground motions. We aimed to helping the disaster prevention education including not only the education for young children but also for the school staff and their parents. In this report, the focusing on a way of the non-injured during the time of the earthquake ground motion, and adopting activity of the play, we are going to show the example of the framework of earthquake disaster prevention childcare through the virtual experience. This presentation has a discussion as a practice study with

  12. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    Science.gov (United States)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  13. Deterministic ground motion modelling at Russe, NE Bulgaria, associated to the Vrancea intermediate-depth earthquakes

    CERN Document Server

    Kouteva, M; Paskaleva, I; Romanelli, F

    2003-01-01

    An analytical deterministic technique, based on the detailed knowledge of the seismic source process and of the propagation of seismic waves, has been applied to generate synthetic seismic signals at Russe, NE Bulgaria, associated to the strongest intermediate-depth Vrancea earthquakes, which occurred during the last century (1940, 1977, 1986 and 1990). The obtained results show that all ground motion components contribute significantly to the seismic loading and that the seismic source parameters influence the shape and the amplitude of the seismic signal. The approach we used proves that realistic seismic input (also at remote distances) can be constructed via waveform modelling, considering all the possible factors influencing the ground motion.

  14. Deterministic ground motion modelling at Russe, NE Bulgaria, associated to the Vrancea intermediate-depth earthquakes

    International Nuclear Information System (INIS)

    Kouteva, M.; Paskaleva, I.; Panza, G.F.; Romanelli, F.

    2003-06-01

    An analytical deterministic technique, based on the detailed knowledge of the seismic source process and of the propagation of seismic waves, has been applied to generate synthetic seismic signals at Russe, NE Bulgaria, associated to the strongest intermediate-depth Vrancea earthquakes, which occurred during the last century (1940, 1977, 1986 and 1990). The obtained results show that all ground motion components contribute significantly to the seismic loading and that the seismic source parameters influence the shape and the amplitude of the seismic signal. The approach we used proves that realistic seismic input (also at remote distances) can be constructed via waveform modelling, considering all the possible factors influencing the ground motion. (author)

  15. The effect of regional variation of seismic wave attenuation on the strong ground motion from earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D H; Bernreuter, D L

    1981-10-01

    Attenuation is caused by geometric spreading and absorption. Geometric spreading is almost independent of crustal geology and physiographic region, but absorption depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high frequency waves, absorption does not affect ground motion at distances less than about 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States is similar to that in the western United States. Beyond the near field, differences in ground motion can best be accounted for by differences in attenuation caused by differences in absorption. The stress drop of eastern earthquakes may be higher than for western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. But we believe this factor is of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. The characteristics of strong ground motion in the conterminous United States are discussed in light of these considerations, and estimates are made of the epicentral ground motions in the central and eastern United States. (author)

  16. Evaluation and summary of seismic response of above ground nuclear power plant piping to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    The purpose of this paper is to summarize the observations and experience which has been developed relative to the seismic behavior of above-ground, building-supported, industrial type piping (similar to piping used in nuclear power plants) in strong motion earthquakes. The paper also contains observations regarding the response of piping in experimental tests which attempted to excite the piping to failure. Appropriate conclusions regarding the behavior of such piping in large earthquakes and recommendations as to future design of such piping to resist earthquake motion damage are presented based on observed behavior in large earthquakes and simulated shake table testing

  17. The 2011 Mineral, VA M5.8 Earthquake Ground Motions and Stress Drop: An Important Contribution to the NGA East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2011-12-01

    The M5.8 Mineral, Virginia earthquake of August 23, 2011 is the largest instrumentally recorded earthquake in eastern North America since the 1988 M5.9 Saguenay, Canada earthquake. Historically, a similar magnitude earthquake occurred on May 31, 1897 at 18:58 UCT in western Virginia west of Roanoke. Paleoseismic evidence for larger magnitude earthquakes has also been found in the central Virginia region. The Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), is ongoing at the Pacific Earthquake Engineering Research Center funded by the U.S. Nuclear Regulatory Commission, the U.S. Geological Survey, the Electric Power Research Institute, and the U.S. Department of Energy. The available recordings from the M5.8 Virginia are being added to the NGA East ground motion database. Close in (less than 100 km) strong motion recordings are particularly interesting for both ground motion and stress drop estimates as most close-in broadband seismometers clipped on the mainshock. A preliminary estimate for earthquake corner frequency for the M5.8 Virginia earthquake of ~0.7 Hz has been obtained from a strong motion record 57 km from the mainshock epicenter. For a M5.8 earthquake this suggests a Brune stress drop of ~300 bars for the Virginia event. Very preliminary comparisons using accelerometer data suggest the ground motions from the M5.8 Virginia earthquake agree well with current ENA ground motion prediction equations (GMPEs) at short periods (PGA, 0.2 s) and are below the GMPEs at longer periods (1.0 s), which is the same relationship seen from other recent M5 ENA earthquakes. We will present observed versus GMPE ground motion comparisons for all the ground motion observations and stress drop estimates from strong motion recordings at distances less than 100 km. A review of the completed NGA East ENA ground motion database will also be provided.

  18. Broadband Ground Motion Observation and Simulation for the 2016 Kumamoto Earthquake

    Science.gov (United States)

    Miyake, H.; Chimoto, K.; Yamanaka, H.; Tsuno, S.; Korenaga, M.; Yamada, N.; Matsushima, T.; Miyakawa, K.

    2016-12-01

    During the 2016 Kumamoto earthquake, strong motion data were widely recorded by the permanent dense triggered strong motion network of K-NET/KiK-net and seismic intensity meters installed by local government and JMA. Seismic intensities close to the MMI 9-10 are recorded twice at the Mashiki town, and once at the Nishihara village and KiK-net Mashiki (KMMH16 ground surface). Near-fault records indicate extreme ground motion exceeding 400 cm/s in 5% pSv at a period of 1 s for the Mashiki town and 3-4 s for the Nishihara village. Fault parallel velocity components are larger between the Mashiki town and the Nishihara village, on the other hand, fault normal velocity components are larger inside the caldera of the Aso volcano. The former indicates rupture passed through along-strike stations, and the latter stations located at the forward rupture direction (e.g., Miyatake, 1999). In addition to the permanent observation, temporary continuous strong motion stations were installed just after the earthquake in the Kumamoto city, Mashiki town, Nishihara village, Minami-Aso village, and Aso town, (e.g., Chimoto et al., 2016; Tsuno et al., 2016; Yamanaka et al. 2016). This study performs to estimate strong motion generation areas for the 2016 Kumamoto earthquake sequence using the empirical Green's function method, then to simulate broadband ground motions for both the permanent and temporary strong motion stations. Currently the target period range is between 0.1 s to 5-10 s due to the signal-to-noise ratio of element earthquakes used for the empirical Green's functions. We also care fault dimension parameters N within 4 to 10 to avoid spectral sags and artificial periodicity. The simulated seismic intensities as well as fault normal and parallel velocity components will be discussed.

  19. Comparison of Ground Motion Prediction Equations (GMPE) for Chile and Canada With Recent Chilean Megathust Earthquakes

    Science.gov (United States)

    Herrera, C.; Cassidy, J. F.; Dosso, S. E.

    2017-12-01

    The ground shaking assessment allows quantifying the hazards associated with the occurrence of earthquakes. Chile and western Canada are two areas that have experienced, and are susceptible to imminent large crustal, in-slab and megathrust earthquakes that can affect the population significantly. In this context, we compare the current GMPEs used in the 2015 National Building Code of Canada and the most recent GMPEs calculated for Chile, with observed accelerations generated by four recent Chilean megathrust earthquakes (MW ≥ 7.7) that have occurred during the past decade, which is essential to quantify how well current models predict observations of major events.We collected the 3-component waveform data of more than 90 stations from the Centro Sismologico Nacional and the Universidad de Chile, and processed them by removing the trend and applying a band-pass filter. Then, for each station, we obtained the Peak Ground Acceleration (PGA), and by using a damped response spectra, we calculated the Pseudo Spectral Acceleration (PSA). Finally, we compared those observations with the most recent Chilean and Canadian GMPEs. Given the lack of geotechnical information for most of the Chilean stations, we also used a new method to obtain the VS30 by inverting the H/V ratios using a trans-dimensional Bayesian inversion, which allows us to improve the correction of observations according to soil conditions.As expected, our results show a good fit between observations and the Chilean GMPEs, but we observe that although the shape of the Canadian GMPEs is coherent with the distribution of observations, in general they under predict the observations for PGA and PSA at shorter periods for most of the considered earthquakes. An example of this can be seen in the attached figure for the case of the 2014 Iquique earthquake.These results present important implications related to the hazards associated to large earthquakes, especially for western Canada, where the probability of a

  20. Evaluation of the recorded ground motions for the unusual earthquake of 13 August 2006 ( M w 5.3) in Michoacán México

    Science.gov (United States)

    Ramírez-Gaytán, Alejandro; Jaimes, Miguel A.; Bandy, William L.; Huerfano, Victor M.; Salido-Ruiz, Ricardo A.

    2015-10-01

    The focal mechanism of the moderate earthquake of 13 August 2006 M w = 5.3, which occurred in the border coastal area between Michoacán and Colima, México, is unusual. As shown by the Global Centroid Moment Tensor (CMT) project and the Servicio Sismológico Nacional de Mexico (SSN), the thrust mechanism is striking almost perpendicularly to the majority of earthquakes occurring along the subduction zone of the Mexican Pacific continental margin which commonly strike nearly parallel to the trench. The purpose of this study is to analyze the observed ground motions of this particular event relative to those of the common events. First, we apply the H/V technique to verify that the stations involved in this study are nearly free of site effects. Then, we compare the observed ground motions with (i) three empirical ground motion prediction equations (GMPEs) appropriate for the region, (ii) ground motions of four real earthquakes with the common mechanism, and (iii) the Fourier spectrum of a selected common event.

  1. Expectable Earthquakes and their ground motions in the Van Norman Reservoirs Area

    Science.gov (United States)

    Wesson, R.L.; Page, R.A.; Boore, D.M.; Yerkes, R.F.

    1974-01-01

    The upper and lower Van Norman dams, in northwesternmost San Fernando Valley about 20 mi (32 km) northwest of downtown Los Angeles, were severely damaged during the 1971 San Fernando earthquake. An investigation of the geologic-seismologic setting of the Van Norman area indicates that an earthquake of at least M 7.7 may be expected in the Van Norman area. The expectable transitory effects in the Van Norman area of such an earthquake are as follows: peak horizontal acceleration of at least 1.15 g, peak velocity of displacement of 4.43 ft/sec (135 cm/sec), peak displacement of 2.3 ft (70 cm), and duration of shaking at accelerations greater than 0.05 g, 40 sec. A great earthquake (M 8+) on the San Andreas fault, 25 mi distant, also is expectable. Transitory effects in the Van Norman area from such an earthquake are estimated as follows: peak horizontal acceleration of 0.5 g, peak velocity of 1.97 ft/sec (60 cm/sec), displacement of 1.31 ft (40 cm), and duration of shaking at accelerations greater than 0.05 g, 80 sec. The permanent effects of the expectable local earthquake could include simultaneous fault movement at the lower damsite, the upper damsite, and the site proposed for a replacement dam halfway between the upper and lower dams. The maximum differential displacements due to such movements are estimated at 16.4 ft (5 m) at the lower damsite and about 9.6 ft (2.93 m) at the upper and proposed damsites. The 1971 San Fernando earthquake (M 6?) was accompanied by the most intense ground motions ever recorded instrumentally for a natural earthquake. At the lower Van Norman dam, horizontal accelerations exceeded 0.6 g, and shaking greater than 0.25 g lasted for about 13 see; at Pacoima dam, 6 mi (10 km) northeast of the lower dam, high-frequency peak horizontal accelerations of 1.25 g were recorded in two directions, and shaking greater than 0.25 g lasted for about 7 sec. Permanent effects of the earthquake include slope failures in the embankments of the upper

  2. Earthquake forewarning — A multidisciplinary challenge from the ground up to space

    Science.gov (United States)

    Freund, Friedemann

    2013-08-01

    Most destructive earthquakes nucleate at between 5-7 km and about 35-40 km depth. Before earthquakes, rocks are subjected to increasing stress. Not every stress increase leads to rupture. To understand pre-earthquake phenomena we note that igneous and high-grade metamorphic rocks contain defects which, upon stressing, release defect electrons in the oxygen anion sublattice, known as positive holes. These charge carriers are highly mobile, able to flow out of stressed rocks into surrounding unstressed rocks. They form electric currents, which emit electromagnetic radiation, sometimes in pulses, sometimes sustained. The arrival of positive holes at the ground-air interface can lead to air ionization, often exclusively positive. Ionized air rising upward can lead to cloud condensation. The upward flow of positive ions can lead to instabilities in the mesosphere, to mesospheric lightning, to changes in the Total Electron Content (TEC) at the lower edge of the ionosphere, and electric field turbulences. Advances in deciphering the earthquake process can only be achieved in a broadly multidisciplinary spirit.

  3. Earthquake ground-motion in presence of source and medium heterogeneities

    KAUST Repository

    Vyas, Jagdish Chandra

    2017-01-01

    This dissertation work investigates the effects of earthquake rupture complexity and heterogeneities in Earth structure on near-field ground-motions. More specifically, we address two key issues in seismology: (1) near-field ground-shaking variability as function of distance and azimuth for unilateral directive ruptures, and (2) impact of rupture complexity and seismic scattering on Mach wave coherence associated with supershear rupture propagation. We examine earthquake ground-motion variability associated with unilateral ruptures based on ground-motion simulations of the MW 7.3 1992 Landers earthquake, eight simplified source models, and a MW 7.8 rupture simulation (ShakeOut) for the San Andreas fault. Our numerical modeling reveals that the ground-shaking variability in near-fault distances (< 20 km) is larger than that given by empirical ground motion prediction equations. In addition, the variability decreases with increasing distance from the source, exhibiting a power-law decay. The high near-field variability can be explained by strong directivity effects whose influence weaken as we move away from the fault. At the same time, the slope of the power-law decay is found to be dominantly controlled by slip heterogeneity. Furthermore, the ground-shaking variability is high in the rupture propagation direction whereas low in the directions perpendicular to it. However, the variability expressed as a function of azimuth is not only sensitive to slip heterogeneity, but also to rupture velocity. To study Mach wave coherence for supershear ruptures, we consider heterogeneities in rupture parameters (variations in slip, rise time and rupture speed) and 3D scattering media having small-scale random heterogeneities. The Mach wave coherence is reduced at near-fault distances (< 10 km) by the source heterogeneities. At the larger distances from the source, medium scattering plays the dominant role in reducing the Mach wave coherence. Combined effect of the source and

  4. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    Science.gov (United States)

    Takai, Nobuo; Shigefuji, Michiko; Rajaure, Sudhir; Bijukchhen, Subeg; Ichiyanagi, Masayoshi; Dhital, Megh Raj; Sasatani, Tsutomu

    2016-01-01

    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

  5. Prediction of strong ground motion based on scaling law of earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1991-01-01

    In order to predict more practically strong ground motion, it is important to study how to use a semi-empirical method in case of having no appropriate observation records for actual small-events as empirical Green's functions. We propose a prediction procedure using artificially simulated small ground motions as substitute for the actual motions. First, we simulate small-event motion by means of stochastic simulation method proposed by Boore (1983) in considering pass effects such as attenuation, and broadening of waveform envelope empirically in the objective region. Finally, we attempt to predict the strong ground motion due to a future large earthquake (M 7, Δ = 13 km) using the same summation procedure as the empirical Green's function method. We obtained the results that the characteristics of the synthetic motion using M 5 motion were in good agreement with those by the empirical Green's function method. (author)

  6. Pattern of ground deformation in Kathmandu valley during 2015 Gorkha Earthquake, central Nepal

    Science.gov (United States)

    Ghimire, S.; Dwivedi, S. K.; Acharya, K. K.

    2016-12-01

    The 25th April 2015 Gorkha Earthquake (Mw=7.8) epicentered at Barpak along with thousands of aftershocks released seismic moment nearly equivalent to an 8.0 Magnitude earthquake rupturing a 150km long fault segment. Although Kathmandu valley was supposed to be severely devastated by such major earthquake, post earthquake scenario is completely different. The observed destruction is far less than anticipated as well as the spatial pattern is different than expected. This work focuses on the behavior of Kathmandu valley sediments during the strong shaking by the 2015 Gorkha Earthquake. For this purpose spatial pattern of destruction is analyzed at heavily destructed sites. To understand characteristics of subsurface soil 2D-MASW survey was carried out using a 24-channel seismograph system. An accellerogram recorded by Nepal Seismological Center was analyzed to characterize the strong ground motion. The Kathmandu valley comprises fluvio-lacustrine deposit with gravel, sand, silt and clay along with few exposures of basement rocks within the sediments. The observations show systematic repetition of destruction at an average interval of 2.5km mostly in sand, silt and clay dominated formations. Results of 2D-MASW show the sites of destruction are characterized by static deformation of soil (liquefaction and southerly dipping cracks). Spectral analysis of the accelerogram indicates maximum power associated with frequency of 1.0Hz. The result of this study explains the observed spatial pattern of destruction in Kathmandu valley. This is correlated with the seismic energy associated with the frequency of 1Hz, which generates an average wavelength of 2.5km with an average S-wave velocity of 2.5km/s. The cumulative effect of dominant frequency and associated wavelength resulted in static deformation of surface soil layers at an average interval of 2.5km. This phenomenon clearly describes the reason for different scenario than that was anticipated in Kathmandu valley.

  7. Shaking Table Tests on the Seismic Behavior of Steel Frame Structures Subjected to Various Earthquake Ground Motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Kim, Min Kyu; Choun, Young Sun; Seo, Jeong Moon

    2004-05-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. Recent large earthquakes occurred in near-fault zone have done significant damage and loss of life to earthquake area. A survey on some of the Quaternary fault segments near the Korean nuclear power plants is ongoing. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. In this study, the shaking table tests of three steel frame structures were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean nuclear power plant site and a typical near-fault earthquake recorded at Chi-Chi earthquake, were used as input motions. The acceleration and displacement responses of the structure due to the design earthquake were larger than those due to the other input earthquakes. It seems that the design earthquake for the Korean nuclear power plants is conservative, and that the near-fault earthquake and scenario earthquake are not so damageable for the nuclear power plant structures, because the fundamental frequencies of the nuclear power plant structures are generally greater than 5 Hz. The high frequency ground motions that appeared in the scenario earthquake can be more damageable for the equipment installed on the high floors in a building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipment

  8. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  9. Probabilistic seismic assessment of base-isolated NPPs subjected to strong ground motions of Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer; Hayah, Nadin Abu; Kim, Doo Kie [Dept. of Civil and Environmental Engineering, Kunsan National University, Kunsan (Korea, Republic of); Cho, Sung Gook [R and D Center, JACE KOREA Company, Gyeonggido (Korea, Republic of)

    2014-10-15

    The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  10. On the relation of earthquake stress drop and ground motion variability

    Science.gov (United States)

    Oth, Adrien; Miyake, Hiroe; Bindi, Dino

    2017-07-01

    One of the key parameters for earthquake source physics is stress drop since it can be directly linked to the spectral level of ground motion. Stress drop estimates from moment corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than expected from the between-event ground motion variability. This discrepancy raises the question whether classically determined stress drop variability is too large, which would have significant consequences for seismic hazard analysis. We use a large high-quality data set from Japan with well-studied stress drop data to address this issue. Nonparametric and parametric reference ground motion models are derived, and the relation of between-event residuals for Japan Meteorological Agency equivalent seismic intensity and peak ground acceleration with stress drop is analyzed for crustal earthquakes. We find a clear correlation of the between-event residuals with stress drops estimates; however, while the island of Kyushu is characterized by substantially larger stress drops than Honshu, the between-event residuals do not reflect this observation, leading to the appearance of two event families with different stress drop levels yet similar range of between-event residuals. Both the within-family and between-family stress drop variations are larger than expected from the ground motion between-event variability. A systematic common analysis of these parameters holds the potential to provide important constraints on the relative robustness of different groups of data in the different parameter spaces and to improve our understanding on how much of the observed source parameter variability is likely to be true source physics variability.

  11. Dynamic fracture network around faults: implications for earthquake ruptures, ground motion and energy budget

    Science.gov (United States)

    Okubo, K.; Bhat, H. S.; Rougier, E.; Lei, Z.; Knight, E. E.; Klinger, Y.

    2017-12-01

    Numerous studies have suggested that spontaneous earthquake ruptures can dynamically induce failure in secondary fracture network, regarded as damage zone around faults. The feedbacks of such fracture network play a crucial role in earthquake rupture, its radiated wave field and the total energy budget. A novel numerical modeling tool based on the combined finite-discrete element method (FDEM), which accounts for the main rupture propagation and nucleation/propagation of secondary cracks, was used to quantify the evolution of the fracture network and evaluate its effects on the main rupture and its associated radiation. The simulations were performed with the FDEM-based software tool, Hybrid Optimization Software Suite (HOSSedu) developed by Los Alamos National Laboratory. We first modeled an earthquake rupture on a planar strike-slip fault surrounded by a brittle medium where secondary cracks can be nucleated/activated by the earthquake rupture. We show that the secondary cracks are dynamically generated dominantly on the extensional side of the fault, mainly behind the rupture front, and it forms an intricate network of fractures in the damage zone. The rupture velocity thereby significantly decreases, by 10 to 20 percent, while the supershear transition length increases in comparison to the one with purely elastic medium. It is also observed that the high-frequency component (10 to 100 Hz) of the near-field ground acceleration is enhanced by the dynamically activated fracture network, consistent with field observations. We then conducted the case study in depth with various sets of initial stress state, and friction properties, to investigate the evolution of damage zone. We show that the width of damage zone decreases in depth, forming "flower-like" structure as the characteristic slip distance in linear slip-weakening law, or the fracture energy on the fault, is kept constant with depth. Finally, we compared the fracture energy on the fault to the energy

  12. Modelling of the ground motion at Russe site (NE Bulgaria) due to the Vrancea earthquakes

    International Nuclear Information System (INIS)

    Kouteva, Mihaela; Panza, Giuliano F.; Paskaleva, Ivanka; Romanelli, Fabio

    2001-11-01

    An approach, capable of synthesising strong ground motion from a basic understanding of fault mechanism and of seismic wave propagation in the Earth, is applied to model the seismic input at a set of 25 sites along a chosen profile at Russe, NE Bulgaria, due to two intermediate-depth Vrancea events (August 30, 1986, Mw=7.2, and May 30, 1990, Mw=6.9). According to our results, once a strong ground motion parameter has been selected to characterise the ground motion, it is necessary to investigate the relationships between its values and the features of the earthquake source, the path to the site and the nature of the site. Therefore, a proper seismic hazard assessment requires an appropriate parametric study to define the different ground shaking scenarios corresponding to the relevant seismogenic zones affecting the given site. Site response assessment is provided simultaneously in frequency and space domains, and thus the applied procedure differs from the traditional engineering approach that discusses the site as a single point. The applied procedure can be efficiently used to estimate the ground motion for different purposes like microzonation, urban planning, retrofitting or insurance of the built environment. (author)

  13. Wideband simulation of earthquake ground motion by a spectrum-matching, multiple-pulse technique

    International Nuclear Information System (INIS)

    Gusev, A.; Pavlov, V.

    2006-04-01

    To simulate earthquake ground motion, we combine a multiple-point stochastic earthquake fault model and a suite of Green functions. Conceptually, our source model generalizes the classic one of Haskell (1966). At any time instant, slip occurs over a narrow strip that sweeps the fault area at a (spatially variable) velocity. This behavior defines seismic signals at lower frequencies (LF), and describes directivity effects. High-frequency (HF) behavior of source signal is defined by local slip history, assumed to be a short segment of pulsed noise. For calculations, this model is discretized as a grid of point subsources. Subsource moment rate time histories, in their LF part, are smooth pulses whose duration equals to the rise time. In their HF part, they are segments of non-Gaussian noise of similar duration. The spectral content of subsource time histories is adjusted so that the summary far-field signal follows certain predetermined spectral scaling law. The results of simulation depend on random seeds, and on particular values of such parameters as: stress drop; average and dispersion parameter for rupture velocity; rupture nucleation point; slip zone width/rise time, wavenumber-spectrum parameter defining final slip function; the degrees of non-Gaussianity for random slip rate in time, and for random final slip in space, and more. To calculate ground motion at a site, Green functions are calculated for each subsource-site pair, then convolved with subsource time functions and at last summed over subsources. The original Green function calculator for layered weakly inelastic medium is of discrete wavenumber kind, with no intrinsic limitations with respect to layer thickness or bandwidth. The simulation package can generate example motions, or used to study uncertainties of the predicted motion. As a test, realistic analogues of recorded motions in the epicentral zone of the 1994 Northridge, California earthquake were synthesized, and related uncertainties were

  14. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  15. Seismic Hazard Analysis based on Earthquake Vulnerability and Peak Ground Acceleration using Microseismic Method at Universitas Negeri Semarang

    Science.gov (United States)

    Sulistiawan, H.; Supriyadi; Yulianti, I.

    2017-02-01

    Microseismic is a harmonic vibration of land that occurs continuously at a low frequency. The characteristics of microseismic represents the characteristics of the soil layer based on the value of its natural frequency. This paper presents the analysis of seismic hazard at Universitas Negeri Semarang using microseismic method. The data acquisition was done at 20 points with distance between points 300 m by using three component’s seismometer. The data was processed using Horizontal to Vertical Spectral Ratio (HVSR) method to obtain the natural frequency and amplification value. The value of the natural frequency and amplification used to determine the value of the earthquake vulnerability and peak ground acceleration (PGA). The result shows then the earthquake vulnerability value range from 0.2 to 7.5, while the value of the average peak ground acceleration (PGA) is in the range 10-24 gal. Therefore, the average peak ground acceleration equal to earthquake intensity IV MMI scale.

  16. Ground motion for the design basis earthquake at the Savannah River Site, South Carolina based on a deterministic approach

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Silva, W.J.; Stephenson, D.E.

    1991-01-01

    Ground motion assessments are presented for evaluation of the seismic safety of K-Reactor at the Savannah River Site. Two earthquake sources were identified as the most significant to seismic hazard at the site, a M 7.5 earthquake occurring at Charleston, South Carolina, and a M 5 event occurring in the site vicinity. These events control the low frequency and high frequency portions of the spectrum, respectively. Three major issues were identified in the assessment of ground motions for the Savannah River site; specification of the appropriate stress drop for the Charleston source earthquake, specification of the appropriate levels of soil damping at large depths for site response analyses, and the appropriateness of western US recordings for specification of ground motions in the eastern US

  17. Near Fault Strong Ground Motion Records in the Kathmandu Valley during the 2015 Gorkha Nepal Earthquake

    Science.gov (United States)

    Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M. R.; Sasatani, T.

    2015-12-01

    Kathmandu is the capital of Nepal and is located in the Kathmandu Valley, which is formed by soft lake sediments of Plio-Pleistocene origin. Large earthquakes in the past have caused significant damage as the seismic waves were amplified in the soft sediments. To understand the site effect of the valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). On 25 April 2015, a large interplate earthquake Mw 7.8 occurred in the Himalayan Range of Nepal. The focal area estimated was about 200 km long and 150 km wide, with a large slip area under the Kathmandu Valley where our strong motion observation stations were installed. The strong ground motions were observed during this large damaging earthquake. The maximum horizontal peak ground acceleration at the rock site was 271 cm s-2, and the maximum horizontal peak ground velocity at the sediment sites reached 112 cm s-1. We compared these values with the empirical attenuation formula for strong ground motions. We found the peak accelerations were smaller and the peak velocities were approximately the same as the predicted values. The rock site KTP motions are less affected by site amplification and were analysed further. The horizontal components were rotated to the fault normal (N205E) and fault parallel (N115E) directions using the USGS fault model. The velocity waveforms at KTP showed about 5 s triangular pulses on the N205E and the up-down components; however the N115E component was not a triangular pulse but one cycle sinusoidal wave. The velocity waveforms at KTP were integrated to derive the displacement waveforms. The derived displacements at KTP are characterized by a monotonic step on the N205E normal and up-down components. The displacement waveforms of KTP show permanent displacements of 130 cm in the fault

  18. Seismic ground motion modelling and damage earthquake scenarios: A bridge between seismologists and seismic engineers

    International Nuclear Information System (INIS)

    Panza, G.F.; Romanelli, F.; Vaccari. F.; . E-mails: Luis.Decanini@uniroma1.it; Fabrizio.Mollaioli@uniroma1.it)

    2002-07-01

    The input for the seismic risk analysis can be expressed with a description of 'roundshaking scenarios', or with probabilistic maps of perhaps relevant parameters. The probabilistic approach, unavoidably based upon rough assumptions and models (e.g. recurrence and attenuation laws), can be misleading, as it cannot take into account, with satisfactory accuracy, some of the most important aspects like rupture process, directivity and site effects. This is evidenced by the comparison of recent recordings with the values predicted by the probabilistic methods. We prefer a scenario-based, deterministic approach in view of the limited seismological data, of the local irregularity of the occurrence of strong earthquakes, and of the multiscale seismicity model, that is capable to reconcile two apparently conflicting ideas: the Characteristic Earthquake concept and the Self Organized Criticality paradigm. Where the numerical modeling is successfully compared with records, the synthetic seismograms permit the microzoning, based upon a set of possible scenario earthquakes. Where no recordings are available the synthetic signals can be used to estimate the ground motion without having to wait for a strong earthquake to occur (pre-disaster microzonation). In both cases the use of modeling is necessary since the so-called local site effects can be strongly dependent upon the properties of the seismic source and can be properly defined only by means of envelopes. The joint use of reliable synthetic signals and observations permits the computation of advanced hazard indicators (e.g. damaging potential) that take into account local soil properties. The envelope of synthetic elastic energy spectra reproduces the distribution of the energy demand in the most relevant frequency range for seismic engineering. The synthetic accelerograms can be fruitfully used for design and strengthening of structures, also when innovative techniques, like seismic isolation, are employed. For these

  19. Methods for prediction of strong earthquake ground motion. Final technical report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Trifunac, M.D.

    1977-09-01

    The purpose of this report is to summarize the results of the work on characterization of strong earthquake ground motion. The objective of this effort has been to initiate presentation of simple yet detailed methodology for characterization of strong earthquake ground motion for use in licensing and evaluation of operating Nuclear Power Plants. This report will emphasize the simplicity of the methodology by presenting only the end results in a format that may be useful for the development of the site specific criteria in seismic risk analysis, for work on the development of modern standards and regulatory guides, and for re-evaluation of the existing power plant sites

  20. Earthquake cycle modeling of multi-segmented faults: dynamic rupture and ground motion simulation of the 1992 Mw 7.3 Landers earthquake.

    Science.gov (United States)

    Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.

    2017-12-01

    We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the

  1. Ground-Motion Simulations of Scenario Earthquakes on the Hayward Fault

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Graves, R; Larsen, S; Ma, S; Rodgers, A; Ponce, D; Schwartz, D; Simpson, R; Graymer, R

    2009-03-09

    We compute ground motions in the San Francisco Bay area for 35 Mw 6.7-7.2 scenario earthquake ruptures involving the Hayward fault. The modeled scenarios vary in rupture length, hypocenter, slip distribution, rupture speed, and rise time. This collaborative effort involves five modeling groups, using different wave propagation codes and domains of various sizes and resolutions, computing long-period (T > 1-2 s) or broadband (T > 0.1 s) synthetic ground motions for overlapping subsets of the suite of scenarios. The simulations incorporate 3-D geologic structure and illustrate the dramatic increase in intensity of shaking for Mw 7.05 ruptures of the entire Hayward fault compared with Mw 6.76 ruptures of the southern two-thirds of the fault. The area subjected to shaking stronger than MMI VII increases from about 10% of the San Francisco Bay urban area in the Mw 6.76 events to more than 40% of the urban area for the Mw 7.05 events. Similarly, combined rupture of the Hayward and Rodgers Creek faults in a Mw 7.2 event extends shaking stronger than MMI VII to nearly 50% of the urban area. For a given rupture length, the synthetic ground motions exhibit the greatest sensitivity to the slip distribution and location inside or near the edge of sedimentary basins. The hypocenter also exerts a strong influence on the amplitude of the shaking due to rupture directivity. The synthetic waveforms exhibit a weaker sensitivity to the rupture speed and are relatively insensitive to the rise time. The ground motions from the simulations are generally consistent with Next Generation Attenuation ground-motion prediction models but contain long-period effects, such as rupture directivity and amplification in shallow sedimentary basins that are not fully captured by the ground-motion prediction models.

  2. Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

    Science.gov (United States)

    Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.

    2014-12-01

    Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion

  3. Overview of the relations earthquake source parameters and the specification of strong ground motion for design purposes

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-08-01

    One of the most important steps in the seismic design process is the specification of the appropriate ground motion to be input into the design analysis. From the point-of-view of engineering design analysis, the important parameters are peak ground acceleration, spectral shape and peak spectral levels. In a few cases, ground displacement is a useful parameter. The earthquake is usually specified by giving its magnitude and either the epicentral distance or the distance of the closest point on the causitive fault to the site. Typically, the appropriate ground motion parameters are obtained using the specified magnitude and distance in equations obtained from regression analysis among the appropriate variables. Two major difficulties with such an approach are: magnitude is not the best parameter to use to define the strength of an earthquake, and little near-field data is available to establish the appropriate form for the attenuation of the ground motion with distance, source size and strength. These difficulties are important for designing a critical facility; i.e., one for which a very low risk of exceeding the design ground motion is required. Examples of such structures are nuclear power plants, schools and hospitals. for such facilities, a better understanding of the relation between the ground motion and the important earthquake source parameters could be very useful for several reasons

  4. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    KAUST Repository

    Bydlon, Samuel A.

    2015-03-21

    ©2015. American Geophysical Union. All Rights Reserved. We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ∼20km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length. Key Points Fault roughness, not material heterogeneity, dominates rupture process Introduce parameter that can be used to quantify near-fault scattering Scattering affects the duration and amplitude of high-frequency ground motions

  5. Selection of earthquake resistant design criteria for nuclear power plants: Methodology and technical cases: Dislocation models of near-source earthquake ground motion: A review

    International Nuclear Information System (INIS)

    Luco, J.E.

    1987-05-01

    The solutions available for a number of dynamic dislocation fault models are examined in an attempt at establishing some of the expected characteristics of earthquake ground motion in the near-source region. In particular, solutions for two-dimensional anti-plane shear and plane-strain models as well as for three-dimensional fault models in full space, uniform half-space and layered half-space media are reviewed

  6. Ground-Motion Simulations of the 2008 Ms8.0 Wenchuan, China, Earthquake Using Empirical Green's Function Method

    Science.gov (United States)

    Zhang, W.; Zhang, Y.; Yao, X.

    2010-12-01

    On May 12, 2008, a huge earthquake with magnitude Ms8.0 occurred in the Wenhuan, Sichuan Province of China. This event was the most devastating earthquake in the mainland of China since the 1976 M7.8 Tangshan earthquake. It resulted in tremendous losses of life and property. There were about 90,000 persons killed. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and “quake lakes” which formed by landslide-induced reservoirs. This earthquake occurred along the Longmenshan fault, as the result of motion on a northeast striking reverse fault or thrust fault on the northwestern margin of the Sichuan Basin. The earthquake's epicenter and focal-mechanism are consistent with it having occurred as the result of movement on the Longmenshan fault or a tectonically related fault. The earthquake reflects tectonic stresses resulting from the convergence of crustal material slowly moving from the high Tibetan Plateau, to the west, against strong crust underlying the Sichuan Basin and southeastern China. In this study, we simulate the near-field strong ground motions of this great event based on the empirical Green’s function method (EGF). Referring to the published inversion source models, at first, we assume that there are three asperities on the rupture area and choose three different small events as the EGFs. Then, we identify the parameters of the source model using a genetic algorithm (GA). We calculate the synthetic waveforms based on the obtained source model and compare with the observed records. Our result shows that for most of the synthetic waveforms agree very well with the observed ones. The result proves the validity and the stability of the method. Finally, we forward the near-field strong ground motions near the source region and try to explain the damage distribution caused by the great earthquake.

  7. Slip reactivation during the 2011 Tohoku earthquake: Dynamic rupture and ground motion simulations

    Science.gov (United States)

    Galvez, P.; Dalguer, L. A.

    2013-12-01

    The 2011 Mw9 Tohoku earthquake generated such as vast geophysical data that allows studying with an unprecedented resolution the spatial-temporal evolution of the rupture process of a mega thrust event. Joint source inversion of teleseismic, near-source strong motion and coseismic geodetic data , e.g [Lee et. al, 2011], reveal an evidence of slip reactivation process at areas of very large slip. The slip of snapshots of this source model shows that after about 40 seconds the big patch above to the hypocenter experienced an additional push of the slip (reactivation) towards the trench. These two possible repeating slip exhibited by source inversions can create two waveform envelops well distinguished in the ground motion pattern. In fact seismograms of the KiK-Net Japanese network contained this pattern. For instance a seismic station around Miyagi (MYGH10) has two main wavefronts separated between them by 40 seconds. A possible physical mechanism to explain the slip reactivation could be a thermal pressurization process occurring in the fault zone. In fact, Kanamori & Heaton, (2000) proposed that for large earthquakes frictional melting and fluid pressurization can play a key role of the rupture dynamics of giant earthquakes. If fluid exists in a fault zone, an increase of temperature can rise up the pore pressure enough to significantly reduce the frictional strength. Therefore, during a large earthquake the areas of big slip persuading strong thermal pressurization may result in a second drop of the frictional strength after reaching a certain value of slip. Following this principle, we adopt for slip weakening friction law and prescribe a certain maximum slip after which the friction coefficient linearly drops down again. The implementation of this friction law has been done in the latest unstructured spectral element code SPECFEM3D, Peter et. al. (2012). The non-planar subduction interface has been taken into account and place on it a big asperity patch inside

  8. A Trial for Earthquake Prediction by Precise Monitoring of Deep Ground Water Temperature

    Science.gov (United States)

    Nasuhara, Y.; Otsuki, K.; Yamauchi, T.

    2006-12-01

    A near future large earthquake is estimated to occur off Miyagi prefecture, northeast Japan within 20 years at a probability of about 80 %. In order to predict this earthquake, we have observed groundwater temperature in a borehole at Sendai city 100 km west of the asperity. This borehole penetrates the fault zone of NE-trending active reverse fault, Nagamachi-Rifu fault zone, at 820m depth. Our concept of the ground water observation is that fault zones are natural amplifier of crustal strain, and hence at 820m depth we set a very precise quartz temperature sensor with the resolution of 0.0002 deg. C. We confirmed our observation system to work normally by both the pumping up tests and the systematic temperature changes at different depths. Since the observation started on June 20 in 2004, we found mysterious intermittent temperature fluctuations of two types; one is of a period of 5-10 days and an amplitude of ca. 0.1 deg. C, and the other is of a period of 11-21 days and an amplitude of ca. 0.2 deg. C. Based on the examination using the product of Grashof number and Prantl number, natural convection of water can be occurred in the borehole. However, since these temperature fluctuations are observed only at the depth around 820 m, thus it is likely that they represent the hydrological natures proper to the Nagamachi-Rifu fault zone. It is noteworthy that the small temperature changes correlatable with earth tide are superposed on the long term and large amplitude fluctuations. The amplitude on the days of the full moon and new moon is ca. 0.001 deg. C. The bottoms of these temperature fluctuations always delay about 6 hours relative to peaks of earth tide. This is interpreted as that water in the borehole is sucked into the fault zone on which tensional normal stress acts on the days of the full moon and new moon. The amplitude of the crustal strain by earth tide was measured at ca. 2∗10^-8 strain near our observation site. High frequency temperature noise of

  9. Use of Ground Motion Simulations of a Historical Earthquake for the Assessment of Past and Future Urban Risks

    Science.gov (United States)

    Kentel, E.; Çelik, A.; karimzadeh Naghshineh, S.; Askan, A.

    2017-12-01

    Erzincan city located in the Eastern part of Turkey at the conjunction of three active faults is one of the most hazardous regions in the world. In addition to several historical events, this city has experienced one of the largest earthquakes during the last century: The 27 December 1939 (Ms=8.0) event. With limited knowledge of the tectonic structure by then, the city center was relocated to the North after the 1939 earthquake by almost 5km, indeed closer to the existing major strike slip fault. This decision coupled with poor construction technologies, led to severe damage during a later event that occurred on 13 March 1992 (Mw=6.6). The 1939 earthquake occurred in the pre-instrumental era in the region with no available local seismograms whereas the 1992 event was only recorded by 3 nearby stations. There are empirical isoseismal maps from both events indicating indirectly the spatial distribution of the damage. In this study, we focus on this region and present a multidisciplinary approach to discuss the different components of uncertainties involved in the assessment and mitigation of seismic risk in urban areas. For this initial attempt, ground motion simulation of the 1939 event is performed to obtain the anticipated ground motions and shaking intensities. Using these quantified results along with the spatial distribution of the observed damage, the relocation decision is assessed and suggestions are provided for future large earthquakes to minimize potential earthquake risks.

  10. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    Science.gov (United States)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for induced earthquakes in the central US.

  11. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    Energy Technology Data Exchange (ETDEWEB)

    Wong, I.G.; Green, R.K.; Sun, J.I. [Woodward-Clyde Federal Services, Oakland, CA (United States); Pezzopane, S.K. [Geological Survey, Denver, CO (United States); Abrahamson, N.A. [Abrahamson (Norm A.), Piedmont, CA (United States); Quittmeyer, R.C. [Woodward-Clyde Federal Services, Las Vegas, NV (United States)

    1996-12-31

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M{sub w}) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M{sub w} 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M{sub w} 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper.

  12. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    International Nuclear Information System (INIS)

    Wong, I.G.; Green, R.K.; Sun, J.I.; Pezzopane, S.K.; Abrahamson, N.A.; Quittmeyer, R.C.

    1996-01-01

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M w ) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M w 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M w 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper

  13. Study on the Forecast of Ground Motion Parameters from Real Time Earthquake Information Based on Wave Form Data at the Front Site

    OpenAIRE

    萩原, 由訓; 源栄, 正人; 三辻, 和弥; 野畑, 有秀; Yoshinori, HAGIWARA; Masato, MOTOSAKA; Kazuya, MITSUJI; Arihide, NOBATA; (株)大林組 技術研究所; 東北大学大学院工学研究科; 山形大学地域教育文化学部生活総合学科生活環境科学コース; (株)大林組 技術研究所; Obayashi Corporation Technical Research Institute; Graduate School of Eng., Tohoku University; Faculty of Education, Art and Science, Yamagata University

    2011-01-01

    The Japan Meteorological Agency(JMA) provides Earthquake Early Warnings(EEW) for advanced users from August 1, 2006. Advanced EEW users can forecaste seismic ground motion (example: Seismic Intensity, Peak Ground Acceleration) from information of the earthquake in EEW. But there are limits to the accuracy and the earliness of the forecasting. This paper describes regression equation to decrease the error and to increase rapidity of the forecast of ground motion parameters from Real Time Earth...

  14. An Arduino project to record ground motion and to learn on earthquake hazard at high school

    Science.gov (United States)

    Saraò, Angela; Barnaba, Carla; Clocchiatti, Marco; Zuliani, David

    2015-04-01

    Through a multidisciplinary work that integrates Technology education with Earth Sciences, we implemented an educational program to raise the students' awareness of seismic hazard and to disseminate good practices of earthquake safety. Using free software and low-cost open hardware, the students of a senior class of the high school Liceo Paschini in Tolmezzo (NE Italy) implemented a seismograph using the Arduino open-source electronics platform and the ADXL345 sensors to emulate a low cost seismometer (e.g. O-NAVI sensor of the Quake-Catcher Network, http://qcn.stanford.edu). To accomplish their task the students were addressed to use the web resources for technical support and troubleshooting. Shell scripts, running on local computers under Linux OS, controlled the process of recording and display data. The main part of the experiment was documented using the DokuWiki style. Some propaedeutic lessons in computer sciences and electronics were needed to build up the necessary skills of the students and to fill in the gap of their background knowledge. In addition lectures by seismologists and laboratory activity allowed the class to exploit different aspects of the physics of the earthquake and particularly of the seismic waves, and to become familiar with the topics of seismic hazard through an inquiry-based learning. The Arduino seismograph achieved can be used for educational purposes and it can display tremors on the local network of the school. For sure it can record the ground motion due to a seismic event that can occur in the area, but further improvements are necessary for a quantitative analysis of the recorded signals.

  15. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions

    Science.gov (United States)

    Atkinson, G.M.; Boore, D.M.

    2003-01-01

    Ground-motion relations for earthquakes that occur in subduction zones are an important input to seismic-hazard analyses in many parts of the world. In the Cascadia region (Washington, Oregon, northern California, and British Columbia), for example, there is a significant hazard from megathrust earthquakes along the subduction interface and from large events within the subducting slab. These hazards are in addition to the hazard from shallow earthquakes in the overlying crust. We have compiled a response spectra database from thousands of strong-motion recordings from events of moment magnitude (M) 5-8.3 occurring in subduction zones around the world, including both interface and in-slab events. The 2001 M 6.8 Nisqually and 1999 M 5.9 Satsop earthquakes are included in the database, as are many records from subduction zones in Japan (Kyoshin-Net data), Mexico (Guerrero data), and Central America. The size of the database is four times larger than that available for previous empirical regressions to determine ground-motion relations for subduction-zone earthquakes. The large dataset enables improved determination of attenuation parameters and magnitude scaling, for both interface and in-slab events. Soil response parameters are also better determined by the data. We use the database to develop global ground-motion relations for interface and in-slab earthquakes, using a maximum likelihood regression method. We analyze regional variability of ground-motion amplitudes across the global database and find that there are significant regional differences. In particular, amplitudes in Cascadia differ by more than a factor of 2 from those in Japan for the same magnitude, distance, event type, and National Earthquake Hazards Reduction Program (NEHRP) soil class. This is believed to be due to regional differences in the depth of the soil profile, which are not captured by the NEHRP site classification scheme. Regional correction factors to account for these differences are

  16. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges

    Science.gov (United States)

    Jin, Zhibin; Pei, Shiling; Li, Xiaozhen; Liu, Hongyan; Qiang, Shizhong

    2016-11-01

    The running safety of railway vehicles on bridges can be negatively affected by earthquake events. This phenomenon has traditionally been investigated with only the lateral ground excitation component considered. This paper presented results from a numerical investigation on the contribution of vertical ground motion component to the derailment of vehicles on simply-supported bridges. A full nonlinear wheel-rail contact model was used in the investigation together with the Hertzian contact theory and nonlinear creepage theory, which allows the wheel to jump vertically and separate from the rail. The wheel-rail relative displacement was used as the criterion for derailment events. A total of 18 ground motion records were used in the analysis to account for the uncertainty of ground motions. The results showed that inclusion of vertical ground motion will likely increase the chance of derailment. It is recommended to include vertical ground motion component in earthquake induced derailment analysis to ensure conservative estimations. The derailment event on bridges was found to be more closely related to the deck acceleration rather than the ground acceleration.

  17. Sloshing of water in torus pressure-suppression pool of boiling water reactors under earthquake ground motions

    International Nuclear Information System (INIS)

    Aslam, M.; Godden, W.G.; Scalise, D.T.

    1978-08-01

    This report presents an analytical and experimental investigation into the sloshing of water in torus tanks under horizontal earthquake ground motions. This study was motivated because of the use of torus tanks for pressure-suppression pools in Boiling Water Reactors. Such a pressure-suppression pool would typically have 80 ft and 140 ft inside and outside diameters, a 30 ft diameter section, and a water depth of 15 ft. A general finite element analysis was developed for all axisymmetric tanks and a computer program was written to obtain time-history plots of sloshing displacements of water and dynamic pressures. Tests were carried out on a 1/60th scale model under sinusoidal as well as simulated earthquake ground motions. Tests and analytical results regarding natural frequencies, surface water displacements, and dynamic pressures were compared and a good agreement was found within the range of displacements studied. The computer program gave satisfactory results within a maximum range of sloshing displacements in the full-size prototype of 30 in. which is greater than the value obtained under the full intensity of the El Centro earthquake (N-S component 1940). The range of linear behavior was studied experimentally by subjecting the torus model to increasing intensities of the El Centro earthquake

  18. Spatial Distribution of Ground water Level Changes Induced by the 2006 Hengchun Earthquake Doublet

    Directory of Open Access Journals (Sweden)

    Yeeping Chia

    2009-01-01

    Full Text Available Water-level changes were ob served in 107 wells at 67 monitoring stations in the southern coastal plain of Tai wan during the 2006 Mw 7.1 Hengchun earthquake doublet. Two consecutive coseismic changes induced by the earth quake doublet can be observed from high-frequency data. Obervations from multiple-well stations indicate that the magnitude and direction of coseismic change may vary in wells of different depths. Coseismic rises were dominant on the south east side of the costal plain; whereas, coseismic falls prevailed on the north west side. In the transition zone, rises appeared in shallow wells whilst falls were evident in deep wells. As coseismic ground water level changes can reflect the tectonic strain field, tectonic extension likely dominates the deep subsurface in the transition area, and possibly in the en tire southern coastal plain. The coseismic rises in water level showed a tendency to de crease with distance from the hypocenter, but no clear trend was found for the coseismic falls.

  19. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  20. Hybrid Simulations of the Broadband Ground Motions for the 2008 MS8.0 Wenchuan, China, Earthquake

    Science.gov (United States)

    Yu, X.; Zhang, W.

    2012-12-01

    The Ms8.0 Wenchuan earthquake occurred on 12 May 2008 at 14:28 Beijing Time. It is the largest event happened in the mainland of China since the 1976, Mw7.6, Tangshan earthquake. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and "quake lakes" which formed by landslide-induced reservoirs. These resulted in tremendous losses of life and property. Casualties numbered more than 80,000 people, and there were major economic losses. However, this earthquake is the first Ms 8 intraplate earthquake with good close fault strong motion coverage. Over four hundred strong motion stations of the National Strong Motion Observation Network System (NSMONS) recorded the mainshock. Twelve of them located within 20 km of the fault traces and another 33 stations located within 100 km. These observations, accompanying with the hundreds of GPS vectors and multiple ALOS INSAR images, provide an unprecedented opportunity to study the rupture process of such a great intraplate earthquake. In this study, we calculate broadband near-field ground motion synthetic waveforms of this great earthquake using a hybrid broadband ground-motion simulation methodology, which combines a deterministic approach at low frequencies (f < 1.0 Hz) with a theoretic Green's function calculation approach at high frequency ( ~ 10.0 Hz). The fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time that were obtained by an inversion kinematic source model. At the same time, based on the aftershock data, we analyze the site effects for the near-field stations. Frequency-dependent site-amplification values for each station are calculated using genetic algorithms. For the calculation of the synthetic waveforms, at first, we carry out simulations using the hybrid methodology for the frequency up to 10.0 Hz. Then, we consider for

  1. Ground Motion Characteristics of the 2015 Gorkha Earthquake, Survey of Damage to Stone Masonry Structures and Structural Field Tests

    Directory of Open Access Journals (Sweden)

    Rishi Ram Parajuli

    2015-11-01

    Full Text Available On April 25, 2015, a M7.8 earthquake rattled central Nepal; ground motion recorded in Kantipath, Kathmandu, 76.86 km east of the epicenter suggested that the low frequency component was dominant. We consider data from eight aftershocks following the Gorkha earthquake and analyze ground motion characteristics; we found that most of the ground motion records are dominated by low frequencies for events with a moment magnitude greater than 6. The Gorkha earthquake devastated hundreds of thousands of structures. In the countryside, and especially in rural mountainous areas, most of the buildings that collapsed were stone masonry constructions. Detailed damage assessments of stone masonry buildings in Harmi Gorkha had done, with an epicentral distance of about 17 km. Structures were categorized as large, medium and small depending on their plinth area size and number of stories. Most of the structures in the area were damaged; interestingly, all ridge-line structures were heavily damaged. Moreover, Schmidt hammer tests were undertaken to determine the compressive strength of stone masonry, brick masonry with mud mortar for normal buildings and historical monuments. The compressive strengths of stone and brick masonry were found to be 12.38 and 18.75 MPa, respectively. Historical structures constructed with special bricks had a compressive strength of 29.50 MPa. Pullout tests were also conducted to determine the stone masonry-mud mortar bond strength. The cohesive strength of mud mortar and the coefficient of friction were determined.

  2. Environmentally Friendly Solution to Ground Hazards in Design of Bridges in Earthquake Prone Areas Using Timber Piles

    Science.gov (United States)

    Sadeghi, H.

    2015-12-01

    Bridges are major elements of infrastructure in all societies. Their safety and continued serviceability guaranties the transportation and emergency access in urban and rural areas. However, these important structures are subject to earthquake induced damages in structure and foundations. The basic approach to the proper support of foundations are a) distribution of imposed loads to foundation in a way they can resist those loads without excessive settlement and failure; b) modification of foundation ground with various available methods; and c) combination of "a" and "b". The engineers has to face the task of designing the foundations meeting all safely and serviceability criteria but sometimes when there are numerous environmental and financial constrains, the use of some traditional methods become inevitable. This paper explains the application of timber piles to improve ground resistance to liquefaction and to secure the abutments of short to medium length bridges in an earthquake/liquefaction prone area in Bohol Island, Philippines. The limitations of using the common ground improvement methods (i.e., injection, dynamic compaction) because of either environmental or financial concerns along with the abundance of timber in the area made the engineers to use a network of timber piles behind the backwalls of the bridge abutments. The suggested timber pile network is simulated by numerical methods and its safety is examined. The results show that the compaction caused by driving of the piles and bearing capacity provided by timbers reduce the settlement and lateral movements due to service and earthquake induced loads.

  3. Evidence of Multiple Ground-rupturing Earthquakes in the Past 4000 Years along the Pasuruan Fault, East Java, Indonesia

    Science.gov (United States)

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.

    2015-12-01

    Instrumental and historical records of earthquakes, supplemented by paleoeseismic constraints can help reveal the earthquake potential of an area. The Pasuruan fault is a high angle normal fault with prominent youthful scarps cutting young deltaic sediments in the north coast of East Java, Indonesia and may pose significant hazard to the densely populated region. This fault has not been considered a significant structure, and mapped as a lineament with no sense of motion. Information regarding past earthquakes along this fault is not available. The fault is well defined both in the imagery and in the field as a ~13km long, 2-50m-high scarp. Open and filled fractures and natural exposures of the south-dipping fault plane indicate normal sense of motion. We excavated two fault-perpendicular trenches across a relay ramp identified during our surface mapping. Evidence for past earthquakes (documented in both trenches) includes upward fault termination with associated fissure fills, colluvial wedges and scarp-derived debris, folding, and angular unconformities. The ages of the events are constrained by 23 radiocarbon dates on detrital charcoal. We calibrated the dates using IntCal13 and used Oxcal to build the age model of the events. Our preliminary age model indicates that since 2006±134 B.C., there has been at least five ground rupturing earthquakes along the fault. The oldest event identified in the trench however, is not well-dated. Our modeled 95th percentile ranges of the next four earlier earthquakes (and their mean) are A.D. 1762-1850 (1806), A.D. 1646-1770 (1708), A.D. 1078-1648 (1363), and A.D. 726-1092 (909), yielding a rough recurrence rate of 302±63 yrs. These new data imply that Pasuruan fault is more active than previously thought. Additional well-dated earthquakes are necessary to build a solid earthquake recurrence model. Rupture along the whole section implies a minimum earthquake magnitude of 6.3, considering 13km as the minimum surface rupture

  4. The deadly Morelos-Puebla, Mexico Intraslab Earthquake of 19 September 2017 (Mw7.1): Was the Earthquake Unexpected and Were the Ground Motions and Damage Pattern in Mexico City Abnormal?

    Science.gov (United States)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Cruz-Atienza, V. M.; Ordaz, M.; Hjorleifsdottir, V.; Iglesias, A.

    2017-12-01

    On 19 September 2017, thirty two years after the 1985 Michoacan interplate earthquake (Mw8.0), the city was once again devastated but this time by a Mw7.1 intraslab earthquake. The 2017 earthquake was located near the border of the states of Morelos and Puebla (18.410N, -98.710E; H=57 km), to SSE of Mexico City, at a hypocentral distance of about 127 km. It caused great panic in Mexico City, collapse of 44 buildings, and severely damaged many others. More than 200 persons were killed in the city. It was the second most destructive earthquake in the history of Mexico City, next only to the 1985 earthquake. A strong-motion station at CU located on basalt lava flows on main campus UNAM has been in continuous operation since 1964. PGA of 59 gal at CU during the 2017 earthquake is the largest ever, two times greater than that recorded during the 1985 earthquake (29 gal). The 2017 earthquake raised questions that are critical in fathoming the seismic vulnerability of the city and in its reconstruction. Was such an intraslab earthquake (Mw 7 at a hypocentral distance of 127 km) unexpected? Were the recorded ground motions in the city unusually high for such an earthquake? Why did the damage pattern during the earthquake differ from that observed during the 1985 earthquake? The earthquake was the closest M>5 intraslab earthquake to Mexico City ever recorded. However, Mw 5.9 events have occurred in recent years in the vicinity of the 2017 earthquake (R 145 km). Three Mw≥6.9 earthquakes have occurred since 1964 in the distance range 184-225 km. Thus, Mw and R of the earthquake was not surprising. However, a comparison of Fourier acceleration spectra at CU of 10 intraslab earthquakes with largest PGA, reduced to a common distance of R=127 km, shows that the amplitudes of the 2017 events were abnormally high in 1-2s range. Spectra of intraslab events at CU are enriched at higher frequencies relative to interplate ones because of closer distance, greater depth and higher

  5. Regional earthquakes followed by delayed ground uplifts at Campi Flegrei Caldera, Italy: Arguments for a causal link

    Science.gov (United States)

    Lupi, Matteo; Frehner, Marcel; Weis, Philipp; Skelton, Alasdair; Saenger, Erik H.; Tisato, Nicola; Geiger, Sebastian; Chiodini, Giovanni; Driesner, Thomas

    2017-09-01

    Earthquake-triggered volcanic activity promoted by dynamic and static stresses are considered rare and difficult-to-capture geological processes. Calderas are ideal natural laboratories to investigate earthquake-volcano interactions due to their sensitivity to incoming seismic energy. The Campi Flegrei caldera, Italy, is one of the most monitored volcanic systems worldwide. We compare ground elevation time series at Campi Flegrei with earthquake catalogues showing that uplift events at Campi Flegrei are associated with large regional earthquakes. Such association is supported by (yet non-definitive) binomial tests. Over a 70-year time window we identify 14 uplift events, 12 of them were preceded by an earthquake, and for 8 of them the earthquake-to-uplift timespan ranges from immediate responses to 1.2 yr. Such variability in the response delay may be due to the preparedness of the system with faster responses probably occurring in periods during which the Campi Flegrei system was already in a critical state. To investigate the process that may be responsible for the proposed association we simulate the propagation of elastic waves and show that passing body waves impose high dynamic strains at the roof of the magmatic reservoir of the Campi Flegrei at about 7 km depth. This may promote a short-lived embrittlement of the magma reservoir's carapace otherwise marked by a ductile behaviour. Such failure allows magma and exsolved volatiles to be released from the magmatic reservoir. The fluids, namely exsolved volatiles and/or melts, ascend through a nominally plastic zone above the magmatic reservoir. This mechanism and the associated inherent uncertainties require further investigations but the new concept already implies that geological processes triggered by passing seismic waves may become apparent several months after passage of the seismic waves.

  6. A study on generation of simulated earthquake ground motion for seismic design of nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Matsumoto, Takuji; Kitada, Yoshio; Osaki, Yorihiko; Kanda, Jun; Masao, Toru.

    1985-01-01

    The aseismatic design of nuclear power generation facilities carried out in Japan at present must conform to the ''Guideline for aseismatic design examination regarding power reactor facilities'' decided by the Atomic Energy Commission in 1978. In this guideline, the earthquake motion used for the analysis of dynamic earthquake response is to be given in the form of the magnitude determined on the basis of the investigation of historical earthquakes and active faults around construction sites and the response spectra corresponding to the distance from epicenters. Accordingly when the analysis of dynamic earthquake response is actually carried out, the simulated earthquake motion made in conformity with these set up response spectra is used as the input earthquake motion for the design. For the purpose of establishing the techniques making simulated earthquake motion which is more appropriate and rational from engineering viewpoint, the research was carried out, and the results are summarized in this paper. The techniques for making simulated earthquake motion, the response of buildings and the response spectra of floors are described. (Kako, I.)

  7. Spatiotemporal seismic velocity change in the Earth's subsurface associated with large earthquake: contribution of strong ground motion and crustal deformation

    Science.gov (United States)

    Sawazaki, K.

    2016-12-01

    It is well known that seismic velocity of the subsurface medium changes after a large earthquake. The cause of the velocity change is roughly attributed to strong ground motion (dynamic strain change), crustal deformation (static strain change), and fracturing around the fault zone. Several studies have revealed that the velocity reduction down to several percent concentrates at the depths shallower than several hundred meters. The amount of velocity reduction correlates well with the intensity of strong ground motion, which indicates that the strong motion is the primary cause of the velocity reduction. Although some studies have proposed contributions of coseismic static strain change and fracturing around fault zone to the velocity change, separation of their contributions from the site-related velocity change is usually difficult. Velocity recovery after a large earthquake is also widely observed. The recovery process is generally proportional to logarithm of the lapse time, which is similar to the behavior of "slow dynamics" recognized in laboratory experiments. The time scale of the recovery is usually months to years in field observations, while it is several hours in laboratory experiments. Although the factor that controls the recovery speed is not well understood, cumulative strain change due to post-seismic deformation, migration of underground water, mechanical and chemical reactions on the crack surface could be the candidate. In this study, I summarize several observations that revealed spatiotemporal distribution of seismic velocity change due to large earthquakes; especially I focus on the case of the M9.0 2011 Tohoku earthquake. Combining seismograms of Hi-net (high-sensitivity) and KiK-net (strong motion), geodetic records of GEONET and the seafloor GPS/Acoustic ranging, I investigate contribution of the strong ground motion and crustal deformation to the velocity change associated with the Tohoku earthquake, and propose a gross view of

  8. Web-based ground loop supervision system for the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Pena, A. de la; Lapayese, F.; Pacios, L.; Carrasco, R.

    2005-01-01

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation

  9. Web-based ground loop supervision system for the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A. de la [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)]. E-mail: a.delapena@ciemat.es; Lapayese, F. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Pacios, L. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Carrasco, R. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)

    2005-11-15

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation.

  10. Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake constrained by a detailed assessment of macroseismic data

    Science.gov (United States)

    Martin, Stacey; Hough, Susan E.; Hung, Charleen

    2015-01-01

    To augment limited instrumental recordings of the Mw 7.8 Gorkha, Nepal, earthquake on 25 April 2015 (Nepali calendar: 12 Baisakh 2072, Bikram Samvat), we collected 3831 detailed media and first-person accounts of macroseismic effects that include sufficiently detailed information to assign intensities. The resulting intensity map reveals the distribution of shaking within and outside of Nepal, with the key result that shaking intensities throughout the near-field region only exceeded intensity 8 on the 1998 European Macroseismic Scale (EMS-98) in rare instances. Within the Kathmandu Valley, intensities were generally 6–7 EMS. This surprising (and fortunate) result can be explained by the nature of the mainshock ground motions, which were dominated by energy at periods significantly longer than the resonant periods of vernacular structures throughout the Kathmandu Valley. Outside of the Kathmandu Valley, intensities were also generally lower than 8 EMS, but the earthquake took a heavy toll on a number of remote villages, where many especially vulnerable masonry houses collapsed catastrophically in 7–8 EMS shaking. We further reconsider intensities from the 1833 earthquake sequence and conclude that it occurred on the same fault segment as the Gorkha earthquake.

  11. Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media

    Science.gov (United States)

    Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.

    2013-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several

  12. Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Silvia R; Romo, Miguel P; Mayoral, Juan M [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)

    2007-01-15

    An extensive analysis of the strong ground motion Mexican data base was conducted using Soft Computing (SC) techniques. A Neural Network NN is used to estimate both orthogonal components of the horizontal (PGAh) and vertical (PGAv) peak ground accelerations measured at rock sites during Mexican subduction zone earthquakes. The work discusses the development, training, and testing of this neural model. Attenuation phenomenon was characterized in terms of magnitude, epicentral distance and focal depth. Neural approximators were used instead of traditional regression techniques due to their flexibility to deal with uncertainty and noise. NN predictions follow closely measured responses exhibiting forecasting capabilities better than those of most established attenuation relations for the Mexican subduction zone. Assessment of the NN, was also applied to subduction zones in Japan and North America. For the database used in this paper the NN and the-better-fitted- regression approach residuals are compared. [Spanish] Un analisis exhaustivo de la base de datos mexicana de sismos fuertes se llevo a cabo utilizando tecnicas de computo aproximado, SC (soft computing). En particular, una red neuronal, NN, es utilizada para estimar ambos componentes ortogonales de la maxima aceleracion horizontal del terreno, PGAh, y la vertical, PGAv, medidas en sitios en roca durante terremotos generados en la zona de subduccion de la Republica Mexicana. El trabajo discute el desarrollo, entrenamiento, y prueba de este modelo neuronal. El fenomeno de atenuacion fue caracterizado en terminos de la magnitud, la distancia epicentral y la profundidad focal. Aproximaciones neuronales fueron utilizadas en lugar de tecnicas de regresion tradicionales por su flexibilidad para tratar con incertidumbre y ruido en los datos. La NN sigue de cerca la respuesta medida exhibiendo capacidades predictivas mejores que las mostradas por muchas de las relaciones de atenuacion establecidas para la zona de

  13. Websim3d: A Web-based System for Generation, Storage and Dissemination of Earthquake Ground Motion Simulations.

    Science.gov (United States)

    Olsen, K. B.

    2003-12-01

    Synthetic time histories from large-scale 3D ground motion simulations generally constitute large 'data' sets which typically require 100's of Mbytes or Gbytes of storage capacity. For the same reason, getting access to a researchers simulation output, for example for an earthquake engineer to perform site analysis, or a seismologist to perform seismic hazard analysis, can be a tedious procedure. To circumvent this problem we have developed a web-based ``community model'' (websim3D) for the generation, storage, and dissemination of ground motion simulation results. Websim3D allows user-friendly and fast access to view and download such simulation results for an earthquake-prone area. The user selects an earthquake scenario from a map of the region, which brings up a map of the area where simulation data is available. Now, by clicking on an arbitrary site location, synthetic seismograms and/or soil parameters for the site can be displayed at fixed or variable scaling and/or downloaded. Websim3D relies on PHP scripts for the dynamic plots of synthetic seismograms and soil profiles. Although not limited to a specific area, we illustrate the community model for simulation results from the Los Angeles basin, Wellington (New Zealand), and Mexico.

  14. Sloshing of water in annular pressure-suppression pool of boiling water reactors under earthquake ground motions

    International Nuclear Information System (INIS)

    Aslam, M.; Godden, W.G.; Scalise, D.T.

    1979-10-01

    This report presents an analytical investigation of the sloshing response of water in annular-circular as well as simple-circular tanks under horizontal earthquake ground motions, and the results are verified with tests. This study was motivated because of the use of annular tanks for pressure-suppression pools in Boiling Water Reactors. Such a pressure-suppression pool would typically have 80 ft and 120 ft inside and outside diameters and a water depth of 20 ft. The analysis was based upon potential flow theory and a computer program was written to obtain time-history plots of sloshing displacements of water and the dynamic pressures. Tests were carried out on 1/80th and 1/15th scale models under sinusoidal as well as simulated earthquake ground motions. Tests and analytical results regarding the natural frequencies, surface water displacements, and dynamic pressures were compared and a good agreement was found for relatively small displacements. The computer program gave satisfactory results as long as the maximum water surface displacements were less than 30 in., which is roughly the value obtained under full intensity of El Centro earthquake

  15. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design

    Science.gov (United States)

    Borcherdt, Roger D.

    2014-01-01

    Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value  of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. 

  16. Compilation, assessment and expansion of the strong earthquake ground motion data base. Seismic Safety Margins Research Program (SSMRP)

    International Nuclear Information System (INIS)

    Crouse, C.B.; Hileman, J.A.; Turner, B.E.; Martin, G.R.

    1980-09-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications. (author)

  17. Rotational Response of Toe-Restrained Retaining Walls to Earthquake Ground Motions

    National Research Council Canada - National Science Library

    Ebeling, Robert M; White, Barry C

    2006-01-01

    .... The PC software CorpsWallRotate (sometimes referred to as CWRotate) was developed to perform an analysis of permanent wall rotation for each proposed retaining wall section to a user-specified earthquake acceleration time-history...

  18. Significance of earthquake and weapons-test ground motion to structure response and NRC licensing

    International Nuclear Information System (INIS)

    Blume, J.A.

    1984-01-01

    The author feels that of all the problems to be resolved before a nuclear power plant can be licensed to operate, the earthquake problem is the most difficult from the emotional and public relations point of view, as well as technically. It is the one that intervenors and their lawyers thrive upon, as do the demonstrators. These earthquakes can be tectonic, reservoir induced, and/or imaginary. 9 references, 29 figures

  19. Evaluating a kinematic method for generating broadband ground motions for great subduction zone earthquakes: Application to the 2003 Mw 8.3 Tokachi‐Oki earthquake

    Science.gov (United States)

    Wirth, Erin A.; Frankel, Arthur; Vidale, John E.

    2017-01-01

    We compare broadband synthetic seismograms with recordings of the 2003 Mw">MwMw 8.3 Tokachi‐Oki earthquake to evaluate a compound rupture model, in which slip on the fault consists of multiple high‐stress‐drop asperities superimposed on a background slip distribution with longer rise times. Low‐frequency synthetics (frequency (>1  Hz">>1  Hz>1  Hz) stochastic synthetics using a matched filter at 1 Hz. We show that this compound rupture model and overall approach accurately reproduces waveform envelopes and observed response spectral accelerations (SAs) from the Tokachi‐Oki event. We find that sufficiently short subfault rise times (i.e., ∼1  Hz∼1  Hz. This is achieved by either (1) including distinct subevents with short rise times, as may be suggested by the Tokachi‐Oki data, or (2) imposing a fast‐slip velocity over the entire rupture area. We also include a systematic study on the effects of varying several kinematic rupture parameters. We find that simulated strong ground motions are sensitive to the average rupture velocity and coherence of the rupture front, with more coherent ruptures yielding higher response SAs. We also assess the effects of varying the average slip velocity and the character (i.e., area, magnitude, and location) of high‐stress‐drop subevents. Even in the absence of precise constraints on these kinematic rupture parameters, our simulations still reproduce major features in the Tokachi‐Oki earthquake data, supporting its accuracy in modeling future large earthquakes.

  20. A grounded theory study of 'turning into a strong nurse': Earthquake experiences and perspectives on disaster nursing education.

    Science.gov (United States)

    Li, Yan; Turale, Sue; Stone, Teresa E; Petrini, Marcia

    2015-09-01

    While Asia has the dubious distinction of being the world's most natural disaster-prone area, disaster nursing education and training are sparse in many Asian countries, especially China where this study took place. To explore the earthquake disaster experiences of Chinese nurses and develop a substantive theory of earthquake disaster nursing that will help inform future development of disaster nursing education. A qualitative study employing grounded theory, informed by symbolic interactionism. Fifteen Chinese registered nurses from five hospitals in Jiangxi Province who undertook relief efforts after the 2008 Wenchuan Earthquake. Data were collected in 2012-2013 in digitally-recorded, semi-structured, in-depth interviews and reflective field notes, and analyzed using Glaser's grounded theory method. Participants were unprepared educationally and psychologically for their disaster work. Supporting the emergent theory of "working in that terrible environment", was the core category of "turning into a strong nurse", a process of three stages: "going to the disaster"; "immersing in the disaster"; and "trying to let disaster experiences fade away". The participants found themselves thrust in "terrible" scenes of destruction, experienced personal dangers and ethical dilemmas, and tried the best they could to help survivors, communities and themselves, with limited resources and confronting professional work. Our rich findings confirm those of other studies in China and elsewhere, that attention must be paid to disaster education and training for nurses, as well as the mental health of nurses who work in disaster areas. Emergent theory helps to inform nurse educators, researchers, leaders and policy makers in China, and elsewhere in developing strategies to better prepare nurses for future disasters, and assist communities to prepare for and recover after earthquake disasters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage

    Directory of Open Access Journals (Sweden)

    Amin E. Khalil

    2017-06-01

    Full Text Available Strong ground shaking during earthquakes can greatly affect the ancient monuments and subsequently demolish the human heritage. On October 12th 1992, a moderate earthquake (Ms = 5.8 shocked the greater Cairo area causing widespread damages. Unfortunately, the focus of that earthquake is located about 14 km to the south of Zoser pyramid. After the earthquake, the Egyptian Supreme council of antiquities issued an alarm that Zoser pyramid is partially collapsed and international and national efforts are exerted to restore this important human heritage that was built about 4000 years ago. Engineering and geophysical work is thus needed for the restoration process. The definition of the strong motion parameters is one of the required studies since seismically active zone is recorded in its near vicinity. The present study adopted the stochastic method to determine the peak ground motion (acceleration, velocity and displacement for the three largest earthquakes recorded in the Egypt’s seismological history. These earthquakes are Shedwan earthquake with magnitude Ms = 6.9, Aqaba earthquake with magnitude Mw = 7.2 and Cairo (Dahshour earthquake with magnitude Ms = 5.8. The former two major earthquakes took place few hundred kilometers away. It is logic to have the predominant effects from the epicentral location of the Cairo earthquake; however, the authors wanted to test also the long period effects of the large distance earthquakes expected from the other two earthquakes under consideration. In addition, the dynamic site response was studied using the Horizontal to vertical spectral ratio (HVSR technique. HVSR can provide information about the fundamental frequency successfully; however, the amplification estimation is not accepted. The result represented as either peak ground motion parameters or response spectra indicates that the effects from Cairo earthquake epicenter are the largest for all periods considered in the present study. The

  2. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage

    Science.gov (United States)

    Khalil, Amin E.; Abdel Hafiez, H. E.; Girgis, Milad; Taha, M. A.

    2017-06-01

    Strong ground shaking during earthquakes can greatly affect the ancient monuments and subsequently demolish the human heritage. On October 12th 1992, a moderate earthquake (Ms = 5.8) shocked the greater Cairo area causing widespread damages. Unfortunately, the focus of that earthquake is located about 14 km to the south of Zoser pyramid. After the earthquake, the Egyptian Supreme council of antiquities issued an alarm that Zoser pyramid is partially collapsed and international and national efforts are exerted to restore this important human heritage that was built about 4000 years ago. Engineering and geophysical work is thus needed for the restoration process. The definition of the strong motion parameters is one of the required studies since seismically active zone is recorded in its near vicinity. The present study adopted the stochastic method to determine the peak ground motion (acceleration, velocity and displacement) for the three largest earthquakes recorded in the Egypt's seismological history. These earthquakes are Shedwan earthquake with magnitude Ms = 6.9, Aqaba earthquake with magnitude Mw = 7.2 and Cairo (Dahshour earthquake) with magnitude Ms = 5.8. The former two major earthquakes took place few hundred kilometers away. It is logic to have the predominant effects from the epicentral location of the Cairo earthquake; however, the authors wanted to test also the long period effects of the large distance earthquakes expected from the other two earthquakes under consideration. In addition, the dynamic site response was studied using the Horizontal to vertical spectral ratio (HVSR) technique. HVSR can provide information about the fundamental frequency successfully; however, the amplification estimation is not accepted. The result represented as either peak ground motion parameters or response spectra indicates that the effects from Cairo earthquake epicenter are the largest for all periods considered in the present study. The level of strong motion as

  3. Ground-rupturing earthquakes on the northern Big Bend of the San Andreas Fault, California, 800 A.D. to Present

    Science.gov (United States)

    Scharer, Katherine M.; Weldon, Ray; Biasi, Glenn; Streig, Ashley; Fumal, Thomas E.

    2017-01-01

    Paleoseismic data on the timing of ground-rupturing earthquakes constrain the recurrence behavior of active faults and can provide insight on the rupture history of a fault if earthquakes dated at neighboring sites overlap in age and are considered correlative. This study presents the evidence and ages for 11 earthquakes that occurred along the Big Bend section of the southern San Andreas Fault at the Frazier Mountain paleoseismic site. The most recent earthquake to rupture the site was the Mw7.7–7.9 Fort Tejon earthquake of 1857. We use over 30 trench excavations to document the structural and sedimentological evolution of a small pull-apart basin that has been repeatedly faulted and folded by ground-rupturing earthquakes. A sedimentation rate of 0.4 cm/yr and abundant organic material for radiocarbon dating contribute to a record that is considered complete since 800 A.D. and includes 10 paleoearthquakes. Earthquakes have ruptured this location on average every ~100 years over the last 1200 years, but individual intervals range from ~22 to 186 years. The coefficient of variation of the length of time between earthquakes (0.7) indicates quasiperiodic behavior, similar to other sites along the southern San Andreas Fault. Comparison with the earthquake chronology at neighboring sites along the fault indicates that only one other 1857-size earthquake could have occurred since 1350 A.D., and since 800 A.D., the Big Bend and Mojave sections have ruptured together at most 50% of the time in Mw ≥ 7.3 earthquakes.

  4. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    Science.gov (United States)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  5. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  6. A Mw 6.3 earthquake scenario in the city of Nice (southeast France): ground motion simulations

    Science.gov (United States)

    Salichon, Jérome; Kohrs-Sansorny, Carine; Bertrand, Etienne; Courboulex, Françoise

    2010-07-01

    The southern Alps-Ligurian basin junction is one of the most seismically active zone of the western Europe. A constant microseismicity and moderate size events (3.5 case of an offshore Mw 6.3 earthquake located at the place where two moderate size events (Mw 4.5) occurred recently and where a morphotectonic feature has been detected by a bathymetric survey. We used a stochastic empirical Green’s functions (EGFs) summation method to produce a population of realistic accelerograms on rock and soil sites in the city of Nice. The ground motion simulations are calibrated on a rock site with a set of ground motion prediction equations (GMPEs) in order to estimate a reasonable stress-drop ratio between the February 25th, 2001, Mw 4.5, event taken as an EGF and the target earthquake. Our results show that the combination of the GMPEs and EGF techniques is an interesting tool for site-specific strong ground motion estimation.

  7. Evaluation of Soil-Structure Interaction on the Seismic Response of Liquid Storage Tanks under Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Mostafa Farajian

    2017-03-01

    Full Text Available Soil-structure interaction (SSI could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks (namely, broad and slender, with aspect ratios of height to radius equal to 0.6 and 1.85 founded on half-space soil is scrutinized under different earthquake ground motions. For a better comparison, the six considered ground motions are classified, based on their pulse-like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Additionally, four types of soils are used to consider a wide variety of soil properties. To this end, after deriving the equations of motion, MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to a decrease in the impulsive displacement, overturning moment, and normalized base shear, the sloshing (or convective displacement is not affected by such effects due to its long period.

  8. 3D Ground-Motion Simulations for Magnitude 9 Earthquakes on the Cascadia Megathrust: Sedimentary Basin Amplification, Rupture Directivity, and Ground-Motion Variability

    Science.gov (United States)

    Frankel, A. D.; Wirth, E. A.; Marafi, N.; Vidale, J. E.; Stephenson, W. J.

    2017-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for Mw 9 earthquakes on the Cascadia subduction zone by combining synthetics from 3D finite-difference simulations at low frequencies (≤ 1 Hz) and stochastic synthetics at high frequencies (≥ 1 Hz). These synthetic ground motions are being used to evaluate building response, liquefaction, and landslides, as part of the M9 Project of the University of Washington, in collaboration with the U.S. Geological Survey. The kinematic rupture model is composed of high stress drop sub-events with Mw 8, similar to those observed in the Mw 9.0 Tohoku, Japan and Mw 8.8 Maule, Chile earthquakes, superimposed on large background slip with lower slip velocities. The 3D velocity model is based on active and passive-source seismic tomography studies, seismic refraction and reflection surveys, and geologic constraints. The Seattle basin portion of the model has been validated by simulating ground motions from local earthquakes. We have completed 50 3D simulations of Mw 9 earthquakes using a variety of hypocenters, slip distributions, sub-event locations, down-dip limits of rupture, and other parameters. For sites not in deep sedimentary basins, the response spectra of the synthetics for 0.1-6.0 s are similar, on average, to the values from the BC Hydro ground motion prediction equations (GMPE). For periods of 7-10 s, the synthetic response spectra exceed these GMPE, partially due to the shallow dip of the plate interface. We find large amplification factors of 2-5 for response spectra at periods of 1-10 s for locations in the Seattle and Tacoma basins, relative to sites outside the basins. This amplification depends on the direction of incoming waves and rupture directivity. The basin amplification is caused by surface waves generated at basin edges from incoming S-waves, as well as amplification and focusing of S-waves and surface waves by the 3D basin structure. The inter-event standard deviation of response spectral

  9. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.

    2012-03-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  10. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.; Mai, Paul Martin

    2012-01-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  11. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-01-01

    are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction

  12. Hybrid broadband Ground Motion simulation based on a dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake.

    Science.gov (United States)

    Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.

    2015-12-01

    The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian

  13. Closed-form critical earthquake response of elastic-plastic structures on compliant ground under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-01-01

    Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  14. USGS approach to real-time estimation of earthquake-triggered ground failure - Results of 2015 workshop

    Science.gov (United States)

    Allstadt, Kate E.; Thompson, Eric M.; Wald, David J.; Hamburger, Michael W.; Godt, Jonathan W.; Knudsen, Keith L.; Jibson, Randall W.; Jessee, M. Anna; Zhu, Jing; Hearne, Michael; Baise, Laurie G.; Tanyas, Hakan; Marano, Kristin D.

    2016-03-30

    The U.S. Geological Survey (USGS) Earthquake Hazards and Landslide Hazards Programs are developing plans to add quantitative hazard assessments of earthquake-triggered landsliding and liquefaction to existing real-time earthquake products (ShakeMap, ShakeCast, PAGER) using open and readily available methodologies and products. To date, prototype global statistical models have been developed and are being refined, improved, and tested. These models are a good foundation, but much work remains to achieve robust and defensible models that meet the needs of end users. In order to establish an implementation plan and identify research priorities, the USGS convened a workshop in Golden, Colorado, in October 2015. This document summarizes current (as of early 2016) capabilities, research and operational priorities, and plans for further studies that were established at this workshop. Specific priorities established during the meeting include (1) developing a suite of alternative models; (2) making use of higher resolution and higher quality data where possible; (3) incorporating newer global and regional datasets and inventories; (4) reducing barriers to accessing inventory datasets; (5) developing methods for using inconsistent or incomplete datasets in aggregate; (6) developing standardized model testing and evaluation methods; (7) improving ShakeMap shaking estimates, particularly as relevant to ground failure, such as including topographic amplification and accounting for spatial variability; and (8) developing vulnerability functions for loss estimates.

  15. Reliable selection of earthquake ground motions for performance-based design

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sextos, A.G.

    2016-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Prequalified code-compatible suites of seismic motions are provided through a multi-criterion approach to satisfy prescribed reduced variability...... of the method, by being subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv-sc) and the conventional index (δconv), already used by most existing code-based earthquake records selection and scaling procedures. The findings reveal the superiority...

  16. Structure-specific selection of earthquake ground motions for the reliable design and assessment of structures

    DEFF Research Database (Denmark)

    Katsanos, E. I.; Sextos, A. G.

    2018-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Code-compatible suites of seismic motions are provided being, at the same time, prequalified through a multi-criterion approach to induce...... was subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv–sc) and the conventional one (δconv), that is commonly used for earthquake records selection and scaling. The findings from numerous linear response history analyses reveal the superiority...

  17. CyberShake-derived ground-motion prediction models for the Los Angeles region with application to earthquake early warning

    Science.gov (United States)

    Bose, Maren; Graves, Robert; Gill, David; Callaghan, Scott; Maechling, Phillip J.

    2014-01-01

    Real-time applications such as earthquake early warning (EEW) typically use empirical ground-motion prediction equations (GMPEs) along with event magnitude and source-to-site distances to estimate expected shaking levels. In this simplified approach, effects due to finite-fault geometry, directivity and site and basin response are often generalized, which may lead to a significant under- or overestimation of shaking from large earthquakes (M > 6.5) in some locations. For enhanced site-specific ground-motion predictions considering 3-D wave-propagation effects, we develop support vector regression (SVR) models from the SCEC CyberShake low-frequency (415 000 finite-fault rupture scenarios (6.5 ≤ M ≤ 8.5) for southern California defined in UCERF 2.0. We use CyberShake to demonstrate the application of synthetic waveform data to EEW as a ‘proof of concept’, being aware that these simulations are not yet fully validated and might not appropriately sample the range of rupture uncertainty. Our regression models predict the maximum and the temporal evolution of instrumental intensity (MMI) at 71 selected test sites using only the hypocentre, magnitude and rupture ratio, which characterizes uni- and bilateral rupture propagation. Our regression approach is completely data-driven (where here the CyberShake simulations are considered data) and does not enforce pre-defined functional forms or dependencies among input parameters. The models were established from a subset (∼20 per cent) of CyberShake simulations, but can explain MMI values of all >400 k rupture scenarios with a standard deviation of about 0.4 intensity units. We apply our models to determine threshold magnitudes (and warning times) for various active faults in southern California that earthquakes need to exceed to cause at least ‘moderate’, ‘strong’ or ‘very strong’ shaking in the Los Angeles (LA) basin. These thresholds are used to construct a simple and robust EEW algorithm: to

  18. A study of Guptkashi, Uttarakhand earthquake of 6 February 2017 ( M w 5.3) in the Himalayan arc and implications for ground motion estimation

    Science.gov (United States)

    Srinagesh, Davuluri; Singh, Shri Krishna; Suresh, Gaddale; Srinivas, Dakuri; Pérez-Campos, Xyoli; Suresh, Gudapati

    2018-05-01

    The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake's location (30.546° N, 79.063° E), depth ( H = 19 km), the seismic moment ( M 0 = 1.12×1017 Nm, M w 5.3), the focal mechanism ( φ = 280°, δ = 14°, λ = 84°), the source radius ( a = 1.3 km), and the static stress drop (Δ σ s 22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω -2 source model) by attenuation parameters Q( f) = 500 f 0.9, κ = 0.04 s, and f max = infinite, and a stress drop of Δ σ = 70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤ 200 km during five other earthquakes in the region (4.6 ≤ M w ≤ 6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.

  19. Three-Dimensional Finite Difference Simulation of Ground Motions from the August 24, 2014 South Napa Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.

  20. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    I. Wong

    2004-01-01

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M and O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes

  1. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  2. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy)

    KAUST Repository

    Imperatori, W.; Mai, Paul Martin

    2012-01-01

    We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.

  3. An analysis of ground shaking and transmission loss from infra sound generated by the 2011 Tohoku earthquake

    International Nuclear Information System (INIS)

    Walker, Kristoffer T.; Le Pichon, Alexis; Tae Sung Kim; Il-Young Che; Groot-Hedlin, Catherine de; Garces, Milton

    2013-01-01

    The 2011 Mw 9.0 Tohoku earthquake generated infra sound that was recorded by nine infrasonic arrays. Most arrays recorded a back azimuth variation with time due to the expanse of the source region. We use ray tracing to predict group velocities and back azimuth wind corrections. A Japan accelerometer network recorded ground shaking in unprecedented spatial resolution. We back projected infra sound from arrays IS44 (Kamchatka) and IS30 (Tokyo) to the source region and compare these results with acceleration data. IS44 illuminates the complex geometry of land areas that experienced shaking. IS30 illuminates two volcanoes and a flat area around the city of Sendai, where the maximum accelerations occurred. The arrays and epicentral region define three source-receiver profiles. The observed broadband energy transmission loss (TL) follows an exponential decay law. The best fitting model, which has parameters that are interpreted to include the effects of geometric spreading, scattering, and the maximum ratio of the effective sound speed in the stratosphere to that at the ground (accounts for stratospheric wind speed), yields a 65% variance reduction relative to predictions from a traditional TL relationship. This model is a simplified version of the model of Le Pichon et al. (2012), which yields an 83% variance reduction for a single frequency, implying that fine-scale atmospheric structure is required to explain the TL for stratospheric upwind propagation. Our results show that infrasonic arrays are sensitive to ground acceleration in the source region of mega-thrust earthquakes. The TL results may improve infrasonic amplitude scaling laws for explosive yield. (authors)

  4. On the dependency of the decay of ground motion peak values with distance for small and large earthquakes

    Science.gov (United States)

    Dujardin, Alain; Courboulex, Françoise; Causse, Matthieu; Traversa, Paola; Monfret, Tony

    2013-04-01

    Ground motion decay with distance presents a clear magnitude dependence, PGA values of small events decreasing faster than those of larger events. This observation is now widely accepted and often taken into account in recent ground motion prediction equations (Anderson 2005, Akkar & Bommer 2010). The aim of this study is to investigate the origin of this dependence, which has not been clearly identified yet. Two main hypotheses are considered. On one hand the difference of ground motion decay is related to an attenuation effect, on the other hand the difference is related to an effect of extended fault (Anderson 2000). To study the role of attenuation, we realized synthetic tests using the stochastic simulation program SMSIM from Boore (2005). We build a set of simulations from several magnitudes and epicentral distances, and observe that the decay in PGA values is strongly dependent on the spectral shape of the Fourier spectra, which in turn strongly depends on the attenuation factor (Q(f) or kappa). We found that, for a point source approximation and an infinite value of Q (no attenuation) there is no difference between small and large events and that this difference increases when Q decreases. Theses results show that the influence of attenuation on spectral shape is different for earthquakes of different magnitude. In fact the influence of attenuation, which is more important at higher frequency, is larger for small earthquakes, whose Fourier acceleration spectrum has predominantly higher frequencies. We then study the effect of extended source using complete waveform simulations in a 1D model. We find that when the duration of the source time function increases, there is a larger probability to obtain large PGA values at equivalent distances. This effect could also play an important role in the PGA decay with magnitude and distance. Finally we compare these results with real datasets from the Japanese accelerometric network KIK-net.

  5. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  6. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Journal of Seismology, 1, 237-251. Field, E.H., T.H. Jordan, and C.A. Cornell (2003

  7. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy

    Science.gov (United States)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia

    2011-01-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  8. Adaptive Magnetorheological Isolator for Ground Support Equipment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The minimization of vibration-induced damage has become a critical issue for rocket launch ground support electronics (GSE). In particular, the effect of high...

  9. Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2015-01-01

    Full Text Available This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced frame structure, these self-centering friction damping brace members make the best use of their representative characteristics to minimize residual deformations and to withstand earthquake loads without member replacement. The configuration and response mechanism of self-centering friction damping brace systems are firstly described in this study, and then parametric investigations are conducted through nonlinear time-history analyses performed on numerical single degree-of-freedom spring models. After observing analysis results, adequate design methodologies that optimally account for recentering capability and energy dissipation according to their comparative parameters are intended to be suggested in order to take advantage of energy capacity and to minimize residual deformation simultaneously.

  10. Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals

    Science.gov (United States)

    Grant, Rachel A.; Halliday, Tim; Balderer, Werner P.; Leuenberger, Fanny; Newcomer, Michelle; Cyr, Gary; Freund, Friedemann T.

    2011-01-01

    Prior to major earthquakes many changes in the environment have been documented. Though often subtle and fleeting, these changes are noticeable at the land surface, in water, in the air, and in the ionosphere. Key to understanding these diverse pre-earthquake phenomena has been the discovery that, when tectonic stresses build up in the Earth’s crust, highly mobile electronic charge carriers are activated. These charge carriers are defect electrons on the oxygen anion sublattice of silicate minerals, known as positive holes, chemically equivalent to O− in a matrix of O2−. They are remarkable inasmuch as they can flow out of the stressed rock volume and spread into the surrounding unstressed rocks. Travelling fast and far the positive holes cause a range of follow-on reactions when they arrive at the Earth’s surface, where they cause air ionization, injecting massive amounts of primarily positive air ions into the lower atmosphere. When they arrive at the rock-water interface, they act as •O radicals, oxidizing water to hydrogen peroxide. Other reactions at the rock-water interface include the oxidation or partial oxidation of dissolved organic compounds, leading to changes of their fluorescence spectra. Some compounds thus formed may be irritants or toxins to certain species of animals. Common toads, Bufo bufo, were observed to exhibit a highly unusual behavior prior to a M6.3 earthquake that hit L’Aquila, Italy, on April 06, 2009: a few days before the seismic event the toads suddenly disappeared from their breeding site in a small lake about 75 km from the epicenter and did not return until after the aftershock series. In this paper we discuss potential changes in groundwater chemistry prior to seismic events and their possible effects on animals. PMID:21776211

  11. Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals

    Directory of Open Access Journals (Sweden)

    Friedemann T. Freund

    2011-06-01

    Full Text Available Prior to major earthquakes many changes in the environment have been documented. Though often subtle and fleeting, these changes are noticeable at the land surface, in water, in the air, and in the ionosphere. Key to understanding these diverse pre-earthquake phenomena has been the discovery that, when tectonic stresses build up in the Earth’s crust, highly mobile electronic charge carriers are activated. These charge carriers are defect electrons on the oxygen anion sublattice of silicate minerals, known as positive holes, chemically equivalent to O– in a matrix of O2–. They are remarkable inasmuch as they can flow out of the stressed rock volume and spread into the surrounding unstressed rocks. Travelling fast and far the positive holes cause a range of follow-on reactions when they arrive at the Earth’s surface, where they cause air ionization, injecting massive amounts of primarily positive air ions into the lower atmosphere. When they arrive at the rock-water interface, they act as •O radicals, oxidizing water to hydrogen peroxide. Other reactions at the rock-water interface include the oxidation or partial oxidation of dissolved organic compounds, leading to changes of their fluorescence spectra. Some compounds thus formed may be irritants or toxins to certain species of animals. Common toads, Bufo bufo, were observed to exhibit a highly unusual behavior prior to a M6.3 earthquake that hit L’Aquila, Italy, on April 06, 2009: a few days before the seismic event the toads suddenly disappeared from their breeding site in a small lake about 75 km from the epicenter and did not return until after the aftershock series. In this paper we discuss potential changes in groundwater chemistry prior to seismic events and their possible effects on animals.

  12. Ionospheric turbulence from ground-based and satellite VLF/LF transmitter signal observations for the Simushir earthquake (November 15, 2006

    Directory of Open Access Journals (Sweden)

    Pier Francesco Biagi

    2012-04-01

    Full Text Available

    Signals from very low frequency (VLF/ low frequency (LF transmitters recorded on the ground station at Petropavlovsk-Kamchatsky and on board the French DEMETER satellite were analyzed for the Simushir earthquake (M 8.3; November 15, 2006. The period of analysis was from October 1, 2006, to January 31, 2007. The ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal. The model for the ground observations was the monthly averaged signal amplitudes and phases, as calculated for the quiet days of every month. For the satellite data, a two-dimensional model of the signal distribution over the selected area was constructed. Preseismic effects were found several days before the earthquake, in both the ground and satellite observations.

     

  13. Ground Processing Optimization Using Artificial Intelligence Techniques, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal is the automation of a large amount of KSC's planning, scheduling, and execution decision making. Phase II will result in a complete full-scale...

  14. Estimation of Seismic Ground Motions and Attendant Potential Human Fatalities from Scenario Earthquakes on the Chishan Fault in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu

    2017-01-01

    Full Text Available The purpose of this study is to estimate maximum ground motions in southern Taiwan as well as to assess potential human fatalities from scenario earthquakes on the Chishan active faults in this area. The resultant Shake Map patterns of maximum ground motion in a case of Mw 7.2 show the areas of PGA above 400 gals are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan, as shown in the regions inside the yellow lines in the corresponding figure. Comparing cities with similar distances located in Tainan, Kaohsiung, and Pingtung to the Chishan fault, the cities in Tainan area have relatively greater PGA and PGV, due to large site response factors in Tainan area. Furthermore, seismic hazards in terms of PGA and PGV in the vicinity of the Chishan fault are not completely dominated by the Chishan fault. The main reason is that some areas located in the vicinity of the Chishan fault are marked with low site response amplification values from 0.55 - 1.1 and 0.67 - 1.22 for PGA and PGV, respectively. Finally, from estimation of potential human fatalities from scenario earthquakes on the Chishan active fault, it is noted that potential fatalities increase rapidly in people above age 45. Total fatalities reach a high peak in age groups of 55 - 64. Another to pay special attention is Kaohsiung City has more than 540 thousand households whose residences over 50 years old. In light of the results of this study, I urge both the municipal and central governments to take effective seismic hazard mitigation measures in the highly urbanized areas with a large number of old buildings in southern Taiwan.

  15. Strong ground motion in Port-au-Prince, Haiti, during the M7.0 12 January 2010 Haiti earthquake

    Science.gov (United States)

    Hough, Susan E; Given, Doug; Taniguchi, Tomoyo; Altidor, J.R.; Anglade, Dieuseul; Mildor, S-L.

    2011-01-01

    No strong motion records are available for the 12 January 2010 M7.0 Haiti earthquake. We use aftershock recordings as well as detailed considerations of damage to estimate the severity and distribution of mainshock shaking in Port-au-Prince. Relative to ground motions at a hard - rock reference site, peak accelerations are amplified by a factor of approximately 2 at sites on low-lying deposits in central Port-au-Prince and by a factor of 2.5 - 3.5 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplification along the ridge cannot be explained by sediment - induced amplification , but is consistent with predicted topographic amplification by a steep, narrow ridge. Although damage was largely a consequence of poor construction , the damage pattern inferred from analysis of remote sensing imagery provides evidence for a correspondence between small-scale (0.1 - 1.0 km) topographic relief and high damage. Mainshock shaking intensity can be estimated crudely from a consideration of macroseismic effects . We further present detailed, quantitative analysis of the marks left on a tile floor by an industrial battery rack displaced during the mainshock, at the location where we observed the highest weak motion amplifications. Results of this analysis indicate that mainshock shaking was significantly higher at this location (~0.5 g , MMI VIII) relative to the shaking in parts of Port-au-Prince that experienced light damage. Our results further illustrate how observations of rigid body horizontal displacement during earthquakes can be used to estimate peak ground accelerations in the absence of instrumental data .

  16. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone

    Science.gov (United States)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis

    2015-04-01

    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the

  17. Stochastic Modeling and Simulation of Near-Fault Ground Motions for Performance-Based Earthquake Engineering

    OpenAIRE

    Dabaghi, Mayssa

    2014-01-01

    A comprehensive parameterized stochastic model of near-fault ground motions in two orthogonal horizontal directions is developed. The proposed model uniquely combines several existing and new sub-models to represent major characteristics of recorded near-fault ground motions. These characteristics include near-fault effects of directivity and fling step; temporal and spectral non-stationarity; intensity, duration and frequency content characteristics; directionality of components, as well as ...

  18. Analysis of the Source and Ground Motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla Earthquakes

    Science.gov (United States)

    Melgar, D.; Sahakian, V. J.; Perez-Campos, X.; Quintanar, L.; Ramirez-Guzman, L.; Spica, Z.; Espindola, V. H.; Ruiz-Angulo, A.; Cabral-Cano, E.; Baltay, A.; Geng, J.

    2017-12-01

    The September 2017 Tehuantepec and Puebla earthquakes were intra-slab earthquakes that together caused significant damage in broad regions of Mexico, including the states of Oaxaca, Chiapas, Morelos, Puebla, Mexico, and Mexico City. Ground motions in Mexico City have approximately the same angle of incidence from both earthquakes and potentially sample similar paths close to the city. We examine site effects and source terms by analysis of residuals between Ground-Motion Prediction Equations (GMPEs) and observed ground motions for both of these events at stations from the Servicio Sismólogico Nacional, Instituto de Ingeniería, and the Instituto de Geofísica Red del Valle de Mexico networks. GMPEs are a basis for seismic design, but also provide median ground motion values to act as a basis for comparison of individual earthquakes and site responses. First, we invert for finite-fault slip inversions for Tehuantepec with high-rate GPS, static GPS, tide gauge and DART buoy data, and for Puebla with high-rate GPS and strong motion data. Using the distance from the stations with ground motion observations to the derived slip models, we use the GMPEs of Garcia et al. (2005), Zhao et al. (2006), and Abrahamson, Silva and Kamai (2014), to compute predicted values of peak ground acceleration and velocity (PGA and PGV) and response spectral accelerations (SA). Residuals between observed and predicted ground motion parameters are then computed for each recording, and are decomposed into event and site components using a mixed effects regression. We analyze these residuals as an adjustment away from median ground motions in the region to glean information about the earthquake source properties, as well as local site response in and outside of the Mexico City basin. The event and site terms are then compared with available values of stress drop for the two earthquakes, and Vs30 values for the sites, respectively. This analysis is useful in determining which GMPE is most

  19. Effects of Seismological and Soil Parameters on Earthquake Energy demand in Level Ground Sand Deposits

    Science.gov (United States)

    nabili, sara; shahbazi majd, nafiseh

    2013-04-01

    Liquefaction has been a source of major damages during severe earthquakes. To evaluate this phenomenon there are several stress, strain and energy based approaches. Use of the energy method has been more focused by researchers due to its advantages with respect to other approaches. The use of the energy concept to define the liquefaction potential is validated through laboratory element and centrifuge tests as well as field studies. This approach is based on the hypothesis that pore pressure buildup is directly related to the dissipated energy in sands which is the accumulated areas between the stress-strain loops. Numerous investigations were performed to find a relationship which correlates the dissipated energy to the soil parameters, but there are not sufficient studies to relate this dissipated energy, known as demand energy, concurrently, to the seismological and the soil parameters. The aim of this paper is to investigate the dependency of the demand energy in sands to seismological and the soil parameters. To perform this task, an effective stress analysis has been executed using FLAC finite difference program. Finn model, which is a built-in constitutive model implemented in FLAC program, was utilized. Since an important stage to predict the liquefaction is the prediction of excess pore water pressure at a given point, a simple numerical framework is presented to assess its generation during a cyclic loading in a given centrifuge test. According to the results, predicted excess pore water pressures did not closely match to the measured excess pore water pressure values in the centrifuge test but they can be used in the numerical assessment of excess pore water pressure with an acceptable degree of preciseness. Subsequently, the centrifuge model was reanalyzed using several real earthquake acceleration records with different seismological parameters such as earthquake magnitude and Hypocentral distance. The accumulated energies (demand energy) dissipated in

  20. Aftershocks, groundwater changes and postseismic ground displacements related to pore pressure gradients: Insights from the 2012 Emilia-Romagna earthquake

    Science.gov (United States)

    Albano, Matteo; Barba, Salvatore; Solaro, Giuseppe; Pepe, Antonio; Bignami, Christian; Moro, Marco; Saroli, Michele; Stramondo, Salvatore

    2017-07-01

    During the 2012 Emilia-Romagna (Italy) seismic sequence, several time-dependent phenomena occurred, such as changes in the groundwater regime and chemistry, liquefaction, and postseismic ground displacements. Because time-dependent phenomena require time-dependent physical mechanisms, we interpreted such events as the result of the poroelastic response of the crust after the main shock. In our study, we performed a two-dimensional poroelastic numerical analysis calibrated with Cosmo-SkyMed interferometric data and measured piezometric levels in water wells. The simulation results are consistent with the observed postseismic ground displacement and water level changes. The simulations show that crustal volumetric changes induced by poroelastic relaxation and the afterslip along the main shock fault are both required to reproduce the amplitude (approximately 4 cm) and temporal evolution of the observed postseismic uplift. Poroelastic relaxation also affects the aftershock distribution. In fact, the aftershocks are correlated with the postseismic Coulomb stress evolution. In particular, a considerably higher fraction of aftershocks occurs when the evolving poroelastic Coulomb stress is positive. These findings highlight the need to perform calculations that adequately consider the time-dependent poroelastic effect when modeling postseismic scenarios, especially for forecasting the temporal and spatial evolution of stresses after a large earthquake. Failing to do so results in an overestimation of the afterslip and an inaccurate definition of stress and strain in the postseismic phase.

  1. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    KAUST Repository

    Bydlon, Samuel A.; Dunham, Eric M.

    2015-01-01

    become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible

  2. Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A.D.

    Science.gov (United States)

    Obermeier, S.F.; Dickenson, S.E.

    2000-01-01

    During the past decade, paleoseismic studies done by many researchers in the coastal regions of the Pacific Northwest have shown that regional downdropping and subsequent tsunami inundation occurred in response to a major earthquake along the Cascadia subduction zone. This earthquake occurred almost certainly in 1700 A.D., and is believed by many to have been of M 8.5-9 or perhaps larger. In order to characterize the severity of ground motions from this earthquake, we report on a field search and analysis of seismically induced liquefaction features. The search was conducted chiefly along the banks of islands in the lowermost Columbia River of Oregon and Washington and in stream banks along smaller rivers throughout southwestern Washington. To a lesser extent, the investigation included rivers in central Oregon. Numerous small- to moderate-sized liquefaction features from the earthquake of 1700 A.D. were found in some regions, but there was a notable lack of liquefaction features in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors in different field settings near the coast. Our use of widely different field settings, each in which we independently assess the strength of shaking and arrive at the same conclusion, enhances the credibility of our interpretations. Our regional inventory of liquefaction features and preliminary geotechnical analysis of liquefaction potential provide substantial evidence for only moderate levels of ground shaking in coastal Washington and Oregon during the subduction earthquake of 1700 A.D. Additionally, it appears that a similar conclusion can be reached for an earlier subduction earthquake that occurred within the past 1100 years, which also has been characterized by others as being M 8 or greater. On the basis of more limited data for older events collected in our regional study, it appears that seismic shaking has been no stronger throughout Holocene time. Our

  3. An empirical assessment of near-source strong ground motion for a 6.6 mb (7.5 MS) earthquake in the Eastern United States

    International Nuclear Information System (INIS)

    Campbell, Kenneth W.

    1984-06-01

    To help assess the impact of the current U.S. Geological Survey position on the seismic safety of nuclear power plants in the Eastern United States (EUS), several techniques for estimating near-source strong ground motion for a Charleston size earthquake were evaluated. The techniques for estimating the near-source strong ground motion for a 6.6 m b (7.5 M S ) in the Eastern United States which were assessed are methods based on site specific analyses, semi-theoretical scaling techniques, and intensity-based estimates. The first involves the statistical analysis of ground motion records from earthquakes and recording stations having the same general characteristics (earthquakes with magnitudes of 7.5 M S or larger, epicentral distances of 25 km or less, and sites of either soil or rock). Some recommendations for source and characterization scaling of the bias resulting primarily from an inadequate sample of near-source recordings from earthquakes of large magnitude are discussed. The second technique evaluated requires that semi-theoretical estimates of peak ground motion parameters for a 6.6 m b (7.5 M S ) earthquake be obtained from scaling relations. Each relation uses a theoretical expression between peak acceleration magnitude and distance together with available strong motion data (majority coming from California) to develop a scaling relation appropriate for the Eastern United States. None of the existing ground motion models for the EUS include the potential effects of source or site characteristics. Adjustments to account for fault mechanisms, site topography, site geology, and the size and embedment of buildings are discussed. The final approach used relations between strong ground motion parameters and Modified Mercalli Intensity in conjunction with two methods to estimate peak parameters for a 6.6 m s (7.5 M S ) earthquake. As with other techniques, adjustment of peak acceleration estimates are discussed. Each method differently approaches the problem

  4. The May 2012 Emilia (Italy earthquakes: preliminary interpretations on the seismogenic source and the origin of the coseismic ground effects

    Directory of Open Access Journals (Sweden)

    Alberto Pizzi

    2012-10-01

    Full Text Available On May 20, 2012, a Ml 5.9 earthquake (T1 occurred in the Emilia-Romagna Region of northern Italy. This was preceded by a Ml 4.1 foreshock on May 19, 2012, and followed by several aftershocks, including two Ml 5.1 events, both on the same day. On May 29, 2012, a second strong event of Ml 5.8 (T2 hit the same region, with its epicenter ca. 12 km to the WSW of the first mainshock, T1. The epicentral area of the seismic sequence covers an alluvial lowland that is occupied by both agricultural and urbanized areas, and there were 17 casualties and about 14,000 people left homeless. […] In the present study, we provide a preliminary model of the seismogenic source(s responsible for the two mainshocks, by comparing the seismic reflection profile interpretation with the available seismological and interferometric data. Furthermore, we show the coseismic ground effects that were observed in the epicentral area during two field survey campaigns: the first conducted after the May 20, 2012, event and the second soon after the May 29, 2012, earthquake, when several sites were revisited to observe the occurrence of newly formed or 're-activated' liquefaction features. Hence, we discuss the origin and location of the coseismic features observed in the context of the local geological–geomorphological setting and with respect to the epicentral distance. Finally, we provide our interpretation for the question: "Why did the mainshock ruptures not break the surface?" […

  5. Performance of Irikura's Recipe Rupture Model Generator in Earthquake Ground Motion Simulations as Implemented in the Graves and Pitarka Hybrid Approach.

    Energy Technology Data Exchange (ETDEWEB)

    Pitarka, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-22

    We analyzed the performance of the Irikura and Miyake (2011) (IM2011) asperity-­ based kinematic rupture model generator, as implemented in the hybrid broadband ground-­motion simulation methodology of Graves and Pitarka (2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0 -­ 20Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-­West2 Project (NGA-­West2) ground-­motion prediction equations (GMPEs) over the frequency band 0.1–10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-­fault distances (<12km) and at long periods (>1s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1 – 3 sec where the IM2011 motions are about 20 – 30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1 – 3 second bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study.

  6. Constraining ground motion parameters and determining the historic earthquake that damaged the vaults underneath the Old City of Jerusalem

    Science.gov (United States)

    Yagoda-Biran, G.; Hatzor, Y. H.

    2013-12-01

    Evidence for seismically induced damage are preserved in historic masonry structures below the Old City of Jerusalem at a site known locally as the 'Western Wall Tunnels' complex, possibly one of the most important tourist attractions in the world. In the tunnels, structures dated to 500 BC and up until modern times have been uncovered by recent archeological excavation. One of the interesting findings is a 100 m long bridge, composed of two rows of barrel vaults, believed to have been constructed during the 3rd century AD to allow easy access to the Temple Mount. In one of the vaults a single masonry block is displaced 7 cm downward with respect to its neighbors (see figure below). Since the damage seems seismically driven, back analysis of the damage with the numerical Discontinuous Deformation Analysis (DDA) method was performed, in order to constrain the peak ground acceleration (PGA) that had caused the damage. First the numerical method used for back analysis was verified with an analytical solution for the case of a rocking monolithic column, then validated with experimental results for site response analysis. The verification and validation prove the DDA is capable of handling dynamic and wave propagation problems. Next, the back analysis was performed. Results of the dynamic numerical simulations suggest that the damage observed at the vault was induced by seismic vibrations that must have taken place before the bridge was buried underground, namely when it was still in service. We find that the PGA required for causing the observed damage was high - between 1.5 and 2 g. The PGA calculated for Jerusalem on the basis of established attenuation relationships for historic earthquakes that struck the region during the relevant time period is about one order of magnitude lower: 0.14 and 0.48 g, for the events that took place at 362 and 746 AD, respectively. This discrepancy is explained by local site effects that must have amplified bedrock ground motions by a

  7. Probabilistic evaluation of near-field ground motions due to buried-rupture earthquakes caused by undefined faults

    International Nuclear Information System (INIS)

    Shohei Motohashi; Katsumi Ebisawa; Masaharu Sakagmi; Kazuo Dan; Yasuhiro Ohtsuka; Takao Kagawa

    2005-01-01

    The Nuclear Safety Commission of Japan has been reviewing the current Guideline for Earthquake Resistant Design of Nuclear Power Plants since July 2001. According to recent earthquake research, one of the main issues in the review is the design earthquake motion due to close-by earthquakes caused by undefined faults. This paper proposes a probabilistic method for covering variations of earthquake magnitude and location of undefined faults by strong motion simulation technique based on fault models for scenario earthquakes, and describes probabilistic response spectra due to close-by scenario earthquakes caused by undefined faults. Horizontal uniform hazard spectra evaluated by a hybrid technique are compared with those evaluated by an empirical approach. The response spectra with a damping factor of 5% at 0.02 s simulated by the hybrid technique are about 160, 340, 570, and 800 cm/s/s for annual exceedance probabilities of 10 -3 , 10 -4 , 10 -5 , and 10 -6 , respectively, which are in good agreement with the response spectra evaluated by the empirical approach. It is also recognized that the response spectrum proposed by Kato et al. (2004) as the upper level of the strong motion records of buried-rupture earthquakes corresponded to the uniform hazard spectra between 10 -5 and 10 -4 in the period range shorter than 0.4 s. (authors)

  8. Long-period ground motions at near-regional distances caused by the PL wave from, inland earthquakes: Observation and numerical simulation of the 2004 Mid-Niigata, Japan, Mw6.6 earthquake

    Science.gov (United States)

    Furumura, T.; Kennett, B. L. N.

    2017-12-01

    We examine the development of large, long-period ground motions at near-regional distances (D=50-200 km) generated by the PL wave from large, shallow inland earthquakes, based on the analysis of strong motion records and finite-difference method (FDM) simulations of seismic wave propagation. PL wave can be represented as leaking modes of the crustal waveguide and are commonly observed at regional distances between 300 to 1000 km as a dispersed, long-period signal with a dominant period of about 20 s. However, observations of recent earthquakes at the dense K-NET and KiK-net strong motion networks in Japan demonstrate the dominance of the PL wave at near-regional (D=50-200 km) distances as, e.g., for the 2004 Mid Niigata, Japan, earthquake (Mw6.6; h=13 km). The observed PL wave signal between P and S wave shows a large, dispersed wave packet with dominant period of about T=4-10 s with amplitude almost comparable to or larger than the later arrival of the S and surface waves. Thus, the early arrivals of the long-period PL wave immediately after P wave can enhance resonance with large-scale constructions such as high-rise buildings and large oil-storage tanks etc. with potential for disaster. Such strong effects often occurred during the 2004 Mid Niigata earthquakes and other large earthquakes which occurred nearby the Kanto (Tokyo) basin. FDM simulation of seismic wave propagation employing realistic 3-D sedimentary structure models demonstrates the process by which the PL wave develops at near-regional distances from shallow, crustal earthquakes by constructive interference of the P wave in the long-period band. The amplitude of the PL wave is very sensitive to low-velocity structure in the near-surface. Lowered velocities help to develop large SV-to-P conversion and weaken the P-to-SV conversion at the free surface. Both effects enhance the multiple P reflections in the crustal waveguide and prevent the leakage of seismic energy into the mantle. However, a very

  9. Hazard-to-Risk: High-Performance Computing Simulations of Large Earthquake Ground Motions and Building Damage in the Near-Fault Region

    Science.gov (United States)

    Miah, M.; Rodgers, A. J.; McCallen, D.; Petersson, N. A.; Pitarka, A.

    2017-12-01

    We are running high-performance computing (HPC) simulations of ground motions for large (magnitude, M=6.5-7.0) earthquakes in the near-fault region (steel moment frame buildings throughout the near-fault domain. For ground motions, we are using SW4, a fourth order summation-by-parts finite difference time-domain code running on 10,000-100,000's of cores. Earthquake ruptures are generated using the Graves and Pitarka (2017) method. We validated ground motion intensity measurements against Ground Motion Prediction Equations. We considered two events (M=6.5 and 7.0) for vertical strike-slip ruptures with three-dimensional (3D) basin structures, including stochastic heterogeneity. We have also considered M7.0 scenarios for a Hayward Fault rupture scenario which effects the San Francisco Bay Area and northern California using both 1D and 3D earth structure. Dynamic, inelastic response of canonical buildings is computed with the NEVADA, a nonlinear, finite-deformation finite element code. Canonical buildings include 3-, 9-, 20- and 40-story steel moment frame buildings. Damage potential is tracked by the peak inter-story drift (PID) ratio, which measures the maximum displacement between adjacent floors of the building and is strongly correlated with damage. PID ratios greater 1.0 generally indicate non-linear response and permanent deformation of the structure. We also track roof displacement to identify permanent deformation. PID (damage) for a given earthquake scenario (M, slip distribution, hypocenter) is spatially mapped throughout the SW4 domain with 1-2 km resolution. Results show that in the near fault region building damage is correlated with peak ground velocity (PGV), while farther away (> 20 km) it is better correlated with peak ground acceleration (PGA). We also show how simulated ground motions have peaks in the response spectra that shift to longer periods for larger magnitude events and for locations of forward directivity, as has been reported by

  10. Using structures of the August 24, 2016 Amatrice earthquake affected area as seismoscopes for assessing ground motion characteristics and parameters of the main shock and its largest aftershocks

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck Central Apennines (Italy) resulting in 299 fatalities, 388 injuries and about 3000 homeless in Amatrice wider area. Normal faulting surface ruptures along the western slope of Mt Vettore along with provided focal mechanisms demonstrated a NW-SE striking and SE dipping causative normal fault. The dominant building types in the affected area are unreinforced masonry (URM) and reinforced concrete (RC) buildings. Based on our macroseismic survey in the affected area immediately after the earthquake, RC buildings suffered non-structural damage including horizontal cracking of infill and internal partition walls, detachment of infill walls from the surrounding RC frame and detachment of large plaster pieces from infill walls as well as structural damage comprising soft story failure, symmetrical buckling of rods, compression damage at midheight of columns and bursting of over-stressed columns resulting in partial or total collapse. Damage in RC buildings was due to poor quality of concrete, inadequacy of reinforcement, inappropriate foundation close to the edge of slopes leading to differential settlements, poor workmanship and the destructive effect of vertical ground motions. Damage in URM buildings ranged from cracks and detachment of large plaster pieces from load-bearing walls to destruction due to poor workmanship with randomly placed materials bound by low-strength mortars, the effect of the vertical ground motion, inadequate repair and/or strengthening after previous earthquakes as well as inadequate interventions, additions and extensions to older URM buildings. During field surveying, the authors had the opportunity to observe damage induced not only by the main shock but also by its largest aftershocks (Mw 4.5-5.3) during the first three days of the aftershock sequence (August 24-26). Bearing in mind that: (a) soil conditions in foundations of the affected villages were more or less similar, (b) building damage

  11. Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M ≈ 3 earthquakes in 2015 and 2017

    Science.gov (United States)

    Dahm, Torsten; Heimann, Sebastian; Funke, Sigward; Wendt, Siegfried; Rappsilber, Ivo; Bindi, Dino; Plenefisch, Thomas; Cotton, Fabrice

    2018-05-01

    On April 29, 2017 at 0:56 UTC (2:56 local time), an M W = 2.8 earthquake struck the metropolitan area between Leipzig and Halle, Germany, near the small town of Markranstädt. The earthquake was felt within 50 km from the epicenter and reached a local intensity of I 0 = IV. Already in 2015 and only 15 km northwest of the epicenter, a M W = 3.2 earthquake struck the area with a similar large felt radius and I 0 = IV. More than 1.1 million people live in the region, and the unusual occurrence of the two earthquakes led to public attention, because the tectonic activity is unclear and induced earthquakes have occurred in neighboring regions. Historical earthquakes south of Leipzig had estimated magnitudes up to M W ≈ 5 and coincide with NW-SE striking crustal basement faults. We use different seismological methods to analyze the two recent earthquakes and discuss them in the context of the known tectonic structures and historical seismicity. Novel stochastic full waveform simulation and inversion approaches are adapted for the application to weak, local earthquakes, to analyze mechanisms and ground motions and their relation to observed intensities. We find NW-SE striking normal faulting mechanisms for both earthquakes and centroid depths of 26 and 29 km. The earthquakes are located where faults with large vertical offsets of several hundred meters and Hercynian strike have developed since the Mesozoic. We use a stochastic full waveform simulation to explain the local peak ground velocities and calibrate the method to simulate intensities. Since the area is densely populated and has sensitive infrastructure, we simulate scenarios assuming that a 12-km long fault segment between the two recent earthquakes is ruptured and study the impact of rupture parameters on ground motions and expected damage.

  12. Investigation for Strong Ground Shaking across the Taipei Basin during the MW 7.0 Eastern Taiwan Offshore Earthquake of 31 March 2002

    Directory of Open Access Journals (Sweden)

    Yi-Ling Huang

    2010-01-01

    Full Text Available According to reconstructed ground motion snapshots of the northern Taiwan area during the MW 7.0 eastern Taiwan offshore earthquake of 31 March 2002, the composite effects indicated complicated wave propagation behavior in the ground motion of the Taipei basin. A major low frequency pulse arose after the S-wave with the duration of about 20 seconds was observed in northern Taiwan and dominated the radial direction. Observed waveforms of a low frequency pulse show amplification during the seismic wave across the Taipei basin from its eastern edge to western portion. This effect has been considered to be generated by an unusual source radiation, deep Moho reflection or basin bottom surface. In this study, recorded ground motions from a dense seismic network were analyzed using a frequency-wavenumber spectrum analysis for seismic wave propagation properties. We investigated temporal and spatial variations in strong shaking in different frequency bands. Results show that a simple pulse incident seismic wave strongly interacts with inside soft sediments and the surrounding topography of the Taipei basin which in turn extends its shaking duration. Evidence showed that seismic waves have been reflected back from its western boundary of basin with a dominant frequency near one Hz. Findings in this study have been rarely reported and may provide useful information to further constrain a three-dimensional numerical simulation for the basin response and velocity structure, and to predict ground motions of further large earthquakes.

  13. Common Observations for Near-Source Ground Motions and Seismo-Traveling Ionosphere Disturbances Following the 2011 off the Pacific Coast of Tohoku Earthquake, Japan

    Directory of Open Access Journals (Sweden)

    Bor-Shouh Huang

    2012-01-01

    Full Text Available The time history and spatial dependence of seismic-wave propagation on the ground surface and through the ionosphere following the 2011 off the Pacific coast of Tohoku Earthquake were reconstructed from dense seismic networks and from Global Positioning System (GPS array observations, respectively. Using total electron content (TEC data recorded by a dense GPS receiver network, the near-source ionosphere perturbations induced by this giant earthquake were analyzed and high-resolution images of seismic-wave propagation in the ionosphere are presented. Similar spatial images of ground motions were reconstructed from observations by a dense seismic array. Observations of this event provide, for the first time, the opportunity to compare near-source ground motions with the near-field seismo-traveling ionosphere disturbance (STID excited by the ground motions. Based on the results, the nature of the source rupture and seismic-wave propagation are discussed. Both seismic and ionosphere observations indicate that seismic energy propagated radially outward initially from the hypocenter, but that the circular shape of the propagation front became gradually distorted as the source rupture became extended. Coherent wavefronts from the two analyses show contrasting patterns during the later stage of propagation, possibly due to different patterns of spatial variations in the physical properties of the solid earth and of the ionosphere.

  14. Implications of the Mw9.0 Tohoku-Oki earthquake for ground motion scaling with source, path, and site parameters

    Science.gov (United States)

    Stewart, Jonathan P.; Midorikawa, Saburoh; Graves, Robert W.; Khodaverdi, Khatareh; Kishida, Tadahiro; Miura, Hiroyuki; Bozorgnia, Yousef; Campbell, Kenneth W.

    2013-01-01

    The Mw9.0 Tohoku-oki Japan earthquake produced approximately 2,000 ground motion recordings. We consider 1,238 three-component accelerograms corrected with component-specific low-cut filters. The recordings have rupture distances between 44 km and 1,000 km, time-averaged shear wave velocities of VS30 = 90 m/s to 1,900 m/s, and usable response spectral periods of 0.01 sec to >10 sec. The data support the notion that the increase of ground motions with magnitude saturates at large magnitudes. High-frequency ground motions demonstrate faster attenuation with distance in backarc than in forearc regions, which is only captured by one of the four considered ground motion prediction equations for subduction earthquakes. Recordings within 100 km of the fault are used to estimate event terms, which are generally positive (indicating model underprediction) at short periods and zero or negative (overprediction) at long periods. We find site amplification to scale minimally with VS30 at high frequencies, in contrast with other active tectonic regions, but to scale strongly with VS30 at low frequencies.

  15. State-of-the-Art for Assessing Earthquake Hazards in the United States. Report 25. Parameters for Specifying Intensity-Related Earthquake Ground Motions.

    Science.gov (United States)

    1987-09-01

    and Sponheuer, W. 1969. Scale of Seismic Intensity: Proc. Fourth World Conf. on Earthquake Engineering, Santiago, Chile . Murphy, J. R., and O’Brien, L...Predom V/H el, V/I Vel V/H Displ V/H sec VIH Period Period Predom Accel cm/sec Vel cm Disp .05 Dur sec sec Period S11 2 0.48 MODIFIED MERCALLI INTENSITY...0.1 0. 0.16 142.20 Long. Vert Hor Vert Ratio Ratio Vert Ratio Vert r io Du r atio Predom Predom VIH Acce V/H Vel V /H Dspi V H sec 1, H Period Period

  16. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy)

    KAUST Repository

    Imperatori, W.

    2012-03-01

    In this paper, we investigate ground-motion variability due to different faulting approximations and crustal-model parametrizations in the Messina Straits area (Southern Italy). Considering three 1-D velocity models proposed for this region and a total of 72 different source realizations, we compute broad-band (0-10 Hz) synthetics for Mw 7.0 events using a fault plane geometry recently proposed. We explore source complexity in terms of classic kinematic (constant rise-time and rupture speed) and pseudo-dynamic models (variable rise-time and rupture speed). Heterogeneous slip distributions are generated using a Von Karman autocorrelation function. Rise-time variability is related to slip, whereas rupture speed variations are connected to static stress drop. Boxcar, triangle and modified Yoffe are the adopted source time functions. We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.

  17. Preliminary map of peak horizontal ground acceleration for the Hanshin-Awaji earthquake of January 17, 1995, Japan - Description of Mapped Data Sets

    Science.gov (United States)

    Borcherdt, R.D.; Mark, R.K.

    1995-01-01

    The Hanshin-Awaji earthquake (also known as the Hyogo-ken Nanbu and the Great Hanshin earthquake) provided an unprecedented set of measurements of strong ground shaking. The measurements constitute the most comprehensive set of strong- motion recordings yet obtained for sites underlain by soft soil deposits of Holocene age within a few kilometers of the crustal rupture zone. The recordings, obtained on or near many important structures, provide an important new empirical data set for evaluating input ground motion levels and site amplification factors for codes and site-specific design procedures world wide. This report describes the data used to prepare a preliminary map summarizing the strong motion data in relation to seismicity and underlying geology (Wentworth, Borcherdt, and Mark., 1995; Figure 1, hereafter referred to as Figure 1/I). The map shows station locations, peak acceleration values, and generalized acceleration contours superimposed on pertinent seismicity and the geologic map of Japan. The map (Figure 1/I) indicates a zone of high acceleration with ground motions throughout the zone greater than 400 gal and locally greater than 800 gal. This zone encompasses the area of most intense damage mapped as JMA intensity level 7, which extends through Kobe City. The zone of most intense damage is parallel, but displaced slightly from the surface projection of the crustal rupture zone implied by aftershock locations. The zone is underlain by soft-soil deposits of Holocene age.

  18. Source and ground-motion parameters of the 2011 Lorca earthquake; Parametros de la fuente y del movimiento del suelo del terremoto de Lorca de 2011

    Energy Technology Data Exchange (ETDEWEB)

    Alguacil de la Blanca, G.; Vidal Sanchez, F.; Stich, D.; Mancilla Perez, F. L.; Lopez Comino, J. A.; Morales Soto, J.; Navarro Bernal, M.

    2012-07-01

    113 events of the Lorca seismic series has been relocated by using Double difference algorithm and data from both temporary and permanent seismic networks. Relocations yield shallow hypo central distribution of aftershocks with a {approx}5 km long, NE-SW trending, placed SW of the mainshock, suggesting a SW propagating rupture along the Alhama de Murcia fault. Similar oblique reverse faulting mechanism has been obtained for three largest events. Source parameters of these three earthquakes have been estimated. Horizontal ground motion was estimated at 11 city points whose local structure was known by SPAC experiments. A set of ground motion parameters (PGA, PGV, AI, CAV, SI, SA and SV) here calculated, have higher values at these points respect to the ones at LOR station. All parameter values are also above the expected values for Euro -Mediterranean earthquakes with local intensity VIII (EMS). Nevertheless, SD values are unusually short and less than the reference ones. Higher values of the response spectra of acceleration and velocity are given for periods of less than 0.7 s, with maximum spectral acceleration at 0.15 s and velocity at 0.5 s. The elastic input energy spectrum is well connected to the shake destructiveness in each place. Equivalent velocity > 60 cm/s is found in almost all sites and > 100 cm/s (for periods 0.3 to 0.6 s) in someone. Factors such as proximity, and focal mechanism and ground response characteristics explain the high ground motion parameter values obtained in Lorca sites and show the great influence of the source and site conditions on the characteristics of strong ground motion in the vicinity of the rupture. (Author) 68 refs.

  19. Earthquake scenario and probabilistic ground-shaking hazard maps for the Albuquerque-Belen-Santa Fe, New Mexico, corridor

    Science.gov (United States)

    Wong, I.; Olig, S.; Dober, M.; Silva, W.; Wright, D.; Thomas, P.; Gregor, N.; Sanford, A.; Lin, K.-W.; Love, D.

    2004-01-01

    New Mexico's population is concentrated along the corridor that extends from Belen in the south to Española in the north and includes Albuquerque and Santa Fe. The Rio Grande rift, which encompasses the corridor, is a major tectonically, volcanically, and seismically active continental rift in the western U.S. Although only one large earthquake (moment magnitude (M) ≥ 6) has possibly occurred in the New Mexico portion of the rift since 1849, paleoseismic data indicate that prehistoric surface-faulting earthquakes of M 6.5 and greater have occurred on aver- age every 400 yrs on many faults throughout the Rio Grande rift.

  20. Very High-rate (50 Hz) GPS for Detection of Earthquake Ground Motions : How High Do We Need to Go?

    Science.gov (United States)

    Fang, R.

    2017-12-01

    The GPS variometric approach can measure displacements using broadcast ephemeris and a single receiver, with comparable precision to relative positioning and PPP within a short period of time. We evaluate the performance of the variometric approach to measure displacements using very high-rate (50 Hz) GPS data, which recorded from the 2013 Mw 6.6 Lushan earthquake and the 2011 Mw 9.0 Tohoku-Oki earthquake. To remove the nonlinear drift due to integration process, we present to apply a high-pass filter to reconstruct displacements using the variometric approach. Comparison between 50 Hz and 1 Hz coseismic displacements demonstrates that 1 Hz solutions often fail to faithfully manifest the seismic waves containing high-frequency (> 0.5 Hz) seismic signals, which is common for near-field stations during a moderate-magnitude earthquake. Therefore, in order to reconstruct near-field seismic waves caused by moderate or large earthquakes, it is helpful to equip monitoring stations with very high-rate GPS receivers. Results derived using the variometric approach are compared with PPP results. They display very good consistence within only a few millimeters both in static and seismic periods. High-frequency (above 10 Hz) noises of displacements derived using the variometric approach are smaller than PPP displacements in three components.

  1. Off-fault ground ruptures in the Santa Cruz Mountains, California: Ridge-top spreading versus tectonic extension during the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Ponti, Daniel J.; Wells, Ray E.

    1991-01-01

    The Ms 7.1 Loma Prieta earthquake of 18 October 1989 produced abundant ground ruptures in an 8 by 4 km area along Summit Road and Skyland Ridge in the Santa Cruz Mountains. Predominantly extensional fissures formed a left-stepping, crudely en echelon pattern along ridges of the hanging-wall block southwest of the San Andreas fault, about 12 km northwest of the epicenter. The fissures are subparallel to the San Andreas fault and appear to be controlled by bedding planes, faults, joints, and other weak zones in the underlying Tertiary sedimentary strata of the hanging-wall block. The pattern of extensional fissures is generally consistent with tectonic extension across the crest of the uplifted hanging-wall block. Also, many displacements in Laurel Creek canyon and along the San Andreas and Sargent faults are consistent with right-lateral reverse faulting inferred for the mainshock. Additional small tensile failures along the axis of the Laurel anticline may reflect growth of the fold during deep-seated compression. However, the larger ridge-top fissures commonly have displacements that are parallel to the north-northeast regional slope directions and appear inconsistent with east-northeast extension expected from this earthquake. Measured cumulative displacements across the ridge crests are at least 35 times larger than that predicted by the geodetically determined surface deformation. These fissures also occur in association with ubiquitous landslide complexes that were reactivated by the earthquake to produce the largest concentration of co-seismic slope failures in the epicentral region. The anomalously large displacements and the apparent slope control of the geometry and displacement of many co-seismic surface ruptures lead us to conclude that gravity is an important driving force in the formation of the ridge-top fissures. Shaking-induced gravitational spreading of ridges and downslope movement may account for 90¿ or more of the observed displacements on

  2. Estimation of S-wave velocity structure of deep sedimentary layers using geophysical data and earthquake ground motion records

    International Nuclear Information System (INIS)

    Suzuki, Haruhiko

    2014-01-01

    The preliminary results with an outline of array observation for micro-tremor and natural earthquakes around the NIIT site were explained. Phase velocity estimated from a horizontal array of strong motion observation agrees with that from the micro-tremor survey. Estimation results are consistent with other literature, such as PS-logging data and gravity maps. Further improvement of the three-dimensional modeling by using micro-tremor surveys and horizontal array observation is planned for the future. (author)

  3. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  4. SEISPLN: Reference manual for the SEISPLN earthquake analysis package on the DEC MicroVAX II

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, E.

    1989-01-01

    The SEISPLN package generates statistically significant fault surfaces for subsets of an earthquake database. The parameters used are up to the discretion of the user, but the package is based primarily on the geometric relationships of the foci locations and the location errors of the foci. The technique employed to locate subsets of foci which are considered to be subplanar concentrations of foci is as follows: First, a three dimensional grid system is created with elongated cells which will ultimately count the number of foci per cell for every possible strike and dip orientation of the grid system. A table is output which gives the number of foci per cell for every strike orientation. There is a corresponding table for each frequency table which calculates the relative change in frequency between neighboring cells. These tables bring out the relative concentrations of foci regardless of how many foci are in the cell. This is a significant benefit compared to the Fehler, Lutz, and Michelinni and Bolt techniques, which tend to wash out low frequency foci concentrations. Second, the user can run the next program to pull out subsets of the foci which are considered to be good picks'' from the frequency tables. Third, the next program will take the subset of foci and find the best fit surface using a multiple linear regression technique. The calculated surface can be planar (first order), arcuate (second order), or of very complex surface geometry (third order). Finally, the last program plots all the foci, along with the foci pick, surface fit, and fault trace, in a stereographic projection which can be rotated and multipulated in an almost infinite variety of ways. 11 figs.

  5. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Science.gov (United States)

    Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.

    2017-12-01

    As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).

  6. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.

  7. The TETRA-II Experiment to Observe Terrestrial Gamma Flashes at Ground Level - Preliminary Results

    Science.gov (United States)

    Cherry, M. L.; Adams, C.; Al-Nussirat, S.; Bai, S.; Banadaki, Y.; Bitzer, P. M.; Hoffmann, J.; Khosravi, E.; Legault, M.; Orang, M.; Pleshinger, D. J.; Rodriguez, R.; Smith, D.; Trepanier, J. C.; Sunda-Meya, A.; Zimmer, N.

    2017-12-01

    An upgraded version of the TGF and Energetic Thunderstorm Rooftop Array (TETRA-II) consists of an array of BGO scintillators to detect bursts of gamma rays from thunderstorms at ground level in four separate locations: the campus of Louisiana State University in Baton Rouge, Louisiana; the campus of the University of Puerto Rico at Utuado, Puerto Rico; the Centro Nacional de Metrologia de Panama (CENAMEP) in Panama City, Panama; and the Severe Weather Institute and Radar & Lightning Laboratories in Huntsville, Alabama. The original TETRA-I array of NaI scintillators at Louisiana State University detected 37 millisecond-scale bursts of gamma rays at energies 50 keV-2 MeV associated with nearby (brief description of the TETRA-I observations, a description of TETRA-II, and preliminary results of the first events observed by TETRA-II will be presented including frequency and time history of events, spectral information, and correlation with local radar and radio data.

  8. Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake

    International Nuclear Information System (INIS)

    Borcherdt, R.D.; Gibbs, J.F.

    1976-01-01

    Measurements of ground motion generated by nuclear explosions in Nevada have been completed for 99 locations in the San Francisco Bay region, California. The recordings show marked amplitude variations in the frequency band 0.25 to 3.0 Hz that are consistently related to the local geological conditions of the recording site. The average spectral amplifications observed for vertical and horizontal ground motions are, respectively: (1,1) for granite, (1.5, 1.6) for the Franciscan Formation, (3.0, 2.7) for the Santa Clara Formation, (3.3, 4.4) for alluvium, and (3.7, 11.3) for bay mud. Spectral amplification curves define predominant ground frequencies in the band 0.25 to 3.0 H for bay mud sites and for some alluvial sites. Amplitude spectra computed from recordings of seismic background noise at 50 sites do not generally define predominant ground frequencies. The intensities ascribed to various sites in the San Francisco Bay region for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the intensities for 917 sites on Franciscan rocks generally decrease with the logarithm of distance as Intensity = 2.69 -- 1.90 log (Distance in kilometers). For sites on other geological units, intensity increments, derived from this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) according to the empirical relation Intensity Increment = 0.27 + 2.70 log (AHSA). Average intensity increments predicted for the various geological units are --0.3 for granite, 0.2 for the Franciscan Formation, 0.6 for the Great Valley sequence, 0.8 for the Santa Clara Formation, 1.3 for alluvium, and 2.4 for bay mud

  9. Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Borcherdt, R.D.; Gibbs, J.F.

    1976-04-01

    Measurements of ground motion generated by nuclear explosions in Nevada have been completed for 99 locations in the San Francisco Bay region, California. The recordings show marked amplitude variations in the frequency band 0.25 to 3.0 Hz that are consistently related to the local geological conditions of the recording site. The average spectral amplifications observed for vertical and horizontal ground motions are, respectively: (1,1) for granite, (1.5, 1.6) for the Franciscan Formation, (3.0, 2.7) for the Santa Clara Formation, (3.3, 4.4) for alluvium, and (3.7, 11.3) for bay mud. Spectral amplification curves define predominant ground frequencies in the band 0.25 to 3.0 H for bay mud sites and for some alluvial sites. Amplitude spectra computed from recordings of seismic background noise at 50 sites do not generally define predominant ground frequencies. The intensities ascribed to various sites in the San Francisco Bay region for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the intensities for 917 sites on Franciscan rocks generally decrease with the logarithm of distance as Intensity = 2.69 -- 1.90 log (Distance in kilometers). For sites on other geological units, intensity increments, derived from this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) according to the empirical relation Intensity Increment = 0.27 + 2.70 log (AHSA). Average intensity increments predicted for the various geological units are --0.3 for granite, 0.2 for the Franciscan Formation, 0.6 for the Great Valley sequence, 0.8 for the Santa Clara Formation, 1.3 for alluvium, and 2.4 for bay mud.

  10. Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays

    Science.gov (United States)

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.; Fratta, Dante; Feigl, Kurt L.; Thurber, Clifford H.; Mellors, Robert J.

    2018-06-01

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) × 500 m (width) × 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The distributed acoustic sensing (DAS) array consisted of about 8400 m of fiber-optic cable in a shallow trench and 360 m in a well. The conventional seismometer array consisted of 238 shallowly buried three-component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 m in length and geophones were spaced at approximately 60 m intervals. Both DAS and conventional geophones recorded continuously over 15 d during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on 2016 March 21. Its epicentre was approximately 150 km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise ratios (SNRs) in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources because the earthquake signal contains more low-frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. The combination of good SNR in the seismic frequency band, high-spatial density, large N and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake

  11. Assessing the Utility of Strong Motion Data to Determine Static Ground Displacements During Great Megathrust Earthquakes: Tohoku and Iquique

    Science.gov (United States)

    Herman, M. W.; Furlong, K. P.; Hayes, G. P.; Benz, H.

    2014-12-01

    Strong motion accelerometers can record large amplitude shaking on-scale in the near-field of large earthquake ruptures; however, numerical integration of such records to determine displacement is typically unstable due to baseline changes (i.e., distortions in the zero value) that occur during strong shaking. We use datasets from the 2011 Mw 9.0 Tohoku earthquake to assess whether a relatively simple empirical correction scheme (Boore et al., 2002) can return accurate displacement waveforms useful for constraining details of the fault slip. The coseismic deformation resulting from the Tohoku earthquake was recorded by the Kiban Kyoshin network (KiK-net) of strong motion instruments as well as by a dense network of high-rate (1 Hz) GPS instruments. After baseline correcting the KiK-net records and integrating to displacement, over 85% of the KiK-net borehole instrument waveforms and over 75% of the KiK-net surface instrument waveforms match collocated 1 Hz GPS displacement time series. Most of the records that do not match the GPS-derived displacements following the baseline correction have large, systematic drifts that can be automatically identified by examining the slopes in the first 5-10 seconds of the velocity time series. We apply the same scheme to strong motion records from the 2014 Mw 8.2 Iquique earthquake. Close correspondence in both direction and amplitude between coseismic static offsets derived from the integrated strong motion time series and those predicted from a teleseismically-derived finite fault model, as well as displacement amplitudes consistent with InSAR-derived results, suggest that the correction scheme works successfully for the Iquique event. In the absence of GPS displacements, these strong motion-derived offsets provide constraints on the overall distribution of slip on the fault. In addition, the coseismic strong motion-derived displacement time series (50-100 s long) contain a near-field record of the temporal evolution of the

  12. Ground motion estimation for the elevated bridges of the Kyushu Shinkansen derailment caused by the foreshock of the 2016 Kumamoto earthquake based on the site-effect substitution method

    Science.gov (United States)

    Hata, Yoshiya; Yabe, Masaaki; Kasai, Akira; Matsuzaki, Hiroshi; Takahashi, Yoshikazu; Akiyama, Mitsuyoshi

    2016-12-01

    An earthquake of JMA magnitude 6.5 (first event) hit Kumamoto Prefecture, Japan, at 21:26 JST, April 14, 2016. Subsequently, an earthquake of JMA magnitude 7.3 (second event) hit Kumamoto and Oita Prefectures at 01:46 JST, April 16, 2016. An out-of-service Kyushu Shinkansen train carrying no passengers traveling on elevated bridges was derailed by the first event. This was the third derailment caused by an earthquake in the history of the Japanese Shinkansen, after one caused by the 2004 Mid-Niigata Prefecture Earthquake and another triggered by the 2011 Tohoku Earthquake. To analyze the mechanism of this third derailment, it is crucial to evaluate the strong ground motion at the derailment site with high accuracy. For this study, temporary earthquake observations were first carried out at a location near the bridge site; these observations were conducted because although the JMA Kumamoto Station site and the derailment site are closely located, the ground response characteristics at these sites differ. Next, empirical site amplification and phase effects were evaluated based on the obtained observation records. Finally, seismic waveforms during the first event at the bridge site of interest were estimated based on the site-effect substitution method. The resulting estimated acceleration and velocity waveforms for the derailment site include much larger amplitudes than the waveforms recorded at the JMA Kumamoto and MLIT Kumamoto station sites. The reliability of these estimates is confirmed by the finding that the same methods reproduce strong ground motions at the MLIT Kumamoto Station site accurately. These estimated ground motions will be useful for reasonable safety assessment of anti-derailment devices on elevated railway bridges.[Figure not available: see fulltext.

  13. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  14. Study on the characteristics of earthquake ground motion in the Hanshin area based on microtremor measurements; Bido kansoku ni motozuku Hanshin chiiki no jiban shindo tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Seo, K; Yamanaka, H [Tokyo Institute of Technology, Tokyo (Japan)

    1997-05-27

    The Hyogoken-nanbu earthquake in 1995 was a local earthquake that has hit directly a large urban area, having caused damages the greatest since the War mainly in the city of Kobe. The present study has noticed the areas of Sumiyoshi, Nada Ward, Kobe City and Nanbu, Nishinomiya City where damages show different distribution; elucidated the characteristics of earthquake ground motion based on microtremor measurements; and discussed the relation thereof with the earthquake damage distribution. It was verified that microtremors and seismic motions are in rough agreement in the Sumiyoshi area, by comparing and discussing the spectrum ratio between the microtremors and the seismic motions. No correspondence was recognized in the Sumiyoshi area between distribution of the average microtremor spectrum ratio with cycles of 0.2 to 0.8 second and distribution of damages caused by the Hyogoken-nanbu earthquake. The ground characteristics evaluation alone is insufficient to explain distribution of the damages in a relatively wide range in the city of Nishinomiya, for which effects of distance decay should be taken into consideration. 6 refs., 7 figs.

  15. Activity report 1990-1992 and proceedings. Volume II

    International Nuclear Information System (INIS)

    Mayer-Rosa, D.; Waniek, L.; Suhadolc, P.

    1993-01-01

    A report of the European Seismological Commission (ESC) on 1990-1992 activities and Proceedings of the General Assembly of the ESC are presented in two volumes. Volume II covers the following topics: study of seismic sound, seismotectonic analysis, deep seismic sounding, the three-dimensional structure of the European lithosphere-asthenosphere system, complexity in earthquake occurrence, earthquake hazard, strong and weak earthquake ground motions, macroseismology, microzonation, and applications in earthquake engineering. One paper dealing with the connection between seismicity and the CO 2 - 222 Rn content in spring water has been inputted to INIS. (Z.S.)

  16. Tightly-coupled real-time analysis of GPS and accelerometer data for translational and rotational ground motions and application to earthquake and tsunami early warning

    Science.gov (United States)

    Geng, J.; Bock, Y.; Melgar, D.; Hasse, J.; Crowell, B. W.

    2013-12-01

    High-rate GPS can play an important role in earthquake early warning (EEW) systems for large (>M6) events by providing permanent displacements immediately as they are achieved, to be used in source inversions that can be repeatedly updated as more information becomes available. This is most valuable to implement at a site very near the potential source rupture, where broadband seismometers are likely to clip, and accelerometer data cannot be objectively integrated to produce reliable displacements in real time. At present, more than 525 real-time GPS stations have been established in western North America, which are being integrated into EEW systems. Our analysis technique relies on a tightly-coupled combination of GPS and accelerometer data, an extension of precise point positioning with ambiguity resolution (PPP-AR). We operate a PPP service based on North American stations available through the IGS and UNAVCO/PBO. The service provides real-time satellite clock and fractional-cycle bias products that allow us to position individual client stations in the zone of deformation. The service reference stations are chosen to be further than 200 km from the primary zones of tectonic deformation in the western U.S. to avoid contamination of the satellite products during a large seismic event. At client stations, accelerometer data are applied as tight constraints on the positions between epochs in PPP-AR, which improves cycle-slip repair and rapid ambiguity resolution after GPS outages. Furthermore, we estimate site displacements, seismic velocities, and coseismic ground tilts to facilitate the analysis of ground motion characteristics and the inversion for source mechanisms. The seismogeodetic displacement and velocity waveforms preserves the detection of P wave arrivals, and provides P-wave arrival displacement that is key new information for EEW. Our innovative solution method for coseismic tilts mitigates an error source that has continually plagued strong motion

  17. An empirical assessment of near-source strong ground motion for a 6.6 m{sub b} (7.5 M{sub S}) earthquake in the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kenneth W

    1984-06-01

    To help assess the impact of the current U.S. Geological Survey position on the seismic safety of nuclear power plants in the Eastern United States (EUS), several techniques for estimating near-source strong ground motion for a Charleston size earthquake were evaluated. The techniques for estimating the near-source strong ground motion for a 6.6 m{sub b} (7.5 M{sub S}) in the Eastern United States which were assessed are methods based on site specific analyses, semi-theoretical scaling techniques, and intensity-based estimates. The first involves the statistical analysis of ground motion records from earthquakes and recording stations having the same general characteristics (earthquakes with magnitudes of 7.5 M{sub S} or larger, epicentral distances of 25 km or less, and sites of either soil or rock). Some recommendations for source and characterization scaling of the bias resulting primarily from an inadequate sample of near-source recordings from earthquakes of large magnitude are discussed. The second technique evaluated requires that semi-theoretical estimates of peak ground motion parameters for a 6.6 m{sub b} (7.5 M{sub S}) earthquake be obtained from scaling relations. Each relation uses a theoretical expression between peak acceleration magnitude and distance together with available strong motion data (majority coming from California) to develop a scaling relation appropriate for the Eastern United States. None of the existing ground motion models for the EUS include the potential effects of source or site characteristics. Adjustments to account for fault mechanisms, site topography, site geology, and the size and embedment of buildings are discussed. The final approach used relations between strong ground motion parameters and Modified Mercalli Intensity in conjunction with two methods to estimate peak parameters for a 6.6 m{sub s} (7.5 M{sub S}) earthquake. As with other techniques, adjustment of peak acceleration estimates are discussed. Each method

  18. Ground motion attenuation during M 7.1 Darfield and M 6.2 Christchurch, New Zealand, earthquakes and performance of global Ppedictive models

    Science.gov (United States)

    Segou, Margaret; Kalkan, Erol

    2011-01-01

    fault with M 6.2, followed by a second event (M 6.9), releasing the largest portion of the energy on the right-lateral Greendale fault. The third sub-event (M 5.7) is due to a reverse fault with a right-lateral component (Holden et al. 2011). The Christchurch earthquake occurred on an oblique thrust fault. The comparison of spectral acceleration values at stations near Christchurch reveals that the second event produced much larger amplitudes of shaking than the Darfield event due to its proximity to the epicenter. Both events resulted in noticeably large amplitudes of the vertical motion, often exceeding horizontal motion in the near-fault area. The vertical motions, showing asymmetric acceleration traces and pulses, reached 1.26 g during the Darfield earthquake and 2.2 g during the Christchurch event. These events were recorded by more than 100 strong motion stations operated by the Institute of Geological and Nuclear Sciences (http://www.geonet.org.nz/). Using the processed data from these stations, peak ground acceleration (PGA) and 5%-damped spectral acceleration values at 0.3, 1, and 3 s are used for performance evaluation of the global ground motion predictive equations (GMPEs). The selected GMPEs are the Next Generation Attenuation (NGA) models of Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008). The Graizer and Kalkan (2007, 2009) model, which is based on the NGA project database, is also included. These GMPEs are abbreviated respectively as AS08, BA08, CB08, CY08, and GK07. Because they have been used widely for seismic hazard analysis for crustal earthquakes, their performance assessment becomes a critical issue especially for immediate response and recovery planning after major events. The occurrence of aftershocks similar to the Christchurch event will most probably control seismic hazard in the broader area, as confirmed by the recent M 6.0 event on June 13, 2011.

  19. Earthquake rupture at focal depth, part II: mechanics of the 2004 M2.2 earthquake along the Pretorius Fault, TauTona Mine, South Africa

    Science.gov (United States)

    Heesakkers, V.; Murphy, S.; Lockner, D.A.; Reches, Z.

    2011-01-01

    We analyze here the rupture mechanics of the 2004, M2.2 earthquake based on our observations and measurements at focal depth (Part I). This event ruptured the Archean Pretorius fault that has been inactive for at least 2 Ga, and was reactivated due to mining operations down to a depth of 3.6 km depth. Thus, it was expected that the Pretorius fault zone will fail similarly to an intact rock body independently of its ancient healed structure. Our analysis reveals a few puzzling features of the M2.2 rupture-zone: (1) the earthquake ruptured four, non-parallel, cataclasite bearing segments of the ancient Pretorius fault-zone; (2) slip occurred almost exclusively along the cataclasite-host rock contacts of the slipping segments; (3) the local in-situ stress field is not favorable to slip along any of these four segments; and (4) the Archean cataclasite is pervasively sintered and cemented to become brittle and strong. To resolve these observations, we conducted rock mechanics experiments on the fault-rocks and host-rocks and found a strong mechanical contrast between the quartzitic cataclasite zones, with elastic-brittle rheology, and the host quartzites, with damage, elastic–plastic rheology. The finite-element modeling of a heterogeneous fault-zone with the measured mechanical contrast indicates that the slip is likely to reactivate the ancient cataclasite-bearing segments, as observed, due to the strong mechanical contrast between the cataclasite and the host quartzitic rock.

  20. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  1. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  2. Ground Deformation and Sources geometry of the 2016 Central Italy Earthquake Sequence Investigated through Analytical and Numerical Modeling of DInSAR Measurements and Structural-Geological Data

    Science.gov (United States)

    Solaro, G.; Bonano, M.; Boncio, P.; Brozzetti, F.; Castaldo, R.; Casu, F.; Cirillo, D.; Cheloni, D.; De Luca, C.; De Nardis, R.; De Novellis, V.; Ferrarini, F.; Lanari, R.; Lavecchia, G.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; Tizzani, P.; Zinno, I.

    2017-12-01

    The 2016 Central Italy seismic sequence started on 24th August with a MW 6.1 event, where the intra-Apennine WSW-dipping Vettore-Gorzano extensional fault system released a destructive earthquake, causing 300 casualties and extensive damage to the town of Amatrice and surroundings. We generated several interferograms by using ALOS and Sentinel 1-A and B constellation data acquired on both ascending and descending orbits to show that most displacement is characterized by two main subsiding lobes of about 20 cm on the fault hanging-wall. By inverting the generated interferograms, following the Okada analytical approach, the modelling results account for two sources related to main shock and more energetic aftershock. Through Finite Element numerical modelling that jointly exploits DInSAR deformation measurements and structural-geological data, we reconstruct the 3D source of the Amatrice 2016 normal fault earthquake which well fit the main shock. The inversion shows that the co-seismic displacement area was partitioned on two distinct en echelon fault planes, which at the main event hypocentral depth (8 km) merge in one single WSW-dipping surface. Slip peaks were higher along the southern half of the Vettore fault, lower along the northern half of Gorzano fault and null in the relay zone between the two faults; field evidence of co-seismic surface rupture are coherent with the reconstructed scenario. The following seismic sequence was characterized by numerous aftershocks located southeast and northwest of the epicenter which decreased in frequency and magnitude until the end of October, when a MW 5.9 event occurred on 26th October about 25 km to the NW of the previous mainshock. Then, on 30th October, a third large event of magnitude MW 6.5 nucleated below the town of Norcia, striking the area between the two preceding events and filling the gap between the previous ruptures. Also in this case, we exploit a large dataset of DInSAR and GPS measurements to investigate

  3. Long-period Ground Motion Characteristics Inside and Outside of the Osaka Basin during the 2011 Great Tohoku Earthquake and Its Largest Aftershock

    Science.gov (United States)

    Sato, K.; Iwata, T.; Asano, K.; Kubo, H.; Aoi, S.

    2013-12-01

    The 2011 great Tohoku earthquake (Mw 9.0) occurred on March 11, 2011, and the largest aftershock (Mw 7.7) at the region adjacent to south boundary of the mainshock's source region. Long-period ground motions (1-10s) of large amplitude were observed in the Osaka sedimentary basin about 550-800km away from the source regions during both events. We studied propagation and site characteristics of these ground motions, and found some common features between these two events in the Osaka basin. (1) The amplitude of horizontal components of the ground motion at the site-specific period is amplified at each sedimentary station. The predominant period is around 7s in the bayside area where the largest pSv were observed. (2) The velocity Fourier spectra have their peak values around 7s at the bedrock sites surrounding the Osaka basin. (3) Two remarkable wave packets separated by 30s propagating from stations around the Nobi plain to the bedrock sites near the Osaka basin were seen in the pasted-up velocity waveforms from the source regions to the Osaka basin for both events (Sato et al., 2012). Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. Firstly, we simulate ground motions due to the largest aftershock using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). The reason we focus on the largest aftershock is that this event has a relatively small rupture area and simple rupture process compared to the mainshock. The source model is based on the model estimated by Kubo et al. (2013). The velocity structure model is a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012) and the layer of Vs 350m/s in this model is replaced with one of Vs 500m/s. The minimum effective period in this computation is 3s. Then, we compare synthetic waveforms with observed ones. At CHBH14, the nearest station to the source and 60km away from the

  4. A Crowdsourcing-based Taiwan Scientific Earthquake Reporting System

    Science.gov (United States)

    Liang, W. T.; Lee, J. C.; Lee, C. F.

    2017-12-01

    To collect immediately field observations for any earthquake-induced ground damages, such as surface fault rupture, landslide, rock fall, liquefaction, and landslide-triggered dam or lake, etc., we are developing an earthquake damage reporting system which particularly relies on school teachers as volunteers after taking a series of training courses organized by this project. This Taiwan Scientific Earthquake Reporting (TSER) system is based on the Ushahidi mapping platform, which has been widely used for crowdsourcing on different purposes. Participants may add an app-like icon for mobile devices to this website at https://ies-tser.iis.sinica.edu.tw. Right after a potential damaging earthquake occurred in the Taiwan area, trained volunteers will be notified/dispatched to the source area to carry out field surveys and to describe the ground damages through this system. If the internet is available, they may also upload some relevant images in the field right away. This collected information will be shared with all public after a quick screen by the on-duty scientists. To prepare for the next strong earthquake, we set up a specific project on TSER for sharing spectacular/remarkable geologic features wherever possible. This is to help volunteers get used to this system and share any teachable material on this platform. This experimental, science-oriented crowdsourcing system was launched early this year. Together with a DYFI-like intensity reporting system, Taiwan Quake-Catcher Network, and some online games and teaching materials, the citizen seismology has been much improved in Taiwan in the last decade. All these constructed products are now either operated or promoted at the Taiwan Earthquake Research Center (TEC). With these newly developed platforms and materials, we are aiming not only to raise the earthquake awareness and preparedness, but also to encourage public participation in earthquake science in Taiwan.

  5. Ormosil Beads for Insulation of Ground Cryogenic Storage Tanks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Organically modified silica (Ormosil) aerogel beads developed at Aspen Aerogels, Inc. offer several advantages for retrofitting perlite insulation in NASA's ground...

  6. Defeating Earthquakes

    Science.gov (United States)

    Stein, R. S.

    2012-12-01

    our actions. Using these global datasets will help to make the model as uniform as possible. The model must be built by scientists in the affected countries with GEM's support, augmented by their insights and data. The model will launch in 2014; to succeed it must be open, international, independent, and continuously tested. But the mission of GEM is not just the likelihood of ground shaking, but also gaging the economic and social consequences of earthquakes, which greatly amplify the losses. For example, should the municipality of Istanbul retrofit schools, or increase its insurance reserves and recovery capacity? Should a homeowner in a high-risk area move or strengthen her building? This is why GEM is a public-private partnership. GEM's fourteen public sponsors and eight non-governmental organization members are standing for the developing world. To extend GEM into the financial world, we draw upon the expertise of companies. GEM's ten private sponsors have endorsed the acquisition of public knowledge over private gain. In a competitive world, this is a courageous act. GEM is but one link in a chain of preparedness: from earth science and engineering research, through groups like GEM, to mitigation, retrofit or relocate decisions, building codes and insurance, and finally to prepared hospitals, schools, and homes. But it is a link that our community can make strong.

  7. 3D ground‐motion simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone: Variability of long‐period (T≥1  s) ground motions and sensitivity to kinematic rupture parameters

    Science.gov (United States)

    Moschetti, Morgan P.; Hartzell, Stephen; Ramirez-Guzman, Leonardo; Frankel, Arthur; Angster, Stephen J.; Stephenson, William J.

    2017-01-01

    We examine the variability of long‐period (T≥1  s) earthquake ground motions from 3D simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone, Utah, from a set of 96 rupture models with varying slip distributions, rupture speeds, slip velocities, and hypocenter locations. Earthquake ruptures were prescribed on a 3D fault representation that satisfies geologic constraints and maintained distinct strands for the Warm Springs and for the East Bench and Cottonwood faults. Response spectral accelerations (SA; 1.5–10 s; 5% damping) were measured, and average distance scaling was well fit by a simple functional form that depends on the near‐source intensity level SA0(T) and a corner distance Rc:SA(R,T)=SA0(T)(1+(R/Rc))−1. Period‐dependent hanging‐wall effects manifested and increased the ground motions by factors of about 2–3, though the effects appeared partially attributable to differences in shallow site response for sites on the hanging wall and footwall of the fault. Comparisons with modern ground‐motion prediction equations (GMPEs) found that the simulated ground motions were generally consistent, except within deep sedimentary basins, where simulated ground motions were greatly underpredicted. Ground‐motion variability exhibited strong lateral variations and, at some sites, exceeded the ground‐motion variability indicated by GMPEs. The effects on the ground motions of changing the values of the five kinematic rupture parameters can largely be explained by three predominant factors: distance to high‐slip subevents, dynamic stress drop, and changes in the contributions from directivity. These results emphasize the need for further characterization of the underlying distributions and covariances of the kinematic rupture parameters used in 3D ground‐motion simulations employed in probabilistic seismic‐hazard analyses.

  8. The 183-WSL Fast Rain Rate Retrieval Algorithm. Part II: Validation Using Ground Radar Measurements

    Science.gov (United States)

    Laviola, Sante; Levizzani, Vincenzo

    2014-01-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) algorithm is a method for the retrieval of rain rates and precipitation type classification (convectivestratiform), that makes use of the water vapor absorption lines centered at 183.31 GHz of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and NOAA-19Metop-A satellite series, respectively. The characteristics of this algorithm were described in Part I of this paper together with comparisons against analogous precipitation products. The focus of Part II is the analysis of the performance of the 183-WSL technique based on surface radar measurements. The ground truth dataset consists of 2.5 years of rainfall intensity fields from the NIMROD European radar network which covers North-Western Europe. The investigation of the 183-WSL retrieval performance is based on a twofold approach: 1) the dichotomous statistic is used to evaluate the capabilities of the method to identify rain and no-rain clouds; 2) the accuracy statistic is applied to quantify the errors in the estimation of rain rates.The results reveal that the 183-WSL technique shows good skills in the detection of rainno-rain areas and in the quantification of rain rate intensities. The categorical analysis shows annual values of the POD, FAR and HK indices varying in the range 0.80-0.82, 0.330.36 and 0.39-0.46, respectively. The RMSE value is 2.8 millimeters per hour for the whole period despite an overestimation in the retrieved rain rates. Of note is the distribution of the 183-WSL monthly mean rain rate with respect to radar: the seasonal fluctuations of the average rainfalls measured by radar are reproduced by the 183-WSL. However, the retrieval method appears to suffer for the winter seasonal conditions especially when the soil is partially frozen and the surface emissivity drastically changes. This fact is verified observing the discrepancy distribution diagrams where2the 183-WSL

  9. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  10. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  11. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  12. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  13. Palaeoseismological evidence for the 1570 Ferrara earthquake, Italy

    Science.gov (United States)

    Caputo, R.; Poli, M. E.; Minarelli, L.; Rapti, D.; Sboras, S.; Stefani, M.; Zanferrari, A.

    2016-06-01

    In May 2012, two earthquakes (Mw 6.1 and 5.9) affected the Po Plain, Italy. The strongest shock produced extensive secondary effects associated with liquefaction phenomena. Few weeks after the earthquakes, an exploratory trench was excavated across a levee of the palaeo-Reno reach, where a system of aligned ground ruptures was observed. The investigated site well preserves the geomorphic expression of a fluvial body that mainly formed in the fifteenth to sixteenth centuries as historical sources and radiometric data testify. In the trench several features pinpointed the occurrence of past liquefaction events: (i) dikes filled with overpressured injected sand and associated with vertical displacements have no correspondence with the fractures mapped at the surface; (ii) thick dikes are buried by the plowed level or even by fluvial deposits; (iii) although some of the 2012 ground fractures characterized by vertical displacement and opening occurred in correspondence of thick dikes observed in the trench, sand and water ejection did not occur; (iv) some seismites (load casts) were observed in the trench well above the 2012 water level. The results strongly suggest that shaking has locally occurred in the past producing a sufficient ground motion capable of triggering liquefaction phenomena prior to, and likely stronger than, the May 2012 earthquake. Historical seismicity documents three seismic events that might have been able to generate liquefaction in the broader investigated area. Based on the analysis of their macroseismic fields, the 17 November 1570 Ferrara earthquake is the most likely causative event of the observed palaeoliquefactions.

  14. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  15. The severity of an earthquake

    Science.gov (United States)

    ,

    1997-01-01

    The severity of an earthquake can be expressed in terms of both intensity and magnitude. However, the two terms are quite different, and they are often confused. Intensity is based on the observed effects of ground shaking on people, buildings, and natural features. It varies from place to place within the disturbed region depending on the location of the observer with respect to the earthquake epicenter. Magnitude is related to the amount of seismic energy released at the hypocenter of the earthquake. It is based on the amplitude of the earthquake waves recorded on instruments

  16. The threat of silent earthquakes

    Science.gov (United States)

    Cervelli, Peter

    2004-01-01

    Not all earthquakes shake the ground. The so-called silent types are forcing scientists to rethink their understanding of the way quake-prone faults behave. In rare instances, silent earthquakes that occur along the flakes of seaside volcanoes may cascade into monstrous landslides that crash into the sea and trigger towering tsunamis. Silent earthquakes that take place within fault zones created by one tectonic plate diving under another may increase the chance of ground-shaking shocks. In other locations, however, silent slip may decrease the likelihood of destructive quakes, because they release stress along faults that might otherwise seem ready to snap.

  17. Distribution of strong ground motion from uppermost crustal structure. Comparison with disaster from the Hyogo-ken Nanbu Earthquake; Yaya fukai chika kozo no henka ni yoru kyoshindo bunpu. Hyogoken nanbu jishin ni yoru higai bunpu tono hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z; Okubo, R [Kawasaki Geological Engineering Co. Ltd., Tokyo (Japan)

    1997-10-22

    It was intended to elucidate characteristics of distribution of damages caused by an earthquake which occurs directly below an urban area. Therefore, numerical simulation using the pseudo-spectral method was performed on characteristics of seismic wave propagation in non-homogenous media composed of rock beds and sediment beds, and of seismic wave amplitudes on ground surface. The simulation has utilized information on underground structures disclosed by using the latest physical exploration method. The underground structure model assumed a two-dimensional model hypothesizing presence of upper, middle and lower beds in the Osaka bed group on granite, using as reference the information on S-wave velocity underground structure revealed by the microtremor exploration method. With an objective to elucidate characteristics of distribution of collapse ratio in the area from 8-chome, Okamoto, Higashinada Ward, Kobe City to 2-chome of Sakanasaki Minamicho, as damages suffered from the Hyogo-ken Nanbu Earthquake, a simulation has been performed varying the structure model based on the results derived by the microtremor exploration method and the reflection method. As a result, it was shown that the characteristics of the maximum amplitude distribution of displacement of ground surface, velocity and acceleration agree well with those of the collapse ratio distribution, and that the simulation using the pseudo-spectral method is an effective means to analyze the ground surface collapse ratio distribution. 5 refs., 3 figs.

  18. Passive containment system in high earthquake motion

    International Nuclear Information System (INIS)

    Kleimola, F.W.; Falls, O.B. Jr.

    1977-01-01

    High earthquake motion necessitates major design modifications in the complex of plant structures, systems and components in a nuclear power plant. Distinctive features imposed by seismic category, safety class and quality classification requirements for the high seismic ground acceleration loadings significantly reflect in plant costs. The design features in the Passive Containment System (PCS) responding to high earthquake ground motion are described

  19. Ground testing and simulation. II - Aerodynamic testing and simulation: Saving lives, time, and money

    Science.gov (United States)

    Dayman, B., Jr.; Fiore, A. W.

    1974-01-01

    The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.

  20. Fe(II) oxidation kinetics and Fe hydroxyphosphate precipitation upon aeration of anaerobic (ground)water

    NARCIS (Netherlands)

    van der Grift, B.; Griffioen, J.; Behrends, T.; Wassen, M.J.; Schot, P.P.; Osté, Leonard

    2015-01-01

    Exfiltration of anaerobic Fe-rich groundwater into surface water plays an important role in controlling the transport of phosphate (P) from agricultural areas to the sea. Previous laboratory and field studies showed that Fe(II) oxidation upon aeration leads to effective immobilization of dissolved P

  1. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  2. Ground deformation effects from the M6 earthquakes (2014-2015) on Cephalonia-Ithaca Islands (Western Greece) deduced by GPS observations

    Science.gov (United States)

    Sakkas, Vassilis; Lagios, Evangelos

    2017-03-01

    The implications of the earthquakes that took place in the central Ionian Islands in 2014 (Cephalonia, M w6.1, M w5.9) and 2015 (Lefkas, M w6.4) are described based on repeat measurements of the local GPS networks in Cephalonia and Ithaca, and the available continuous GPS stations in the broader area. The Lefkas earthquake occurred on a branch of the Cephalonia Transform Fault, affecting Cephalonia with SE displacements gradually decreasing from north ( 100 mm) to south ( 10 mm). This earthquake revealed a near N-S dislocation boundary separating Paliki Peninsula in western Cephalonia from the rest of the island, as well as another NW-SE trending fault that separates kinematically the northern and southern parts of Paliki. Strain field calculations during the interseismic period (2014-2015) indicate compression between Ithaca and Cephalonia, while extension appears during the following co-seismic period (2015-2016) including the 2015 Lefkas earthquake. Additional tectonically active zones with differential kinematic characteristics were also identified locally.

  3. Earthquake free design of pipe lines

    International Nuclear Information System (INIS)

    Kurihara, Chizuko; Sakurai, Akio

    1974-01-01

    Long structures such as cooling sea water pipe lines of nuclear power plants have a wide range of extent along the ground surface, and are incurred by not only the inertia forces but also forces due to ground deformations or the seismic wave propagation during earthquakes. Since previous reports indicated the earthquake free design of underground pipe lines, it is discussed in this report on behaviors of pipe lines on the ground during earthquakes and is proposed the aseismic design of pipe lines considering the effects of both inertia forces and ground deformations. (author)

  4. Earthquake Risk Management of Underground Lifelines in the Urban Area of Catania

    International Nuclear Information System (INIS)

    Grasso, S.; Maugeri, M.

    2008-01-01

    Lifelines typically include the following five utility networks: potable water, sewage natural gas, electric power, telecommunication and transportation system. The response of lifeline systems, like gas and water networks, during a strong earthquake, can be conveniently evaluated with the estimated average number of ruptures per km of pipe. These ruptures may be caused either by fault ruptures crossing, or by permanent deformations of the soil mass (landslides, liquefaction), or by transient soil deformations caused by seismic wave propagation. The possible consequences of damaging earthquakes on transportation systems may be the reduction or the interruption of traffic flow, as well as the impact on the emergency response and on the recovery assistance. A critical element in the emergency management is the closure of roads due to fallen obstacles and debris of collapsed buildings.The earthquake-induced damage to buried pipes is expressed in terms of repair rate (RR), defined as the number of repairs divided by the pipe length (km) exposed to a particular level of seismic demand; this number is a function of the pipe material (and joint type), of the pipe diameter and of the ground shaking level, measured in terms of peak horizontal ground velocity (PGV) or permanent ground displacement (PGD). The development of damage algorithms for buried pipelines is primarily based on empirical evidence, tempered with engineering judgment and sometimes by analytical formulations.For the city of Catania, in the present work use has been made of the correlation between RR and peak horizontal ground velocity by American Lifelines Alliance (ALA, 2001), for the verifications of main buried pipelines. The performance of the main buried distribution networks has been evaluated for the Level I earthquake scenario (January 11, 1693 event I = XI, M 7.3) and for the Level II earthquake scenario (February 20, 1818 event I = IX, M 6.2).Seismic damage scenario of main gas pipelines and

  5. Swedish earthquakes and acceleration probabilities

    International Nuclear Information System (INIS)

    Slunga, R.

    1979-03-01

    A method to assign probabilities to ground accelerations for Swedish sites is described. As hardly any nearfield instrumental data is available we are left with the problem of interpreting macroseismic data in terms of acceleration. By theoretical wave propagation computations the relation between seismic strength of the earthquake, focal depth, distance and ground accelerations are calculated. We found that most Swedish earthquake of the area, the 1904 earthquake 100 km south of Oslo, is an exception and probably had a focal depth exceeding 25 km. For the nuclear power plant sites an annual probability of 10 -5 has been proposed as interesting. This probability gives ground accelerations in the range 5-20 % for the sites. This acceleration is for a free bedrock site. For consistency all acceleration results in this study are given for bedrock sites. When applicating our model to the 1904 earthquake and assuming the focal zone to be in the lower crust we get the epicentral acceleration of this earthquake to be 5-15 % g. The results above are based on an analyses of macrosismic data as relevant instrumental data is lacking. However, the macroseismic acceleration model deduced in this study gives epicentral ground acceleration of small Swedish earthquakes in agreement with existent distant instrumental data. (author)

  6. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  7. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  8. Earthquakes-Rattling the Earth's Plumbing System

    Science.gov (United States)

    Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.

    2003-01-01

    Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.

  9. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  10. Building damage concentrated in Longtoushan town during the 2014 Ms. 6.5 Ludian earthquake, Yunnan, China: examination of cause and implications based on ground motion and vulnerability analyses

    Science.gov (United States)

    Wang, Xin; Kurahashi, Susumu; Wu, Hao; Si, Hongjun; Ma, Qiang; Dang, Ji; Tao, Dongwang; Feng, Jiwei; Irikura, Kojiro

    2017-09-01

    Though the 2014 Ludian Earthquake had only a moderate magnitude (Ms 6.5), high-level ground motions of almost 1 g occurred at Longtoushan Town (seismic station 53LLT), which located near the intersection of a conjugate-shaped seismogenic fault. The building damages on the pluvial fan and the river terrace at Longtoushan was clearly different. In order to examine the generation of the large acceleration at 53LLT, the focal mechanisms and the rupture processes of the conjugate-shaped seismogenic fault were determined. We found that there were two continuous impulsive waves in the records of 53LLT that were generated from two different faults, the Baogunao fault and the Xiaohe fault, respectively. Site effects on the pluvial fan and the river terrace at Longtoushan Town and their relations to different building damages were examined. We found that the predominant period at the pluvial fan was about 0.25 s, close to the fundamental natural period of multi-story confined masonry buildings. Ground motions on the pluvial fan and the river terrace were simulated through convolving synthesized bedrock motions with the transfer functions, which were analyzed using the one-dimensional underground velocity structures identified from H/V spectral ratios of ambient noise. Building collapse ratios (CRs) are estimated based on the vulnerability function of the 2008 Wenchuan Earthquake and are compared with the observed values. We found that the observed building CRs on the pluvial fan are much higher than the estimated values. High-level ground shaking that is far beyond the design level was a reason for serious building damage.

  11. Breaking new ground for remote sensing in support of disaster relief efforts: Detecting and pinpointing earthquake damage in near real-time (El Salvador, January 2001)

    Science.gov (United States)

    Nezry, Edmond; Romeijn, Paul P.; Sarti, Francesco; Inglada, Jordi; Zagolski, Francis; Yakam-Simen, Francis

    2002-01-01

    On January 13th 2001, a very strong earthquake struck El-Salvador, causing almost 1000 deaths and huge destruction, leaving more than one million people homeless. As support to the rescue teams, a project was initiated to provide up-to date maps and to identify damages to housing and infrastructures, covering the whole country. Based on the analysis of SPOT Panchromatic satellite imagery, updated maps were delivered to the rescue teams within 72 hours after the earthquake. In addition, during the 10 days following the earthquake, high resolution mapping of the damages was carried out in cooperation and coordination with rescue teams and relief organizations. Some areas of particular interest were even processed and damage maps delivered through the Internet, three hours after the request. For the first time in the history of spaceborne Earth observation, identification and evaluation of the damages were delivered on-site, in real-time (during the interventions), to local authorities, rescue teams and humanitarian organizations. In this operation, operating 24 hours a day and technical ability were the keys for success and contributed to saving lives.

  12. SEISRISK II; a computer program for seismic hazard estimation

    Science.gov (United States)

    Bender, Bernice; Perkins, D.M.

    1982-01-01

    The computer program SEISRISK II calculates probabilistic ground motion values for use in seismic hazard mapping. SEISRISK II employs a model that allows earthquakes to occur as points within source zones and as finite-length ruptures along faults. It assumes that earthquake occurrences have a Poisson distribution, that occurrence rates remain constant during the time period considered, that ground motion resulting from an earthquake is a known function of magnitude and distance, that seismically homogeneous source zones are defined, that fault locations are known, that fault rupture lengths depend on magnitude, and that earthquake rates as a function of magnitude are specified for each source. SEISRISK II calculates for each site on a grid of sites the level of ground motion that has a specified probability of being exceeded during a given time period. The program was designed to process a large (essentially unlimited) number of sites and sources efficiently and has been used to produce regional and national maps of seismic hazard.}t is a substantial revision of an earlier program SEISRISK I, which has never been documented. SEISRISK II runs considerably [aster and gives more accurate results than the earlier program and in addition includes rupture length and acceleration variability which were not contained in the original version. We describe the model and how it is implemented in the computer program and provide a flowchart and listing of the code.

  13. Meteorite Impact "Earthquake" Features (Rock Liquefaction, Surface Wave Deformations, Seismites) from Ground Penetrating Radar (GPR) and Geoelectric Complex Resistivity/Induced Polarization (IP) Measurements, Chiemgau (Alpine Foreland, Southeast Germany)

    Science.gov (United States)

    Ernstson, K.; Poßekel, J.

    2017-12-01

    Densely spaced GPR and complex resistivity measurements on a 30,000 square meters site in a region of enigmatic sinkhole occurrences in unconsolidated Quaternary sediments have featured unexpected and highlighting results from both a meteorite impact research and an engineering geology point of view. The GPR measurements and a complex resistivity/IP electrical imaging revealed extended subrosion depressions related with a uniformly but in various degrees of intensity deformed loamy and gravelly ground down to at least 10 m depth. Two principle observations could be made from both the GPR high-resolution measurements and the more integrating resistivity and IP soundings with both petrophysical evidences in good complement. Subrosion can be shown to be the result of prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Funnel-shaped structures with diameters up to 25 m near the surface and reaching down to the floating ground water level at 10 m depth were measured. GPR radargrams could trace prominent gravelly-material transport bottom-up within the funnels. Seen in both GPR tomography and resistivity/IP sections more or less the whole investigated area is overprinted by wavy deformations of the unconsolidated sediments with wavelengths of the order of 5 - 10 m and amplitudes up to half a meter, likewise down to 10 m depth. Substantial earthquakes are not known in this region. Hence, the observed heavy underground disorder is considered the result of the prominent earthquake shattering that must have occurred during the Holocene (Bronze Age/Celtic era) Chiemgau meteorite impact event that produced a 60 km x 30 km sized crater strewn field directly hosting the investigated site. Depending on depth and size of floating aquifers local concentrations of rock liquefaction and seismic surface waves (probably LOVE waves) to produce the wavy deformations could develop, when the big

  14. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties

  15. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  16. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  17. Attenuation characteristics of seismic motion based on earthquake observation records. Identification of damping factor at hard rock sites and its influences on ground stability evaluation

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Kanatani, Mamoru; Ohtori, Yasuki

    2005-01-01

    In this report, we examined validity of currently available ground stability evaluation method by applying commonly used damping factor which was invariant for frequency. First, we conducted a survey of the actual conditions of damping factors, which were used in ground stability evaluation, on 10 existing nuclear power plants. As a result, we found that damping factor of 0.03(3%) was used in of 80 percent investigated plants. Next, a spectral inversion method using very fast simulated annealing was proposed for identifying damping factor and its lower limit. Here, the lower limit of damping factor means intrinsic damping factor. The developed inversion method was applied to borehole array data recorded at hard rock ground. From the inversion, it was found that intrinsic damping factor of hard rock ground distributed between about 0.03(3%) and 0.06(3%) at a depth of less than 100m, and between about 0.003(0.3%) and 0.01(1%) at a depth of more than 100m. Furthermore, we indicated that scattering damping factor with in a depth of less than 100m was in proportion to the almost -1.0 power of the frequency, and the factor in a depth of more than 100m had a peak in a frequency range from about 1.0 to 5.0 Hz. Therefore, it was recognized that commonly used damping of 0.03(3%) expressed intrinsic damping factor of shallower hard rock ground. Finally, we estimated the influences of damping factor on ground stability evaluation by 2D dynamic FEM analyses of hard rock foundation ground considering 8 slipping lines using 6 combinations of damping factor. It was demonstrated that the variation of damping factor was not so decisive on the results of ground stability evaluation. This suggests present ground stability evaluation method by applying commonly used damping factor is reasonable for hard rock sites. (author)

  18. Regional analysis of ground and above-ground climate. Part I. Regional suitability of earth-tempering practices: summary and conclusions. Part II. Bioclimatic data

    Energy Technology Data Exchange (ETDEWEB)

    Labs, K.

    The regional suitability of underground construction as a climate-control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above-ground climate-control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dewpoint ground temperature comparisons for identifying the relative likelihood of condensation, from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically. While the subsurface almost always provides a thermal advantage on its own terms when compared to above-ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate-control techniques. Also contained in the report are reviews of above- and below-ground climate mapping schemes related to human comfort and architectural design, and a detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States. 3 references, 12 figures, 14 tables.

  19. Development of advanced earthquake resistant performance verification on reinforced concrete underground structure. Pt. 2. Verification of the ground modeling methods applied to non-linear soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Kanatani, Mamoru; Ohtomo, Keizo; Matsui, Jun; Matsuo, Toyofumi

    2003-01-01

    In order to develop an advanced verification method for earthquake resistant performance on reinforced concrete underground structures, the applicability of two different types of soil modeling methods in numerical analysis were verified through non-linear dynamic numerical simulations of the large shaking table tests conducted using the model comprised of free-field ground or soils and a reinforced concrete two-box culvert structure system. In these simulations, the structure was modeled by a beam type element having a tri-linear curve of the relations between curvature and flexural moment. The soil was modeled by the Ramberg-Osgood model as well as an elasto-plastic constitutive model. The former model only employs non-linearity of shear modulus regarding strain and initial stress conditions, whereas the latter can express non-linearity of shear modulus caused by changes of mean effective stress during ground excitation and dilatancy of ground soil. Therefore the elasto-plastic constitutive model could precisely simulate the vertical acceleration and displacement response on ground surface, which were produced by the soil dilations during a shaking event of a horizontal base input in the model tests. In addition, the model can explain distinctive dynamic earth pressure acting on the vertical walls of the structure which was also confirmed to be related to the soil dilations. However, since both these modeling methods could express the shear force on the upper slab surface of the model structure, which plays the predominant role on structural deformation, these modeling methods were applicable equally to the evaluation of seismic performance similar to the model structure of this study. (author)

  20. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.

    Directory of Open Access Journals (Sweden)

    Xiaonan Wu

    Full Text Available When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.

  1. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.

    Science.gov (United States)

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.

  2. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    Science.gov (United States)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  3. Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake

    Science.gov (United States)

    Huang, C.-C.; Lee, Y.-H.; Liu, Huaibao P.; Keefer, D.K.; Jibson, R.W.

    2001-01-01

    The 1999 Chi-Chi, Taiwan, earthquake triggered numerous landslides throughout a large area in the Central Range, to the east, southeast, and south of the fault rupture. Among them are two large rock avalanches, at Tsaoling and at Jih-Feng-Erh-Shan. At Jih-Feng-Erh-Shan, the entire thickness (30-50 m) of the Miocene Changhukeng Shale over an area of 1 km2 slid down its bedding plane for a distance of about 1 km. Initial movement of the landslide was nearly purely translational. We investigate the effect of surface-normal acceleration on the initiation of the Jih-Feng-Erh-Shan landslide using a block slide model. We show that this acceleration, currently not considered by dynamic slope-stability analysis methods, significantly influences the initiation of the landslide.

  4. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    Science.gov (United States)

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  5. Associating an ionospheric parameter with major earthquake ...

    Indian Academy of Sciences (India)

    ionospheric disturbance (SID) and 'td' is the dura- tion of the ... dayside of the earth, ionizing atmospheric parti- ... the increased emanation of excited radon molecules from the ground ..... tration following strong earthquake; Int. J. Remote Sens.

  6. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  7. Characteristics of Spectral Responses for a Ground Motion from Mediterranean Earthquake – ZEGHANGHANE Station (6.3Mw in Morocco, and its Influence on the Structures

    Directory of Open Access Journals (Sweden)

    Ahatri Mohamed

    2018-01-01

    In this case, we determine the spectral response of the ground motion for ZGH station, and study his influence on the structures as well as make a comparison with the requirements of the Moroccan seismic construction regulations (RPS 2000 revised in 2011.

  8. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  9. Statistical validation of earthquake related observations

    Science.gov (United States)

    Kossobokov, V. G.

    2011-12-01

    The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable or, conversely, delicately-designed models. The widespread practice of deceptive modeling considered as a "reasonable proxy" of the natural seismic process leads to seismic hazard assessment of unknown quality, which errors propagate non-linearly into inflicted estimates of risk and, eventually, into unexpected societal losses of unacceptable level. The studies aimed at forecast/prediction of earthquakes must include validation in the retro- (at least) and, eventually, in prospective tests. In the absence of such control a suggested "precursor/signal" remains a "candidate", which link to target seismic event is a model assumption. Predicting in advance is the only decisive test of forecast/predictions and, therefore, the score-card of any "established precursor/signal" represented by the empirical probabilities of alarms and failures-to-predict achieved in prospective testing must prove statistical significance rejecting the null-hypothesis of random coincidental occurrence in advance target earthquakes. We reiterate suggesting so-called "Seismic Roulette" null-hypothesis as the most adequate undisturbed random alternative accounting for the empirical spatial distribution of earthquakes: (i) Consider a roulette wheel with as many sectors as the number of earthquake locations from a sample catalog representing seismic locus, a sector per each location and (ii) make your bet according to prediction (i.e., determine, which locations are inside area of alarm, and put one chip in each of the corresponding sectors); (iii) Nature turns the wheel; (iv) accumulate statistics of wins and losses along with the number of chips spent. If a precursor in charge of prediction exposes an imperfection of Seismic Roulette then, having in mind

  10. ASSESSMENT OF EARTHQUAKE HAZARDS ON WASTE LANDFILLS

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    Earthquake hazards may arise as a result of: (a) transient ground deformation, which is induced due to seismic wave propagation, and (b) permanent ground deformation, which is caused by abrupt fault dislocation. Since the adequate performance of waste landfills after an earthquake is of outmost...... importance, the current study examines the impact of both types of earthquake hazards by performing efficient finite-element analyses. These took also into account the potential slip displacement development along the geosynthetic interfaces of the composite base liner. At first, the development of permanent...

  11. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    Science.gov (United States)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  12. The EM Earthquake Precursor

    Science.gov (United States)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  13. Real Time Earthquake Information System in Japan

    Science.gov (United States)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  14. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  15. USEMS & GLASS: investigator-driven frontier research in earthquake physics. Ground-breaking research in Europe enhances outreach to the general public

    Science.gov (United States)

    Mariano, S.; di Toro, G.; Collettini, C.; Usems Team; Glass Team

    2011-12-01

    USEMS and GLASS are two projects financed by the European Research Council (ERC) as part of the ERC starting grants scheme within the FP7 framework. The rationale behind the funding scheme is to support some of the most promising scientific endeavours in Europe that are being led by young researchers, and to emphasize the excellence of individual ideas rather than specific research areas; in other words, to promote bottom-up frontier research. The general benefits of this rationale are evident in the two ongoing projects that deal with earthquake physics, as these projects are increasingly recognized in their scientific community. We can say that putting excellence at the heart of European Research strongly contributes to the construction of a European knowledge-based society. From a researcher point-of-view one of the most challenging aspects of these projects is to approach and convey the results of the projects to a general public, contributing to the construction of knowledge-based society. Luckily, media interest and the availability of a number of new communication tools facilitate the outreach of scientific achievements. The largest earthquakes during the last ten years (e.g. Sumatra 2004 and Japan 2011) have received widespread attention in the media world (TV, W.W.W., Newspaper and so on) for months, and successful research projects such as those above also become media protagonists, gaining their space in the media bullring. The USEMS principal investigator and his team have participated in several dissemination events in the Mass Media, such as interviews wit Italian and French TV national broadcasts (RAI Due TG2, RAI Uno Unomattina, Rai Tre Geo & Geo, FRANCE 2); interviews in scientific journals: SCIENCE (Sept. 2010), newspapers and web (Corriere della Sera, Il Gazzettino, Il Messagero, La Stampa, Libero, Il Mattino, Yahoo, ANSA, AdnKronos and AGI); radio (RadioRai Uno, RadioRai Tre Scienza); documentary "Die Eroberung der Alpen" produced by Tangram

  16. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    Science.gov (United States)

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  17. Design basis ground motion (Ss) required on new regulatory guide

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro

    2013-01-01

    New regulatory guide is enforced on July 8. Here, it is introduced how the design basis ground motion (Ss) for seismic design of nuclear power reactor facilities was revised on the new guide. Ss is formulated as two types of earthquake ground motions, earthquake ground motions with site specific earthquake source and with no such specific source locations. The latter is going to be revised based on the recent observed near source ground motions. (author)

  18. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  19. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  20. Generation of earthquake signals

    International Nuclear Information System (INIS)

    Kjell, G.

    1994-01-01

    Seismic verification can be performed either as a full scale test on a shaker table or as numerical calculations. In both cases it is necessary to have an earthquake acceleration time history. This report describes generation of such time histories by filtering white noise. Analogue and digital filtering methods are compared. Different methods of predicting the response spectrum of a white noise signal filtered by a band-pass filter are discussed. Prediction of both the average response level and the statistical variation around this level are considered. Examples with both the IEEE 301 standard response spectrum and a ground spectrum suggested for Swedish nuclear power stations are included in the report

  1. Earthquake Facts

    Science.gov (United States)

    ... North Dakota, and Wisconsin. The core of the earth was the first internal structural element to be identified. In 1906 R.D. Oldham discovered it from his studies of earthquake records. The inner core is solid, and the outer core is liquid and so does not transmit ...

  2. Understanding Earthquakes

    Science.gov (United States)

    Davis, Amanda; Gray, Ron

    2018-01-01

    December 26, 2004 was one of the deadliest days in modern history, when a 9.3 magnitude earthquake--the third largest ever recorded--struck off the coast of Sumatra in Indonesia (National Centers for Environmental Information 2014). The massive quake lasted at least 10 minutes and devastated the Indian Ocean. The quake displaced an estimated…

  3. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  4. Housing Damage Following Earthquake

    Science.gov (United States)

    1989-01-01

    An automobile lies crushed under the third story of this apartment building in the Marina District after the Oct. 17, 1989, Loma Prieta earthquake. The ground levels are no longer visible because of structural failure and sinking due to liquefaction. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: J.K. Nakata, U.S. Geological Survey.

  5. P- and S-wave velocity models incorporating the Cascadia subduction zone for 3D earthquake ground motion simulations—Update for Open-File Report 2007–1348

    Science.gov (United States)

    Stephenson, William J.; Reitman, Nadine G.; Angster, Stephen J.

    2017-12-20

    In support of earthquake hazards studies and ground motion simulations in the Pacific Northwest, threedimensional (3D) P- and S-wave velocity (VP and VS , respectively) models incorporating the Cascadia subduction zone were previously developed for the region encompassed from about 40.2°N. to 50°N. latitude, and from about 122°W. to 129°W. longitude (fig. 1). This report describes updates to the Cascadia velocity property volumes of model version 1.3 ([V1.3]; Stephenson, 2007), herein called model version 1.6 (V1.6). As in model V1.3, the updated V1.6 model volume includes depths from 0 kilometers (km) (mean sea level) to 60 km, and it is intended to be a reference for researchers who have used, or are planning to use, this model in their earth science investigations. To this end, it is intended that the VP and VS property volumes of model V1.6 will be considered a template for a community velocity model of the Cascadia region as additional results become available. With the recent and ongoing development of the National Crustal Model (NCM; Boyd and Shah, 2016), we envision any future versions of this model will be directly integrated with that effort

  6. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-01-01

    Earthquakes are one of the most destructive natural hazards on our planet Earth. Hugh earthquakes striking offshore may cause devastating tsunamis, as evidenced by the 11 March 2011 Japan (moment magnitude Mw9.0) and the 26 December 2004 Sumatra (Mw9.1) earthquakes. Earthquake prediction (in terms of the precise time, place, and magnitude of a coming earthquake) is arguably unfeasible in the foreseeable future. To mitigate seismic hazards from future earthquakes in earthquake-prone areas, such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular, ground motion simulations for past and future (possible) significant earthquakes have been performed to understand factors that affect ground shaking in populated areas, and to provide ground shaking characteristics and synthetic seismograms for emergency preparation and design of earthquake-resistant structures. These simulation results can guide the development of more rational seismic provisions for leading to safer, more efficient, and economical50pt]Please provide V. Taylor author e-mail ID. structures in earthquake-prone regions.

  7. Utilities/industries joint study on seismic isolation systems for LWR: Part II. Observed behaviors of base-isolated general buildings under real earthquakes

    International Nuclear Information System (INIS)

    Matsumura, Takao; Sato, Shoji; Kato, Muneaki

    1989-01-01

    This paper describes the observed behavior of base-isolated buildings under real earthquake conditions. These buildings were constructed by five construction companies participating in the Joint Study on Seismic Isolation Systems for lightwater reactors. All the buildings are medium- or low-height buildings of reinforced-concrete structures with combinations of laminated rubber bearing or sliding bearings and various damping devices

  8. Our response to the earthquake at Onagawa Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirakawa, Tomoshi

    2008-01-01

    When the Miyagi Offshore earthquake occurred on August 16, 2005, all three units at the Onagawa NPS were shut down automatically according to the Strong Seismic Acceleration' signal. Our inspection after the earthquake confirmed there was no damage to the equipment of the nuclear power plants, but the analysis of the response spectrum observed at the bedrock showed the earthquake had exceeded the 'design-basis earthquake', at certain periods, so that we implemented a review of the seismic safety of plant facilities. In the review, the ground motion of Miyagi Offshore Earthquake which are predicted to occur in the near future were reexamined based on the observation data, and then 'The Ground Motion for Safety Check' surpassing the supposed ground motion of the largest earthquake was established. The seismic safety of plant facilities, important for safety, was assured. At present, No.1 to No.3 units at Onagawa NPS have returned to normal operation. (author)

  9. Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2017-08-01

    Full Text Available Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking and Limit State II (concrete crushing when the PGAs were in a range of 0.8–1.1g and 1.2–1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

  10. Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng; Li, Hong Zhi [Dept. Structural Engineering, Tongji University, Shanghai (China)

    2017-08-15

    Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA) of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking) and Limit State II (concrete crushing) when the PGAs were in a range of 0.8–1.1g and 1.2–1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

  11. Earthquakes: Risk, Monitoring, Notification, and Research

    Science.gov (United States)

    2008-06-19

    States are as much as 30% lower for certain types of ground motion, called long-period seismic waves, which affect taller , multistory buildings. Ground...jump between connected faults. Earthquakes that occur along the Sierra Madre Fault in southern California, for example, could trigger a series of

  12. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  13. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  14. Application of τc*Pd in earthquake early warning

    Science.gov (United States)

    Huang, Po-Lun; Lin, Ting-Li; Wu, Yih-Min

    2015-03-01

    Rapid assessment of damage potential and size of an earthquake at the station is highly demanded for onsite earthquake early warning. We study the application of τc*Pd for its estimation on the earthquake size using 123 events recorded by the borehole stations of KiK-net in Japan. The new type of earthquake size determined by τc*Pd is more related to the damage potential. We find that τc*Pd provides another parameter to measure the size of earthquake and the threshold to warn strong ground motion.

  15. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  16. Book review: Earthquakes and water

    Science.gov (United States)

    Bekins, Barbara A.

    2012-01-01

    It is really nice to see assembled in one place a discussion of the documented and hypothesized hydrologic effects of earthquakes. The book is divided into chapters focusing on particular hydrologic phenomena including liquefaction, mud volcanism, stream discharge increases, groundwater level, temperature and chemical changes, and geyser period changes. These hydrologic effects are inherently fascinating, and the large number of relevant publications in the past decade makes this summary a useful milepost. The book also covers hydrologic precursors and earthquake triggering by pore pressure. A natural need to limit the topics covered resulted in the omission of tsunamis and the vast literature on the role of fluids and pore pressure in frictional strength of faults. Regardless of whether research on earthquake-triggered hydrologic effects ultimately provides insight into the physics of earthquakes, the text provides welcome common ground for interdisciplinary collaborations between hydrologists and seismologists. Such collaborations continue to be crucial for investigating hypotheses about the role of fluids in earthquakes and slow slip. 

  17. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  18. Earthquake lights and rupture processes

    Directory of Open Access Journals (Sweden)

    T. V. Losseva

    2005-01-01

    Full Text Available A physical model of earthquake lights is proposed. It is suggested that the magnetic diffusion from the electric and magnetic fields source region is a dominant process, explaining rather high localization of the light flashes. A 3D numerical code allowing to take into account the arbitrary distribution of currents caused by ground motion, conductivity in the ground and at its surface, including the existence of sea water above the epicenter or (and near the ruptured segments of the fault have been developed. Simulations for the 1995 Kobe earthquake were conducted taking into account the existence of sea water with realistic geometry of shores. The results do not contradict the eyewitness reports and scarce measurements of the electric and magnetic fields at large distances from the epicenter.

  19. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground

    International Nuclear Information System (INIS)

    Werner, Kent; Hamren, Ulrika; Collinder, Per; Ridderstolpe, Peter

    2010-09-01

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  20. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable.

    Science.gov (United States)

    Huang, Yihe; Ellsworth, William L; Beroza, Gregory C

    2017-08-01

    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses.

  1. Earthquake effect on the geological environment

    International Nuclear Information System (INIS)

    Kawamura, Makoto

    1999-01-01

    Acceleration caused by the earthquake, changes in the water pressure, and the rock-mass strain were monitored for a series of 344 earthquakes from 1990 to 1998 at Kamaishi In Situ Test Site. The largest acceleration was registered to be 57.14 gal with the earthquake named 'North coast of Iwate Earthquake' (M4.4) occurred in June, 1996. Changes of the water pressure were recorded with 27 earthquakes; the largest change was -0.35 Kgt/cm 2 . The water-pressure change by earthquake was, however, usually smaller than that caused by rainfall in this area. No change in the electric conductivity or pH of ground water was detected before and after the earthquake throughout the entire period of monitoring. The rock-mass strain was measured with a extensometer whose detection limit was of the order of 10 -8 to 10 -9 degrees and the remaining strain of about 2.5x10 -9 degrees was detected following the 'Offshore Miyagi Earthquake' (M5.1) in October, 1997. (H. Baba)

  2. A suite of exercises for verifying dynamic earthquake rupture codes

    Science.gov (United States)

    Harris, Ruth A.; Barall, Michael; Aagaard, Brad T.; Ma, Shuo; Roten, Daniel; Olsen, Kim B.; Duan, Benchun; Liu, Dunyu; Luo, Bin; Bai, Kangchen; Ampuero, Jean-Paul; Kaneko, Yoshihiro; Gabriel, Alice-Agnes; Duru, Kenneth; Ulrich, Thomas; Wollherr, Stephanie; Shi, Zheqiang; Dunham, Eric; Bydlon, Sam; Zhang, Zhenguo; Chen, Xiaofei; Somala, Surendra N.; Pelties, Christian; Tago, Josue; Cruz-Atienza, Victor Manuel; Kozdon, Jeremy; Daub, Eric; Aslam, Khurram; Kase, Yuko; Withers, Kyle; Dalguer, Luis

    2018-01-01

    We describe a set of benchmark exercises that are designed to test if computer codes that simulate dynamic earthquake rupture are working as intended. These types of computer codes are often used to understand how earthquakes operate, and they produce simulation results that include earthquake size, amounts of fault slip, and the patterns of ground shaking and crustal deformation. The benchmark exercises examine a range of features that scientists incorporate in their dynamic earthquake rupture simulations. These include implementations of simple or complex fault geometry, off‐fault rock response to an earthquake, stress conditions, and a variety of formulations for fault friction. Many of the benchmarks were designed to investigate scientific problems at the forefronts of earthquake physics and strong ground motions research. The exercises are freely available on our website for use by the scientific community.

  3. Earthquakes in El Salvador: a descriptive study of health concerns in a rural community and the clinical implications--part II.

    Science.gov (United States)

    Woersching, Joanna C; Snyder, Audrey E

    2004-01-01

    Results reported in Part I of the Earthquakes in El Salvador series (see Disaster Management & Response 2003;1:105-9) indicated clinically relevant findings. The findings indicated a need for greater public health action within all five categories reviewed: healthcare, access to healthcare, housing, food, water and sanitation. Significant results between urban and rural communities indicated a need for broader community aid, public health and sanitation services to rural areas. Faster and more efficient disaster management and care services throughout the San Sebastian community were also necessary modifications.

  4. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    Science.gov (United States)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  5. A Deterministic Approach to Earthquake Prediction

    Directory of Open Access Journals (Sweden)

    Vittorio Sgrigna

    2012-01-01

    Full Text Available The paper aims at giving suggestions for a deterministic approach to investigate possible earthquake prediction and warning. A fundamental contribution can come by observations and physical modeling of earthquake precursors aiming at seeing in perspective the phenomenon earthquake within the framework of a unified theory able to explain the causes of its genesis, and the dynamics, rheology, and microphysics of its preparation, occurrence, postseismic relaxation, and interseismic phases. Studies based on combined ground and space observations of earthquake precursors are essential to address the issue. Unfortunately, up to now, what is lacking is the demonstration of a causal relationship (with explained physical processes and looking for a correlation between data gathered simultaneously and continuously by space observations and ground-based measurements. In doing this, modern and/or new methods and technologies have to be adopted to try to solve the problem. Coordinated space- and ground-based observations imply available test sites on the Earth surface to correlate ground data, collected by appropriate networks of instruments, with space ones detected on board of Low-Earth-Orbit (LEO satellites. Moreover, a new strong theoretical scientific effort is necessary to try to understand the physics of the earthquake.

  6. The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: II. Numerical Treatment

    OpenAIRE

    Scheidsteger, T.; Urbschat, H.; Griffiths, R. B.; Schellnhuber, H. J.

    1997-01-01

    A procedure is described for efficiently finding the ground state energy and configuration for a Frenkel-Kontorova model in a periodic potential, consisting of N parabolic segments of identical curvature in each period, through a numerical solution of the convex minimization problem described in the preceding paper. The key elements are the use of subdifferentials to describe the structure of the minimization problem; an intuitive picture of how to solve it, based on motion of quasiparticles;...

  7. Nuclear ground state properties and self-consistent calculations with the Skyrme interaction. II. S-D shell nuclei

    International Nuclear Information System (INIS)

    Flocard, H.

    1975-04-01

    Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr

  8. ''Swords into ploughshares'': Breaking new ground with radar hardware and technique in physical research after World War II

    International Nuclear Information System (INIS)

    Forman, P.

    1995-01-01

    A survey is offered of applications to fundamental physical research, in the years immediately following World War II, of the instrumentalities developed for radar during that war. Attention is given to radar astronomy and radio astronomy, linear and cyclical accelerators, microwave spectroscopy, molecular beams, nuclear magnetic resonance, electron paramagnetic and ferromagnetic resonance, measurements of resistivity at high frequencies in metals and of second sound in helium II, and to the concepts of information and signal-to-noise ratio as basic to the design and analysis of experiments. In conjunction with this survey, consideration is given to the autonomy of physics as a knowledge-producing enterprise, framed as a question of continuity in research directions. As that question implies a baseline, the survey of postwar applications is preceded by a survey of those prewar directions of physical research requiring the highest available radio frequencies. Some 500 references are given

  9. CSER 94-014: Storage of metal-fuel loaded EBR-II casks in concrete vault on PFP grounds

    International Nuclear Information System (INIS)

    Hess, A.L.

    1994-01-01

    A criticality safety evaluation is presented to permit EBR-2 spent fuel casks loaded with metallic fuel rods to be stored in an 8-ft diameter, cylindrical concrete vault inside the PFP security perimeter. The specific transfer of three casks with Pu alloy fuel from the Los Alamos Molten Plutonium Reactor Experiment from the burial grounds to the vault is thus covered. Up to seven casks may be emplaced in the casing with 30 inches center to center spacing. Criticality safety is assured by definitive packaging rules which keep the fissile medium dry and at a low effective volumetric density

  10. Direct fit of spectroscopic data of diatomic molecules by using genetic algorithms: II. The ground state of RbCs

    International Nuclear Information System (INIS)

    Almeida, Marcos M; Prudente, Frederico V; Fellows, Carlos E; Marques, Jorge M C; Pereira, Francisco B

    2011-01-01

    We extend our previous methodology based on genetic algorithms (Marques et al 2008 J. Phys. B: At. Mol. Opt. Phys. 41 085103) to carry out the challenging fit of the RbCs potential curve to spectroscopic data. Specifically, we have fitted an analytic functional form to line positions of the high-resolution Fourier transform spectrum of RbCs obtained by a laser-induced fluorescence technique. The results for the ground electronic state of RbCs show that the present method provides an efficient way to obtain diatomic potentials with great accuracy.

  11. Learning Earthquake Design and Construction–Why are Open ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 10. Learning Earthquake Design and Construction – Why are Open-Ground Storey Buildings Vulnerable in Earthquakes? C V R Murty. Classroom Volume 10 Issue 10 October 2005 pp 84-87 ...

  12. Remediation of Soil and Ground Water Contaminated with PAH using Heat and Fe(II)-EDTA Catalyzed Persulfate Oxidation

    International Nuclear Information System (INIS)

    Nadim, Farhad; Huang, Kun-Chang; Dahmani, Amine M.

    2006-01-01

    The feasibility of degrading 16 USEPA priority polycyclic aromatic (PAH) hydrocarbons (PAHs) with heat and Fe(II)-EDTA catalyzed persulfate oxidation was investigated in the laboratory. The experiments were conducted to determine the effects of temperature (i.e. 20 deg. C, 30 deg. C and 40 deg. C) and iron-chelate levels (i.e., 250 mg/L-, 375 mg/L- and 500 mg/L-Fe(II)) on the degradation of dissolved PAHs in aqueous systems, using a series of amber glass jars as the reactors that were placed on a shaker inside an incubator for temperature control. Each experiment was run in duplicate and had two controls (i.e., no persulfate in systems). Samples were collected after a reaction period of 144 hrs and measured for PAHs, pH and sodium persulfate levels. The extent of degradation of PAHs was determined by comparing the data for samples with the controls.The experimental results showed that persulfate oxidation under each of the tested conditions effectively degraded the 16 target PAHs. All of the targeted PAHs were degraded to below the instrument detection limits (∼4 μ/L) from a range of initial concentration (i.e., 5 μ/L for benzo(a)pyrene to 57 μ/L for Phenanthrene) within 144 hrs with 5 g/L of sodium persulfate at 20 deg. C, 30 deg. C and 40 deg. C. The data indicated that the persulfate oxidation was effective in degrading the PAHs and that external heat and iron catalysts might not be needed for the degradation of PAHs.The Fe(II)-EDTA catalyzed persulfate also effectively degraded PAHs in the study. In addition, the data on the variation of persulfate concentrations during the experiments indicated that Fe(II)-EDTA accelerated the consumption of persulfate ions.The obtained degradation data cannot be used to evaluate the influence of temperature and Fe(II) levels on the PAH degradation because the PAHs under each of the tested conditions were degraded to below the instrument detection limit within the first sampling point. However, these experiments have

  13. Isoseismals for the Kutch earthquake of 26th January 2001

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2001-01-26

    Jan 26, 2001 ... of schools, hospitals, community inns and govern- ment offices. The survey ... Failure of columns occurred at ground storey level in most multistoreyed ... Acknowledgements. Professor and Head, Department of Earthquake.

  14. HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds

    Science.gov (United States)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-11-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in situ image cloud particles in a well-defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  15. HOLIMO II: a digital holographic instrument for ground-based in-situ observations of microphysical properties of mixed-phase clouds

    Science.gov (United States)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-05-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in-situ image cloud particles in a well defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  16. Strong motion duration and earthquake magnitude relationships

    International Nuclear Information System (INIS)

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ''strong motion duration'' has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions

  17. New geological perspectives on earthquake recurrence models

    International Nuclear Information System (INIS)

    Schwartz, D.P.

    1997-01-01

    In most areas of the world the record of historical seismicity is too short or uncertain to accurately characterize the future distribution of earthquakes of different sizes in time and space. Most faults have not ruptured once, let alone repeatedly. Ultimately, the ability to correctly forecast the magnitude, location, and probability of future earthquakes depends on how well one can quantify the past behavior of earthquake sources. Paleoseismological trenching of active faults, historical surface ruptures, liquefaction features, and shaking-induced ground deformation structures provides fundamental information on the past behavior of earthquake sources. These studies quantify (a) the timing of individual past earthquakes and fault slip rates, which lead to estimates of recurrence intervals and the development of recurrence models and (b) the amount of displacement during individual events, which allows estimates of the sizes of past earthquakes on a fault. When timing and slip per event are combined with information on fault zone geometry and structure, models that define individual rupture segments can be developed. Paleoseismicity data, in the form of timing and size of past events, provide a window into the driving mechanism of the earthquake engine--the cycle of stress build-up and release

  18. Mesoscale structure of a morning sector ionospheric shear flow region determined by conjugate Cluster II and MIRACLE ground-based observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    Full Text Available We analyse a conjunction event of the Cluster II spacecraft with the MIRACLE ground-based instrument net-work in northern Fennoscandia on 6 February 2001, between 23:00 and 00:00 UT. Shortly after the spacecraft were located at perigee, the Cluster II satellites’ magnetic footpoints move northwards over Scandinavia and Svalbard, almost perfectly aligned with the central chain of the IMAGE magnetometer network, and cross a morning sector ionospheric shear zone during this passage. In this study we focus on the mesoscale structure of the ionosphere. Ionospheric conductances, true horizontal currents, and field-aligned currents (FAC are calculated from the ground-based measurements of the IMAGE magnetometers and the STARE coherent scatter radar, using the 1-D method of characteristics. An excellent agreement between these results and the FAC observed by Cluster II is reached after averaging the Cluster measurements to mesoscales, as well as between the location of the convection reversal boundary (CRB, as observed by STARE and by the Cluster II EFW instrument. A sheet of downward FAC is observed in the vicinity of the CRB, which is mainly caused by the positive divergence of the electric field there. This FAC sheet is detached by 0.5°–2° of latitude from a more equatorward downward FAC sheet at the poleward flank of the westward electrojet. This latter FAC sheet, as well as the upward FAC at the equatorward flank of the jet, are mainly caused by meridional gradients in the ionospheric conductances, which reach up to 25 S in the electrojet region, but only ~ 5 S poleward of it, with a minimum at the CRB. Particle measurements show that the major part of the downward FAC is carried by upward flowing electrons, and only a small part by downward flowing ions. The open-closed field line boundary is found to be located 3°–4° poleward of the CRB, implying significant errors if the latter is used as a proxy of the former.

    Key words

  19. Mesoscale structure of a morning sector ionospheric shear flow region determined by conjugate Cluster II and MIRACLE ground-based observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2003-08-01

    Full Text Available We analyse a conjunction event of the Cluster II spacecraft with the MIRACLE ground-based instrument net-work in northern Fennoscandia on 6 February 2001, between 23:00 and 00:00 UT. Shortly after the spacecraft were located at perigee, the Cluster II satellites’ magnetic footpoints move northwards over Scandinavia and Svalbard, almost perfectly aligned with the central chain of the IMAGE magnetometer network, and cross a morning sector ionospheric shear zone during this passage. In this study we focus on the mesoscale structure of the ionosphere. Ionospheric conductances, true horizontal currents, and field-aligned currents (FAC are calculated from the ground-based measurements of the IMAGE magnetometers and the STARE coherent scatter radar, using the 1-D method of characteristics. An excellent agreement between these results and the FAC observed by Cluster II is reached after averaging the Cluster measurements to mesoscales, as well as between the location of the convection reversal boundary (CRB, as observed by STARE and by the Cluster II EFW instrument. A sheet of downward FAC is observed in the vicinity of the CRB, which is mainly caused by the positive divergence of the electric field there. This FAC sheet is detached by 0.5°–2° of latitude from a more equatorward downward FAC sheet at the poleward flank of the westward electrojet. This latter FAC sheet, as well as the upward FAC at the equatorward flank of the jet, are mainly caused by meridional gradients in the ionospheric conductances, which reach up to 25 S in the electrojet region, but only ~ 5 S poleward of it, with a minimum at the CRB. Particle measurements show that the major part of the downward FAC is carried by upward flowing electrons, and only a small part by downward flowing ions. The open-closed field line boundary is found to be located 3°–4° poleward of the CRB, implying significant errors if the latter is used as a proxy of the former.Key words. Ionosphere

  20. Earthquake Damping Device for Steel Frame

    Science.gov (United States)

    Zamri Ramli, Mohd; Delfy, Dezoura; Adnan, Azlan; Torman, Zaida

    2018-04-01

    Structures such as buildings, bridges and towers are prone to collapse when natural phenomena like earthquake occurred. Therefore, many design codes are reviewed and new technologies are introduced to resist earthquake energy especially on building to avoid collapse. The tuned mass damper is one of the earthquake reduction products introduced on structures to minimise the earthquake effect. This study aims to analyse the effectiveness of tuned mass damper by experimental works and finite element modelling. The comparisons are made between these two models under harmonic excitation. Based on the result, it is proven that installing tuned mass damper will reduce the dynamic response of the frame but only in several input frequencies. At the highest input frequency applied, the tuned mass damper failed to reduce the responses. In conclusion, in order to use a proper design of damper, detailed analysis must be carried out to have sufficient design based on the location of the structures with specific ground accelerations.

  1. Evaluation of the Performance Characteristics of CGLSS II and U.S. NLDN Using Ground-Truth Dalta from Launch Complex 398, Kennedy Space Center, Florida

    Science.gov (United States)

    Mata, C. T.; Mata, A. G.; Rakov, V. A.; Nag, A.; Saul, J.

    2012-01-01

    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida. This new instrumentation system includes seven synchronized high-speed video cameras, current sensors installed on the nine downconductors of the new lightning protection system (LPS) for LC39B; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. The LPS received 8 direct lightning strikes (a total of 19 strokes) from March 31 through December 31 2011. The measured peak currents and locations are compared to those reported by the Cloud-to-Ground Lightning Surveillance System (CGLSS II) and the National Lightning Detection Network (NLDN). Results of comparison are presented and analyzed in this paper.

  2. A refined Frequency Domain Decomposition tool for structural modal monitoring in earthquake engineering

    Science.gov (United States)

    Pioldi, Fabio; Rizzi, Egidio

    2017-07-01

    Output-only structural identification is developed by a refined Frequency Domain Decomposition ( rFDD) approach, towards assessing current modal properties of heavy-damped buildings (in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type II bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames (with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field" (22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.

  3. Near Space Tracking of the EM Phenomena Associated with the Main Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin; Pulinets, Sergey; Liu, Jann-Yenq; Yang, Kwang-Su

    2004-01-01

    Searching for electromagnetic (EM) phenomena originating in the Earth's crust prior to major earthquakes (M>5) are the object of this exploratory study. We present the idea of a possible relationship between: (1) electro-chemical and thermodynamic processes in the Earth's crust and (2) ionic enhancement of the atmosphere/ionosphere with tectonic stress and earthquake activity. The major source of these signals are proposed to originate from electromagnetic phenomenon which are responsible for these observed pre-seismic processes, such as, enhanced IR emission, also born as thermal anomalies, generation of long wave radiation, light emission caused by ground-to-air electric discharges, Total Electron Content (TEC) ionospheric anomalies and ionospheric plasma variations. The source of these data will include: (i) ionospheric plasma perturbations data from the recently launched DEMETER mission and currently available TEC/GPS network data; (ii) geomagnetic data from ORSTED and CHAMP; (iii) Thermal infra-red (TIR) transients mapped by the polar orbiting (NOAA/AVHRR, MODIS) and (iv) geosynchronous weather satellites measurements of GOES, METEOSAT. This approach requires continues observations and data collecting, in addition to both ground and space based monitoring over selected regions in order to investigate the various techniques for recording possible anomalies. During the space campaign emphasis will be on IR emission, obtained from TIR (thermal infrared) satellites, that records land/sea surface temperature anomalies and changes in the plasma and total electron content (TEC) of the ionosphere that occur over areas of potential earthquake activity.

  4. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    Science.gov (United States)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    . The usable and realistic ground motion maps for urban areas are generated: - either from the assumption of a "reference earthquake" - or directly, showing values of macroseimic intensity generated by a damaging, real earthquake. In the study, applying deterministic approach, earthquake scenario in macroseismic intensity ("model" earthquake scenario) for the city of Sofia is generated. The deterministic "model" intensity scenario based on assumption of a "reference earthquake" is compared with a scenario based on observed macroseimic effects caused by the damaging 2012 earthquake (MW5.6). The difference between observed (Io) and predicted (Ip) intensities values is analyzed.

  5. Napa earthquake: An earthquake in a highly connected world

    Science.gov (United States)

    Bossu, R.; Steed, R.; Mazet-Roux, G.; Roussel, F.

    2014-12-01

    The Napa earthquake recently occurred close to Silicon Valley. This makes it a good candidate to study what social networks, wearable objects and website traffic analysis (flashsourcing) can tell us about the way eyewitnesses react to ground shaking. In the first part, we compare the ratio of people publishing tweets and with the ratio of people visiting EMSC (European Mediterranean Seismological Centre) real time information website in the first minutes following the earthquake occurrence to the results published by Jawbone, which show that the proportion of people waking up depends (naturally) on the epicentral distance. The key question to evaluate is whether the proportions of inhabitants tweeting or visiting the EMSC website are similar to the proportion of people waking up as shown by the Jawbone data. If so, this supports the premise that all methods provide a reliable image of the relative ratio of people waking up. The second part of the study focuses on the reaction time for both Twitter and EMSC website access. We show, similarly to what was demonstrated for the Mineral, Virginia, earthquake (Bossu et al., 2014), that hit times on the EMSC website follow the propagation of the P waves and that 2 minutes of website traffic is sufficient to determine the epicentral location of an earthquake on the other side of the Atlantic. We also compare with the publication time of messages on Twitter. Finally, we check whether the number of tweets and the number of visitors relative to the number of inhabitants is correlated to the local level of shaking. Together these results will tell us whether the reaction of eyewitnesses to ground shaking as observed through Twitter and the EMSC website analysis is tool specific (i.e. specific to Twitter or EMSC website) or whether they do reflect people's actual reactions.

  6. Multi precursors analysis associated with the powerful Ecuador (MW = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data

    Science.gov (United States)

    Akhoondzadeh, Mehdi; De Santis, Angelo; Marchetti, Dedalo; Piscini, Alessandro; Cianchini, Gianfranco

    2018-01-01

    After DEMETER satellite mission (2004-2010), the launch of the Swarm satellites (Alpha (A), Bravo (B) and Charlie (C)) has created a new opportunity in the study of earthquake ionospheric precursors. Nowadays, there is no doubt that multi precursors analysis is a necessary phase to better understand the LAIC (Lithosphere Atmosphere Ionosphere Coupling) mechanism before large earthquakes. In this study, using absolute scalar magnetometer, vector field magnetometer and electric field instrument on board Swarm satellites, GPS (Global Positioning System) measurements, MODIS-Aqua satellite and ECMWF (European Centre for Medium-Range Weather Forecasts) data, the variations of the electron density and temperature, magnetic field, TEC (Total Electron Content), LST (Land Surface Temperature), AOD (Aerosol Optical Depth) and SKT (SKin Temperature) have been surveyed to find the potential seismic anomalies around the strong Ecuador (Mw = 7.8) earthquake of 16 April 2016. The four solar and geomagnetic indices: F10.7, Dst, Kp and ap were investigated to distinguish whether the preliminary detected anomalies might be associated with the solar-geomagnetic activities instead of the seismo-ionospheric anomalies. The Swarm satellites (A, B and C) data analysis indicate the anomalies in time series of electron density variations on 7, 11 and 12 days before the event; the unusual variations in time series of electron temperature on 8 days preceding the earthquake; the analysis of the magnetic field scalar and vectors data show the considerable anomalies 52, 48, 23, 16, 11, 9 and 7 days before the main shock. A striking anomaly is detected in TEC variations on 1 day before earthquake at 9:00 UTC. The analysis of MODIS-Aqua night-time images shows that LST increase unusually on 11 days prior to main shock. In addition, the AOD variations obtained from MODIS measurements reach the maximum value on 10 days before the earthquake. The SKT around epicentral region presents anomalous higher

  7. Earthquake source model using strong motion displacement

    Indian Academy of Sciences (India)

    The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ...

  8. Earthquake Tests of Reinforced Concrete Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R.K.; Kirkegaard, Poul Henning

    1997-01-01

    the equilibrium state. Afterwards the test structure is subjected to the three strong ground motion oscillations where the two first sequences are followed by a free decay test. No free decay test was performed after the third earthquake due to collapse of the test structure during the third strong motion...

  9. Earthquake Tests of Reinforced Concrete Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R.K.; Kirkegaard, Poul Henning

    1996-01-01

    the equilibrium state. Afterwards the test structure is subjected to the three strong ground motion oscillations where the two first sequences are followed by a free decay test. No free decay test was performed after the third earthquake due to collapse of the test structure during the third strong motion...

  10. POST Earthquake Debris Management — AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  11. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  12. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-10-01

    Volume II of the programmatic environmental impact statement (PElS) is a comment and response document; it is the collection of the comments received on the draft PElS. The U.S. Department of Energy's (DOE) response to each comment is provided after each comment. If the comment resulted in a change to the PElS, the affected section number of the PElS is provided in the response. Comments 1 through 259 were received at public hearings. The name of the hearing at which the comment was received is listed after each comment. Comments were recorded on flip charts and by notetakers. DOE representatives were present to hear the comments and respond to them. The DOE's written response is provided after each comment. Comments 260 through 576 were received in writing at the hearings, and from various federal, tribal, and state agencies and from individuals during the public comment period. Copies of the written comments follow the comments and responses.

  13. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume II

    International Nuclear Information System (INIS)

    1996-01-01

    Volume II of the programmatic environmental impact statement (PElS) is a comment and response document; it is the collection of the comments received on the draft PElS. The U.S. Department of Energy's (DOE) response to each comment is provided after each comment. If the comment resulted in a change to the PElS, the affected section number of the PElS is provided in the response. Comments 1 through 259 were received at public hearings. The name of the hearing at which the comment was received is listed after each comment. Comments were recorded on flip charts and by notetakers. DOE representatives were present to hear the comments and respond to them. The DOE's written response is provided after each comment. Comments 260 through 576 were received in writing at the hearings, and from various federal, tribal, and state agencies and from individuals during the public comment period. Copies of the written comments follow the comments and responses

  14. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  15. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  16. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  17. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  18. The use of the Finite Element method for the earthquakes modelling in different geodynamic environments

    Science.gov (United States)

    Castaldo, Raffaele; Tizzani, Pietro

    2016-04-01

    Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally

  19. On the Regional Dependence of Earthquake Response Spectra

    OpenAIRE

    Douglas , John

    2007-01-01

    International audience; It is common practice to use ground-motion models, often developed by regression on recorded accelerograms, to predict the expected earthquake response spectra at sites of interest. An important consideration when selecting these models is the possible dependence of ground motions on geographical region, i.e., are median ground motions in the (target) region of interest for a given magnitude and distance the same as those in the (host) region where a ground-motion mode...

  20. Crowdsourced earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  1. Research on advancement of technique for assessing ground seismic intensity

    International Nuclear Information System (INIS)

    Tamura, Keiichi; Kaneko, Masahiro; Honda, Riki; Tabuchi, Yoshihiro

    1997-01-01

    In the aseismatic design of nuclear power stations, as the characteristics of earthquake motion inputted in released base surface, the maximum amplitude and the frequency characteristics of earthquake motion, the presumption of earthquake motion using fault model, the time of continuation and the change of amplitude envelope with time are to be examined. In this research, in order to upgrade the earthquake motion used for aseismatic design, the method of evaluating quantitatively the amplifying characteristics of earthquake motion in unfair ground and the technique of setting design earthquake motion that can consider the change of structural state were investigated. The course of the research carried out so far is outlined. As to the amplifying characteristics of earthquake motion in unfair ground, the technique of analysis, the index showing the degree of amplifying of earthquake motion, the index showing the degree of unfairness of ground, the amplifying characteristics of earthquake motion in tray type base, and the evaluation of frequency zone of large degree of amplifying are reported. As to the design earthquake motion taking the plasticizing of structures in consideration, the analysis condition, the equivalent peculiar frequency and the equivalent damping constant and the design earthquake motion taking the plasticizing of structures in consideration are reported. (K.I.)

  2. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  3. Earthquake-induced liquefaction in Ferland, Quebec

    International Nuclear Information System (INIS)

    Tuttle, M.; Seeber, L.

    1991-02-01

    Detailed geological investigations are under way at a number of liquefaction sites in the Ferland-Boilleau valley, Quebec, where sand boils, ground cracks and liquefaction-related damages to homes were documented immediately following the Ms=6.0, Mblg=6.5 Saguenay earthquake of November 25, 1988. To date, results obtained from these subsurface investigations of sand boils at two sites in Ferland, located about 26 km from the epicentre, indicate that: the Saguenay earthquake induced liquefaction in late-Pleistocene and Holocene sediments which was recorded as sand dikes, sills and vents in near-surface sediments and soils; earthquake-induced liquefaction and ground failure have occurred in this area at least three times in the past 10,000 years; and, the size and morphology of liquefaction features and the liquefaction susceptibility of source layers of the features may be indicative of the intensity of ground shaking. These preliminary results are very promising and suggest that with continued research liquefaction features will become a useful tool in glaciated terrains, such as northeastern North America, for determining not only the timing and location but also the size of past earthquakes

  4. Earthquake risk assessment of Alexandria, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Gaber, Hanan; Ibrahim, Hamza

    2015-01-01

    Throughout historical and recent times, Alexandria has suffered great damage due to earthquakes from both near- and far-field sources. Sometimes, the sources of such damages are not well known. During the twentieth century, the city was shaken by several earthquakes generated from inland dislocations (e.g., 29 Apr. 1974, 12 Oct. 1992, and 28 Dec. 1999) and the African continental margin (e.g., 12 Sept. 1955 and 28 May 1998). Therefore, this study estimates the earthquake ground shaking and the consequent impacts in Alexandria on the basis of two earthquake scenarios. The simulation results show that Alexandria affected by both earthquakes scenarios relatively in the same manner despite the number of casualties during the first scenario (inland dislocation) is twice larger than the second one (African continental margin). An expected percentage of 2.27 from Alexandria's total constructions (12.9 millions, 2006 Census) will be affected, 0.19 % injuries and 0.01 % deaths of the total population (4.1 millions, 2006 Census) estimated by running the first scenario. The earthquake risk profile reveals that three districts (Al-Montazah, Al-Amriya, and Shark) lie in high seismic risks, two districts (Gharb and Wasat) are in moderate, and two districts (Al-Gomrok and Burg El-Arab) are in low seismic risk level. Moreover, the building damage estimations reflect that Al-Montazah is the highest vulnerable district whereas 73 % of expected damages were reported there. The undertaken analysis shows that the Alexandria urban area faces high risk. Informal areas and deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated earthquake risks (buildings damages) are concentrated at the most densely populated (Al-Montazah, Al-Amriya, and Shark) districts. Moreover, about 75 % of casualties are in the same districts.

  5. Investigation of the relationship between ground and engineering ...

    Indian Academy of Sciences (India)

    In order to investigate possible ground motion amplification in earthquake resistant building design, relationship between the ground and engineering bedrock must be ensured. In order to provide this relation, structure, basic characteristics, and thickness of the ground are investigated. In this context, calculating ground ...

  6. Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide

    Science.gov (United States)

    Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy

    2009-01-01

    Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.

  7. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    Science.gov (United States)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  8. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  9. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  10. Refining age estimates for three historic ground rupturing earthquakes in the Santa Cruz Mountains: 14C Wiggle-matching and Non-Native Pollen as age indicators (or not!)

    Science.gov (United States)

    Streig, A. R.; Weldon, R. J.; Dawson, T. E.; Guilderson, T.; Gavin, D. G.; Reidy, L.

    2013-12-01

    The Hazel Dell site provides the first definitive paleoseismic evidence of two pre-1906 19th century events on the Santa Cruz Mountains section based on the presence of anthropogenic artifacts. Hundreds of pieces of cut redwood chips were found in a stratigraphic horizon just below the ante-penultimate (E3) earthquake surface, suggesting that redwood trees at the site were cut down right before earthquake E3. We correlate our paleoseismic findings with the historic record and the onset of redwood logging in the area by determining the felling date of a buried redwood tree stump at the site and the age of the woodchips. We wiggle match 14 radiocarbon dates sampled from annual growth rings taken from the stump and the known interval between growth rings, with the intercepts of the INTCAL04 terrestrial 14C calibration curve. Pending 13C measurements, we find that the youngest ring we have identified in the tree is A.D. 1800. We also wiggle match 2 radiocarbon dates from inner and outer growth rings from two wood chips (with bark); their ages are consistent with the tree and the youngest woodchip ring is dated to 1813 A.D. There are no known ethnographic or historical accounts of pre-contact native people felling large trees in the way that European colonists did. The first record of European land use was for pasture in 1803. The property became a Spanish land grant in 1827, soon after which a whip-saw lumber mill is documented to have begun operation in the upper Corralitos area. We combine these paleoseismic results with historical earthquake accounts for the area and conclude that the San Andreas fault ruptured in 1838, 1890 and 1906. The Hazel Dell results are in contrast with findings from earlier paleoseismic studies in the Santa Cruz Mountains. The Grizzly Flat site, 6 km to the north, found evidence of 1906 and one 17th century earthquake. Two historic earthquakes were observed at the Mill Canyon site 8 km to the south and at the Arano Flat site 9.5 km south of

  11. Earthquake related dynamic groundwater pressure changes observed at the Kamaishi Mine

    International Nuclear Information System (INIS)

    Sasaki, Shunji; Yasuike, Shinji; Komada, Hiroya; Kobayashi, Yoshimasa; Kawamura, Makoto; Aoki, Kazuhiro

    1999-01-01

    From 342 seismic records observed at the Kamaishi Mine form 1990 to 1998, a total of 92 data whose acceleration is greater than 1 gal or ground water pressure is greater than 1 kPa were selected and dynamic ground water pressure changes associated with earthquakes were studied. The results obtained are as follows: (1) A total of 27 earthquakes accompanied by static ground water pressure changes were observed. Earthquake-related static ground water pressure changes are smaller than 1/10 of the annual range of ground water pressure changes. There is also a tendency that the ground water pressure changes recovers to its original trend in several weeks after earthquakes. (2) Dynamic ground water pressure changes associated with earthquakes occur when P-waves arrive. However, the largest dynamic ground water pressure changes occur on S-wave part arrivals where the amplitude of seismic wave is the largest. A positive correlation is recognized between the maximum value of velocity wave form and that of dynamic ground water pressure changes. (3) The characteristic of dynamic change in ground water pressure due to earthquakes can be explained qualitatively by mechanism in which the P-wave converted from an incident SV wave propagates along the borehole. (author)

  12. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  13. Investigating landslides caused by earthquakes - A historical review

    Science.gov (United States)

    Keefer, D.K.

    2002-01-01

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides. This paper traces the historical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquake are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession of post-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing "retrospective" analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, synthesis of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  14. Earthquake at 40 feet

    Science.gov (United States)

    Miller, G. J.

    1976-01-01

    The earthquake that struck the island of Guam on November 1, 1975, at 11:17 a.m had many unique aspects-not the least of which was the experience of an earthquake of 6.25 Richter magnitude while at 40 feet. My wife Bonnie, a fellow diver, Greg Guzman, and I were diving at Gabgab Beach in teh outer harbor of Apra Harbor, engaged in underwater phoyography when the earthquake struck. 

  15. Earthquakes and economic growth

    OpenAIRE

    Fisker, Peter Simonsen

    2012-01-01

    This study explores the economic consequences of earthquakes. In particular, it is investigated how exposure to earthquakes affects economic growth both across and within countries. The key result of the empirical analysis is that while there are no observable effects at the country level, earthquake exposure significantly decreases 5-year economic growth at the local level. Areas at lower stages of economic development suffer harder in terms of economic growth than richer areas. In addition,...

  16. a Collaborative Cyberinfrastructure for Earthquake Seismology

    Science.gov (United States)

    Bossu, R.; Roussel, F.; Mazet-Roux, G.; Lefebvre, S.; Steed, R.

    2013-12-01

    One of the challenges in real time seismology is the prediction of earthquake's impact. It is particularly true for moderate earthquake (around magnitude 6) located close to urbanised areas, where the slightest uncertainty in event location, depth, magnitude estimates, and/or misevaluation of propagation characteristics, site effects and buildings vulnerability can dramatically change impact scenario. The Euro-Med Seismological Centre (EMSC) has developed a cyberinfrastructure to collect observations from eyewitnesses in order to provide in-situ constraints on actual damages. This cyberinfrastructure takes benefit of the natural convergence of earthquake's eyewitnesses on EMSC website (www.emsc-csem.org), the second global earthquake information website within tens of seconds of the occurrence of a felt event. It includes classical crowdsourcing tools such as online questionnaires available in 39 languages, and tools to collect geolocated pics. It also comprises information derived from the real time analysis of the traffic on EMSC website, a method named flashsourcing; In case of a felt earthquake, eyewitnesses reach EMSC website within tens of seconds to find out the cause of the shaking they have just been through. By analysing their geographical origin through their IP address, we automatically detect felt earthquakes and in some cases map the damaged areas through the loss of Internet visitors. We recently implemented a Quake Catcher Network (QCN) server in collaboration with Stanford University and the USGS, to collect ground motion records performed by volunteers and are also involved in a project to detect earthquakes from ground motions sensors from smartphones. Strategies have been developed for several social media (Facebook, Twitter...) not only to distribute earthquake information, but also to engage with the Citizens and optimise data collection. A smartphone application is currently under development. We will present an overview of this

  17. Modern earthquake engineering offshore and land-based structures

    CERN Document Server

    Jia, Junbo

    2017-01-01

    This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.

  18. Branching Fractions and log(gf)s for Weak Lines of Co II connected to the Ground and Low Metastable Levels

    Science.gov (United States)

    Lawler, James Edward; Feigenson, Thomas; Sneden, Chris; Cowan, John J.

    2018-01-01

    New branching fraction (BF) measurements and log(gf)s of Highly Reliable Lines (HRLs) of Co II are reported. Our measurements test and confirm earlier work by Salih et al. [1985] and Mullman et al. [1998] and expand the earlier BF measurements to include more weak and very weak HRLs. HRLs are UV lines that connect to the population reservoir levels including the ground and low metastable levels of Co+. Such levels contain most of the cobalt in the photospheres of typical F, G, and K stars used in abundance studies. HRLs are essentially immune to departures from Local Thermodynamic Equilibrium (LTE) because they connect to the primary reservoir levels. Lightly-populated high-lying levels of the ion and essentially all levels of the neutral atom have some possibility of being pulled out of LTE through various reactions. Weak and very weak HRLs are needed to determine Co abundances in higher metallicity stars while dominant branches are useful in low metallicity stars of abundance surveys. A large set of HRLs with reliable log(gf)s is desired to avoid blending and saturation problems in photospheric studies. The relative abundance of Fe-peak elements changes as a function of metallicity [e.g. Henry et al. 2010, Sneden et al. 2016] but contributions to the trends from nuclear physics effects in early stars need to be cleanly separated from effect due to limitations of classic photospheric models based on One Dimensional (1D) and LTE approximations. The 1D/LTE approximations of classic photospheric models, which work in well in metal rich dwarf stars such as the Sun, are a source of some concern in Metal Poor (MP) giant stars due to much lower electron and atom pressures. Our new measurements on HRLS of Co II are applied to determine stellar abundances in MP stars.Henry, R. B. C., Cowan, J. J., & Sobeck, J, 2010, ApJ 709, 715Mullman, K. L., Cooper, J. C., & Lawler, J. E. 1998, ApJ, 495, 503Salih, S., Lawler, J. E., & Whaling, W. 1985, PhRvA, 31, 744Sneden et al. 2016

  19. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    Science.gov (United States)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  20. Synthetic strong ground motions for engineering design utilizing empirical Green`s functions

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.J.; Jarpe, S.P.; Kasameyer, P.W.; Foxall, W.

    1996-04-11

    We present a methodology for developing realistic synthetic strong ground motions for specific sites from specific earthquakes. We analyzed the possible ground motion resulting from a M = 7.25 earthquake that ruptures 82 km of the Hayward fault for a site 1.4 km from the fault in the eastern San Francisco Bay area. We developed a suite of 100 rupture scenarios for the Hayward fault earthquake and computed the corresponding strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the statistical distribution of engineering parameters, we introduce a probabilistic component into the deterministic hazard calculation. Engineering parameters of synthesized ground motions agree with those recorded from the 1995 Kobe, Japan and the 1992 Landers, California earthquakes at similar distances and site geologies.

  1. Multi-Sensors Observations of Pre-Earthquake Signals. What We Learned from the Great Tohoku Earthquake?

    Science.gov (United States)

    Ouzonounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric

  2. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  3. Earthquake magnitude estimation using the τ c and P d method for earthquake early warning systems

    Science.gov (United States)

    Jin, Xing; Zhang, Hongcai; Li, Jun; Wei, Yongxiang; Ma, Qiang

    2013-10-01

    Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.

  4. Harnessing the Collective Power of Eyewitnesses for Improved Earthquake Information

    Science.gov (United States)

    Bossu, R.; Lefebvre, S.; Mazet-Roux, G.; Steed, R.

    2013-12-01

    The Euro-Med Seismological Centre (EMSC) operates the second global earthquake information website (www.emsc-csem.org) which attracts 2 million visits a month from about 200 different countries. We collect information about earthquakes' effects from eyewitnesses such as online questionnaires, geolocated pics to rapidly constrain impact scenario. At the beginning, the collection was purely intended to address a scientific issue: the rapid evaluation of earthquake's impact. However, it rapidly appears that the understanding of eyewitnesses' expectations and motivations in the immediate aftermath of an earthquake was essential to optimise this data collection. Crowdsourcing information on earthquake's effects does not apply to a pre-existing community. By definition, eyewitnesses only exist once the earthquake has struck. We developed a strategy on social networks (Facebook, Google+, Twitter...) to interface with spontaneously emerging online communities of eyewitnesses. The basic idea is to create a positive feedback loop: attract eyewitnesses and engage with them by providing expected earthquake information and services, collect their observations, collate them for improved earthquake information services to attract more witnesses. We will present recent examples to illustrate how important the use of social networks is to engage with eyewitnesses especially in regions of low seismic activity where people are unaware of existing Internet resources dealing with earthquakes. A second type of information collated in our information services is derived from the real time analysis of the traffic on our website in the first minutes following an earthquake occurrence, an approach named flashsourcing. We show, using the example of the Mineral, Virginia earthquake that the arrival times of eyewitnesses of our website follows the propagation of the generated seismic waves and then, that eyewitnesses can be considered as ground motion sensors. Flashsourcing discriminates felt

  5. Earthquakes and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  6. Bam Earthquake in Iran

    CERN Multimedia

    2004-01-01

    Following their request for help from members of international organisations, the permanent Mission of the Islamic Republic of Iran has given the following bank account number, where you can donate money to help the victims of the Bam earthquake. Re: Bam earthquake 235 - UBS 311264.35L Bubenberg Platz 3001 BERN

  7. Tradable Earthquake Certificates

    NARCIS (Netherlands)

    Woerdman, Edwin; Dulleman, Minne

    2018-01-01

    This article presents a market-based idea to compensate for earthquake damage caused by the extraction of natural gas and applies it to the case of Groningen in the Netherlands. Earthquake certificates give homeowners a right to yearly compensation for both property damage and degradation of living

  8. Lower bound earthquake magnitude for probabilistic seismic hazard evaluation

    International Nuclear Information System (INIS)

    McCann, M.W. Jr.; Reed, J.W.

    1990-01-01

    This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified. The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed. (orig.)

  9. Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide

    Science.gov (United States)

    Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.

    2017-12-01

    GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.

  10. Soil/Structure Interactions in Earthquakes

    Science.gov (United States)

    Ramey, G. W.; Moore, R. K.; Yoo, C. H.; Bush, Thomas D., Jr.; Stallings, J. M.

    1986-01-01

    In effort to improve design of Earthquake-resistant structures, mathematical study undertaken to simulate interactions among soil, foundation, and superstructure during various kinds of vibrational excitation. System modeled as three lumped masses connected vertically by springs, with lowest mass connected to horizontal vibrator (representing ground) through springs and dashpot. Behavior of springs described by elastic or elastoplastic force/deformation relationships. Relationships used to approximate nonlinear system behavior and soil/foundation-interface behavior.

  11. Investigating Landslides Caused by Earthquakes A Historical Review

    Science.gov (United States)

    Keefer, David K.

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated withearthquake-induced landslides. This paper traces thehistorical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquakes are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession ofpost-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing ``retrospective'' analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, syntheses of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  12. Correlating precursory declines in groundwater radon with earthquake magnitude.

    Science.gov (United States)

    Kuo, T

    2014-01-01

    Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low-porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw ): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible. © 2013, National Ground Water Association.

  13. Rotation of vertically oriented objects during earthquakes

    Science.gov (United States)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  14. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    Science.gov (United States)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  15. Kinematic Rupture Process of the 2015 Gorkha (Nepal) Earthquake Sequence from Joint Inversion of Teleseismic, hr-GPS, Strong-Ground Motion, InSAR interferograms and pixel offsets

    Science.gov (United States)

    Yue, H.; Simons, M.; Jiang, J.; Fielding, E. J.; Owen, S. E.; Moore, A. W.; Riel, B. V.; Polet, J.; Duputel, Z.; Samsonov, S. V.; Avouac, J. P.

    2015-12-01

    The April 2015 Gorkha, Nepal (Mw 7.8) earthquake ruptured the front of Himalaya thrust belt, causing more than 9,000 fatalities. 17 days after the main event, a large aftershock (Mw 7.2) ruptured to down-dip and east of the main rupture area. To investigate the kinematic rupture process of this earthquake sequence, we explored linear and non-linear inversion techniques using a variety of datasets including teleseismic, high rate and conventional GPS, InSAR interferograms and pixel-offsets. InSAR interferograms from ALOS-2, RADARSAT-2 and Sentinel-1a satellites are used in the joint inversion. The main event is characterized by unilateral rupture extending along strike approximately 70 km to the southeast and 40 km along dip direction. The rupture velocity is well resolved to be lie between 2.8 and 3.0 km/s, which is consistent with back-projection results. An emergent initial phase is observed in teleseismic body wave records, which is consistent with a narrow area of rupture initiation near the hypocenter. The rupture mode of the main event is pulse like. The aftershock ruptured down-dip to the northeast of the main event rupture area. The aftershock rupture area is compact and contained within 40 km of its hypocenter. In contrast to the main event, teleseismic body wave records of the aftershock suggest an abrupt initial phase, which is consistent with a crack like rupture mode. The locations of most of the aftershocks (small and large) surround the rupture area of the main shock with little, if any, spatial overlap.

  16. State of the art of earthquake engineering in nuclear power plant design

    International Nuclear Information System (INIS)

    Schildknecht, P.O.

    1976-12-01

    A brief outline of definitions based on the USNRC, Seismic and Geologic Siting Criteria for Nuclear Power Plants, and on the plate tectonics and earthquake terminology is given. An introduction into plate tectonics and the associated earthquake phenomena is then presented. Ground motion characteristics are described in connection with the selection of design earthquakes. Mathematical methods of dynamic structural analyses are discussed for linear and nonlinear systems. Response analysis techniques for nuclear power plants are explained considering soil-structure interaction effects. (Auth.)

  17. Estimation of failure probability on real structure utilized by earthquake observation data

    International Nuclear Information System (INIS)

    Matsubara, Masayoshi

    1995-01-01

    The objective of this report is to propose the procedure which estimates the structural response on a real structure by utilizing earthquake observation data using Neural network system. We apply the neural network system to estimate the ground motion of the site by enormous earthquake data published from Japan Meteorological Agency. The proposed procedure has some possibility to estimate the correlation between earthquake and response adequately. (author)

  18. Estimation of Moisture Content of Forest Canopy and Floor from SAR Data Part II: Trunk-Ground Double-Bounce Case

    Science.gov (United States)

    Moghaddam, M.; Saatchi, S.

    1996-01-01

    Several scattering mechanisms contribute to the total radar backscatter cross section measured by the synthetic aperture radar. These are volume scattering, trunk-ground double-bounce scattering, branch-ground double-bounce scattering, and surface scattering. All of these mechanisms are directly related to the dielectric constant of forest components responsible for that mechanism and their moisture.

  19. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  20. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  1. Earthquake behavior at deep underground observed by three-dimensional array

    International Nuclear Information System (INIS)

    Komada, Hiroya; Sawada, Yoshihiro; Aoyama, Shigeo.

    1989-01-01

    The earthquake observation has been carried out using an eight point three-dimensional array between on-ground and the depth of about 400 m at Hosokura Mine in Miyagi prefecture, for the purpose of obtaining the basic datum on the characteristics of the seismic waves for the earthquake resistance design of the deep underground disposal facility of high level waste. The following results ware obtained. (1) The maximum accelerations at the underground are damped to about 60 % of those at on-ground horizontal and to about 70 % vertical. (2) Although the frequency characteristics of the seismic waves varies for each earthquake, the transfer characteristics of seismic waves from deep underground to on-ground is the same for each earthquake. (3) The horizontal dirrections of seismic wave incidence are similar to the directions from epicenters of each earthquake. The vertical directions of seismic wave incidence are in the range of about 3deg to 35deg from vertical line. (author)

  2. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  3. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  4. Vulnerability assessment of archaeological sites to earthquake hazard: An indicator based method integrating spatial and temporal aspects

    Directory of Open Access Journals (Sweden)

    Despina Minos-Minopoulos

    2017-07-01

    Full Text Available Across the world, numerous sites of cultural heritage value are at risk from a variety of human-induced and natural hazards such as war and earthquakes. Here we present and test a novel indicator-based method for assessing the vulnerability of archaeological sites to earthquakes. Vulnerability is approached as a dynamic element assessed through a combination of spatial and temporal parameters. The spatial parameters examine the susceptibility of the sites to the secondary Earthquake Environmental Effects of ground liquefaction, landslides and tsunami and are expressed through the Spatial Susceptibility Index (SSi. Parameters of physical vulnerability, economic importance and visitors density examine the temporal vulnerability of the sites expressed through the Temporal Vulnerability Index (TVi. The equally weighted sum of the spatial and temporal indexes represents the total Archaeological Site Vulnerability Index (A.S.V.I.. The A.S.V.I method is applied at 16 archaeological sites across Greece, allowing an assessment of their vulnerability. This then allows the establishment of a regional and national priority list for considering future risk mitigation. Results indicate that i the majority of the sites have low to moderate vulnerability to earthquake hazard, ii Neratzia Fortress on Kos and Heraion on Samos are characterised as highly vulnerable and should be prioritised for further studies and mitigation measures, and iii the majority of the sites are susceptible to at least one Earthquake Environmental Effect and present relatively high physical vulnerability attributed to the existing limited conservation works. This approach highlights the necessity for an effective vulnerability assessment methodology within the existing framework of disaster risk management for cultural heritage.

  5. Estimation of Surface Deformation due to Pasni Earthquake Using SAR Interferometry

    Science.gov (United States)

    Ali, M.; Shahzad, M. I.; Nazeer, M.; Kazmi, J. H.

    2018-04-01

    Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.

  6. Performance of HEPA filters at LLNL following the 1980 and 1989 earthquakes

    International Nuclear Information System (INIS)

    Bergman, W.; Elliott, J.; Wilson, K.

    1995-01-01

    The Lawrence Livermore National Laboratory has experienced two significant earthquakes for which data is available to assess the ability of HEPA filters to withstand seismic conditions. A 5.9 magnitude earthquake with an epicenter 10 miles from LLNL struck on January 24, l980. Estimates of the peak ground accelerations ranged from 0.2 to 0.3 g. A 7.0 magnitude earthquake with an epicenter about 50 miles from LLNL struck on October 17, 1989. Measurements of the ground accelerations at LLNL averaged 0.1 g. The results from the in-place filter tests obtained after each of the earthquakes were compiled and studied to determine if the earthquakes had caused filter leakage. Our study showed that only the 1980 earthquake resulted in a small increase in the number of HEPA filters developing leaks. In the 12 months following the 1980 and 1989 earthquakes, the in-place filter tests showed 8.0% and 4.1% of all filters respectively developed leaks. The average percentage of filters developing leaks from 1980 to 1993 was 3.3%+/-1.7%. The increase in the filter leaks is significant for the 1980 earthquake, but not for the 1989 earthquake. No contamination was detected following the earthquakes that would suggest transient releases from the filtration system

  7. Performance of HEPA filters at LLNL following the 1980 and 1989 earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Elliott, J.; Wilson, K. [Lawrence Livermore National Laboratory, CA (United States)

    1995-02-01

    The Lawrence Livermore National Laboratory has experienced two significant earthquakes for which data is available to assess the ability of HEPA filters to withstand seismic conditions. A 5.9 magnitude earthquake with an epicenter 10 miles from LLNL struck on January 24, l980. Estimates of the peak ground accelerations ranged from 0.2 to 0.3 g. A 7.0 magnitude earthquake with an epicenter about 50 miles from LLNL struck on October 17, 1989. Measurements of the ground accelerations at LLNL averaged 0.1 g. The results from the in-place filter tests obtained after each of the earthquakes were compiled and studied to determine if the earthquakes had caused filter leakage. Our study showed that only the 1980 earthquake resulted in a small increase in the number of HEPA filters developing leaks. In the 12 months following the 1980 and 1989 earthquakes, the in-place filter tests showed 8.0% and 4.1% of all filters respectively developed leaks. The average percentage of filters developing leaks from 1980 to 1993 was 3.3%+/-1.7%. The increase in the filter leaks is significant for the 1980 earthquake, but not for the 1989 earthquake. No contamination was detected following the earthquakes that would suggest transient releases from the filtration system.

  8. UPDATE: MAJOR EARTHQUAKE IN CHILE (II) | CTIO

    Science.gov (United States)

    Preserving the Dark Skies La Oficina de Protección de la Calidad del Cielo del Norte de Chile - OPCC Light el acceso a ambas cumbres. Los tanques de agua sobre Tololo fueron dañados causando una fuga importante, y las líneas de control se cortaron poniendo fuera de operación las bombas de agua. Las

  9. Demonstration of pb-PSHA with Ras-Elhekma earthquake, Egypt

    Directory of Open Access Journals (Sweden)

    Elsayed Fergany

    2017-06-01

    Full Text Available The main goal of this work is to: (1 argue for the importance of a physically-based probabilistic seismic hazard analysis (pb-PSHA methodology and show examples to support the argument from recent events, (2 demonstrate the methodology with the ground motion simulations of May 28, 1998, Mw = 5.5 Ras-Elhekma earthquake, north Egypt. The boundaries for the possible rupture parameters that may have been identified prior to the 1998 Ras-Elhekma earthquake were estimated. A range of simulated ground-motions for the Ras-Elhekma earthquake was “predicted” for frequency 0.5–25 Hz at three sites, where the large earthquake was recorded, with average epicentral distances of 220 km. The best rupture model of the 1998 Ras-Elhekma earthquake was identified by calculated the goodness of fit between observed and synthesized records at sites FYM, HAG, and KOT. We used the best rupture scenario of the 1998 earthquake to synthesize the ground motions at interested sites where the main shock was not recorded. Based on the good fit of simulated and observed seismograms, we concluded that this methodology can provide realistic ground motion of an earthquake and highly recommended for engineering purposes in advance or foregoing large earthquakes at non record sites. We propose that there is a need for this methodology for good-representing the true hazard with reducing uncertainties.

  10. Seismoacoustic Coupled Signals From Earthquakes in Central Italy : Epicentral and Secondary Sources of Infrasound

    NARCIS (Netherlands)

    Shani Kadmiel, S.; Assink, Jelle D.; Smets, P.S.M.; Evers, L.G.

    2018-01-01

    In this study we analyze infrasound signals from three earthquakes in central Italy. The Mw 6.0 Amatrice, Mw 5.9 Visso, and Mw 6.5 Norcia earthquakes generated significant epicentral ground motions that couple to the atmosphere and produce infrasonic waves.

  11. QuakeUp: An advanced tool for a network-based Earthquake Early Warning system

    Science.gov (United States)

    Zollo, Aldo; Colombelli, Simona; Caruso, Alessandro; Elia, Luca; Brondi, Piero; Emolo, Antonio; Festa, Gaetano; Martino, Claudio; Picozzi, Matteo

    2017-04-01

    The currently developed and operational Earthquake Early warning, regional systems ground on the assumption of a point-like earthquake source model and 1-D ground motion prediction equations to estimate the earthquake impact. Here we propose a new network-based method which allows for issuing an alert based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The platform includes the most advanced techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The new software platform (QuakeUp) is under development at the Seismological Laboratory (RISSC-Lab) of the Department of Physics at the University of Naples Federico II, in collaboration with the academic spin-off company RISS s.r.l., recently gemmated by the research group. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. The signal quality is preliminary assessed by checking the signal-to-noise ratio both in acceleration, velocity and displacement and through dedicated filtering algorithms. For stations providing high quality data, the characteristic P-wave period (τ_c) and the P-wave displacement, velocity and acceleration amplitudes (P_d, Pv and P_a) are jointly measured on a progressively expanded P-wave time window. The evolutionary measurements of the early P-wave amplitude and characteristic period at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (I_MM) and by mapping the measured and

  12. Ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Blume, J A [John A. Blume and Associates, San Francisco, CA (United States)

    1969-07-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  13. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.

    1969-01-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  14. LLL/DOR seismic conservatism of operating plants project. Interm report on Task II.1.3: soil-structure interaction. Deconvolution of the June 7, 1975, Ferndale Earthquake at the Humboldt Bay Power Plant

    International Nuclear Information System (INIS)

    Maslenikov, O.R.; Smith, P.D.

    1978-01-01

    The Ferndale Earthquake of June 7, 1975, provided a unique opportunity to study the accuracy of seismic soil-structure interaction methods used in the nuclear industry because, other than this event, there have been no cases of significant earthquakes for which moderate motions of nuclear plants have been recorded. Future studies are planned which will evaluate the soil-structure interaction methodology further, using increasingly complex methods as required. The first step in this task was to perform deconvolution and soil-structure interaction analyses for the effects of the Ferndale earthquake at the Humboldt Bay Power Plant site. The deconvolution analyses of bedrock motions performed are compared as well as additional studies on analytical sensitivity

  15. Engineering geological aspect of Gorkha Earthquake 2015, Nepal

    Science.gov (United States)

    Adhikari, Basanta Raj; Andermann, Christoff; Cook, Kristen

    2016-04-01

    Strong shaking by earthquake causes massif landsliding with severe effects on infrastructure and human lives. The distribution of landslides and other hazards are depending on the combination of earthquake and local characteristics which influence the dynamic response of hillslopes. The Himalayas are one of the most active mountain belts with several kilometers of relief and is very prone to catastrophic mass failure. Strong and shallow earthquakes are very common and cause wide spread collapse of hillslopes, increasing the background landslide rate by several magnitude. The Himalaya is facing many small and large earthquakes in the past i.e. earthquakes i.e. Bihar-Nepal earthquake 1934 (Ms 8.2); Large Kangra earthquake of 1905 (Ms 7.8); Gorkha earthquake 2015 (Mw 7.8). The Mw 7.9 Gorkha earthquake has occurred on and around the main Himalayan Thrust with a hypocentral depth of 15 km (GEER 2015) followed by Mw 7.3 aftershock in Kodari causing 8700+ deaths and leaving hundreds of thousands of homeless. Most of the 3000 aftershocks located by National Seismological Center (NSC) within the first 45 days following the Gorkha Earthquake are concentrated in a narrow 40 km-wide band at midcrustal to shallow depth along the strike of the southern slope of the high Himalaya (Adhikari et al. 2015) and the ground shaking was substantially lower in the short-period range than would be expected for and earthquake of this magnitude (Moss et al. 2015). The effect of this earthquake is very unique in affected areas by showing topographic effect, liquefaction and land subsidence. More than 5000 landslides were triggered by this earthquake (Earthquake without Frontiers, 2015). Most of the landslides are shallow and occurred in weathered bedrock and appear to have mobilized primarily as raveling failures, rock slides and rock falls. Majority of landslides are limited to a zone which runs east-west, approximately parallel the lesser and higher Himalaya. There are numerous cracks in

  16. Earthquake Early Warning: User Education and Designing Effective Messages

    Science.gov (United States)

    Burkett, E. R.; Sellnow, D. D.; Jones, L.; Sellnow, T. L.

    2014-12-01

    The U.S. Geological Survey (USGS) and partners are transitioning from test-user trials of a demonstration earthquake early warning system (ShakeAlert) to deciding and preparing how to implement the release of earthquake early warning information, alert messages, and products to the public and other stakeholders. An earthquake early warning system uses seismic station networks to rapidly gather information about an occurring earthquake and send notifications to user devices ahead of the arrival of potentially damaging ground shaking at their locations. Earthquake early warning alerts can thereby allow time for actions to protect lives and property before arrival of damaging shaking, if users are properly educated on how to use and react to such notifications. A collaboration team of risk communications researchers and earth scientists is researching the effectiveness of a chosen subset of potential earthquake early warning interface designs and messages, which could be displayed on a device such as a smartphone. Preliminary results indicate, for instance, that users prefer alerts that include 1) a map to relate their location to the earthquake and 2) instructions for what to do in response to the expected level of shaking. A number of important factors must be considered to design a message that will promote appropriate self-protective behavior. While users prefer to see a map, how much information can be processed in limited time? Are graphical representations of wavefronts helpful or confusing? The most important factor to promote a helpful response is the predicted earthquake intensity, or how strong the expected shaking will be at the user's location. Unlike Japanese users of early warning, few Californians are familiar with the earthquake intensity scale, so we are exploring how differentiating instructions between intensity levels (e.g., "Be aware" for lower shaking levels and "Drop, cover, hold on" at high levels) can be paired with self-directed supplemental

  17. 1988 Spitak Earthquake Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1988 Spitak Earthquake database is an extensive collection of geophysical and geological data, maps, charts, images and descriptive text pertaining to the...

  18. Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  19. Electromagnetic Manifestation of Earthquakes

    OpenAIRE

    Uvarov Vladimir

    2017-01-01

    In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  20. Electromagnetic Manifestation of Earthquakes

    Directory of Open Access Journals (Sweden)

    Uvarov Vladimir

    2017-01-01

    Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  1. Short presentation on some researches activities about near field earthquakes

    International Nuclear Information System (INIS)

    Donald, John

    2002-01-01

    The major hazard posed by earthquakes is often thought to be due to moderate to large magnitude events. However, there have been many cases where earthquakes of moderate and even small magnitude have caused very significant destruction when they have coincided with population centres. Even though the area of intense ground shaking caused by such events is generally small, the epicentral motions can be severe enough to cause damage even in well-engineered structures. Two issues are addressed here, the first being the identification of the minimum earthquake magnitude likely to cause damage to engineered structures and the limits of the near-field for small-to-moderate magnitude earthquakes. The second issue addressed is whether features of near-field ground motions such as directivity, which can significantly enhance the destructive potential, occur in small-to-moderate magnitude events. The accelerograms from the 1986 San Salvador (El Salvador) earthquake indicate that it may be non conservative to assume that near-field directivity effects only need to be considered for earthquakes of moment magnitude M 6.5 and greater. (author)

  2. Building the Southern California Earthquake Center

    Science.gov (United States)

    Jordan, T. H.; Henyey, T.; McRaney, J. K.

    2004-12-01

    Kei Aki was the founding director of the Southern California Earthquake Center (SCEC), a multi-institutional collaboration formed in 1991 as a Science and Technology Center (STC) under the National Science Foundation (NSF) and the U. S. Geological Survey (USGS). Aki and his colleagues articulated a system-level vision for the Center: investigations by disciplinary working groups would be woven together into a "Master Model" for Southern California. In this presentation, we will outline how the Master-Model concept has evolved and how SCEC's structure has adapted to meet scientific challenges of system-level earthquake science. In its first decade, SCEC conducted two regional imaging experiments (LARSE I & II); published the "Phase-N" reports on (1) the Landers earthquake, (2) a new earthquake rupture forecast for Southern California, and (3) new models for seismic attenuation and site effects; it developed two prototype "Community Models" (the Crustal Motion Map and Community Velocity Model) and, perhaps most important, sustained a long-term, multi-institutional, interdisciplinary collaboration. The latter fostered pioneering numerical simulations of earthquake ruptures, fault interactions, and wave propagation. These accomplishments provided the impetus for a successful proposal in 2000 to reestablish SCEC as a "stand alone" center under NSF/USGS auspices. SCEC remains consistent with the founders' vision: it continues to advance seismic hazard analysis through a system-level synthesis that is based on community models and an ever expanding array of information technology. SCEC now represents a fully articulated "collaboratory" for earthquake science, and many of its features are extensible to other active-fault systems and other system-level collaborations. We will discuss the implications of the SCEC experience for EarthScope, the USGS's program in seismic hazard analysis, NSF's nascent Cyberinfrastructure Initiative, and other large collaboratory programs.

  3. Earthquake early warning system using real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  4. New characteristics of intensity assessment of Sichuan Lushan "4.20" M s7.0 earthquake

    Science.gov (United States)

    Sun, Baitao; Yan, Peilei; Chen, Xiangzhao

    2014-08-01

    The post-earthquake rapid accurate assessment of macro influence of seismic ground motion is of significance for earthquake emergency relief, post-earthquake reconstruction and scientific research. The seismic intensity distribution map released by the Lushan earthquake field team of the China Earthquake Administration (CEA) five days after the strong earthquake ( M7.0) occurred in Lushan County of Sichuan Ya'an City at 8:02 on April 20, 2013 provides a scientific basis for emergency relief, economic loss assessment and post-earthquake reconstruction. In this paper, the means for blind estimation of macroscopic intensity, field estimation of macro intensity, and review of intensity, as well as corresponding problems are discussed in detail, and the intensity distribution characteristics of the Lushan "4.20" M7.0 earthquake and its influential factors are analyzed, providing a reference for future seismic intensity assessments.

  5. CE-PA: A user's manual for determination of controlling earthquakes and development of seismic hazard information data base for the central and eastern United States

    International Nuclear Information System (INIS)

    Short, C.

    1995-05-01

    The CE-PA, Controlling Earthquake(s) through Probabilistic Analysis, software package developed at Lawrence Livermore National Laboratory (LLNL) is a research program used as part of a study performed for the US Office of Nuclear Regulatory Research Division Engineering project on Geosciences Issues in the revision of geological siting criteria. The objectives of this study were to explore ways on how to use results from probabilistic seismic hazard characterization (PSHC) to determine hazard-consistent scenario earthquakes and to develop design ground motion. The purpose of this document is to describe the CE-PA software to users. The software includes two operating system and process controllers plus several fortran routines and input decks. This manual gives an overview of the methodology to estimate controlling earthquakes in Section I. A descriptive overview of the procedures and the organization of the program modules used in CE-PA is provided in Section II. Section III contains four example executions with comments and a graphical display of each execution path, plus an overview of the directory/file structure. Section IV provides some general observations regarding the model

  6. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    Science.gov (United States)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  7. Earthquake simulation, actual earthquake monitoring and analytical methods for soil-structure interaction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H T [Seismic Center, Electric Power Research Institute, Palo Alto, CA (United States)

    1988-07-01

    Approaches for conducting in-situ soil-structure interaction experiments are discussed. High explosives detonated under the ground can generate strong ground motion to induce soil-structure interaction (SSI). The explosive induced data are useful in studying the dynamic characteristics of the soil-structure system associated with the inertial aspect of the SSI problem. The plane waves generated by the explosives cannot adequately address the kinematic interaction associated with actual earthquakes because of he difference in wave fields and their effects. Earthquake monitoring is ideal for obtaining SSI data that can address all aspects of the SSI problem. The only limitation is the level of excitation that can be obtained. Neither the simulated earthquake experiments nor the earthquake monitoring experiments can have exact similitude if reduced scale test structures are used. If gravity effects are small, reasonable correlations between the scaled model and the prototype can be obtained provided that input motion can be scaled appropriately. The key product of the in-situ experiments is the data base that can be used to qualify analytical methods for prototypical applications. (author)

  8. The 2007 Mentawai earthquake sequence on the Sumatra megathrust

    Science.gov (United States)

    Konca, A.; Avouac, J.; Sladen, A.; Meltzner, A. J.; Kositsky, A. P.; Sieh, K.; Fang, P.; Li, Z.; Galetzka, J.; Genrich, J.; Chlieh, M.; Natawidjaja, D. H.; Bock, Y.; Fielding, E. J.; Helmberger, D. V.

    2008-12-01

    The Sumatra Megathrust has recently produced a flurry of large interplate earthquakes starting with the giant Mw 9.15, Aceh earthquake of 2004. All of these earthquakes occurred within the area monitored by the Sumatra Geodetic Array (SuGAr), which provided exceptional records of near-field co-seismic and postseismic ground displacements. The most recent of these major earthquakes, an Mw 8.4 earthquake and an Mw 7.9 earthquake twelve hours later, occurred in the Mentawai islands area where devastating historical earthquakes had happened in 1797 and 1833. The 2007 earthquake sequence provides an exceptional opportunity to understand the variability of the earthquakes along megathrusts and their relation to interseismic coupling. The InSAR, GPS and teleseismic modeling shows that 2007 earthquakes ruptured a fraction of the strongly coupled Mentawai patch of the megathrust, which is also only a fraction of the 1833 rupture area. It also released a much smaller moment than the one released in 1833, or than the deficit of moment that has accumulated since. Both earthquakes of 2007 consist of 2 sub-events which are 50 to 100 km apart from each other. On the other hand, the northernmost slip patch of 8.4 and southern slip patch of 7.9 earthquakes abut each other, but they ruptured 12 hours apart. Sunda megathrust earthquakes of recent years include a rupture of a strongly coupled patch that closely mimics a prior rupture of that patch and which is well correlated with the interseismic coupling pattern (Nias-Simeulue section), as well as a rupture sequence of a strongly coupled patch that differs substantially in the details from its most recent predecessors (Mentawai section). We conclude that (1) seismic asperities are probably persistent features which arise form heterogeneous strain build up in the interseismic period; and (2) the same portion of a megathrust can rupture in different ways depending on whether asperities break as isolated events or cooperate to produce

  9. Relaxation creep model of impending earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Morgounov, V. A. [Russian Academy of Sciences, Institute of Physics of the Earth, Moscow (Russian Federation)

    2001-04-01

    The alternative view of the current status and perspective of seismic prediction studies is discussed. In the problem of the ascertainment of the uncertainty relation Cognoscibility-Unpredictability of Earthquakes, priorities of works on short-term earthquake prediction are defined due to the advantage that the final stage of nucleation of earthquake is characterized by a substantial activation of the process while its strain rate increases by the orders of magnitude and considerably increased signal-to-noise ratio. Based on the creep phenomenon under stress relaxation conditions, a model is proposed to explain different images of precursors of impending tectonic earthquakes. The onset of tertiary creep appears to correspond to the onset of instability and inevitably fails unless it unloaded. At this stage, the process acquires the self-regulating character to the greatest extent the property of irreversibility, one of the important components of prediction reliability. Data in situ suggest a principal possibility to diagnose the process of preparation by ground measurements of acoustic and electromagnetic emission in the rocks under constant strain in the condition of self-relaxed stress until the moment of fracture are discussed in context. It was obtained that electromagnetic emission precedes but does not accompany the phase of macrocrak development.

  10. Uncovering the 2010 Haiti earthquake death toll

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.

    2013-05-01

    Casualties are estimated for the 12 January 2010 earthquake in Haiti using various reports calibrated by observed building damage states from satellite imagery and reconnaissance reports on the ground. By investigating various damage reports, casualty estimates and burial figures, for a one year period from 12 January 2010 until 12 January 2011, there is also strong evidence that the official government figures of 316 000 total dead and missing, reported to have been caused by the earthquake, are significantly overestimated. The authors have examined damage and casualties report to arrive at their estimation that the median death toll is less than half of this value (±137 000). The authors show through a study of historical earthquake death tolls, that overestimates of earthquake death tolls occur in many cases, and is not unique to Haiti. As death toll is one of the key elements for determining the amount of aid and reconstruction funds that will be mobilized, scientific means to estimate death tolls should be applied. Studies of international aid in recent natural disasters reveal that large distributions of aid which do not match the respective needs may cause oversupply of help, aggravate corruption and social disruption rather than reduce them, and lead to distrust within the donor community.

  11. Fundamental principles of earthquake resistance calculation to be reflected in the next generation regulations

    OpenAIRE

    Mkrtychev Oleg; Dzhinchvelashvili Guram

    2016-01-01

    The article scrutinizes the pressing issues of regulation in the domain of seismic construction. The existing code of rules SNIP II-7-81* “Construction in seismic areas” provides that earthquake resistance calculation be performed on two levels of impact: basic safety earthquake (BSE) and maximum considered earthquake (MCE). However, the very nature of such calculation cannot be deemed well-founded and contradicts the fundamental standards of foreign countries. The authors of the article have...

  12. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  13. Ionospheric earthquake effects detection based on Total Electron Content (TEC) GPS Correlation

    Science.gov (United States)

    Sunardi, Bambang; Muslim, Buldan; Eka Sakya, Andi; Rohadi, Supriyanto; Sulastri; Murjaya, Jaya

    2018-03-01

    Advances in science and technology showed that ground-based GPS receiver was able to detect ionospheric Total Electron Content (TEC) disturbances caused by various natural phenomena such as earthquakes. One study of Tohoku (Japan) earthquake, March 11, 2011, magnitude M 9.0 showed TEC fluctuations observed from GPS observation network spread around the disaster area. This paper discussed the ionospheric earthquake effects detection using TEC GPS data. The case studies taken were Kebumen earthquake, January 25, 2014, magnitude M 6.2, Sumba earthquake, February 12, 2016, M 6.2 and Halmahera earthquake, February 17, 2016, M 6.1. TEC-GIM (Global Ionosphere Map) correlation methods for 31 days were used to monitor TEC anomaly in ionosphere. To ensure the geomagnetic disturbances due to solar activity, we also compare with Dst index in the same time window. The results showed anomalous ratio of correlation coefficient deviation to its standard deviation upon occurrences of Kebumen and Sumba earthquake, but not detected a similar anomaly for the Halmahera earthquake. It was needed a continous monitoring of TEC GPS data to detect the earthquake effects in ionosphere. This study giving hope in strengthening the earthquake effect early warning system using TEC GPS data. The method development of continuous TEC GPS observation derived from GPS observation network that already exists in Indonesia is needed to support earthquake effects early warning systems.

  14. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  15. Seismic-resistant design of nuclear power stations in Japan, earthquake country. Lessons learned from Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Irikura, Kojiro

    2008-01-01

    The new assessment (back-check) of earthquake-proof safety was being conducted at Kashiwazaki-Kariwa Nuclear Power Plants, Tokyo Electric Co. in response to a request based on the guideline for reactor evaluation for seismic-resistant design code, revised in 2006, when the 2007 Chuetsu-oki Earthquake occurred and brought about an unexpectedly huge tremor in this area, although the magnitude of the earthquake was only 6.8 but the intensity of earthquake motion exceeded 2.5-fold more than supposed. This paper introduces how and why the guideline for seismic-resistant design of nuclear facilities was revised in 2006, the outline of the Chuetsu-oki Earthquake, and preliminary findings and lessons learned from the Earthquake. The paper specifically discusses on (1) how we may specify in advance geologic active faults as has been overlooked this time, (2) how we can make adequate models for seismic origin from which we can extract its characteristics, and (3) how the estimation of strong ground motion simulation may be possible for ground vibration level of a possibly overlooked fault. (S. Ohno)

  16. The 2016 Kumamoto Earthquakes: Cascading Geological Hazards and Compounding Risks

    Directory of Open Access Journals (Sweden)

    Katsuichiro Goda

    2016-08-01

    Full Text Available A sequence of two strike-slip earthquakes occurred on 14 and 16 April 2016 in the intraplate region of Kyushu Island, Japan, apart from subduction zones, and caused significant damage and disruption to the Kumamoto region. The analyses of regional seismic catalog and available strong motion recordings reveal striking characteristics of the events, such as migrating seismicity, earthquake surface rupture, and major foreshock-mainshock earthquake sequences. To gain valuable lessons from the events, a UK Earthquake Engineering Field Investigation Team (EEFIT was dispatched to Kumamoto, and earthquake damage surveys were conducted to relate observed earthquake characteristics to building and infrastructure damage caused by the earthquakes. The lessons learnt from the reconnaissance mission have important implications on current seismic design practice regarding the required seismic resistance of structures under multiple shocks and the seismic design of infrastructure subject to large ground deformation. The observations also highlight the consequences of cascading geological hazards on community resilience. To share the gathered damage data widely, geo-tagged photos are organized using Google Earth and the kmz file is made publicly available.

  17. An interdisciplinary approach to study Pre-Earthquake processes

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S. A.; Hattori, K.; Taylor, P. T.

    2017-12-01

    We will summarize a multi-year research effort on wide-ranging observations of pre-earthquake processes. Based on space and ground data we present some new results relevant to the existence of pre-earthquake signals. Over the past 15-20 years there has been a major revival of interest in pre-earthquake studies in Japan, Russia, China, EU, Taiwan and elsewhere. Recent large magnitude earthquakes in Asia and Europe have shown the importance of these various studies in the search for earthquake precursors either for forecasting or predictions. Some new results were obtained from modeling of the atmosphere-ionosphere connection and analyses of seismic records (foreshocks /aftershocks), geochemical, electromagnetic, and thermodynamic processes related to stress changes in the lithosphere, along with their statistical and physical validation. This cross - disciplinary approach could make an impact on our further understanding of the physics of earthquakes and the phenomena that precedes their energy release. We also present the potential impact of these interdisciplinary studies to earthquake predictability. A detail summary of our approach and that of several international researchers will be part of this session and will be subsequently published in a new AGU/Wiley volume. This book is part of the Geophysical Monograph series and is intended to show the variety of parameters seismic, atmospheric, geochemical and historical involved is this important field of research and will bring this knowledge and awareness to a broader geosciences community.

  18. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    Science.gov (United States)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-09-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.

  19. Comparison of midlatitude ionospheric F region peak parameters and topside Ne profiles from IRI2012 model prediction with ground-based ionosonde and Alouette II observations

    Science.gov (United States)

    Gordiyenko, G. I.; Yakovets, A. F.

    2017-07-01

    The ionospheric F2 peak parameters recorded by a ground-based ionosonde at the midlatitude station Alma-Ata [43.25N, 76.92E] were compared with those obtained using the latest version of the IRI model (http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html). It was found that for the Alma-Ata (Kazakhstan) location, the IRI2012 model describes well the morphology of seasonal and diurnal variations of the ionospheric critical frequency (foF2) and peak density height (hmF2) monthly medians. The model errors in the median foF2 prediction (percentage deviations between the median foF2 values and their model predictions) were found to vary approximately in the range from about -20% to 34% and showed a stable overestimation in the median foF2 values for daytime in January and July and underestimation for day- and nighttime hours in the equinoctial months. The comparison between the ionosonde hmF2 and IRI results clearly showed that the IRI overestimates the nighttime hmF2 values for March and September months, and the difference is up to 30 km. The daytime Alma-Ata hmF2 data were found to be close to the IRI predictions (deviations are approximately ±10-15 km) in winter and equinoctial months, except in July when the observed hmF2 values were much more (from approximately 50-200 km). The comparison between the Alouette foF2 data and IRI predictions showed mixed results. In particular, the Alouette foF2 data showed a tendency to be overestimated for daytime in winter months similar to the ionosonde data; however, the overestimated foF2 values for nighttime in the autumn equinox were in disagreement with the ionosonde observations. There were large deviations between the observed hmF2 values and their model predictions. The largest deviations were found during winter and summer (up to -90 km). The comparison of the Alouette II electron density profiles with those predicted by the adapted IRI2012 model in the altitude range hmF2 of the satellite position showed a great

  20. Basic earthquake engineering from seismology to analysis and design

    CERN Document Server

    Sucuoğlu, Halûk

    2014-01-01

    This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building struc­tures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calcu...

  1. Variations of gravity before and after the Haicheng earthquake, 1975, and the Tangshan earthquake, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Gu, H.; Lu, Z.

    1980-02-01

    From the results, there seems to be a close relationship between gravity variations and the occurrence of earthquakes. Based on results of repeated leveling work done in these regions, the estimated amount of gravity change caused by the change of elevation of the ground surface is far too small to account for the observed value. It is speculated that some big earthquakes might be associated with some sort of mass migration under the ground, within the crust or in the upper mantle. This migration would cause a large part of the gravity variation observed. Researchers have made a theoretical analysis of this effect and attempted to get some estimate of the rate of this mass migration, even though the physics of it is not clear.

  2. Nowcasting Earthquakes and Tsunamis

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk

  3. Resolution of non-double-couple components in the seismic moment tensor using regional networks-II: application to aftershocks of the 1999 M-w 7.4 Izmit earthquake

    Czech Academy of Sciences Publication Activity Database

    Stierle, E.; Bohnhoff, M.; Vavryčuk, Václav

    2014-01-01

    Roč. 196, č. 3 (2014), s. 1878-1888 ISSN 0956-540X R&D Projects: GA ČR(CZ) GAP210/12/1491 Institutional support: RVO:67985530 Keywords : earthquake source observations * seismicity and tectonics * continental tectonics: extensional Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.724, year: 2013

  4. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  5. Return to work for severely injured survivors of the Christchurch earthquake: influences in the first 2 years.

    Science.gov (United States)

    Nunnerley, Joanne; Dunn, Jennifer; McPherson, Kathryn; Hooper, Gary; Woodfield, Tim

    2016-01-01

    This study looked at the influences on the return to work (RTW) in the first 2 years for people severely injured in the 22 February 2011 Christchurch earthquake. We used a constructivist grounded theory approach using semi-structured interviews to collect data from 14 people injured in the earthquake. Analysis elicited three themes that appeared to influence the process of RTW following the Christchurch earthquake. Living the earthquake experience, the individual's experiences of the earthquake and how their injury framed their expectations; rebuilding normality, the desire of the participants to return to life as it was; while dealing with the secondary effects of the earthquake includes the earthquake specific effects which were both barriers and facilitators to returning to work. The consequences of the earthquake impacted on experience, process and outcome of RTW for those injured in the Christchurch Earthquake. Work and RTW appeared key tools to enhance recovery after serious injury following the earthquake. The altered physical, social and economic environment must be considered when working on the return to work (RTW) of individuals with earthquake injuries. Providing tangible emotional and social support so injured earthquake survivors feel safe in their workplace may facilitate RTW. Engaging early with employers may assist the RTW of injured earthquake survivors.

  6. Indoor radon and earthquake

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time on the basis of the Spitak earthquake of December 1988 (Armenia, December 1988) experience it is found out that the earthquake causes intensive and prolonged radon splashes which, rapidly dispersing in the open space of close-to-earth atmosphere, are contrastingly displayed in covered premises (dwellings, schools, kindergartens) even if they are at considerable distance from the earthquake epicenter, and this multiplies the radiation influence on the population. The interval of splashes includes the period from the first fore-shock to the last after-shock, i.e. several months. The area affected by radiation is larger vs. Armenia's territory. The scale of this impact on population is 12 times higher than the number of people injured in Spitak, Leninakan and other settlements (toll of injured - 25 000 people, radiation-induced diseases in people - over 300 000). The influence of radiation directly correlates with the earthquake force. Such a conclusion is underpinned by indoor radon monitoring data for Yerevan since 1987 (120 km from epicenter) 5450 measurements and multivariate analysis with identification of cause-and-effect linkages between geo dynamics of indoor radon under stable and conditions of Earth crust, behavior of radon in different geological mediums during earthquakes, levels of room radon concentrations and effective equivalent dose of radiation impact of radiation dose on health and statistical data on public health provided by the Ministry of Health. The following hitherto unexplained facts can be considered as consequences of prolonged radiation influence on human organism: long-lasting state of apathy and indifference typical of the population of Armenia during the period of more than a year after the earthquake, prevalence of malignant cancer forms in disaster zones, dominating lung cancer and so on. All urban territories of seismically active regions are exposed to the threat of natural earthquake-provoked radiation influence

  7. Combining multiple earthquake models in real time for earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Wu, Stephen; Beck, James L; Heaton, Thomas H.

    2017-01-01

    The ultimate goal of earthquake early warning (EEW) is to provide local shaking information to users before the strong shaking from an earthquake reaches their location. This is accomplished by operating one or more real‐time analyses that attempt to predict shaking intensity, often by estimating the earthquake’s location and magnitude and then predicting the ground motion from that point source. Other EEW algorithms use finite rupture models or may directly estimate ground motion without first solving for an earthquake source. EEW performance could be improved if the information from these diverse and independent prediction models could be combined into one unified, ground‐motion prediction. In this article, we set the forecast shaking at each location as the common ground to combine all these predictions and introduce a Bayesian approach to creating better ground‐motion predictions. We also describe how this methodology could be used to build a new generation of EEW systems that provide optimal decisions customized for each user based on the user’s individual false‐alarm tolerance and the time necessary for that user to react.

  8. Ground acceleration in a nuclear power plant

    International Nuclear Information System (INIS)

    Pena G, P.; Balcazar, M.; Vega R, E.

    2015-09-01

    A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)

  9. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  10. Searching for evidence of a preferred rupture direction in small earthquakes at Parkfield

    Science.gov (United States)

    Kane, D. L.; Shearer, P. M.; Allmann, B.; Vernon, F. L.

    2009-12-01

    Theoretical modeling of strike-slip ruptures along a bimaterial interface suggests that the interface will have a preferred rupture direction and will produce asymmetric ground motion (Shi and Ben-Zion, 2006). This could have widespread implications for earthquake source physics and for hazard analysis on mature faults because larger ground motions would be expected in the direction of rupture propagation. Studies have shown that many large global earthquakes exhibit unilateral rupture, but a consistently preferred rupture direction along faults has not been observed. Some researchers have argued that the bimaterial interface model does not apply to natural faults, noting that the rupture of the M 6 2004 Parkfield earthquake propagated in the opposite direction from previous M 6 earthquakes along that section of the San Andreas Fault (Harris and Day, 2005). We analyze earthquake spectra from the Parkfield area to look for evidence of consistent rupture directivity along the San Andreas Fault. We separate the earthquakes into spatially defined clusters and quantify the differences in high-frequency energy among earthquakes recorded at each station. Propagation path effects are minimized in this analysis because we compare earthquakes located within a small volume and recorded by the same stations. By considering a number of potential end-member models, we seek to determine if a preferred rupture direction is present among small earthquakes at Parkfield.

  11. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  12. Variations of gravity before and after the Haicheng earthquake, 1975 and the Tangshan earthquake, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Gu, H.; Lu, Z.

    1980-02-01

    Based on results of repeated leveling work done in these regions, the estimated amount of gravity change caused by the change of elevation of the ground surface is far too small to account for the observed value. Therefore it has been speculated that some big earthquakes might be associated with some sort of mass migration under the ground, within the crust or in the upper mantle. This migration would cause a large part of the gravity variation observed. Researchers have made a theoretical analysis of this effect and attempted to get some estimate of the rate of this mass migration, even though the physics of it is not clear.

  13. Inter-Disciplinary Validation of Pre Earthquake Signals. Case Study for Major Earthquakes in Asia (2004-2010) and for 2011 Tohoku Earthquake

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Hattori, K.; Liu, J.-Y.; Yang. T. Y.; Parrot, M.; Kafatos, M.; Taylor, P.

    2012-01-01

    We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct

  14. The Effect of Sonic Booms on Earthquake Warning Systems

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  15. Smartphone-Based Earthquake and Tsunami Early Warning in Chile

    Science.gov (United States)

    Brooks, B. A.; Baez, J. C.; Ericksen, T.; Barrientos, S. E.; Minson, S. E.; Duncan, C.; Guillemot, C.; Smith, D.; Boese, M.; Cochran, E. S.; Murray, J. R.; Langbein, J. O.; Glennie, C. L.; Dueitt, J.; Parra, H.

    2016-12-01

    Many locations around the world face high seismic hazard, but do not have the resources required to establish traditional earthquake and tsunami warning systems (E/TEW) that utilize scientific grade seismological sensors. MEMs accelerometers and GPS chips embedded in, or added inexpensively to, smartphones are sensitive enough to provide robust E/TEW if they are deployed in sufficient numbers. We report on a pilot project in Chile, one of the most productive earthquake regions world-wide. There, magnitude 7.5+ earthquakes occurring roughly every 1.5 years and larger tsunamigenic events pose significant local and trans-Pacific hazard. The smartphone-based network described here is being deployed in parallel to the build-out of a scientific-grade network for E/TEW. Our sensor package comprises a smartphone with internal MEMS and an external GPS chipset that provides satellite-based augmented positioning and phase-smoothing. Each station is independent of local infrastructure, they are solar-powered and rely on cellular SIM cards for communications. An Android app performs initial onboard processing and transmits both accelerometer and GPS data to a server employing the FinDer-BEFORES algorithm to detect earthquakes, producing an acceleration-based line source model for smaller magnitude earthquakes or a joint seismic-geodetic finite-fault distributed slip model for sufficiently large magnitude earthquakes. Either source model provides accurate ground shaking forecasts, while distributed slip models for larger offshore earthquakes can be used to infer seafloor deformation for local tsunami warning. The network will comprise 50 stations by Sept. 2016 and 100 stations by Dec. 2016. Since Nov. 2015, batch processing has detected, located, and estimated the magnitude for Mw>5 earthquakes. Operational since June, 2016, we have successfully detected two earthquakes > M5 (M5.5, M5.1) that occurred within 100km of our network while producing zero false alarms.

  16. Hotspots, Lifelines, and the Safrr Haywired Earthquake Sequence

    Science.gov (United States)

    Ratliff, J. L.; Porter, K.

    2014-12-01

    Though California has experienced many large earthquakes (San Francisco, 1906; Loma Prieta, 1989; Northridge, 1994), the San Francisco Bay Area has not had a damaging earthquake for 25 years. Earthquake risk and surging reliance on smartphones and the Internet to handle everyday tasks raise the question: is an increasingly technology-reliant Bay Area prepared for potential infrastructure impacts caused by a major earthquake? How will a major earthquake on the Hayward Fault affect lifelines (roads, power, water, communication, etc.)? The U.S. Geological Survey Science Application for Risk Reduction (SAFRR) program's Haywired disaster scenario, a hypothetical two-year earthquake sequence triggered by a M7.05 mainshock on the Hayward Fault, addresses these and other questions. We explore four geographic aspects of lifeline damage from earthquakes: (1) geographic lifeline concentrations, (2) areas where lifelines pass through high shaking or potential ground-failure zones, (3) areas with diminished lifeline service demand due to severe building damage, and (4) areas with increased lifeline service demand due to displaced residents and businesses. Potential mainshock lifeline vulnerability and spatial demand changes will be discerned by superimposing earthquake shaking, liquefaction probability, and landslide probability damage thresholds with lifeline concentrations and with large-capacity shelters. Intersecting high hazard levels and lifeline clusters represent potential lifeline susceptibility hotspots. We will also analyze possible temporal vulnerability and demand changes using an aftershock shaking threshold. The results of this analysis will inform regional lifeline resilience initiatives and response and recovery planning, as well as reveal potential redundancies and weaknesses for Bay Area lifelines. Identified spatial and temporal hotspots can provide stakeholders with a reference for possible systemic vulnerability resulting from an earthquake sequence.

  17. Geomorphic legacy of medieval Himalayan earthquakes in the Pokhara Valley

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    The Himalayas and their foreland belong to the world's most earthquake-prone regions. With millions of people at risk from severe ground shaking and associated damages, reliable data on the spatial and temporal occurrence of past major earthquakes is urgently needed to inform seismic risk analysis. Beyond the instrumental record such information has been largely based on historical accounts and trench studies. Written records provide evidence for damages and fatalities, yet are difficult to interpret when derived from the far-field. Trench studies, in turn, offer information on rupture histories, lengths and displacements along faults but involve high chronological uncertainties and fail to record earthquakes that do not rupture the surface. Thus, additional and independent information is required for developing reliable earthquake histories. Here, we present exceptionally well-dated evidence of catastrophic valley infill in the Pokhara Valley, Nepal. Bayesian calibration of radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments yields a robust age distribution that matches the timing of nearby M>8 earthquakes in ~1100, 1255, and 1344 AD. The upstream dip of tributary valley fills and X-ray fluorescence spectrometry of their provenance rule out local sediment sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from the Annapurna Massif >60 km away. The landscape-changing consequences of past large Himalayan earthquakes have so far been elusive. Catastrophic aggradation in the wake of two historically documented medieval earthquakes and one inferred from trench studies underscores that Himalayan valley fills should be considered as potential archives of past earthquakes. Such valley fills are pervasive in the Lesser Himalaya though high erosion rates reduce

  18. Observations of an ionospheric perturbation arising from the Coalinga earthquake of May 2, 1983

    International Nuclear Information System (INIS)

    Wolcott, J.H.; Simons, D.J.; Lee, D.D.; Nelson, R.A.

    1984-01-01

    An ionospheric perturbation that was produced by the Coalinga earthquake of May 2, 1983, was detected by a network of high-frequency radio links in northern California. The ionospheric refraction regions of all five HF propagation paths, at distances between 160 and 285 km (horizontal range) from the epicenter, were affected by a ground-motion-induced acoustic pulse that propagated to ionospheric heights. The acoustic pulse was produced by the earthquake-induced seismic waves rather than the vertical ground motion above the epicenter. These observations appear to be the first ionospheric disturbances to be reported this close to an earthquake epicenter

  19. Liquefaction macrophenomena in the great Wenchuan earthquake

    Science.gov (United States)

    Chen, Longwei; Yuan, Xiaoming; Cao, Zhenzhong; Hou, Longqing; Sun, Rui; Dong, Lin; Wang, Weiming; Meng, Fanchao; Chen, Hongjuan

    2009-06-01

    On May 12, 2008 at 14:28, a catastrophic magnitude M s 8.0 earthquake struck the Sichuan Province of China. The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresponding destruction was observed throughout a vast area of 500 km long and 200 km wide following the earthquake. This paper illustrates the geographic distribution of the liquefaction and the relationship between liquefaction behavior and seismic intensity, and summarizes the liquefaction macrophenomena, including sandboils and waterspouts, ground subsidence, ground fissures etc., and relevant liquefaction features. A brief summary of the structural damage caused by liquefaction is presented and discussed. Based on comparisons with liquefaction phenomena observed in the 1976 Tangshan and 1975 Haicheng earthquakes, preliminary analyses were performed, which revealed some new features of liquefaction behavior and associated issues arising from this event. The site investigation indicated that the spatial non-uniformity of liquefaction distribution was obvious and most of the liquefied sites were located in regions of seismic intensity VIII. However, liquefaction phenomena at ten different sites in regions of seismic intensity VI were also observed for the first time in China mainland. Sandboils and waterspouts ranged from centimeters to tens of meters, with most between 1 m to 3 m. Dramatically high water/sand ejections, e.g., more than 10 m, were observed at four different sites. The sand ejections included silty sand, fine sand, medium sand, course sand and gravel, but the ejected sand amount was less than that in the 1976 Tangshan earthquake. Possible liquefaction of natural gravel soils was observed for the first time in China mainland.

  20. EPR spectroscopy of a family of Cr(III) 7M(II) (M = Cd, Zn, Mn, Ni) "wheels": studies of isostructural compounds with different spin ground states

    DEFF Research Database (Denmark)

    Piligkos, Stergios; Weihe, Høgni; Bill, Eckhard

    2009-01-01

    examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited spin states is observed. We interpret the EPR spectra by use of restricted size effective subspaces obtained by the rigorous solution of spin-Hamiltonians of dimension up...

  1. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.; Mai, Paul Martin; Schorlemmer, Danijel

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data

  2. Earthquakes; May-June 1982

    Science.gov (United States)

    Person, W.J.

    1982-01-01

    There were four major earthquakes (7.0-7.9) during this reporting period: two struck in Mexico, one in El Salvador, and one in teh Kuril Islands. Mexico, El Salvador, and China experienced fatalities from earthquakes.

  3. Realistic Modeling of Seismic Wave Ground Motion in Beijing City

    Science.gov (United States)

    Ding, Z.; Romanelli, F.; Chen, Y. T.; Panza, G. F.

    Algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City