WorldWideScience

Sample records for earthquake ground motion

  1. Strong ground motion prediction using virtual earthquakes.

    Science.gov (United States)

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  2. Earthquake Source and Ground Motion Characteristics of Great Kanto Earthquakes

    Science.gov (United States)

    Somerville, P. G.; Sato, T.; Wald, D. J.; Graves, R. W.; Dan, K.

    2003-12-01

    This paper describes the derivation of a rupture model of the 1923 Kanto earthquake, and the estimation of ground motions that occurred during that earthquake and that might occur during future great Kanto earthquakes. The rupture model was derived from the joint inversion of geodetic and teleseismic data. The leveling and triangulation data place strong constraints on the distribution and orientation of slip on the fault. The most concentrated slip is in the shallow central and western part of the fault. The location of the hypocenter on the western part of the fault gives rise to strong near fault rupture directivity effects, which are largest toward the east in the Boso Peninsula. To estimate the ground motions caused by this earthquake, we first calibrated 1D and 3D wave propagation path effects using the Odawara earthquake of 5 August 1990 (M 5.1), the first earthquake larger than M 5 in the last 60 years near the hypocenter of the 1923 Kanto earthquake. The simulation of the moderate-sized Odawara earthquake demonstrates that the 3D velocity model works quite well at reproducing the recorded long-period (T > 3.33 sec) strong motions, including basin-generated surface waves, for a number of sites located throughout the Kanto basin region. Using this validated 3D model along with the rupture model described above, we simulated the long-period (T > 4 sec) ground motions in this region for the 1923 Kanto earthquake. The largest ground motions occur east of the epicenter along the central and southern part of the Boso Peninsula. These large motions arise from strong rupture directivity effects and are comprised of relatively simple, source-controlled pulses with a dominant period of about 10 sec. Other rupture models and hypocenter locations generally produce smaller long period ground motion levels in this region that those of the 1923 event. North of the epicentral region, in the Tokyo area, 3D basin-generated phases are quite significant, and these phases

  3. Stochastic nature of earthquake ground motion

    Science.gov (United States)

    Kostić, Srđan; Vasović, Nebojša; Perc, Matjaž; Toljić, Marinko; Nikolić, Dobrica

    2013-09-01

    In this paper, we analyze the irregular behavior of earthquake ground motion as recorded during the Kraljevo M5.4 earthquake, which occurred on November 3rd, 2010 in Serbia. We perform the analysis for the ground accelerations recorded at 6 seismological stations: Grua, Ruda, Rada, Bara, Zaga and Bdva. The latter were carefully chosen based on their corresponding tectonic zone and the local geological setting. For each station, we analyze the horizontal component of the ground acceleration in the north-south direction, which is the one of primary interest for engineering design. We employ surrogate data testing and methods of nonlinear time series analysis. The obtained results indicate that strong ground accelerations are stochastic, in particular belonging to a class of linear stationary stochastic processes with Gaussian inputs or distorted by a monotonic, instantaneous, time-independent nonlinear function. This type of motion is detected regardless of the corresponding tectonic setting and the local geological conditions. The revealed stochastic nature is in disagreement with the frequently assumed deterministically chaotic nature of earthquake ground motion.

  4. 1909 Taipei Earthquake Ground Motion Simulation

    Directory of Open Access Journals (Sweden)

    Yi-Wun Liao

    2016-06-01

    Full Text Available The 1909 Taipei earthquake (M 7.3 occurred beneath the Taipei metropolitan area (TMA causing substantial damage according to the historical literature. According to the hypocenter relocation and tectonic implications provided in a previous study, we simulated ground motions within the TMA using a hybrid simulation method involving the spectral-element method (SEM and the empirical Green’s function method (EGFM. We used the SEM for simulating low-frequency components and the EGFM for simulating high-frequency components. These high and low frequency components were subsequently combined. For the EGFM we used the records from a recent ML 4.9 earthquake (11 October 2013, depth = 143.8 km in the Taipei area as the empirical Green’s function. According to the historical literature, the observed PGA (peak ground acceleration values are 59.2 and 67.0 gal at ancient stations TAP and KEE, with periods of 1.21 and 1.34 s, respectively. By comparing the simulated PGA values at modern stations TAPB and WFSB to the historical documented ones for 12 different models, our result suggests that the 1909 Taipei earthquake was an event with a magnitude of about Mw 7.3 and stress drop of approximately 30 bars, or a smaller equivalent magnitude between Mw 6.8 - 7.3 but with much higher average stress drop of more than 100 bars. For a deep event beneath TMA a larger vertical P-wave motion and longer period shaking wave, as addressed in the historical literature, might be expected with prolonged shaking as found in the simulation. A seismic hazard assessment is necessary for metropolitan Taipei to better understand the long period shaking from deep subduction zone intra plate events.

  5. Strong ground motion from the michoacan, Mexico, earthquake.

    Science.gov (United States)

    Anderson, J G; Bodin, P; Brune, J N; Prince, J; Singh, S K; Quaas, R; Onate, M

    1986-09-05

    The network of strong motion accelerographs in Mexico includes instruments that were installed, under an international cooperative research program, in sites selected for the high potenial of a large earthquake. The 19 September 1985 earthquake (magnitude 8.1) occurred in a seismic gap where an earthquake was expected. As a result, there is an excellent descripton of the ground motions that caused the disaster.

  6. Ground motion observations of the 2014 South Napa earthquake

    Science.gov (United States)

    Baltay, Annemarie S.; Boatwright, John

    2015-01-01

    Ground motions of the South Napa earthquake (24 August 2014; M 6.0) were recorded at 19 stations within 20 km and 292 stations within 100 km of the rupture surface trace, generating peak ground motions in excess of 50%g and 50  cm/s in and near Napa Valley. This large dataset allows us to compare the ground motion from the earthquake to existing ground‐motion prediction equations (GMPEs) in considerable detail.

  7. Orientation effect on ground motion measurement for Mexican subduction earthquakes

    Institute of Scientific and Technical Information of China (English)

    H.P Hong; A. Pozos-Estrada; R. Gomez

    2009-01-01

    The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.

  8. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Abbas Moustafa

    2010-06-01

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy principle and the dispersion index. These measures are based on the geometric properties of the power spectral density function of the ground acceleration. The application of these measures to quantify the frequency content of random earthquake models is demonstrated first. Subsequently, these measures are used to quantify the frequency content of the ground acceleration for near-field records measured at rock and soil sites, short-duration and long-duration earthquakes.

  9. Modeling of earthquake ground motion in the frequency domain

    Science.gov (United States)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation

  10. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  11. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  12. Directivity in NGA earthquake ground motions: Analysis using isochrone theory

    Science.gov (United States)

    Spudich, P.; Chiou, B.S.J.

    2008-01-01

    We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.

  13. Uncertainty and Spatial Correlation of Earthquake Ground Motion in Taiwan

    Directory of Open Access Journals (Sweden)

    Vladimir Sokolov

    2010-01-01

    Full Text Available In this work we analyzed characteristics of aleatory variability with regard to intra-event and inter-event components in the prediction of peak ground acceleration in Taiwan and the spatial (site-to-site correlation of ground motion residuals. The characteristics are very important for an assessment of seismic hazard and loss for regionally located building assets (portfolio and spatially distributed systems (lifelines and ShakeMap generation. The strong-motion database collected by the TSMIP network in Taiwan, which includes about 4650 records from 66 shallow earthquakes (ML > 4.5, focal depth < 30 km occurred in 1993 - 2004, was used for this purpose. The results of the analysis show that the ground motion correlation structure is highly dependent on local geology and on peculiarities of the propagation path (azimuth-dependent attenuation. Thus, a single generalized spatial correlation model may not be adequate for all of Taiwan territory or similar large areas.

  14. Predicting Ground Motion from Induced Earthquakes in Geothermal Areas

    Science.gov (United States)

    Douglas, J.; Edwards, B.; Convertito, V.; Sharma, N.; Tramelli, A.; Kraaijpoel, D.; Cabrera, B. M.; Maercklin, N.; Troise, C.

    2013-06-01

    Induced seismicity from anthropogenic sources can be a significant nuisance to a local population and in extreme cases lead to damage to vulnerable structures. One type of induced seismicity of particular recent concern, which, in some cases, can limit development of a potentially important clean energy source, is that associated with geothermal power production. A key requirement for the accurate assessment of seismic hazard (and risk) is a ground-motion prediction equation (GMPE) that predicts the level of earthquake shaking (in terms of, for example, peak ground acceleration) of an earthquake of a certain magnitude at a particular distance. Few such models currently exist in regard to geothermal-related seismicity, and consequently the evaluation of seismic hazard in the vicinity of geothermal power plants is associated with high uncertainty. Various ground-motion datasets of induced and natural seismicity (from Basel, Geysers, Hengill, Roswinkel, Soultz, and Voerendaal) were compiled and processed, and moment magnitudes for all events were recomputed homogeneously. These data are used to show that ground motions from induced and natural earthquakes cannot be statistically distinguished. Empirical GMPEs are derived from these data; and, although they have similar characteristics to recent GMPEs for natural and mining-related seismicity, the standard deviations are higher. To account for epistemic uncertainties, stochastic models subsequently are developed based on a single corner frequency and with parameters constrained by the available data. Predicted ground motions from these models are fitted with functional forms to obtain easy-to-use GMPEs. These are associated with standard deviations derived from the empirical data to characterize aleatory variability. As an example, we demonstrate the potential use of these models using data from Campi Flegrei.

  15. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  16. Earthquake Ground Motion in the Valley of Mexico: Basin Effects

    Science.gov (United States)

    Ramirez, L.; Contreras, M.; Bielak, J.; Aguirre, J.

    2007-12-01

    We present a study of the ground motion and resulting amplification in the Mexico City Basin due to strong earthquakes in the Mexican Pacific Coast. We propose an approximation of the regional structure and Mexico City's basin and analyze their response to two shallow earthquakes generated near the coast. We compare two sets of three dimensional simulations: the first includes a soft structure similar in shape and properties to the Valley of Mexico, while the second excludes the soft soil deposits. Our 3D computations, with a maximum resolution of 0.75 Hz, reproduce the amplitude and long durations characteristics usually observed in the basin. We confirm that stations inside the Mexican Volcanic Belt experience amplification. In the frequency band 0.2-0.4 Hz additional amplification occurs inside the valley due to the shallow soil deposits in the lake bed region. We compare the normalized durations of the ground motion at several stations against observed data, and speculate on the durations of the soil motion as being a local effect due to the basin's shape and low velocities.

  17. Earthquake data visualization shows ground motion in real time

    Science.gov (United States)

    Schultz, Colin

    2011-12-01

    On 11 March 2011 a magnitude 9.0 earthquake shattered the seabed off the eastern coast of Japan's Honshu Island. Visualizations of scientific data showing the peaks of a seismograph or maps overlain with the locations and magnitudes of the earthquake and its numerous aftershocks were brought out to help explain the devastation to the public. While dramatic, such displays can be difficult for the public to interpret clearly because people have trouble trying to picture what the recordings of a seismograph might look like on the ground or because they have trouble understanding the logarithmic relationship between earthquake magnitude and energy. Drawing on the three-dimensional position records of a dense web of high-frequency GPS ground receiver stations, Grapenthin and Freymueller developed an animation of the abrupt horizontal and vertical motions that pulled parts of the country more than 4 meters to the east and sank large portions of its eastern shore more than half a meter into the sea.

  18. Ground-motion modeling of Hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground motions

    Science.gov (United States)

    Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.

    2010-01-01

    We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.

  19. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)

  20. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  1. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  2. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  3. Ground motion following selection of SRS design basis earthquake and associated deterministic approach

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart.

  4. Broadband Ground Motion Estimates for Scenario Earthquakes in the San Francisco Bay Region

    Science.gov (United States)

    Graves, R. W.

    2006-12-01

    Using broadband (0-10 Hz) simulation procedures, we are assessing the ground motions that could be generated by different earthquake scenarios occurring on major strike-slip faults of the San Francisco Bay region. These simulations explicitly account for several important ground motion features, including rupture directivity, 3D basin response, and the depletion of high frequency ground motions that occurs for surface rupturing events. This work compliments ongoing USGS efforts to quantify the ground shaking hazards throughout the San Francisco Bay region. These efforts involve development and testing of a 3D velocity model for northern California (USGS Bay Area Velocity Model, version 05.1.0) using observations from the 1989 Loma Prieta earthquake, characterization of 1906 rupture scenarios and ground motions, and the development and analysis of rupture scenarios on other Bay Area faults. The adequacy of the simulation model has been tested using ground motion data recorded during the 1989 Loma Prieta earthquake and by comparison with the reported intensity data from the 1906 earthquake. Comparisons of the simulated broadband (0-10 Hz) ground motions with the recorded motions for the 1989 Loma Prieta earthquake demonstrate that the modeling procedure matches the observations without significant bias over a broad range of frequencies, site types, and propagation distances. The Loma Prieta rupture model is based on a wavenumber-squared refinement of the Wald et al (1991) slip distribution, with the rupture velocity set at 75 percent of the local shear wave velocity and a Kostrov-type slip function having a rise time of about 1.4 sec. Simulations of 1906 scenario ruptures indicate very strong directivity effects to the north and south of the assumed epicenter, adjacent to San Francisco. We are currently analyzing additional earthquake scenarios on the Hayward-Rodgers Creek and San Andreas faults in order to provide a more comprehensive framework for assessing

  5. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-04-13

    Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes

  6. The Response of Long-Span Bridges to Low Frequency, Near-Fault Earthquake Ground Motions

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, David; Astaneh-Asl, A.; Larsen, S.C.; Hutchings, Larry

    2009-02-27

    Historical seismic hazard characterizations did not include earthquake ground motion waveforms at frequencies below approximately 0.2 Hz (5 seconds period). This resulted from limitations in early strong motion instrumentation and signal processing techniques, a lack of measurements in the near-field of major earthquakes and therefore no observational awareness, and a delayed understanding in the engineering community of the potential significance of these types of motions. In recent years, there is a growing recognition of the relevance of near-fault, low frequency motions, particularly for long-period structures such as large bridges. This paper describes a computationally based study of the effects of low frequency (long-period) near-fault motions on long-span bridge response. The importance of inclusion of these types of motions for long span cable supported bridges is demonstrated using actual measured broad-band, near-fault motions from large earthquakes.

  7. Overview of Ground-Motion Issues for Cascadia Megathrust Events: Simulation of Ground-Motions and Earthquake Site Response

    Directory of Open Access Journals (Sweden)

    Hadi Ghofrani

    2017-09-01

    Full Text Available Ground motions for earthquakes of M7.5 to 9.0 on the Cascadia subduction interface are simulated based on a stochastic finite-fault model and used to estimate average response spectra for reference firm soil conditions. The simulations are first validated by modeling the wealth of ground-motion data from the 2011 M9.0 Tohoku earthquake of Japan. Adjustments to the calibrated model are then made to consider average source, attenuation and site parameters for the Cascadia region. This includes an evaluation of the likely variability in stress drop for large interface earthquakes and an assessment of regional attenuation and site effects. We perform best-estimate simulations for a preferred set of input parameters. Typical results suggest mean values of 5%-damped pseudoacceleration in the range from about 100 to 200 cm/s2, at frequencies from 1 to 4 Hz, for firm-ground conditions in Vancouver. Uncertainty in most-likely value of the parameter representing stress drop causes variability in simulated response spectra of about ±50%. Uncertainties in the attenuation model produce even larger variability in response spectral amplitudes—a factor of about two at a closest distance to the rupture plane (Rcd of 100 km, becoming even larger at greater distances. It is thus important to establish the regional attenuation model for ground-motion simulations and to bound the source properties controlling radiation of ground motion. We calculate theoretical one-dimensional spectral amplification estimates for four selected Fraser River Delta sites to show how the presence of softer sediments in the region may alter the predicted ground motions. The amplification functions are largely consistent with observed spectral amplification at Fraser River delta sites, suggesting amplification by factors of 2.5–5 at the peak frequency of the site; we note that deep sites in the delta have a low peak frequency, ∼0.3 Hz. This work will aid in seismic hazard

  8. Bounding Ground Motions for Hayward Fault Scenario Earthquakes Using Suites of Stochastic Rupture Models

    Science.gov (United States)

    Rodgers, A. J.; Xie, X.; Petersson, A.

    2007-12-01

    The next major earthquake in the San Francisco Bay area is likely to occur on the Hayward-Rodgers Creek Fault system. Attention on the southern Hayward section is appropriate given the upcoming 140th anniversary of the 1868 M 7 rupture coinciding with the estimated recurrence interval. This presentation will describe ground motion simulations for large (M > 6.5) earthquakes on the Hayward Fault using a recently developed elastic finite difference code and high-performance computers at Lawrence Livermore National Laboratory. Our code easily reads the recent USGS 3D seismic velocity model of the Bay Area developed in 2005 and used for simulations of the 1906 San Francisco and 1989 Loma Prieta earthquakes. Previous work has shown that the USGS model performs very well when used to model intermediate period (4-33 seconds) ground motions from moderate (M ~ 4-5) earthquakes (Rodgers et al., 2008). Ground motions for large earthquakes are strongly controlled by the hypocenter location, spatial distribution of slip, rise time and directivity effects. These are factors that are impossible to predict in advance of a large earthquake and lead to large epistemic uncertainties in ground motion estimates for scenario earthquakes. To bound this uncertainty, we are performing suites of simulations of scenario events on the Hayward Fault using stochastic rupture models following the method of Liu et al. (Bull. Seism. Soc. Am., 96, 2118-2130, 2006). These rupture models have spatially variable slip, rupture velocity, rise time and rake constrained by characterization of inferred finite fault ruptures and expert opinion. Computed ground motions show variability due to the variability in rupture models and can be used to estimate the average and spread of ground motion measures at any particular site. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No.W-7405-Eng-48. This is

  9. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    Science.gov (United States)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  10. Strong Ground Motion in the 2011 Tohoku Earthquake: a 1Directional - 3Component Modeling

    CERN Document Server

    D'Avila, Maria Paola Santisi; Lenti, Luca

    2013-01-01

    Local wave amplification due to strong seismic motions in surficial multilayered soil is influenced by several parameters such as the wavefield polarization and the dynamic properties and impedance contrast between soil layers. The present research aims at investigating seismic motion amplification in the 2011 Tohoku earthquake through a one-directional three-component (1D-3C) wave propagation model. A 3D nonlinear constitutive relation for dry soils under cyclic loading is implemented in a quadratic line finite element model. The soil rheology is modeled by mean of a multi-surface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan (MPII) type. Its major advantage is that the rheology is characterized by few commonly measured parameters. Ground motions are computed at the surface of soil profiles in the Tohoku area (Japan) by propagating 3C signals recorded at rock outcrops, during the 2011 Tohoku earthquake. Computed surface ground motions are compared to the Tohoku earthquake records at alluvial ...

  11. Ground-motion modeling of the 1906 San Francisco Earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events

    Science.gov (United States)

    Aagaard, B.T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.

    2008-01-01

    We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  12. Prediction of long-period ground motions from huge subduction earthquakes in Osaka, Japan

    Science.gov (United States)

    Kawabe, H.; Kamae, K.

    2008-04-01

    There is a high possibility of reoccurrence of the Tonankai and Nankai earthquakes along the Nankai Trough in Japan. It is very important to predict the long-period ground motions from the next Tonankai and Nankai earthquakes with moment magnitudes of 8.1 and 8.4, respectively, to mitigate their disastrous effects. In this study, long-period (>2.5 s) ground motions were predicted using an earthquake scenario proposed by the Headquarters for Earthquake Research Promotion in Japan. The calculations were performed using a fourth-order finite difference method with a variable spacing staggered-grid in the frequency range 0.05 0.4 Hz. The attenuation characteristics ( Q) in the finite difference simulations were assumed to be proportional to frequency ( f) and S-wave velocity ( V s) represented by Q = f · V s / 2. Such optimum attenuation characteristic for the sedimentary layers in the Osaka basin was obtained empirically by comparing the observed motions during the actual M5.5 event with the modeling results. We used the velocity structure model of the Osaka basin consisting of three sedimentary layers on bedrock. The characteristics of the predicted long-period ground motions from the next Tonankai and Nankai earthquakes depend significantly on the complex thickness distribution of the sediments inside the basin. The duration of the predicted long-period ground motions in the city of Osaka is more than 4 min, and the largest peak ground velocities (PGVs) exceed 80 cm/s. The predominant period is 5 to 6 s. These preliminary results indicate the possibility of earthquake damage because of future subduction earthquakes in large-scale constructions such as tall buildings, long-span bridges, and oil storage tanks in the Osaka area.

  13. Seismic Ground Motion and Coseismic Displacement Associated with the 26 December 2006 off Pingtung, Taiwan, Earthquake

    Science.gov (United States)

    Chen, H.; Kuo, L.; Yu, S.; Liu, C.

    2007-12-01

    Two sequence earthquakes (ML=6.96 and 6.99) occurred in southern Taiwan off Pingtung, and the main shocks are only at an interval of 8 minutes. These earthquakes caused more than ten centimeters of ground motion, and a few centimeters of coseismic deformation, respectively. All of these displacements have been recorded by the Continuously Observation Recording GPS Stations (CORS), and estimated by two different post-processing methods, namely the kinematic positioning and the daily solution algorithm. Precise evaluation of the capturing instantaneous ground motion and coseismic deformation at a level of just millimeters requires rigorous computational procedures. In this paper, a set of high sampling rate (1Hz) data from the CORS has been used to study simultaneous ground motion during the Pingtung earthquakes. A completely regular algorithm to estimate the crustal deformation in the Taiwan area has been applied to acquire coseismic deformation as a result of the Pingtung earthquakes. Applying beyond 2 weeks of data and 50 stations of the CORS, the coseismic deformation can be precisely estimated. Since the instantaneous ground motion can be computed by continuous GPS observations and the coseismic deformation can be acquired precisely and integrated with seismic data, these results can assist the study of earthquake geodesy.

  14. Assessment of Simulated Ground Motions in Earthquake Engineering Practice: A Case Study for Duzce (Turkey)

    Science.gov (United States)

    Karimzadeh, Shaghayegh; Askan, Aysegul; Yakut, Ahmet

    2017-07-01

    Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the corresponding real records. In this study, a framework is outlined for assessment of simulated ground motions in terms of their use in structural engineering. Misfit criteria are determined for both ground motion parameters and structural response by comparing the simulated values against the corresponding real values. For this purpose, as a case study, the 12 November 1999 Duzce earthquake is simulated using stochastic finite-fault methodology. Simulated records are employed for time history analyses of frame models of typical residential buildings. Next, the relationships between ground motion misfits and structural response misfits are studied. Results show that the seismological misfits around the fundamental period of selected buildings determine the accuracy of the simulated responses in terms of their agreement with the observed responses.

  15. Earthquake scenario ground motions for the urban area of Evansville, Indiana

    Science.gov (United States)

    Haase, Jennifer S.; Nowack, Robert L.; Cramer, Chris H.; Boyd, Oliver S.; Bauer, Robert A.

    2011-01-01

    The Wabash Valley seismic zone and the New Madrid seismic zone are the closest large earthquake source zones to Evansville, Indiana. The New Madrid earthquakes of 1811-1812, over 180 kilometers (km) from Evansville, produced ground motions with a Modified Mercalli Intensity of VII near Evansville, the highest intensity observed in Indiana. Liquefaction evidence has been documented less than 40 km away from Evansville resulting from two large earthquakes in the past 12,000 years in the Wabash Valley. Two earthquake scenarios are described in this paper that demonstrate the expected ground motions for a 33×42-km region around Evansville based on a repeat earthquake from each of these source regions. We perform a one-dimensional analysis for a grid of sites that takes into account the amplification or deamplification of ground motion in the unconsolidated soil layer using a new three-dimensional model of seismic velocity and bedrock depth. There are significant differences in the calculated amplification from that expected for National Earthquake Hazard Reduction Program site class D conditions, with deamplification at many locations within the ancient bedrock valley underlying Evansville. Ground motions relative to the acceleration of gravity (g) in the Evansville area from a simulation of a magnitude (M) 7.7 New Madrid earthquake range from 0.15 to 0.25 g for peak ground acceleration, 0.14 to 0.7 g for 0.2-second (s) spectral acceleration, and 0.05 to 0.25 g for 1.0-s spectral acceleration. Ground motions from a M6.8 Wabash Valley earthquake centered 40 km northwest of the city produce ground motions that decrease with distance from 1.5 to 0.3 g for 0.2-s spectral acceleration when they reach the main part of Evansville, but then increase in amplitude from 0.3 to 0.6 g south of the city and the Ohio River. The densest urbanization in Evansville and Henderson, Ky., is within the area of preferential amplification at 1.0-s period for both scenarios, but the area

  16. Source mechanism inversion and ground motion modeling of induced earthquakes in Kuwait - A Bayesian approach

    Science.gov (United States)

    Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.

    2016-12-01

    The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw < 5) and are shallow with focal depths of about 2 to 4 km. Such events are very common in oil/gas reservoirs all over the world, including North America, Europe, and the Middle East. We determined the location and source mechanism of these local earthquakes, with the uncertainties, using a Bayesian inversion method. The triggering stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high enough to cause damage to local structures without using seismic design criteria.

  17. The SCEC-USGS Dynamic Earthquake Rupture Code Comparison Exercise - Simulations of Large Earthquakes and Strong Ground Motions

    Science.gov (United States)

    Harris, R.

    2015-12-01

    I summarize the progress by the Southern California Earthquake Center (SCEC) and U.S. Geological Survey (USGS) Dynamic Rupture Code Comparison Group, that examines if the results produced by multiple researchers' earthquake simulation codes agree with each other when computing benchmark scenarios of dynamically propagating earthquake ruptures. These types of computer simulations have no analytical solutions with which to compare, so we use qualitative and quantitative inter-code comparisons to check if they are operating satisfactorily. To date we have tested the codes against benchmark exercises that incorporate a range of features, including single and multiple planar faults, single rough faults, slip-weakening, rate-state, and thermal pressurization friction, elastic and visco-plastic off-fault behavior, complete stress drops that lead to extreme ground motion, heterogeneous initial stresses, and heterogeneous material (rock) structure. Our goal is reproducibility, and we focus on the types of earthquake-simulation assumptions that have been or will be used in basic studies of earthquake physics, or in direct applications to specific earthquake hazard problems. Our group's goals are to make sure that when our earthquake-simulation codes simulate these types of earthquake scenarios along with the resulting simulated strong ground shaking, that the codes are operating as expected. For more introductory information about our group and our work, please see our group's overview papers, Harris et al., Seismological Research Letters, 2009, and Harris et al., Seismological Research Letters, 2011, along with our website, scecdata.usc.edu/cvws.

  18. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    Science.gov (United States)

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  19. Effects of soil amplification ratio and multiple wave interference for ground motion due to earthquake

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; XU Jiren; Ryuji Kubota

    2004-01-01

    Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interferences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array survey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplification ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a complicated distribution of the maximum amplitudes of acceleration waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak amplitude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplification effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the

  20. Empirical models for the prediction of ground motion duration for intraplate earthquakes

    Science.gov (United States)

    Anbazhagan, P.; Neaz Sheikh, M.; Bajaj, Ketan; Mariya Dayana, P. J.; Madhura, H.; Reddy, G. R.

    2017-02-01

    Many empirical relationships for the earthquake ground motion duration were developed for interplate region, whereas only a very limited number of empirical relationships exist for intraplate region. Also, the existing relationships were developed based mostly on the scaled recorded interplate earthquakes to represent intraplate earthquakes. To the author's knowledge, none of the existing relationships for the intraplate regions were developed using only the data from intraplate regions. Therefore, an attempt is made in this study to develop empirical predictive relationships of earthquake ground motion duration (i.e., significant and bracketed) with earthquake magnitude, hypocentral distance, and site conditions (i.e., rock and soil sites) using the data compiled from intraplate regions of Canada, Australia, Peninsular India, and the central and southern parts of the USA. The compiled earthquake ground motion data consists of 600 records with moment magnitudes ranging from 3.0 to 6.5 and hypocentral distances ranging from 4 to 1000 km. The non-linear mixed-effect (NLMEs) and logistic regression techniques (to account for zero duration) were used to fit predictive models to the duration data. The bracketed duration was found to be decreased with an increase in the hypocentral distance and increased with an increase in the magnitude of the earthquake. The significant duration was found to be increased with the increase in the magnitude and hypocentral distance of the earthquake. Both significant and bracketed durations were predicted higher in rock sites than in soil sites. The predictive relationships developed herein are compared with the existing relationships for interplate and intraplate regions. The developed relationship for bracketed duration predicts lower durations for rock and soil sites. However, the developed relationship for a significant duration predicts lower durations up to a certain distance and thereafter predicts higher durations compared to the

  1. Empirical models for the prediction of ground motion duration for intraplate earthquakes

    Science.gov (United States)

    Anbazhagan, P.; Neaz Sheikh, M.; Bajaj, Ketan; Mariya Dayana, P. J.; Madhura, H.; Reddy, G. R.

    2017-07-01

    Many empirical relationships for the earthquake ground motion duration were developed for interplate region, whereas only a very limited number of empirical relationships exist for intraplate region. Also, the existing relationships were developed based mostly on the scaled recorded interplate earthquakes to represent intraplate earthquakes. To the author's knowledge, none of the existing relationships for the intraplate regions were developed using only the data from intraplate regions. Therefore, an attempt is made in this study to develop empirical predictive relationships of earthquake ground motion duration (i.e., significant and bracketed) with earthquake magnitude, hypocentral distance, and site conditions (i.e., rock and soil sites) using the data compiled from intraplate regions of Canada, Australia, Peninsular India, and the central and southern parts of the USA. The compiled earthquake ground motion data consists of 600 records with moment magnitudes ranging from 3.0 to 6.5 and hypocentral distances ranging from 4 to 1000 km. The non-linear mixed-effect (NLMEs) and logistic regression techniques (to account for zero duration) were used to fit predictive models to the duration data. The bracketed duration was found to be decreased with an increase in the hypocentral distance and increased with an increase in the magnitude of the earthquake. The significant duration was found to be increased with the increase in the magnitude and hypocentral distance of the earthquake. Both significant and bracketed durations were predicted higher in rock sites than in soil sites. The predictive relationships developed herein are compared with the existing relationships for interplate and intraplate regions. The developed relationship for bracketed duration predicts lower durations for rock and soil sites. However, the developed relationship for a significant duration predicts lower durations up to a certain distance and thereafter predicts higher durations compared to the

  2. Spectral characteristics of vertical ground motion in the Northridge and other earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Bozorgnia, Y. [ATS Engineering, Walnut Creek, CA (United States); Niazi, M. [Berkeley Geophysical Consultants, CA (United States); Campbell, K.W. [EQE International, Evergreen, CO (United States)

    1995-12-31

    Spectral characteristics of vertical ground motion recorded during the Northridge earthquake are evaluated and compared to those of other earthquakes. Relationship between vertical and horizontal spectra is examined through development of attenuation of vertical and horizontal response spectra. Vertical-to-horizontal response spectral relationship is then compared to that of 1989 Loma Prieta earthquake, and several other earthquakes recorded over SMART-1 array in Taiwan. This preliminary analysis shows that the main characteristics of vertical-to-horizontal spectral ratio are similar to those of other earthquakes. One main characteristic is that in the near-field region and in short period range, the ratio is much higher than commonly assumed ratio of 2/3.

  3. Characteristics of the strong ground motion from the 24th August 2016 Amatrice earthquake

    Directory of Open Access Journals (Sweden)

    Marta Pischiutta

    2016-12-01

    Full Text Available The 2016 August 24 Amatrice earthquake occurred at 03:36 local time in central Apennines Italy with an epicentre at 43.36°E, 38.76°N, Istituto Nazionale di Geofisica e Vulcanologia (INGV, few kilometers north of the city of Amatrice. The earthquake ruptured a North-West (NW–South-East (SE oriented normal fault dipping toward the South-West (SW (Scognamiglio et al., 2016. High values of peak ground acceleration (~0.45 g were observed close to Amatrice (3 stations being few kilometer distances from the fault. The present study presents an overview of the main features of the seismic ground shaking during the Amatrice earthquake. We analyze the ground motion characteristics of the main shock in terms of peak ground acceleration (PGA, peak ground velocity (PGV and spectral accelerations (SA, 5 per cent of critical damping. In order to understand the characteristics of the ground motions induced by Amatrice earthquake, we also study the source-related effects relative to the fault rupture directivity.

  4. A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta

    Science.gov (United States)

    Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.

    2015-12-01

    Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.

  5. Strong Ground Motions Generated by the February 11, 2014 Tatunshan Earthquake in the Taipei Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Kou-Cheng Chen

    2014-01-01

    Full Text Available Strong-motion seismograms from the 11 February, 2014 Tatunshan earthquake were recorded at stations around the source area. These recordings were used to analyze the strong-motion characteristics in the area. The largest peak ground acceleration (PGA values of 100.7, 93.4, and 66.6 cm sec-2 in the vertical, EW, and NS directions, respectively, were recorded at station TAP056, about 4.9 km to the northwest of the epicenter. The PGA decays fast with distance, indicating high attenuation in the Tatun volcanic area. The PGA ratio of vertical to horizontal ground motions decreases with increasing epicenter distance. The PGA values in the EW component are larger than those in the NS component. This might be associated with the focal mechanism of the earthquake. The spectral accelerations decrease rapidly with increasing period.

  6. Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake.

    Science.gov (United States)

    Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath

    2016-06-23

    The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.

  7. Effects of Ground Motion Input on the Derived Fragility Functions: Case study of 2010 Haiti Earthquake

    Science.gov (United States)

    Hancilar, Ufuk; Harmandar, Ebru; Çakti, Eser

    2014-05-01

    Empirical fragility functions are derived by statistical processing of the data on: i) Damaged and undamaged buildings, and ii) Ground motion intensity values at the buildings' locations. This study investigates effects of different ground motion inputs on the derived fragility functions. The previously constructed fragility curves (Hancilar et al. 2013), which rely on specific shaking intensity maps published by the USGS after the 2010 Haiti Earthquake, are compared with the fragility functions computed in the present study. Building data come from field surveys of 6,347 buildings that are grouped with respect to structural material type and number of stories. For damage assessment, the European Macroseismic Scale (EMS-98) damage grades are adopted. The simplest way to account for the variability in ground motion input could have been achieved by employing different ground motion prediction equations (GMPEs) and their standard variations. However, in this work, we prefer to rely on stochastically simulated ground motions of the Haiti earthquake. We employ five different source models available in the literature and calculate the resulting strong ground motion in time domain. In our simulations we also consider the local site effects by published studies on NEHRP site classes and micro-zoning maps of the city of Port-au-Prince. We estimate the regional distributions from the waveforms simulated at the same coordinates that we have damage information from. The estimated spatial distributions of peak ground accelerations and velocities, PGA and PGV respectively, are then used as input to fragility computations. The results show that changing the ground motion input causes significant variability in the resulting fragility functions.

  8. Site response zones and short-period earthquake ground motion projections for the Las Vegas Basin

    Indian Academy of Sciences (India)

    Barbara Luke; Ying Liu

    2008-11-01

    A deterministic seismic hazard analysis was conducted to address the effect of local soil conditions on earthquake-induced strong ground motion in the Las Vegas Basin, Nevada (US). Using a large geological and geotechnical database, two response units were defined: a fine-grained unit, predominantly clay; and a coarse-grained unit, predominantly gravel. A moderate number of high-quality shallow shear wave velocity measurements were collected from which characteristic shear wave velocity profiles were developed for each response unit. An equivalent-linear one-dimensional site response model was used. The model was calibrated using a basin-wide, small-strain ground motion database. Calibration tests showed that ground motion projections become increasingly conservative with increasing ground-motion amplitude. Projections were overconservative for the coarsegrained response unit, likely due to the sparseness of the velocity database. For the earthquake response analyses, historical ground motions were used to model characteristic ‘bedrock’ motion for earthquakes on 10 faults judged to be critical. Response spectral envelopes were generated for each unit through Monte-Carlo simulations. For the fine-grained response unit, 95th percentile peak ground acceleration, peak spectral acceleration and predominant period were 310 cm/s2, 1100cm/s2, and 0.29 s, respectively. With respect to codified design spectra, projections are lower at short periods and higher at long periods. Projections of peak spectral accelerations for the coarsegrained response unit, were more than double that of codified spectra; however, they are believed to be overconservative. Near-fault effects and basin-edge effects, though potentially important, were not considered in these analyses.

  9. Seismic hazard assessment for Myanmar: Earthquake model database, ground-motion scenarios, and probabilistic assessments

    Science.gov (United States)

    Chan, C. H.; Wang, Y.; Thant, M.; Maung Maung, P.; Sieh, K.

    2015-12-01

    We have constructed an earthquake and fault database, conducted a series of ground-shaking scenarios, and proposed seismic hazard maps for all of Myanmar and hazard curves for selected cities. Our earthquake database integrates the ISC, ISC-GEM and global ANSS Comprehensive Catalogues, and includes harmonized magnitude scales without duplicate events. Our active fault database includes active fault data from previous studies. Using the parameters from these updated databases (i.e., the Gutenberg-Richter relationship, slip rate, maximum magnitude and the elapse time of last events), we have determined the earthquake recurrence models of seismogenic sources. To evaluate the ground shaking behaviours in different tectonic regimes, we conducted a series of tests by matching the modelled ground motions to the felt intensities of earthquakes. Through the case of the 1975 Bagan earthquake, we determined that Atkinson and Moore's (2003) scenario using the ground motion prediction equations (GMPEs) fits the behaviours of the subduction events best. Also, the 2011 Tarlay and 2012 Thabeikkyin events suggested the GMPEs of Akkar and Cagnan (2010) fit crustal earthquakes best. We thus incorporated the best-fitting GMPEs and site conditions based on Vs30 (the average shear-velocity down to 30 m depth) from analysis of topographic slope and microtremor array measurements to assess seismic hazard. The hazard is highest in regions close to the Sagaing Fault and along the Western Coast of Myanmar as seismic sources there have earthquakes occur at short intervals and/or last events occurred a long time ago. The hazard curves for the cities of Bago, Mandalay, Sagaing, Taungoo and Yangon show higher hazards for sites close to an active fault or with a low Vs30, e.g., the downtown of Sagaing and Shwemawdaw Pagoda in Bago.

  10. On the Relation of Earthquake Stress Drop and Ground Motion Variability

    Science.gov (United States)

    Oth, A.; Miyake, H.; Bindi, D.

    2015-12-01

    The physical properties of the seismic source play a major role in the generation of earthquake ground motions. One of the key parameters typically used in this context is the so-called stress drop since it can be directly linked to the high-frequency spectral level of ground motion, and it is an important input parameter for ground motion modeling. At the same time, classically determined stress drop estimates from moment-corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than might be expected from the decomposition of ground motion variability into its between-event and within-event components following the random effects approach (Cotton et al., 2013). This discrepancy raises the question of whether classically determined stress drop variability is too large, which would have significant implications for ground motion prediction in seismic hazard analysis. We use the rich high-quality accelerometric databases available in Japan to derive non-parametric ground motion models on these data that serve as reference models. We then investigate the relation between the between-event terms for the individual earthquakes from these regressions with stress drop estimates determined nation-wide for crustal earthquakes. As a complement to the non-parametric models, we also apply a parametric mixed effects modeling approach to investigate the influence of between-event, between-region and between-sequence variability. The analysis is carried out for JMA equivalent seismic intensity, PGA and PGV data. Our results indicate a clear correlation of the between-event terms with stress drops estimates, both for non-parametric and parametric approaches - however with the interesting effect of the appearance of two major families of events with widely different stress drop, yet similar range of between-event terms. This effect is in agreement with the observation made by Cotton et al. (2013) that the between-event ground motion

  11. A summary of ground motion effects at SLAC (Stanford Linear Accelerator Center) resulting from the Oct 17th 1989 earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ruland, R.E.

    1990-08-01

    Ground motions resulting from the October 17th 1989 (Loma Prieta) earthquake are described and can be correlated with some geologic features of the SLAC site. Recent deformations of the linac are also related to slow motions observed over the past 20 years. Measured characteristics of the earthquake are listed. Some effects on machine components and detectors are noted. 18 refs., 16 figs.

  12. ARMA models for earthquake ground motions. Seismic safety margins research program

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.; Oliver, R. M.; Pister, K. S.

    1981-02-01

    Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulating earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.

  13. Site dependence of far-source ground motions during the Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    Longjun Xu; Haiying Yu; Wenhai Cao; Lili Xie

    2009-01-01

    This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes 1 to III. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.

  14. Synthetic seismograms of ground motion near earthquake fault using simulated Green's function method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; ZHAO Zhao; XU Jiren; Ryuji Kubota

    2006-01-01

    Seismograms near source fault were synthesized using the hybrid empirical Green's function method where he discretely simulated seismic waveforms are used for Green's functions instead of the observed waveforms of small earthquakes. The Green's function seismic waveforms for small earthquake were calculated by solving wave equation using the pseudo-spectral method with the staggered grid real FFT strategy under a detailed 2-D velocity structure in Kobe region. Magnitude and seismic moment of simulated Green's function waveforms were firstly determined by using the relationship between fault length and corner frequency of source spectrum. The simulated Green's function waveforms were employed to synthesize seismograms of strong ground motion near the earthquake fault. The synthetic seismograms of the target earthquake were performed based on the model with multiple source rupture processes. The results suggest that synthesized seismograms coincide well with observed seismic waveforms of the 1995 Hyogo-ken Nanbu earthquake. The simulated Green's function method is very useful for prediction of the strong ground motion in region without observed seismic waveforms.The present technique spreads application field of the empirical Green's function method.

  15. Instantaneous spectrum estimation of earthquake ground motions based on unscented Kalman filter method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.

  16. Prediction of near-field strong ground motions for scenario earthquakes on active fault

    Institute of Scientific and Technical Information of China (English)

    Wang Haiyun; Xie Lili; Tao Xiaxin; Li Jie

    2006-01-01

    A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First,macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width,rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws.Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic corner frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.

  17. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    Science.gov (United States)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using

  18. Validation of Broadband Ground Motion Simulations for Japanese Crustal Earthquakes by the Recipe

    Science.gov (United States)

    Iwaki, A.; Maeda, T.; Morikawa, N.; Miyake, H.; Fujiwara, H.

    2015-12-01

    The Headquarters for Earthquake Research Promotion (HERP) of Japan has organized the broadband ground motion simulation method into a standard procedure called the "recipe" (HERP, 2009). In the recipe, the source rupture is represented by the characterized source model (Irikura and Miyake, 2011). The broadband ground motion time histories are computed by a hybrid approach: the 3-D finite-difference method (Aoi et al. 2004) and the stochastic Green's function method (Dan and Sato, 1998; Dan et al. 2000) for the long- (> 1 s) and short-period (structure model. As the engineering significance of scenario earthquake ground motion prediction is increasing, thorough verification and validation are required for the simulation methods. This study presents the self-validation of the recipe for two MW6.6 crustal events in Japan, the 2000 Tottori and 2004 Chuetsu (Niigata) earthquakes. We first compare the simulated velocity time series with the observation. Main features of the velocity waveforms, such as the near-fault pulses and the large later phases on deep sediment sites are well reproduced by the simulations. Then we evaluate 5% damped pseudo acceleration spectra (PSA) in the framework of the SCEC Broadband Platform (BBP) validation (Dreger et al. 2015). The validation results are generally acceptable in the period range 0.1 - 10 s, whereas those in the shortest period range (0.01-0.1 s) are less satisfactory. We also evaluate the simulations with the 1-D velocity structure models used in the SCEC BBP validation exercise. Although the goodness-of-fit parameters for PSA do not significantly differ from those for the 3-D velocity structure model, noticeable differences in velocity waveforms are observed. Our results suggest the importance of 1) well-constrained 3-D velocity structure model for broadband ground motion simulations and 2) evaluation of time series of ground motion as well as response spectra.

  19. Influence of earthquake ground motion incoherency on multi-support structures

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A linear response history analysis method is used to determine the influence of three factors: geometric incoherency, wave-passage, and local site characteristics on the response of multi-support structures subjected to differential ground motions. A one-span frame and a reduced model of a 24-span bridge, located in Las Vegas, Nevada are studied, in which the influence of each of the three factors and their combinations are analyzed. It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response, which does not exist in structures subjected to uniform excitation. The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.

  20. Attenuation Characteristics of Strong Ground Motions during the Mw 6.1 South Napa Earthquake

    Science.gov (United States)

    Si, H.; Koketsu, K.; Miyake, H.; Ibrahim, R.

    2014-12-01

    The 2014 South Napa earthquake (Mw 6.1, GCMT) occurred near the American Canyon, California, at 3:20 on 24 August 2014. The earthquake is the largest damaging earthquakes in the area since the 1989 Mw 6.9 Loma Prieta earthquake. A large number of strong ground motions were recorded during this earthquake. We discuss the attenuation characteristics of the strong ground motions of the earthquake.The data used in this study are PGAs compiled by the Center for Engineering Strong Motion Data (CESMD), while the records derived at the stations located in a building were excluded. PGA is defined as the larger one among the PGAs of two horizontal components. We use a source model derived based on the waveform inversion by Dreger (2014). Based on the source model, we calculated the fault distance (FD) and the median distance (MED) which defined as the closest distance from a station to the middle line of the fault plane. We compared the observed PGAs with the GMPEs developed both in US (Boore et al., 2014) and Japan (Si and Midorikawa, 1999; Koketsu et al., 2013), as shown in Figure 1 (left, and center). The predictions by the GMPEs are generally consistent with the observations in near-field area, but overestimated at stations farther than about 10 km in fault distance. The reasons of the overestimates are assumed as follows: (1) the backward propagation effects since many far stations are located in bay area, (2) the energy loss when the seismic waves pass through the sharp discontinuities in the shear wave velocity structure. The second reason are taken into account for the case using MED based on the methods used in Si et al. (2012, 15WCEE). The corrected predictions are significantly improved (Figure 1, right).

  1. The Loma Prieta, California, Earthquake of October 17, 1989: Strong Ground Motion and Ground Failure

    Science.gov (United States)

    Coordinated by Holzer, Thomas L.

    1992-01-01

    Professional Paper 1551 describes the effects at the land surface caused by the Loma Prieta earthquake. These effects: include the pattern and characteristics of strong ground shaking, liquefaction of both floodplain deposits along the Pajaro and Salinas Rivers in the Monterey Bay region and sandy artificial fills along the margins of San Francisco Bay, landslides in the epicentral region, and increased stream flow. Some significant findings and their impacts were: * Strong shaking that was amplified by a factor of about two by soft soils caused damage at up to 100 kilometers (60 miles) from the epicenter. * Instrumental recordings of the ground shaking have been used to improve how building codes consider site amplification effects from soft soils. * Liquefaction at 134 locations caused $99.2 million of the total earthquake loss of $5.9 billion. Liquefaction of floodplain deposits and sandy artificial fills was similar in nature to that which occurred in the 1906 San Francisco earthquake and indicated that many areas remain susceptible to liquefaction damage in the San Francisco and Monterey Bay regions. * Landslides caused $30 million in earthquake losses, damaging at least 200 residences. Many landslides showed evidence of movement in previous earthquakes. * Recognition of the similarities between liquefaction and landslides in 1906 and 1989 and research in intervening years that established methodologies to map liquefaction and landslide hazards prompted the California legislature to pass in 1990 the Seismic Hazards Mapping Act that required the California Geological Survey to delineate regulatory zones of areas potentially susceptible to these hazards. * The earthquake caused the flow of many streams in the epicentral region to increase. Effects were noted up to 88 km from the epicenter. * Post-earthquake studies of the Marina District of San Francisco provide perhaps the most comprehensive case history of earthquake effects at a specific site developed for

  2. Validation and modeling of earthquake strong ground motion using a composite source model

    Science.gov (United States)

    Zeng, Y.

    2001-12-01

    Zeng et al. (1994) have proposed a composite source model for synthetic strong ground motion prediction. In that model, the source is taken as a superposition of circular subevents with a constant stress drop. The number of subevents and their radius follows a power law distribution equivalent to the Gutenberg and Richter's magnitude-frequency relation for seismicity. The heterogeneous nature of the composite source model is characterized by its maximum subevent size and subevent stress drop. As rupture propagates through each subevent, it radiates a Brune's pulse or a Sato and Hirasawa's circular crack pulse. The method has been proved to be successful in generating realistic strong motion seismograms in comparison with observations from earthquakes in California, eastern US, Guerrero of Mexico, Turkey and India. The model has since been improved by including scattering waves from small scale heterogeneity structure of the earth, site specific ground motion prediction using weak motion site amplification, and nonlinear soil response using geotechnical engineering models. Last year, I have introduced an asymmetric circular rupture to improve the subevent source radiation and to provide a consistent rupture model between overall fault rupture process and its subevents. In this study, I revisit the Landers, Loma Prieta, Northridge, Imperial Valley and Kobe earthquakes using the improved source model. The results show that the improved subevent ruptures provide an improved effect of rupture directivity compared to our previous studies. Additional validation includes comparison of synthetic strong ground motions to the observed ground accelerations from the Chi-Chi, Taiwan and Izmit, Turkey earthquakes. Since the method has evolved considerably when it was first proposed, I will also compare results between each major modification of the model and demonstrate its backward compatibility to any of its early simulation procedures.

  3. Development of attenuation relation for the near fault ground motion from the characteristic earthquake

    Institute of Scientific and Technical Information of China (English)

    SHI Bao-ping; LIU Bo-yan; ZHANG Jian

    2007-01-01

    A composite source model has been used to simulate a broadband strong ground motion with an associated fault rupture process. A scenario earthquake fault model has been used to generate 1 000 earthquake events with a magnitude of Mw8.0. The simulated results show that, for the characteristic event with a strike-slip faulting, the characteristics of near fault ground motion is strongly dependent on the rupture directivity. If the distance between the sites and fault was given, the ground motion in the forward direction (Site A) is much larger than that in the backward direction (Site C) and that close to the fault (Site B). The SH waves radiated from the fault, which corresponds to the fault-normal component plays a key role in the ground motion amplification. Corresponding to the sites A, B, and C, the statistical analysis shows that the ratio of their aPG is 2.15:1.5:1 and their standard deviations are about 0.12, 0.11, and 0.13, respectively. If these results are applied in the current probabilistic seismic hazard analysis (PSHA), then, for the lower annual frequency of exceedance of peak ground acceleration, the predicted aPG from the hazard curve could reduce by 30% or more compared with the current PSHA model used in the developing of seismic hazard map in the USA. Therefore, with a consideration of near fault ground motion caused by the rupture directivity, the regression model used in the development of the regional attenuation relation should be modified accordingly.

  4. Ground motion following selection of SRS design basis earthquake and associated deterministic approach. Final report: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section`s Seismic Qualification Program for reactor restart.

  5. Ground motion observations of the South Napa earthquake (M6.0 August 24, 2014)

    Science.gov (United States)

    Baltay, A.

    2014-12-01

    The South Napa earthquake generated peak ground motions in excess of 50%g and 50 cm/s in Napa Valley and also along strike to the south, and was recorded at 17 stations within 20 km rupture distance (Rrup) of the finite fault plane, 115 stations within 50 km, and 246 within 100 km. We compare the densely recorded ground motions to existing ground motion prediction equations (GMPEs) to understand both the spatial distribution of ground-motion amplitudes and also the relative excitation and attenuation terms from the earthquake. Using the ground-motion data as reported by ShakeMap, we examine the peak ground acceleration (PGA) and velocity, as well as the pseudo-spectral acceleration (PSA) at 0.3, 1.0 and 3.0 seconds, adjusted empirically to a single site condition of 760 m/s. Overall, the ground motions on the north-south components are larger than those on the east-west, consistent with both the generally north-south strike of the fault and the rupture directivity. At the higher frequencies (PGA and PSA of 0.3 s), the close data are very consistent with the GMPEs, implying a median stress drop near 5 MPa. For the longer period data, the GMPEs underpredict the data at close stations. At all frequencies, the distance attenuation seems to be stronger than the GMPEs would predict, which could either be a station coverage bias, given that most of the stations are to the south of the epicenter, or may indicate that the attenuation structure in the Napa and delta region is stronger than the average attenuation in California, on which the GMPEs were built. The spatial plot of the ground motion residuals is positive to the north, in both Napa and Sonoma Valley, consistent with both the directivity and basin effect. More interestingly, perhaps, is that there is strong ground motion to the south, as well, in the along-strike direction, particularly for PSA at 1.0s. These strongly positive residuals align along an older, Quaternary fault structure associated with the Franklin

  6. Report of Earthquake Drills with Experiences of Ground Motion in Childcare for Young Children, Japan

    Science.gov (United States)

    Yamada, N.

    2013-12-01

    After the Great East Japan Earthquake of 2011, this disaster has become one of the opportunities to raise awareness of earthquake and tsunami disaster prevention, and the improvement of disaster prevention education is to be emphasized. The influences of these bring the extension to the spatial axis in Japan, and also, it is important to make a development of the education with continuous to the expansion of time axes. Although fire or earthquake drills as the disaster prevention education are often found in Japan, the children and teachers only go from school building to outside. Besides, only the shortness of the time to spend for the drill often attracts attention. The complementary practice education by the cooperation with experts such as the firefighting is practiced, but the verification of the effects is not enough, and it is the present conditions that do not advance to the study either. Although it is expected that improvement and development of the disaster prevention educations are accomplished in future, there are a lot of the problems. Our target is construction and utilization of material contributing to the education about "During the strong motion" in case of the earthquake which may experience even if wherever of Japan. One of the our productions is the handicraft shaking table to utilize as teaching tools of the education to protect the body which is not hurt at the time of strong motion. This made much of simplicity than high reproduction of the earthquake ground motions. We aimed to helping the disaster prevention education including not only the education for young children but also for the school staff and their parents. In this report, the focusing on a way of the non-injured during the time of the earthquake ground motion, and adopting activity of the play, we are going to show the example of the framework of earthquake disaster prevention childcare through the virtual experience. This presentation has a discussion as a practice study with

  7. Modeling earthquake ground motion with an earthquake simulation program (EMPSYN) that utilizes empirical Green's functions

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.

    1992-01-01

    This report outlines a method of using empirical Green's functions in an earthquake simulation program EMPSYN that provides realistic seismograms from potential earthquakes. The theory for using empirical Green's functions is developed, implementation of the theory in EMPSYN is outlined, and an example is presented where EMPSYN is used to synthesize observed records from the 1971 San Fernando earthquake. To provide useful synthetic ground motion data from potential earthquakes, synthetic seismograms should model frequencies from 0.5 to 15.0 Hz, the full wave-train energy distribution, and absolute amplitudes. However, high-frequency arrivals are stochastically dependent upon the inhomogeneous geologic structure and irregular fault rupture. The fault rupture can be modeled, but the stochastic nature of faulting is largely an unknown factor in the earthquake process. The effect of inhomogeneous geology can readily be incorporated into synthetic seismograms by using small earthquakes to obtain empirical Green's functions. Small earthquakes with source corner frequencies higher than the site recording limit f{sub max}, or much higher than the frequency of interest, effectively have impulsive point-fault dislocation sources, and their recordings are used as empirical Green's functions. Since empirical Green's functions are actual recordings at a site, they include the effects on seismic waves from all geologic inhomogeneities and include all recordable frequencies, absolute amplitudes, and all phases. They scale only in amplitude with differences in seismic moment. They can provide nearly the exact integrand to the representation relation. Furthermore, since their source events have spatial extent, they can be summed to simulate fault rupture without loss of information, thereby potentially computing the exact representation relation for an extended source earthquake.

  8. Earthquake ground-motion in presence of source and medium heterogeneities

    KAUST Repository

    Vyas, Jagdish Chandra

    2017-01-01

    This dissertation work investigates the effects of earthquake rupture complexity and heterogeneities in Earth structure on near-field ground-motions. More specifically, we address two key issues in seismology: (1) near-field ground-shaking variability as function of distance and azimuth for unilateral directive ruptures, and (2) impact of rupture complexity and seismic scattering on Mach wave coherence associated with supershear rupture propagation. We examine earthquake ground-motion variability associated with unilateral ruptures based on ground-motion simulations of the MW 7.3 1992 Landers earthquake, eight simplified source models, and a MW 7.8 rupture simulation (ShakeOut) for the San Andreas fault. Our numerical modeling reveals that the ground-shaking variability in near-fault distances (< 20 km) is larger than that given by empirical ground motion prediction equations. In addition, the variability decreases with increasing distance from the source, exhibiting a power-law decay. The high near-field variability can be explained by strong directivity effects whose influence weaken as we move away from the fault. At the same time, the slope of the power-law decay is found to be dominantly controlled by slip heterogeneity. Furthermore, the ground-shaking variability is high in the rupture propagation direction whereas low in the directions perpendicular to it. However, the variability expressed as a function of azimuth is not only sensitive to slip heterogeneity, but also to rupture velocity. To study Mach wave coherence for supershear ruptures, we consider heterogeneities in rupture parameters (variations in slip, rise time and rupture speed) and 3D scattering media having small-scale random heterogeneities. The Mach wave coherence is reduced at near-fault distances (< 10 km) by the source heterogeneities. At the larger distances from the source, medium scattering plays the dominant role in reducing the Mach wave coherence. Combined effect of the source and

  9. Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion

    Science.gov (United States)

    Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.

    2014-01-01

    The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.

  10. Ground Motions during the 2015 Gorkha, Nepal, Earthquake: An Expected Event that Defied Expectations

    Science.gov (United States)

    Hough, S. E.; Martin, S. S.; Dixit, A. M.; Shrestha, S.; Guragain, R.; Cochran, E. S.; Sumy, D. F.; Ringler, A. T.; McNamara, D. E.; Asimaki, D.; Bilham, R. G.; Mencin, D.; Galetzka, J.; Luetgert, J. H.; Meng, L.; Ampuero, J. P.; Rajaure, S.

    2015-12-01

    Earthquakes with magnitudes close to, and exceeding, Mw8 have long been expected along the Himalayan arc. A repeat of the 1934 Bihar-Nepal earthquake was expected to cause heavy damage, with as many as 40,000 fatalities in Kathmandu Valley. The 2015 Gorkha earthquake was smaller than the 1934 event, but unlike the 1934 earthquake, involved rupture of the segment of the Main Central Thrust directly beneath the valley. Despite the large magnitude and proximity to the valley, the damage was lower than expected. Throughout Kathmandu Valley as well as the near-field region, European Macroseismic Scale intensities exceeded 8 in only rare instances. The extent of landsliding and liquefaction was also lower than had been expected (Collins and Jibson, 2015). Strong motion data from one conventional (NetQuakes) instrument, several low-cost MEMS accelerometers, and high-rate GPS provide insights into the extent to which mainshock and aftershock ground motions were controlled by source, path, and site effects. Mainshock horizontal peak accelerations recorded in central Kathmandu were ≈0.16g, with shaking strongly peaked near 5 s. The long period character of the mainshock can be attributed in part to source properties (Avouac et al., 2015). The expected basin response resonance (≈1-3-s period) is, however, also absent in the mainshock coda, but present in the coda of large aftershocks. A progressive shift in predominant period is also observed over ≈10 minutes following the mainshock. We conclude that shallow soft sediments underlying Kathmandu Valley responded nonlinearly during the mainshock, such that the predominant period of amplification was shifted to longer periods than the weak-motion resonance, and high frequencies were deamplified. Mainshock ground motions, controlled by site and well as source effects, were therefore concentrated at periods that were too long to significantly impact vernacular structures in Kathmandu Valley, most of which are between 3

  11. Ground-Motion Simulations of Scenario Earthquakes on the Hayward Fault

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Graves, R; Larsen, S; Ma, S; Rodgers, A; Ponce, D; Schwartz, D; Simpson, R; Graymer, R

    2009-03-09

    We compute ground motions in the San Francisco Bay area for 35 Mw 6.7-7.2 scenario earthquake ruptures involving the Hayward fault. The modeled scenarios vary in rupture length, hypocenter, slip distribution, rupture speed, and rise time. This collaborative effort involves five modeling groups, using different wave propagation codes and domains of various sizes and resolutions, computing long-period (T > 1-2 s) or broadband (T > 0.1 s) synthetic ground motions for overlapping subsets of the suite of scenarios. The simulations incorporate 3-D geologic structure and illustrate the dramatic increase in intensity of shaking for Mw 7.05 ruptures of the entire Hayward fault compared with Mw 6.76 ruptures of the southern two-thirds of the fault. The area subjected to shaking stronger than MMI VII increases from about 10% of the San Francisco Bay urban area in the Mw 6.76 events to more than 40% of the urban area for the Mw 7.05 events. Similarly, combined rupture of the Hayward and Rodgers Creek faults in a Mw 7.2 event extends shaking stronger than MMI VII to nearly 50% of the urban area. For a given rupture length, the synthetic ground motions exhibit the greatest sensitivity to the slip distribution and location inside or near the edge of sedimentary basins. The hypocenter also exerts a strong influence on the amplitude of the shaking due to rupture directivity. The synthetic waveforms exhibit a weaker sensitivity to the rupture speed and are relatively insensitive to the rise time. The ground motions from the simulations are generally consistent with Next Generation Attenuation ground-motion prediction models but contain long-period effects, such as rupture directivity and amplification in shallow sedimentary basins that are not fully captured by the ground-motion prediction models.

  12. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    Science.gov (United States)

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  13. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    Science.gov (United States)

    Bydlon, Samuel A.; Dunham, Eric M.

    2015-03-01

    We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ˜20 km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ˜3 km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length.

  14. Estimation of regression laws for ground motion parameters using as case of study the Amatrice earthquake

    Science.gov (United States)

    Tiberi, Lara; Costa, Giovanni

    2017-04-01

    The possibility to directly associate the damages to the ground motion parameters is always a great challenge, in particular for civil protections. Indeed a ground motion parameter, estimated in near real time that can express the damages occurred after an earthquake, is fundamental to arrange the first assistance after an event. The aim of this work is to contribute to the estimation of the ground motion parameter that better describes the observed intensity, immediately after an event. This can be done calculating for each ground motion parameter estimated in a near real time mode a regression law which correlates the above-mentioned parameter to the observed macro-seismic intensity. This estimation is done collecting high quality accelerometric data in near field, filtering them at different frequency steps. The regression laws are calculated using two different techniques: the non linear least-squares (NLLS) Marquardt-Levenberg algorithm and the orthogonal distance methodology (ODR). The limits of the first methodology are the needed of initial values for the parameters a and b (set 1.0 in this study), and the constraint that the independent variable must be known with greater accuracy than the dependent variable. While the second algorithm is based on the estimation of the errors perpendicular to the line, rather than just vertically. The vertical errors are just the errors in the 'y' direction, so only for the dependent variable whereas the perpendicular errors take into account errors for both the variables, the dependent and the independent. This makes possible also to directly invert the relation, so the a and b values can be used also to express the gmps as function of I. For each law the standard deviation and R2 value are estimated in order to test the quality and the reliability of the found relation. The Amatrice earthquake of 24th August of 2016 is used as case of study to test the goodness of the calculated regression laws.

  15. Study on Site Specific Design Earthquake Ground Motion of Nuclear Power Plants in China1

    Institute of Scientific and Technical Information of China (English)

    Zhou Bochang; Li Xiaojun; Li Yaqi

    2008-01-01

    The main technical backgrounds and requirements are introduced with regard to earthquake ground motion design parameters in several domestic and American standards,codes and guides involved in the seismic analysis and design activities of nuclear power plants in China.Based on the research results from site seismic safety evaluation of domestic nuclear power plant projects in the last years,characteristics and differences of site specific design spectra are analyzed in comparison with standard response spectra,and the suitability of standard response spectra for domestic nuclear power plant projects is discussed.

  16. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  17. Ground motion prediction and earthquake scenarios in the volcanic region of Mt. Etna (Southern Italy

    Science.gov (United States)

    Langer, Horst; Tusa, Giuseppina; Luciano, Scarfi; Azzaro, Raffaela

    2013-04-01

    One of the principal issues in the assessment of seismic hazard is the prediction of relevant ground motion parameters, e. g., peak ground acceleration, radiated seismic energy, response spectra, at some distance from the source. Here we first present ground motion prediction equations (GMPE) for horizontal components for the area of Mt. Etna and adjacent zones. Our analysis is based on 4878 three component seismograms related to 129 seismic events with local magnitudes ranging from 3.0 to 4.8, hypocentral distances up to 200 km, and focal depth shallower than 30 km. Accounting for the specific seismotectonic and geological conditions of the considered area we have divided our data set into three sub-groups: (i) Shallow Mt. Etna Events (SEE), i.e., typically volcano-tectonic events in the area of Mt. Etna having a focal depth less than 5 km; (ii) Deep Mt. Etna Events (DEE), i.e., events in the volcanic region, but with a depth greater than 5 km; (iii) Extra Mt. Etna Events (EEE), i.e., purely tectonic events falling outside the area of Mt. Etna. The predicted PGAs for the SEE are lower than those predicted for the DEE and the EEE, reflecting their lower high-frequency energy content. We explain this observation as due to the lower stress drops. The attenuation relationships are compared to the ones most commonly used, such as by Sabetta and Pugliese (1987)for Italy, or Ambraseys et al. (1996) for Europe. Whereas our GMPEs are based on small earthquakes, the magnitudes covered by the two above mentioned attenuation relationships regard moderate to large magnitudes (up to 6.8 and 7.9, respectively). We show that the extrapolation of our GMPEs to magnitues beyond the range covered by the data is misleading; at the same time also the afore mentioned relationships fail to predict ground motion parameters for our data set. Despite of these discrepancies, we can exploit our data for setting up scenarios for strong earthquakes for which no instrumental recordings are

  18. Mechanism and bounding of earthquake energy input to building structure on surface ground subjected to engineering bedrock motion

    OpenAIRE

    Kojima, K; Sakaguchi, K; Takewaki, I.

    2015-01-01

    The mechanism of earthquake energy input to building structures is clarified by considering the surface ground amplification and soil–structure interaction. The earthquake input energies to superstructures, soil–foundation systems and total swaying–rocking system are obtained by taking the corresponding appropriate free bodies into account and defining the energy transfer functions. It has been made clear that, when the ground surface motion is white, the input energy to the swaying–rocking m...

  19. Simulation of strong ground motion parameters of the 1 June 2013 Gulf of Suez earthquake, Egypt

    Science.gov (United States)

    Toni, Mostafa

    2017-06-01

    This article aims to simulate the ground motion parameters of the moderate magnitude (ML 5.1) June 1, 2013 Gulf of Suez earthquake, which represents the largest instrumental earthquake to be recorded in the middle part of the Gulf of Suez up to now. This event was felt in all cities located on both sides of the Gulf of Suez, with minor damage to property near the epicenter; however, no casualties were observed. The stochastic technique with the site-dependent spectral model is used to simulate the strong ground motion parameters of this earthquake in the cities located at the western side of the Gulf of Suez and north Red Sea namely: Suez, Ain Sokhna, Zafarana, Ras Gharib, and Hurghada. The presence of many tourist resorts and the increase in land use planning in the considered cities represent the motivation of the current study. The simulated parameters comprise the Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and Peak Ground Displacement (PGD), in addition to Pseudo Spectral Acceleration (PSA). The model developed for ground motion simulation is validated by using the recordings of three accelerographs installed around the epicenter of the investigated earthquake. Depending on the site effect that has been determined in the investigated areas by using geotechnical data (e.g., shear wave velocities and microtremor recordings), the investigated areas are classified into two zones (A and B). Zone A is characterized by higher site amplification than Zone B. The ground motion parameters are simulated at each zone in the considered areas. The results reveal that the highest values of PGA, PGV, and PGD are observed at Ras Gharib city (epicentral distance ∼ 11 km) as 67 cm/s2, 2.53 cm/s, and 0.45 cm respectively for Zone A, and as 26.5 cm/s2, 1.0 cm/s, and 0.2 cm respectively for Zone B, while the lowest values of PGA, PGV, and PGD are observed at Suez city (epicentral distance ∼ 190 km) as 3.0 cm/s2, 0.2 cm/s, and 0.05 cm/s respectively for Zone A

  20. Application of universal kriging for estimation of earthquake ground motion: Statistical significance of results

    Energy Technology Data Exchange (ETDEWEB)

    Carr, J.R.; Roberts, K.P.

    1989-02-01

    Universal kriging is compared with ordinary kriging for estimation of earthquake ground motion. Ordinary kriging is based on a stationary random function model; universal kriging is based on a nonstationary random function model representing first-order drift. Accuracy of universal kriging is compared with that for ordinary kriging; cross-validation is used as the basis for comparison. Hypothesis testing on these results shows that accuracy obtained using universal kriging is not significantly different from accuracy obtained using ordinary kriging. Test based on normal distribution assumptions are applied to errors measured in the cross-validation procedure; t and F tests reveal no evidence to suggest universal and ordinary kriging are different for estimation of earthquake ground motion. Nonparametric hypothesis tests applied to these errors and jackknife statistics yield the same conclusion: universal and ordinary kriging are not significantly different for this application as determined by a cross-validation procedure. These results are based on application to four independent data sets (four different seismic events).

  1. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    KAUST Repository

    Bydlon, Samuel A.

    2015-03-21

    ©2015. American Geophysical Union. All Rights Reserved. We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ∼20km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length. Key Points Fault roughness, not material heterogeneity, dominates rupture process Introduce parameter that can be used to quantify near-fault scattering Scattering affects the duration and amplitude of high-frequency ground motions

  2. Dynamic Response and Ground-Motion Effects of Building Clusters During Large Earthquakes

    Science.gov (United States)

    Isbiliroglu, Y. D.; Taborda, R.; Bielak, J.

    2012-12-01

    The objective of this study is to analyze the response of building clusters during earthquakes, the effect that they have on the ground motion, and how individual buildings interact with the surrounding soil and with each other. We conduct a series of large-scale, physics-based simulations that synthesize the earthquake source and the response of entire building inventories. The configuration of the clusters, defined by the total number of buildings, their number of stories, dynamic properties, and spatial distribution and separation, is varied for each simulation. In order to perform these simulations efficiently while recurrently modifying these characteristics without redoing the entire "source to building structure" simulation every time, we use the Domain Reduction Method (DRM). The DRM is a modular two-step finite-element methodology for modeling wave propagation problems in regions with localized features. It allows one to store and reuse the background motion excitation of subdomains without loss of information. Buildings are included in the second step of the DRM. Each building is represented by a block model composed of additional finite-elements in full contact with the ground. These models are adjusted to emulate the general geometric and dynamic properties of real buildings. We conduct our study in the greater Los Angeles basin, using the main shock of the 1994 Northridge earthquake for frequencies up to 5Hz. In the first step of the DRM we use a domain of 82 km x 82 km x 41 km. Then, for the second step, we use a smaller sub-domain of 5.12 km x 5.12 km x 1.28 km, with the buildings. The results suggest that site-city interaction effects are more prominent for building clusters in soft-soil areas. These effects consist in changes in the amplitude of the ground motion and dynamic response of the buildings. The simulations are done using Hercules, the parallel octree-based finite-element earthquake simulator developed by the Quake Group at Carnegie

  3. Effects and implications of fault zone heterogeneity and anisotropy on earthquake strong ground motion

    Science.gov (United States)

    Su, Wei-Jou

    This thesis consists of two parts. Part one is concerned with the effect of fault zone heterogeneity on the strong ground motion of the Loma Preita earthquake. Part two is concerned with the effect of the effective hexagonal anisotropy of a fault zone on strong ground motion. A superposition of Gaussian beams is used to analyze these problems because it can account for both the rupture history of the fault plane and the fault zone heterogeneity. We also extend this method to investigate the combined effects of the rupture process on a fault plane and medium anisotropy on the synthetic seismograms. The strong ground motion of the Loma Prieta Earthquake is synthesized using a known three-dimensional crustal model of the region, a rupture model determined under the assumption of laterally homogeneous structure, and Green's functions computed by superposition of Gaussian beams. Compared to results obtained assuming a laterally homogeneous crust, stations lying to the northeast of the rupture zone are predicted to be defocused, while stations lying to the west of the fault trace are predicted to be focused. The defocusing is caused by a zone of high velocity material between the San Andreas and Sargent faults, and the focusing is caused by a region of low velocity lying between the Zayantes and San Andreas faults. If lateral homogeneity is assumed, the net effect of the predicted focusing and defocusing is to bias estimates of the relative slip of two high slip regions found in inversions of local and teleseismic body waves. These biases are similar in magnitude to those estimated for waveform inversions from the effects of using different subsets of data and/or different misfit functions and are similar in magnitude to the effects predicted for non-linear site responses.

  4. Three-dimensional ground-motion simulations of earthquakes for the Hanford area, Washington

    Science.gov (United States)

    Frankel, Arthur; Thorne, Paul; Rohay, Alan

    2014-01-01

    This report describes the results of ground-motion simulations of earthquakes using three-dimensional (3D) and one-dimensional (1D) crustal models conducted for the probabilistic seismic hazard assessment (PSHA) of the Hanford facility, Washington, under the Senior Seismic Hazard Analysis Committee (SSHAC) guidelines. The first portion of this report demonstrates that the 3D seismic velocity model for the area produces synthetic seismograms with characteristics (spectral response values, duration) that better match those of the observed recordings of local earthquakes, compared to a 1D model with horizontal layers. The second part of the report compares the response spectra of synthetics from 3D and 1D models for moment magnitude (M) 6.6–6.8 earthquakes on three nearby faults and for a dipping plane wave source meant to approximate regional S-waves from a Cascadia great earthquake. The 1D models are specific to each site used for the PSHA. The use of the 3D model produces spectral response accelerations at periods of 0.5–2.0 seconds as much as a factor of 4.5 greater than those from the 1D models for the crustal fault sources. The spectral accelerations of the 3D synthetics for the Cascadia plane-wave source are as much as a factor of 9 greater than those from the 1D models. The differences between the spectral accelerations for the 3D and 1D models are most pronounced for sites with thicker supra-basalt sediments and for stations with earthquakes on the Rattlesnake Hills fault and for the Cascadia plane-wave source.

  5. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  6. Ground Motions in the Near Field of the November 3, 2002 Denali Fault, Alaska, Earthquake

    Science.gov (United States)

    Ellsworth, W. L.; Celebi, M.; Evans, J. R.; Jensen, E. G.; Metz, M. C.; Nyman, D. J.; Roddick, J. W.; Stephens, C. D.; Spudich, P. A.

    2003-12-01

    A free-field strong-motion recording of the Denali Fault, Alaska, Earthquake was obtained by Alyeska Pipeline Service Company just 3 km from where the Denali Fault slipped over 5 m horizontally and 1 m vertically in the earthquake. The instrument was part of the monitoring and control system for the Trans-Alaska Pipeline and was located at Pump Station 10, approximately 84 km east of the epicenter. After correction for a 0.1 Hz high-pass filter, we recover a fault-parallel permanent displacement of the instrument of 2.3 m. Dynamic ground motions during the earthquake have relatively low acceleration (0.39 g) and very high velocity (1.86 m/s). The most intense motions occurred during a 1.5 s interval generated by the propagation of the rupture front past the site. Growth of the fault-parallel displacement is nearly monotonic, with over half of the permanent displacement occurring during this 1.5 s interval. Preliminary modeling suggests that the rupture velocity exceeded the shear wave velocity near the instrument, and that the peak slip velocity on the fault exceeds several m/s. The low accelerations and high velocities observed near the fault in this earthquake agree with observations from other recent large-magnitude earthquakes. Following the earthquake, the permanent displacement of the support structure for the pipeline and other geodetic reference points was determined by GPS survey along more than 50 miles of the pipeline route. These permanent displacement data display a clear signature of elastic rebound, with displacement amplitudes decreasing with increasing distance from the fault trace. The best-fitting model consisting of a uniform dislocation in an elastic half-space has 6 m of right-lateral fault slip from the surface to a depth of 11 km. This model predicts 2.4 m of displacement at Pump Station 10, in good agreement with the strong motion displacement measurement. At the fault crossing, additional displacements were determined from orthographically

  7. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  8. Validation of a ground motion synthesis and prediction methodology for the 1988, M=6.0, Saguenay Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.; Jarpe, S.; Kasameyer, P.; Foxall, W.

    1998-01-01

    We model the 1988, M=6.0, Saguenay earthquake. We utilize an approach that has been developed to predict strong ground motion. this approach involves developing a set of rupture scenarios based upon bounds on rupture parameters. rupture parameters include rupture geometry, hypocenter, rupture roughness, rupture velocity, healing velocity (rise times), slip distribution, asperity size and location, and slip vector. Scenario here refers to specific values of these parameters for an hypothesized earthquake. Synthetic strong ground motion are then generated for each rupture scenario. A sufficient number of scenarios are run to span the variability in strong ground motion due to the source uncertainties. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the one standard deviation value of engineering parameters we have introduced a probabilistic component to the deterministic hazard calculation, For this study we developed bounds on rupture scenarios from previous research on this earthquake. The time history closest to the observed ground motion was selected as a model for the Saguenay earthquake.

  9. S2-Project: Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Faccioli, E.; Stupazzini, M.; Galadini, F.; Gori, S.

    2008-12-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems" , the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and

  10. Ground motion-simulations of 1811-1812 New Madrid earthquakes, central United States

    Science.gov (United States)

    Ramirez-Guzman, L.; Graves, Robert; Olsen, Kim B.; Boyd, Oliver; Cramer, Chris H.; Hartzell, Stephen; Ni, Sidao; Somerville, Paul G.; Williams, Robert; Zhong, Jinquan

    2015-01-01

    We performed a suite of numerical simulations based on the 1811–1812 New Madrid seismic zone (NMSZ) earthquakes, which demonstrate the importance of 3D geologic structure and rupture directivity on the ground‐motion response throughout a broad region of the central United States (CUS) for these events. Our simulation set consists of 20 hypothetical earthquakes located along two faults associated with the current seismicity trends in the NMSZ. The hypothetical scenarios range in magnitude from M 7.0 to 7.7 and consider various epicenters, slip distributions, and rupture characterization approaches. The low‐frequency component of our simulations was computed deterministically up to a frequency of 1 Hz using a regional 3D seismic velocity model and was combined with higher‐frequency motions calculated for a 1D medium to generate broadband synthetics (0–40 Hz in some cases). For strike‐slip earthquakes located on the southwest–northeast‐striking NMSZ axial arm of seismicity, our simulations show 2–10 s period energy channeling along the trend of the Reelfoot rift and focusing strong shaking northeast toward Paducah, Kentucky, and Evansville, Indiana, and southwest toward Little Rock, Arkansas. These waveguide effects are further accentuated by rupture directivity such that an event with a western epicenter creates strong amplification toward the northeast, whereas an eastern epicenter creates strong amplification toward the southwest. These effects are not as prevalent for simulations on the reverse‐mechanism Reelfoot fault, and large peak ground velocities (>40  cm/s) are typically confined to the near‐source region along the up‐dip projection of the fault. Nonetheless, these basin response and rupture directivity effects have a significant impact on the pattern and level of the estimated intensities, which leads to additional uncertainty not previously considered in magnitude estimates of the 1811–1812 sequence based only on historical

  11. Earthquake Response Analysis of Buildings at The Union Territory of Chandigarh, India, by using Building Vibration Observations due to Weak Earthquake Ground Motions

    Science.gov (United States)

    Takano, K.; Ito, T.; Masuda, T.; Koketsu, K.; Ramancharla, P. K.; Sangam, R.; Bodige, N.; Dasari, H. C.

    2014-12-01

    Understanding the vulnerability of built environment in highly seismic areas is an important component of earthquake risk mitigation. As part of Indo-Japan collaborative research project (DISANET) sponsored by JST and JICA, six sets of building vibration sensors have been installed in the Union Territory of Chandigarh, India. The Union Territory of Chandigarh, India is located at South of the Himalayan Frontal Belt (HFT) is in zone IV of the seismic zone map of India (BIS, 2007). In past few decades, this area has experienced several minor earthquakes and a few moderate earthquakes. In spite of being in high seismic zone, most of the buildings in Chandigarh are designed and constructed for gravity loads only disregarding seismic forces. Such kind of buildings may deteriorate in strength even when they are subjected to minor earthquakes. To understand the response of buildings to micro-tremors, vibration sensors were installed in the building of Department of Geology of Panjab University in July 2012. Subsequently 5 more buildings were instrumented by January 2014. For each building, in order to capture the overall vibration of building during earthquake, vibration sensors of 8 or 10 units are installed to the ground floor, top floor and middle floor of the building. These sensors are continuously monitoring the building vibration and recording all data which include the weak ground motion occurring from near to far earthquakes. Through these sensors, over 20 minor ground motions have been recorded during last two years. Even in these weak ground motions, it was possible to confirm the state of the building response caused by earthquakes. In this presentation, we will introduce some building vibration records caused by the weak ground motion of the earthquakes and discuss the important insights drawn from analysis of recorded data.

  12. A short note on ground-motion recordings from the M 7.9 Wenchuan, China, earthquake and ground-motion prediction equations in the Central and Eastern United States

    Science.gov (United States)

    Wang, Z.; Lu, M.

    2011-01-01

    The 12 May 2008 Wenchuan earthquake (M 7.9) occurred along the western edge of the eastern China SCR and was well recorded by modern strong-motion instruments: 93 strong-motion stations within 1.4 to 300 km rupture distance recorded the main event. Preliminary comparisons show some similarities between ground-motion attenuation in the Wenchuan region and the central and eastern United States, suggesting that ground motions from the Wenchuan earthquake could be used as a database providing constraints for developing GMPEs for large earthquakes in the central and eastern United States.

  13. Source Rupture Process and Near-Fault Ground Motions of the 2016 Kumamoto Earthquake Sequence Estimated from Strong Motion Data

    Science.gov (United States)

    Asano, K.; Iwata, T.

    2016-12-01

    The 2016 Kumamoto earthquake sequence started with an MJMA 6.5 foreshock on April 14, 2016 occurring along the northern part of the Hinagu fault, central Kyushu, Japan, and the MJMA 7.3 mainshock occurred just 28 h after the foreshock. Both events brought severe ground motions to the near-source region. We analyzed the kinematic source rupture processes of the foreshock and mainshock by the multiple time window linear waveform inversion using strong motion data (e.g., Hartzell and Heaton, 1983). The foreshock (Mw 6.1) was characterized by right-lateral strike-slip occurring on a nearly vertical fault plane along the northern part of the Hinagu fault, and it had two large-slip areas: one near the hypocenter and another at a shallow depth. These two large-slip areas mainly contribute ground motions in the near-source area. For the analysis of the mainshock, we assumed a fault geometry changing strike and dip angles along the Hinagu and Futagawa faults in accordance with the surface ruptures mapped by emergency field surveys (Kumahara et al., 2016). We assigned point sources densely with an interval of 0.2 km on the assumed fault planes in order to reproduce appropriately near-fault ground motions, and estimated spatiotemporal slip history, which was discretized with an interval of 1.8 km on the fault planes. The estimated source model reveals that the rupture of the mainshock started at a northwest-dipping fault plane along the Hinagu fault, which is close to the vertical fault plane of the foreshock, and almost continuously propagated across the junction of the Hinagu and Futagawa faults. Then the rupture propagated northeastward along the Futagawa fault, and stopped to rupture in the western part of the Aso caldera. The significant slip with 3-5 m were observed on the Futagawa fault, and shallowest part has slip ranging from 1 to 2 m. We also tried to reproduce ground motions observed at some near-fault strong motion stations, which recorded significant coseismic

  14. Strong ground motion inferred from liquefaction caused by the 1811-1812 New Madrid, Missouri, earthquakes

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.

    2015-01-01

    Peak ground accelerations (PGAs) in the epicentral region of the 1811–1812 New Madrid, Missouri, earthquakes are inferred from liquefaction to have been no greater than ∼0.35g. PGA is inferred in an 11,380  km2 area in the Lower Mississippi Valley in Arkansas and Missouri where liquefaction was extensive in 1811–1812. PGA was inferred by applying liquefaction probability curves, which were originally developed for liquefaction hazard mapping, to detailed maps of liquefaction by Obermeier (1989). The low PGA is inferred because both a shallow (1.5 m deep) water table and a large moment magnitude (M 7.7) earthquake were assumed in the analysis. If a deep (5.0 m) water table and a small magnitude (M 6.8) earthquake are assumed, the maximum inferred PGA is 1.10g. Both inferred PGA values are based on an assumed and poorly constrained correction for sand aging. If an aging correction is not assumed, then the inferred PGA is no greater than 0.22g. A low PGA value may be explained by nonlinear site response. Soils in the study area have an averageVS30 of 220±15  m/s. A low inferred PGA is consistent with PGA values estimated from ground‐motion prediction equations that have been proposed for the New Madrid seismic zone when these estimates are corrected for nonlinear soil site effects. This application of liquefaction probability curves demonstrates their potential usefulness in paleoseismology.

  15. Strong ground motion in the Taipei basin from the 1999 Chi-Chi, Taiwan, earthquake

    Science.gov (United States)

    Fletcher, Joe B.; Wen, K.-L.

    2005-01-01

    The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/ sec2 compared to - 24.2 cm/sec2 for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3 - 0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant

  16. Performance of Irikura Recipe Rupture Model Generator in Earthquake Ground Motion Simulations with Graves and Pitarka Hybrid Approach

    Science.gov (United States)

    Pitarka, Arben; Graves, Robert; Irikura, Kojiro; Miyake, Hiroe; Rodgers, Arthur

    2017-02-01

    We analyzed the performance of the Irikura and Miyake (Pure and Applied Geophysics 168(2011):85-104, 2011) (IM2011) asperity-based kinematic rupture model generator, as implemented in the hybrid broadband ground motion simulation methodology of Graves and Pitarka (Bulletin of the Seismological Society of America 100(5A):2095-2123, 2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0-20 Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (Bulletin of the Seismological Society of America, 2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-West2 Project (NGA-West2) ground motion prediction equations (GMPEs) over the frequency band 0.1-10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-fault distances (1 s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1-3 s where the IM2011 motions are about 20-30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1-3 s bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study. We concluded

  17. Strong ground motion simulation of the 2016 Kumamoto earthquake of April 16 using multiple point sources

    Science.gov (United States)

    Nagasaka, Yosuke; Nozu, Atsushi

    2017-02-01

    The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This

  18. Procedure of evaluating parameters of inland earthquakes caused by long strike-slip faults for ground motion prediction

    Science.gov (United States)

    Ju, Dianshu; Dan, Kazuo; Fujiwara, Hiroyuki; Morikawa, Nobuyuki

    2016-04-01

    We proposed a procedure of evaluating fault parameters of asperity models for predicting strong ground motions from inland earthquakes caused by long strike-slip faults. In order to obtain averaged dynamic stress drops, we adopted the formula obtained by dynamic fault rupturing simulations for surface faults of the length from 15 to 100 km, because the formula of the averaged static stress drops for circular cracks, commonly adopted in existing procedures, cannot be applied to surface faults or long faults. The averaged dynamic stress drops were estimated to be 3.4 MPa over the entire fault and 12.2 MPa on the asperities, from the data of 10 earthquakes in Japan and 13 earthquakes in other countries. The procedure has a significant feature that the average slip on the seismic faults longer than about 80 km is constant, about 300 cm. In order to validate our proposed procedure, we made a model for a 141 km long strike-slip fault by our proposed procedure for strike-slip faults, predicted ground motions, and showed that the resultant motions agreed well with the records of the 1999 Kocaeli, Turkey, earthquake (Mw 7.6) and with the peak ground accelerations and peak ground velocities by the GMPE of Si and Midorikawa (1999).

  19. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  20. 3-D or median map? Earthquake scenario ground-motion maps from physics-based models versus maps from ground-motion prediction equations

    Science.gov (United States)

    Porter, K.

    2015-12-01

    There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.

  1. Hybrid Simulations of the Broadband Ground Motions for the 2008 MS8.0 Wenchuan, China, Earthquake

    Science.gov (United States)

    Yu, X.; Zhang, W.

    2012-12-01

    The Ms8.0 Wenchuan earthquake occurred on 12 May 2008 at 14:28 Beijing Time. It is the largest event happened in the mainland of China since the 1976, Mw7.6, Tangshan earthquake. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and "quake lakes" which formed by landslide-induced reservoirs. These resulted in tremendous losses of life and property. Casualties numbered more than 80,000 people, and there were major economic losses. However, this earthquake is the first Ms 8 intraplate earthquake with good close fault strong motion coverage. Over four hundred strong motion stations of the National Strong Motion Observation Network System (NSMONS) recorded the mainshock. Twelve of them located within 20 km of the fault traces and another 33 stations located within 100 km. These observations, accompanying with the hundreds of GPS vectors and multiple ALOS INSAR images, provide an unprecedented opportunity to study the rupture process of such a great intraplate earthquake. In this study, we calculate broadband near-field ground motion synthetic waveforms of this great earthquake using a hybrid broadband ground-motion simulation methodology, which combines a deterministic approach at low frequencies (f Green's function calculation approach at high frequency ( ~ 10.0 Hz). The fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time that were obtained by an inversion kinematic source model. At the same time, based on the aftershock data, we analyze the site effects for the near-field stations. Frequency-dependent site-amplification values for each station are calculated using genetic algorithms. For the calculation of the synthetic waveforms, at first, we carry out simulations using the hybrid methodology for the frequency up to 10.0 Hz. Then, we consider for the soil site simulations

  2. An Arduino project to record ground motion and to learn on earthquake hazard at high school

    Science.gov (United States)

    Saraò, Angela; Barnaba, Carla; Clocchiatti, Marco; Zuliani, David

    2015-04-01

    Through a multidisciplinary work that integrates Technology education with Earth Sciences, we implemented an educational program to raise the students' awareness of seismic hazard and to disseminate good practices of earthquake safety. Using free software and low-cost open hardware, the students of a senior class of the high school Liceo Paschini in Tolmezzo (NE Italy) implemented a seismograph using the Arduino open-source electronics platform and the ADXL345 sensors to emulate a low cost seismometer (e.g. O-NAVI sensor of the Quake-Catcher Network, http://qcn.stanford.edu). To accomplish their task the students were addressed to use the web resources for technical support and troubleshooting. Shell scripts, running on local computers under Linux OS, controlled the process of recording and display data. The main part of the experiment was documented using the DokuWiki style. Some propaedeutic lessons in computer sciences and electronics were needed to build up the necessary skills of the students and to fill in the gap of their background knowledge. In addition lectures by seismologists and laboratory activity allowed the class to exploit different aspects of the physics of the earthquake and particularly of the seismic waves, and to become familiar with the topics of seismic hazard through an inquiry-based learning. The Arduino seismograph achieved can be used for educational purposes and it can display tremors on the local network of the school. For sure it can record the ground motion due to a seismic event that can occur in the area, but further improvements are necessary for a quantitative analysis of the recorded signals.

  3. Numerical simulation of strong ground motion for the Ms8.0 Wenchuan earthquake of 12 May 2008

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; SHEN Yang; CHEN XiaoFei

    2008-01-01

    The Wenchuan earthquake of 12 May 2008 is the most destructive earthquake in China in the past 30 years in terms of property damage and human losses. In order to understand the earthquake process and the geo-morphological factors affecting the seismic hazard, we simulated the strong ground motion caused by the earthquake, incorporating three-dimensional (3D) earth structure, finite-fault rupture,and realistic surface topography. The simulated ground motions reveal that the fault rupture and basin structure control the overall pattern of the peak ground shaking. Large peak ground velocity (PGV) is distributed in two narrow areas: one with the largest PGV values is above the hanging wall of the fault and attributed to the locations of fault asperities and rupture directivity; the other is along the northwestern margin of the Sichuan Basin and caused by both the directivity of fault rupture and the amplification in the thick sediment basin. Rough topography above the rupture fault causes wave scattering,resulting in significantly larger peak ground motion on the apex of topographic relief than in the valley.Topography and scattering also reduce the wave energy in the forward direction of fault rupture but increase the PGV in other parts of the basin. These results suggest the need for a localized hazard assessment in places of rough topography that takes the topographic effects into account. Finally, had the earthquake started at the northeast end of the fault zone and ruptured to the southwest, Chengdu would have suffered a much stronger shaking than it experienced on 12 May, 2008.

  4. Numerical simulation of strong ground motion for the M_s8.0 Wenchuan earthquake of 12 May 2008

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Wenchuan earthquake of 12 May 2008 is the most destructive earthquake in China in the past 30 years in terms of property damage and human losses. In order to understand the earthquake process and the geo-morphological factors affecting the seismic hazard, we simulated the strong ground mo-tion caused by the earthquake, incorporating three-dimensional (3D) earth structure, finite-fault rupture, and realistic surface topography. The simulated ground motions reveal that the fault rupture and basin structure control the overall pattern of the peak ground shaking. Large peak ground velocity (PGV) is distributed in two narrow areas: one with the largest PGV values is above the hanging wall of the fault and attributed to the locations of fault asperities and rupture directivity; the other is along the north-western margin of the Sichuan Basin and caused by both the directivity of fault rupture and the ampli-fication in the thick sediment basin. Rough topography above the rupture fault causes wave scattering, resulting in significantly larger peak ground motion on the apex of topographic relief than in the valley. Topography and scattering also reduce the wave energy in the forward direction of fault rupture but increase the PGV in other parts of the basin. These results suggest the need for a localized hazard as-sessment in places of rough topography that takes the topographic effects into account. Finally, had the earthquake started at the northeast end of the fault zone and ruptured to the southwest, Chengdu would have suffered a much stronger shaking than it experienced on 12 May, 2008.

  5. A Test of a Strong Ground Motion Prediction Methodology for the 7 September 1999, Mw=6.0 Athens Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L; Ioannidou, E; Voulgaris, N; Kalogeras, I; Savy, J; Foxall, W; Stavrakakis, G

    2004-08-06

    We test a methodology to predict the range of ground-motion hazard for a fixed magnitude earthquake along a specific fault or within a specific source volume, and we demonstrate how to incorporate this into probabilistic seismic hazard analyses (PSHA). We modeled ground motion with empirical Green's functions. We tested our methodology with the 7 September 1999, Mw=6.0 Athens earthquake, we: (1) developed constraints on rupture parameters based on prior knowledge of earthquake rupture processes and sources in the region; (2) generated impulsive point shear source empirical Green's functions by deconvolving out the source contribution of M < 4.0 aftershocks; (3) used aftershocks that occurred throughout the area and not necessarily along the fault to be modeled; (4) ran a sufficient number of scenario earthquakes to span the full variability of ground motion possible; (5) found that our distribution of synthesized ground motions span what actually occurred and their distribution is realistically narrow; (6) determined that one of our source models generates records that match observed time histories well; (7) found that certain combinations of rupture parameters produced ''extreme'' ground motions at some stations; (8) identified that the ''best fitting'' rupture models occurred in the vicinity of 38.05{sup o} N 23.60{sup o} W with center of rupture near 12 km, and near unilateral rupture towards the areas of high damage, and this is consistent with independent investigations; and (9) synthesized strong motion records in high damage areas for which records from the earthquake were not recorded. We then developed a demonstration PSHA for a source region near Athens utilizing synthesized ground motion rather that traditional attenuation. We synthesized 500 earthquakes distributed throughout the source zone likely to have Mw=6.0 earthquakes near Athens. We assumed an average return period of 1000 years for this

  6. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake

    Science.gov (United States)

    Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.

    1999-01-01

    This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).

  7. Simulated ground motion in Santa Clara Valley, California, and vicinity from M≥6.7 scenario earthquakes

    Science.gov (United States)

    Harmsen, Stephen C.; Hartzell, Stephen

    2008-01-01

    Models of the Santa Clara Valley (SCV) 3D velocity structure and 3D finite-difference software are used to predict ground motions from scenario earthquakes on the San Andreas (SAF), Monte Vista/Shannon, South Hayward, and Calaveras faults. Twenty different scenario ruptures are considered that explore different source models with alternative hypocenters, fault dimensions, and rupture velocities and three different velocity models. Ground motion from the full wave field up to 1 Hz is exhibited as maps of peak horizontal velocity and pseudospectral acceleration at periods of 1, 3, and 5 sec. Basin edge effects and amplification in sedimentary basins of the SCV are observed that exhibit effects from shallow sediments with relatively low shear-wave velocity (330 m/sec). Scenario earthquakes have been simulated for events with the following magnitudes: (1) M 6.8–7.4 Calaveras sources, (2) M 6.7–6.9 South Hayward sources, (3) M 6.7 Monte Vista/Shannon sources, and (4) M 7.1–7.2 Peninsula segment of the SAF sources. Ground motions are strongly influenced by source parameters such as rupture velocity, rise time, maximum depth of rupture, hypocenter, and source directivity. Cenozoic basins also exert a strong influence on ground motion. For example, the Evergreen Basin on the northeastern side of the SCV is especially responsive to 3–5-sec energy from most scenario earthquakes. The Cupertino Basin on the southwestern edge of the SCV tends to be highly excited by many Peninsula and Monte Vista fault scenarios. Sites over the interior of the Evergreen Basin can have long-duration coda that reflect the trapping of seismic energy within this basin. Plausible scenarios produce predominantly 5-sec wave trains with greater than 30 cm/sec sustained ground-motion amplitude with greater than 30 sec duration within the Evergreen Basin.

  8. Reliable selection of earthquake ground motions for performance-based design

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sextos, A.G.

    2016-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Prequalified code-compatible suites of seismic motions are provided through a multi-criterion approach to satisfy prescribed reduced variability...... of selected Engineering Demand Parameters. Such a procedure, even though typically overlooked, is imperative to increase the reliability of the average response values, as required for the code-prescribed design verification of structures. Structure-related attributes such as the dynamic characteristics...... of the method, by being subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv-sc) and the conventional index (δconv), already used by most existing code-based earthquake records selection and scaling procedures. The findings reveal the superiority...

  9. Ground Motion Selection and Scaling for the Seismic Investigation of the Concrete Gravity Dams for Near Fault Earthquakes

    Science.gov (United States)

    Arici, Y.; Bybordiani, M.

    2016-12-01

    The use of time histories for the seismic design and analysis of dams is becoming increasingly common given the state of the art of the computational tools for assessing the seismic demands on these systems. Determination of the ground motions that will be used in time history analysis is a crucial task since the results usually show a wide variability in the required quantity due to the stochastic nature of the applied earthquake record. In order to reduce this variability and predict the "true" demand related to the seismic hazard conditions of the site, the ground motions are usually carefully selected and subjected to scaling procedures. A separate but equally important goal in this regard is to obtain the required demand with a small number of representative motions reducing the considerable analysis workload for these large systems. In this regard, the common ground motion scaling techniques are evaluated in this study in a robust dam-foundation-reservoir interaction (DFRI) setting for determining the efficiency and accuracy of the scaling techniques for predicting the target demands for concrete gravity dams. A large ensemble of ground motions were used on a range of systems with different canyon geometries and moduli ratios in order to consider the effect of the soil-structure interaction (SSI) on the motion selection for concrete gravity dams. The frequency response of different systems and their interaction with the frequency content of the ground motions were henceforth considered. The required number of ground motions for consistent and efficient analyses of such systems was investigated considering different engineering demand parameters on the dam systems. The choice of EDP, and the corresponding effect of the scaling procedure on the analyses were evaluated in order to provide guidelines on the scaling of the ground motions for the seismic analyses of these systems.

  10. Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions

    OpenAIRE

    Jong Wan Hu; Myung-Hyun Noh

    2015-01-01

    This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs) subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced fra...

  11. Ground Motions at a Network of Strong Motion Accelerometers on the Hanford Site, Southeastern Washington, From the 28 February 2001 Nisqually Earthquake

    Science.gov (United States)

    Rohay, A.; Reidel, S.; Hartshorn, D.; Valenta, M.

    2001-12-01

    We have been operating five free-field strong motion accelerometers (SMA) at locations near the facilities on the Hanford Site since November 1998. The 28 February 2001 Nisqually earthquake was the first earthquake to be recorded by these instruments. The USGS and Caltech each operate one additional SMA/broadband seismometer site at Hanford (stations HAWA and LTH). Taken together, the elements of this network have an inter-station spacing of 8-12 km. The distance range of the instruments from the epicenter is 245-277 km. Peak ground accelerations ranged from 0.0016 to 0.0035 g (vertical), from 0.0017 to 0.0057 g (radial), and from 0.0022 to 0.0064 g (transverse). The lowest accelerations were observed at the bedrock site HAWA, but accelerations at another station on soil (H300A) were not significantly larger. The other stations on soil show significant amplification across the frequency spectrum and also within variable, narrow frequency ranges. For example, Fourier spectra from the station H100K, the furthest north of these stations, shows nearly a factor of 10 amplification of the transverse ground acceleration in the frequency range 0.5 to 1.0 Hz relative to the bedrock station. We are investigating the differences in soil geology beneath the network of SMA stations to understand these effects. The ground motions recorded from this earthquake are significantly lower than those predicted by intra-slab earthquake ground motion attenuation relationships that were used for Hanford's probabilistic seismic hazard assessment. Although these relationships include statistical variation in ground motion, they do not predict the range of amplification determined at the soil sites for this earthquake. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC06-76RL01830.

  12. Seismic Disaster Mitigation in Urban Area by using Building Vibration Observation of Weak Earthquake Ground Motion: an Approach of the IT Kyoshin Seismometer for Buildings

    Science.gov (United States)

    Takano, K.; Ito, T.

    2010-12-01

    There are a lot of buildings which is not experienced severe earthquakes in urban area. In Hanshin-Awaji (Kobe) Earthquake, it was presumed that 80 percent or more of the person was dead immediately after the earthquake by building collapse. Also in Haiti, a lot of buildings deprived of the life of persons. In order to prevent the earthquake damage of urban area, it is the most effective to make the building earthquake-proof. However, there are still a lot of buildings not made earthquake-proof in Japan though 15 years passed since Kobe Earthquake. In order to promote making of the building earthquake-proof, various approaches such as visualization of seismic hazard, education of disaster prevention and legal system for promotion are needed. We have developed the IT Kyoshin(strong motion) Seismometer for Building which is the observation system of the usual weak earthquake ground motion by installing a lot of acceleration sensors in building, and have been setting it up in some buildings of the University of Tokyo. We have also developed the visualization tool that can reproduce the building vibration during earthquake from the observed data. By this tool, we can successfully show where is more shaking in the building or what is the feature of building vibration easily. Such information contributes to not only promotion of making building earthquake-proof but also promotion of disaster prevention action such as fixation of bookshelf, making the safety area in building, etc. In addition, we proposed a concrete technique of the health investigation of buildings by using weak earthquake ground motion. Because there are 20 to 30 felt earthquakes in year in Tokyo area, it is possible to observe these building vibrations by using weak earthquake ground motions. In addition, we have developed the high sensitive ITK sensor which can observe from the microtremor to the felt earthquake in the place without the felt earthquake either.

  13. The analysis of the effect of vertical component of earthquake ground motions on the behavior of equipment base isolation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M. K.; Jeon, Y. S.; Choi, I. K. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    This paper presents the effect of vertical component of earthquake ground motions on the behavior of equipment base isolation system. For this purpose, the base isolation effects are considered when the 3 dimensional shaking tests are performed. The vertical seismic isolation effects are also considered. The Friction Pendulum System (FPS), natural rubber bearing (NRB) and high damping rubber bearing (HDRB) were selected for the isolation. The three kinds of seismic motions which frequency contents are much different are selected for the shaking table test.

  14. Moment tensor inversion of ground motion from mining-induced earthquakes, Trail Mountain, Utah

    Science.gov (United States)

    Fletcher, Joe B.; McGarr, A.

    2005-01-01

    A seismic network was operated in the vicinity of the Trail Mountain mine, central Utah, from the summer of 2000 to the spring of 2001 to investigate the seismic hazard to a local dam from mining-induced events that we expect to be triggered by future coal mining in this area. In support of efforts to develop groundmotion prediction relations for this situation, we inverted ground-motion recordings for six mining-induced events to determine seismic moment tensors and then to estimate moment magnitudes M for comparison with the network coda magnitudes Mc. Six components of the tensor were determined, for an assumed point source, following the inversion method of McGarr (1992a), which uses key measurements of amplitude from obvious features of the displacement waveforms. When the resulting moment tensors were decomposed into implosive and deviatoric components, we found that four of the six events showed a substantial volume reduction, presumably due to coseismic closure of the adjacent mine openings. For these four events, the volume reduction ranges from 27% to 55% of the shear component (fault area times average slip). Radiated seismic energy, computed from attenuation-corrected body-wave spectra, ranged from 2.4 ?? 105 to 2.4 ?? 106 J for events with M from 1.3 to 1.8, yielding apparent stresses from 0.02 to 0.06 MPa. The energy released for each event, approximated as the product of volume reduction and overburden stress, when compared with the corresponding seismic energies, revealed seismic efficiencies ranging from 0.5% to 7%. The low apparent stresses are consistent with the shallow focal depths of 0.2 to 0.6 km and rupture in a low stress/low strength regime compared with typical earthquake source regions at midcrustal depths.

  15. Isoseismal map of the 2015 Nepal earthquake and its relationships with ground-motion parameters, distance and magnitude

    Science.gov (United States)

    Prajapati, Sanjay K.; Dadhich, Harendra K.; Chopra, Sumer

    2017-01-01

    A devastating earthquake of Mw 7.8 struck central Nepal on 25th April, 2015 (6:11:25 UT) which resulted in more than ∼9000 deaths, and destroyed millions of houses. Standing buildings, roads and electrical installations worth 25-30 billions of dollars are reduced to rubbles. The earthquake was widely felt in the northern parts of India and moderate damage have been observed in the northern part of UP and Bihar region of India. Maximum intensity IX, according to the USGS report, was observed in the meizoseismal zone, surrounding the Kathmandu region. In the present study, we have compiled available information from the print, electronic media and various reports of damages and other effects caused by the event, and interpreted them to obtain Modified Mercalli Intensities (MMI) at over 175 locations spread over Nepal and surrounding Indian and Tibet region. We have also obtained a number of strong motion recordings from India and Nepal seismic network and developed an empirical relationship between the MMI and peak ground acceleration (PGA), peak ground velocity (PGV). We have used least square regression technique to derive the empirical relation between the MMI and ground motion parameters and compared them with the empirical relationships available for other regions of the world. Further, seismic intensity information available for historical earthquakes, which have occurred in the Nepal Himalaya along with the present intensity data has been utilized for developing an attenuation relationship for the studied region using two step regression analyses. The derived attenuation relationship is useful for assessing damage of a potential future large earthquake (earthquake scenario-based planning purposes) in the region.

  16. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.

    2012-03-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  17. Strong ground motion synthesis for a M=7.2 earthquake in the Gulf of Corinth, Greece using Empirical Green`s functions

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.; Stavrakakis, G.N.; Ioannidou, E.; Wu, F.T.; Jarpe, S.; Kasameyer, P.

    1998-01-01

    We synthesize strong ground motion at three sites from a M=7.2 earthquake along the MW-trending Gulf of Cornith seismic zone. We model rupture along an 80 segment of the zone. The entire length of the fault, if activated at one time, can lead to an event comparable to that of the 1995 Kobe earthquake. With the improved digital data now routinely available, it becomes possible to use recordings of small earthquakes as empirical Green`s functions to synthesize potential ground motion for future large earthquakes. We developed a suite of 100 rupture scenarios for the earthquake and computed the commensurate strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. The synthesized ground motions obtained are source and site specific. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to a site from the statistical distribution of engineering parameters, we have introduced a probabilistic component to the deterministic hazard calculation. The time histories suggested for engineering design are the ones that most closely match either the average or one standard deviation absolute accelerations response values.

  18. Rupture Process of the 2003 Bam, Iran, Earthquake: Did Shallow Asperities on a Fresh Fault Cause Extreme Ground Motions?

    Science.gov (United States)

    Miyake, H.; Koketsu, K.; Mostafaei, H.

    2004-12-01

    The Bam, Iran, earthquake on December 26, 2003 caused heavy damage to the city of Bam including the historic heritage of Arg-e-Bam. This Mw6.5 earthquake rupture created fresh faults 5 km westward away from the Bam fault. The Bam strong-motion station recorded 992 gal in the UD component and two directivity pulses in the horizontal components with a dominant frequency of 1 Hz. We inferred the rupture process of the 2003 Bam earthquake from strong motion data observed by BHRC, together with teleseismic data to constrain global features of the source. Waveform inversions using teleseismic data (e.g. Yamanaka, 2003; Yagi, 2003) have suggested the existence of a shallow asperity. Nakamura et al. (2004) estimated aftershock distribution with vertical dipping that superimposed the fresh faults, not the Bam fault. They proposed fault planes consisting N-S alignment with northward branches beneath the city of Bam. Our preliminary analyses show that two directivity pulses are created by northward rupture near the hypocenter and north-eastward rupture beneath the city. Recent earthquakes occurred on immature faults with shallow asperities have also generated localized extreme-strong motions (e.g., 2003 Miyagi-ken Hokubu, Japan, with Mw6.1; 2000 Tottori, Japan, with Mw6.6). Larger fracture energy is expected for shallow asperities on immature faults than those on mature faults. For example, the 2000 Tottori earthquake has several times larger fracture energy than expected by the scaling between seismic moment and fracture energy. When considering the energy budget, are radiated energy from the immature faults enough to generate the extreme ground motions? Detailed source process inversions might be able to answer this question.

  19. Effect of the surface geology on strong ground motions due to the 2016 Central Tottori Earthquake, Japan

    Science.gov (United States)

    Kagawa, Takao; Noguchi, Tatsuya; Yoshida, Shohei; Yamamoto, Shinji

    2017-08-01

    On October 21, 2016, an earthquake with Japan Meteorological Agency (JMA) magnitude 6.6 hit the central part of Tottori Prefecture, Japan. This paper demonstrates two notable effects of the surface geology on strong ground motions due to the earthquake. One is a predominant period issue observed over a large area. A seismic intensity of 6 lower on the JMA scale was registered at three sites in the disaster area. However, the peak ground acceleration ranged from 0.3 to 1.4 G at the three sites because of the varying peak periods of observed strong ground motions. The spectral properties of the observations also reflect the damage around the sites. Three-component microtremors were observed in the area; the predominant ground period distributions based on horizontal to vertical spectral ratios were provided by the authors. The peak periods of the strong motion records agree well with predominant periods estimated from microtremor observations at a rather hard site; however, the predominant periods of the microtremors are slightly shorter than those of the main shock at the other two soft sites. We checked the nonlinear effect at the sites by comparing the site responses to small events and the main shock. The peak periods of the main shock were longer than those of the weak motions at the sites. This phenomenon indicates a nonlinear site effect due to large ground motions caused by the main shock. A horizontal component of the accelerogram showed rather pulsating swings that indicate cyclic mobility behavior, especially at a site close to a pond shore; ground subsidence of 20 cm was observed around the site. The peak periods of weak motions agree well with those of the microtremor observations. This implies an important issue that the predominant periods estimated by microtremors are not sufficient to estimate the effect of surface geology for disaster mitigation. We have to estimate the predominant periods under large ground motions considering the nonlinear site

  20. Earthquake ground motion prediction for real sedimentary basins: which numerical schemes are applicable?

    Science.gov (United States)

    Moczo, P.; Kristek, J.; Galis, M.; Pazak, P.

    2009-12-01

    Numerical prediction of earthquake ground motion in sedimentary basins and valleys often has to account for P-wave to S-wave speed ratios (Vp/Vs) as large as 5 and even larger, mainly in sediments below groundwater level. The ratio can attain values larger than 10 in unconsolidated sediments (e.g. in Ciudad de México). In a process of developing 3D optimally-accurate finite-difference schemes we encountered a serious problem with accuracy in media with large Vp/Vs ratio. This led us to investigate the very fundamental reasons for the inaccuracy. In order to identify the very basic inherent aspects of the numerical schemes responsible for their behavior with varying Vp/Vs ratio, we restricted to the most basic 2nd-order 2D numerical schemes on a uniform grid in a homogeneous medium. Although basic in the specified sense, the schemes comprise the decisive features for accuracy of wide class of numerical schemes. We investigated 6 numerical schemes: finite-difference_displacement_conventional grid (FD_D_CG) finite-element_Lobatto integration (FE_L) finite-element_Gauss integration (FE_G) finite-difference_displacement-stress_partly-staggered grid (FD_DS_PSG) finite-difference_displacement-stress_staggered grid (FD_DS_SG) finite-difference_velocity-stress_staggered grid (FD_VS_SG) We defined and calculated local errors of the schemes in amplitude and polarization. Because different schemes use different time steps, they need different numbers of time levels to calculate solution for a desired time window. Therefore, we normalized errors for a unit time. The normalization allowed for a direct comparison of errors of different schemes. Extensive numerical calculations for wide ranges of values of the Vp/Vs ratio, spatial sampling ratio, stability ratio, and entire range of directions of propagation with respect to the spatial grid led to interesting and surprising findings. Accuracy of FD_D_CG, FE_L and FE_G strongly depends on Vp/Vs ratio. The schemes are not

  1. Broadband Strong Ground Motion Simulation For a Potential Mw 7.1 Earthquake on The Enriquillo Fault in Haiti

    Science.gov (United States)

    Douilly, R.; Mavroeidis, G. P.; Calais, E.

    2015-12-01

    The devastating 2010 Haiti earthquake showed the need to be more vigilant toward mitigation for future earthquakes in the region. Previous studies have shown that this earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown Léogâne transpressional fault. Slip on that fault has increased stresses on the Enriquillo Fault mostly in the region closer to Port-au-Prince, the most populated city of the country. Here we investigate the ground shaking level in this region if a rupture similar to the Mw 7.0 2010 Haiti earthquake occurred on the Enriquillo fault. We use a finite element method and assumptions on regional stress to simulate low frequency dynamic rupture propagation for a 53 km long segment. We introduce some heterogeneity by creating two slip patches with shear traction 10% greater than the initial shear traction on the fault. The final slip distribution is similar in distribution and magnitude to previous finite fault inversions for the 2010 Haiti earthquake. The high-frequency ground motion components are calculated using the specific barrier model, and the hybrid synthetics are obtained by combining the low-frequencies (f 1Hz) from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. The average horizontal peak ground acceleration, computed at several sites of interest through Port-au-Prince, has a value of 0.35g. We also compute response spectra at those sites and compare them to the spectra from the microzonation study.

  2. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  3. Using SW4 for 3D Simulations of Earthquake Strong Ground Motions: Application to Near-Field Strong Motion, Building Response, Basin Edge Generated Waves and Earthquakes in the San Francisco Bay Are

    Science.gov (United States)

    Rodgers, A. J.; Pitarka, A.; Petersson, N. A.; Sjogreen, B.; McCallen, D.; Miah, M.

    2016-12-01

    Simulation of earthquake ground motions is becoming more widely used due to improvements of numerical methods, development of ever more efficient computer programs (codes), and growth in and access to High-Performance Computing (HPC). We report on how SW4 can be used for accurate and efficient simulations of earthquake strong motions. SW4 is an anelastic finite difference code based on a fourth order summation-by-parts displacement formulation. It is parallelized and can run on one or many processors. SW4 has many desirable features for seismic strong motion simulation: incorporation of surface topography; automatic mesh generation; mesh refinement; attenuation and supergrid boundary conditions. It also has several ways to introduce 3D models and sources (including Standard Rupture Format for extended sources). We are using SW4 to simulate strong ground motions for several applications. We are performing parametric studies of near-fault motions from moderate earthquakes to investigate basin edge generated waves and large earthquakes to provide motions to engineers study building response. We show that 3D propagation near basin edges can generate significant amplifications relative to 1D analysis. SW4 is also being used to model earthquakes in the San Francisco Bay Area. This includes modeling moderate (M3.5-5) events to evaluate the United States Geologic Survey's 3D model of regional structure as well as strong motions from the 2014 South Napa earthquake and possible large scenario events. Recently SW4 was built on a Commodity Technology Systems-1 (CTS-1) at LLNL, new systems for capacity computing at the DOE National Labs. We find SW4 scales well and runs faster on these systems compared to the previous generation of LINUX clusters.

  4. Closed-form critical earthquake response of elastic-plastic structures on compliant ground under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-01-01

    Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  5. Stochastic finite element analysis of long-span bridges with CFRP cables under earthquake ground motion

    Indian Academy of Sciences (India)

    Özlem Çavdar; Alemdar Bayraktar; Süleyman Adanur; Hasan Basri Başaǧa

    2010-06-01

    Stochastic seismic analysis of long-span bridges with Carbon fibre reinforced polymer (CFRP) cables are presented in this study through combination of the advantages of the perturbation based stochastic finite element method (SFEM) and Monte Carlo simulation (MCS) method. Jindo cable-stayed and Fatih Sultan Mehmet (Second Bosporus) suspension bridges are chosen as an example. Carbon fibre reinforced polymer cable (CFRP) and steel cables are used separately, in which the cable’s cross sectional area is determined by the principle equivalent axial stiffness. Geometric nonlinear effects are considered in the analysis. Uncertainties in the material are taken into account and Kocaeli earthquake in 1999 is chosen as a ground motion. The efficiency and accuracy of the proposed algorithm are validated by comparing with results of MCS method. It can be stated that using of CFRP cables in long-span bridges subjected to earthquake forces is feasible.

  6. Observed and simulated ground motions in the San Bernardino basin region for the Hector Mine, California, earthquake

    Science.gov (United States)

    Graves, R.W.; Wald, D.J.

    2004-01-01

    During the MW 7.1 Hector Mine earthquake, peak ground velocities recorded at sites in the central San Bernardino basin region were up to 2 times larger and had significantly longer durations of strong shaking than sites just outside the basin. To better understand the effects of 3D structure on the long-period ground-motion response in this region, we have performed finite-difference simulations for this earthquake. The simulations are numerically accurate for periods of 2 sec and longer and incorporate the detailed spatial and temporal heterogeneity of source rupture, as well as complex 3D basin structure. Here, we analyze three models of the San Bernardino basin: model A (with structural constraints from gravity and seismic reflection data), model F (water well and seismic refraction data), and the Southern California Earthquake Center version 3 model (hydrologic and seismic refraction data). Models A and F are characterized by a gradual increase in sediment thickness toward the south with an abrupt step-up in the basement surface across the San Jacinto fault. The basin structure in the SCEC version 3 model has a nearly uniform sediment thickness of 1 km with little basement topography along the San Jacinto fault. In models A and F, we impose a layered velocity structure within the sediments based on the seismic refraction data and an assumed depth-dependent Vp/Vs ratio. Sediment velocities within the SCEC version 3 model are given by a smoothly varying rule-based function that is calibrated to the seismic refraction measurements. Due to computational limitations, the minimum shear-wave velocity is fixed at 600 m/sec in all of the models. Ground-motion simulations for both models A and F provide a reasonably good match to the amplitude and waveform characteristics of the recorded motions. In these models, surface waves are generated as energy enters the basin through the gradually sloping northern margin. Due to the basement step along the San Jacinto fault, the

  7. Ground motion modeling for the 6 April 2009 earthquake (MW 6.3) at Poggio Picenze (central Italy)

    Science.gov (United States)

    Costanzo, M. R.; Nunziata, C.

    2015-04-01

    The town of Poggio Picenze (central Italy), located ~12 km SE of L'Aquila, reported a damage intensity of VIII-IX (MCS) for the 6 April 2009 (MW = 6.3) earthquake. In the following days, two stations (M128 and PGG) were operating in the historical centre and recorded several aftershocks. The aim of this paper is to model ground motion at Poggio Picenze for the 6 April 2009 earthquake. First, recordings of 16 aftershocks (2.0 ≤ ML ≤ 4.2), located in the epicentral area of the strong event, are processed to define average shear wave velocity (VS) profiles with depth through the non-linear inversion of Rayleigh wave group velocity dispersion curves of the fundamental mode extracted with the frequency-time analysis. Then, the local average VS model and the regional model, in addition to two shallow downhole measurements, are used to define two 2-D cross-sections passing through the seismic stations. Ground motion is modeled along such cross-sections for the strongest aftershock (ML = 4.2) with the hybrid method consisting of modal summation and finite difference algorithms. Once the modeling results at the M128 and PGG stations are validated, the ground motion is computed for the main shock. Spectral amplifications up to factors 5-6 are estimated at 3-4 Hz for the vertical component and up to factors 2-3 at 2-6 Hz for the radial and transverse components. Ground accelerations are maximum in the horizontal plane, along the transverse component (around 0.4 g) and are half along the vertical component.

  8. Effect Of Long-Period Earthquake Ground Motions On Nonlinear Vibration Of Shells With Variable Thickness

    Science.gov (United States)

    Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers

    2010-12-01

    Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The

  9. Some Analyses on Effects of Site Classification on Ground Motion Characteristics in the Chi-Chi,Taiwan Earthquake

    Institute of Scientific and Technical Information of China (English)

    Dong Di; Yang Jian; Liu Rui

    2006-01-01

    According to the epicenter distance and the site classification, the 404 groups of earthquake recordings of the main shock of the Chi-Chi, Taiwan China earthquake in 1999 are catalogued.Based on these data, we analyze the statistical features of duration, PGA, envelopes and the response spectra ratio of the horizontal and vertical components of the acceleration recordings. The results of these analyses show that the effect of site classification on the acceleration of various components is obvious; furthermore, fault direction also has certain effects on the characteristics of the horizontal components of ground motion. The detailed research results are as follows: ( 1 ) the duration of the horizontal components of acceleration records increases with the softening of the site; (2) the direction of fault slip has some effects on PGA's attenuation features; (3) the average envelopes of acceleration records at different distances and site classes are basically single peak functions of time and the envelopes of horizontal and vertical components of ground motion are obviously different; (4) with the same epicenter distance, EW/NS response spectrum ratios tend to approximate 1.0 as the site becomes softer and the period shorter. V/H response spectrum ratios in short periods (< 0. 1s) increase with the softening of site, however, V/H ratios within the long-period range ( > characteristic period) decrease with the softening of the site, and the decrease of V/EW ratio speeds up relatively.

  10. Three-Dimensional Finite Difference Simulation of Ground Motions from the August 24, 2014 South Napa Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.

  11. Three-dimensional simulations of ground motions in the Seattle region for earthquakes in the Seattle fault zone

    Science.gov (United States)

    Frankel, A.; Stephenson, W.

    2000-01-01

    We used the 3D finite-difference method to model observed seismograms of two earthquakes (ML 4.9 and 3.5) in the Seattle region and to simulate ground motions for hypothetical M 6.5 and M 5.0 earthquakes on the Seattle fault, for periods greater than 2 sec. A 3D velocity model of the Seattle Basin was constructed from studies that analyzed seismic-reflection surveys, borehole logs, and gravity and aeromagnetic data. The observations and the simulations highlight the importance of the Seattle Basin on long-period ground motions. For earthquakes occurring just south of the basin, the edge of the basin and the variation of the thickness of the Quaternary deposits in the basin produce much larger surface waves than expected from flat-layered models. The data consist of seismograms recorded by instruments deployed in Seattle by the USGS and the University of Washington (UW). The 3D simulation reproduces the peak amplitude and duration of most of the seismograms of the June 1997 Bremerton event (ML 4.9) recorded in Seattle. We found the focal mechanism for this event that best fits the observed seismograms in Seattle by combining Green's functions determined from the 3D simulations for the six fundamental moment couples. The February 1997 event (ML 3.5) to the south of the Seattle Basin exhibits a large surface-wave arrival at UW whose amplitude is matched by the synthetics in our 3D velocity model, for a source depth of 9 km. The M 6.5 simulations incorporated a fractal slip distribution on the fault plane. These simulations produced the largest ground motions in an area that includes downtown Seattle. This is mainly caused by rupture directed up dip toward downtown, radiation pattern of the source, and the turning of S waves by the velocity gradient in the Seattle basin. Another area of high ground motion is located about 13 km north of the fault and is caused by an increase in the amplitude of higher-mode Rayleigh waves caused by the thinning of the Quaternary

  12. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy

    Science.gov (United States)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia

    2011-01-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  13. CyberShake-derived ground-motion prediction models for the Los Angeles region with application to earthquake early warning

    Science.gov (United States)

    Böse, Maren; Graves, Robert W.; Gill, David; Callaghan, Scott; Maechling, Philip J.

    2014-09-01

    Real-time applications such as earthquake early warning (EEW) typically use empirical ground-motion prediction equations (GMPEs) along with event magnitude and source-to-site distances to estimate expected shaking levels. In this simplified approach, effects due to finite-fault geometry, directivity and site and basin response are often generalized, which may lead to a significant under- or overestimation of shaking from large earthquakes (M > 6.5) in some locations. For enhanced site-specific ground-motion predictions considering 3-D wave-propagation effects, we develop support vector regression (SVR) models from the SCEC CyberShake low-frequency (415 000 finite-fault rupture scenarios (6.5 ≤ M ≤ 8.5) for southern California defined in UCERF 2.0. We use CyberShake to demonstrate the application of synthetic waveform data to EEW as a `proof of concept', being aware that these simulations are not yet fully validated and might not appropriately sample the range of rupture uncertainty. Our regression models predict the maximum and the temporal evolution of instrumental intensity (MMI) at 71 selected test sites using only the hypocentre, magnitude and rupture ratio, which characterizes uni- and bilateral rupture propagation. Our regression approach is completely data-driven (where here the CyberShake simulations are considered data) and does not enforce pre-defined functional forms or dependencies among input parameters. The models were established from a subset (˜20 per cent) of CyberShake simulations, but can explain MMI values of all >400 k rupture scenarios with a standard deviation of about 0.4 intensity units. We apply our models to determine threshold magnitudes (and warning times) for various active faults in southern California that earthquakes need to exceed to cause at least `moderate', `strong' or `very strong' shaking in the Los Angeles (LA) basin. These thresholds are used to construct a simple and robust EEW algorithm: to declare a warning, the

  14. The influence of critical Moho Reflections on strong ground motions recorded in San Francisco and Oakland during the 1989 Loma Prieta Earthquake

    Science.gov (United States)

    Somerville, Paul; Yoshimura, Joanne

    1990-07-01

    The amplitudes of strong ground motions from the Loma Prieta earthquake recorded in the San Francisco and Oakland areas exceeded the levels predicted by standard empirical attenuation relations. Preliminary analysis of accelerograms having known trigger times strongly suggests that the elevation of ground motion amplitudes in the distance range of approximately 40 to 100 km was due to critical reflections from the base of the crust. These reflections, which are identified on the basis of their arrival times and phase velocity, and by comparison with simulated accelerograms, were large and occurred at relatively close range because of the deep focal depth of the earthquake and the strong velocity gradient at the base of the crust. These motions were further amplified, presumably by impedance contrast effects, at soft soil sites in San Francisco and Oakland. The effect of the critical reflections in amplifying peak accelerations of the Loma Prieta earthquake in the San Francisco and Oakland regions was as large as the effect of soft soil site conditions. Focal depth has an important influence on strong motion attenuation at distances beyond about 40 km, and empirical attenuation relations derived from shallow crustal earthquakes may underpredict the ground motions of deeper crustal events in this distance range. Further analyses using an expanded data base that includes recordings of aftershocks are required to rigorously test the proposed explanation of the ground motions recorded in San Francisco and Oakland, and the conclusions drawn from that explanation.

  15. Strong ground motion in Port-au-Prince, Haiti, during the M7.0 12 January 2010 Haiti earthquake

    Science.gov (United States)

    Hough, Susan E; Given, Doug; Taniguchi, Tomoyo; Altidor, J.R.; Anglade, Dieuseul; Mildor, S-L.

    2011-01-01

    No strong motion records are available for the 12 January 2010 M7.0 Haiti earthquake. We use aftershock recordings as well as detailed considerations of damage to estimate the severity and distribution of mainshock shaking in Port-au-Prince. Relative to ground motions at a hard - rock reference site, peak accelerations are amplified by a factor of approximately 2 at sites on low-lying deposits in central Port-au-Prince and by a factor of 2.5 - 3.5 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplification along the ridge cannot be explained by sediment - induced amplification , but is consistent with predicted topographic amplification by a steep, narrow ridge. Although damage was largely a consequence of poor construction , the damage pattern inferred from analysis of remote sensing imagery provides evidence for a correspondence between small-scale (0.1 - 1.0 km) topographic relief and high damage. Mainshock shaking intensity can be estimated crudely from a consideration of macroseismic effects . We further present detailed, quantitative analysis of the marks left on a tile floor by an industrial battery rack displaced during the mainshock, at the location where we observed the highest weak motion amplifications. Results of this analysis indicate that mainshock shaking was significantly higher at this location (~0.5 g , MMI VIII) relative to the shaking in parts of Port-au-Prince that experienced light damage. Our results further illustrate how observations of rigid body horizontal displacement during earthquakes can be used to estimate peak ground accelerations in the absence of instrumental data .

  16. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage

    Directory of Open Access Journals (Sweden)

    Amin E. Khalil

    2017-06-01

    Full Text Available Strong ground shaking during earthquakes can greatly affect the ancient monuments and subsequently demolish the human heritage. On October 12th 1992, a moderate earthquake (Ms = 5.8 shocked the greater Cairo area causing widespread damages. Unfortunately, the focus of that earthquake is located about 14 km to the south of Zoser pyramid. After the earthquake, the Egyptian Supreme council of antiquities issued an alarm that Zoser pyramid is partially collapsed and international and national efforts are exerted to restore this important human heritage that was built about 4000 years ago. Engineering and geophysical work is thus needed for the restoration process. The definition of the strong motion parameters is one of the required studies since seismically active zone is recorded in its near vicinity. The present study adopted the stochastic method to determine the peak ground motion (acceleration, velocity and displacement for the three largest earthquakes recorded in the Egypt’s seismological history. These earthquakes are Shedwan earthquake with magnitude Ms = 6.9, Aqaba earthquake with magnitude Mw = 7.2 and Cairo (Dahshour earthquake with magnitude Ms = 5.8. The former two major earthquakes took place few hundred kilometers away. It is logic to have the predominant effects from the epicentral location of the Cairo earthquake; however, the authors wanted to test also the long period effects of the large distance earthquakes expected from the other two earthquakes under consideration. In addition, the dynamic site response was studied using the Horizontal to vertical spectral ratio (HVSR technique. HVSR can provide information about the fundamental frequency successfully; however, the amplification estimation is not accepted. The result represented as either peak ground motion parameters or response spectra indicates that the effects from Cairo earthquake epicenter are the largest for all periods considered in the present study. The

  17. Performance of Irikura's Recipe Rupture Model Generator in Earthquake Ground Motion Simulations as Implemented in the Graves and Pitarka Hybrid Approach.

    Energy Technology Data Exchange (ETDEWEB)

    Pitarka, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-22

    We analyzed the performance of the Irikura and Miyake (2011) (IM2011) asperity-­ based kinematic rupture model generator, as implemented in the hybrid broadband ground-­motion simulation methodology of Graves and Pitarka (2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0 -­ 20Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-­West2 Project (NGA-­West2) ground-­motion prediction equations (GMPEs) over the frequency band 0.1–10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-­fault distances (<12km) and at long periods (>1s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1 – 3 sec where the IM2011 motions are about 20 – 30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1 – 3 second bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study.

  18. Ground-motion modeling of Hayward fault scenario earthquakes, part I: Construction of the suite of scenarios

    Science.gov (United States)

    Aagaard, Brad T.; Graves, Robert W.; Schwartz, David P.; Ponce, David A.; Graymer, Russell W.

    2010-01-01

    We construct kinematic earthquake rupture models for a suite of 39 Mw 6.6-7.2 scenario earthquakes involving the Hayward, Calaveras, and Rodgers Creek faults. We use these rupture models in 3D ground-motion simulations as discussed in Part II (Aagaard et al., 2010) to provide detailed estimates of the shaking for each scenario. We employ both geophysical constraints and empirical relations to provide realistic variation in the rupture dimensions, slip heterogeneity, hypocenters, rupture speeds, and rise times. The five rupture lengths include portions of the Hayward fault as well as combined rupture of the Hayward and Rodgers Creek faults and the Hayward and Calaveras faults. We vary rupture directivity using multiple hypocenters, typically three per rupture length, yielding north-to-south rupture, bilateral rupture, and south-to-north rupture. For each rupture length and hypocenter, we consider multiple random distributions of slip. We use two approaches to account for how aseismic creep might reduce coseismic slip. For one subset of scenarios, we follow the slip-predictable approach and reduce the nominal slip in creeping regions according to the creep rate and time since the most recent earthquake, whereas for another subset of scenarios we apply a vertical gradient to the nominal slip in creeping regions. The rupture models include local variations in rupture speed and use a ray-tracing algorithm to propagate the rupture front. Although we are not attempting to simulate the 1868 Hayward fault earthquake in detail, a few of the scenarios are designed to have source parameters that might be similar to this historical event.

  19. The 2001 Mw7.7 Bhuj, India Earthquake and Eastern North American Ground-Motion Attenuation Relations: Seismic Hazard Implications

    Science.gov (United States)

    Cramer, C. H.; Bhattacharya, S. N.; Kumar, A.

    2002-12-01

    It has been suggested that the Mw7.7 2001 Bhuj, India earthquake occurred in a stable continental region with ground-motion attenuation properties similar to eastern North America (ENA). No strong motion recordings for M7 or greater earthquakes have been recorded in ENA, so, if the two regions share similar properties, then observations from the Bhuj earthquake provide important information for hazard assessments in ENA as well as India. This thesis can be tested using seismic data for the Bhuj mainshock. The Indian Meteorological Department recorded accelerograph and broadband seismograph data at distances of 500 to 1800 km. Accelerograph and engineering seismoscope data were recorded at distances of 40 to 1100 km by the Department of Earthquake Engineering at the Indian Institute of Technology, Roorkee. We have processed the accelerograph and broadband data for response spectral accelerations and corrected them to a common NEHRP site class using Joyner and Boore (2000) site factors. The geologic conditions at each recording site were determined using the geologic map of India and categorized as Quaternary sediments, Tertiary sediments, or hard rock. Comparisons were then made to available ENA ground-motion attenuation relations. For peak ground acceleration (PGA) and 1.0 s spectral acceleration (Sa), the geologically-corrected Bhuj data generally fall among the ENA ground-motion attenuation relations. The Bhuj mainshock ground-motion data agree with the collective predictions of the ENA relations given the random uncertainty in ground-motion measurements of a factor of two or more plus the ground-motion attenuation relation modeling uncertainty. From an engineering perspective, this comparison supports the thesis that seismic-wave attenuation in stable continental India is similar to eastern North America.

  20. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and

  1. Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2015-01-01

    Full Text Available This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced frame structure, these self-centering friction damping brace members make the best use of their representative characteristics to minimize residual deformations and to withstand earthquake loads without member replacement. The configuration and response mechanism of self-centering friction damping brace systems are firstly described in this study, and then parametric investigations are conducted through nonlinear time-history analyses performed on numerical single degree-of-freedom spring models. After observing analysis results, adequate design methodologies that optimally account for recentering capability and energy dissipation according to their comparative parameters are intended to be suggested in order to take advantage of energy capacity and to minimize residual deformation simultaneously.

  2. Analysis of the strong motion records obtained from the 2007 Niigataken Chuetsuoki earthquake and determination of the design basis ground motions at the Kashiwazaki Kariwa Nuclear Power Plant. Part 1. Outline of the strong motion records and estimation of factors in large amplification

    Energy Technology Data Exchange (ETDEWEB)

    Tokumitsu, Ryoichi; Kikuchi, Masatomo; Nishimura, Isao (Nuclear Asset Management Dept., Tokyo Electric Power Company, Tokyo (Japan)), e-mail: tokumitsu.r@tepco.co.jp; Shiba, Yoshiaki (Earthquake Engineering Sector, Central Research Inst. of Electric Power Industry, Chiba (Japan)), e-mail: cbar@criepi.denken.or.jp; Tanaka, Shinya (Architectural Dept., Tokyo Electric Power Services CO., LTD.,Tokyo (Japan)), e-mail: s.tanaka@tepsco.co.jp

    2009-07-01

    In order to investigate the primary factor of the large ground motion observed at the Kashiwazaki Kariwa Nuclear Power Plant in the Niigataken Chuetsu-Oki Earthquake, the source, propagation and site effect of the Niigataken Chuetsu-Oki Earthquake, with the analysis and ground motion simulation analysis of observation record was examined

  3. Empirical Assessment of Nonlinear Seismic Demand of Mainshock-Aftershock Ground Motion Sequences for Japanese Earthquakes

    Directory of Open Access Journals (Sweden)

    Katsuichiro eGoda

    2015-06-01

    Full Text Available This study investigates the effects of earthquake types, magnitudes, and hysteretic behavior on the peak and residual ductility demands of inelastic single-degree-of-freedom systems and evaluates the effects of major aftershocks on the nonlinear structural responses. An extensive dataset of real mainshock-aftershock sequences for Japanese earthquakes is developed. The constructed dataset is large, compared with previous datasets of similar kinds, and includes numerous sequences from the 2011 Tohoku earthquake, facilitating an investigation of spatial aspects of the aftershock effects. The empirical assessment of peak and residual ductility demands of numerous inelastic systems having different vibration periods, yield strengths, and hysteretic characteristics indicates that the increase in seismic demand measures due to aftershocks occurs rarely but can be significant. For a large mega-thrust subduction earthquake, a critical factor for major aftershock damage is the spatial occurrence process of aftershocks.

  4. Modeling and synthesis of strong ground motion

    Indian Academy of Sciences (India)

    S T G Raghu Kanth

    2008-11-01

    Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.

  5. Assessing the capability of numerical methods to predict earthquake ground motion: the Euroseistest verification and validation project

    Science.gov (United States)

    Chaljub, E. O.; Bard, P.; Tsuno, S.; Kristek, J.; Moczo, P.; Franek, P.; Hollender, F.; Manakou, M.; Raptakis, D.; Pitilakis, K.

    2009-12-01

    During the last decades, an important effort has been dedicated to develop accurate and computationally efficient numerical methods to predict earthquake ground motion in heterogeneous 3D media. The progress in methods and increasing capability of computers have made it technically feasible to calculate realistic seismograms for frequencies of interest in seismic design applications. In order to foster the use of numerical simulation in practical prediction, it is important to (1) evaluate the accuracy of current numerical methods when applied to realistic 3D applications where no reference solution exists (verification) and (2) quantify the agreement between recorded and numerically simulated earthquake ground motion (validation). Here we report the results of the Euroseistest verification and validation project - an ongoing international collaborative work organized jointly by the Aristotle University of Thessaloniki, Greece, the Cashima research project (supported by the French nuclear agency, CEA, and the Laue-Langevin institute, ILL, Grenoble), and the Joseph Fourier University, Grenoble, France. The project involves more than 10 international teams from Europe, Japan and USA. The teams employ the Finite Difference Method (FDM), the Finite Element Method (FEM), the Global Pseudospectral Method (GPSM), the Spectral Element Method (SEM) and the Discrete Element Method (DEM). The project makes use of a new detailed 3D model of the Mygdonian basin (about 5 km wide, 15 km long, sediments reach about 400 m depth, surface S-wave velocity is 200 m/s). The prime target is to simulate 8 local earthquakes with magnitude from 3 to 5. In the verification, numerical predictions for frequencies up to 4 Hz for a series of models with increasing structural and rheological complexity are analyzed and compared using quantitative time-frequency goodness-of-fit criteria. Predictions obtained by one FDM team and the SEM team are close and different from other predictions

  6. Amplification and Increased Duration of Earthquake Motion on Uneven Stress-Free Ground

    CERN Document Server

    Wirgin, A; Wirgin, Armand; Groby, Jean-Philippe

    2006-01-01

    When a flat stress-free surface (i.e., the ground in seismological applications) separating air from a isotropic, homogeneous or horizontally-layered, solid substratum is solicited by a SH plane body wave incident in the substratum, the response in the substratum is a single specularly-reflected body wave. When the stress-free condition, equivalent to vanishing impedance, is relaxed by the introduction of a spatially-modulated, non-vanishing impedance, the response turns out to take the form of a spectrum of plane body waves and surface waves. It is shown that, in a great variety of situations, resonances are produced at the frequencies of which one or several surface wave amplitudes can become large. Furthermore, at resonance, the amplitude of the motion on the surface is shown to be amplified with respect to the situation in which the surface impedance vanishes. A subsidiary, but all-important, effect of this resonant response is that, when the solicitation is pulse-like, the peak value of the time history ...

  7. Simulations of strong ground motion in SW Iberia for the 1969 February 28 (Ms = 8.0) and the 1755 November 1 (M ~ 8.5) earthquakes - II. Strong ground motion simulations

    Science.gov (United States)

    Grandin, Raphaël; Borges, José Fernando; Bezzeghoud, Mourad; Caldeira, Bento; Carrilho, Fernando

    2007-11-01

    This is the second paper of a series of two concerning strong ground motion in SW Iberia due to earthquakes originating from the adjacent Atlantic area. The aim of this paper is to use the velocity model that was proposed and validated in the companion paper for seismic intensity modelling of the 1969 (Ms = 8.0) and 1755 (M = 8.5-8.7) earthquakes. First, we propose a regression to convert simulated values of Peak Ground Velocity (PGV) into Modified Mercalli Intensity (MMI) in SW Iberia, and using this regression, we build synthetic isoseismal maps for a large (Ms = 8.0) earthquake that occurred in 1969. Based on information on the seismic source provided by various authors, we show that the velocity model effectively reproduces macroseismic observations in the whole region. We also confirm that seismic intensity distribution is very sensitive to a small number of source parameters: rupture directivity, fault strike and fault dimensions. Then, we extrapolate the method to the case of the great (M = 8.5-8.7) 1755 earthquake, for a series of hypotheses recently proposed by three authors about the location of the epicentral region. The model involving a subduction-related rupture in the Gulf of Cádiz results in excessive ground motion in northern Morocco, suggesting that the source of the 1755 earthquake should be located further west. A rupture along the western coast of Portugal, compatible with an activation of the passive western Iberian margin, would imply a relatively low average slip, which, alone, would could not account for the large tsunami observed in the whole northern Atlantic ocean. A seismic source located below the Gorringe Bank seems the most likely since it is more efficient in reproducing the distribution of high intensities in SW Iberia due to the 1755 earthquake.

  8. Simulation of strong ground motion for the 25 April 2015 Nepal (Gorkha) Mw 7.8 earthquake using the SCEC broadband platform

    Science.gov (United States)

    M. C., Raghucharan; Somala, Surendra Nadh

    2017-02-01

    The 25th April 2015 Nepal (Gorkha) earthquake has been introduced into the SCEC BBP v15.3, and validation simulations are run using EXSIM methodology with the strong ground motion data of the earthquake. Synthetic seismograms are generated along with the response spectra for engineering applications. Goodness-of-fit metrics have been computed from response spectra for 14 stations located in the Central Indo-Gangetic Plains (CIGP). Plots of residuals are made as a function of hypocentral distance for various time periods. Spatial distribution of residuals as well as average residuals for all stations for the horizontal components are computed. The results demonstrate that there was a good match between the actual data and synthetics generated by the broadband platform. Finally, four of the widely used ground motion prediction equations around the world are chosen to compare how they predict the synthetics for Gorkha earthquake in CIGP.

  9. Comparison of ground motions estimated from prediction equations and from observed damage during the M = 4.6 1983 Liège earthquake (Belgium

    Directory of Open Access Journals (Sweden)

    D. García Moreno

    2013-08-01

    Full Text Available On 8 November 1983 an earthquake of magnitude 4.6 damaged more than 16 000 buildings in the region of Liège (Belgium. The extraordinary damage produced by this earthquake, considering its moderate magnitude, is extremely well documented, giving the opportunity to compare the consequences of a recent moderate earthquake in a typical old city of Western Europe with scenarios obtained by combining strong ground motions and vulnerability modelling. The present study compares 0.3 s spectral accelerations estimated from ground motion prediction equations typically used in Western Europe with those obtained locally by applying the statistical distribution of damaged masonry buildings to two fragility curves, one derived from the HAZUS programme of FEMA (FEMA, 1999 and another developed for high-vulnerability buildings by Lang and Bachmann (2004, and to a method proposed by Faccioli et al. (1999 relating the seismic vulnerability of buildings to the damage and ground motions. The results of this comparison reveal good agreement between maxima spectral accelerations calculated from these vulnerability and fragility curves and those predicted from attenuation law equations, suggesting peak ground accelerations for the epicentral area of the 1983 earthquake of 0.13–0.20 g (g: gravitational acceleration.

  10. Source parameters of the 2013, Ms 7.0, Lushan earthquake and the characteristics of the near-fault strong ground motion

    Science.gov (United States)

    Zhao, Fengfan; Meng, Lingyuan

    2016-04-01

    The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).

  11. Ground Motion Amplification and Seismic Liquefaction: A Study of Treasure Island and the Loma Prieta Earthquake

    Science.gov (United States)

    1992-06-01

    Engineering and Soil Dynamics, March 1991, St Lousis Missouri. 26 ..J 31. Vucetic M. et al. "Effect of Soil Plasticity on Cyclic Response" Journal of...Figure 47. Effect of soil plasticity . 68 Cyclic Shor Stram, e -perrl 10.2 .0 " S140 %% 5 Ciies. 03 gas % % %%a . For Magnitude 7.5 Earthquake (See

  12. An Earthquake Source Ontology for Seismic Hazard Analysis and Ground Motion Simulation

    Science.gov (United States)

    Zechar, J. D.; Jordan, T. H.; Gil, Y.; Ratnakar, V.

    2005-12-01

    Representation of the earthquake source is an important element in seismic hazard analysis and earthquake simulations. Source models span a range of conceptual complexity - from simple time-independent point sources to extended fault slip distributions. Further computational complexity arises because the seismological community has established so many source description formats and variations thereof; what this means is that conceptually equivalent source models are often expressed in different ways. Despite the resultant practical difficulties, there exists a rich semantic vocabulary for working with earthquake sources. For these reasons, we feel it is appropriate to create a semantic model of earthquake sources using an ontology, a computer science tool from the field of knowledge representation. Unlike the domain of most ontology work to date, earthquake sources can be described by a very precise mathematical framework. Another uniqueness associated with developing such an ontology is that earthquake sources are often used as computational objects. A seismologist generally wants more than to simply construct a source and have it be well-formed and properly described; additionally, the source will be used for performing calculations. Representation and manipulation of complex mathematical objects presents a challenge to the ontology development community. In order to enable simulations involving many different types of source models, we have completed preliminary development of a seismic point source ontology. The use of an ontology to represent knowledge provides machine interpretability and the ability to validate logical consistency and completeness. Our ontology, encoded using the OWL Web Ontology Language - a standard from the World Wide Web Consortium, contains the conceptual definitions and relationships necessary for source translation services. For example, specification of strike, dip, rake, and seismic moment will automatically translate into a double

  13. After the damages: Lessons learned from recent earthquakes for ground-motion prediction and seismic hazard assessment (C.F. Gauss Lecture)

    Science.gov (United States)

    Cotton, Fabrice

    2017-04-01

    Recent damaging earthquakes (e.g. Japan 2011, Nepal 2014, Italy 2016) and associated ground-shaking (ground-motion) records challenge the engineering models used to quantify seismic hazard. The goal of this presentation is to present the lessons learned from these recent events and discuss their implications for ground-motion prediction and probabilistic seismic hazard assessment. The following points will be particularly addressed: 1) Recent observations clearly illustrate the dependency of ground-shaking on earthquake source related factors (e.g. fault properties and geometry, earthquake depth, directivity). The weaknesses of classical models and the impact of these factors on hazard evaluation will be analysed and quantified. 2) These observations also show that events of similar magnitude and style of faulting are producing ground-motions which are highly variable. We will analyse this variability and show that the exponential growth of recorded data give a unique opportunity to quantify regional or between-events shaking variations. Indeed, most seismic-hazard evaluations do not consider the regional specificities of earthquake or wave-propagation properties. There is little guidance in the literature on how this should be done and we will show that this challenge is interdisciplinary, as structural geology, neotectonic and tomographic images can provide key understanding of these regional variations. 3) One of the key lessons of recent earthquakes is that extreme hazard scenarios and ground-shaking are difficult to predict. In other words, we need to mobilize "scientific imagination" and define new strategies based on the latest research results to capture epistemic uncertainties and integrate them in engineering seismology projects. We will discuss these strategies and show an example of their implementation to develop new seismic hazard maps of Europe (Share and Sera FP7 projects) and Germany.

  14. A New Ground Motion Intensity Measure, Peak Filtered Acceleration (PFA), to Estimate Collapse Vulnerability of Buildings in Earthquakes

    Science.gov (United States)

    Song, Shiyan

    In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions. For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions. To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building's natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building's capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion. The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis. The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records. Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures. We also provide a

  15. Spatial Based Integrated Assessment of Bedrock and Ground Motions, Fault Offsets, and Their Effects for the October-November 2002 Earthquake Sequence on the Denali Fault, Alaska

    Science.gov (United States)

    Vinson, T. S.; Carlson, R.; Hansen, R.; Hulsey, L.; Ma, J.; White, D.; Barnes, D.; Shur, Y.

    2003-12-01

    A National Science Foundation (NSF) Small Grant Exploratory Research Grant was awarded to the University of Alaska Fairbanks to archive bedrock and ground motions and fault offsets and their effects for the October-November 2002 earthquake sequence on the Denali Fault, Alaska. The scope of work included the accumulation of all strong motion records, satellite imagery, satellite remote sensing data, aerial and ground photographs, and structural response (both measured and anecdotal) that would be useful to achieve the objective. Several interesting data sets were archived including ice cover, lateral movement of stream channels, landslides, avalanches, glacial fracturing, "felt" ground motions, and changes in water quantity and quality. The data sources may be spatially integrated to provide a comprehensive assessment of the bedrock and ground motions and fault offsets for the October-November 2002 earthquake sequence. In the aftermath of the October-November 2002 earthquake sequence on the Denali fault, the Alaskan engineering community expressed a strong interest to understand why their structures and infrastructure were not substantially damaged by the ground motions they experienced during the October-November 2002 Earthquake Sequence on the Denali Fault. The research work proposed under this NSF Grant is a necessary prerequisite to this understanding. Furthermore, the proposed work will facilitate a comparison of Denali events with the Loma Prieta and recent Kocelli and Dozce events in Turkey, all of which were associated with strike-slip faulting. Finally, the spatially integrated data will provide the basis for research work that is truly innovative. For example, is may be possible to predict the observed (1) landsliding and avalanches, (2) changes in water quantity and quality, (3) glacial fracturing, and (4) the widespread liquefaction and lateral spreading, which occurred along the Tok cutoff and Northway airport, with the bedrock and ground motions and

  16. Infrasonic induced ground motions

    Science.gov (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  17. Seismic Structural Considerations for the Stem and Base of Retaining Walls Subjected to Earthquake Ground Motions

    Science.gov (United States)

    2005-05-01

    and Morrison (1992). AKAE - (3/4) k k = 4 (AKAE) + 3 =4 (0.170) + 3 = 0.227 Observation: A constant horizontal acceleration khg equal to 0.227g will...1.93) Shear 0.375 p kh*g 1-1 1.00 p kh*g H3 0.400 p kh*g I’j 0.772 p khg W2 Moment 0.225 p kh*g • 0.63 p kh*g/3 0.130 p kh*g/H3 0.251 p kh*g H3 kh...ground acceleration, equal to khg a, Maximum vertical ground acceleration, equal to k~g A Area; Seismic coefficient representing the peak ground

  18. Azimuthal Dependence of the Ground Motion Variability from Scenario Modeling of the 2014 Mw6.0 South Napa, California, Earthquake Using an Advanced Kinematic Source Model

    Science.gov (United States)

    Gallovič, F.

    2016-11-01

    Strong ground motion simulations require physically plausible earthquake source model. Here, I present the application of such a kinematic model introduced originally by Ruiz et al. (Geophys J Int 186:226-244, 2011). The model is constructed to inherently provide synthetics with the desired omega-squared spectral decay in the full frequency range. The source is composed of randomly distributed overlapping subsources with fractal number-size distribution. The position of the subsources can be constrained by prior knowledge of major asperities (stemming, e.g., from slip inversions), or can be completely random. From earthquake physics point of view, the model includes positive correlation between slip and rise time as found in dynamic source simulations. Rupture velocity and rise time follows local S-wave velocity profile, so that the rupture slows down and rise times increase close to the surface, avoiding unrealistically strong ground motions. Rupture velocity can also have random variations, which result in irregular rupture front while satisfying the causality principle. This advanced kinematic broadband source model is freely available and can be easily incorporated into any numerical wave propagation code, as the source is described by spatially distributed slip rate functions, not requiring any stochastic Green's functions. The source model has been previously validated against the observed data due to the very shallow unilateral 2014 Mw6 South Napa, California, earthquake; the model reproduces well the observed data including the near-fault directivity (Seism Res Lett 87:2-14, 2016). The performance of the source model is shown here on the scenario simulations for the same event. In particular, synthetics are compared with existing ground motion prediction equations (GMPEs), emphasizing the azimuthal dependence of the between-event ground motion variability. I propose a simple model reproducing the azimuthal variations of the between-event ground motion

  19. Ground motion in the presence of complex Topography II: Earthquake sources and 3D simulations

    Science.gov (United States)

    Hartzell, Stephen; Ramirez-Guzman, Leonardo; Meremonte, Mark; Leeds, Alena L.

    2017-01-01

    Eight seismic stations were placed in a linear array with a topographic relief of 222 m over Mission Peak in the east San Francisco Bay region for a period of one year to study topographic effects. Seventy‐two well‐recorded local earthquakes are used to calculate spectral amplitude ratios relative to a reference site. A well‐defined fundamental resonance peak is observed with individual station amplitudes following the theoretically predicted progression of larger amplitudes in the upslope direction. Favored directions of vibration are also seen that are related to the trapping of shear waves within the primary ridge dimensions. Spectral peaks above the fundamental one are also related to topographic effects but follow a more complex pattern. Theoretical predictions using a 3D velocity model and accurate topography reproduce many of the general frequency and time‐domain features of the data. Shifts in spectral frequencies and amplitude differences, however, are related to deficiencies of the model and point out the importance of contributing factors, including the shear‐wave velocity under the topographic feature, near‐surface velocity gradients, and source parameters.

  20. Simulation of strong ground motion parameters of the 1 June 2013 Gulf of Suez earthquake, Egypt

    Directory of Open Access Journals (Sweden)

    Mostafa Toni

    2017-06-01

    The results reveal that the highest values of PGA, PGV, and PGD are observed at Ras Gharib city (epicentral distance ∼ 11 km as 67 cm/s2, 2.53 cm/s, and 0.45 cm respectively for Zone A, and as 26.5 cm/s2, 1.0 cm/s, and 0.2 cm respectively for Zone B, while the lowest values of PGA, PGV, and PGD are observed at Suez city (epicentral distance ∼ 190 km as 3.0 cm/s2, 0.2 cm/s, and 0.05 cm/s respectively for Zone A, and as 1.3 cm/s2, 0.1 cm/s, and 0.024 cm respectively for Zone B. Also the highest PSA values are observed in Ras Gharib city as 200 cm/s2 and 78 cm/s2 for Zone A and Zone B respectively, while the lowest PSA values are observed in Suez city as 7 cm/s2 and 3 cm/s2 for Zone A and Zone B respectively. These results show a good agreement with the earthquake magnitude, epicentral distances, and site characterizations as well.

  1. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer

    Science.gov (United States)

    Tu, R.; Wang, R.; Ge, M.; Walter, T. R.; Ramatschi, M.; Milkereit, C.; Bindi, D.; Dahm, T.

    2013-08-01

    detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (microelectromechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analyzed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers.

  2. Constraining ground motion parameters and determining the historic earthquake that damaged the vaults underneath the Old City of Jerusalem

    Science.gov (United States)

    Yagoda-Biran, G.; Hatzor, Y. H.

    2013-12-01

    Evidence for seismically induced damage are preserved in historic masonry structures below the Old City of Jerusalem at a site known locally as the 'Western Wall Tunnels' complex, possibly one of the most important tourist attractions in the world. In the tunnels, structures dated to 500 BC and up until modern times have been uncovered by recent archeological excavation. One of the interesting findings is a 100 m long bridge, composed of two rows of barrel vaults, believed to have been constructed during the 3rd century AD to allow easy access to the Temple Mount. In one of the vaults a single masonry block is displaced 7 cm downward with respect to its neighbors (see figure below). Since the damage seems seismically driven, back analysis of the damage with the numerical Discontinuous Deformation Analysis (DDA) method was performed, in order to constrain the peak ground acceleration (PGA) that had caused the damage. First the numerical method used for back analysis was verified with an analytical solution for the case of a rocking monolithic column, then validated with experimental results for site response analysis. The verification and validation prove the DDA is capable of handling dynamic and wave propagation problems. Next, the back analysis was performed. Results of the dynamic numerical simulations suggest that the damage observed at the vault was induced by seismic vibrations that must have taken place before the bridge was buried underground, namely when it was still in service. We find that the PGA required for causing the observed damage was high - between 1.5 and 2 g. The PGA calculated for Jerusalem on the basis of established attenuation relationships for historic earthquakes that struck the region during the relevant time period is about one order of magnitude lower: 0.14 and 0.48 g, for the events that took place at 362 and 746 AD, respectively. This discrepancy is explained by local site effects that must have amplified bedrock ground motions by a

  3. Strong motion duration and earthquake magnitude relationships

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M.W.; Short, S.A. [EQE International, Inc., San Francisco, CA (United States); Kennedy, R.P. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States)

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  4. Fast Identification of Near-Trench Earthquakes Along the Mexican Subduction Zone Based on Characteristics of Ground Motion in Mexico City

    Science.gov (United States)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Rodríguez, Q.; Iglesias, A.

    2015-12-01

    The disastrous 1985 Michoacan earthquake gave rise to a seismic alert system for Mexico City which became operational in 1991. Initially limited to earthquakes along the Guerrero coast, the system now has a much wider coverage. Also, the 2004 Sumatra earthquake exposed the need for a tsunami early warning along the Mexican subduction zone. A fast identification of near-trench earthquakes along this zone may be useful in issuing a reliable early tsunami alert. The confusion caused by low PGA for the magnitude of an earthquake, leading to "missed" seismic alert, would be averted if its near-trench origin can be quickly established. It may also help reveal the spatial extent and degree of seismic coupling on the near-trench portion of the plate interface. This would lead to a better understanding of tsunami potential and seismic hazard along the Mexican subduction zone. We explore three methods for quick detection of near-trench earthquakes, testing them on recordings of 65 earthquakes at station CU in Mexico City (4.8 ≤Mw≤8.0; 270≤R≤615 km). The first method is based on the ratio of total to high-frequency energy, ER (Shapiro et al., 1998). The second method is based on parameter Sa*(6) which is the pseudo-acceleration response spectrum with 5% damping, Sa, at 6 s normalized by the PGA. The third parameter is the PGA residual, RESN, at CU, with respect to a newly-derived ground motion prediction equation at CU for coastal shallow-dipping thrust earthquakes following a bayesian approach. Since the near-trench earthquakes are relatively deficient in high-frequency radiation, we expect ER and Sa*(6) to be relatively large and RESN to be negative for such events. Tests on CU recordings show that if ER ≥ 100 and/or Sa*(6) ≥ 0.70, then the earthquake is near trench; for these events RESN ≤ 0. Such an event has greater tsunami potential. Few misidentifications and missed events are most probably a consequence of poor location, although unusual depth and source

  5. Using structures of the August 24, 2016 Amatrice earthquake affected area as seismoscopes for assessing ground motion characteristics and parameters of the main shock and its largest aftershocks

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck Central Apennines (Italy) resulting in 299 fatalities, 388 injuries and about 3000 homeless in Amatrice wider area. Normal faulting surface ruptures along the western slope of Mt Vettore along with provided focal mechanisms demonstrated a NW-SE striking and SE dipping causative normal fault. The dominant building types in the affected area are unreinforced masonry (URM) and reinforced concrete (RC) buildings. Based on our macroseismic survey in the affected area immediately after the earthquake, RC buildings suffered non-structural damage including horizontal cracking of infill and internal partition walls, detachment of infill walls from the surrounding RC frame and detachment of large plaster pieces from infill walls as well as structural damage comprising soft story failure, symmetrical buckling of rods, compression damage at midheight of columns and bursting of over-stressed columns resulting in partial or total collapse. Damage in RC buildings was due to poor quality of concrete, inadequacy of reinforcement, inappropriate foundation close to the edge of slopes leading to differential settlements, poor workmanship and the destructive effect of vertical ground motions. Damage in URM buildings ranged from cracks and detachment of large plaster pieces from load-bearing walls to destruction due to poor workmanship with randomly placed materials bound by low-strength mortars, the effect of the vertical ground motion, inadequate repair and/or strengthening after previous earthquakes as well as inadequate interventions, additions and extensions to older URM buildings. During field surveying, the authors had the opportunity to observe damage induced not only by the main shock but also by its largest aftershocks (Mw 4.5-5.3) during the first three days of the aftershock sequence (August 24-26). Bearing in mind that: (a) soil conditions in foundations of the affected villages were more or less similar, (b) building damage

  6. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy)

    KAUST Repository

    Imperatori, W.

    2012-03-01

    In this paper, we investigate ground-motion variability due to different faulting approximations and crustal-model parametrizations in the Messina Straits area (Southern Italy). Considering three 1-D velocity models proposed for this region and a total of 72 different source realizations, we compute broad-band (0-10 Hz) synthetics for Mw 7.0 events using a fault plane geometry recently proposed. We explore source complexity in terms of classic kinematic (constant rise-time and rupture speed) and pseudo-dynamic models (variable rise-time and rupture speed). Heterogeneous slip distributions are generated using a Von Karman autocorrelation function. Rise-time variability is related to slip, whereas rupture speed variations are connected to static stress drop. Boxcar, triangle and modified Yoffe are the adopted source time functions. We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.

  7. Source and ground-motion parameters of the 2011 Lorca earthquake; Parametros de la fuente y del movimiento del suelo del terremoto de Lorca de 2011

    Energy Technology Data Exchange (ETDEWEB)

    Alguacil de la Blanca, G.; Vidal Sanchez, F.; Stich, D.; Mancilla Perez, F. L.; Lopez Comino, J. A.; Morales Soto, J.; Navarro Bernal, M.

    2012-07-01

    113 events of the Lorca seismic series has been relocated by using Double difference algorithm and data from both temporary and permanent seismic networks. Relocations yield shallow hypo central distribution of aftershocks with a {approx}5 km long, NE-SW trending, placed SW of the mainshock, suggesting a SW propagating rupture along the Alhama de Murcia fault. Similar oblique reverse faulting mechanism has been obtained for three largest events. Source parameters of these three earthquakes have been estimated. Horizontal ground motion was estimated at 11 city points whose local structure was known by SPAC experiments. A set of ground motion parameters (PGA, PGV, AI, CAV, SI, SA and SV) here calculated, have higher values at these points respect to the ones at LOR station. All parameter values are also above the expected values for Euro -Mediterranean earthquakes with local intensity VIII (EMS). Nevertheless, SD values are unusually short and less than the reference ones. Higher values of the response spectra of acceleration and velocity are given for periods of less than 0.7 s, with maximum spectral acceleration at 0.15 s and velocity at 0.5 s. The elastic input energy spectrum is well connected to the shake destructiveness in each place. Equivalent velocity > 60 cm/s is found in almost all sites and > 100 cm/s (for periods 0.3 to 0.6 s) in someone. Factors such as proximity, and focal mechanism and ground response characteristics explain the high ground motion parameter values obtained in Lorca sites and show the great influence of the source and site conditions on the characteristics of strong ground motion in the vicinity of the rupture. (Author) 68 refs.

  8. Ground motion estimation and nonlinear seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, D.B.; Hutchings, L.J.

    1995-08-14

    Site specific predictions of the dynamic response of structures to extreme earthquake ground motions are a critical component of seismic design for important structures. With the rapid development of computationally based methodologies and powerful computers over the past few years, engineers and scientists now have the capability to perform numerical simulations of many of the physical processes associated with the generation of earthquake ground motions and dynamic structural response. This paper describes application of a physics based, deterministic, computational approach for estimation of earthquake ground motions which relies on site measurements of frequently occurring small (i.e. M < 3 ) earthquakes. Case studies are presented which illustrate application of this methodology for two different sites, and nonlinear analyses of a typical six story steel frame office building are performed to illustrate the potential sensitivity of nonlinear response to site conditions and proximity to the causative fault.

  9. Environmental effects and building damage induced by the vertical component of ground motion during the August 24, 2016 Amatrice (Central Italy) earthquake

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck central Italy resulting in 299 fatalities, 388 injuries and about 3000 homeless. The provided focal mechanisms demonstrated a NW-SE striking seismic normal fault which is consistent with the spatial distribution of the coseismic surface ruptures observed along the western slope of Mt Vettore. Based on our field reconnaissance in the affected area immediately after the earthquake, extensive secondary environmental effects including landslides, rockfalls and ground cracks were also observed. Most landslides were generated within the Amatrice intermontane basin, which, instead of a flat surface, comprises isolated flat hills and ridges with relatively high and steep slopes extending several meters above the low-lying part of the basin consisting of Quaternary deposits and with several villages founded at their top. Landslides generated along the steep slopes of Amatrice, Accumoli and Pescara del Tronto flat hills were due to topographical amplification of the earthquake motion derived from accelerometric recordings analysis along with the action of the vertical component of the ground motion and the already established instability conditions resulting from river incision and erosion at the base of the hills. Strong evidences of the effect of the vertical ground motion in reinforced concrete (RC) buildings are the symmetrical buckling of reinforcement, compression damage and crushing at midheight and in other parts of columns, undamaged windows and unbroken glass panels as well as partial collapse of the buildings that usually occur along the vertical axis within the plan of the building. On the contrary, high flexible structures such as castle and bell towers in Arcuata del Tronto and Amatrice respectively were not affected by the vertical ground motion. During the action of the vertical component of the ground motion in Amatrice affected area, stationary waves were formed vertically in the observed structures resulting

  10. Rupture process of the main shock of the 2016 Kumamoto earthquake with special reference to damaging ground motions: waveform inversion with empirical Green's functions

    Science.gov (United States)

    Nozu, Atsushi; Nagasaka, Yosuke

    2017-01-01

    In this study, the rupture process of the main shock of the Kumamoto earthquake, particularly the generation of strong ground motions in the frequency range relevant to structural damage, was investigated based on the inversion of strong ground motions. Strong-motion records in the near-source region were mainly utilized because the authors were interested in the generation mechanism of damaging ground motions in the near-source region. Empirical Green's functions (EGFs) were applied to avoid uncertainty in the subsurface structure model. Four cases of inversions with different combinations of small events were used to investigate the dependence of the inversion results on the selection of the small events. It was found that the dependence of the final slip distribution and peak slip velocity distribution on the selection of the EGF events is small. The results clearly indicate that a region of significantly large slip and slip velocity existed approximately 15 km northeast of the hypocenter. However, no "asperity" was observed between the hypocenter and Mashiki. Thus, it is not appropriate to conclude that the large-amplitude pulse-like ground motion in Mashiki was generated by the forward-directivity effect associated with the rupture of an asperity. As far as the source effect is concerned, the ground motion in Mashiki cannot be interpreted as the worst case scenario. On the other hand, the rupture of the "asperity" 15 km northeast of the hypocenter should have caused significantly large ground motions in regions close to the asperity. The significant damage of highway bridges in the region can potentially be attributed to the rupture of the asperity. The result of this study was compared with an inversion result obtained from numerical Green's functions for a layered half-space. The two results share the main features in spite of the difference of the Green's functions and stations used. Therefore, it can be concluded that these two source models capture the

  11. Simulation of broad-band strong ground motion for a hypothetical Mw 7.1 earthquake on the Enriquillo Fault in Haiti

    Science.gov (United States)

    Douilly, Roby; Mavroeidis, George P.; Calais, Eric

    2017-10-01

    The devastating 2010 Mw 7.0 Haiti earthquake demonstrated the need to improve mitigation and preparedness for future seismic events in the region. Previous studies have shown that the earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown transpressional Léogâne Fault. Slip on that fault has increased stresses on the segment of Enriquillo Fault to the east of Léogâne, which terminates in the ˜3-million-inhabitant capital city of Port-au-Prince. In this study, we investigate ground shaking in the vicinity of Port-au-Prince, if a hypothetical rupture similar to the 2010 Haiti earthquake occurred on that segment of the Enriquillo Fault. We use a finite element method and assumptions on regional tectonic stress to simulate the low-frequency ground motion components using dynamic rupture propagation for a 52-km-long segment. We consider eight scenarios by varying parameters such as hypocentre location, initial shear stress and fault dip. The high-frequency ground motion components are simulated using the specific barrier model in the context of the stochastic modeling approach. The broad-band ground motion synthetics are subsequently obtained by combining the low-frequency components from the dynamic rupture simulation with the high-frequency components from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. Results show that rupture on a vertical Enriquillo Fault generates larger horizontal permanent displacements in Léogâne and Port-au-Prince than rupture on a south-dipping Enriquillo Fault. The mean horizontal peak ground acceleration (PGA), computed at several sites of interest throughout Port-au-Prince, has a value of ˜0.45 g, whereas the maximum horizontal PGA in Port-au-Prince is ˜0.60 g. Even though we only consider a limited number of rupture scenarios, our results suggest more intense ground

  12. Effects of sea water on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes

    Science.gov (United States)

    Todoriki, Masaru; Furumura, Takashi; Maeda, Takuto

    2017-01-01

    We investigated the effects of sea water on the propagation of seismic waves using a 3-D finite-difference-method simulation of seismic wave propagation following offshore earthquakes. When using a 1-D layered structure, the simulation results showed strong S- to P-wave conversion at the sea bottom; accordingly, S-wave energy was dramatically decreased by the sea water layer. This sea water de-amplification effect had strong frequency dependence, therefore resembling a low-pass filter in which the cut-off frequency and damping coefficients were defined by the thickness of the sea water layer. The sea water also acted to elongate the duration of Rayleigh wave packet. The importance of the sea water layer in modelling offshore earthquakes was further demonstrated by a simulation using a realistic 3-D velocity structure model with and without sea water for a shallow (h = 14 km) outer-rise Nankai Trough event, the 2004 SE Off Kii Peninsula earthquake (Mw = 7.2). Synthetic seismograms generated by the model when sea water was included were in accordance with observed seismograms for long-term longer period motions, particularly those in the shape of Rayleigh waves.

  13. An Earthquake Ground Motion Database System with Automatic Record Selection Methods%一种支持自动化选波的地震波数据库系统

    Institute of Scientific and Technical Information of China (English)

    徐亚军; 王朝坤; 魏冬梅; 施炜; 潘鹏

    2011-01-01

    With many earthquakes happening in recent years, the seismic performance of building structures is more and more important. How to select earthquake ground motion records for testing buildings is becoming much more necessary. Although the Occident has set up some earthquake ground motion database systems for researches of seismic performance of building structures, these database systems are not able to cover characteristics of earthquake ground motions of our country, nor offer record election methods meeting requirements of our engineering designs, let alone the automatic record selection method. Therefore, it is much necessary to develop an earthquake ground motion database system and scientific and reasonable selection methods of our country immediately. This paper presents an earthquake ground motion database system, which collects a lot of earthquake ground motion records. And the system supports two kinds of earthquake ground motion record selection methods: the conditional ground motion selection method and the severest ground motion selection method. Many experiments prove that the efficiency and effects of earthquake ground motion record selection methods can both meet users' requirements.%近年来地震频发,建筑结构的抗震性越来越被人们所重视,因此如何选取需要的地震波来检测建筑结构变得非常重要.虽然欧美等国家已经建立了一些用于结构抗震研究的地震波数据库系统,但是这些数据库系统均未能涵盖能反映我国地震动特征的地震波,也未能提供满足我国工程设计的选波方法,更没有实现自动化选波,所以迅速开发我国自己的地震波数据库系统和研究科学合理的选波方法显得十分必要.设计并实现了一种可以自动化选波的地震波数据库系统,该系统收集了许多具有代表性和权威性的地震波,并支持条件选波和最不利选波.大量的实验表明,该地震波数据库系统的选波效率、选波

  14. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  15. Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershocks

    Science.gov (United States)

    Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki

    2016-04-01

    Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large

  16. Calculation of broadband time histories of ground motion, Part II: Kinematic and dynamic modeling using theoretical Green's functions and comparison with the 1994 northridge earthquake

    Science.gov (United States)

    Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.

    2005-01-01

    In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.

  17. Engineering applications of strong ground motion simulation

    Science.gov (United States)

    Somerville, Paul

    1993-02-01

    The formulation, validation and application of a procedure for simulating strong ground motions for use in engineering practice are described. The procedure uses empirical source functions (derived from near-source strong motion recordings of small earthquakes) to provide a realistic representation of effects such as source radiation that are difficult to model at high frequencies due to their partly stochastic behavior. Wave propagation effects are modeled using simplified Green's functions that are designed to transfer empirical source functions from their recording sites to those required for use in simulations at a specific site. The procedure has been validated against strong motion recordings of both crustal and subduction earthquakes. For the validation process we choose earthquakes whose source models (including a spatially heterogeneous distribution of the slip of the fault) are independently known and which have abundant strong motion recordings. A quantitative measurement of the fit between the simulated and recorded motion in this validation process is used to estimate the modeling and random uncertainty associated with the simulation procedure. This modeling and random uncertainty is one part of the overall uncertainty in estimates of ground motions of future earthquakes at a specific site derived using the simulation procedure. The other contribution to uncertainty is that due to uncertainty in the source parameters of future earthquakes that affect the site, which is estimated from a suite of simulations generated by varying the source parameters over their ranges of uncertainty. In this paper, we describe the validation of the simulation procedure for crustal earthquakes against strong motion recordings of the 1989 Loma Prieta, California, earthquake, and for subduction earthquakes against the 1985 Michoacán, Mexico, and Valparaiso, Chile, earthquakes. We then show examples of the application of the simulation procedure to the estimatation of the

  18. State-of-the-Art for Assessing Earthquake Hazards in the United States. Report 28. Recommended Accelerograms for Earthquake Ground Motions

    Science.gov (United States)

    1992-06-01

    UNAM, Preliminary Report GAA-1A. Quaas, Roberto , Anderson, John G, et al., October 1985. The Michoacan- Guerrero, Mexico Earthquake of September 1985...Skopje. Yugoslavia 1979 Leeds, Arline, ed., November 1980. Reconnaissance Report: Montenegro , Yugoslavia Earthquake, April 15, 1979: Earthquake...the April 15, 1979 Montenegro -Yugoslavia Earthquake: Institute of Earthquake Engineering and Engineering Seismology, University "Kiril and Metodij

  19. A stochastic estimate of ground motion at Oceano, California, for the M 6.5 22 December 2003 San Simeon earthquake, derived from aftershock recordings

    Science.gov (United States)

    Di, Alessandro C.; Boatwright, J.

    2006-01-01

    The U.S. Geological Survey deployed a digital seismic station in Oceano, California, in February 2004, to investigate the cause of damage and liquefaction from the 22 December 2003 M 6.5 San Simeon earthquake. This station recorded 11 M > 2.8 aftershocks in almost 8 weeks. We analyze these recordings, together with recordings of the mainshock and the same aftershocks obtained from nearby stations in Park Hill and San Luis Obispo, to estimate the mainshock ground motion in Oceano. We estimate the Fourier amplitude spectrum using generalized spectral ratio analysis. We test a set of aftershocks as Green's functions by comparing simulated and recorded acceleration amplitude spectra for the mainshock at San Luis Obispo and Park Hill. We convolve the aftershock accelerograms with a stochastic operator to simulate the duration and phase of the mainshock accelerograms. This approximation allows us to extend the range of aftershocks that can be used as Green's functions to events nearly three magnitude units smaller than the mainshock. Our realizations for the mainshock accelerogram at Oceano yield peak ground accelerations distributed as 28% ?? 4%g. We interpret these realizations as upper bounds for the actual ground motion, because our analysis assumes a linear response, whereas the presence of liquefaction indicates that the ground behaved nonlinearly in Oceano.

  20. Simulation of earthquake ground motions in the eastern United States using deterministic physics‐based and site‐based stochastic approaches

    Science.gov (United States)

    Rezaeian, Sanaz; Hartzell, Stephen; Sun, Xiaodan; Mendoza, Carlos

    2017-01-01

    Earthquake ground‐motion recordings are scarce in the central and eastern United States (CEUS) for large‐magnitude events and at close distances. We use two different simulation approaches, a deterministic physics‐based method and a site‐based stochastic method, to simulate ground motions over a wide range of magnitudes. Drawing on previous results for the modeling of recordings from the 2011 Mw 5.8 Mineral, Virginia, earthquake and using the 2001 Mw 7.6 Bhuj, India, earthquake as a tectonic analog for a large magnitude CEUS event, we are able to calibrate the two simulation methods over this magnitude range. Both models show a good fit to the Mineral and Bhuj observations from 0.1 to 10 Hz. Model parameters are then adjusted to obtain simulations for Mw 6.5, 7.0, and 7.6 events in the CEUS. Our simulations are compared with the 2014 U.S. Geological Survey weighted combination of existing ground‐motion prediction equations in the CEUS. The physics‐based simulations show comparable response spectral amplitudes and a fairly similar attenuation with distance. The site‐based stochastic simulations suggest a slightly faster attenuation of the response spectral amplitudes with distance for larger magnitude events and, as a result, slightly lower amplitudes at distances greater than 200 km. Both models are plausible alternatives and, given the few available data points in the CEUS, can be used to represent the epistemic uncertainty in modeling of postulated CEUS large‐magnitude events.

  1. The strong ground motion observation for the Wenchuan aftershock

    Institute of Scientific and Technical Information of China (English)

    Ruizhi Wen; Zhenghua Zhou; Xiaojun Li; Cheng Yang; Yuhuan Wang; Quan Liu; Xiaotao Yin; Mindu Zhou; Jianwen Cui

    2009-01-01

    In this paper, the mobile strong ground motion observation for the destructive earthquake is introduced. Considering the characteristics and its spatial distributions of aftershock, 59 strong ground motion instruments were installed along the Longmenshan fault area, and more than 2 000 records have been accumulated. It shows that it is necessary to perform the mobile strong ground motion observation after the destructive earthquake, and the precious collected data could be applied for further research.

  2. Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  3. A novel model and estimation method for the individual random component of earthquake ground-motion relations

    CERN Document Server

    Raschke, Mathias

    2015-01-01

    In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke (2013a), with the sample of random difference xi=ln(Y1)-ln(Y2), in which Y1 and Y2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure the distribution of difference xi was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference xi of the sample o...

  4. A Stochastic Estimate of Ground Motion at Oceano, California, for the M6.5 December 22, 2003, San Simeon Earthquake, Derived from Aftershock Recordings

    Science.gov (United States)

    di Alessandro, C.; Boatwright, J.

    2004-12-01

    The U.S. Geological Survey deployed a digital seismic station in Oceano, California, in February 2004, to investigate the cause of damage and liquefaction from the 22 December 2003 M6.5 San Simeon earthquake. This station recorded 11 M\\> 2.8 aftershocks in almost eight weeks. We use these recordings, together with recordings of the main shock and the same aftershocks obtained from nearby stations in Park Hill and San Luis Obispo, to estimate the mainshock ground motion in Oceano. We estimate the Fourier amplitude spectrum using a generalized spectral ratio analysis that averages the spectral ratios from both stations for all the co-recorded aftershocks. We test three aftershocks as Green's functions by comparing simulated and recorded acceleration amplitude spectra for the main shock at Park Hill and San Luis Obispo. Instead of deconvolving the aftershock recordings from the mainshock recordings to estimate a source-time function, we convolve the aftershock accelerograms with a stochastic operator to simulate the duration and phase of the mainshock accelerograms. These stochastic operators are determined as sets of delta functions whose delays are randomly generated from a gamma distribution with a shape parameter of 1. We choose the scale parameter by fitting Husid plots of the Park Hill and San Luis Obsipo mainshock accelerograms. This stochastic approach allows us to extend the range of aftershocks that can be used as Green's functions to events nearly three magnitude units smaller than the main shock. Our realizations for the mainshock accelerogram at Oceano yield PGAs distributed as 28±4% g. We interpret these realizations as upper bounds for the actual ground motion because our analysis assumes that the ground behaved linearly, while the liquefaction and lateral spreading indicates that the ground behaved non-linearly. Geotechnical analysis of the site indicates that a PGA of 25% g would have initiated the liquefaction.

  5. Ground motion: An introduction for accelerator builders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1992-02-01

    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.

  6. Ground motion: An introduction for accelerator builders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1992-02-01

    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.

  7. A media-based assessment of damage and ground motions from the January 26th, 2001 M 7.6 Bhuj, India earthquake

    Science.gov (United States)

    Hough, S.E.; Martin, S.; Bilham, R.; Atkinson, G.M.

    2003-01-01

    We compiled available news and internet accounts of damage and other effects from the 26th January, 2001, Bhuj earthquake, and interpreted them to obtain modified Mercalli intensities at over 200 locations throughout the Indian subcontinent. These values are used to map the intensity distribution using a simple mathematical interpolation method. The maps reveal several interesting features. Within the Kachchh region, the most heavily damaged villages are concentrated towards the western edge of the inferred fault, consistent with western directivity. Significant sediment-induced amplification is also suggested at a number of locations around the Gulf of Kachchh to the south of the epicenter. Away from the Kachchh region intensities were clearly amplified significantly in areas that are along rivers, within deltas, or on coastal alluvium such as mud flats and salt pans. In addition we use fault rupture parameters inferred from teleseismic data to predict shaking intensity at distances of 0-1000 km. We then convert the predicted hard rock ground motion parameters to MMI using a relationship (derived from internet-based intensity surveys) that assigns MMI based on the average effects in a region. The predicted MMIs are typically lower by 1-2 units than those estimated from news accounts. This discrepancy is generally consistent with the expected effect of sediment response, but it could also reflect other factors such as a tendency for media accounts to focus on the most dramatic damage, rather than the average effects. Our modeling results also suggest, however, that the Bhuj earthquake generated more high-frequency shaking than is expected for earthquakes of similar magnitude in California, and may therefore have been especially damaging.

  8. A media-based assessment of damage and ground motions from the January 26th, 2001 M7.6 Bhuj, India earthquake

    Indian Academy of Sciences (India)

    Susan E Hough; Stacey Martin; Roger Bilham; Gail M Atkinson

    2003-09-01

    We compiled available news and internet accounts of damage and other effects from the 26th January, 2001, Bhuj earthquake, and interpreted them to obtain modified Mercalli intensities at over 200 locations throughout the Indian subcontinent. These values are used to map the intensity distribution using a simple mathematical interpolation method. The maps reveal several interesting features. Within the Kachchh region, the most heavily damaged villages are concentrated towards the western edge of the inferred fault, consistent with western directivity. Significant sediment- induced amplification is also suggested at a number of locations around the Gulf of Kachchh to the south of the epicenter. Away from the Kachchh region intensities were clearly amplified significantly in areas that are along rivers, within deltas, or on coastal alluvium such as mud flats and salt pans. In addition we use fault rupture parameters inferred from teleseismic data to predict shaking intensity at distances of 0-1000 km. We then convert the predicted hard rock ground motion parameters to MMI using a relationship (derived from internet-based intensity surveys) that assigns MMI based on the average effects in a region. The predicted MMIs are typically lower by 1-2 units than those estimated from news accounts. This discrepancy is generally consistent with the expected effect of sediment response, but it could also reflect other factors such as a tendency for media accounts to focus on the most dramatic damage, rather than the average effects. Our modeling results also suggest, however, that the Bhuj earthquake generated more high-frequency shaking than is expected for earthquakes of similar magnitude in California, and may therefore have been especially damaging.

  9. How Much Can the Total Aleatory Variability of Empirical Ground Motion Prediction Equations Be Reduced Using Physics-Based Earthquake Simulations?

    Science.gov (United States)

    Jordan, T. H.; Wang, F.; Graves, R. W.; Callaghan, S.; Olsen, K. B.; Cui, Y.; Milner, K. R.; Juve, G.; Vahi, K.; Yu, J.; Deelman, E.; Gill, D.; Maechling, P. J.

    2015-12-01

    Ground motion prediction equations (GMPEs) in common use predict the logarithmic intensity of ground shaking, lnY, as a deterministic value, lnYpred(x), conditioned on a set of explanatory variables x plus a normally distributed random variable with a standard deviation σT. The latter accounts for the unexplained variability in the ground motion data used to calibrate the GMPE and is typically 0.5-0.7 in natural log units. Reducing this residual or "aleatory" variability is a high priority for seismic hazard analysis, because the probabilities of exceedance at high Y values go up rapidly with σT. adding costs to the seismic design of critical facilities to account for the prediction uncertainty. However, attempts to decrease σT by incorporating more explanatory variables to the GMPEs have been largely unsuccessful (e.g., Strasser et al., SRL, 2009). An alternative is to employ physics-based earthquake simulations that properly account for source directivity, basin effects, directivity-basin coupling, and other 3D complexities. We have explored the theoretical limits of this approach through an analysis of large (> 108) ensembles of 3D synthetic seismograms generated for the Los Angeles region by SCEC's CyberShake project using the new tool of averaging-based factorization (ABF, Wang & Jordan, BSSA, 2014). The residual variance obtained by applying GMPEs to the CyberShake dataset matches the frequency-dependence of σT obtained for the GMPE calibration dataset. The ABF analysis allows us to partition this variance into uncorrelated components representing source, path, and site effects. We show that simulations can potentially reduce σT by about one-third, which could lower the exceedance probabilities for high hazard levels at fixed x by orders of magnitude. Realizing this gain in forecasting probability would have a broad impact on risk-reduction strategies, especially for critical facilities such as large dams, nuclear power plants, and energy transportation

  10. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems.

  11. Preliminary results of ground-motion characteristics

    Directory of Open Access Journals (Sweden)

    Francesca Bozzoni

    2012-10-01

    Full Text Available The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.

  12. Study on the characteristics of earthquake ground motion in the Hanshin area based on microtremor measurements; Bido kansoku ni motozuku Hanshin chiiki no jiban shindo tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Seo, K.; Yamanaka, H. [Tokyo Institute of Technology, Tokyo (Japan)

    1997-05-27

    The Hyogoken-nanbu earthquake in 1995 was a local earthquake that has hit directly a large urban area, having caused damages the greatest since the War mainly in the city of Kobe. The present study has noticed the areas of Sumiyoshi, Nada Ward, Kobe City and Nanbu, Nishinomiya City where damages show different distribution; elucidated the characteristics of earthquake ground motion based on microtremor measurements; and discussed the relation thereof with the earthquake damage distribution. It was verified that microtremors and seismic motions are in rough agreement in the Sumiyoshi area, by comparing and discussing the spectrum ratio between the microtremors and the seismic motions. No correspondence was recognized in the Sumiyoshi area between distribution of the average microtremor spectrum ratio with cycles of 0.2 to 0.8 second and distribution of damages caused by the Hyogoken-nanbu earthquake. The ground characteristics evaluation alone is insufficient to explain distribution of the damages in a relatively wide range in the city of Nishinomiya, for which effects of distance decay should be taken into consideration. 6 refs., 7 figs.

  13. Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

    Science.gov (United States)

    Graves, Robert W.; Aagaard, Brad T.

    2011-01-01

    Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (models may need improvement.

  14. Simulation of ground motion using the stochastic method

    Science.gov (United States)

    Boore, D.M.

    2003-01-01

    A simple and powerful method for simulating ground motions is to combine parametric or functional descriptions of the ground motion's amplitude spectrum with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to the distance from the source. This method of simulating ground motions often goes by the name "the stochastic method." It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers (generally, f>0.1 Hz), and it is widely used to predict ground motions for regions of the world in which recordings of motion from potentially damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude and in diverse tectonic environments. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms. This provides a means by which the results of the rigorous studies reported in other papers in this volume can be incorporated into practical predictions of ground motion.

  15. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  16. Translational Response of Toe-Restrained Retaining Walls to Earthquake Ground Motions Using CorpsWallSlip (CWSlip)

    Science.gov (United States)

    2007-06-01

    For some analyses, it is appropriate to use acceleration values of khg and kvg smaller than the horizontal and vertical peak accelerations...ground acceleration time-histories, ah (= khg ) and av (= kvg), respectively. Recall that g is the universal gravitational constant while kh and kv

  17. Modelling of Seismic Ground Motion in Santiago de Cuba City from Earthquakes in Oriente Fault Seismic Zone

    Science.gov (United States)

    Alvarez, L.; Panza, G. F.; Vaccari, F.; González, B. E.

    We present the results of complete P-SV and SH waves modelling, up to a maximum frequency of 1Hz, along two profiles in Santiago de Cuba city. The seismic sources are located in the depth range from 10 to 40km on the Oriente fault zone at distances of several tens of kilometres from the city. The calculation has been made by a hybrid method: Modal summation in the regional anelastic model (one-dimensional) where the source is buried, and finite differences in the local sedimentary anelastic models (two-dimensional). The analysis of the influence of the depth and of the distance of the source on the site effects shows that standard traditional methods, based on the deconvolution analysis of the rock outcrop motion, can lead to erroneous results.

  18. Recording ground motions where people live

    Science.gov (United States)

    Cranswick, E.; Gardner, B.; Hammond, S.; Banfill, R.

    The 1989 Loma Prieta, Calif., earthquake caused spectacular damage to structures up to 100 km away in the San Francisco Bay sedimentary basin, including the Cypress Street viaduct overpass, the Bay Bridge, and buildings in the San Francisco Marina district. Although the few mainshock ground motions recorded in the northern San Francisco Bay area were “significantly larger … than would be expected from the pre-existing data set,” none were recorded at the sites of these damaged structures [Hanks and Krawinkler, 1991].Loma Prieta aftershocks produced order-of-magnitude variations of ground motions related to sedimentary basin response over distances of 1-2 km and less [Cranswick et al., 1990]. In densely populated neighborhoods, these distances can encompass the residences of thousands of people, but it is very unlikely that these neighborhoods are monitored by even one seismograph. In the last decade, the complexity of computer models used to simulate high-frequency ground motions has increased by several orders of magnitude [e.g., Frankel and Vidale, 1992], but the number of seismograph stations—hence, the spatial density of the sampling of ground motion data—has remained relatively unchanged. Seismologists must therefore infer the nature of the ground motions in the great unknown regions between observation points.

  19. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  20. Preliminary estimate of the amplification of possible earthquake ground motion at a site in Charleston County, South Carolina

    Science.gov (United States)

    Wheeler, Russell L.; Cramer, Chris H.

    2000-01-01

    We estimate site amplification at the location of a proposed bridge near Charleston, South Carolina. Model calculations indicate that amplification at periods of 1 s and longer is likely to be strongly influenced by the effects of a large contrast in shear-wave velocity at a depth of approximately 1 km (3,000 ft). On-site borehole data, regional geological and geophysical information, and data from a geologically similar setting near Memphis, Tennessee allowed us to estimate profiles of shear-wave velocity, shear-wave attenuation, and density from ground level down to metamorphic and igneous rocks that are approximately 3 km (9,500 ft) beneath the site. We modeled amplifications that would be produced at the surface and at the top and bottom of the Cooper Marl. Amplification estimates that are based only on the shallow shear-wave structure, for example in the upper 100 m (300 ft), can severely underestimate long-period amplification at the site. Additional modeling could help determine whether new data should be collected, to resolve remaining uncertainties about likely amplification.

  1. SCEC Broadband Platform Strong Ground Motion Simulations

    Science.gov (United States)

    Kumar, S.; Callaghan, S.; Maechling, P. J.; Olsen, K. B.; Archuleta, R. J.; Somerville, P. G.; Graves, R. W.; Jordan, T. H.; Broadband Platform Working Group

    2011-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The goal of the SCEC Broadband Simulation Platform is to generate broadband (0-10 Hz) ground motions for earthquakes using deterministic low-frequency and stochastic high-frequency simulations. SCEC developers have integrated complex scientific modules for rupture generation, low-frequency deterministic seismogram synthesis, high-frequency stochastic seismogram synthesis, and non-linear site effects calculation into a system that supports easy on-demand computation of broadband seismograms. The SCEC Broadband platform has two primary modes of operation, validation mode, and scenario mode. In validation mode, the earthquake modeling software calculates broadband seismograms for one of three earthquakes, Northridge, Loma Prieta, or Landers at sites with observed strong motion data. Then, the platform calculates goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for each event. In scenario mode, the user can specify a scenario earthquake and a list of sites and calculate ground motions at each site for the scenario event. In February 2011, SCEC released Broadband Platform 11.2 as an open-source scientific software distribution. Since that time, we have continued development of the platform by adding a new site response module and new goodness of fit measures by Mayhew and Olsen. Along with a source code distribution of the Broadband Platform, we now offer a virtual software image distribution of the platform to support its use on a variety of computing hardware and operating systems.

  2. Site specific prediction equations for peak acceleration of ground motion due to earthquakes induced by underground mining in Legnica-Głogów Copper District in Poland

    Science.gov (United States)

    Lasocki, Stanisław

    2013-10-01

    Ground motion database from the region of Żelazny Most tailings pond, the largest in Europe ore-flotation waste repository, is used to identify ground motion prediction equations (GMPE-s) for peak horizontal and peak vertical acceleration. A GMPE model including both geometrical spreading and anelastic damping terms cannot be correctly identified and the model with only spreading term is accepted. The analysis of variance of this model's residuals with station location as grouping variable indicates that station locations contribute significantly to the observed ground motion variability. Therefore, a site specific GMPE model with relative site amplifications is assessed. Despite short distances among stations, the amplification considerably vary from point to point, up to 1.8 times for the horizontal and 3.5 times for the vertical peak amplitude. The model including site effects enhances GMPE-s fit to observations, explains more than 60% dependent variables variability and correctly accounts for site effects.

  3. Characterized Fault Model of Scenario Earthquake Caused by the Itoigawa-Shizuoka Tectonic Line Fault Zone in Central Japan and Strong Ground Motion Prediction

    Science.gov (United States)

    Sato, T.; Dan, K.; Irikura, K.; Furumura, M.

    2001-12-01

    Based on the existing ideas on characterizing complex fault rupture process, we constructed four different characterized fault models for predicting strong motions from the most likely scenario earthquake along the active fault zone of the Itoigawa-Shizuoka Tectonic Line in central Japan. The Headquarters for Earthquake Research Promotion in Japanese government (2001) estimated that the earthquake (8 +/- 0.5) has the total fault length of 112 km with four segments. We assumed that the characterized fault model consisted of two regions: asperity and background (Somerville et al., 1999; Irikura, 2000; Dan et al., 2000). The main differences in the four fault models were 1) how to determine a seismic moment Mo from a fault rupture area S, 2) number of asperities N, 3) how to determine a stress parameter σ , and 4) fmax. We calculated broadband strong motions at three stations near the fault by a hybrid method of the semi-empirical and theoretical approaches. A comparison between the results from the hybrid method and those from empirical attenuation relations showed that the hybrid method using the characterized fault model could evaluate near-fault rupture directivity effects more reliably than the empirical attenuation relations. We also discussed the characterized fault models and the strong motion characteristics. The Mo extrapolated from the empirical Mo-S relation by Somerville et al. (1999) was a half of that determined from the mean value of the Wells and Coppersmith (1994) data. The latter Mo was consistent with that for the 1891 Nobi, Japan, earthquake whose fault length was almost the same as the length of the target earthquake. In addition, the fault model using the latter Mo produced a slip amount of about 6 m on the largest asperity, which was consistent with the displacement of 6 m to 9 m per event obtained from a trench survey. High-frequency strong motions were greatly influenced by the σ for the asperities (188 bars, 246 bars, 108 bars, and 134

  4. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L H; Foxall, W; Rambo, J; Wagoner, J L

    2005-03-09

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  5. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L J; Foxall, W; Rambo, J; Wagoner, J L

    2005-02-14

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  6. Study on simulating strong ground motion by fractal stochastic method

    Institute of Scientific and Technical Information of China (English)

    GUO Meng-qiu; WANG Bin; XU Zhao-yong

    2005-01-01

    @@ The time history of strong ground motion can be synthesized by empirical Green's function (EGF) method.Firstly a large seismic event is discretized into a series of subevents; secondly recordings of earthquakes with proper size and spatial distribution are chosen as time history (EGF) of those subevents; finally the EGFs are summated to get the time history of ground motion caused by the large event.

  7. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  8. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  9. A method to generate the multi-support and multi-dimension earthquake ground motion%空间相关的多点多维地震动合成方法

    Institute of Scientific and Technical Information of China (English)

    雷虎军

    2015-01-01

    A method to generate multi-support and multi-dimension earthquake ground motion was proposed.In this method,the random field of earthquake ground motion was described as the matrix of power spectral density function,and the correlations of earthquake wave components among differ-ent points and different directions were considered.The stationary auto-power spectrum and cross-power spectrum were described as Clough-Penzien model and Qu Tiequn-Wang Qunjie coherent model respectively.The simulated analysis program was compiled by Matlab R2010b.As an exam-ple,an arch bridge with a span of 445 m was modelled,the multi-support and multi-dimension earthquake data and the power spectrum density function of which were generated and compared. The results show that the simulation results accord with the target and the generated earthquake ground motions by this method meet the requirements.%基于谱方法的随机场理论,借助功率谱密度函数来描述地震动随机场,同时考虑不同点、不同向地震动分量间的相关性,分别采用 Clough -Penzien 模型和屈铁军-王君杰相干模型来描述平稳自功率谱和平稳互功率谱,建立了空间相关的多点多维地震动合成方法。采用 Matlab R2010b 编制生成程序,并以某445 m 大跨度拱桥场地条件为例,生成空间相关的多点多维地震动时域样本,并将该时域样本的功率谱密度函数与目标功率谱密度函数进行对比。结果表明:模拟结果与目标值吻合较好,按照上述方法生成的多点多维地震时域样本满足要求。

  10. Wind-induced ground motion

    Science.gov (United States)

    Naderyan, Vahid; Hickey, Craig J.; Raspet, Richard

    2016-02-01

    Wind noise is a problem in seismic surveys and can mask the seismic signals at low frequency. This research investigates ground motions caused by wind pressure and shear stress perturbations on the ground surface. A prediction of the ground displacement spectra using the measured ground properties and predicted pressure and shear stress at the ground surface is developed. Field measurements are conducted at a site having a flat terrain and low ambient seismic noise. Triaxial geophones are deployed at different depths to study the wind-induced ground vibrations as a function of depth and wind velocity. Comparison of the predicted to the measured wind-induced ground displacement spectra shows good agreement for the vertical component but significant underprediction for the horizontal components. To validate the theoretical model, a test experiment is designed to exert controlled normal pressure and shear stress on the ground using a vertical and a horizontal mass-spring apparatus. This experiment verifies the linear elastic rheology and the quasi-static displacements assumptions of the model. The results indicate that the existing surface shear stress models significantly underestimate the wind shear stress at the ground surface and the amplitude of the fluctuation shear stress must be of the same order of magnitude as the normal pressure. Measurement results show that mounting the geophones flush with the ground provides a significant reduction in wind noise on all three components of the geophone. Further reduction in wind noise with depth of burial is small for depths up to 40 cm.

  11. Broadband Synthetic Ground Motion Records

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The dataset contains broadband synthetic ground motion records for three events: 1) 1994 M6.7 Northridge, CA, 2) 1989 M7.0 Loma Prieta, CA, and 3) 1999 M7.5 Izmit,...

  12. 汶川地震强震动地面倾斜研究%Study of ground surface tilts from strong motion records of the Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    彭小波; 李小军

    2012-01-01

    根据三分量强震动传感器水平摆和竖向摆对倾斜的动力响应差异,利用谱比法计算出汶川Ms8.0地震中近断层强震动的断层法线方向和平行方向的同震地面倾斜.结果表明,本次地震中强震动观测台处地面倾斜一般小于1°,影响频段主要在0.1 Hz以下,发生较大倾斜的台站主要在距地表破裂迹线30 km以内,在100 km之外或水平向加速度幅值均方根在200 cm/s2以下时很少发生0.01°以上的同震地面倾斜.总体上看,上盘区域的倾斜值普遍小于下盘区域,法线方向倾斜值一般大于平行线方向倾斜值.位于前山断裂与中央断裂之间区域的绵竹清平台谱比较低但平缓且频带较宽,可能反应了该区域的运动特殊性,而汶川卧龙台则显示了上盘边缘区域地面倾斜较大.逆冲段与走滑段台站倾斜对比显示,地面倾斜可能受局部场地条件影响较大.%Based on the difference of dynamic response to tilts between horizontal pendulums and vertical pendulum, spectral ratio method was applied to estimate the coseismic surface tilts deduced from strong motion records of the Wen-chuan earthquake. The result shows that the ground surface tilts are generally less than 1 degree and mainly appears within 30 km to fault rupture surface traces, while rarely discovered in the area outside 100 km or root-mean-squared horizontal peak accelerations are less than 200 cm/s2. The frequency band influenced by tilts is less than 0. 1 Hz. In general, tilts in hanging wall is greater than that in footwall in near fault areas, and tilts in normal direction of fault is less than those in parallel direction. The spectral ratio of Qingping station located between central fault and front mount fault is relatively low and stable, which may imply ae special movement feature of the area. The tilts of Wolong station may be controlled by deformation transition from the hanging wall to laterally stationary area. Comparison of tilts

  13. Comparative study of the amplification of ground motion using seismic noise and recent earthquakes adjacent to the Cerro Prieto volcano, Baja California

    Science.gov (United States)

    Vega, F. D.; Vidal-Villegas, A.

    2009-12-01

    We have chosen an area of approximately 79 km2, centered around the Cerro Prieto volcano, in the Mexicalli valley, Baja California, based on elevated registered acceleration data. The GEO station, located in the Cerro Prieto geothermal field has registered seismic accelerations on the order of 492 gales. The local residents near the study area have reported feeling numerous smaller magnitude earthquakes, compared to those of the nearby populated city of Mexicalli. Does there exist an amplified seismic signal in the area? If so, what is the cause of the amplification? The objective of our study is to answer these questions and determine the subsurface (0-50 m) structure in 4 specific sites. To obtain these answers, we registered seismic noise samples using short period seismometers (1 s), intermediate (5 s) and 16 bit recorders, along a linear profile which crosses the volcano with an 18 degree NE orientation. Furthermore, we analyzed ground-motion data (from 2004-2006), obtained from 24-bit accelerographs. Using both types of data (noise and accelegraphs) we calculated the H/V spectral ratios, and the relative ratios between both sites. To determine the subsurface structure, we used a unidimensional model of the H/V ratios, based on the methodology used by Huerta-Lopez et al., 2005. The H/V spectral ratios from the seismic noise adjacent to the volcano display amplitude of 1 in the frequency range (0.8 - 30 Hz). In contrast, the amplitude in the volcano crater (159 m.a.s.l.) was 6 in the frequency range (0.8 - 3 Hz). The average H/V relative ratio of the crater and the adjacent sites is 4, with frequencies between 0.8 and 1.2 Hz. The S-wave H/V ratios for the VCP acceleration station (110 m.a.s.l.), are near 8, with frequencies between 1 and 2. The H/V spectral ratios from the seismic noise for the geothermal field display amplitude of 4 for frequencies between 0.8 and 1.3 Hz, while the results from the S wave display amplitudes of 5 between 1.5 and 3 Hz. In the

  14. Rotational components of earthquake ground motions derived from surface waves%地震面波产生的地震动转动分量研究

    Institute of Scientific and Technical Information of China (English)

    李宏男; 孙立晔

    2001-01-01

    In this paper, the rotational components ot earthquake groundmotions are derived from the surface waves, the Rayleigh and Love waves by using the theory of elastic wave motion. The relevant calculational formula and approach are given. Especially, the dispersion of surface waves is introduced to the rotational components, whihc may be more suitable for engineering practice. Finally, numerical examples of the rotational components from the earthquake records are presented by using the given methods.%本文利用弹性波动理论对地面转动分量,即瑞利(Rayleigh)波和乐夫(Love)波产生的转动分量进行了研究,给出了相应的计算公式和计算方法。特别注意到面波的频散效应对转动分量的影响,并将这一特性引入到转动分量的求取中,使问题的解决更切合于实际。最后选取实际地震记录,利用得到的公式计算出地震面波产生的转动分量。

  15. High Frequency Ground Motion from Finite Fault Rupture Simulations

    Science.gov (United States)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  16. Ground Motion Prediction Trends For Eastern North America Based on the Next Generation Attenuation East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2010-12-01

    A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have

  17. Building damage concentrated in Longtoushan town during the 2014 Ms. 6.5 Ludian earthquake, Yunnan, China: examination of cause and implications based on ground motion and vulnerability analyses

    Science.gov (United States)

    Wang, Xin; Kurahashi, Susumu; Wu, Hao; Si, Hongjun; Ma, Qiang; Dang, Ji; Tao, Dongwang; Feng, Jiwei; Irikura, Kojiro

    2017-09-01

    Though the 2014 Ludian Earthquake had only a moderate magnitude (Ms 6.5), high-level ground motions of almost 1 g occurred at Longtoushan Town (seismic station 53LLT), which located near the intersection of a conjugate-shaped seismogenic fault. The building damages on the pluvial fan and the river terrace at Longtoushan was clearly different. In order to examine the generation of the large acceleration at 53LLT, the focal mechanisms and the rupture processes of the conjugate-shaped seismogenic fault were determined. We found that there were two continuous impulsive waves in the records of 53LLT that were generated from two different faults, the Baogunao fault and the Xiaohe fault, respectively. Site effects on the pluvial fan and the river terrace at Longtoushan Town and their relations to different building damages were examined. We found that the predominant period at the pluvial fan was about 0.25 s, close to the fundamental natural period of multi-story confined masonry buildings. Ground motions on the pluvial fan and the river terrace were simulated through convolving synthesized bedrock motions with the transfer functions, which were analyzed using the one-dimensional underground velocity structures identified from H/V spectral ratios of ambient noise. Building collapse ratios (CRs) are estimated based on the vulnerability function of the 2008 Wenchuan Earthquake and are compared with the observed values. We found that the observed building CRs on the pluvial fan are much higher than the estimated values. High-level ground shaking that is far beyond the design level was a reason for serious building damage.

  18. Quantitative prediction of strong motion for a potential earthquake fault

    Directory of Open Access Journals (Sweden)

    Shamita Das

    2010-02-01

    Full Text Available This paper describes a new method for calculating strong motion records for a given seismic region on the basis of the laws of physics using information on the tectonics and physical properties of the earthquake fault. Our method is based on a earthquake model, called a «barrier model», which is characterized by five source parameters: fault length, width, maximum slip, rupture velocity, and barrier interval. The first three parameters may be constrained from plate tectonics, and the fourth parameter is roughly a constant. The most important parameter controlling the earthquake strong motion is the last parameter, «barrier interval». There are three methods to estimate the barrier interval for a given seismic region: 1 surface measurement of slip across fault breaks, 2 model fitting with observed near and far-field seismograms, and 3 scaling law data for small earthquakes in the region. The barrier intervals were estimated for a dozen earthquakes and four seismic regions by the above three methods. Our preliminary results for California suggest that the barrier interval may be determined if the maximum slip is given. The relation between the barrier interval and maximum slip varies from one seismic region to another. For example, the interval appears to be unusually long for Kilauea, Hawaii, which may explain why only scattered evidence of strong ground shaking was observed in the epicentral area of the Island of Hawaii earthquake of November 29, 1975. The stress drop associated with an individual fault segment estimated from the barrier interval and maximum slip lies between 100 and 1000 bars. These values are about one order of magnitude greater than those estimated earlier by the use of crack models without barriers. Thus, the barrier model can resolve, at least partially, the well known discrepancy between the stress-drops measured in the laboratory and those estimated for earthquakes.

  19. Characteristic ground motions of the 25th April 2015 Nepal earthquake (Mw 7.9) and its implications for the structural design codes for the border areas of India to Nepal

    Science.gov (United States)

    Sharma, Babita; Chingtham, Prasanta; Sharma, Varun; Kumar, Vikas; Mandal, H. S.; Mishra, O. P.

    2017-01-01

    The 25th April 2015 Nepal Earthquake was found associated with a series of aftershocks, and the mainshock rupture propagated predominantly towards SE direction where a major aftershock (Mw 7.3) rocked on 12th May 2015 to the east of the mainshock that enhanced the rate of occurrence of aftershocks in the affected region. We conducted a rigorous analysis of strong motion data to understand the characteristics of ground motion and their bearing on the structural design codes, responsible for the damage to the structures in the border area of India to Nepal. The effect of ground geology on the acceleration response spectra are also evaluated using main shock and its associated strong earthquakes. All the sites used in the present analysis are located on alluvium deposits showing a predominant period of 0.242 sec for horizontal components and at 0.193 sec for vertical components. Our results demonstrated that observed Peak Ground Acceleration (PGA) has prominent distribution in the border cities of UP and Bihar. PGA ranges from 3 to 80 cm/sec2 in the study region for the epicentral distance varying from 120 km to 495 km with respect to the source zone (mainshock). The Peak Ground Velocity (PGV) varies from 1 to 16 cm/sec while the Peak Ground Displacement (PGD) lies in between 1 cm and 20 cm for the same area. Our study shows that variation of PGD, PGV, and PGA are controlled and dictated by the geo-morphological constraints, besides the nature and extent of structural heterogeneities of the sub-surface geological formation materials. The obtained normalised spectral amplifications are compared with the Bureau of Indian Standard code for construction of buildings which shows that the current Indian building design code is within the structural limits proposed for the seismic forces at all periods for alluvium sites, suggesting that the structural heterogeneity has the strong role contributing towards the intrinsic attenuation in the seismic wave propagating medium. Our

  20. Ground motion input in seismic evaluation studies

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

  1. Earthquake motion input and its dissemination via the Internet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objectives of this task are to conduct research on seismic hazards, and to provide relevant input on the expectedlevels of these hazards to other tasks. Other tasks requiring this input include those dealing with inventory, fragility curves,rehabilitation strategies and demonstration projects. The corresponding input is provided in various formats depending on theintended use: as peak ground motion parameters and/or response spectral values for a given magnitude, epicentral distance andsite conditions; or as time histories for scenario earthquakes that are selected based on the disaggregated seismic hazard mappedby the U.S. Geological Survey and are incorporated in building codes. The user community for this research is both academicresearchers and practicing engineers who may use the seismic input generated by the synthesis techniques that are developedunder this task for a variety of applications. These include ground motions for scenario earthquakes, for developing fragilitycurves and in specifying ground motion input for critical facilities (such as hospitals) located in the eastern U.S.

  2. A study on the characteristics of strong ground motions in southern Korea

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Chang Eob; Lee, Kie Hwa; Kang, Tae Seob [Seoul National Univ., Seoul (Korea, Republic of)

    2001-12-15

    Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets.

  3. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  4. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz.

  5. Investigation of topographical effects on rupture dynamics and ground motions

    Science.gov (United States)

    Huang, H.; Chen, X.; Zhang, Z.

    2016-12-01

    Using the curved grid finite-difference method (CG-FDM), we model spontaneous dynamic rupture on vertical strike-slip faults with irregular free surfaces to investigate the effect of topography on near-source ground motion. Four groups of simulations, in which the epicentral distances from the topographical perturbations of the nucleation patch were varied, are modeled in this work. The simulated results show that the presence of irregular topography along the fault trace may increase the ground motion. Whether the irregular topography exhibits higher ground motion overall depends on the irregular topography's ability to prevent the sub-Rayleigh-to-supershear transition. When irregular topography prevents this transition, sub-Rayleigh rupture produces stronger ground motions than those of the sub-Rayleigh-to-supershear transition, although the moment magnitudes does not differ substantially between the two cases. To thoroughly understand the effects of irregular topography on near-source ground motion, we also model spontaneous dynamic rupture on a planar fault in full-space and half-space with varying initial shear stresses, and the corresponding modeling results indicate that the effect of initial shear stress on near-source ground motion is strong. These results may have implications for ground-motion prediction in future earthquakes involving geometrically complex faults.

  6. Regional differences in subduction ground motions

    CERN Document Server

    Beauval, Céline; Abrahamson, N; Theodulidis, N; Delavaud, E; Rodriguez, L; Scherbaum, F; Haendel, A

    2012-01-01

    A few ground-motion prediction models have been published in the last years, for predicting ground motions produced by interface and intraslab earthquakes. When one must carry out a probabilistic seismic hazard analysis in a region including a subduction zone, GMPEs must be selected to feed a logic tree. In the present study, the aim is to identify which models provide the best fit to the dataset M6+, global or local models. The subduction regions considered are Japan, Taiwan, Central and South America, and Greece. Most of the data comes from the database built to develop the new BCHydro subduction global GMPE (Abrahamson et al., submitted). We show that this model is among best-fitting models in all cases, followed closely by Zhao et al. (2006), whereas the local Lin and Lee (2008) is well predicting the data in Taiwan and also in Greece. The Scherbaum et al. (2009) LLH method prove to be efficient in providing one number quantifying the overall fit, but additional analysis on the between-event and within-ev...

  7. Analysis of ground-motion simulation big data

    Science.gov (United States)

    Maeda, T.; Fujiwara, H.

    2016-12-01

    We developed a parallel distributed processing system which applies a big data analysis to the large-scale ground motion simulation data. The system uses ground-motion index values and earthquake scenario parameters as input. We used peak ground velocity value and velocity response spectra as the ground-motion index. The ground-motion index values are calculated from our simulation data. We used simulated long-period ground motion waveforms at about 80,000 meshes calculated by a three dimensional finite difference method based on 369 earthquake scenarios of a great earthquake in the Nankai Trough. These scenarios were constructed by considering the uncertainty of source model parameters such as source area, rupture starting point, asperity location, rupture velocity, fmax and slip function. We used these parameters as the earthquake scenario parameter. The system firstly carries out the clustering of the earthquake scenario in each mesh by the k-means method. The number of clusters is determined in advance using a hierarchical clustering by the Ward's method. The scenario clustering results are converted to the 1-D feature vector. The dimension of the feature vector is the number of scenario combination. If two scenarios belong to the same cluster the component of the feature vector is 1, and otherwise the component is 0. The feature vector shows a `response' of mesh to the assumed earthquake scenario group. Next, the system performs the clustering of the mesh by k-means method using the feature vector of each mesh previously obtained. Here the number of clusters is arbitrarily given. The clustering of scenarios and meshes are performed by parallel distributed processing with Hadoop and Spark, respectively. In this study, we divided the meshes into 20 clusters. The meshes in each cluster are geometrically concentrated. Thus this system can extract regions, in which the meshes have similar `response', as clusters. For each cluster, it is possible to determine

  8. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  9. A simple model for strong ground motions and response spectra

    Science.gov (United States)

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  10. Local site effects on weak and strong ground motion

    Science.gov (United States)

    Aki, Keiiti

    1993-02-01

    This is a review of the current state of the art in characterizing effects of local geology on ground motion. A new horizon is clear in this aspect of strong motion studies. Non-linear amplification at sediment sites appears to be more pervasive than seismologists used to think. Several recent observations about the weak motion and the strong motion suggest that the non-linear amplification at sediment sites may be very common. First, on average, the amplification is always greater at the younger sediment sites for all frequencies up to 12 Hz, in the case of weak motion; while the relation is reversed for frequencies higher than 5 Hz, in the case of strong motion. Secondly, the application of the amplification factor determined from weak motion overestimates significantly the strong motion at sediment sites observed during the Loma Prieta earthquake within the epicentral distance of about 50 km. Thirdly, the variance of peak ground acceleration around the mean curve decreases with the increasing earthquake magnitude. Finally, the above non-linear effects are expected from geotechnical studies both in the magnitude of departure from the linear prediction and in the threshold acceleration level beyond which the non-linearity begins.

  11. 基于改进随机地震动模型的概率反应谱%Probability response spectrum based on improved stochastic model for earthquake ground motion

    Institute of Scientific and Technical Information of China (English)

    尹犟; 周先雁; 易伟建; 陈伯望; 段绍伟

    2015-01-01

    The parameters of an improved stochastic model for earthquake ground motion were determined according to current seismic code (GB 50011—2010),the conditional probability model of elastic acceleration demand was deduced for SDOF system, and the probability spectrum of displacement demand and acceleration demand were established. Considering the relationship between the strength reduction factorR and the ductility factorμ, the conditional probability distribution function was derived for non-linear displacement demand of SDOF system. Then according to the random vibration theory and probabilistic methods, the probability displacement spectrum was established for inelastic SDOF system under given earthquake intensity or in 50 years design reference period. Using the ground motion records collected from U.S. Pacific Earthquake Engineering Research Center, dynamic time-history analyses of SDOF system were carried out, and the statistical results of time-history analyses were compared with the theoretical solutions to verify their accuracy. The results show that the theoretical method is accurate, reasonable, and the efficiency in computation is high.%结合我国现行抗震规范(GB 50011—2010),给出一种改进随机地震动模型的相关参数。推导单自由度体系(SDOFS)弹性加速度需求的条件概率模型,进而建立弹性 SDOFS 的概率加速度需求谱以及概率位移需求谱。在此基础上,据强度折减系数R与延性系数μ之间的关系,确定SDOFS非弹性位移需求的条件概率分布函数,进而运用随机振动理论和概率方法,建立非弹性SDOFS在给定强度地震作用下及50 a设计基准期内的概率位移需求谱。从美国太平洋地震工程研究中心收集大量实测地震记录,基于大量 SDOFS 动力时程分析的统计结果,对本文方法所得的理论结果进行Monte Carlo数值验证。研究结果表明:该理论方法准确、合理,且计算效率高。

  12. Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions.

  13. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Science.gov (United States)

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Brotopuspito, Kirbani Sri; Wilopo, Wahyu; Kiyono, Junji; Setianto, Agung; Putra, Rusnardi Rahmat

    2015-04-01

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green's function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  14. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  15. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  16. Skyline-based most unfavorable earthquake ground motion selection procedure based on skyline query%基于天际线查询的最不利地震动选取方法研究

    Institute of Scientific and Technical Information of China (English)

    施炜; 潘鹏; 叶列平; 王朝坤; 徐亚军

    2013-01-01

    基于天际线查询的最不利地震动选取方法,用于重要结构的弹塑性时程分析.首先,介绍了天际线的概念和天际线查询算法;其次,提出基于天际线查询的最不利地震动选取方法,并提出了能综合反映地震动对特定结构破坏力的五维向量式地震动强度指标来定义地震动的支配关系.然后,以3个剪切层模型为例说明选波步骤,算例模型在天际线子集输入下的地震响应验证了该方法和向量式地震动强度指标筛选最不利地震动的有效性.最后,通过对地震动反应谱形状的分析,以及天际线查询的最不利地震动选取方法与其他最不利地震动选取方法的比较,进一步验证了天际线查询的最不利地震动选取方法能够有效筛选出对特定结构具有高破坏力的小样本地震动集合.%This paper develops a novel most unfavorable earthquake ground motion selection procedure for the nonlinear time history analysis of important structures.The skyline query originated from the computer science is first introduced,including its concept and related algorithms.Then,the ground motion selection procedure based on skyline query is developed.Meanwhile,a new five-dimensional vector-valued intensity measure is defined as a critical ingredient of the proposed selection procedure to comprehensively measure the damage potential of ground motions.Thirdly,the process of the selection procedure is illustrated by examples of three shear models; and its efficiency is also validated through the examples.Finally,the spectral shape of the ground motions filtered by the selection procedure is discussed.Through the examples of three shear models and the discussion about the spectral shape,the ground motion selection procedure based on skyline query proposed in this paper it is proved to be capable of selecting limited set of ground motions with high damage potentials for the nonlinear time history analysis purpose.

  17. Simulation of non-stationary ground motion processes (II)

    Institute of Scientific and Technical Information of China (English)

    LIANG Jian-wen

    2005-01-01

    This paper proposes a method for simulation of non-stationary ground motion processes having the identical statistical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simulation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the target power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is verified by simulation of one acceleration record in Landers earthquake.

  18. High Resolution Geological Site Characterization Utilizing Ground Motion Data

    Science.gov (United States)

    1992-06-26

    of the Loma Prieta earthquake. haracicri/aion demonstrate the need for the separation of stochastic and The results of our small field experiments...Array studies of ground Aki, K.. and P. Richards, Quantitative Seismology. Theory and Methods, motions using aftershocks from the Loma Prieta ...Zone with Complete Seismograms is by Bogaards and Stump. This work documents the separation of stochastic and deterministic wave propagation effects in

  19. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  20. Ground motions at the outermost limits of seismically triggered landslides

    Science.gov (United States)

    Jibson, Randall W.; Harp, Edwin L.

    2016-01-01

    Over the last few decades, we and our colleagues have conducted field investigations in which we mapped the outermost limits of triggered landslides in four earthquakes: 1987 Whittier Narrows, California (M 5.9), 1987 Superstition Hills, California (M 6.5), 1994 Northridge, California (M 6.7), and 2011 Mineral, Virginia (M 5.8). In an additional two earthquakes, 1976 Guatemala (M 7.5) and 1983 Coalinga, California (M 6.5), we determined limits using high‐resolution aerial‐photographic interpretation in conjunction with more limited ground investigation. Limits in these earthquakes were defined by the locations of the very smallest failures (landslide limits with peak ground accelerations (PGAs) from ShakeMap models of each earthquake. For the four earthquakes studied by field investigation, the minimum PGA values associated with farthest landslide limits ranged from 0.02g to 0.08g. The range for the two earthquakes investigated using aerial‐photographic interpretations was 0.05–0.11g. Although PGA values at landslide limits depend on several factors, including material strength, topographic amplification, and hydrologic conditions, these values provide an empirically useful lower limiting range of PGA needed to trigger the smallest failures on very susceptible slopes. In a well‐recorded earthquake, this PGA range can be used to identify an outer boundary within which we might expect to find landsliding; in earthquakes that are not well recorded, mapping the outermost landslide limits provides a useful clue about ground‐motion levels at the mapped limits.

  1. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals

    Directory of Open Access Journals (Sweden)

    Hiroo Kanamori

    2008-01-01

    Full Text Available As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τc and the peak ground-motionvelocity (PGV could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τc and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds.

  2. Broadband Ground Motion Simulations for the Puente Hills Fault System

    Science.gov (United States)

    Graves, R. W.

    2005-12-01

    Recent geologic studies have identified the seismic potential of the Puente Hills fault system. This system is comprised of multiple blind thrust segments, a portion of which ruptured in the Mw 5.9 Whittier-Narrows earthquake. Rupture of the entire system could generate a Mw 7.2 (or larger) earthquake. To assess the potential hazard posed by the fault system, we have simulated the response for several earthquake scenarios. These simulations are unprecedented in scope and scale. Broadband (0-10 Hz) ground motions are computed at 66,000 sites, covering most of the LA metropolitan region. Low frequency (f 1 Hz) motions are calculated using a stochastic approach. We consider scenarios ranging from Mw 6.7 to Mw 7.2, including both high and low stress drop events. Finite-fault rupture models for these scenarios are generated following a wavenumber filtering technique (K-2 model) that has been calibrated against recent earthquakes. In all scenarios, strong rupture directivity channels large amplitude pulses of motion directly into the Los Angeles basin, which then propagate southward as basin surface waves. Typically, the waveforms near downtown Los Angeles are dominated by a strong, concentrated pulse of motion. At Long Beach (across the LA basin from the rupture) the waveforms are dominated by late arriving longer period surface waves. The great density of sites used in the calculation allows the construction of detailed maps of various ground motion parameters (PGA, PGV, SA), as well as full animations of the propagating broadband wave field. Additionally, the broadband time histories are available for use in non-linear response analyses of built structures.

  3. Ground Motion in Central Mexico: A Comprehensive Analysis

    Science.gov (United States)

    Ramirez-Guzman, L.; Juarez, A.; Rábade, S.; Aguirre, J.; Bielak, J.

    2015-12-01

    This study presents a detailed analysis of the ground motion in Central Mexico based on numerical simulations, as well as broadband and strong ground motion records. We describe and evaluate a velocity model for Central Mexico derived from noise and regional earthquake cross-correlations, which is used throughout this research to estimate the ground motion in the region. The 3D crustal model includes a geotechnical structure of the Valley of Mexico (VM), subduction zone geometry, and 3D velocity distributions. The latter are based on more than 200 low magnitude (Mw Valley of Mexico originating from intra-slab deep events and temblors located along the Pacific coast. Also, we quantify the effects Trans-Mexican Volcanic Belt (TMVB) and the low-velocity deposits on the ground motion. The 3D octree-based finite element wave propagation computations, valid up to 1 Hz, reveal that the inclusion of a basin with a structure as complex as the Valley of Mexico dramatically enhances the regional effects induced by the TMVB. Moreover, the basin not only produces ground motion amplification and anomalous duration, but it also favors the energy focusing into zones of Mexico City where structures typically undergo high levels of damage.

  4. Seismic source study of the 1989, October 29, Chenoua (Algeria earthquake from aftershocks, broad-band and strong ground motion records

    Directory of Open Access Journals (Sweden)

    L. Rivera

    2003-06-01

    Full Text Available The broad-band teleseismics records of the earthquake of October 29,1989 in Algeria (MW = 6.0 allow a detailed study of the rupture process of this earthquake. The focal mechanism obtained by P and SH modeling corresponds to reverse faulting with a small amount of left-lateral movement along a fault striking 246° and dipping 56°. The rupture is found to be complex with two sub-events separated in time but occurring on the same plane. The lowfrequency records of an accelerometer located some 25 km to the west of the main shock are also better fi tted when the rupture is composed of a double pulse. In the two cases, there is strong evidence for the rupture to propagate from south-west towards north-east.The relocalisation of the main shock by using a master-event technique and the data from Italian and Spanish stations led to the same conclusions. Soon after the main event, a temporary seimic network was installed in the epicentral area. The aftershock clouds defi ne a SW-NE fault dipping to the NW compatible with the results of the modelisations of the teleseismic body-waves and the accelerogram. The focal mechanisms correspond mainly to reverse faulting. The maximum principal direction of the stress tensor obtained from the inversion is about N-S and the minimum is vertical, typical of a compressive regime. The Chenoua earthquake took place on a fault which was not recognized as active. Repeated comparable seismic events on this fault and on the fault that borders the massif to the south explain this intriguing topographic feature.

  5. Response of base isolation system excited by spectrum compatible ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, the response history analysis should be performed. Especially for the performance based design, where the failure probability of a system needs to be evaluated, the variation of response should be evaluated. In this study, the spectrum compatible ground motions, the artificial ground motion and the modified ground motion, were generated. Using these ground motions, the variations of seismic responses of a simplified isolation system were evaluated.

  6. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2015-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.

  7. Analysis of strong ground motions to evaluate regional attenuation relationships

    Directory of Open Access Journals (Sweden)

    V. Montaldo

    2002-06-01

    Full Text Available Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations.

  8. Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...

  9. Next Generation Attenuation of Ground Motions in Ilan, Taiwan: Establishment and Analysis of Attenuation Relations for Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV)

    Science.gov (United States)

    Liu, K.

    2009-12-01

    An evaluation of seismic hazards requires an estimate of the expected ground motion at the site of interest. The most common means of estimating this ground motion in engineering practice is the use of an attenuation relation. A number of developments have arisen recently to suggest that a new generation of attenuation relationships is warranted. The project named Next Generation Attenuation of Ground Motions (NGA) Project was developed by Pacific Earthquake Engineering Research Center (PEER) in response to a core objective: reducing uncertainty in earthquake ground motion estimation. This objective reflects recognition from industry sponsors that improvements in earthquake ground motion estimation will result in significant cost savings and will result in improved system performance in the event of a large earthquake. The Central Weather Bureau has implemented the Taiwan Strong Motion Instrumentation Program (TSMIP) to collect high-quality instrumental recordings of strong earthquake shaking.It is necessary for us to study the strong ground motion characteristics at the Ilan area of northeastern Taiwan. Further analyses using a good quality data base that includes 486 events and 4172 recordings of magnitude greater than 4.0 are required to derive the next generation attenuation of ground motion in Ilan area. In addition, Liu and Tsai (2007) used a catalog of more than 1840 shallow earthquakes with homogenized Mw magnitude ranging from 5.0 to 8.2 in 1900-2007 to estimate the seismic hazard potential in Taiwan. As a result, the PGA and PGV contour patterns of maximum ground motion show that Ilan Plain has high values of 0.2g and 80cm/sec with respect to MMI intensity VII and IX, respectively. Furthermore, from the mean ground motion and the seismic intensity rate analyses, they show that a high annul probability of MMI > VI greater than 35 percents are located at the Chianan area of western Taiwan and Ilan Plain in northeastern Taiwan. However, these results was

  10. New Evidence for Nonlinearity in Strong Ground Motion

    Science.gov (United States)

    Beroza, G. C.; Schaff, D. P.

    2001-12-01

    Dynamic strains associated with the strong ground motion of large earthquakes are well within the regime found to show nonlinearity in the laboratory; however, evidence for nonlinearity in recorded seismic waves is often ambiguous and controversial. We present new and independent evidence that nonlinearity in strong ground motion may be widespread. The evidence consists of velocity changes measured by repeating microearthquakes in the aftermath of the 1984 M=6.2 Morgan Hill and 1989 M=6.9 Loma Prieta events. We have identified over 20 sets of repeating earthquakes in the aftershock zones of these mainshocks that contain up to 40 repeats of the same event. Waveform analysis reveals clearly detectable delays of arrivals from events after the Loma Prieta earthquake, compared with events before, of as much as 3.5% in the early S-wave coda. Source array analysis and waveform similarity over a wide range of source-receiver distances both suggest that the early coda is generated by scattering in the shallow crust near the receiver. We find that the magnitude of the velocity change decreases logarithmically in time following the Loma Prieta mainshock. We have not yet recovered repeating earthquake seismograms from before the Morgan Hill earthquake; however, we observe a clear post-seismic increase in velocity, again with a logarithmic time dependence, suggesting that the same effect accompanied both events. Recent experiments indicate that velocity decreases followed by logarithmic recovery in time accompany recoverable nonlinearity in laboratory samples at ambient conditions [Ten Cate et al., 2000]. Thus, we believe that we have detected the lingering effects of nonlinear mainshock strong ground motion in the time-varying wave propagation characteristics of the Earth's crust. The changes are strongly concentrated near the rupture zones of the two mainshocks; however, the effect is also observed at more distant stations. We use our observations to illuminate the possible

  11. Response spectra for differential motion of structures supports during earthquakes in Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed I.S. Elmasry

    2012-12-01

    Full Text Available Differential motions of ground supports of stiff structures with large plan dimensions and separate foundations under earthquakes were studied by researchers during the last few decades. Such a type of structural response was previously underestimated. The importance of studying such a response comes up from the fact that usually the structures affected are of strategic importance such as bridges. During their expected life, structures may experience vibrations excited by ground waves of short wavelengths during near-source earthquakes, or during amplified earthquake signals, during explosions, or during vibrations induced from nearby strong vibration sources. This is the case when the differential motion of supports becomes considerable. This paper aims to review the effects of seismic signal variations along the structures dimensions with emphasis on Egypt as a case study. The paper shows some patterns of the damage imposed by such differential motion. A replication of the differential motion in the longitudinal direction is applied on a frame bridge model. The resulting straining actions show the necessity for considering the differential motion of supports in the design of special structures in Egypt. Finally, response spectra for the differential motion of supports, based on the available data from previous earthquakes in Egypt, is derived and proposed for designers to include in the design procedure when accounting for such type of structural response, and especially in long-span bridges.

  12. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    Science.gov (United States)

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  13. Does low magnitude earthquake ground shaking cause landslides?

    Science.gov (United States)

    Brain, Matthew; Rosser, Nick; Vann Jones, Emma; Tunstall, Neil

    2015-04-01

    Estimating the magnitude of coseismic landslide strain accumulation at both local and regional scales is a key goal in understanding earthquake-triggered landslide distributions and landscape evolution, and in undertaking seismic risk assessment. Research in this field has primarily been carried out using the 'Newmark sliding block method' to model landslide behaviour; downslope movement of the landslide mass occurs when seismic ground accelerations are sufficient to overcome shear resistance at the landslide shear surface. The Newmark method has the advantage of simplicity, requiring only limited information on material strength properties, landslide geometry and coseismic ground motion. However, the underlying conceptual model assumes that shear strength characteristics (friction angle and cohesion) calculated using conventional strain-controlled monotonic shear tests are valid under dynamic conditions, and that values describing shear strength do not change as landslide shear strain accumulates. Recent experimental work has begun to question these assumptions, highlighting, for example, the importance of shear strain rate and changes in shear strength properties following seismic loading. However, such studies typically focus on a single earthquake event that is of sufficient magnitude to cause permanent strain accumulation; by doing so, they do not consider the potential effects that multiple low-magnitude ground shaking events can have on material strength. Since such events are more common in nature relative to high-magnitude shaking events, it is important to constrain their geomorphic effectiveness. Using an experimental laboratory approach, we present results that address this key question. We used a bespoke geotechnical testing apparatus, the Dynamic Back-Pressured Shear Box (DynBPS), that uniquely permits more realistic simulation of earthquake ground-shaking conditions within a hillslope. We tested both cohesive and granular materials, both of which

  14. Developments in Ground-Motion Modeling in Eastern North America

    Science.gov (United States)

    Atkinson, G. M.; Boore, D. M.

    2012-12-01

    Recent well-recorded earthquakes in Eastern North America (ENA) have led us to re-evaluate concepts that have been "standard fare" in the development of ground-motion prediction equations (GMPEs) for ENA for decades, including all published GMPEs that are used in current practice (e.g. Atkinson and Boore, 2011, 2006, 1995; Pezeshk et al., 2011; Campbell, 2003; Toro et al., 1997, etc.). Assumptions common to all ENA GMPEs that may not be true include the following. (1) Typical ENA stress drops, in the context of a Brune model representation of the source spectrum, are in the range of 150-300 bars, with the exception of occasional high-stress events like the 1988 Saguenay earthquake. (2) Attenuation of ground motions can be modeled with a frequency-independent geometric spreading function, either bilinear or trilinear in shape (e.g. Street and Turcotte, 1975; Herrmann and Kijko, 1983; Atkinson and Mereu, 1992; Atkinson, 2004; Boatwright and Seekins, 2011), and an associated frequency-dependent anelastic attenuation term related to the regional Quality factor. The use of a bilinear or trilinear form models the transition from geometric spreading of body waves at close distances to slower surface-wave-type spreading at regional distances. We use ground-motion recordings from recent ENA events to re-examine these basic tenets of GMPE development, in light of constraints on the problem provided at low frequencies by seismic moment, and at high frequencies by stresses inferred from Empirical Greens Function (EGF) analysis. We find strong evidence, in both ground-motion data and from the constraints, that geometric attenuation may be frequency dependent. Moreover, EGF stress drops may be very high (>500 bars) - but they do not lead to particularly large high-frequency ground motions, at least at distances for which we have observations. More complex models of ENA source and attenuation processes appear to be required in order to reconcile our growing ground-motion database

  15. On the modeling of strong motion parameters and correlation with historical macroseismic data: an application to the 1915 Avezzano earthquake

    Directory of Open Access Journals (Sweden)

    G. Longhi

    1995-06-01

    Full Text Available This article describes the results of a ground motion modeling study of the 1915 Avezzano earthquake. The goal was to test assuinptions regarding the rupture process of this earthquake by attempting to model the damage to historical monuments and populated habitats during the earthquake. The methodology used combines stochastic and deterministic modeling techniques to synthesize strong ground motion, starting from a simple characterization of the earthquake source on an extended fault plane. The stochastic component of the methodology is used to simulate high-frequency ground motion oscillations. The envelopes of these synthetic waveforms, however, are simulated in a deterministic way based on the isochron formulation for the calculation of radiated seismic energy. Synthetic acceleration time histories representative of ground motion experienced at the towns of Avezzano, Celano, Ortucchio, and Sora are then analyzed in terms of the damage to historical buildings at these sites. The article also discusses how the same methodology can be adapted to efficiently evaluate various strong motion parameters such as duration and amplitude of ground shaking, at several hundreds of surface sites and as a function of rupture process. The usefulness of such a technique is illustrated through the inodeling of intensity data from the Avezzano earthquake. One of the most interesting results is that it is possible to distinguish between different rupture scenarios for the 1915 earthquake based on the goodness of fit of theoretical intensities to observed values.

  16. Analysis of shells of revolution under earthquake motion

    Energy Technology Data Exchange (ETDEWEB)

    Sheinman, I.

    1986-02-01

    A generalization of the solution of any shell of revolution under earthquake motion and dynamic loading is presented. The equations of motion are derived with the aid of Hamilton's variational principle. A numerical solution is obtained by expending the variables in a Fourier series in the circumferential and in finite elements in the meridional direction. For earthquake analysis an exact method based on step-by-step direct integration and an approximate one involving the spectral velocity, are compared. A case of a nuclear containment under a horizontal earthquake is considered by both methods as an example. (orig.).

  17. Earthquake Shaking and Damage to Buildings: Recent evidence for severe ground shaking raises questions about the earthquake resistance of structures.

    Science.gov (United States)

    Page, R A; Joyner, W B; Blume, J A

    1975-08-22

    Ground shaking close to the causative fault of an earthquake is more intense than it was previously believed to be. This raises the possibility that large numbers of buildings and other structures are not sufficiently resistant for the intense levels of shaking that can occur close to the fault. Many structures were built before earthquake codes were adopted; others were built according to codes formulated when less was known about the intensity of near-fault shaking. Although many building types are more resistant than conventional design analyses imply, the margin of safety is difficult to quantify. Many modern structures, such as freeways, have not been subjected to and tested by near-fault shaking in major earthquakes (magnitude 7 or greater). Damage patterns in recent moderate-sized earthquakes occurring in or adjacent to urbanized areas (17), however, indicate that many structures, including some modern ones designed to meet earthquake code requirements, cannot withstand the severe shaking that can occur close to a fault. It is necessary to review the ground motion assumed and the methods utilized in the design of important existing structures and, if necessary, to strengthen or modify the use of structures that are found to be weak. New structures situated close to active faults should be designed on the basis of ground motion estimates greater than those used in the past. The ultimate balance between risk of earthquake losses and cost for both remedial strengthening and improved earthquake-resistant construction must be decided by the public. Scientists and engineers must inform the public about earthquake shaking and its effect on structures. The exposure to damage from seismic shaking is steadily increasing because of continuing urbanization and the increasing complexity of lifeline systems, such as power, water, transportation, and communication systems. In the near future we should expect additional painful examples of the damage potential of moderate

  18. Principles for selecting earthquake motions in engineering design of large dams

    Science.gov (United States)

    Krinitzsky, E.L.; Marcuson, William F.

    1983-01-01

    This report gives a synopsis of the various tools and techniques used in selecting earthquake ground motion parameters for large dams. It presents 18 charts giving newly developed relations for acceleration, velocity, and duration versus site earthquake intensity for near- and far-field hard and soft sites and earthquakes having magnitudes above and below 7. The material for this report is based on procedures developed at the Waterways Experiment Station. Although these procedures are suggested primarily for large dams, they may also be applicable for other facilities. Because no standard procedure exists for selecting earthquake motions in engineering design of large dams, a number of precautions are presented to guide users. The selection of earthquake motions is dependent on which one of two types of engineering analyses are performed. A pseudostatic analysis uses a coefficient usually obtained from an appropriate contour map; whereas, a dynamic analysis uses either accelerograms assigned to a site or specified respunse spectra. Each type of analysis requires significantly different input motions. All selections of design motions must allow for the lack of representative strong motion records, especially near-field motions from earthquakes of magnitude 7 and greater, as well as an enormous spread in the available data. Limited data must be projected and its spread bracketed in order to fill in the gaps and to assure that there will be no surprises. Because each site may have differing special characteristics in its geology, seismic history, attenuation, recurrence, interpreted maximum events, etc., as integrated approach gives best results. Each part of the site investigation requires a number of decisions. In some cases, the decision to use a 'least ork' approach may be suitable, simply assuming the worst of several possibilities and testing for it. Because there are no standard procedures to follow, multiple approaches are useful. For example, peak motions at

  19. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  20. Database for earthquake strong motion studies in Italy

    Science.gov (United States)

    Scasserra, G.; Stewart, J.P.; Kayen, R.E.; Lanzo, G.

    2009-01-01

    We describe an Italian database of strong ground motion recordings and databanks delineating conditions at the instrument sites and characteristics of the seismic sources. The strong motion database consists of 247 corrected recordings from 89 earthquakes and 101 recording stations. Uncorrected recordings were drawn from public web sites and processed on a record-by-record basis using a procedure utilized in the Next-Generation Attenuation (NGA) project to remove instrument resonances, minimize noise effects through low- and high-pass filtering, and baseline correction. The number of available uncorrected recordings was reduced by 52% (mostly because of s-triggers) to arrive at the 247 recordings in the database. The site databank includes for every recording site the surface geology, a measurement or estimate of average shear wave velocity in the upper 30 m (Vs30), and information on instrument housing. Of the 89 sites, 39 have on-site velocity measurements (17 of which were performed as part of this study using SASW techniques). For remaining sites, we estimate Vs30 based on measurements on similar geologic conditions where available. Where no local velocity measurements are available, correlations with surface geology are used. Source parameters are drawn from databanks maintained (and recently updated) by Istituto Nazionale di Geofisica e Vulcanologia and include hypocenter location and magnitude for small events (M< ??? 5.5) and finite source parameters for larger events. ?? 2009 A.S. Elnashai & N.N. Ambraseys.

  1. Ground motion prediction equations for horizontal and vertical components of acceleration in Northern Iran

    Science.gov (United States)

    Soghrat, M. R.; Ziyaeifar, M.

    2017-01-01

    Recent studies have shown that the vertical component of ground motion can be quite destructive on a variety of structural systems. Development of response spectrum for design of buildings subjected to vertical component of earthquake needs ground motion prediction equations (GMPEs). The existing GMPEs for northern Iranian plateau are proposed for the horizontal component of earthquake, and there is not any specified GMPE for the vertical component of earthquake in this region. Determination of GMPEs is mostly based on regression analyses on earthquake parameters such as magnitude, site class, distance, and spectral amplitudes. In this study, 325 three-component records of 55 earthquakes with magnitude ranging from M w 4.1 to M w 7.3 are used for estimation on the regression coefficients. Records with distances less than 300 km are selected for analyses in the database. The regression analyses on earthquake parameters results in determination of GMPEs for peak ground acceleration and spectral acceleration for both horizontal and vertical components of the ground motion. The correlation between the models for vertical and horizontal GMPEs is studied in details. These models are later compared with some other available GMPEs. According to the result of this investigation, the proposed GMPEs are in agreement with the other relationships that were developed based on the local and regional data.

  2. Seismic ground motion scenarios in Lower Tagus Valley Basin

    Science.gov (United States)

    Borges, José; Torres, Ricardo; Furtado, José; Silva, Hugo; Caldeira, Bento; Pinto, Carlos; Bezzeghoud, Mourad; Carvalho, João

    2013-04-01

    Throughout its history the Lower Tagus Valley (LTV) has been struck by several earthquakes which produced important material damage and loss of lives: The 1st of November 1755 Lisbon earthquake and the 1969 earthquake (Mw=7.3), located in the SW Iberia Margin and the 1344, 1531 and 1909 (M= 6 to 7) with epicenter located inside the LTV basin. Since this region is the most highly populated region in Portugal, it is expected that an earthquake of similar magnitude of those that have occurred in the past will cause an enormous destruction and casualties. This fact makes LTV a high priority area for earthquake research in Portugal. In order to overcome the problems related to the absence of geological outcrops, low slip-rates (based on Seismic reflection, Seismic Noise and potential field data [2,3]. In order to improve assessment of the seismic hazard in the LTV basin, we simulate long-period (0-1 Hz) ground motion time histories for a suite of scenarios earthquakes (Mw =5.5 to 7) within the basin, using fault geometries and the 3D seismic velocity structure based on the previous mentioned works. References [1] Pinto, Carlos C. (2011). Identification of Seismogenic Structures in the Lower Tagus Basin. Master Thesis, Universidade de Évora, 128 pp. [2] Torres, R.J.G., (2012). Modelo de velocidade da Bacia do Vale do Tejo: uma abordagem baseada no estudo do ruído sísmico ambiental, Master Thesis, Universidade de Évora, 83pp. [3] Furtado, J.A (2010). Confirmação do modelo da estrutura 3D do Vale Inverior do Tejo a partir de dados de ruído sísmico ambiente, Master Thesis, Universidade de Évora, 136pp.

  3. Characteristics of Spatial Distribution for Peak Ground Acceleration in 3 Aug 2014 Ms6.5 Ludian Earthquake, Yuanan, China

    Science.gov (United States)

    kun, Chen; YanXiang, Yu

    2016-04-01

    Considering the geological context, focal mechanism solutions, aftershock distribution and attenuation characteristics of the ground motion in western China, shakemaps of PGA (Peak Ground Acceleration) for The Ludian Ms6.5 earthquake on 3 Aug 2014 was acquired, in which the Mothed of rapid generation ShakeMaps considering site effects was used, and the peak ground acceleration of 62 stations for this earthquake was used as interpolation. Then, distribution of PGA was amended by using PGA observations to correct system bias of theoretical estimates in the area without PGA observations. The results show that the attenuation of ground motion with distance for this earthquake was faster than that of Wang Su-Yun in 2000; the result of bias-corrected was more consistent with attenuation law of this earthquake. After adjusting, for the area with PGA greater than 40 cm / s2 was nearly 8000 km2, which was is reduced by about 40%.

  4. Processed seismic motion records from earthquakes, 1982-1993: Recorded at Scotty's Castle, California

    Science.gov (United States)

    Lum, P. K.; Honda, K. K.

    1993-10-01

    As part of the contract with the US Department of Energy, Nevada Operations Office (DOE/NV), URS/John A. Blume & Associates, Engineers (URS/Blume) maintained a network of seismographs to monitor the ground motion generated by the underground nuclear explosions (UNE's) at the Nevada Test Site (NTS). The seismographs were located in the communities surrounding the NTS and the Las Vegas valley. When these seismographs were not used for monitoring the UNE generated motions, a limited number of seismographs were maintained for monitoring motion generated by other than UNE's (e.g. motion generated by earthquakes, wind, blast). Scotty's Castle was one of the selected earthquake monitoring stations. During the period from 1982 through 1993, numerous earthquakes which varied in magnitudes and distances were recorded at Scotty's Castle. The records from 24 earthquakes were processed and included in this report. The processed earthquakes are listed in chronological order and in the order of epicentral distances, respectively. These epicenters and magnitudes are shown. Due to the potential benefit of these data for the scientific community, DOE/NV and the National Park Service authorize the release of these records.

  5. Optimal ground motion intensity measure for long-period structures

    Science.gov (United States)

    Guan, Minsheng; Du, Hongbiao; Cui, Jie; Zeng, Qingli; Jiang, Haibo

    2015-10-01

    This paper aims to select the most appropriate ground motion intensity measure (IM) that is used in selecting earthquake records for the dynamic time history analysis of long-period structures. For this purpose, six reinforced concrete frame-core wall structures, designed according to modern seismic codes, are studied through dynamic time history analyses with a set of twelve selected earthquake records. Twelve IMs and two types of seismic damage indices, namely, the maximum seismic response-based and energy-based parameters, are chosen as the examined indices. Selection criteria such as correlation, efficiency, and proficiency are considered in the selection process. The optimal IM is identified by means of a comprehensive evaluation using a large number of data of correlation, efficiency, and proficiency coefficients. Numerical results illustrate that peak ground velocity is the optimal one for long-period structures and peak ground displacement is also a close contender. As compared to previous reports, the spectral-correlated parameters can only be taken as moderate IMs. Moreover, the widely used peak ground acceleration in the current seismic codes is considered inappropriate for long-period structures.

  6. Ground-motion signature of dynamic ruptures on rough faults

    Science.gov (United States)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.

    2016-04-01

    Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.

  7. Strong-motion data from the two Pingtung, Taiwan, earthquakes of 26 December 2006

    Science.gov (United States)

    Wu, C.-F.; Lee, W.H.K.; Boore, D.M.

    2008-01-01

    1016 strong-motion records at 527 free-field stations and 131 records at 42 strong-motion arrays at buildings and bridges were obtained for the Pingtung earthquake doublet from the Taiwan Central Weather Bureau's dense, digital strong-motion network. We carried out standard processing of these strong-motion records at free-field stations. A data set, including the originally recorded files, processed data files, and supporting software and information, is archived online http:// tecdc.earth.sinica.edu.tw/data/EQ2006Pingtung/. We have not yet completed the processing of the strong-motion array data at buildings and bridges. However, some preliminary results and the strong-motion array data recorded at the second nearest instrumented building to the Pingtung earthquake doublet are shown. This paper is intended to document our data processing procedures and the online archived data files, so that researchers can efficiently use the data. We also include two preliminary analyses: (1) a comparison of ground motions recorded by multiple accelerographs at a common site, the TAP 117 station in Taipei, and (2) attenuation of the horizontal ground motions (peak acceleration and response spectra at periods of 0.2, 1.0, and 3.0 s) with respect to distance. Our comparison study of multiple recordings at TAP 117 indicates that waveform coherence among 20- and 24-bit accelerograph records is much higher as compared to records from 16-bit or 12-bit accelerographs, suggesting that the former are of better quality. For the 20- and 24-bit accelerographs, waveform coherence is nearly 1 over the frequency range 1 to 8 Hz for all components, and is greater than about 0.9 from 8 to 20 Hz for the horizontal component, but only from 8 to 12 Hz for the vertical component. Plots of pseudo-acceleration response spectra (PSA) as a function of distance, however, show no clear indication for a difference related to the performance level of the accelerographs. The ground-motions of the first

  8. Variability in wood-frame building damage using broad-band synthetic ground motions: a comparative numerical study with recorded motions

    Science.gov (United States)

    Pei, Shiling; van de Lindt, John W.; Hartzell, Stephen; Luco, Nicolas

    2014-01-01

    Earthquake damage to light-frame wood buildings is a major concern for North America because of the volume of this construction type. In order to estimate wood building damage using synthetic ground motions, we need to verify the ability of synthetically generated ground motions to simulate realistic damage for this structure type. Through a calibrated damage potential indicator, four different synthetic ground motion models are compared with the historically recorded ground motions at corresponding sites. We conclude that damage for sites farther from the fault (>20 km) is under-predicted on average and damage at closer sites is sometimes over-predicted.

  9. Study on equivalent velocity pulse of nearfault ground motions

    Institute of Scientific and Technical Information of China (English)

    李新乐; 朱晞

    2004-01-01

    Near-fault strong ground motions that resulted in serious structural damage are characterized by directivity effect and pulse-type motion. Large-amplitude and long-period pulses are contained in the velocity time-history traces of near-fault pulse-type records. A reasonable model of equivalent velocity pulse is proposed on the basis of the existed models in this paper to simplify the calculation and analysis. Based on the large amount of collected near-fault strong earthquakes records, the parameters describing equivalent velocity pulse model such as pulse period, pulse intensity and number of predominant pulses are studied, and comparison is made with the results obtained by others models. The proposed model is contributive to the seismic design for structures in near-fault areas.

  10. Response of a transmission tower-line system at a canyon site to spatially varying ground motions

    Institute of Scientific and Technical Information of China (English)

    Hong-nan LI; Feng-long BAI; Li TIAN; Hong HAO

    2011-01-01

    Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan, China. These collapses were partially caused by the pulling forces from the transmission lines generated from out-of-phase responses of the adjacent towers owing to spatially varying earthquake ground motions. In this paper, a 3D finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. The nonlinear responses of the structural system at a canyon site are analyzed subjected to spatially varying ground motions. The spatial variations of ground motion associated with the wave passage, coherency loss, and local site effects are given. The spatially varying ground motions are simulated stochastically based on an empirical coherency loss function and a filtered Tajimi-Kanai power spectral density function. The site effect is considered by a transfer function derived from ID wave propagation theory. Compared with structural responses calculated using the uniform ground motion and delayed excitations, numerical results indicate that seismic responses of transmission towers and power lines are amplified when considering spatially varying ground motions including site effects. Each factor of ground motion spatial variations has a significant effect on the seismic response of the structure, especially for the local site effect. Therefore, neglecting the earthquake ground motion spatial variations may lead to a substantial underestimation of the response of transmission tower-line system during strong earthquakes. Each effect of ground motion spatial variations should be incorporated in seismic analysis of the structural system.

  11. Parametric Studies for Scenario Earthquakes: Site Effects and Differential Motion

    Science.gov (United States)

    Panza, G. F.; Panza, G. F.; Romanelli, F.

    2001-12-01

    In presence of strong lateral heterogeneities, the generation of local surface waves and local resonance can give rise to a complicated pattern in the spatial groundshaking scenario. For any object of the built environment with dimensions greater than the characteristic length of the ground motion, different parts of its foundations can experience severe non-synchronous seismic input. In order to perform an accurate estimate of the site effects, and of differential motion, in realistic geometries, it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models, allows us the construction of damage scenarios that are out of reach of stochastic models. Synthetic signals, to be used as seismic input in a subsequent engineering analysis, e.g. for the design of earthquake-resistant structures or for the estimation of differential motion, can be produced at a very low cost/benefit ratio. We illustrate the work done in the framework of a large international cooperation following the guidelines of the UNESCO IUGS IGCP Project 414 "Realistic Modeling of Seismic Input for Megacities and Large Urban Areas" and show the very recent numerical experiments carried out within the EC project "Advanced methods for assessing the seismic vulnerability of existing motorway bridges" (VAB) to assess the importance of non-synchronous seismic excitation of long structures. >http://www.ictp.trieste.it/www_users/sand/projects.html

  12. Ground Motion Prediction for the Vicinity by Using the Microtremor Site-effect Correction

    Science.gov (United States)

    Lin, C. M.; Wen, K. L.; Kuo, C. H.

    2015-12-01

    This study develops a method analyzing the seismograms of a strong-motion station and the microtremor site effects (H/V ratios) around it to predict the ground motion of its vicinity. The Hsinchu Science Park (HSP) in Taiwan was chosen as our study site. The horizontal S-wave seismograms of the TCU017 strong-motion station, which locates at the center of the HSP, were convoluted by the difference of the microtremor H/V ratio between various sites to synthesize the seismograms of several strong-motion stations around the HSP. The comparisons between synthetic and observed seismograms show that this method of ground motion prediction for the vicinity is feasible for far-field earthquakes. However, the seismic source and attenuation effects make this method ineffectual for near-field earthquakes. Because the microtremor H/V ratios at about 200 sites, which are densely distributed in the HSP, were conducted, the seismic ground motion distributions of some historical earthquakes were synthesized by this study. The synthetic ground motion distributions ignore the seismic source and attenuation effects but still show notable variations in the HSP because of the seismic site effects.

  13. Explosion source strong ground motions in the Mississippi embayment

    Science.gov (United States)

    Langston, C.A.; Bodin, P.; Powell, C.; Withers, M.; Horton, S.; Mooney, W.

    2006-01-01

    Two strong-motion arrays were deployed for the October 2002 Embayment Seismic Excitation Experiment to study the spatial variation of strong ground motions in the deep, unconsolidated sediments of the Mississippi embayment because there are no comparable strong-motion data from natural earthquakes in the area. Each linear array consisted of eight three-component K2 accelerographs spaced 15 m apart situated 1.2 and 2.5 kin from 2268-kg and 1134-kg borehole explosion sources, respectively. The array data show distinct body-wave and surface-wave arrivals that propagate within the thick, unconsolidated sedimentary column, the high-velocity basement rocks, and small-scale structure near the surface. Time-domain coherence of body-wave and surface-wave arrivals is computed for acceleration, velocity, and displacement time windows. Coherence is high for relatively low-frequency verticalcomponent Rayleigh waves and high-frequency P waves propagating across the array. Prominent high-frequency PS conversions seen on radial components, a proxy for the direct S wave from earthquake sources, lose coherence quickly over the 105-m length of the array. Transverse component signals are least coherent for any ground motion and appear to be highly scattered. Horizontal phase velocity is computed by using the ratio of particle velocity to estimates of the strain based on a plane-wave-propagation model. The resulting time-dependent phase-velocity map is a useful way to infer the propagation mechanisms of individual seismic phases and time windows of three-component waveforms. Displacement gradient analysis is a complementary technique for processing general spatial-array data to obtain horizontal slowness information.

  14. Strong ground-motion prediction from Stochastic-dynamic source models

    Science.gov (United States)

    Guatteri, Mariagiovanna; Mai, P.M.; Beroza, G.C.; Boatwright, J.

    2003-01-01

    In the absence of sufficient data in the very near source, predictions of the intensity and variability of ground motions from future large earthquakes depend strongly on our ability to develop realistic models of the earthquake source. In this article we simulate near-fault strong ground motion using dynamic source models. We use a boundary integral method to simulate dynamic rupture of earthquakes by specifying dynamic source parameters (fracture energy and stress drop) as spatial random fields. We choose these quantities such that they are consistent with the statistical properties of slip heterogeneity found in finite-source models of past earthquakes. From these rupture models we compute theoretical strong-motion seismograms up to a frequency of 2 Hz for several realizations of a scenario strike-slip Mw 7.0 earthquake and compare empirical response spectra, spectra obtained from our dynamic models, and spectra determined from corresponding kinematic simulations. We find that spatial and temporal variations in slip, slip rise time, and rupture propagation consistent with dynamic rupture models exert a strong influence on near-source ground motion. Our results lead to a feasible approach to specify the variability in the rupture time distribution in kinematic models through a generalization of Andrews' (1976) result relating rupture speed to apparent fracture energy, stress drop, and crack length to 3D dynamic models. This suggests that a simplified representation of dynamic rupture may be obtained to approximate the effects of dynamic rupture without having to do full dynamic simulations.

  15. Strong Ground Motion Database System for the Mexican Seismic Network

    Science.gov (United States)

    Perez-Yanez, C.; Ramirez-Guzman, L.; Ruiz, A. L.; Delgado, R.; Macías, M. A.; Sandoval, H.; Alcántara, L.; Quiroz, A.

    2014-12-01

    A web-based system for strong Mexican ground motion records dissemination and archival is presented. More than 50 years of continuous strong ground motion instrumentation and monitoring in Mexico have provided a fundamental resource -several thousands of accelerograms- for better understanding earthquakes and their effects in the region. Lead by the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM), the engineering strong ground motion monitoring program at IE relies on a continuously growing network, that at present includes more than 100 free-field stations and provides coverage to the seismic zones in the country. Among the stations, approximately 25% send the observed acceleration to a processing center in Mexico City in real-time, and the rest require manual access, remote or in situ, for later processing and cataloguing. As part of a collaboration agreement between UNAM and the National Center for Disaster Prevention, regarding the construction and operation of a unified seismic network, a web system was developed to allow access to UNAM's engineering strong motion archive and host data from other institutions. The system allows data searches under a relational database schema, following a general structure relying on four databases containing the: 1) free-field stations, 2) epicentral location associated with the strong motion records available, 3) strong motion catalogue, and 4) acceleration files -the core of the system. In order to locate and easily access one or several records of the data bank, the web system presents a variety of parameters that can be involved in a query (seismic event, region boundary, station name or ID, radial distance to source or peak acceleration). This homogeneous platform has been designed to facilitate dissemination and processing of the information worldwide. Each file, in a standard format, contains information regarding the recording instrument, the station, the corresponding earthquake

  16. Strong Earthquake Motion Estimates for the UCSB Campus, and Related Response of the Engineering 1 Building

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, R.; Bonilla, F.; Doroudian, M.; Elgamal, A.; Hueze, F.

    2000-06-06

    This is the second report on the UC/CLC Campus Earthquake Program (CEP), concerning the estimation of exposure of the U.C. Santa Barbara campus to strong earthquake motions (Phase 2 study). The main results of Phase 1 are summarized in the current report. This document describes the studies which resulted in site-specific strong motion estimates for the Engineering I site, and discusses the potential impact of these motions on the building. The main elements of Phase 2 are: (1) determining that a M 6.8 earthquake on the North Channel-Pitas Point (NCPP) fault is the largest threat to the campus. Its recurrence interval is estimated at 350 to 525 years; (2) recording earthquakes from that fault on March 23, 1998 (M 3.2) and May 14, 1999 (M 3.2) at the new UCSB seismic station; (3) using these recordings as empirical Green's functions (EGF) in scenario earthquake simulations which provided strong motion estimates (seismic syntheses) at a depth of 74 m under the Engineering I site; 240 such simulations were performed, each with the same seismic moment, but giving a broad range of motions that were analyzed for their mean and standard deviation; (4) laboratory testing, at U.C. Berkeley and U.C. Los Angeles, of soil samples obtained from drilling at the UCSB station site, to determine their response to earthquake-type loading; (5) performing nonlinear soil dynamic calculations, using the soil properties determined in-situ and in the laboratory, to calculate the surface strong motions resulting from the seismic syntheses at depth; (6) comparing these CEP-generated strong motion estimates to acceleration spectra based on the application of state-of-practice methods - the IBC 2000 code, UBC 97 code and Probabilistic Seismic Hazard Analysis (PSHA), this comparison will be used to formulate design-basis spectra for future buildings and retrofits at UCSB; and (7) comparing the response of the Engineering I building to the CEP ground motion estimates and to the design

  17. Geophysical assessment of near-field ground motion and the implications for the design of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.L.

    1977-09-30

    This paper gives an in-depth discussion on the various methodologies currently available to predict the near-field ground motion from an earthquake. The limitations of the various methods are discussed in some detail in light of recently available data. It is shown that, (at least for California earthquakes) for an earthquake with a given magnitude a wide variation in the peak ground motion can occur. The change in the spectral content of the ground motion is given as a function of earthquake magnitude and peak ground acceleration. It is shown that the large g values associated with small earthquakes are relatively unimportant in the design provided the structures have a modest amount of ductility. Data recently obtained from the Friuli earthquake are also examined. Although not all the geophysical data are currently available, the provisional conclusion is reached that the relation between the strong ground motion from this earthquake and its source parameters is the same as for the western United States.

  18. Modeling Broadband motions from the Tohoku earthquake

    Science.gov (United States)

    Li, D.; Chu, R.; Graves, R. W.; Helmberger, D. V.; Clayton, R. W.

    2011-12-01

    The 2011 M9 Tohoku earthquake produced an extraordinary dataset of over 2000 broadband regional and teleseismic records. While considerable progress has been made in modeling the longer period (>3 s) waveforms, the shorter periods (1-3 s) prove more difficult. Since modeling high frequency waveforms in 3D is computationally expensive, we follow the approach proposed by Helmberger and Vidale (1988), which interfaces the Cagniard-de Hoop analytical source description with a 2D numerical code to account for earthquake radiation patterns. We extend this method to a staggered grid finite difference code, which is stable in the presence of water. The code adapts the Convolutional PML boundary condition, and uses the "following the wavefront" technique and multiple GPUs, which significantly reduces computing time. We test our method against existing 1D and 3D codes, and examine the effects of slab structure, ocean bathymetry and local basins in an attempt to better explain the observed shorter period response.

  19. Study on the effect of ground motion direction on the response of engineering structure

    Science.gov (United States)

    Sun, Menghan; Fan, Feng; Sun, Baitao; Zhi, Xudong

    2016-12-01

    Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW (East -West) direction, NS (South- North) direction and perpendicular to the surface ( z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations: (1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined; (2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and (3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage

  20. Seismic fragility analysis of a CANDU containment structure for near-fault ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Choun, Young Sun; Seo, Jeong Moon; Ahn, Seong Moon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The R. G. 1.60 spectrum used for the seismic design of Korean nuclear power plants provides a generally conservative design basis due to its broadband nature. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near these faults. The probability based scenario earthquakes were identified as near-field earthquakes. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. It is necessary to estimate the near-fault ground motion effects on the nuclear power plant structures and components located near the faults. In this study, the seismic fragility analysis of a CANDU containment structure was performed based on the results of nonlinear dynamic time-history analyses.

  1. Deterministic earthquake scenario for the Basel area: Simulating strong motions and site effects for Basel, Switzerland

    Science.gov (United States)

    OpršAl, Ivo; FäH, Donat; Mai, P. Martin; Giardini, Domenico

    2005-04-01

    The Basel earthquake of 18 October 1356 is considered one of the most serious earthquakes in Europe in recent centuries (I0 = IX, M ≈ 6.5-6.9). In this paper we present ground motion simulations for earthquake scenarios for the city of Basel and its vicinity. The numerical modeling combines the finite extent pseudodynamic and kinematic source models with complex local structure in a two-step hybrid three-dimensional (3-D) finite difference (FD) method. The synthetic seismograms are accurate in the frequency band 0-2.2 Hz. The 3-D FD is a linear explicit displacement formulation using an irregular rectangular grid including topography. The finite extent rupture model is adjacent to the free surface because the fault has been recognized through trenching on the Reinach fault. We test two source models reminiscent of past earthquakes (the 1999 Athens and the 1989 Loma Prieta earthquake) to represent Mw ≈ 5.9 and Mw ≈ 6.5 events that occur approximately to the south of Basel. To compare the effect of the same wave field arriving at the site from other directions, we considered the same sources placed east and west of the city. The local structural model is determined from the area's recently established P and S wave velocity structure and includes topography. The selected earthquake scenarios show strong ground motion amplification with respect to a bedrock site, which is in contrast to previous 2-D simulations for the same area. In particular, we found that the edge effects from the 3-D structural model depend strongly on the position of the earthquake source within the modeling domain.

  2. Application and API for Real-time Visualization of Ground-motions and Tsunami

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.

    2015-12-01

    Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are

  3. An alternative approach to the ground motion prediction problem by a non-parametric adaptive regression method

    Science.gov (United States)

    Yerlikaya-Özkurt, Fatma; Askan, Aysegul; Weber, Gerhard-Wilhelm

    2014-12-01

    Ground Motion Prediction Equations (GMPEs) are empirical relationships which are used for determining the peak ground response at a particular distance from an earthquake source. They relate the peak ground responses as a function of earthquake source type, distance from the source, local site conditions where the data are recorded and finally the depth and magnitude of the earthquake. In this article, a new prediction algorithm, called Conic Multivariate Adaptive Regression Splines (CMARS), is employed on an available dataset for deriving a new GMPE. CMARS is based on a special continuous optimization technique, conic quadratic programming. These convex optimization problems are very well-structured, resembling linear programs and, hence, permitting the use of interior point methods. The CMARS method is performed on the strong ground motion database of Turkey. Results are compared with three other GMPEs. CMARS is found to be effective for ground motion prediction purposes.

  4. Analytical approach to calculation of response spectra from seismological models of ground motion

    Science.gov (United States)

    Safak, Erdal

    1988-01-01

    An analytical approach to calculate response spectra from seismological models of ground motion is presented. Seismological models have three major advantages over empirical models: (1) they help in an understanding of the physics of earthquake mechanisms, (2) they can be used to predict ground motions for future earthquakes and (3) they can be extrapolated to cases where there are no data available. As shown with this study, these models also present a convenient form for the calculation of response spectra, by using the methods of random vibration theory, for a given magnitude and site conditions. The first part of the paper reviews the past models for ground motion description, and introduces the available seismological models. Then, the random vibration equations for the spectral response are presented. The nonstationarity, spectral bandwidth and the correlation of the peaks are considered in the calculation of the peak response.

  5. Compression of ground-motion data

    Science.gov (United States)

    Long, J. W.

    1981-04-01

    Ground motion data has been recorded for many years at Nevada Test Site and is stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  6. Compression of ground-motion data

    Energy Technology Data Exchange (ETDEWEB)

    Long, J.W.

    1981-04-01

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  7. Broadband ground-motion simulation using a hybrid approach

    Science.gov (United States)

    Graves, R.W.; Pitarka, A.

    2010-01-01

    This paper describes refinements to the hybrid broadband ground-motion simulation methodology of Graves and Pitarka (2004), which combines a deterministic approach at low frequencies (f 1 Hz). In our approach, fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time. The prescribed slip distribution is constrained to follow an inverse wavenumber-squared fall-off and the average rupture speed is set at 80% of the local shear-wave velocity, which is then adjusted such that the rupture propagates faster in regions of high slip and slower in regions of low slip. We use a Kostrov-like slip-rate function having a rise time proportional to the square root of slip, with the average rise time across the entire fault constrained empirically. Recent observations from large surface rupturing earthquakes indicate a reduction of rupture propagation speed and lengthening of rise time in the near surface, which we model by applying a 70% reduction of the rupture speed and increasing the rise time by a factor of 2 in a zone extending from the surface to a depth of 5 km. We demonstrate the fidelity of the technique by modeling the strong-motion recordings from the Imperial Valley, Loma Prieta, Landers, and Northridge earthquakes.

  8. Near-fault directivity pulse-like ground motion effect on high-speed railway bridge

    Institute of Scientific and Technical Information of China (English)

    陈令坤; 张楠; 蒋丽忠; 曾志平; 陈格威; 国巍

    2014-01-01

    The vehicle-track-bridge (VTB) element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions. Based on the PEER NAG Strong Ground Motion Database, the spatial analysis model of a vehicle-bridge system was developed, the VTB element was derived to simulate the interaction of train and bridge, and the elasto-plastic seismic responses of the bridge were calculated. The calculation results show that girder and pier top displacement, and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes, and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading. The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base, which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve. The results show that there is an amplification of the vertical deflection in the girder’s mid-span owing to the high vertical ground motion. In light of these findings, the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.

  9. Simulation of near-fault bedrock strong ground-motion field by explicit finite element method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-zhi; HU Jin-jun; XIE Li-li; WANG Hai-yun

    2006-01-01

    Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained.The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.

  10. Ground Motion Data Profile of Western Turkey with Intelligent Hybrid Processing

    Science.gov (United States)

    Korkmaz, Kasim A.; Demir, Fuat

    2016-09-01

    The recent earthquakes caused severe damages on the existing buildings. By this motivation, an important amount of research work has been conducted to determine the seismic risk of seismically active regions. For an accurate seismic risk assessment, processing of ground motions would provide an advantage. Using the current technology, it is not possible to precisely predict the future earthquakes. Therefore, most of the current seismic risk assessment methodologies are based on statistical evaluation by using recurrence and magnitude of the earthquakes hit the specified region. Because of the limited number of records on earthquakes, the quality of definitions is questionable. Fuzzy logic algorithm can be used to improve the quality of the definition. In the present study, ground motion data profile of western Turkey is defined using an intelligent hybrid processing. The approach is given in a practical way for an easier and faster calculation. Earthquake data between 1970 and 1999 from western part of Turkey have been used for training. The results are tested and validated with the earthquake data between 2000 and 2015 of the same region. Enough approximation was validated between calculated values and the earthquake data by using the intelligent hybrid processing.

  11. Ground Motion Data Profile of Western Turkey with Intelligent Hybrid Processing

    Science.gov (United States)

    Korkmaz, Kasim A.; Demir, Fuat

    2017-01-01

    The recent earthquakes caused severe damages on the existing buildings. By this motivation, an important amount of research work has been conducted to determine the seismic risk of seismically active regions. For an accurate seismic risk assessment, processing of ground motions would provide an advantage. Using the current technology, it is not possible to precisely predict the future earthquakes. Therefore, most of the current seismic risk assessment methodologies are based on statistical evaluation by using recurrence and magnitude of the earthquakes hit the specified region. Because of the limited number of records on earthquakes, the quality of definitions is questionable. Fuzzy logic algorithm can be used to improve the quality of the definition. In the present study, ground motion data profile of western Turkey is defined using an intelligent hybrid processing. The approach is given in a practical way for an easier and faster calculation. Earthquake data between 1970 and 1999 from western part of Turkey have been used for training. The results are tested and validated with the earthquake data between 2000 and 2015 of the same region. Enough approximation was validated between calculated values and the earthquake data by using the intelligent hybrid processing.

  12. Earthquake source model using strong motion displacement as response of finite elastic media

    Indian Academy of Sciences (India)

    R N Iyengar; Shailesh K R Agrawal

    2001-03-01

    The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the source location and forces generated during an earthquake as an inverse problem in structural dynamics. Based on this analogy, a simple model for the basic earthquake source is proposed. The unknown source is assumed to be a sequence of impulses acting at locations yet to be found. These unknown impulses and their locations are found using the normal mode expansion along with a minimization of mean square error. The medium is assumed to be finite, elastic, homogeneous, layered and horizontal with a specific set of boundary conditions. Detailed results are obtained for Uttarkashi earthquake. The impulse locations exhibit a linear structure closely associated with the causative fault. The results obtained are shown to be in good agreement with reported values. The proposed engineering model is then used to simulate the acceleration time histories at a few recording stations. The earthquake source in terms of a sequence of impulses acting at different locations is applied on a 2D finite elastic medium and acceleration time histories are found using finite element methods. The synthetic accelerations obtained are in close match with the recorded accelerations.

  13. Ground Motion Relations for the Upper Rhine Graben

    Science.gov (United States)

    Calbini, V.; Granet, M.; Camelbeeck, T.

    2006-12-01

    Earthquake in Europe are primarily located within the Euro-Mediterranean domain. However, the Upper Rhine Graben (URG) region regularly suffers earthquakes which are felt physically by inhabitants and cause damage to private property and the industrial infrastructure. In 1356, a major earthquake (I0 = X) destroyed part of the city of Basel. Recently, several events having M > 5 have shaken this area. In the framework of an INTERREG III project funded by the European community, a microzonation study has been achieved across the "three borders" area including the cities of Basel and Mulhouse. In particular, the ground motion was studied. The URG, which belongs to the ECRIS (European Cenozoic Rift System), is characterized by rift-related sedimentary basins with several hundreds meters of tertiary sediments overlaying the basement. Such a subsurface geology leads to strong site effects. Predictive attenuation laws and their related uncertainties are evaluated considering strong motions records and velocimetric records from small to moderate local events (Magnitude ranging 3

  14. Earthquake engineering research: 1982

    Science.gov (United States)

    The Committee on Earthquake Engineering Research addressed two questions: What progress has research produced in earthquake engineering and which elements of the problem should future earthquake engineering pursue. It examined and reported in separate chapters of the report: Applications of Past Research, Assessment of Earthquake Hazard, Earthquake Ground Motion, Soil Mechanics and Earth Structures, Analytical and Experimental Structural Dynamics, Earthquake Design of Structures, Seismic Interaction of Structures and Fluids, Social and Economic Aspects, Earthquake Engineering Education, Research in Japan.

  15. Strong earthquake motion estimates for three sites on the U.C. San Diego campus

    Energy Technology Data Exchange (ETDEWEB)

    Day, S; Doroudian, M; Elgamal, A; Gonzales, S; Heuze, F; Lai, T; Minster, B; Oglesby, D; Riemer, M; Vernon, F; Vucetic, M; Wagoner, J; Yang, Z

    2002-05-07

    The approach of the Campus Earthquake Program (CEP) is to combine the substantial expertise that exists within the UC system in geology, seismology, and geotechnical engineering, to estimate the earthquake strong motion exposure of UC facilities. These estimates draw upon recent advances in hazard assessment, seismic wave propagation modeling in rocks and soils, and dynamic soil testing. The UC campuses currently chosen for application of our integrated methodology are Riverside, San Diego, and Santa Barbara. The procedure starts with the identification of possible earthquake sources in the region and the determination of the most critical fault(s) related to earthquake exposure of the campus. Combined geological, geophysical, and geotechnical studies are then conducted to characterize each campus with specific focus on the location of particular target buildings of special interest to the campus administrators. We drill, sample, and geophysically log deep boreholes next to the target structure, to provide direct in-situ measurements of subsurface material properties, and to install uphole and downhole 3-component seismic sensors capable of recording both weak and strong motions. The boreholes provide access below the soil layers, to deeper materials that have relatively high seismic shear-wave velocities. Analyses of conjugate downhole and uphole records provide a basis for optimizing the representation of the low-strain response of the sites. Earthquake rupture scenarios of identified causative faults are combined with the earthquake records and with nonlinear soil models to provide site-specific estimates of strong motions at the selected target locations. The predicted ground motions are shared with the UC consultants, so that they can be used as input to the dynamic analysis of the buildings. Thus, for each campus targeted by the CEP project, the strong motion studies consist of two phases, Phase 1--initial source and site characterization, drilling

  16. Strong Earthquake Motion Estimates for Three Sites on the U.C. Riverside Campus

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, R.; Elgamal, A.; Heuze, F.; Lai, T.; Lavalle, D.; Lawrence, B.; Liu, P.C.; Matesic, L.; Park, S.; Riemar, M.; Steidl, J.; Vucetic, M.; Wagoner, J.; Yang, Z.

    2000-11-01

    The approach of the Campus Earthquake Program (CEP) is to combine the substantial expertise that exists within the UC system in geology, seismology, and geotechnical engineering, to estimate the earthquake strong motion exposure of UC facilities. These estimates draw upon recent advances in hazard assessment, seismic wave propagation modeling in rocks and soils, and dynamic soil testing. The UC campuses currently chosen for application of our integrated methodology are Riverside, San Diego, and Santa Barbara. The procedure starts with the identification of possible earthquake sources in the region and the determination of the most critical fault(s) related to earthquake exposure of the campus. Combined geological, geophysical, and geotechnical studies are then conducted to characterize each campus with specific focus on the location of particular target buildings of special interest to the campus administrators. We drill and geophysically log deep boreholes next to the target structure, to provide direct in-situ measurements of subsurface material properties, and to install uphole and downhole 3-component seismic sensors capable of recording both weak and strong motions. The boreholes provide access below the soil layers, to deeper materials that have relatively high seismic shear-wave velocities. Analyses of conjugate downhole and uphole records provide a basis for optimizing the representation of the low-strain response of the sites. Earthquake rupture scenarios of identified causative faults are combined with the earthquake records and with nonlinear soil models to provide site-specific estimates of strong motions at the selected target locations. The predicted ground motions are shared with the UC consultants, so that they can be used as input to the dynamic analysis of the buildings. Thus, for each campus targeted by the CEP project, the strong motion studies consist of two phases, Phase 1--initial source and site characterization, drilling, geophysical

  17. Ground motion parameters of Shillong plateau: One of the most seismically active zones of northeastern India

    Institute of Scientific and Technical Information of China (English)

    Saurabh Baruah; Santanu Baruah; Naba Kumar Gogoi; Olga Erteleva; Felix Aptikaev; J.R.Kayal

    2009-01-01

    Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.

  18. Seismic analysis of concrete frame structures including second order effect subjected to near-field earthquake ground motions%近场地震作用下考虑二阶效应的混凝土框架抗震分析

    Institute of Scientific and Technical Information of China (English)

    易伟建; 茹文恺

    2012-01-01

    Using the test results of reinforced concrete columns, the feasibility of OpenSees program for the nonlinear analysis of reinforced concrete structures is validated. With the program, the seismic performance of a reinforced concrete frame structure subjected to far-field earthquake, near-field earthquake with or without impulse action is measured by the nonlinear dynamic time history analysis, in order to study the influence of second-order effect on the structural responses under the three types of earthquake ground motions. Aiming at the near field earthquake with impulse action, the incremental dynamic analysis (IDA) and vulnerability analysis are conduced and the IDA curves, fragility curves, and the influence of second-order effect on the seismic performance of the structure are obtained, respectively. Analysis results show that in three types of earthquake ground motions, near-filed earthquake with impulse action has the most significant effect on the structural seismic performance, and the structural seismic design has to consider the second-effect.%利用钢筋混凝土柱的试验结果,验证OpenSees程序用于钢筋混凝土结构非线性分析的可行性.以此为基础,对钢筋混凝土框架结构在远场地震、近场非脉冲地震与近场脉冲地震作用的性能进行非线性时程分析,研究框架结构在三类地震作用下的反应以及二阶效应对结构反应的影响.针对近场脉冲地震对结构进行增量动力分析(IDA)和易损性分析,分别得到结构的IDA曲线、易损性曲线和近场脉冲地震作用下二阶效应对结构抗震性能的影响.分析结果表明,在三类地震作用下,近场脉冲地震导致的二阶效应对结构抗震性能的影响最为显著,结构抗震设计中宜考虑二阶效应的影响.

  19. Strong Ground-Motion Prediction in Seismic Hazard Analysis: PEGASOS and Beyond

    Science.gov (United States)

    Scherbaum, F.; Bommer, J. J.; Cotton, F.; Bungum, H.; Sabetta, F.

    2005-12-01

    The SSHAC Level 4 approach to probabilistic seismic hazard analysis (PSHA), which could be considered to define the state-of-the-art in PSHA using multiple expert opinions, has been fully applied only twice, firstly in the multi-year Yucca Mountain study and subsequently (2002-2004) in the PEGASOS project. The authors of this paper participated as ground-motion experts in this latter project, the objective of which was comprehensive seismic hazard analysis for four nuclear power plant sites in Switzerland, considering annual exceedance frequencies down to 1/10000000. Following SSHAC procedure, particular emphasis was put on capturing both the aleatory and epistemic uncertainties. As a consequence, ground motion prediction was performed by combining several empirical ground motion models within a logic tree framework with the weights on each logic tree branch expressing the personal degree-of-belief of each ground-motion expert. In the present paper, we critically review the current state of ground motion prediction methodology in PSHA in particular for regions of low seismicity. One of the toughest lessons from PEGASOS was that in systematically and rigorously applying the laws of uncertainty propagation to all of the required conversions and adjustments of ground motion models, a huge price has to be paid in an ever-growing aleatory variability. Once this path has been followed, these large sigma values will drive the hazard, particularly for low annual frequencies of exceedance. Therefore, from a post-PEGASOS perspective, the key issues in the context of ground-motion prediction for PSHA for the near future are to better understand the aleatory variability of ground motion and to develop suites of ground-motion prediction equations that employ the same parameter definitions. The latter is a global rather than a regional challenge which might be a desirable long-term goal for projects similar to the PEER NGA (Pacific Earthquake Engineering Research Center, Next

  20. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  1. Recent development of the earthquake strong motion-intensity catalog and intensity prediction equations for Iran

    Science.gov (United States)

    Zare, Mehdi

    2016-12-01

    This study aims to develop a new earthquake strong motion-intensity catalog as well as intensity prediction equations for Iran based on the available data. For this purpose, all the sites which had both recorded strong motion and intensity values throughout the region were first searched. Then, the data belonging to the 306 identified sites were processed, and the results were compiled as a new strong motion-intensity catalog. Based on this new catalog, two empirical equations between the values of intensity and the ground motion parameters (GMPs) for the Iranian earthquakes were calculated. At the first step, earthquake "intensity" was considered as a function of five independent GMPs including "Log (PHA)," "moment magnitude (MW)," "distance to epicenter," "site type," and "duration," and a multiple stepwise regression was calculated. Regarding the correlations between the parameters and the effectiveness coefficients of the predictors, the Log (PHA) was recognized as the most effective parameter on the earthquake "intensity," while the parameter "site type" was removed from the equations since it was determines as the least significant variable. Then, at the second step, a simple ordinary least squares (OLS) regression was fitted only between the parameters intensity and the Log (PHA) which resulted in more over/underestimated intensity values comparing to the results of the multiple intensity-GMPs regression. However, for rapid response purposes, the simple OLS regression may be more useful comparing to the multiple regression due to its data availability and simplicity. In addition, according to 50 selected earthquakes, an empirical relation between the macroseismic intensity (I0) and MW was developed.

  2. Earthquake-induced Landslidingand Ground Damage In New Zealand

    Science.gov (United States)

    Hancox, G. T.; Perrin, N. D.; Dellow, G. D.

    A study of landsliding caused by 22 historical earthquakes in New Zealand was completed at the end of 1997 (Hancox et al., 1997). The main aims of that study were to determine: (a) the nature and extent of landsliding and other ground damage (sand boils, subsidence and lateral spreading due to soil liquefaction) caused by historical earthquakes; (b) relationships between landsliding and earthquake magnitude, epicentre, faulting, geology and topography; (c) improved environmental criteria and ground classes for assigning MM intensities and seismic hazard assessments in N.Z. The data and results of the 1997 study have recently been summarised and expanded (Hancox et al., in press), and are described in this paper. Relationships developed from these studies indicate that the minimum magnitude for earthquake-induced landsliding (EIL) in N.Z. is about M 5, with significant landsliding occurring at M 6 or greater. The minimum MM intensity for landsliding is MM6, while the most common intensities for significant landsliding are MM7-8. The intensity threshold for soil liquefaction in New Zealand was found to be MM7 for sand boils, and MM8 for lateral spreading, although such effects may also occur at one intensity level lower in highly susceptible materials. The minimum magnitude for liquefaction phenomena in N.Z. is about M 6, compared to M 5 overseas where highly susceptible soils are probably more widespread. Revised environmental response criteria (landsliding, subsidence, liquefaction-induced sand boils and lateral spreading) have also been established for the New Zealand MM Intensity Scale, and provisional landslide susceptibility Ground Classes developed for assigning MM intensities in areas where there are few buildings. Other new data presented include a size/frequency distribution model for earthquake-induced landslides over the last 150 years and a preliminary EIL Opportunity model for N.Z. The application of EIL data and relationships for seismic hazard

  3. Hazard-consistent ground motions generated with a stochastic fault-rupture model

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Akemi, E-mail: nishida.akemi@jaea.go.jp [Center for Computational Science and e-Systems, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Igarashi, Sayaka, E-mail: igrsyk00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Sakamoto, Shigehiro, E-mail: shigehiro.sakamoto@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Uchiyama, Yasuo, E-mail: yasuo.uchiyama@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Yamamoto, Yu, E-mail: ymmyu-00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Muramatsu, Ken, E-mail: kmuramat@tcu.ac.jp [Department of Nuclear Safety Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan); Takada, Tsuyoshi, E-mail: takada@load.arch.t.u-tokyo.ac.jp [Department of Architecture, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-15

    Conventional seismic probabilistic risk assessments (PRAs) of nuclear power plants consist of probabilistic seismic hazard and fragility curves. Even when earthquake ground-motion time histories are required, they are generated to fit specified response spectra, such as uniform hazard spectra at a specified exceedance probability. These ground motions, however, are not directly linked with seismic-source characteristics. In this context, the authors propose a method based on Monte Carlo simulations to generate a set of input ground-motion time histories to develop an advanced PRA scheme that can explain exceedance probability and the sequence of safety-functional loss in a nuclear power plant. These generated ground motions are consistent with seismic hazard at a reference site, and their seismic-source characteristics can be identified in detail. Ground-motion generation is conducted for a reference site, Oarai in Japan, the location of a hypothetical nuclear power plant. A total of 200 ground motions are generated, ranging from 700 to 1100 cm/s{sup 2} peak acceleration, which corresponds to a 10{sup −4} to 10{sup −5} annual exceedance frequency. In the ground-motion generation, seismic sources are selected according to their hazard contribution at the site, and Monte Carlo simulations with stochastic parameters for the seismic-source characteristics are then conducted until ground motions with the target peak acceleration are obtained. These ground motions are selected so that they are consistent with the hazard. Approximately 110,000 simulations were required to generate 200 ground motions with these peak accelerations. Deviations of peak ground motion acceleration generated for 1000–1100 cm/s{sup 2} range from 1.5 to 3.0, where the deviation is evaluated with peak ground motion accelerations generated from the same seismic source. Deviations of 1.0 to 3.0 for stress drops, one of the stochastic parameters of seismic-source characteristics, are required to

  4. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  5. Earthquake Damage - General

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake is the motion or trembling of the ground produced by sudden displacement of rock in the Earth's crust. Earthquakes result from crustal strain,...

  6. North Anna Nuclear Power Plant Strong Motion Records of the Mineral, Virginia Earthquake of August 23, 2011

    Science.gov (United States)

    Graizer, V.

    2012-12-01

    The MW 5.8 Mineral, Virginia earthquake was recorded at a relatively short epicentral distance of about 18 km at the North Anna Nuclear Power Plant (NPP) by the SMA-3 magnetic tape digital accelerographs installed inside the plant's containment at the foundation and deck levels. The North Anna NPP is operated by the Virginia Electric and Power Company (VEPCO) and has two pressurized water reactors (PWR) units that began operation in 1978 and 1980, respectively. Following the earthquake, both units were safely shutdown. The strong-motion records were processed to get velocity, displacement, Fourier and 5% damped response spectra. The basemat record demonstrated relatively high amplitudes of acceleration of 0.26 g and velocity of 13.8 cm/sec with a relatively short duration of strong motion of 2-3 sec. Recorded 5% damped Response Spectra exceed Design Basis Earthquake for the existing Units 1 and 2, while comprehensive plant inspections performed by VEPCO and U.S. Nuclear Regulatory Commission have concluded that the damage to the plant was minimal not affecting any structures and equipment significant to plant operation. This can be explained in part by short duration of the earthquake ground motion at the plant. The North Anna NPP did not have free-field strong motion instrumentation at the time of the earthquake. Since the containment is founded on rock there is a tendency to consider basemat record as an approximation of the free-field recording. However, comparisons of deck and basemat records demonstrate that the basemat recording is also affected by structural resonance frequencies higher than 3 Hz. Structural resonances in the frequency range of 3-4 Hz can at least partially explain significant exceedance of observed motions relative to ground motion calculated using ground motion prediction equations.cceleration, velocity and displacement at the North Anna NPP basemat level. Amplitudes of acceleration, velocity and displacement at basemat and deck levels

  7. Computing spatial correlation of ground motion intensities for ShakeMap

    Science.gov (United States)

    Verros, Sarah A.; Wald, David J.; Worden, C. Bruce; Hearne, Mike; Ganesh, Mahadevan

    2017-02-01

    Modeling the spatial correlation of ground motion residuals, caused by coherent contributions from source, path, and site, can provide valuable loss and hazard information, as well as a more realistic depiction of ground motion intensities. The U.S. Geological Survey (USGS) software package, ShakeMap, utilizes a deterministic empirical approach to estimate median ground shaking in conjunction with observed seismic data. ShakeMap-based shaking estimates are used in concert with loss estimation algorithms to estimate fatalities and economic losses after significant seismic events around the globe. Incorporating the spatial correlation of ground motion residuals has been shown to improve seismic loss estimates. In particular, Park, Bazzuro, and Baker (Applications of Statistics and Probability in Civil Engineering, 2007) investigated computing spatially correlated random fields of residuals. However, for large scale ShakeMap grids, computational requirements of the method are prohibitive. In this work, a memory efficient algorithm is developed to compute the random fields and implemented using the ShakeMap framework. This new, iterative parallel algorithm is based on decay properties of an associated ground motion correlation function and is shown to significantly reduce computational requirements associated with adding spatial variability to the ShakeMap ground motion estimates. Further, we demonstrate and quantify the impact of adding peak ground motion spatial variability on resulting earthquake loss estimates.

  8. Ground motion issues for seismic analysis of tall buildings: A status report

    Science.gov (United States)

    Bozorgnia, Y.; Campbell, K.W.; Luco, N.; Moehle, J.P.; Naeim, F.; Somerville, P.; Yang, T.Y.

    2007-01-01

    The Pacific Earthquake Engineering Research Center (PEER) is coordinating a major multidisciplinary programme, the Tall Buildings Initiative (TBI), to address critical technical issues related to the design and analysis of new tall buildings located in coastal California. The authors of this paper, listed alphabetically, are involved in various research studies related to ground motion modelling, selection, modification and simulation for analysis of tall buildings. This paper summarizes the scope and progress of ongoing activities related to ground motion issues for response history analysis of tall buildings.

  9. Seismic Safety Program: Ground motion and structural response

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    In 1964, John A. Blume & Associates Research Division (Blume) began a broad-range structural response program to assist the Nevada Operations Office of the US Atomic Energy Commission (AEC) in ensuring the continued safe conduct of underground nuclear detonation testing at the Nevada Test Site (NTS) and elsewhere. Blume`s long experience in earthquake engineering provided a general basis for the program, but much more specialized knowledge was required for the AEC`s purposes. Over the next 24 years Blume conducted a major research program to provide essential understanding of the detailed nature of the response of structures to dynamic loads such as those imposed by seismic wave propagation. The program`s results have been embodied in a prediction technology which has served to provide reliable advanced knowledge of the probable effects of seismic ground motion on all kinds of structures, for use in earthquake engineering and in building codes as well as for the continuing needs of the US Department of Energy`s Nevada Operations Office (DOE/NV). This report is primarily an accounting of the Blume work, beginning with the setting in 1964 and the perception of the program needs as envisioned by Dr. John A. Blume. Subsequent chapters describe the structural response program in detail and the structural prediction procedures which resulted; the intensive data acquisition program which, as is discussed at some length, relied heavily on the contributions of other consultant-contractors in the DOE/NV Seismic Safety Support Program; laboratory and field studies to provide data on building elements and structures subjected to dynamic loads from sources ranging from testing machines to earthquakes; structural response activities undertaken for testing at the NTS and for off-NTS underground nuclear detonations; and concluding with an account of corollary studies including effects of natural forces and of related studies on building response.

  10. Near fault broadband ground motion simulation with empirical Green's functions: the Upper Rhine Graben case study

    Science.gov (United States)

    Del Gaudio, Sergio; Hok, Sébastian; Causse, Mathieu; Festa, Gaetano; Lancieri, Maria

    2016-04-01

    A fundamental stage in seismic hazard assessment is the prediction of realistic ground motion for potential future earthquakes. To do so, one of the steps is to make an estimation of the expected ground motion level and this is commonly done by the use of ground motion prediction equations (GMPEs). Nevertheless GMPEs do not represent the whole variety of source processes and this can lead to incorrect estimates for some specific case studies, such as in the near-fault range because of the lack of records of large earthquakes at short distances. In such cases, ground motion simulations can be a valid tool to complement prediction equations for scenario studies, provided that both source and propagation are accurately described and uncertainties properly addressed. Such simulations, usually referred to as "blind", require the generation of a population of ground motion records that represent the natural variability of the source process for the target earthquake scenario. In this study we performed simulations using the empirical Green's function technique, which consists in using records of small earthquakes as the medium transfer function provided the availability of small earthquakes located close to the target fault and recorded at the target site. The main advantage of this technique is that it does not require a detailed knowledge of the propagation medium, which is not always possible, but requires availability of high quality records of small earthquakes in the target area. We couple this empirical approach with a k-2 kinematic source model, which naturally let us to introduce high frequency in the source description. Here we present an application of our technique to the Upper Rhine Graben. This is an active seismic region with a moderate rate of seismicity and for which it is interesting to provide ground motion estimation in the vicinity of the faults to be compared with estimations traditionally provided by GMPEs in a seismic hazard evaluation study. We

  11. SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.

    Science.gov (United States)

    Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.

    1985-01-01

    Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.

  12. Centrifuge model test on earthquake-induced differential settlement of foundation on cohesive ground

    Institute of Scientific and Technical Information of China (English)

    SHAMOTO; Yasuhiro; HOTTA; Hiroyuki

    2009-01-01

    Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1-or 2-dimensional structures, more evident differential settlement occurs under threedimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation.

  13. Centrifuge model test on earthquake-induced differential settlement of foundation on cohesive ground

    Institute of Scientific and Technical Information of China (English)

    ZHOU YanGuo; CHEN YunMin; SHAMOTO Yasuhiro; HOTTA Hiroyuki

    2009-01-01

    Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1- or 2-dimensional structures, more evident differential settlement occurs under three-dimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation.

  14. Ground motions and its effects in accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)

  15. Update of Earthquake Strong-Motion Instrumentation at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robert C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-01

    Following the January 1980 earthquake that was felt at Lawrence Livermore National Laboratory (LLNL), a network of strong-motion accelerographs was installed at LLNL. Prior to the 1980 earthquake, there were no accelerographs installed. The ground motion from the 1980 earthquake was estimated from USGS instruments around the Laboratory to be between 0.2 – 0.3 g horizontal peak ground acceleration. These instruments were located at the Veterans Hospital, 5 miles southwest of LLNL, and in San Ramon, about 12 miles west of LLNL. In 2011, the Department of Energy (DOE) requested to know the status of our seismic instruments. We conducted a survey of our instrumentation systems and responded to DOE in a letter. During this survey, it was found that the recorders in Buildings 111 and 332 were not operational. The instruments on Nova had been removed, and only three of the 10 NIF instruments installed in 2005 were operational (two were damaged and five had been removed from operation at the request of the program). After the survey, it was clear that the site seismic instrumentation had degraded substantially and would benefit from an overhaul and more attention to ongoing maintenance. LLNL management decided to update the LLNL seismic instrumentation system. The updated system is documented in this report.

  16. Upper and lower bounds of ground-motion variabilities: implication for source properties

    Science.gov (United States)

    Cotton, Fabrice; Reddy-Kotha, Sreeram; Bora, Sanjay; Bindi, Dino

    2017-04-01

    One of the key challenges of seismology is to be able to analyse the physical factors that control earthquakes and ground-motion variabilities. Such analysis is particularly important to calibrate physics-based simulations and seismic hazard estimations at high frequencies. Within the framework of the development of ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-source records and modern GMPE analysis technics allow to partition these residuals into between- and a within-event components. In particular, the between-event term quantifies all those repeatable source effects (e.g. related to stress-drop or kappa-source variability) which have not been accounted by the magnitude-dependent term of the model. In this presentation, we first discuss the between-event variabilities computed both in the Fourier and Response Spectra domains, using recent high-quality global accelerometric datasets (e.g. NGA-west2, Resorce, Kiknet). These analysis lead to the assessment of upper bounds for the ground-motion variability. Then, we compare these upper bounds with lower bounds estimated by analysing seismic sequences which occurred on specific fault systems (e.g., located in Central Italy or in Japan). We show that the lower bounds of between-event variabilities are surprisingly large which indicates a large variability of earthquake dynamic properties even within the same fault system. Finally, these upper and lower bounds of ground-shaking variability are discussed in term of variability of earthquake physical properties (e.g., stress-drop and kappa_source).

  17. Analysis of strong-motion data of the 1990 Eastern Sicily earthquake

    Directory of Open Access Journals (Sweden)

    E. Boschi

    1995-06-01

    Full Text Available The strong motion accelerograms recorded during the 1990 Eastern Sicily earthquake have been analyzed to investigate source and attenuation parameters. Peak ground motions (peak acceleration, velocity and displacement overestimate the values predicted by the empirical scaling law proposed for other Italian earthquakes, suggesting that local site response and propagation path effects play an important role in interpreting the observed time histories. The local magnitude, computed from the strong motion accelerograms by synthesizing the Wood-Anderson response, is ML = 5.9, that is sensibly larger than the local magnitude estimated at regional distances from broad-band seismograms (ML = 5.4. The standard omega-square source spectral model seems to be inadequate to describe the observed spectra over the entire frequency band from 0.2 to 20 Hz. The seismic moment estimated from the strong motion accelerogram recorded at the closest rock site (Sortino is Mo = 0.8 x 1024 dyne.cm, that is roughly 4.5 times lower than the value estimated at regional distances (Mo = 3.7 x 1024 dyne.cm from broad-band seismograms. The corner frequency estimated from the accelera- tion spectra i.5 J; = 1.3 Hz, that is close to the inverse of the dUl.ation of displacement pulses at the two closest recording sites. This value of corner tì.equency and the two values of seismic moment yield a Brune stress drop larger than 500 bars. However, a corner frequency value off; = 0.6 Hz and the seismic moment resulting from regional data allows the acceleration spectra to be reproduced on the entire available frequency band yielding to a Brune stress drop of 210 bars. The ambiguity on the corner frequency value associated to this earthquake is due to the limited frequency bandwidth available on the strong motion recordil1gs. Assuming the seismic moment estimated at regional distances from broad-band data, the moment magnitude for this earthquake is 5.7. The higher local magnitude (5

  18. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    Science.gov (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  19. Assessment of potential strong ground motions in the city of Rome

    Directory of Open Access Journals (Sweden)

    L. Malagnini

    1994-06-01

    Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions

  20. Classification and characterization of multi-pulse near-fault strong ground motion in Taiwan Chi-Chi earthquake event%台湾集集地震近断层多脉冲地震动分类及特性研究

    Institute of Scientific and Technical Information of China (English)

    柳春光; 夏春旭

    2015-01-01

    提出一种基于小波方法的考虑近断层多个脉冲地震动的分析方法(multiple pulse analysis,MPA),选取 COSMOS 地震动数据库台湾集集地震事件中断层距小于30 km 的83组水平向地震动的数据,阐述了 MPA 方法的原理与实现,并利用 MPA方法识别与分析了63组属于脉冲波的地震动速度时程。结果表明,考虑多个脉冲波对分析近断层脉冲型地震动特性的必要性,并讨论了断层距对近断层脉冲震动最强方向与理论方向差值,以及显著小波个数的影响关系。%A multiple pulse analysis (MPA)method is proposed to classify and characterize the near-fault earthquake characteri-zing multiple pulses based on wavelets method.83 sets of horizontal strong ground motions whose closest distance to fault are all kept within 30 km from Taiwan Chi-Chi earthquake are selected from the COSMOS virtual data center for analysis.The principle of MPA is depicted in details,and 63 sets of earthquake records chosen previously are classified as pulse-like ground motion by MPA method.The results indicate that the MPA method provides a better representation and classification performanle for near-fault earthquake records characterizing multiple pulses.The influences of the closest distance to fault on the difference between the strongest direction and the theoretical strongest direction as well as the number of pulse are also discussed.

  1. Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki

    2017-01-01

    The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available

  2. Ground motion prediction for the Vienna Basin area using the ambient seismic field

    Science.gov (United States)

    Schippkus, Sven; Zigone, Dimitri; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    The Vienna Basin is one of the most seismically active regions in Austria. Because of the population density and sensitive infrastructure, seismic hazard assessment in this area is of critical importance. An important part of seismic hazard analysis is ground motion prediction, which can in principle be done using either empirical studies to derive ground motion prediction equations (GMPEs) or using a physics-based approach to simulate ground motion by modelling surface wave propagation. Recently a new method has been presented that is based on the emergence of the inter-station Green's function from ambient noise cross-correlations (Denolle et al. 2013), which provides the impulse response of the Earth from a point source at the surface (from the site of one of the two receivers to the other). These impulse responses are dominated by surface waves, which would, in the case of a real earthquake, cause the major damages. The Green's function can in principle be modified to simulate a double couple dislocation at depth, i.e., a virtual earthquake. Using an adapted pre-processing method, the relative amplitudes of the ambient noise records of different inter-station paths are preserved in the correlation functions, and effects like attenuation and amplification of surface waves in sedimentary basins can be studied. This provides more precise information that will help improve seismic hazard evaluations. Here we present a preliminary study of such ground motion prediction for the Vienna Basin using about two dozen broadband stations from available networks in the area, e.g., stations from the University of Vienna (AlpArray) and Vienna Technical University. References Denolle, M. A., E. M. Dunham, G. A. Prieto, and G. C. Beroza (2013), Ground motion prediction of realistic earthquake sources using the ambient seismic field, J. Geophys. Res. Solid Earth, 118, 2102-2118, doi:10.1029/2012JB009603.

  3. Assessment of strain effect of strong-motion (focus zones of earthquakes on earth's surface displacement

    Directory of Open Access Journals (Sweden)

    Kh.L. Khamidov

    2017-01-01

    Full Text Available Strain effect of focal zones on fore-seismic displacements of earth's surface is studied in the paper for real conditions of focus zones of the earthquakes. The width of the interval of maximum displacements is determined by the conditions of potential focus of tectonic earthquake. The solution of elastic problem for half-space with soft inclusion is used. Calculations are conducted also by empirical formulas, obtained for similar stress states. Possible radius of the zone of maximum revelation of strain anomaly is determined on the basis of the growth of rupture scale and change in heterogeneity volume. It is shown that obtained expression covers a wider range of magnitude variations with consideration of the interval of scale change in upcoming rupture-forming zone. In the example of Tashkent (1966 and Gazli (1984 strong ground motions, an analysis of possible strains occurrence on the Earth's surface was conducted.

  4. Ground Shaking and Earthquake Engineering Aspects of the M 8.8 Chile Earthquake of 2010 - Applications to Cascadia and Other Subduction Zones (Invited)

    Science.gov (United States)

    Cassidy, J. F.; Boroschek, R.; Ventura, C.; Huffman, S.

    2010-12-01

    building codes to minimising damage from earthquakes. One of the key lessons learned is the importance of ground motion recordings (the value of dense strong motion networks) to understanding shaking and the effects on structures. It is these strong motion recordings that allow for improvements to codes and standards. The relevance of this set of ground motions to the Cascadia Subduction Zone and other global subduction zones will be highlighted.

  5. Dynamic corner frequency in source spectral model for stochastic synthesis of ground motion

    Institute of Scientific and Technical Information of China (English)

    Xiaodan Sun; Xiaxin Tao; Guoxin Wang; Taojun Liu

    2009-01-01

    The static corner frequency and dynamic corner frequency in stochastic synthesis of ground motion from finite-fault modeling are introduced, and conceptual disadvantages of the two are discussed in this paper. Furthermore, the non-uniform radiation of seismic wave on the fault plane, as well as the trend of the larger rupture area, the lower corner frequency, can be described by the source spectral model developed by the authors. A new dynamic corner frequency can be developed directly from the model. The dependence of ground motion on the size of subfault can be eliminated if this source spectral model is adopted in the synthesis. Finally, the approach presented is validated from the comparison between the synthesized and observed ground motions at six rock stations during the Northridge earthquake in 1994.

  6. Challenges in seismic hazard assessment: Analyses of ground motion modelling and seismotectonic sources

    OpenAIRE

    Sørensen, Mathilde Bøttger

    2006-01-01

    Seismic hazard assessment has an important societal impact in describing levels of ground motions to be expected in a given region in the future. Challenges in seismic hazard assessment are closely associated with the fact that different regions, due to their differences in seismotectonics setting (and hence in earthquake occurrence) as well as socioeconomic conditions, require different and innovative approaches. One of the most important aspects in this regard is the seismici...

  7. Portable sensor technology for rotational ground motions

    Science.gov (United States)

    Bernauer, Felix; Wassermann, Joachim; Guattari, Frédéric; Igel, Heiner

    2016-04-01

    In this contribution we present performance characteristics of a single component interferometric fiber-optic gyroscope (IFOG). The prototype sensor is provided by iXBlue, France. It is tested in the framework of the European Research Council Project, ROMY (Rotational motions - a new observable for seismology), on its applicability as a portable and field-deployable sensor for rotational ground motions. To fully explore the benefits of this new seismic observable especially in the fields of vulcanology, ocean generated noise and geophysical exploration, such a sensor has to fulfill certain requirements regarding portability, power consumption, time stamping stability and dynamic range. With GPS-synchronized time stamping and miniseed output format, data acquisition is customized for the use in seismology. Testing time stamping accuracy yields a time shift of less than 0.0001 s and a correlation coefficient of 0.99 in comparison to a commonly used data acquisition system, Reftek 120. Sensor self-noise is below 5.0 ṡ 10-8 rads-1Hz-1/2 for a frequency band from 0.001 Hz to 5.0 Hz. Analysis of Allan deviation shows an angle random walk of 3.5 ṡ 10-8 rads-1Hz-1/2. Additionally, the operating range diagram is shown and ambient noise analysis is performed. The sensitivity of sensor self-noise to variations in surrounding temperature and magnetic field is tested in laboratory experiments. With a power consumption of less than 10 W, the whole system (single component sensor + data acquisition) is appropriate for field use with autonomous power supply.

  8. Effects of a Group of High-Rise Structures on Ground Motions under Seismic Excitation

    Directory of Open Access Journals (Sweden)

    Qing-jun Chen

    2015-01-01

    Full Text Available A three-dimensional simulation was created to determine the seismic performance of coupled systems with a group of up to 100 pile-high-rise structures resting on soil layers using system modal, harmonic, and time domain analysis. The results demonstrated that the existence of a structural group mitigates the structural responses with respect to the single-structure-soil interaction (SSI and results in significantly nonuniform ground seismic motions. Due to the influence of a structural group, adjacent structures can exhibit fully alternating mechanical behavior, and buildings in the urban fringe are subjected to stronger shaking than downtown buildings. The overall trend of the influence of structural groups is that ground motions are lessened inside an urban area, and ground motions at the locations between structures differ from those at the locations of the structures. Moreover, the effective distance of a structural group on ground motions is associated with the urban width. Less distance between structures enhances the interaction effect. In addition, the soil properties can greatly influence the system’s seismic responses and can even completely change the effect trends. The results in our paper are consistent with the phenomena observed in the Mexico City earthquake and the 1976 earthquake in Friuli, Italy.

  9. Simulation of Near-Fault High-Frequency Ground Motions from the Representation Theorem

    Science.gov (United States)

    Beresnev, Igor A.

    2017-07-01

    "What is the maximum possible ground motion near an earthquake fault?" is an outstanding question of practical significance in earthquake seismology. In establishing a possible theoretical cap on extreme ground motions, the representation integral of elasticity, providing an exact, within limits of applicability, solution for fault radiation at any frequency, is an under-utilized tool. The application of a numerical procedure leading to synthetic ground displacement, velocity, and acceleration time histories to modeling of the record at the Lucerne Valley hard-rock station, uniquely located at 1.1 km from the rupture of the M w 7.2 Landers, California event, using a seismologically constrained temporal form of slip on the fault, reveals that the shape of the displacement waveform can be modeled closely, given the simplicity of the theoretical model. High precision in the double integration, as well as carefully designed smoothing and filtering, are necessary to suppress the numerical noise in the high-frequency (velocity and acceleration) synthetic motions. The precision of the integration of at least eight decimal digits ensures the numerical error in the displacement waveforms generally much lower than 0.005% and reduces the error in the peak velocities and accelerations to the levels acceptable to make the representation theorem a reliable tool in the practical evaluation of the magnitude of maximum possible ground motions in a wide-frequency range of engineering interest.

  10. Spatial distribution of near-fault ground motion

    Institute of Scientific and Technical Information of China (English)

    刘启方; 袁一凡; 金星

    2004-01-01

    Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates.There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.

  11. 2010年墨西哥Baja Mw7.2地震与中国玉树Mw6.9地震强地震动特征的对比研究%Comparison on characteristics of strong ground motion from two earthquakes with similar Mw : the Baja, Mexico, Mw7.2 and Yushu, China, Mw6.9 earthquake in 2010

    Institute of Scientific and Technical Information of China (English)

    孟令媛; 史保平

    2012-01-01

    The 4 April 2010 Mw7. 2 Baja, Mexico, earthquake occurred in northern Baja California at shallow depth along the principal plate boundary between North American and Pacific plates, and two people were killed in the Mexicalia area. The 14 April 2010 Mw6. 9 Yushu, China, earthquake occurred as a result of strike-slip faulting in tectonically complex region of the eastern Qingzang plateau. At least 2 220 people were killed in Yushu area till April 25, 2010. International media reports of such kind of disasters by Yushu earthquake is resulted from poor building structure design comparing with Mexicalia area. In fact, although the moment magnitude of Yushu event is similar to the Baja event, the radiated seismic energy from Yushu fault dynamic rupture is almost 10 times of the Baja earthquake, resulting stronger near-fault ground motions. In this paper, two special finite fault models with the same size in fault length and width are constructed to simulate the near-fault strong ground motions for comparison study. The fault slip distributions on both faults are generated based on a dynamical composite source model, in which the subevent-source-function is described by Brune's pulse. Our result shows that the near-field peak ground accelerations (PGAs) and peak ground velocities (PGVs) on bed rocks from Yushu event are almost twice as that from Baja event. Moreover, if the shallow velocity structures (V30, average shear-velocity down to 30 m) are considered in the strong motion simulation, the resultant PGAs and PGVs from Yushu event are also twice as that from Baja event. Therefore, the radiated seismic energy plays a significant role in determining the levels of strong ground motions, in which stronger ground accelerations usually cause much more property damages on the ground. The source rupture dynamics related to the frictional overshoot and undershoot is discussed and used to constrain source parameters such as the static stress drop and dynamic stress drop. It

  12. Near-fault strong ground motion simulation of the May 12, 2008, Mw7.9 Wenchuan Earthquake by dynamical composite source model%应用动态复合震源模型模拟汶川Mw7.9地震强地面运动

    Institute of Scientific and Technical Information of China (English)

    孟令媛; 史保平

    2011-01-01

    The great Wenchuan Earthquake of May 12, 2008, Mw7. 9 occurred in Sichuan province of western China with the epicenter at longitude 103.4°E and latitude 31.0°N. The main fault ruptured more than 300 km in length with a striking direction from southwest toward northeast along the Longmenshan Central Fault. The geological and geophysical investigations also revealed significant fault segmentation during the earthquake faulting. The Wenchuan-Yingxiu segment of the fault is dominated by pure thrusting with a dip angle about 40°, while the Beichuan-Anxian segment of the fault in the central part of the main fault underwent both thrusting and strike-slipping with a dip angle of 70°, and the remained segment of the fault, a part of the Qingchuan fault, underwent an almost pure strike slip motion with a dip angle of 80°. In this study, a modified composite source model, named as dynamical composite source model (DCSM), has been developed to simulate near-fault strong ground motion with associated fault rupture properties from a kinematic point of view. For the Wenchuan event, a specific finite fault model with a length of 320 km and a width of 20 km is constructed for simulation purpose. Moreover,the fault model consists of three major segments in which each segment could has a specific geometry related to the dip angle and strike direction. In addition, the rakes related to the slip direction on the fault plane of each segment could be assigned dynamically based on the focal mechanism solution. For comparing purpose, we conduct broadband ground motion predictions for three typical near-fault strong motion stations of Wolong, Pixian-Zoushishan and Mianzhu-Qingping. In general, the synthetic seismograms produced for these stations have good agreement with the observations in time histories, waveforms, peak values and frequency contents, which indicate that the numerical technique of current source model could reproduce the main characteristics of strong ground motion

  13. Modeling of Strong Ground Motion in "The Geysers" Geothermal Area

    Science.gov (United States)

    Sharma, N.; Convertito, V.; Maercklin, N.; Zollo, A.

    2012-04-01

    The Geysers is a vapor-dominated geothermal field located about 120 km north of San Francisco, California. The field is actively exploited since the 1960s, and it is now perhaps the most important and most productive geothermal field in the USA. The continuous injection of fluids and the stress perturbations of this area has resulted in induced seismicity which is clearly felt in the surrounding villages. Thus, based on these considerations, in the present work Ground Motion Prediction Equations (GMPEs) are derived, as they play key role in seismic hazard analysis control and for monitoring the effects of the seismicity rate levels. The GMPEs are derived through the mixed non-linear regression technique for both Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA). This technique includes both fixed effects and random effects and allows to account for both inter-event and intra-event dependencies in the data. In order to account for site/station effects, a two steps approach has been used. In the first step, regression analysis is performed without station corrections and thus providing a reference model. In the second step, based on the residual distribution at each station and the results of a Z-test, station correction coefficients are introduced to get final correct model. The data from earthquakes recorded at 29 stations for the period September 2007 through November 2010 have been used. The magnitude range is (1.0 geothermal fields with respect to those obtained from natural seismic events. The residual analysis is performed at individual stations to check the reliability of the station corrections and for evaluating the fitting reliability of the retrieved model. The best model has been chosen on the basis of inter-event standard error and R-square test. After the introduction of the site/station correction factor, an improvement in the fit is observed, which resulted in total standard error reduction and increased R-square values.

  14. Estimation of seismic ground motions using deterministic approach for major cities of Gujarat

    Science.gov (United States)

    Shukla, J.; Choudhury, D.

    2012-06-01

    A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh) of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA) and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental records of India specifically in the Gujarat region are far from being satisfactory for modeling the seismic hazard using the probabilistic approach, an attempt has been made in this study to accomplish it through the deterministic approach. In this regard, all small and large faults of the Gujarat region were evaluated to obtain major fault systems. The empirical relations suggested by earlier researchers for the estimation of maximum magnitude of earthquake motion with various properties of faults like length, surface area, slip rate, etc. have been applied to those faults to obtain the maximum earthquake magnitude. For the analysis, seven different ground motion attenuation relations (GMARs) of strong ground motion have been utilized to calculate the maximum horizontal ground accelerations for each major city of Gujarat. Epistemic uncertainties in the hazard computations are accounted for within a logic-tree framework by considering the controlling parameters like b-value, maximum magnitude and ground motion attenuation relations (GMARs). The corresponding deterministic spectra have been prepared for each major city for the 50th and 84th percentiles of ground motion occurrence. These deterministic spectra are further compared with the specified spectra of Indian design code IS:1893-Part I (2002) to validate them for further practical use. Close examination of the developed spectra reveals that the expected ground motion values become high for the Kachchh region i.e. Bhuj

  15. Estimation of seismic ground motions using deterministic approach for major cities of Gujarat

    Directory of Open Access Journals (Sweden)

    J. Shukla

    2012-06-01

    Full Text Available A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental records of India specifically in the Gujarat region are far from being satisfactory for modeling the seismic hazard using the probabilistic approach, an attempt has been made in this study to accomplish it through the deterministic approach. In this regard, all small and large faults of the Gujarat region were evaluated to obtain major fault systems. The empirical relations suggested by earlier researchers for the estimation of maximum magnitude of earthquake motion with various properties of faults like length, surface area, slip rate, etc. have been applied to those faults to obtain the maximum earthquake magnitude. For the analysis, seven different ground motion attenuation relations (GMARs of strong ground motion have been utilized to calculate the maximum horizontal ground accelerations for each major city of Gujarat. Epistemic uncertainties in the hazard computations are accounted for within a logic-tree framework by considering the controlling parameters like b-value, maximum magnitude and ground motion attenuation relations (GMARs. The corresponding deterministic spectra have been prepared for each major city for the 50th and 84th percentiles of ground motion occurrence. These deterministic spectra are further compared with the specified spectra of Indian design code IS:1893-Part I (2002 to validate them for further practical use. Close examination of the developed spectra reveals that the expected ground motion values become high for the

  16. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    Science.gov (United States)

    Imperatori, W.; Mai, P. M.

    2013-02-01

    The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0-10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5-10 per cent range

  17. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    KAUST Repository

    Imperatori, W.

    2012-12-06

    The heterogeneous nature of Earth\\'s crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent

  18. The Relation Between Ground Acceleration and Earthquake Source Parameters: Theory and Observations

    Science.gov (United States)

    Lior, Itzhak; Ziv, Alon

    2017-04-01

    A simple relation between the root-mean-square of the ground acceleration and earthquake spectral (or source) parameters is introduced: 2 ----f20---- Arms = (2π )Ω0 √--( πκf0-)2, πκT 1 + 1.50.25 where Ω0 is the low frequency displacement spectral plateau, f0 is the corner frequency, κ is an attenuation parameter, and T is the data interval. This result uses the omega-squared model for far-field radiation, and accounts for site-specific attenuation. The main advantage of the new relation with respect to that of Hanks' (Hanks, 1979) is that it relaxes the simplifying assumption that the spectral corner frequency is much smaller than the maximum corner frequency resulting from attenuation, and that the spectrum may be approximated as being perfectly flat between the two frequencies. The newly proposed relation is tested using a composite dataset of earthquake records from Japan, California, Mexico and Taiwan. Excellent agreement is found between observed and predicted ground acceleration for any combination of corner frequencies. Thus, use of the above relation enables the extrapolation of ground motion prediction equation inferred from the frequent small magnitude earthquakes to the rare large magnitudes. This capacity is extremely useful near slow-slip plate boundaries, where the seismic moment release rates are low. Reference Hanks, T. C. (1979). b values and ω-γ seismic source models: implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion, J. Geophys. Res. 84, 2235-2241.

  19. Strong motions and engineering structure performances in recent major earthquakes

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Li

    2010-01-01

    @@ In recent years, a series of major earthquakes occurred, which resulted in considerable engineering damage and collapse, triggered heavy geological hazards, and caused extremely high casualties and huge property and economic loss. The earthquakes include the 1994 Northridge earthquake (M6.8), the 1995 Kobe earthquake (M6.8), the 1999 Izmit earthquake (M7.6), the 1999 Jiji (Chi-Chi) earthquake (M7.6), the 2005 northern Pakistan earthquake (M7.6), the 2008 Wenchuan earthquake (M8.0) and the 2010 Haiti earthquake (M7.0). Some villages, towns and even cities were devastated in the earthquakes, especially in the 2005 northern Pakistan earthquake, the 2008 Wenchuan earthquake and the 2010 Haiti earthquake.

  20. On the duration of seismic motion incident onto the Valley of Mexico for subduction zone earthquakes

    Science.gov (United States)

    Shapiro, Nikolai M.; Olsen, Kim B.; Singh, K.

    2002-11-01

    We have used finite difference simulations in 2-D models of the lithosphere to estimate the duration of long-period (>2 s) ground motion incident onto the Valley of Mexico for subduction zone earthquakes. Our simulations suggest that two heterogeneous structures extend the duration of the ground motion between the subduction zone and Mexico City by more than 1 min: (1) the Mexican Volcanic Belt and (2) two low-velocity layers in the coastal region; the accretionary prism and the water layer. The duration generated by a crustal model including these structures is similar to that for earthquake records observed in between the coast and Mexico City. In the Valley of Mexico, our models including only regional-scale heterogeneity reproduce approximately one half of the observed duration. The results suggest that both the regional- and the local-scale low-velocity structures must be taken into account in order to explain the observed extended signal duration in the Valley of Mexico.

  1. Identification of acceleration pulses in near-fault ground motion using the EMD method

    Institute of Scientific and Technical Information of China (English)

    Zhang Yushan; Hu Yuxian; Zhao Fengxin; Liang Jianwen; Yang Caihong

    2005-01-01

    In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing)and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.

  2. A simple evaluation method of seismic resistance of residential house under two consecutive severe ground motions with intensity 7

    Directory of Open Access Journals (Sweden)

    Kotaro Kojima

    2016-07-01

    Full Text Available In the 2016 Kumamoto earthquake in Japan, two severe ground shakings with the seismic intensity 7 (the highest level in Japan Metheorological Agency (JMA scale; approximately X-XII in Mercalli scale occurred consecutively on April 14 and April 16. In the seismic regulations of most countries, it is usually prescribed that such severe earthquake ground motion occurs once in the working period of buildings. In this paper, a simple evaluation method is presented on the seismic resistance of residential houses under two consecutive severe ground motions with intensity 7. Therefore the proposed method can be used for the design of buildings under two consecutive severe ground motions. The present paper adopts an impulse as a representative of near-fault ground motion and two separated impulses are used as the repetition of intensive ground shakings with the seismic intensity 7. Two scenarios to building collapse (collapse limit in terms of zero restoring force with P-delta effect and collapse limit in terms of maximum deformation under two repeated severe ground shakings are provided and energy consideration is devised for the response evaluation. The validity and accuracy of the proposed theories are discussed through numerical analysis using recorded ground motions.

  3. Characteristics of near-fault ground motion containing velocity pulses

    Institute of Scientific and Technical Information of China (English)

    WEI Tao; ZHAO Feng-xin; ZHANG Yu-shan

    2006-01-01

    There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure. However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code.

  4. The historical seismicity and prediction of ground motion in northeast Mexico

    Science.gov (United States)

    Galván-Ramírez, Iván N.; Montalvo-Arrieta, Juan C.

    2008-02-01

    This work constitutes the first attempt to understand the seismic hazard in northeast Mexico. We present a compilation of regional seismicity in northeast Mexico (24-31°N, 97-106°W), finding 148 earthquakes for the 1787-2006 period. The study area lies within three morphotectonic provinces: Basin, Range, and Rio Grande rift; Sierra Madre Oriental; and Gulf coastal plain. Peak ground acceleration (PGA) maps were computed for three different scenarios: 1928 Parral, Chihuahua ( MW = 6.5); 1931 Valentine, Texas ( MW = 6.4); and a hypothetical earthquake located in central Coahuila. Ground motion values were computed using attenuation relations developed for central and eastern North America and the Basin and Range provinces. The earthquake in central Coahuila is considered a critical scenario for the main cities of northeast Mexico. The damage associated with this hypothetical earthquake could be severe because most buildings were constructed without seismic criteria. The expected PGA values in Monterrey, Saltillo, and Monclova are between 30 and 70 cm/s 2. This earthquake might also produce or trigger significant landslides and rock falls in the Sierra Madre Oriental, where several cities are located on the mountain range.

  5. Disaggregation of probabilistic ground motions in two cities of Western Iran, Kermanshah and Sanandaj

    Directory of Open Access Journals (Sweden)

    Elham Shabani

    2014-01-01

    Full Text Available This article presents the results of disaggregation of ground motion hazard obtained for two of Iran’s urban centers, Kermanshah and Sanandaj. Disaggregation of peak ground acceleration (PGA and spectral acceleration hazard corresponding to mean return periods of 475 and 50 years is performed. 12 area seismic sources in the study region as well as 15 area seismic sources in a 150-km distance from the region are delineated. The scenario earthquakes are characterized by bins of magnitude, M, source-to-site distance, R, and number of standard deviations, ε, that the ground-motion parameter is away from its median value for that M-R pair as estimated by a prediction equation. In most cases, the sources closer to the site dominate. Larger, more distant earthquakes contribute more significantly to hazard for longer periods than for shorter periods. Disaggregation plots can provide useful information on the distance and magnitude of predominant sources, which can be used to generate scenario earthquakes and select corresponding time histories for seismic design.

  6. A Partially Non-Ergodic Ground-Motion Prediction Equation for Europe

    CERN Document Server

    Kuehn, Nicolas M

    2016-01-01

    A partially non-ergodic ground-motion prediction equation is estimated for Europe. Therefore, a hierarchical model is presented that accounts for regional differences. For this purpose, the scaling of ground-motion intensity parameters is assumed to be similar, but not identical in different regions. This is achieved by assuming a hierarchical model, where some coefficients are treated as random variables which are sampled from an underlying global distribution. The coefficients are estimated by Bayesian inference. This allows one to estimate the epistemic uncertainty in the coefficients, and consequently in model predictions, in a principled way. The model is estimated based on peak ground acceleration data from nine different European regions. There are large differences in the amount of earthquakes and records in the different regions. However, due to the hierarchical nature of the model, regions with only few data points borrow strength from other regions with more data. This makes it possible to estimate...

  7. Adjoint Inversion for Extended Earthquake Source Kinematics From Very Dense Strong Motion Data

    Science.gov (United States)

    Ampuero, J. P.; Somala, S.; Lapusta, N.

    2010-12-01

    Addressing key open questions about earthquake dynamics requires a radical improvement of the robustness and resolution of seismic observations of large earthquakes. Proposals for a new generation of earthquake observation systems include the deployment of “community seismic networks” of low-cost accelerometers in urban areas and the extraction of strong ground motions from high-rate optical images of the Earth's surface recorded by a large space telescope in geostationary orbit. Both systems could deliver strong motion data with a spatial density orders of magnitude higher than current seismic networks. In particular, a “space seismometer” could sample the seismic wave field at a spatio-temporal resolution of 100 m, 1 Hz over areas several 100 km wide with an amplitude resolution of few cm/s in ground velocity. The amount of data to process would be immensely larger than what current extended source inversion algorithms can handle, which hampers the quantitative assessment of the cost-benefit trade-offs that can guide the practical design of the proposed earthquake observation systems. We report here on the development of a scalable source imaging technique based on iterative adjoint inversion and its application to the proof-of-concept of a space seismometer. We generated synthetic ground motions for M7 earthquake rupture scenarios based on dynamic rupture simulations on a vertical strike-slip fault embedded in an elastic half-space. A range of scenarios include increasing levels of complexity and interesting features such as supershear rupture speed. The resulting ground shaking is then processed accordingly to what would be captured by an optical satellite. Based on the resulting data, we perform source inversion by an adjoint/time-reversal method. The gradient of a cost function quantifying the waveform misfit between data and synthetics is efficiently obtained by applying the time-reversed ground velocity residuals as surface force sources, back

  8. Regional Characterization of Metropolitan Areas in Japan for Strong Ground Motion Evaluation

    Science.gov (United States)

    Hirata, N.; Sato, H.; Koketsu, K.; Umeda, Y.; Iwata, T.; Kasahara, K.; Okaya, D.

    2002-12-01

    Introduction After the 1995 Kobe earthquake, the Japanese government increased its focus and funding of earthquake hazards evaluation, studies of man-made structures integrity, and emergency response planning in the major urban centers. A new agency, the Headquarters for Earthquake Research Promotion, was formed to oversee appropriate research in the earth sciences and civil engineering. This agency distributes research funds of \\$130 million per year. Projects include these topics: 1) Densification of seismic and GPS networks, 2) Paleoseismological investigation of major active faults, 3) Research on the geometry and physical properties of basins under the cities, 4) Probablistic strong ground motion estimation, and 5) Regional characterization of faults and physical parameters. Regional Characterization Study A long-term goal is to produce map of reliable estimations of strong ground motion. This requires accurate determination of: Source, Propagation path, Near surface and Ground motion response.A new five year project starts this year to characterize the "source" and "propagation path" in the Kanto (Tokyo) region and Kinki (Osaka) region. The proximity of the Pacific and Philippine Sea subducting plates requires study of the relationship between earthquakes and regional tectonics. This projects focuses on identification and geometry of: 1) Source faults, 2) Subducting plates and mega-thrust faults, 3)Crustal structure, 4) Seismogenic zone, 5) Sedimentary basins, 6) 3D velocity properties Reconstruction of source fault and velocity models allow for more realistic 3D EQ wave simulations. All of these information will be synthesized and provided to communities involved in probablistic hazards analysis, risk assessment and societal response. In 2002, we have started to deploy seismic profiling lines in the Boso Peninsula (112 km) and the Sagami bay area( 75 km) to image the subducting Philippine Sea plate

  9. Criteria for Selecting and Adjusting Ground-Motion Models for Specific Target Regions: Application to Central Europe and Rock Sites

    Science.gov (United States)

    Cotton, Fabrice; Scherbaum, Frank; Bommer, Julian J.; Bungum, Hilmar

    2006-04-01

    A vital component of any seismic hazard analysis is a model for predicting the expected distribution of ground motions at a site due to possible earthquake scenarios. The limited nature of the datasets from which such models are derived gives rise to epistemic uncertainty in both the median estimates and the associated aleatory variability of these predictive equations. In order to capture this epistemic uncertainty in a seismic hazard analysis, more than one ground-motion prediction equation must be used, and the tool that is currently employed to combine multiple models is the logic tree. Candidate ground-motion models for a logic tree should be selected in order to obtain the smallest possible suite of equations that can capture the expected range of possible ground motions in the target region. This is achieved by starting from a comprehensive list of available equations and then applying criteria for rejecting those considered inappropriate in terms of quality, derivation or applicability. Once the final list of candidate models is established, adjustments must be applied to achieve parameter compatibility. Additional adjustments can also be applied to remove the effect of systematic differences between host and target regions. These procedures are applied to select and adjust ground-motion models for the analysis of seismic hazard at rock sites in West Central Europe. This region is chosen for illustrative purposes particularly because it highlights the issue of using ground-motion models derived from small magnitude earthquakes in the analysis of hazard due to much larger events. Some of the pitfalls of extrapolating ground-motion models from small to large magnitude earthquakes in low seismicity regions are discussed for the selected target region.

  10. Mechanisms for Generation of Near-Fault Ground Motion Pulses for Dip-Slip Faulting

    Science.gov (United States)

    Poiata, Natalia; Miyake, Hiroe; Koketsu, Kazuki

    2017-04-01

    We analyzed the seismological aspects of the near-fault ground motion pulses and studied the main characteristics of the rupture configuration that contribute to the pulse generation for dip-slip faulting events by performing forward simulations in broadband and low-frequency ranges for different rupture scenarios of the 2009 L'Aquila, Italy (M w 6.3) earthquake. The rupture scenarios were based on the broadband source model determined by Poiata et al. (Geophys J Int 191:224-242, 2012). Our analyses demonstrated that ground motion pulses affect spectral characteristics of the observed ground motions at longer periods, generating significantly larger seismic demands on the structures than ordinary records. The results of the rupture scenario simulations revealed the rupture directivity effect, the radial rupture propagation toward the site, and the focusing effect as the main mechanisms of the near-fault ground motion pulse generation. The predominance of one of these mechanisms depends on the location of the site relative to the causative fault plane. The analysis also provides the main candidate mechanisms for the worst-case rupture scenarios of pulse generation for the city of L'Aquila and, more generally, the hanging-wall sites located above the area of large slip (strong motion generation area).

  11. Measurement of ground motion in various sites

    Energy Technology Data Exchange (ETDEWEB)

    Bialowons, W.; Amirikas, R.; Bertolini, A.; Kruecker, D.

    2007-04-15

    Ground vibrations may affect low emittance beam transport in linear colliders, Free Electron Lasers (FEL) and synchrotron radiation facilities. This paper is an overview of a study program to measure ground vibrations in various sites which can be used for site characterization in relation to accelerator design. Commercial broadband seismometers have been used to measure ground vibrations and the resultant database is available to the scientific community. The methodology employed is to use the same equipment and data analysis tools for ease of comparison. This database of ground vibrations taken in 19 sites around the world is first of its kind. (orig.)

  12. Engineering characteristics of near-fault vertical ground motions and their effect on the seismic response of bridges

    Institute of Scientific and Technical Information of China (English)

    Li Xinle; Dou Huijuan; Zhu Xi

    2007-01-01

    A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion,focusing on the effect of earthquake magnitude,site conditions,pulse duration,and statistical component.The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes,and the relationship between the vertical and horizontal ground motions is comparatively intricate.In addition,the effect of the near-fault ground motions on bridge performance is analyzed,considering both the material nonlinear characteristics and the P~△ effect.

  13. Implementation of the Next Generation Attenuation (NGA) ground-motion prediction equations in Fortran and R

    Science.gov (United States)

    Kaklamanos, James; Boore, David M.; Thompson, Eric M.; Campbell, Kenneth W.

    2010-01-01

    This report presents two methods for implementing the earthquake ground-motion prediction equations released in 2008 as part of the Next Generation Attenuation of Ground Motions (NGA-West, or NGA) project coordinated by the Pacific Earthquake Engineering Research Center (PEER). These models were developed for predicting ground-motion parameters for shallow crustal earthquakes in active tectonic regions (such as California). Of the five ground-motion prediction equations (GMPEs) developed during the NGA project, four models are implemented: the GMPEs of Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008a); these models are abbreviated as AS08, BA08, CB08, and CY08, respectively. Since site response is widely recognized as an important influence of ground motions, engineering applications typically require that such effects be modeled. The model of Idriss (2008) is not implemented in our programs because it does not explicitly include site response, whereas the other four models include site response and use the same variable to describe the site condition (VS30). We do not intend to discourage the use of the Idriss (2008) model, but we have chosen to implement the other four NGA models in our programs for those users who require ground-motion estimates for various site conditions. We have implemented the NGA models by using two separate programming languages: Fortran and R (R Development Core Team, 2010). Fortran, a compiled programming language, has been used in the scientific community for decades. R is an object-oriented language and environment for statistical computing that is gaining popularity in the statistical and scientific community. Derived from the S language and environment developed at Bell Laboratories, R is an open-source language that is freely available at http://www.r-project.org/ (last accessed 11 January 2011). In R, the functions for computing the NGA equations can be loaded as an

  14. Long Duration of Ground Motion in the Paradigmatic Valley of Mexico

    Science.gov (United States)

    Cruz-Atienza, V. M.; Tago, J.; Sanabria-Gómez, J. D.; Chaljub, E.; Etienne, V.; Virieux, J.; Quintanar, L.

    2016-12-01

    Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away the city. By means of high performance computational modeling we show that, despite the highly dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively, which are two frequencies with the largest observed amplification. This conclusion contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City.

  15. Seismic Ground Motion Hazards with 10 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  16. Seismic Ground Motion Hazards with 2 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  17. A Refined Vs30 Map for Taiwan Based on Ground Motion Attenuation Relationships

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu and Yi-Ben Tsai

    2015-01-01

    Full Text Available Seismic hazard evaluations require an estimate of the expected ground motion at the site of interest usually by using attenuation relationships. The mean shear-wave velocity over the top 30 m (Vs30 is incorporated in the ground motion attenuation relationships in this study. By comparing the standard deviations of the residuals between the observed and predicted values before and after incorporating the site effect term Vs30, the reduction in standard deviation for the peak ground velocity (PGV is significantly reduced by about 11%. Clearly, the refined attenuation relationships will be more useful for engineering purposes. Analyzing the site effect term using the amplification factor (relative to a site with Vs30 = 760 m s-1, has revealed that the Changhua Plain, Chianan Plain, Pingtung Valley, Ilan Plain, and Taipei Basin have high values, implying large ground motion amplification. Following a disastrous earthquake, quick assessment and timely peak ground acceleration (PGA and PGV map reporting will be critical for effective emergency response operations. After an earthquake we can combine the simple attenuation relationships, as determined from Model 1, to provide near real-time estimation and reporting of the PGA and PGV values for the Taiwan area. We can also use the relations between the intra-event site residual and the Vs30 to estimate the Vs30 for stations that have recorded strong motions, but do not yet have Vs30 information. Our approach including sites with estimated Vs30 has resulted in a refined Vs30 contour map that can be used for more realistic seismic hazard assessment for Taiwan. This approach is especially applicable to the foothill and mountain areas.

  18. 地震机制及其对地运动和波传播的影响--兼对若干基本概念的讨论%Earthquake mechanism and its effect on ground motion and wave propagation--with some comments on fundamental concepts

    Institute of Scientific and Technical Information of China (English)

    门福录

    2000-01-01

    A tentative analysis of the mechanism of mantle circulation flow, continent drifting and earthquake origin is first clearly made, giving a simple mechanics-based explanation of the nature. Then the effects of earthquake mechanism on ground motion and wave propagation are delineated in a simple manner by accounting for the different types of earthquake source, break propagation, as well as the variations of rock property. It is shown on the basis of principles of mechanics that at least two physical parameters characterizing the seismic intensity must be specified because at the earthquake source two parameters, the stress jump and the velocity jump of particle motion, should act simultaneously whenever a sudden break occurs according to the discontinuous (jump) wave theory. While it is shown that the break propagation speed Cb together with the break plane area may be the third key parameter influencing definitely the time form of unloading function at the source. Since the fault break is an unloading process in the sense of mechanics and the break lead to stress jump and velocity jump so some concepts so far defined seem not exact or even of misunderstanding. Thus some comments on a number of basic concept in engineering seismology and earthquake engineering are made tentatively, aiming at arising an academic discussion.%首先对地幔对流、大陆漂移和地震起源的机制做了尝试性分析,给出一个简单的力学解释.然后,考虑不同的震源类型,破裂传播以及岩体性质,探讨了震源机制对地面运动和波传播的影响.根据间断(阶跃)波理论阐明了至少应该有两个物理参量才能表征地震烈度,因为在震源处同时有应力阶跃和质点速度阶跃发生.也阐明了断层的破裂速度连同断层面积一起应是第三个重要影响参量,因为它对震源处卸载的时间函数的形式有决定性的影响.由于断层破裂是一个瞬间卸载过程,并引起应力和速度阶跃,而现行

  19. Lithological and rheological constraints on fault rupture scenarios for ground motion hazard prediction. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, W.; Hutchings, L.; Jarpe, S.

    1994-09-01

    This paper tests a new approach to predict a range of ground motion hazard at specific sites generated by earthquakes on specific faults. The approach utilizes geodynamics to link structural, lithological and Theological descriptions of the fault zones to development of fault rupture scenarios and computation of synthetic seismograms. Faults are placed within a regional geomechanical model that is used to calculate stress conditions along the fault. The approach is based upon three hypothesis: (1) An exact solution of the representation relation that u@s empirical. Green`s functions enables very accurate computation of ground motions generated by a given rupture scenario; (2) a general description of the rupture is sufficient; and (3) the structural, lithological and Theological characteristics of a fault can be used to constrain, in advance, possible future rupture histories. Ground motion hazard here refers to three-component, full wave train descriptions of displacement, velocity, and acceleration over the frequency band 0.01 to 25 Hz. Corollaries to these hypotheses are that the range of possible fault rupture histories is narrow enough to functionally constrain the range of strong ground motion predictions, and that a discreet set of rupture histories is sufficient to span the infinite combinations possible from a given range of rupture parameters.

  20. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  1. Nonstationary Stochastic Simulation of Strong Ground-Motion Time Histories : Application to the Japanese Database

    CERN Document Server

    Laurendeau, Aurore; Bonilla, Luis Fabian

    2012-01-01

    For earthquake-resistant design, engineering seismologists employ time-history analysis for nonlinear simulations. The nonstationary stochastic method previously developed by Pousse et al. (2006) has been updated. This method has the advantage of being both simple, fast and taking into account the basic concepts of seismology (Brune's source, realistic time envelope function, nonstationarity and ground-motion variability). Time-domain simulations are derived from the signal spectrogram and depend on few ground-motion parameters: Arias intensity, significant relative duration and central frequency. These indicators are obtained from empirical attenuation equations that relate them to the magnitude of the event, the source-receiver distance, and the site conditions. We improve the nonstationary stochastic method by using new functional forms (new surface rock dataset, analysis of both intra-event and inter-event residuals, consideration of the scaling relations and VS30), by assessing the central frequency with...

  2. Hysteresis and Soil Site Dependent Input and Hysteretic Energy Spectra for Far-Source Ground Motions

    Directory of Open Access Journals (Sweden)

    Mebrahtom Gebrekirstos Mezgebo

    2016-01-01

    Full Text Available Earthquake input energy spectra for four soil site classes, four hysteresis models, and five ductility levels are developed for far-source ground motion effect. These energy spectra are normalized by a quantity called velocity index (VI. The use of VI allows for the creation of dimensionless spectra and results in smaller coefficients of variation. Hysteretic energy spectra are then developed to address the demand aspect of an energy-based seismic design of structures with 5% critical damping and ductility that ranges from 2 to 5. The proposed input and hysteretic energy spectra are then compared with response spectra generated using nonlinear time history analyses of real ground motions and are found to produce reasonably good results over a relatively large period range.

  3. Ground motions on rocky, cliffed, and sandy shorelines generated by ocean waves

    Science.gov (United States)

    Young, Adam P.; Guza, Robert T.; Dickson, Mark E.; O'Reilly, William C.; Flick, Reinhard E.

    2013-12-01

    We compare ground motions observed within about 100 m of the waterline on eight sites located on shorelines with different morphologies (rock slope, cliff, and sand beaches). At all sites, local ocean waves generated ground motions in the frequency band 0.01-40 Hz. Between about 0.01 and 0.1 Hz, foreshore loading and gravitational attraction from ocean swell and infragravity waves drive coherent, in-phase ground flexing motions mostly oriented cross-shore that decay inland. At higher frequencies between 0.5 and 40 Hz, breaking ocean waves and wave-rock impacts cause ground shaking. Overall, seismic spectral shapes were generally consistent across shoreline sites and usually within a few orders of magnitude despite the diverse range of settings. However, specific site response varied and was influenced by a combination of tide level, incident wave energy, site morphology, ground composition, and signal decay. Flexing and shaking increased with incident wave energy and was often tidally modulated, consistent with a local generation source. Flexing magnitudes were usually larger than shaking, and flexing displacements of several mm were observed during relatively large incident wave conditions (Hs 4-5 m). Comparison with traffic noise and earthquakes illustrate the relative significance of local ocean-generated signals in coastal seismic data. Seismic observations are not a simple proxy for wave-cliff interaction.

  4. Visualization of strong around motion calculated from the numerical simulation of Hyogo-ken Nanbu earthquake; Suchi simulation de miru Hyogoken nanbu jishin no kyoshindo

    Energy Technology Data Exchange (ETDEWEB)

    Furumura, T. [Hokkaido Univ. of Education, Sapporo (Japan); Koketsu, K. [The University of Tokyo, Tokyo (Japan). Earthquake Research Institute

    1996-10-01

    Hyogo-ken Nanbu earthquake with a focus in the Akashi straits has given huge earthquake damages in and around Awaji Island and Kobe City in 1995. It is clear that the basement structure, which is steeply deepened at Kobe City from Rokko Mountains towards the coast, and the focus under this related closely to the local generation of strong ground motion. Generation process of the strong ground motion was discussed using 2D and 3D numerical simulation methods. The 3D pseudospectral method was used for the calculation. Space of 51.2km{times}25.6km{times}25.6km was selected for the calculation. This space was discretized with the lattice interval of 200m. Consequently, it was found that the basement structure with a steeply deepened basement, soft and weak geological structure thickly deposited on the basement, and earthquake faults running under the boundary of base rock and sediments related greatly to the generation of strong ground motion. Numerical simulation can be expected to predict the strong ground motion by shallow earthquakes. 9 refs., 7 figs.

  5. Estimating Inland Ground Motions from Lake Turbidite Sequences, Northern Cascadia margin, USA.

    Science.gov (United States)

    Goldfinger, C.; Hausmann, R. B.; Black, B.; Romsos, C. G.; Beeson, J. W.; Galer, S.; Collins, T.

    2016-12-01

    Using cores collected from lakes in northern Oregon and Washington, we are attempting to estimate ground motions from plate boundary earthquakes at inland paleoseismic sites. Paleoseismic evidence in Cascadia comes largely from coastal and offshore sites, while population the main population centers of Seattle, Victoria, Vancouver and Portland are 100-180 km inland. Cores from Leland Lake on the Olympic Peninsula, Lake Sawyer, near Seattle, and Bull Run Lake, 65 km east of Portland contain sequences of event beds that are interpreted as internal lake turbidites. The number, timing based on 14C constrained age models, sequencing, and individual event characteristics correlated with physical properties and CT data are compatible with onshore and offshore paleoseismic records of plate boundary earthquakes. The likely correlative turbidite sequence at Bull Run is well-matched to the nearest offshore turbidite sequences at Hydrate Ridge and Oceanus Basin (see also Hausmann et al. this meeting). Similarly, the Washington lake sequences are well matched to the offshore Washington sequences (Goldfinger et al. 2016), with the likely inclusion of a single Seattle Fault earthquake 1000 cal BP. Bull Run Lake has several ashes, but otherwise, additional event beds related to crustal faulting or other events are not observed. Our strategy is to investigate lakes that have low sensitivity to subaquatic slope failures in order to explore the limits of stability. In this case, the minimum ground shaking required for slope failure will approach actual ground motions as stability increases. We mapped failure zones within the lakes, and collected shear vane measurements to estimate sediment cohesion. We then computed minimum ground motions for these sites. For Leland Lake, there are no mappable failures, indicating internal lake turbidites likely were generated by thin surface failures below mapping resolution. For Sawyer and Bull Run, the most stable failure sites require 0.2-0.3g

  6. Initiation of a Database of CEUS Ground Motions for NGA East

    Science.gov (United States)

    Cramer, C. H.

    2007-12-01

    The Nuclear Regulatory Commission has funded the first stage of development of a database of central and eastern US (CEUS) broadband and accelerograph records, along the lines of the existing Next Generation Attenuation (NGA) database for active tectonic areas. This database will form the foundation of an NGA East project for the development of CEUS ground-motion prediction equations that include the effects of soils. This initial effort covers the development of a database design and the beginning of data collection to populate the database. It also includes some processing for important source parameters (Brune corner frequency and stress drop) and site parameters (kappa, Vs30). Besides collecting appropriate earthquake recordings and information, existing information about site conditions at recording sites will also be gathered, including geology and geotechnical information. The long-range goal of the database development is to complete the database and make it available in 2010. The database design is centered on CEUS ground motion information needs but is built on the Pacific Earthquake Engineering Research Center's (PEER) NGA experience. Documentation from the PEER NGA website was reviewed and relevant fields incorporated into the CEUS database design. CEUS database tables include ones for earthquake, station, component, record, and references. As was done for NGA, a CEUS ground- motion flat file of key information will be extracted from the CEUS database for use in attenuation relation development. A short report on the CEUS database and several initial design-definition files are available at https://umdrive.memphis.edu:443/xythoswfs/webui/_xy-7843974_docstore1. Comments and suggestions on the database design can be sent to the author. More details will be presented in a poster at the meeting.

  7. Seismic Response of Base-Isolated Structures under Multi-component Ground Motion Excitation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square response of the system is obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored.

  8. Uncertainty, variability, and earthquake physics in ground‐motion prediction equations

    Science.gov (United States)

    Baltay, Annemarie S.; Hanks, Thomas C.; Abrahamson, Norm A.

    2017-01-01

    Residuals between ground‐motion data and ground‐motion prediction equations (GMPEs) can be decomposed into terms representing earthquake source, path, and site effects. These terms can be cast in terms of repeatable (epistemic) residuals and the random (aleatory) components. Identifying the repeatable residuals leads to a GMPE with reduced uncertainty for a specific source, site, or path location, which in turn can yield a lower hazard level at small probabilities of exceedance. We illustrate a schematic framework for this residual partitioning with a dataset from the ANZA network, which straddles the central San Jacinto fault in southern California. The dataset consists of more than 3200 1.15≤M≤3 earthquakes and their peak ground accelerations (PGAs), recorded at close distances (R≤20  km). We construct a small‐magnitude GMPE for these PGA data, incorporating VS30 site conditions and geometrical spreading. Identification and removal of the repeatable source, path, and site terms yield an overall reduction in the standard deviation from 0.97 (in ln units) to 0.44, for a nonergodic assumption, that is, for a single‐source location, single site, and single path. We give examples of relationships between independent seismological observables and the repeatable terms. We find a correlation between location‐based source terms and stress drops in the San Jacinto fault zone region; an explanation of the site term as a function of kappa, the near‐site attenuation parameter; and a suggestion that the path component can be related directly to elastic structure. These correlations allow the repeatable source location, site, and path terms to be determined a priori using independent geophysical relationships. Those terms could be incorporated into location‐specific GMPEs for more accurate and precise ground‐motion prediction.

  9. Ground motion improvements in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Safranek, James A.; Yan, Yiton T.; Dell’Orco, Domenico; Gassner, Georg; Sunilkumar, Nikita

    2016-09-01

    SPEAR3 is a third-generation synchrotron light source storage ring, about 234 meters in circumference. To meet the beam stability requirement, our goal is to ultimately achieve an orbit variation (relative to the photon beam lines) of less than 10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic leveling system (HLS) measurements show that the height of the SPEAR3 tunnel floor can vary by tens of microns daily without thermal insulation improvements. We present an analysis of the HLS data that shows that adding thermal insulation to the concrete walls of the storage ring tunnel dramatically decreased diurnal tunnel floor motion.

  10. Physical limits on ground motion at Yucca Mountain

    Science.gov (United States)

    Andrews, D.J.; Hanks, T.C.; Whitney, J.W.

    2007-01-01

    Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr-Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.

  11. Steel Moment-Resisting Frame Responses in Simulated Strong Ground Motions: or How I Learned to Stop Worrying and Love the Big One

    OpenAIRE

    Olsen, Anna

    2008-01-01

    This thesis studies the response of steel moment-resisting frame buildings in simulated strong ground motions. I collect 37 simulations of crustal earthquakes in California. These ground motions are applied to nonlinear finite element models of four types of steel moment frame buildings: six- or twenty-stories with either a stiffer, higherstrength design or a more flexible, lower-strength design. I also consider the presence of fracture-prone welds in each design. Since these b...

  12. Ground motion improvements in SPEAR3

    Science.gov (United States)

    Safranek, James A.; Yan, Yiton T.; Dell'Orco, Domenico; Gassner, Georg; Sunilkumar, Nikita

    2016-09-01

    SPEAR3 is a third-generation synchrotron light source storage ring, about 234 meters in circumference. To meet the beam stability requirement, our goal is to ultimately achieve an orbit variation (relative to the photon beam lines) of less than 10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic leveling system (HLS) measurements show that the height of the SPEAR3 tunnel floor can vary by tens of microns daily without thermal insulation improvements. We present an analysis of the HLS data that shows that adding thermal insulation to the concrete walls of the storage ring tunnel dramatically decreased diurnal tunnel floor motion. Supported by US Department of Energy (DE-AC02-76SF00515) and the SULI program at SLAC National Laboratory

  13. Strong motion characteristics of the 2011 Tohoku-Oki earthquake observed by K-NET and KiK-net

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Morikawa, N.; Nakamura, H.; Pulido Hernandez, N. E.; Fujiwara, H.

    2011-12-01

    The Tohoku-Oki earthquake was the largest earthquake occurred in and around Japan since the recorded history. This magnitude 9.0 megathrust earthquake initiated approximately 100 km off-shore Miyagi prefecture and the rupture extended 400 - 500 km along the subducting Pacific plate. Due to the large ground motions and tsunami associated by this event, more than twenty thousands people were killed or missing and more than 220 thousands houses and buildings were totally or partially destroyed. The Tohoku-Oki earthquake was the first M9-class earthquake that is closely recorded by a dense seismograph network. In this paper, we summarize the characteristics of the strong motions and the source process revealed by those data. The ground motions were recorded at more than 1200 K-NET and KiK-net stations. The peak ground accelerations (PGA) exceeded 1g at 20 sites and the largest PGA, 2933 gals, was observed at the K-NET Tsukidate station (MYG004). We estimated the precise spatial distribution of seismic intensity from the observed data considering the near-surface amplification, and found that roughly twenty million people were exposed to a shaking larger than JMA seismic intensity 5+ (>MMI 7). Huge numbers of large aftershocks and triggered earthquakes including M7-class crustal and intraslab earthquakes have been recorded. Those earthquakes occurred not only in the source area but also several hundreds kilometers away. Some of them were located much nearer to the populated urban areas than the main shock and human fatalities as well as severe building damages were caused by large ground shakings. The observed waveforms from the main shock are very complex; depending on the region, accelerograms show one to three conspicuous and long-duration phases as well as several phases with smaller amplitudes and shorter durations. A paste-up of accelerograms in Iwate, Miyagi and Fukushima prefectures ordered by latitude from north displays an initial strong seismic phase first

  14. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    Science.gov (United States)

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  15. Status of Ground Motion Mitigation Techniques for CLIC

    CERN Document Server

    Snuverink, J; Collette, C; Duarte Ramos, F; Gaddi, A; Gerwig, H; Janssens, S; Pfingstner, J; Schulte, D; Balik, G; Brunetti, L; Jeremie, A; Burrows, P; Caron, B; Resta-Lopez, J

    2011-01-01

    The Compact Linear Collider (CLIC) accelerator has strong stability requirements on the position of the beam. In particular, the beam position will be sensitive to ground motion. A number of mitigation techniques are proposed - quadrupole stabilisation and positioning, final doublet stabilisation as well as beam based orbit and interaction point (IP) feedback. Integrated studies of the impact of the ground motion on the CLIC Main Linac (ML) and Beam Delivery System (BDS) have been performed, which model the hardware and beam performance in detail. Based on the results future improvements of the mitigation techniques are suggested and simulated. It is shown that with the current design the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed.

  16. Using 1 -D and 2-D modelling of ground motion for seismic zonation criteria: results for the city of Rome

    Directory of Open Access Journals (Sweden)

    A. Caserta

    1995-06-01

    Full Text Available The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves produced in the different areas of the city by a large (M ? 7 potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineering parameters (peak ground acceleration and velocity, Arias intensity, energy flux, response spectra whose spatial variations are consistent with the damage distribution caused by the strongest earthquakes felt in Rome during its long history. Based on the macroseismic inforination and the results of the numerical simulations, general criteria for seismic zonation of the city of Rome are proposed.

  17. Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes

    Science.gov (United States)

    Pritchard, M. E.; Norabuena, E. O.; Ji, C.; Boroschek, R.; Comte, D.; Simons, M.; Dixon, T. H.; Rosen, P. A.

    2007-03-01

    We use seismic and geodetic data both jointly and separately to constrain coseismic slip from the 12 November 1996 Mw 7.7 and 23 June 2001 Mw 8.5 southern Peru subduction zone earthquakes, as well as two large aftershocks following the 2001 earthquake on 26 June and 7 July 2001. We use all available data in our inversions: GPS, interferometric synthetic aperture radar (InSAR) from the ERS-1, ERS-2, JERS, and RADARSAT-1 satellites, and seismic data from teleseismic and strong motion stations. Our two-dimensional slip models derived from only teleseismic body waves from South American subduction zone earthquakes with Mw > 7.5 do not reliably predict available geodetic data. In particular, we find significant differences in the distribution of slip for the 2001 earthquake from models that use only seismic (teleseismic and two strong motion stations) or geodetic (InSAR and GPS) data. The differences might be related to postseismic deformation or, more likely, the different sensitivities of the teleseismic and geodetic data to coseismic rupture properties. The earthquakes studied here follow the pattern of earthquake directivity along the coast of western South America, north of 5°S, earthquakes rupture to the north; south of about 12°S, directivity is southerly; and in between, earthquakes are bilateral. The predicted deformation at the Arequipa GPS station from the seismic-only slip model for the 7 July 2001 aftershock is not consistent with significant preseismic motion.

  18. Regionally Adaptable Ground Motion Prediction Equation (GMPE) from Empirical Models of Fourier and Duration of Ground Motion

    Science.gov (United States)

    Bora, Sanjay; Scherbaum, Frank; Kuehn, Nicolas; Stafford, Peter; Edwards, Benjamin

    2016-04-01

    The current practice of deriving empirical ground motion prediction equations (GMPEs) involves using ground motions recorded at multiple sites. However, in applications like site-specific (e.g., critical facility) hazard ground motions obtained from the GMPEs are need to be adjusted/corrected to a particular site/site-condition under investigation. This study presents a complete framework for developing a response spectral GMPE, within which the issue of adjustment of ground motions is addressed in a manner consistent with the linear system framework. The present approach is a two-step process in which the first step consists of deriving two separate empirical models, one for Fourier amplitude spectra (FAS) and the other for a random vibration theory (RVT) optimized duration (Drvto) of ground motion. In the second step the two models are combined within the RVT framework to obtain full response spectral amplitudes. Additionally, the framework also involves a stochastic model based extrapolation of individual Fourier spectra to extend the useable frequency limit of the empirically derived FAS model. The stochastic model parameters were determined by inverting the Fourier spectral data using an approach similar to the one as described in Edwards and Faeh (2013). Comparison of median predicted response spectra from present approach with those from other regional GMPEs indicates that the present approach can also be used as a stand-alone model. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, the Middle East and the Mediterranean region.

  19. A Bayesian and Physics-Based Ground Motion Parameters Map Generation System

    Science.gov (United States)

    Ramirez-Guzman, L.; Quiroz, A.; Sandoval, H.; Perez-Yanez, C.; Ruiz, A. L.; Delgado, R.; Macias, M. A.; Alcántara, L.

    2014-12-01

    We present the Ground Motion Parameters Map Generation (GMPMG) system developed by the Institute of Engineering at the National Autonomous University of Mexico (UNAM). The system delivers estimates of information associated with the social impact of earthquakes, engineering ground motion parameters (gmp), and macroseismic intensity maps. The gmp calculated are peak ground acceleration and velocity (pga and pgv) and response spectral acceleration (SA). The GMPMG relies on real-time data received from strong ground motion stations belonging to UNAM's networks throughout Mexico. Data are gathered via satellite and internet service providers, and managed with the data acquisition software Earthworm. The system is self-contained and can perform all calculations required for estimating gmp and intensity maps due to earthquakes, automatically or manually. An initial data processing, by baseline correcting and removing records containing glitches or low signal-to-noise ratio, is performed. The system then assigns a hypocentral location using first arrivals and a simplified 3D model, followed by a moment tensor inversion, which is performed using a pre-calculated Receiver Green's Tensors (RGT) database for a realistic 3D model of Mexico. A backup system to compute epicentral location and magnitude is in place. A Bayesian Kriging is employed to combine recorded values with grids of computed gmp. The latter are obtained by using appropriate ground motion prediction equations (for pgv, pga and SA with T=0.3, 0.5, 1 and 1.5 s ) and numerical simulations performed in real time, using the aforementioned RGT database (for SA with T=2, 2.5 and 3 s). Estimated intensity maps are then computed using SA(T=2S) to Modified Mercalli Intensity correlations derived for central Mexico. The maps are made available to the institutions in charge of the disaster prevention systems. In order to analyze the accuracy of the maps, we compare them against observations not considered in the

  20. Effect of ground motion from nuclear excavation: interim canal studies

    Energy Technology Data Exchange (ETDEWEB)

    King, C. Y.; Nadolski, M. E.

    1969-09-01

    The effect of ground motion due to nuclear excavation of a sea-level canal at two alternative routes, 17A and 25E, are discussed from the aspects of motion prediction and structural response. The importance of the high-rise building problem is stressed because of its complexity. Several damage criteria are summarized for advance planning of excavation and operation. The 1964 shot schedule and the latest revised schedule are included for comparison.

  1. Extreme Ground-Motion Rockfall Deposits on the Nevada Test Site

    Science.gov (United States)

    Whitney, J. W.; Buckingham, S. E.; Magner, J. E.; Finkel, R. C.; Brune, J. N.; von Seggern, D.; Honke, J. S.

    2007-12-01

    In order to detect the evidence of extreme ground motion in the past, we have begun to catalog geomorphic characteristics that distinguish slope deposits strongly influenced by extreme ground motion from deposits primarily influenced by climate processes. Underground nuclear explosions (UNEs) of yields between 200 kilotons and 1.3 megatons were conducted under Pahute Mesa at the Nevada Test site from 1962 to 1992. The primary surface effects from these tests were surface cracks, triggered earthquakes, offsets on pre-existing faults, and changes in land surface topography. Rockfall and rock spall were observed along cliffs after a few nuclear tests; however, few observations of accumulations of shattered rock were documented. A large volume of rockfall located along a 1.5-km¬-long cliff of welded ash-flow tuff resulted from extreme ground motions from two nearby UNEs. In 1968 UNE Rickey released maximum ground motions of 500 cm/s peak ground velocity (PGV) at the closest cliff face and PGV decreased to about 300 cm/s at the north end of the cliff. Large boulders with 1-3-m average diameters were shaken loose from fracture planes and cooling joints to form a stack of jumbled boulders at the base of the cliff. Very few large boulders rolled to the base of the hillslope. Subsequently, in 1976, UNE Pool induced 300-350 cm/s PGV along the same cliff. A significant volume of rock, also released along fractures and joints, was added to the coarse boulder colluvium shaken loose in 1968. Ground motion from Pool also rearranged the hillslope boulders from UNE Rickey, but did not cause many boulders to roll downslope. Extreme ground motions from these two UNEs resulted in 1.5-3.0 m of physical erosion to the cliff face. Rockfall from less welded ash-flow tuff units situated above and below the cliff produced significantly less boulder colluvium. Our observations indicate that boulder size and rockfall volume from a cliff or ridge crest due to extreme ground motion are

  2. Earthquake-induced ground failures in Italy from a reviewed database

    Science.gov (United States)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2014-04-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (ceri.uniroma1.it/cn/gis.jsp"_target="blank">http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  3. EVALUATING AND IMPROVING REAL-TIME STRATEGIES FOR ENGINEERING GROUND MOTION PREDICTIONS

    Science.gov (United States)

    Iervolino, I.; Giorgio, M.; Manfredi, G.

    2009-12-01

    Because, from the engineering perspective, the effectiveness of earthquake early warning systems (EEWS) depends only on the possibility of immediately detecting the earthquake and estimating the expected loss, or a proxy for it, for an engineered system of interest in order to undertake actions to manage/mitigate the risk before the strike, it is worthwhile to assess the efficiency of strategies to predict in real-time the earthquake’s destructive potential. The simplest engineering ground motion parameter is the peak ground acceleration (PGA) which may be predicted through probabilistic seismic hazard analysis in the framework of EEW conditional on some measures the seismologists use to estimate the magnitude from the early recorded signal. The effects of different sources of uncertainty on the prediction of PGA are assessed with reference to the ISNet (Irpinia Seismic Network) EEWS, although results can be considered general. The analyses show how the uncertainty of the ground motion prediction equation (GMPE) dominates those of magnitude and distance, almost independently of the information available for the event. Because the uncertainty related to GMPE is usually very large, it seems that the estimation of PGA should be where to put effort rather than improving the estimation of magnitude and/or earthquake location. An attempt to reduce the uncertainty in the estimation of PGA is made by adding more information (i.e., a second parameter measured in the early part of the signal from real-time seismology) and using the intra-event spatial correlation of peak accelerations at different sites. Based on these analyses distance-related bounds to uncertainty and information-dependent lead-time maps are defined and illustratively computed for the Campania (southern Italy) region.

  4. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion

    Science.gov (United States)

    Hirata, N.; Sato, H.; Koketsu, K.; Umeda, Y.; Iwata, T.; Kasahara, K.

    2003-12-01

    Introduction: After the 1995 Kobe earthquake, the Japanese government increased its focus and funding of earthquake hazards evaluation, studies of man-made structures integrity, and emergency response planning in the major urban centers. A new agency, the Ministry of Education, Science, Sports and Culture (MEXT) has started a five-year program titled as Special Project for Earthquake Disaster Mitigation in Urban Areas (abbreviated to Dai-dai-toku in Japanese) since 2002. The project includes four programs: I. Regional characterization of the crust in metropolitan areas for prediction of strong ground motion. II. Significant improvement of seismic performance of structure. III. Advanced disaster management system. IV. Investigation of earthquake disaster mitigation research results. We will present the results from the first program conducted in 2002 and 2003. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion: A long-term goal is to produce map of reliable estimations of strong ground motion. This requires accurate determination of ground motion response, which includes a source process, an effect of propagation path, and near surface response. The new five-year project was aimed to characterize the "source" and "propagation path" in the Kanto (Tokyo) region and Kinki (Osaka) region. The 1923 Kanto Earthquake is one of the important targets to be addressed in the project. The proximity of the Pacific and Philippine Sea subducting plates requires study of the relationship between earthquakes and regional tectonics. This project focuses on identification and geometry of: 1) Source faults, 2) Subducting plates and mega-thrust faults, 3) Crustal structure, 4) Seismogenic zone, 5) Sedimentary basins, 6) 3D velocity properties We have conducted a series of seismic reflection and refraction experiment in the Kanto region. In 2002 we have completed to deploy seismic profiling lines in the Boso peninsula (112 km) and the

  5. Attenuation characteristics of ground motions in northern China

    Institute of Scientific and Technical Information of China (English)

    黄玉龙; 赵兴权; 罗奇峰

    2002-01-01

    Four recently developed attenuation models are calibrated by using a very limited amount of strong motion data recorded in China. The research shows that the attenuation characteristics of the earthquake shaking in northern China are similar to those in the western US. The supporting evidence includes Q factors, preliminary results of kappa values, stress drop,shear wave velocity profile in the shallow earth crust, areas enclosed by the isoseismals of Modified Mercalli Intensity V. From these comparisons of different attenuation models, it is recommended that the Crouse and McGuire spectral attenuation model could possibly be used for northern China.

  6. Review of seismicity and ground motion studies related to development of seismic design at SRS

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, D.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Acree, J.R. [Westinghouse Environmental and Geotechnical Services, Inc., Columbia, SC (United States)

    1992-08-01

    The NRC response spectra developed in Reg. Guide 1.60 is being used in the studies related to restarting of the existing Savannah River Site (SRS) reactors. Because it envelopes all the other site specific spectra which have been developed for SRS, it provides significant conservatism in the design and analysis of the reactor systems for ground motions of this value or with these probability levels. This spectral shape is also the shape used for the design of the recently licensed Vogtle Nuclear Station, located south of the Savannah River from the SRS. This report provides a summary of the data base used to develop the design basis earthquake. This includes the seismicity, rates of occurrence, magnitudes, and attenuation relationships. A summary is provided for the studies performed and methodologies used to establish the design basis earthquake for SRS. The ground motion response spectra developed from the various studies are also summarized. The seismic hazard and PGA`s developed for other critical facilities in the region are discussed, and the SRS seismic instrumentation is presented. The programs for resolving outstanding issues are discussed and conclusions are presented.

  7. Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

    KAUST Repository

    Mai, Paul Martin

    2017-04-03

    Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.

  8. Ground Motion Zoning of Santiago de Cuba: An Approach by SH Waves Modelling

    Science.gov (United States)

    Alvarez, Leonardo; García, Julio; Vaccari, Franco; Panza, Giuliano F.; González, Bertha; Reyes, Carmen; Fernández, Bárbara; Pico, Ramón; Zapata, José A.; Arango, Enrique

    The expected ground motion in Santiago de Cuba basin from earthquakes which occurred in the Oriente fault zone is studied. Synthetic SH-waves seismograms have been calculated along four profiles in the basin by the hybrid approach (modal summation for the path source-profile and finite differences for the profile) for a maximum frequency of 1 Hz. The response spectra ratio (RSR) has been determined in 49 sites, distributed along all considered profiles with a spacing of 900 m. The corresponding RSR versus frequency curves have been classified using a logical-combinatorial algorithm. The results of the classification, in combination with the uppermost geological setting (geotechnical information and geological geometry of the subsoil) are used for the seismic zoning of the city. Three different main zones are identified, and a small sector characterized by major resonance effects, due to the particular structural conditions. Each zone is characterized in terms of its expected ground motion parameters for the most probable strong earthquake (MS=7), and for the maximum possible (MS=8).

  9. Hybrid-Empirical Ground Motion Estimations for Georgia

    Directory of Open Access Journals (Sweden)

    Tsereteli Nino

    2016-10-01

    Full Text Available Ground motion prediction equations are essential for several purposes ranging from seismic design and analysis to probabilistic seismic hazard assessment. In seismically active regions without sufficiently strong ground motion data to build empirical models, hybrid models become vital. Georgia does not have sufficiently strong ground motion data to build empirical models. In this study, we have applied the host-to-target method in two regions in Georgia with different source mechanisms. According to the tectonic regime of the target areas, two different regions are chosen as host regions. One of them is in Turkey with the dominant strike-slip source mechanism, while the other is in Iran with the prevalence of reverse-mechanism events. We performed stochastic finite-fault simulations in both host and target areas and employed the hybrid-empirical method as introduced in Campbell (2003. An initial set of hybrid empirical ground motion estimates is obtained for PGA and SA at selected periods for Georgia.

  10. Strong Ground Motion Evaluation for an Active Fault System by the Empirical Green Function Method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Choun, Young Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Shiba, Yoshiaki; Ohtori, Yasuki [Central Research Institute of Electric Power Industry, Chiba (Japan)

    2005-07-01

    In an area with a high seismic activity, a design earthquake ground motion is generally determined empirically by investigating the historical records concerning damaging events. But it is difficult in Korea to obtain such seismic records that reflect the local characteristics because of the low seismic activity. A geological survey on the active faults near the sites of nuclear power plants has been carried out recently, and the segmentation, slip rate and the latest activity of the fault system are partly revealed. It will be significant for the advanced seismic design of nuclear facilities to utilize the information derived from these geological investigations and evaluate the strong ground motions. In this study, the empirical Green's function method (EFGM) was used to simulate strong ground motions from an active fault system in Korea. The source models are assumed by using the information obtained from the geological survey and the trench investigation on the fault system. Finally, the applicability of this approach to Korea was estimated.

  11. Cost-effective monitoring of ground motion by joint use of a single-frequency GPS and a MEMS accelerometer

    Science.gov (United States)

    Tu, Rui; Wang, Rongjiang; Ge, Maorong; Walter, Thomas R.; Ramatschi, Markus; Milkereit, Claus; Bindi, Dino; Dahm, Torsten

    2014-05-01

    Real-time detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (micro-electro-mechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analysed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers. Reference: Tu, R., R. Wang, M. Ge, T. R. Walter, M. Ramatschi, C. Milkereit, D. Bindi, and T. Dahm (2013), Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer, Geophysical Research Letters, 40, 3825-3829, doi:10.1002/grl.50653.

  12. Behavior of peak values and spectral ordinates of near-source strong ground motion over the smart 1 array

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, M.

    1990-06-01

    The array recordings are used to investigate several important properties of the seismic ground motions themselves. The results reported here address the question of the variability of the peak vertical and horizontal accelerations, velocities and displacements. Statistical treatment of the variability is feasible when ground motions are recorded, as in SMART 1, at a group of stations within a limited distance. The three rings of the SMART 1 array have radii of 200 m, 1 km and 2 km. Since it became operational in September 1980, it has recorded accelerations up to 0.33g and 0.34g on the horizontal and vertical components, respectively. At present there are over 3,000 accelerograms from 53 local earthquakes available. From the set of observations, 12 earthquakes have been selected providing more than 700 accelerograms for analysis and statistical treatment. Nonlinear regression procedure are used to fit the peak values to an attenuation form which has as parameters, earthquake magnitude and source-to-site distance. Spectral information on ground motion is included; correlations are made between spectral ordinate values at 23 discrete frequencies in the range of engineering interest. Among the notable results is the finding that the ratio of the vertical to horizontal response spectral ordinates is less than the often used value of 2/3 for periods longer than about 0.2 second, and also for all frequencies at distances greater than 30 km from the source.

  13. Ground Motion Expectations for the LCLS Undulator Hall

    Energy Technology Data Exchange (ETDEWEB)

    Welch, J.

    2005-01-31

    The Undulator Hall (UH) for the LCLS will consist of a tunneled structure completely beneath the ''berm'' at the east end of the Research Yard. This location should provide better thermal and geologic stability compared with the previous siting at ground level in the Research Yard. Nevertheless, microscopic motion of the tunnel foundation will contribute to misalignments among quadrupoles and reduce the time interval required between beam based alignment sessions. Based on historical measurements of slow ground motion at the SLAC site and measurements of atmospheric pressure effects, assuming a girder support system we estimate that during the first three years of operation the interval between periodic beam-based re-alignments should be about one week. Implications for the support system stability tolerance and the maximum range of motion to be accommodated are also discussed.

  14. Parallel finite element modeling of earthquake ground response and liquefaction

    Institute of Scientific and Technical Information of China (English)

    Jinchi Lu(陆金池); Jun Peng(彭军); Ahmed Elgamal; Zhaohui Yang(杨朝晖); Kincho H. Law

    2004-01-01

    Parallel computing is a promising approach to alleviate the computational demand in conducting large-scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground response and liquefaction using the parallel nonlinear finite element program, ParCYCLIC, designed for distributed-memory message-passing parallel computer systems. In ParCYCLIC, finite elements are employed within an incremental plasticity, coupled solid-fluid formulation. A constitutive model calibrated by physical tests represents the salient characteristics of sand liquefaction and associated accumulation of shear deformations. Key elements of the computational strategy employed in ParCYCLIC include the development of a parallel sparse direct solver, the deployment of an automatic domain decomposer, and the use of the Multilevel Nested Dissection algorithm for ordering of the finite element nodes. Simulation results of centrifuge test models using ParCYCLIC are presented. Performance results from grid models and geotechnical simulations show that ParCYCLIC is efficiently scalable to a large number of processors.

  15. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 1, Main report

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-11-01

    Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds.

  16. Near-fault ground motions with prominent acceleration pulses: pulse characteristics and ductility demand

    Institute of Scientific and Technical Information of China (English)

    Mai Tong; Vladimir Rzhevsky; Dai Junwu; George C Lee; Qi Jincheng; Qi Xiaozhai

    2007-01-01

    Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum,a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse.

  17. The Influence of Earth Temperature on the Dynamic Characteristics of Frozen Soil and the Parameters of Ground Motion on Sites of Permafrost

    Institute of Scientific and Technical Information of China (English)

    Wang Lanmin; Zhang Dongli; Wu Zhijian; Ma Wei; Li Xiaojun

    2004-01-01

    Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.

  18. Analyses of surface motions caused by the magnitude 9.0 2004 Sumatra earthquake

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Gudmundsson, Ó.

    The Sumatra, Indonesia, earthquake on December 26th was one of the most devastating earthquakes in history. With a magnitude of Mw = 9.0 it is the forth largest earthquake recorded since 1900. It occurred about one hundred kilometers off the west coast of northern Sumatra, where the relatively thin...... of years. The result was a devastating tsunami hitting coastlines across the Indian Ocean killing more than 225,000 people in Sri Lanka, India, Indonesia, Thailand and Malaysia. An earthquake of this magnitude is expected to involve a displacement on the fault on the order of 10 meters. But, what...... was the actual amplitude of the surface motions that triggered the tsunami? This can be constrained using the amplitudes of elastic waves radiated from the earthquake, or by direct measurements of deformation. Here we present estimates of the deformation based on continuous Global Positioning System (GPS...

  19. Evidence of Multiple Ground-rupturing Earthquakes in the Past 4000 Years along the Pasuruan Fault, East Java, Indonesia

    Science.gov (United States)

    Marliyani, G. I.; Arrowsmith, R.; Helmi, H.

    2015-12-01

    Instrumental and historical records of earthquakes, supplemented by paleoeseismic constraints can help reveal the earthquake potential of an area. The Pasuruan fault is a high angle normal fault with prominent youthful scarps cutting young deltaic sediments in the north coast of East Java, Indonesia and may pose significant hazard to the densely populated region. This fault has not been considered a significant structure, and mapped as a lineament with no sense of motion. Information regarding past earthquakes along this fault is not available. The fault is well defined both in the imagery and in the field as a ~13km long, 2-50m-high scarp. Open and filled fractures and natural exposures of the south-dipping fault plane indicate normal sense of motion. We excavated two fault-perpendicular trenches across a relay ramp identified during our surface mapping. Evidence for past earthquakes (documented in both trenches) includes upward fault termination with associated fissure fills, colluvial wedges and scarp-derived debris, folding, and angular unconformities. The ages of the events are constrained by 23 radiocarbon dates on detrital charcoal. We calibrated the dates using IntCal13 and used Oxcal to build the age model of the events. Our preliminary age model indicates that since 2006±134 B.C., there has been at least five ground rupturing earthquakes along the fault. The oldest event identified in the trench however, is not well-dated. Our modeled 95th percentile ranges of the next four earlier earthquakes (and their mean) are A.D. 1762-1850 (1806), A.D. 1646-1770 (1708), A.D. 1078-1648 (1363), and A.D. 726-1092 (909), yielding a rough recurrence rate of 302±63 yrs. These new data imply that Pasuruan fault is more active than previously thought. Additional well-dated earthquakes are necessary to build a solid earthquake recurrence model. Rupture along the whole section implies a minimum earthquake magnitude of 6.3, considering 13km as the minimum surface rupture

  20. Orthogonal expansion of ground motion and PDEM-based seismic response analysis of nonlinear structures

    Institute of Scientific and Technical Information of China (English)

    Li Jie; Liu Zhangjun; Chen Jianbing

    2009-01-01

    This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described, An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.

  1. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    Science.gov (United States)

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel

    2016-05-01

    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  2. City of Bingöl in May 2003: Assessment of strong ground motion records

    Indian Academy of Sciences (India)

    U Çeken; G Beyhan; H H Selim

    2014-03-01

    The main shock of Bingöl earthquake ( = 6.4) recorded by six accelerometers in the area occurred at 03:27 local time on May 1, 2003. The largest acceleration value of north–south component was recorded as 545.5 cm/s2 at the nearest station which is 12 km away from the epicenter of earthquake. Especially, 0.15 s short period was observed when high spectral acceleration value occurred. An acceleration value greater than 50 gal was recorded at the BNG (Bingöl) station and structural damage occurred within 6.5 s was very important for the near source and strong ground motion seismology. The recorded peak acceleration values were greater than the estimated empirical acceleration values. However, the structural damage was not as high and widespread as expected. This occurrence was explained by considering the factors of earthquake source, frequency content, effective duration, effective acceleration value, local soil conditions, rupture direction and attenuation.

  3. Effect of Surface Geology on Ground Motions: The Case of Station TAP056 - Chutzuhu Site

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Wen

    2008-01-01

    Full Text Available In the Tatun mountain area of northern Taiwan are two strong motion stations approximately 2.5 km apart, TAP056 and TAP066 of the TSMIP network. The accelerometer at station TAP056 is often triggered by earthquakes, but that at TAP066 station is not. Comparisons of vertical and horizontal peak ground accelerations reveal PGA in the vertical, east-west, and north-south components at TAP056 station to be 3.89, 7.57, and 5.45 times those at station TAP066, respectively. The PGA ratio does not seem to be related to earthquake source or path. Fourier spectra of earthquake records at station TAP056 always have approximately the same dominant frequency; however, those at station TAP066 are different due to different sources and paths of different events. This shows that spectra at TAP056 station are mainly controlled by local site effects. The spectral ratios of TAP056/TAP066 show the S-wave is amplified at around 8 ~ 10 Hz. The horizontal/vertical spectral ratios of station TAP056 also show a dominant frequency at about 6 and 8 ~ 10 Hz. After dense microtremor surveying and the addition of one accelerometer just 20 meters away from the original observation station, we can confirm that the top soft soil layer upon which the observation station is constructed generates the local site response at station TAP056.

  4. Numerical Shake Prediction for Earthquake Early Warning: More Precise and Rapid Prediction even for Deviated Distribution of Ground Shaking of M6-class Earthquakes

    Science.gov (United States)

    Hoshiba, M.; Ogiso, M.

    2015-12-01

    In many methods of the present EEW systems, hypocenter and magnitude are determined quickly, and then the strengths of ground motions are predicted using the hypocentral distance and magnitude based on a ground motion prediction equation (GMPE), which usually leads the prediction of concentric distribution. However, actual ground shaking is not always concentric, even when site amplification is corrected. At a common site, the strengths of shaking may be much different among earthquakes even when their hypocentral distances and magnitudes are almost the same. For some cases, PGA differs more than 10 times, which leads to imprecise prediction in EEW. Recently, Numerical Shake Prediction method was proposed (Hoshiba and Aoki, 2015), in which the present ongoing wavefield of ground shaking is estimated using data assimilation technique, and then future wavefield is predicted based on physics of wave propagation. Information of hypocentral location and magnitude is not required in this method. Because future is predicted from the present condition, it is possible to address the issue of the non-concentric distribution. Once the deviated distribution is actually observed in ongoing wavefield, future distribution is predicted accordingly to be non-concentric. We will indicate examples of M6-class earthquakes occurred at central Japan, in which strengths of shaking were observed to non-concentrically distribute. We will show their predictions using Numerical Shake Prediction method. The deviated distribution may be explained by inhomogeneous distribution of attenuation. Even without attenuation structure, it is possible to address the issue of non-concentric distribution to some extent once the deviated distribution is actually observed in ongoing wavefield. If attenuation structure is introduced, we can predict it before actual observation. The information of attenuation structure leads to more precise and rapid prediction in Numerical Shake Prediction method for EEW.

  5. Source effects on the simulation of the strong groud motion of the 2011 Lorca earthquake

    Science.gov (United States)

    Saraò, Angela; Moratto, Luca; Vuan, Alessandro; Mucciarelli, Marco; Jimenez, Maria Jose; Garcia Fernandez, Mariano

    2016-04-01

    On May 11, 2011 a moderate seismic event (Mw=5.2) struck the city of Lorca (South-East Spain) causing nine casualties, a large number of injured people and damages at the civil buildings. The largest PGA value (360 cm/s2) ever recorded so far in Spain, was observed at the accelerometric station located in Lorca (LOR), and it was explained as due to the source directivity, rather than to local site effects. During the last years different source models, retrieved from the inversions of geodetic or seismological data, or a combination of the two, have been published. To investigate the variability that equivalent source models of an average earthquake can introduce in the computation of strong motion, we calculated seismograms (up to 1 Hz), using an approach based on the wavenumber integration and, as input, four different source models taken from the literature. The source models differ mainly for the slip distribution on the fault. Our results show that, as effect of the different sources, the ground motion variability, in terms of pseudo-spectral velocity (1s), can reach one order of magnitude for near source receivers or for sites influenced by the forward-directivity effect. Finally, we compute the strong motion at frequencies higher than 1 Hz using the Empirical Green Functions and the source model parameters that better reproduce the recorded shaking up to 1 Hz: the computed seismograms fit satisfactorily the signals recorded at LOR station as well as at the other stations close to the source.

  6. Enhancement of long period components of recorded and synthetic ground motions using InSAR

    Science.gov (United States)

    Abell, J.A.; Carlos de la Llera, J.; Wicks, C.W.

    2011-01-01

    Tall buildings and flexible structures require a better characterization of long period ground motion spectra than the one provided by current seismic building codes. Motivated by that, a methodology is proposed and tested to improve recorded and synthetic ground motions which are consistent with the observed co-seismic displacement field obtained from interferometric synthetic aperture radar (InSAR) analysis of image data for the Tocopilla 2007 earthquake (Mw=7.7) in Northern Chile. A methodology is proposed to correct the observed motions such that, after double integration, they are coherent with the local value of the residual displacement. Synthetic records are generated by using a stochastic finite-fault model coupled with a long period pulse to capture the long period fling effect. It is observed that the proposed co-seismic correction yields records with more accurate long-period spectral components as compared with regular correction schemes such as acausal filtering. These signals provide an estimate for the velocity and displacement spectra, which are essential for tall-building design. Furthermore, hints are provided as to the shape of long-period spectra for seismic zones prone to large co-seismic displacements such as the Nazca-South American zone. ?? 2011 Elsevier Ltd.

  7. Engineering and Design: Interim Procedure for Specifying Earthquake Motions

    Science.gov (United States)

    2007-11-02

    Earthquake Engineering, Instituto di Scienza e Techn?.ca delle. Construzioni Politechico di Milano, Piazza da Leonardo da Vinci, 32, 20133 Milano, Italia ...Construzioni Politechico di Milano, Piazza da Leonardo da Vinci, 32, 20133 Milano, Italia . 17. Seed, H. B., Murarka, R., Lysmer, J., and Idriss, I. M. 1976

  8. Reverse glacier motion during iceberg calving and the cause of glacial earthquakes

    Science.gov (United States)

    Murray, T.; Nettles, M.; Selmes, N.; Cathles, M.; Burton, J. C.; James, T.; Edwards, S.; Martin, I.; O'Farrell, T.; Aspey, R. A.; Rutt, I. C.; Bauge, T.

    2015-12-01

    About half Greenland's mass loss results from iceberg calving, but the physical mechanisms of calving are poorly known and in situobservations are sparse. Glacial earthquakes, globally detectable seismic events, are associated with calving and are occurring at increasing numbers of outlet glaciers in Greenland and Antarctica. However, the processes causing them have not been clear. We installed a wireless network of on-ice GPS sensors at the calving margin of Helheim Glacier for 55 days during summer 2013. The glacier is a major SE Greenland tidewater outlet and during our observations retreated ~1.5 km in a series of calving events. Our GPS sensors captured glacier motion with cm-level accuracy at locations very close to the calving front with a high temporal sampling rate. Calving causes a minutes-long reversal of the glacier's horizontal flow and a downward deflection of its terminus seen on multiple GPS sensors. Each major calving event is associated with a glacial earthquake. For example, a glacial earthquake / calving event on day 206 produced an iceberg of volume 0.36 km3and aspect ratio 0.23. A GPS sensor close to the front showed a pre-earthquake speed of 29 m/day. Immediately prior to the earthquake centroid time, the sensor reversed its direction and moved upglacier at ~40 m/day and downward 10 cm. The reversed motion was sustained for ~200 s and was followed by downglacier rebound and upward movement. The reverse motion of the glacier results from the horizontal force caused by iceberg capsize and acceleration away from the front. We use analog laboratory experiments to demonstrate that the downward motion results from hydrodynamic pressure drop behind the capsizing berg, which also causes an upward force on the solid Earth. We show that these horizontal and vertical forces are the source of glacial earthquakes. Proper interpretation of the earthquake events should allow remote sensing of calving processes at the margins of Greenland and Antarctic

  9. Detect ground motion effects on the trajectory at ATF2

    CERN Document Server

    Rénier, Yves; Garcia, Rogelio

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the Beam Delivery System (BDS) of the next linear colliders (ILC and CLIC) as well as to define and to test the tunning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. The magnet displacements induced by ground motion are large enough for CLIC to perturb the beam stability above requirements. It is planned to measure the displacement of the magnets and implement a feed-forward correcting the effects on the beam trajectory with correctors (dipoles). This article studies the possibility to detect ground motion effects on the beam trajectory at ATF2. Characteristics of the ground motion at ATF2 are presented, the effects of the magnet displacements on the beam trajectory are simulated and an algorithm predicting the induced trajectory fluctuations is evaluated. After the estimated...

  10. Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes

    Science.gov (United States)

    Bijukchhen, Subeg M.; Takai, Nobuo; Shigefuji, Michiko; Ichiyanagi, Masayoshi; Sasatani, Tsutomu; Sugimura, Yokito

    2017-07-01

    The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous studies have shown that the sediments are 600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1-0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses

  11. Liquefaction and other ground failures in Imperial County, California, from the April 4, 2010, El Mayor-Cucapah earthquake

    Science.gov (United States)

    McCrink, Timothy P.; Pridmore, Cynthia L.; Tinsley, John C.; Sickler, Robert R.; Brandenberg, Scott J.; Stewart, Jonathan P.

    2011-01-01

    The Colorado River Delta region of southern Imperial Valley, California, and Mexicali Valley, Baja California, is a tectonically dynamic area characterized by numerous active faults and frequent large seismic events. Significant earthquakes that have been accompanied by surface fault rupture and/or soil liquefaction occurred in this region in 1892 (M7.1), 1915 (M6.3; M7.1), 1930 (M5.7), 1940 (M6.9), 1950 (M5.4), 1957 (M5.2), 1968 (6.5), 1979 (6.4), 1980 (M6.1), 1981 (M5.8), and 1987 (M6.2; M6.8). Following this trend, the M7.2 El Mayor-Cucapah earthquake of April 4, 2010, ruptured approximately 120 kilometers along several known faults in Baja California. Liquefaction caused by the M7.2 El Mayor-Cucapah earthquake was widespread throughout the southern Imperial Valley but concentrated in the southwest corner of the valley, southwest of the city centers of Calexico and El Centro where ground motions were highest. Although there are few strong motion recordings in the very western part of the area, the recordings that do exist indicate that ground motions were on the order of 0.3 to 0.6g where the majority of liquefaction occurrences were found. More distant liquefaction occurrences, at Fites Road southwest of Brawley and along Rosita Canal northwest of Holtville were triggered where ground motions were about 0.2 g. Damage to roads was associated mainly with liquefaction of sandy river deposits beneath bridge approach fills, and in some cases liquefaction within the fills. Liquefaction damage to canal and drain levees was not always accompanied by vented sand, but the nature of the damage leads the authors to infer that liquefaction was involved in the majority of observed cases. Liquefaction-related damage to several public facilities - Calexico Waste Water Treatment Plant, Fig Lagoon levee system, and Sunbeam Lake Dam in particular - appears to be extensive. The cost to repair these facilities to prevent future liquefaction damage will likely be prohibitive. As

  12. The fiber optic gyroscope - a portable rotational ground motion sensor

    Science.gov (United States)

    Wassermann, J. M.; Bernauer, F.; Guattari, F.; Igel, H.

    2016-12-01

    It was already shown that a portable broadband rotational ground motion sensor will have large impact on several fields of seismological research such as volcanology, marine geophysics, seismic tomography and planetary seismology. Here, we present results of tests and experiments with one of the first broadband rotational motion sensors available. BlueSeis-3A, is a fiber optic gyroscope (FOG) especially designed for the needs of seismology, developed by iXBlue, France, in close collaboration with researchers financed by the European Research council project ROMY (Rotational motions - a new observable for seismology). We first present the instrument characteristics which were estimated by different standard laboratory tests, e.g. self noise using operational range diagrams or Allan deviation. Next we present the results of a field experiment which was designed to demonstrate the value of a 6C measurement (3 components of translation and 3 components of rotation). This field test took place at Mt. Stromboli volcano, Italy, and is accompanied by seismic array installation to proof the FOG output against more commonly known array derived rotation. As already shown with synthetic data an additional direct measurement of three components of rotation can reduce the ambiguity in source mechanism estimation and can be taken to correct for dynamic tilt of the translational sensors (i.e. seismometers). We can therefore demonstrate that the deployment of a weak motion broadband rotational motion sensor is in fact producing superior results by a reduction of the number of deployed instruments.

  13. Geophysical exploration of sedimentary layers for estimation of strong ground motion; Jishindo hyoka no tame no chika kozo tansa to sono katsuyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, H.; Kurita, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1997-12-01

    This paper introduces the result of a case study in the Kanto Plain, Japan on estimation of strong ground motion taking underground structure into account and exploration of the underground structures. Methods for estimating the strong ground motion may be classified into the following three methods: an empirical method represented by the distance attenuation expression, a semi-empirical method, in which small to medium earthquakes occurred in the vicinity of a focus fault of the subject earthquake are conceived as a Green function, and superposed according to the analogy of the earthquakes, and an analytic method. These three approaches are used respectively in the present situation. Micro motion array observation is being carried at a large number of points in the Kanto Plain to explore S-wave velocity structures. Seven seismograph arrays have observed micro motions with slightly long cycles, phase velocities of Raleigh waves were derived, and then S-wave velocity distribution down to the seismic base was estimated from reverse analysis therefrom. S-wave amplification characteristics were calculated by using one-dimensional duplicate reflection on the prepared ground bed model. The result well explains the observation values, indicating that the ground bed model is reasonable for estimating the seismic motion amplifying characteristics. 33 refs., 10 figs., 1 tab.

  14. Experimental study of permanent displacement estimate method based on strong-motion earthquake accelerograms

    Science.gov (United States)

    Lu, Tao; Hu, Guorui

    2016-04-01

    In the engineering seismology studies, the seismic permanent displacement of the near-fault site is often obtained by the process of the ground motion accelerogram recorded by the instrument on the station. Because of the selection differences of the estimate methods and the algorithm parameters, the strongly different results of the permanent displacement is gotten often. And the reliability of the methods has not only been proved in fact, but also the selection of the algorithm parameters has to be carefully considered. In order to solve this problem, the experimental study on the permanent displacement according to the accelerogram was carried out with the experiment program of using the large shaking table and the sliding mechanism in the earthquake engineering laboratory. In the experiments,the large shaking table genarated the dynamincs excitation without the permanent displacement,the sliding mechanism fixed on the shaking table genarated the permanent displacement, and the accelerogram including the permant information had been recorded by the instrument on the sliding mechanism.Then the permanent displacement value had been obtained according to the accelerogram, and been compared with the displacement value gotten by the displacement meter and the digital close range photogrammetry. The experimental study showed that the reliable permanent displacement could be obtained by the existing processing method under the simple laboratory conditions with the preconditions of the algorithm parameters selection carefully.

  15. Strong-motion earthquake accelerograms digitization and analysis records from Lima, Peru, 1951 to 1974

    Science.gov (United States)

    Brady, A. Gerald; Perez, Virgilio

    1977-01-01

    This is the second of a series of reports planned to include the results of digitization and routine analyses of strong-motion earthquake accelerograms published by the U.S. Geological Survey. Serving as a model for this effort is the collection of data reports published by the Earthquake Engineering Research Laboratory of the California Institute of Technology during the years 1969 - 1975 and covering the significant records of the period from 1933 up to the San Fernando earthquake of February 9, 1971. The first of the present series of reports, Open File Report No. 76-609, covered the significant records of 1971 subsequent to the San Fernando earthquake. The present report includes the results of some ongoing work on Peru records.

  16. Running On-Demand Strong Ground Motion Simulations with the Second-Generation Broadband Platform

    Science.gov (United States)

    Callaghan, S.; Maechling, P. J.; Graves, R. W.; Somerville, P. G.; Collins, N.; Olsen, K. B.; Imperatori, W.; Jones, M.; Archuleta, R. J.; Schmedes, J.; Jordan, T. H.; Broadband Platform Working Group

    2010-12-01

    We have developed the second-generation Southern California Earthquake Center (SCEC) Broadband Platform by integrating scientific modeling codes into a system capable of computing broadband seismograms (0-10 Hz) for historical and scenario earthquakes in California. The SCEC Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment (SCEC/CME) software development group. SCEC scientific groups have contributed software modules to the Broadband Platform including rupture generation, low-frequency deterministic seismogram synthesis, high-frequency stochastic seismogram synthesis, and non-linear site effects. These complex scientific codes have been integrated into a system that supports easy on-demand computation of broadband seismograms. The SCEC Broadband Platform is designed to be used by both scientific and engineering researchers familiar with ground motion simulations. Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge, Loma Prieta, and Landers) and user-defined earthquakes. Users may select among various codebases for rupture generation, low-frequency synthesis, high-frequency synthesis, and incorporation of site effects, with the option of running a goodness-of-fit comparison against observed or simulated seismograms. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and goodness-of-fit plots. The Broadband Platform was implemented using software development best practices that support software accuracy, reliability, and ease of use, including version control, user documentation, acceptance tests, and formal software releases. Users can install the platform on their own machine, verify that it is installed correctly, and run their own simulations on demand. The Broadband Platform enables users to run complex ground motion modeling codes without

  17. Representation of near-fault pulse-type ground motions

    Institute of Scientific and Technical Information of China (English)

    Xie Lili; Xu Longjun; Adrian Rodriguez-Marek

    2005-01-01

    Near-fault ground motions with long-period pulses have been identified as critical in the design of structures.To aid in the representation of this special type of motion, eight simple pulses that characterize the effects of either the flingstep or forward-directivity are considered. Relationships between pulse amplitudes and velocity pulse period for different pulses are discussed. Representative ratios and peak acceleration amplification can exhibit distinctive features depending on variations in pulse duration, amplitude and the selected acceleration pulse shape. Additionally, response spectral characteristics for the equivalent pulses are identified and compared in terms of fixed PGA and PGV, respectively. Response spectra are strongly affected by the duration of pulses and the shape of the basic pulses. Finally, dynamic time history response features of a damped SDOF system subjected to pulse excitations are examined. These special aspects of pulse waveforms and their response spectra should be taken into account in the estimation of ground motions for a project site close to a fault.

  18. SM-ROM-GL (Strong Motion Romania Ground Level Database

    Directory of Open Access Journals (Sweden)

    Ioan Sorin BORCIA

    2015-07-01

    Full Text Available The SM-ROM-GL database includes data obtained by the processing of records performed at ground level by the Romanian seismic networks, namely INCERC, NIEP, NCSRR and ISPH-GEOTEC, during recent seismic events with moment magnitude Mw ≥ 5 and epicenters located in Romania. All the available seismic records were re-processed using the same basic software and the same procedures and options (filtering and baseline correction, in order to obtain a consistent dataset. The database stores computed parameters of seismic motions, i.e. peak values: PGA, PGV, PGD, effective peak values: EPA, EPV, EPD, control periods, spectral values of absolute acceleration, relative velocity and relative displacement, as well as of instrumental intensity (as defined bz Sandi and Borcia in 2011. The fields in the database include: coding of seismic events, stations and records, a number of associated fields (seismic event source parameters, geographical coordinates of seismic stations, links to the corresponding ground motion records, charts of the response spectra of absolute acceleration, relative velocity, relative displacement and instrumental intensity, as well as some other representative parameters of seismic motions. The conception of the SM-ROM-GL database allows for an easy maintenance; such that elementary knowledge of Microsoft Access 2000 is sufficient for its operation.

  19. The Relationship Among Bedrock Seismic Ground Motion Parameters with Different Exceedance Probabilities in the Panxi Area

    Institute of