WorldWideScience

Sample records for earthing

  1. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  2. Expanding earth

    Energy Technology Data Exchange (ETDEWEB)

    Carey, S.W.

    1976-01-01

    Arguments in favor of an expanding earth are presented. The author believes that the theory of plate tectonics is a classic error in the history of geology. The case for the expanding earth is organized in the following way: introductory review - face of the earth, development of expanding earth concept, necessity for expansion, the subduction myth, and definitions; some principles - scale of tectonic phenomena, non-uniformitarianism, tectonic profile, paleomagnetism, asymmetry of the earth, rotation of the earth, and modes of crustal extension; regional studies - western North America, Central America, South-East Asia, and the rift oceans; tests and cause of expansion. 824 references, 197 figures, 11 tables. (RWR)

  3. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  4. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  5. Snowball Earth

    OpenAIRE

    2016-01-01

    In the ongoing quest to better understand where life may exist elsewhere in the Universe, important lessons may be gained from our own planet. In particular, much can be learned from planetary glaciation events that Earth suffered ∼600 million years ago, so-called `Snowball Earth' episodes. I begin with an overview of how the climate works. This helps to explain how the ice-albedo feedback effect can destabilise a planet's climate. The process relies on lower temperatures causing more ice to ...

  6. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  7. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  8. Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Oversupply of rare earths led to the significant price drop of rare earth mineral products and separated products in Chinese domestic market. To stabilize the price, prevent waste of resources, further improve regulation capability on domestic rare earth market and rare earth price and maintain sustaining and healthy development of rare earth industry, partial rare earth producers in Baotou and Jiangxi province projected to cease the production for one month.

  9. Earth from Above

    Science.gov (United States)

    Stahley, Tom

    2006-01-01

    Google Earth is a free online software that provides a virtual view of Earth. Using Google Earth, students can view Earth by hovering over features and locations they preselect or by serendipitously exploring locations that catch their fascination. Going beyond hovering, they can swoop forward and even tilt images to make more detailed…

  10. Rare Earth Resolution

    Institute of Scientific and Technical Information of China (English)

    Mei Xinyu

    2012-01-01

    BEFORE the early 1970s, China had no rare earth exports, and the world rare earth market was dominated by the United States, Europe and Japan. In the 1970s, China began to enter the world rare earth market and its share has picked up sharply in the following decades. Today, having the monopoly over global rare earth production, China must improve the benefits from rare earth production, not only from producing individual rare earth products, but also from mastering the intensive processing of rare earth products.

  11. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  12. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  13. EarthKAM

    Data.gov (United States)

    National Aeronautics and Space Administration — Sponsored by NASA, EarthKAM (Earth Knowledge Acquired by Middle School Students) is an educational outreach program allowing middle school students to take pictures...

  14. Earth on the Move.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Provides background information on the layers of the earth, the relationship between changes on the surface of the earth and its insides, and plate tectonics. Teaching activities are included, with some containing reproducible worksheets and handouts to accompany them. (TW)

  15. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  16. Capturing Near Earth Objects

    OpenAIRE

    Baoyin, Hexi; CHEN Yang; Li, Junfeng

    2011-01-01

    Recently, Near Earth Objects (NEOs) have been attracting great attention, and thousands of NEOs have been found to date. This paper examines the NEOs' orbital dynamics using the framework of an accurate solar system model and a Sun-Earth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits. It is possible for such an NEO to be temporarily captured by Earth; its orbit would thereby be changed and it would become an Earth-orbiting object after a small...

  17. The Earth's Magnetic Field

    OpenAIRE

    Edda Lína Gunnarsdóttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  18. Uderstanding Snowball Earth Deglaciation

    Science.gov (United States)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  19. The Earth's early evolution.

    Science.gov (United States)

    Bowring, S A; Housh, T

    1995-09-15

    The Archean crust contains direct geochemical information of the Earth's early planetary differentiation. A major outstanding question in the Earth sciences is whether the volume of continental crust today represents nearly all that formed over Earth's history or whether its rates of creation and destruction have been approximately balanced since the Archean. Analysis of neodymium isotopic data from the oldest remnants of Archean crust suggests that crustal recycling is important and that preserved continental crust comprises fragments of crust that escaped recycling. Furthermore, the data suggest that the isotopic evolution of Earth's mantle reflects progressive eradication of primordial heterogeneities related to early differentiation.

  20. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  1. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  2. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  3. The Earth's Core.

    Science.gov (United States)

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  4. Solid Earth: Introduction

    Science.gov (United States)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  5. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  6. Sun-Earth Days

    Science.gov (United States)

    Thieman, J.; Ng, C.; Lewis, E.; Cline, T.

    2010-08-01

    Sun-Earth Day is a well-coordinated series of programs, resources and events under a unique yearly theme highlighting the fundamentals of heliophysics research and missions. A menu of activities, conducted throughout the year, inspire and educate participants. Sun-Earth Day itself can vary in date, but usually is identified by a celebration on or near the spring equinox. Through the Sun-Earth Day framework we have been able to offer a series of coordinated events that promote and highlight the Sun, its connection to Earth and the other planets. Sun-Earth Day events are hosted by educators, museums, amateur astronomers and scientists and occur at schools, community groups, parks, planetaria and science centers around the globe. Sun-Earth Day raises the awareness and knowledge of formal and informal education audiences concerning space weather and heliophysics. By building on the success of Sun-Earth Day yearly celebrations, we seek to affect people of all backgrounds and ages with the wonders of heliophysics science, discovery, and exploration in ways that are both tangible and meaningful to their lives.

  7. Accretion of the Earth.

    Science.gov (United States)

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  8. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  9. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  10. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  11. Whole-Earth Decompression Dynamics

    OpenAIRE

    Herndon, J. Marvin

    2005-01-01

    The principles of Whole-Earth Decompression Dynamics are disclosed leading to a new way to interpret whole-Earth dynamics. Whole-Earth Decompression Dynamics incorporates elements of and unifies the two seemingly divergent dominant theories of continential displacement, plate tectonics theory and Earth expansion theory. Whole-Earth decompression is the consequence of Earth formation from within a Jupiter-like protoplanet with subsequent loss of gases and ices and concomitant rebounding. The i...

  12. Earth rotation and geodynamics

    Science.gov (United States)

    Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta

    2015-12-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.

  13. Earth science: Extraordinary world

    Science.gov (United States)

    Day, James M. D.

    2016-09-01

    The isotopic compositions of objects that formed early in the evolution of the Solar System have been found to be similar to Earth's composition -- overturning notions of our planet's chemical distinctiveness. See Letters p.394 & p.399

  14. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  15. Astronomy: Earth's seven sisters

    Science.gov (United States)

    Snellen, Ignas A. G.

    2017-02-01

    Seven small planets whose surfaces could harbour liquid water have been spotted around a nearby dwarf star. If such a configuration is common in planetary systems, our Galaxy could be teeming with Earth-like planets. See Letter p.456

  16. Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ July 20~31 Rare earth market still went downward, which was mainly led by sluggish demand for didymium products. Weak demand by domestic NdFeB market was attributed to continuous price falling of didymium mischmetal.

  17. Analyzing earth's surface data

    Science.gov (United States)

    Barr, D. J.; Elifrits, C. D.

    1979-01-01

    Manual discusses simple inexpensive image analysis technique used to interpret photographs and scanner of data of Earth's surface. Manual is designed for those who have no need for sophisticated computer-automated analysis procedures.

  18. Managing Planet Earth.

    Science.gov (United States)

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  19. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  20. Earth/Lands

    OpenAIRE

    2011-01-01

    Earth is an essentially original and misunderstood raw material with great potential, from the positive environmental and energy ratio, to its admirable capacity to integrate other materials such as stone, wood, brick, lime, vegetable fibres, etc., capable also of constituting the sole material for whole buildings in climactical and geographically extreme situations. Earth offers a great capacity to respond to the housing needs of millions of human beings, not only quantitative needs compa...

  1. Earth rotation and geodynamics

    OpenAIRE

    Bogusz Janusz; Brzezinski Aleksander; Kosek Wieslaw; Nastula Jolanta

    2015-01-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals wit...

  2. Toward other Earths

    Science.gov (United States)

    Hatzes, Artie P.

    2016-04-01

    How common are habitable Earth-like planets? This is a key question that drives much of current research in exoplanets. To date, we have discovered over one thousand exoplanets, mostly through the transit method. Among these are Earth-size planets, but these orbit very close to the star (semi-major axis approximately 0.01 Astronomical Units). Potentially rocky planets have also been discovered in a star's habitable zone, but these have approximately twice the radius of the Earth. These certainly do not qualify as Earth "twins". Several hundreds of multi-planet systems have also been discovered, but these are mostly ultra-compact systems with up to seven planets all with orbital distances less than that of Mercury in our solar system. The detection of a planetary system that is the direct analog of our solar system still eludes us. After an overview of the current status of exoplanet discoveries I will discuss the prospects and challenges of finding such Earth analogs from the ground and from future space missions like PLATO. After over two decades of searching, we may well be on the brink of finding other Earths.

  3. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  4. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  5. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  6. Better Than Earth

    CERN Document Server

    Heller, René

    2015-01-01

    Do We Inhabit The Best O All Possible Worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  7. Better Than Earth

    Science.gov (United States)

    Heller, René

    2015-01-01

    Do we inhabit the best of all possible worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  8. Geoneutrino and Hydridic Earth model

    CERN Document Server

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model.

  9. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  10. Alkaline earth metal thioindates

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov-Ehmin, B.N.; Ivlieva, V.I.; Filatenko, L.A.; Zajtsev, B.E.; Kaziev, G.Z.; Sarabiya, M.G.

    1984-08-01

    Alkaline earth metal thioindates of MIn/sub 2/S/sub 4/ composition were synthesized by interaction of alkaline earth metal oxoindates with hydrogen sulfide during heating. Investigation into the compounds by X-ray analysis showed that calcium compound crystallizes in cubic crystal system and strontium and barium compounds in rhombic crystal system. Lattice parameters and the number of formula units were determined. Thioindates of M/sub 3/In/sub 2/S/sub 6/ composition were synthesized, their individuality was shown.

  11. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  12. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, M.F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  13. Quantizing Earth surface deformations

    Directory of Open Access Journals (Sweden)

    C. O. Bowin

    2015-03-01

    Full Text Available The global analysis of Bowin (2010 used the global 14 absolute Euler pole set (62 Myr history from Gripp and Gordon (1990 and demonstrated that plate tectonics conserves angular momentum. We herein extend that analysis using the more detailed Bird (2003 52 present-day Euler pole set (relative to a fixed Pacific plate for the Earth's surface, after conversion to absolute Euler poles. Additionally, new analytical results now provide new details on upper mantle mass anomalies in the outer 200 km of the Earth, as well as an initial quantizing of surface deformations.

  14. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  15. Bones of the Earth

    Science.gov (United States)

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  16. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  17. DIORAMA Earth Terrain Model

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-10

    When simulating near-surface nuclear detonations, the terrain of the Earth can have an effect on the observed outputs. The critical parameter is called the “height of burst”. In order to model the effect of terrain on the simulations we have incorporated data from multiple sources to give 9 km resolution data with global coverage.

  18. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.;

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  19. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  20. Understanding Earth's Albedo Effect

    Science.gov (United States)

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  1. Olympus and Earth Day

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Let your gaze rest upon the poster for Earth Day on April 22. A small polar bear clings tightly to the stem of an aero-vane. Staring at the vanishing floating ice on the wild sea, his eyes are full of panic and fear.

  2. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  3. Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Rare earth market continued drop tendency.There was not much transaction of didymium oxide and the alloy. Affected by reduced order of NdFeB magnetic materials and inactive dealings of didymium mischmetal,price of didymium mischmetal had dropped from RMB ¥95,000~98,000/ton to RMBY 93,000~95,000/ton currently.

  4. Cosmic rays on earth

    Energy Technology Data Exchange (ETDEWEB)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted.

  5. "Galileo Calling Earth..."

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  6. Earth flyby anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LAB.

    2009-01-01

    In the planet-centric system, a spacecraft should have the same initial and final energies, even though its energy and angular momentum will change in the barycenter of the solar system. However, without explanation, a number of earth flybys have yielded small energy changes.

  7. Protect the Earth

    Institute of Scientific and Technical Information of China (English)

    张永兴

    2011-01-01

    The earth, a blue globe, is very beautiful. It is the home to all the living things. But the environment around us is becoming worse and worse. People cut down trees to build houses and throw about litter. The air pollution is almost everywhere in the world!

  8. Citizens of Planet Earth

    DEFF Research Database (Denmark)

    Frisk, Kristian

    2015-01-01

    The inability of the nation-state system to handle contemporary environmental issues comprehensively has spurred greater cooperation between religious and secular civil society actors. An empirical analysis of the Alliance of Religions and Conservation (ARC) contributes to knowledge about this pr...... (2010a) have termed Terrapolitan Earth Religion....

  9. Whole-Earth Decompression Dynamics

    CERN Document Server

    Herndon, J M

    2005-01-01

    The principles of Whole-Earth Decompression Dynamics are disclosed leading to a new way to interpret whole-Earth dynamics. Whole-Earth Decompression Dynamics incorporates elements of and unifies the two seemingly divergent dominant theories of continential displacement, plate tectonics theory and Earth expansion theory. Whole-Earth decompression is the consequence of Earth formation from within a Jupiter-like protoplanet with subsequent loss of gases and ices and concomitant rebounding. The initial whole-Earth decompression is expected to result in a global system of major primary decompression cracks appearing in the rigid crust which persist as the basalt feeders for the global, mid-oceanic ridge system. As the Earth subsequently decompresses, the area of the Earth's surface increases by the formation of secondary decompression cracks, often located near the continental margins, presently identified as oceanic trenches. These secondary decompression cracks are subsequently in-filled with basalt, extruded fr...

  10. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  11. Earth: A Ringed Planet?

    Science.gov (United States)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  12. Rotation and magnetism of Earth`s inner core

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.A. [Los Alamos National Lab., NM (United States); Roberts, P.H. [Univ. of California, Los Angeles, CA (United States)

    1996-12-13

    Three-dimensional numerical simulations of the geodynamo suggest that a super-rotation of Earth`s solid inner core relative to the mantle is maintained by magnetic coupling between the inner core and an eastward thermal wind in the fluid outer core. This mechanism, which is analogous to a synchronous motor, also plays a fundamental role in the generation of Earth`s magnetic field. 18 refs., 6 figs.

  13. Earth Science Multimedia Theater

    Science.gov (United States)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  14. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  15. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  16. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ February, 2010 Rare earth separation plants and downstream producers like NdFeB magnetic materials and phosphor materials successively ceased production due to Spring Festival, Chinese New Year. Transactions in rare earth market were few affected by public holidays.

  17. Mirador - Earth Surface and Interior

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. The goal of the Earth Surface and Interior focus area is to assess, mitigate and forecast the natural hazards that affect...

  18. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Active demands from downstream industry drove the price rise of rare earth products in Chinese domestic marketrecently, particularly didymium and dysprosium products. Prices of other rare earth products remained stable.

  19. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Rare earth market fluctuated slightly recently and the transactions remained sluggish. Environment control was strengthened in southern China and many rare earth plants had gone out of production. Some traders were considering selling commodities at low p

  20. NASA Benefits Earth

    Science.gov (United States)

    Robinson, Julie A.

    2009-01-01

    This slide presentation reviews several ways in which NASA research has benefited Earth and made life on Earth better. These innovations include: solar panels, recycled pavement, thermometer pill, invisible braces for straightening teeth, LASIK, aerodynamic helmets and tires for bicycles, cataract detection, technology that was used to remove Anthrax spores from mail handling facilities, study of atomic oxygen erosion of materials has informed the restoration of artwork, macroencapsulation (a potential mechanism to deliver anti cancer drugs to specific sites), and research on a salmonella vaccine. With research on the International Space Station just beginning, there will be opportunities for entrepreneurs and other government agencies to access space for their research and development. As well as NASA continuing its own research on human health and technology development.

  1. Life Before Earth

    CERN Document Server

    Sharov, Alexei A

    2013-01-01

    An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide. The genetic complexity, roughly measured by the number of non-redundant functional nucleotides, is expected to have grown exponentially due to several positive feedback factors: gene cooperation, duplication of genes with their subsequent specialization, and emergence of novel functional niches associated with existing genes. Linear regression of genetic complexity on a log scale extrapolated back to just one base pair suggests the time of the origin of life 9.7 billion years ago. This cosmic time scale for the evolution of life has important consequences: life took ca. 5 billion years to reach the complexity of bacteria; the environments in which life originated and evolved to the prokaryote stage may have been quite different from those envisaged on Earth; there was no...

  2. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  3. Testing MOND on Earth

    CERN Document Server

    Ignatiev, A Yu

    2014-01-01

    MOND is one of the most popular alternatives to Dark Matter (DM). While efforts to directly detect DM in laboratories have been steadily pursued over the years, the proposed Earth-based tests of MOND are still in their infancy. Some proposals recently appeared in the literature are briefly reviewed, and it is argued that collaborative efforts of theorists and experimenters are needed to move forward in this exciting new area. Possible future directions are outlined.

  4. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  5. Why Earth aurorae shine?

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ By using the data obtained from three satellites of the Cluster mission launched by the European Space Agency (ESA), CAO Jinbin from the CAS Center for Space Science and Applied Research (CSSAR) and his US and European co-workers have clarified why Earth's aurorae shine.Their work entitled Joint Observations by Cluster Satellites of Bursty Bulk Flows in the Magnetotail was published in a recent issue of Journal of Geophysical Research.

  6. Life Before Earth

    OpenAIRE

    Sharov, Alexei A; Gordon, Richard

    2013-01-01

    An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide. The genetic complexity, roughly measured by the number of non-redundant functional nucleotides, is expected to have grown exponentially due to several positive feedback factors: gene cooperation, duplication of genes with their subsequent specialization,...

  7. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Wilson, Gregory S.; Backlund, Peter W.

    1991-01-01

    The NASA program described is an international study to predict changes in the earth's environment by means of multidisciplinary remote sensing from satellites. An international consortium dedicates satellites with advanced sensors to data collection, and a data processing system is described to collect and analyze a large amount of terrestrial data. The program requires international multidisciplinary involvement to collect and interpret the data and thereby manage and preserve the global environment.

  8. Earth Abides Arsenic Biotransformations

    OpenAIRE

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology ...

  9. Earth before life

    OpenAIRE

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-01

    Background A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Results Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome i...

  10. Hunan Rare Earth Group Approved

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>Following Guangdong,Guangxi,Fujian and Jiangxi,Hunan announced that it would consolidate its rare earth resources-the consolidation plan of Hunan Rare Earth Group has been approved. Consolidation of the rare earth industry of south China is in full swing.According to "Several Opinions of the State Council on Promoting the Sustainable and Healthy Development of Rare Earth Industry"(hereinafter referred to as "Several Opinions")released in 2011,

  11. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    September 20-30, 2011 Rare earth market remained steady recently. Quoted prices of didymium products by separation and smelting plants kept stable. Some rare earth industrial zones in Baotou, Sichuan and Ganzhou had suspended production with the intensified environmental protection control and consolidation of rare earth industry. Persons in the industry hold a positive attitude toward the rare earth market after the National Day' s holiday in China. The market will develop healthily and orderly in the future.

  12. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  13. EARTH ROADS ARE EASY

    Directory of Open Access Journals (Sweden)

    David O. Whitten

    2000-01-01

    Full Text Available The earliest European immigrants in America traveled on waterways and on pathways worn into the earth by animals and Native Americans. Once their communities began to thrive, settlers widened paths and cleared new roads and streets then began experimenting with inexpensive surfacing to reduce dust in dry weather and mud in wet. “Earth Roads Are Easy” investigates materials and techniques used to maintain primitive thoroughfares with a minimum of effort and expense. The options range from the mundane—clay, sand, gravel, calcium chloride, oil, and tar—to the extraordinary—water glass, adobe clay, beet juice, and carpeting.There is no more dfficult problem confronting highway engineers than that of properly constructing and maintaining an earth road. The work may be less spectacular than the construction and maintenance of hard-surfaced roads, but there is greater latitude in location, methods of construction and choice of materials, consequently there is more scope for the exercise of sound judgment on the part of the engineer.1

  14. The Active Solid Earth

    Science.gov (United States)

    Ebinger, Cynthia

    2016-04-01

    Dynamic processes in Earth's crust, mantle and core shape Earth's surface and magnetic field over time scales of seconds to millennia, and even longer time scales as recorded in the ca. 4 Ga rock record. Our focus is the earthquake-volcano deformation cycles that occur over human time scales, and their comparison with time-averaged deformation studies, with emphasis on mantle plume provinces where magma and volatile release and vertical tectonics are readily detectable. Active deformation processes at continental and oceanic rift and back arc zones provide critical constraints on mantle dynamics, the role of fluids (volatiles, magma, water), and plate rheology. For example, recent studies of the East African rift zone, which formed above one of Earth's largest mantle upwellings reveal that magma production and volatile release rates are comparable to those of magmatic arcs, the archetypal zones of continental crustal creation. Finite-length faults achieve some plate deformation, but magma intrusion in the form of dikes accommodates extension in continental, back-arc, and oceanic rifts, and intrusion as sills causes permanent uplift that modulates the local time-space scales of earthquakes and volcanoes. Volatile release from magma intrusion may reduce fault friction and permeability, facilitating aseismic slip and creating magma pathways. We explore the implications of active deformation studies to models of the time-averaged structure of plume and extensional provinces in continental and oceanic plate settings.

  15. Earth System Monitoring, Introduction

    Science.gov (United States)

    Orcutt, John

    This section provides sensing and data collection methodologies, as well as an understanding of Earth's climate parameters and natural and man-made phenomena, to support a scientific assessment of the Earth system as a whole, and its response to natural and human-induced changes. The coverage ranges from climate change factors and extreme weather and fires to oil spill tracking and volcanic eruptions. This serves as a basis to enable improved prediction and response to climate change, weather, and natural hazards as well as dissemination of the data and conclusions. The data collection systems include satellite remote sensing, aerial surveys, and land- and ocean-based monitoring stations. Our objective in this treatise is to provide a significant portion of the scientific and engineering basis of Earth system monitoring and to provide this in 17 detailed articles or chapters written at a level for use by university students through practicing professionals. The reader is also directed to the closely related sections on Ecological Systems, Introduction and also Climate Change Modeling Methodology, Introduction as well as Climate Change Remediation, Introduction to. For ease of use by students, each article begins with a glossary of terms, while at an average length of 25 print pages each, sufficient detail is presented for use by professionals in government, universities, and industries. The chapters are individually summarized below.

  16. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  17. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  18. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Supply of rare earth concentrate remained tight recently. Rare earth market exhibited rising tendency holistically Affected by tight supply of rare earth concentrate, many plants were operated under the capacity. Supply of didymium oxide got tighter and the price was on rising.

  19. Strategy for earth explorers in global earth sciences

    Science.gov (United States)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  20. Bones of the Earth

    Directory of Open Access Journals (Sweden)

    Jose Miguel Correa

    2014-06-01

    Full Text Available The film Bones of the Earth (Riglin, Cunninham & Correa, 2014 is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective creation is built. A sense of community, on-going inquiry, connections and social commitment inform the creative process. As a result, the video’s nearly five intense minutes are a metaphor for the search for personal meaning, connection with nature and intersubjective positioning in a world that undergoes constant change.

  1. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    of the tides) have a very small effect on the apparent strength of Earth's gravity, depending on their relative positions; typical variations are 2 µm/s² (0.2 mGal) over the course of a day. Gravity measurements at sea The gravity measurements at sea... quoted as an acceleration, which in SI units is measured in m/s 2 (metres per second per second, equivalently written as m·s −2 ). It has an approximate value of 9.8 m/s 2 , which means that, ignoring air resistance, the speed of an object falling...

  2. Solid Earth: The priorities

    Science.gov (United States)

    Paquet, P.

    1991-10-01

    The European Space Agency's strategy concerning the solid Earth program is reviewed. Improvement of current knowledge of the global geopotential fields, both gravity and magnetic, was stressed as the highest priority. It was agreed that the objectives and goals of the planned Aristoteles mission correspond to this priority, and the need to realize this part of the program was stated. The interdisciplinary links of the program were identified, and it was decided that this program could make substantial contributions to research of oceans, climate and global change, atmosphere, ice and land surfaces.

  3. Japanese Rare Earth Market

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Since China cancelled export rebate in May this year,prices of magnetic materials related rare earth productscontinuously rose. Increasing production cost is largelyattributed to investment in environmental protectionequipments. Prices of Nd and Dy metals rose 20~30% over thebeginning of this year.Price of Nd was USD 11.5 - 12/Kg from USD 9/Kg at theend of 2004, up 30%. Price of Dy rose to USD 65- 70/Kg fromUSD 50/Kg early this year, up 20%. Price of Pr climbed to USD13.5 - 14/Kg from USD 11/Kg, up 30%. Pri...

  4. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  5. Preliminary reference Earth model

    Science.gov (United States)

    Dziewonski, Adam M.; Anderson, Don L.

    1981-06-01

    A large data set consisting of about 1000 normal mode periods, 500 summary travel time observations, 100 normal mode Q values, mass and moment of inertia have been inverted to obtain the radial distribution of elastic properties, Q values and density in the Earth's interior. The data set was supplemented with a special study of 12 years of ISC phase data which yielded an additional 1.75 × 10 6 travel time observations for P and S waves. In order to obtain satisfactory agreement with the entire data set we were required to take into account anelastic dispersion. The introduction of transverse isotropy into the outer 220 km of the mantle was required in order to satisfy the shorter period fundamental toroidal and spheroidal modes. This anisotropy also improved the fit of the larger data set. The horizontal and vertical velocities in the upper mantle differ by 2-4%, both for P and S waves. The mantle below 220 km is not required to be anisotropic. Mantle Rayleigh waves are surprisingly sensitive to compressional velocity in the upper mantle. High S n velocities, low P n velocities and a pronounced low-velocity zone are features of most global inversion models that are suppressed when anisotropy is allowed for in the inversion. The Preliminary Reference Earth Model, PREM, and auxiliary tables showing fits to the data are presented.

  6. Earth's surface heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Davies

    2009-11-01

    Full Text Available We present a revised estimate of Earth's surface heat flux that is based upon a heat flow data-set with 38 347 measurements, which is 55% more than used in previous estimates. Our methodology, like others, accounts for hydrothermal circulation in young oceanic crust by utilising a half-space cooling approximation. For the rest of Earth's surface, we estimate the average heat flow for different geologic domains as defined by global digital geology maps; and then produce the global estimate by multiplying it by the total global area of that geologic domain. The averaging is done on a polygon set which results from an intersection of a 1 degree equal area grid with the original geology polygons; this minimises the adverse influence of clustering. These operations and estimates are derived accurately using methodologies from Geographical Information Science. We consider the virtually un-sampled Antarctica separately and also make a small correction for hot-spots in young oceanic lithosphere. A range of analyses is presented. These, combined with statistical estimates of the error, provide a measure of robustness. Our final preferred estimate is 47±2 TW, which is greater than previous estimates.

  7. Active Near Earth Asteroids

    Science.gov (United States)

    Jenniskens, Peter

    2015-08-01

    Past activity from Near Earth Asteroids is recorded in the meteoroid streams that cause our meteor showers. Automated meteoroid orbit surveys by photographic, low-light video, specular radar, and head-echo radar reflections are providing the first maps of meteor shower activity at different particle sizes. There are distinct differences in particle size distributions among streams. The underlaying mechanisms that created these streams are illuminated: fragmentation from spin-up or thermal stresses, meteoroid ejection by water vapor drag, and ejection of icy particles by CO and CO2 sublimation. The distribution of the meteoroid orbital elements probe the subsequent evolution by planetary perturbations and sample the range of dynamical processes to which Near Earth Asteroids are exposed. The non-stream "sporadic" meteors probe early stages in the evolution from meteoroid streams into the zodiacal dust cloud. We see that the lifetime of large meteoroids is generally not limited by collisions. Results obtained by the CAMS video survey of meteoroid orbits are compared to those from other orbit surveys. Since October 2010, over 200,000 meteoroid orbits have been measured. First results from an expansion into the southern hemisphere are also presented, as are first results from the measurement of main element compositions. Among the many streams detected so far, the Geminid and Sextantid showers stand out by having a relatively high particle density and derive from parent bodies that appear to have originated in the main belt.

  8. Copernicus Earth observation programme

    Science.gov (United States)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  9. School, Earth and Imagination

    Science.gov (United States)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina

    2015-04-01

    Geology needs to be explained and narrated to the people, focusing on the goal of making that big change of mindset that will allow individuals and the entire community to tune into the timing and the ways in which the Earth evolves. In order to achieve these important goals it is necessary to educate children from an early age so that they learn to live an environmentally friendly life. With the project "School, Earth and imagination" we introduce, with a fun and new way, notions and topics in geological and environmental sciences in schools at all levels with the final goal of improving both knowledge and sensibility for these topics into the community. Through this project we start from the children (kindergarten and primary school, ages between 3 and 8 years) because they are the foundation of our society, and without foundations nothing can be built. The "School, Earth and imagination" project wants to give the children a real opportunity to approach reality and in general the surrounding environment, for the first time even before the traditional scholastic experience, with a scientific point of view, experimenting some basic physical concepts like temperature, weight, hardness and so on directly through their body. The project is structured and developed in modules that provide a high flexibility in order to meet needs and requirements of different schools in different situations. Each module is part of the journey of Mariolino, a character that represents a very curious child who introduces basic concepts associating them to geological processes. The Journey of Mariolino, as each module, follows an insistent scheme that starts from the presentation of the problem, follows with its discussion through direct questions and ends with experimentation of the hypotheses that children have proposed to validate the solution of the problem. Each module is independent and never ends without giving children a solution and is always structured with a practical activity

  10. Cosmic Rays at Earth

    Science.gov (United States)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  11. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    Science.gov (United States)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  12. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    June 20-30 2012 Affected by a sustained slump in the demand from downstream industries, rare earth market remained flat recently. There were not many inquiries for rare earth products in the spot market. Consumers lacked of confidence in the future market. As for the downstream industries, the market of NdFeB magnetic materials and phosphors were in the doldrums. Ceramic, catalyst and polishing powder industries maintained weak. Affected by the global economy, export market of rare earth was weak.

  13. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  14. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Rare earth market remained weak recently. Dealings of light and heavy rare earth products were sluggish. Demand for didymium and dysprosium related products was soft and purchasers were not interested in replenishing their stocks. The market of NdFeB magnetic materials and phosphors remained inactive. Meanwhile, ceramic, catalyst and polishing powder industries were weak. Affected by global economical recession, export market of rare earth remained weak.

  15. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Rare earth market was weak recently. There was still no sign of recovery in NdFeB magnetic materials and phosphors market. The market of ceramic, catalyst and polishing powder were in the doldrums. Rare earth deep processing enterprisers hesitated to purchase rare earth products and considered that there was room for further price reduction. Global economy slowed down and there was no sign of improvement yet. The export market was sluggish and transactions were inactive.

  16. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Rare earth market was relatively stable recently. There was not much change to the quotations by suppliers. Inquiries for most products increased in spot market and so did to the transactions. Recently, rare earth special invoices attracted the attention in the industry again. It is likely to result in price rise of many rare earth products if the special invoice system can put into effect in the near term.

  17. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    November 1-10, 2012 Some key rare earth producers had paused production since the last ten day period of October in order to retain normal production and market order and stabilize rare earth prices. The production suspension measure by the plants together with severe cracking down on illegal mining by the government had some influence on sluggish market recently. Data showed rapid price increase of major rare earth products after sharp decline previously.

  18. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  19. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  20. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2015-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice. PMID:26778863

  1. One Day on Earth

    CERN Multimedia

    2011-01-01

    In collaboration with the CineGlobe Film Festival, the One Day on Earth global film project invites you to share your story of scientific inspiration, scientific endeavors and technological advancement on 11 November 2011 (11.11.11).   Technology in the 21st century continuously inspires us to re-imagine the world. From outer-space to cyberspace, new ideas that we hope will improve the lives of future generations keep us in a state of change. However, these new technologies may alter the nature of our shared existence in ways not yet known. On 11.11.11, we invite you to record the exciting ways that science is a part of your life, together with people around the world who will be documenting their lives on this day of global creation. See www.onedayonearth.org for details on how to participate.

  2. Earth Gravitational Model 2020

    Science.gov (United States)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  3. Theory of Earth

    Science.gov (United States)

    Anderson, D. L.

    2014-12-01

    Earth is an isolated, cooling planet that obeys the 2nd law. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy has confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad passive, and cool, ridge feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes' principle, and kinetics (rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the TZ where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration). Canonical chemical geodynamic models are the exact opposite of physics and thermodynamic based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base, and a thin mobile D" layer that is an unlikely plume generation zone. Accounting for the physics that is overlooked, or violated (2nd law), in canonical models, plus modern seismology, undermines the assumptions and conclusions of these

  4. Sun, Earth and Sky

    Science.gov (United States)

    Lang, Kenneth R.

    1995-01-01

    The Sun is enveloped by a hot, tenuous million-degree corona that expands to create a continuous solar wind that sweeps past all the planets and fills the heliosphere. The solar wind is modulated by strong gusts that are initiated by powerful explosions on the Sun, including solar flares and coronal mass ejections. This dynamic, invisible outer atmosphere of the Sun is currently under observation with the soft X-ray telescope aboard the Yohkoh spacecraft, whose results are presented. We also show observations from the Ulysses spacecraft that is now passing over the solar pole, sampling the solar wind in this region for the first time. Two other spacecraft, Voyager 1 and 2, have recently detected the outer edge of the invisible heliosphere, roughly halfway to the nearest star. Magnetic solar activity, the total radiative output from the Sun, and the Earth's mean global surface temperature all vary with the 11-year sunspot cycle in which the total number of sunspots varies from a maximum to a minimum and back to a maximum again in about 11 years. The terrestrial magnetic field hollows out a protective magnetic cavity, called the magnetosphere, within the solar wind. This protection is incomplete, however, so the Sun feeds an unseen world of high-speed particles and magnetic fields that encircle the Earth in space. These particles endanger spacecraft and astronauts, and also produce terrestrial aurorae. An international flotilla of spacecraft is now sampling the weak points in this magnetic defense. Similar spacecraft have also discovered a new radiation belt, in addition to the familiar Van Allen belts, except fed by interstellar ions instead of electrons and protons from the Sun.

  5. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    October 21-31,2012 Recently, dealings of rare earth remained stagnant. Consumers hesitated to increase their stocks for the fear of further decline in rare earth prices. It was difficult for suppliers to sell products and they had reduced quotations to attract buyers. It did not show demand from end users could rebound in short terms. Dealings of rare earth products in spot market were few. The market of NdFeB magnetic materials, phosphors, catalysts, polishing powders and ceramics remained sluggish. There was no sign of picking up in world economy. Export market of rare earths maintained inactive.

  6. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  7. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Rare earth market remained sluggish and quiet holistically recently. Didymium-related market was quiet and the consumers were hesitating in replenishing their inventories. Inquiries for dysprosium-related products were few and the transactions were inactive, Demand for europium oxide (99.99%) was weak and the trade was far from brisk. Baogang Rare Earth suspended production, which has a positive effect in stabilizing the whole rare earth market. But prices of rare earth products did not go up rapidly. This means there were still large inventories in the market.

  8. Uplink Power Control For Earth/Satellite/Earth Communication

    Science.gov (United States)

    Chakraborty, Dayamoy

    1994-01-01

    Proposed control subsystem adjusts power radiated by uplink transmitter in Earth station/satellite relay station/ Earth station communication system. Adjustments made to compensate for anticipated changes in attenuation by rain. Raw input is a received downlink beacon singal, amplitude of which affected not only by rain fade but also by scintillation, attenuation in atmospheric gases, and diurnal effects.

  9. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  10. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  11. Teaching Waves with Google Earth

    Science.gov (United States)

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  12. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  13. Polar Misunderstandings: Earth's Dynamic Dynamo

    Science.gov (United States)

    DiSpezio, Michael A.

    2011-01-01

    This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth…

  14. Teaching Waves with Google Earth

    Science.gov (United States)

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  15. Low Earth Orbiter: Terminal

    Science.gov (United States)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  16. Thermodynamics of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Frank D [CSIRO Exploration and Mining, PO Box 883, Kenmore, Qld. 4069 (Australia)], E-mail: Frank.Stacey@csiro.au

    2010-04-15

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10{sup 12} W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10{sup 4} : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical

  17. Phase stable rare earth garnets

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  18. Intrinsic Hydrophobicity of Rammed Earth

    Science.gov (United States)

    Holub, M.; Stone, C.; Balintova, M.; Grul, R.

    2015-11-01

    Rammed earth is well known for its vapour diffusion properties, its ability to regulate humidity within the built environment. Rammed earth is also an aesthetically iconic material such as marble or granite and therefore is preferably left exposed. However exposed rammed earth is often coated with silane/siloxane water repellents or the structure is modified architecturally (large roof overhangs) to accommodate for the hydrophilic nature of the material. This paper sets out to find out optimal hydrophobicity for rammed earth based on natural composite fibres and surface coating without adversely affecting the vapour diffusivity of the material. The material is not required to be waterproof, but should resist at least driving rain. In order to evaluate different approaches to increase hydrophobicity of rammed earth surface, peat fibres and four types of repellents were used.

  19. Google Earth 101

    Science.gov (United States)

    Bailey, J. E.; Sfraga, M.

    2008-12-01

    For the Spring 2008 semester the University of Alaska Fairbanks (UAF) Geography Department developed a new 3-credit course entitled "Exploring the Virtual Earth". The goal of the course was to introduce students to neogeography tools such as Virtual Globes, Google SketchUp and Second Life, and demonstrating how these applications can be used to visualize geoscience datasets. The classes were a combination of lectures, demonstrations and practical exercises, with a particular emphasis on teaching students to author Keyhole Markup Language (KML) files. The assessment of grades included scores based on attendance, KML exercises, a SketchUp modeling project and exams. In addition, all students had to create and present a KML-based project, preferably using their own original geospatial data where available. Some of the more successful students even presented this work to the university community and invited guests at a one-day workshop "KML in the North". By AGU's Fall 2008 meeting, the course will have be taught again, with a syllabus that has been refined based on feedback from students in the Spring. We present the positive and negative lessons learnt, and other insights garnered from a year of teaching this original and unique course.

  20. Uncovering Earth's virome.

    Science.gov (United States)

    Paez-Espino, David; Eloe-Fadrosh, Emiley A; Pavlopoulos, Georgios A; Thomas, Alex D; Huntemann, Marcel; Mikhailova, Natalia; Rubin, Edward; Ivanova, Natalia N; Kyrpides, Nikos C

    2016-08-25

    Viruses are the most abundant biological entities on Earth, but challenges in detecting, isolating, and classifying unknown viruses have prevented exhaustive surveys of the global virome. Here we analysed over 5 Tb of metagenomic sequence data from 3,042 geographically diverse samples to assess the global distribution, phylogenetic diversity, and host specificity of viruses. We discovered over 125,000 partial DNA viral genomes, including the largest phage yet identified, and increased the number of known viral genes by 16-fold. Half of the predicted partial viral genomes were clustered into genetically distinct groups, most of which included genes unrelated to those in known viruses. Using CRISPR spacers and transfer RNA matches to link viral groups to microbial host(s), we doubled the number of microbial phyla known to be infected by viruses, and identified viruses that can infect organisms from different phyla. Analysis of viral distribution across diverse ecosystems revealed strong habitat-type specificity for the vast majority of viruses, but also identified some cosmopolitan groups. Our results highlight an extensive global viral diversity and provide detailed insight into viral habitat distribution and host–virus interactions.

  1. Earth Science Imagery Registration

    Science.gov (United States)

    LeMoigne, Jacqueline; Morisette, Jeffrey; Cole-Rhodes, Arlene; Johnson, Kisha; Netanyahu, Nathan S.; Eastman, Roger; Stone, Harold; Zavorin, Ilya

    2003-01-01

    The study of global environmental changes involves the comparison, fusion, and integration of multiple types of remotely-sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, as well as for the validation of new instruments or for new data analysis. Furthermore, future multiple satellite missions will include many different sensors carried on separate platforms, and the amount of remote sensing data to be combined is increasing tremendously. For all of these applications, the first required step is fast and automatic image registration, and as this need for automating registration techniques is being recognized, it becomes necessary to survey all the registration methods which may be applicable to Earth and space science problems and to evaluate their performances on a large variety of existing remote sensing data as well as on simulated data of soon-to-be-flown instruments. In this paper we present one of the first steps toward such an exhaustive quantitative evaluation. First, the different components of image registration algorithms are reviewed, and different choices for each of these components are described. Then, the results of the evaluation of the corresponding algorithms combining these components are presented o n several datasets. The algorithms are based on gray levels or wavelet features and compute rigid transformations (including scale, rotation, and shifts). Test datasets include synthetic data as well as data acquired over several EOS Land Validation Core Sites with the IKONOS and the Landsat-7 sensors.

  2. Personal Inquiry in the Earth Sciences.

    Science.gov (United States)

    Kaufman, W. Paul

    Designed as a basic workbook using the inquiry process or as a supplementary text in the classroom, this 129 page booklet is divided into five units: Moving in on the Earth From Space, The Earth's Great Bodies of Water, Composition of the Solid Earth, The Earth's Crust is Constantly Changing, and Studying the Earth's History. The exercises are…

  3. Fourteen Times the Earth

    Science.gov (United States)

    2004-08-01

    ESO HARPS Instrument Discovers Smallest Ever Extra-Solar Planet Summary A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an "exoplanet"). The new exoplanet orbits the bright star mu Arae located in the southern constellation of the Altar. It is the second planet discovered around this star and completes a full revolution in 9.5 days. With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different. This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research. PR Photo 25a/04: The HARPS Spectrograph and the 3.6m Telescope PR Photo 25b/04: Observed Velocity Variation of mu Arae (3.6m/HARPS, 1.2m Swiss/CORALIE, AAT/UCLES) PR Photo 25c/04: Velocity Variation of mu Arae Observed by HARPS (3.6m/HARPS) PR Photo 25d/04: "Velocity Curve" of mu Arae A unique planet hunting machine ESO PR Photo 25a/04 ESO PR Photo 25a/04 The HARPS Spectrograph and the 3.6m Telescope [Preview - JPEG: 602 x 400 pix - 211k] [Normal - JPEG: 1202 x 800 pix - 645k] Caption: ESO PR Photo 25a/04 represents a montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Since the first

  4. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  5. Processing of rare earth concentrates

    Institute of Scientific and Technical Information of China (English)

    Pamela Alex; R. C. Hubli; A.K. Suri

    2005-01-01

    The paper describes process details for extraction of rare earths from an intermediate grade concentrate of Madhya Pradesh region in India and a South African slag. The xenotime concentrate obtained from the former place was an intermediate grade (47%) rare earth phosphate containing both monazite and xenotime. The South African slag was a low-grade waste product typically containing only 4% of rare earths. The rare earth resource concentrates have been treated individually by different methods such as alkali fusion and alkali leaching to convert them into their mixed oxides. Both types of materials have been processed and greater than 98% solubilization of metal values has been achieved in the intermediate grade xenotime and 80% from the South African slag. The residue of xenotime hydroxide has been washed thoroughly to collect the sodium phosphate, as by-product and the slurry pH have been adjusted to separate rare earths from thorium effectively. Other impurities such as uranium and iron have been removed by precipitation of rare earths by oxalic acid. It has been possible to recover >95% yttrium along with other rare earth oxides.

  6. Our Sustainable Earth

    Science.gov (United States)

    Orbach, Raymond L.

    2013-03-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as the upper levels of the ocean are slow to respond to atmospheric temperature changes. Atmospheric CO2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880. They can be associated with the use of coal ecause of the spread of the industrial revolution from Great Britain to the European continent and beyond. The climactic consequence of this human-dominated increase in atmospheric CO2 has been suggested to define a geologic epoch, termed the ``Anthropocene.'' This could be a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. In order to stabilize global temperatures, sharp reductions in CO2 emissions are required: an 80% reduction beginning in 2050. U.S. emissions have declined sharply recently because of market conditions leading to the substitution of natural gas for coal for electricity generation. Whether this is the best use for this resource may be questioned, but it nevertheless reduces CO2 production by 67% from a coal-fired power plant, well on the way to the 80% reduction required for global temperature stabilization. Current methods for CO2 capture and storage are not cost effective, and have been slow (if not absent) to introduce at scale. This paper describes research into some potentially economically feasible approaches: cost-effective capture and storage of CO2 from injection of flue gas into subterranean methane-saturated aquifers at the surface; fuels from sunlight without CO2 production; and large-scale electrical energy storage for intermittent (and even constant) electricity generating sources.

  7. Other Worlds, Other Earths

    Science.gov (United States)

    Sunbury, Susan; Gould, R. R.

    2011-05-01

    The Harvard-Smithsonian Center for Astrophysics is developing a two-to-three week NSF-funded program for middle and high school students using telescope-based investigations of real world cutting edge scientific questions. The goal is to reveal and enhance students' understanding of core concepts in the physical sciences as well as to develop their proficiency in the practice of scientific inquiry. Specifically, students and teachers are joining scientists in the search for habitable worlds by exploring transiting exoplanets. Using robotic telescopes, image processing software and simulations, students take images and then measure the brightness of their target star to create a portrait of a transiting planet including how large it is; the tilt of its orbit; how far it is from its star and what its environment might be like. Once classes collect and analyze their own data, they can begin to compare, combine, and communicate their findings with others in the community. Interactive models help students predict what they might expect to find and interpret what they do find. During the past two years, the Center for Astrophysics has tested the concept in fifty middle-and high-school classrooms, enrichment classes and after school science clubs in 13 states across the United States. To date, astronomy, earth science, and physics students have successfully detected Jupiter-sized planets transiting stars such as TRES-3, HATP-10, and HATP-12. Preliminary results indicate that learning of core concept did occur. Gains in content were most significant in middle school students as this project delivered new information to them while it served primarily as a review of concepts and application of skills for advanced placement classes. A significant change also occurred in students’ self reported knowledge of exoplanets. There was also an increase in students’ awareness of exoplanets and attitudes about science after participating in this project.

  8. Applications to particle transport in the Earth`s aurora

    Energy Technology Data Exchange (ETDEWEB)

    Jasperse, J.R.

    1994-12-31

    The visual display of light called the aurora borealis occurs when energetic (1 to 100-keV) electrons, protons, and hydrogen atoms from the Earth`s magnetosphere enter the Earth`s upper atmosphere and collide with the ambient neutral particles. Two kinds of auroras occur in nature: those excited by incident electrons and those excited by incident protons and hydrogen atoms. In this paper, we consider only the latter. The proton-hydrogen aurora may be divided into two altitude regions: high altitudes ({approximately}250 to {approximately}600 km) where charge-changing collisions dominate and energy-loss collisions may be neglected and low altitudes ({approximately}100 to {approximately}250 km) where energy-loss collisions also become important and cause rapid energy degradation. The focus of this review is on the high-altitude region where the one-group approximation is valid.

  9. Heat transport within the Earth

    CERN Document Server

    Herndon, J Marvin

    2011-01-01

    Numerous attempts have been made to interpret Earth's dynamic processes based upon heat transport concepts derived from ordinary experience. But, ordinary experience can be misleading, especially when underlain by false assumptions. Geodynamic considerations traditionally have embraced three modes of heat transport: conduction, convection, and radiation. Recently, I introduced a fourth, "mantle decompression thermal tsunami" that, I submit, is responsible for emplacing heat at the base of the Earth's crust. Here, I review thermal transport within the Earth and speculate that there might be a fifth mode: "heat channeling", involving heat transport from the core to "hot-spots" such as those that power the Hawaiian Islands and Iceland.

  10. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Rare earth market remained stagnant recently. The buyers did not show willingness to replenish raw materials affected by weak demand. Most persons in rare earth circle were not confident with the short-term rare earth market. Demand for didymium mischmetal was soft recently. The market of dysprosium related products was quiet and NdFeB magnet producers were inactive in the purchase. Phosphor market was stagnant as well. Buyers were cautious on replenishing the material. There were few inquiries for europium oxide (99.9%) in spot market and transactions were difficult.

  11. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  12. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  13. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  14. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  15. Encyclopedia of earth system science

    National Research Council Canada - National Science Library

    Nierenberg, William Aaron

    1992-01-01

    .... The very diversity of the articles attests to the complexity of earth system science as a unique interdisciplinary venture to place humanity in a position to move wisely to protect the global habitat...

  16. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  17. Earth Day Illustrated Haiku Contest

    Science.gov (United States)

    2007-02-01

    As part of their 2007 Chemists Celebrate Earth Day Celebration, the American Chemical Society is sponsoring an illustrated haiku contest for students in grades K 12 around the theme, Recycling—Chemistry Can!

  18. Bringing Education Down to Earth.

    Science.gov (United States)

    Harrington, Robert F.

    1996-01-01

    Argues for a curriculum based on the earth itself that could offer ideas and insights to help students as they mature. Explains that history, geography, literature, science, philosophy, and economics are enriched by the unifying concept of ecology. (DDR)

  19. China Rare Earth Holdings Limited

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    China Rare Earth Holdings Limited is a large trans-area corporation and a public company listed in Hong Kong Stock Exchange (Name: China Rare Earth, Code: 0769), with headquarter in Hong Kong. Located on the bank of beautiful Taihu Lake, the subsidiary in Yinxing covers area of 200,000 m2. It has nearly 1,000 employees, 30% of whom are technical staffs. After self-administration and effort, the company passed ISO 9001: 2000 and ISO 14000 Certificaitons.

  20. Near Earth Object Survey Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Near Earth Object Survey Telescope (NEOST), located at the Xuyi station of the Purple Mountain Observatory, is a telescope with the most powerful detection capacity, the highest efficiency and the best performance in the fields of near Earth object survey and optical imaging in China. NEOST is an 171.8 Schmidt type telescope with a 1.20 meter primary mirror and a 1.04 meter corrector,

  1. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Rare earth market remained depressed after the New Year affected by the weak demand. Purchaser preferred to consume inventories rather than increase the stockpile. There was a strong wait-and-see atmosphere in the market. Driven by the intense desire to sell out the commodities, traders further decreased their quoted price for rare earth products. Most persons in the market preferred to hold commodities and waited for a rise in the market after the Spring Festival.

  2. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    March 21-31,2012 Rare earth market rebounded holistically recently. Price of didymium products rose slightly after being stable for one month. There were also increases in the prices of europium oxide and terbium oxide, which led to a rush by phosphor plants. The market of yttrium-medium and europium-rich minerals remained stagnant though the rare earth market recovered. Price of the mineral was around RMB ¥210,000-250,000/ton.

  3. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    November 20-30.2011 Weak demand resulted in the slack rare market. Consumers did not intend to rep earth enish inventories yet and transactions of rare earth products were stagnant. The market of didymium-related products was in the doldrums. Demand for dysprosium-related products was sluggish. Inquiries for europium oxide (99.9%) were few and dealings of the product were difficult.

  4. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....

  5. Earth observation for rangeland monitoring

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available for the methodology is presented in Figure 1. Figure 1: Conceptual framework for the development of grass nutrient estimation models, using remote sensing at various scales Earth Observation for Rangeland Monitoring DR A RAMOELO, DR M CHO AND DR R MATHIEU CSIR... and canopy N conforms to the underlying geology (Figure 2). ACKNOWLEDGEMENT The authors would like to thank the Department of Science and Technology which contributed financially to this work through the grant ?Earth Observation Application Development...

  6. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  7. Helium in Earth's early core

    Science.gov (United States)

    Bouhifd, M. A.; Jephcoat, Andrew P.; Heber, Veronika S.; Kelley, Simon P.

    2013-11-01

    The observed escape of the primordial helium isotope, 3He, from the Earth's interior indicates that primordial helium survived the energetic process of planetary accretion and has been trapped within the Earth to the present day. Two distinct reservoirs in the Earth's interior have been invoked to account for variations in the 3He/4He ratio observed at the surface in ocean basalts: a conventional depleted mantle source and a deep, still enigmatic, source that must have been isolated from processing throughout Earth history. The Earth's iron-based core has not been considered a potential helium source because partitioning of helium into metal liquid has been assumed to be negligible. Here we determine helium partitioning in experiments between molten silicates and iron-rich metal liquids at conditions up to 16GPa and 3,000K. Analyses of the samples by ultraviolet laser ablation mass spectrometry yield metal-silicate helium partition coefficients that range between 4.7×10-3 and 1.7×10-2 and suggest that significant quantities of helium may reside in the core. Based on estimated concentrations of primordial helium, we conclude that the early core could have incorporated enough helium to supply deep-rooted plumes enriched in 3He throughout the age of the Earth.

  8. Greenhouse Earth: A Traveling Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change.

  9. Beyond Earth: Using Google Earth to Visualize Other Planetary Bodies

    Science.gov (United States)

    Hancher, M.; Beyer, R.; Broxton, M.; Gorelick, N.; Kolb, E.; Weiss-Malik, M.

    2008-12-01

    Virtual globes have revolutionized the way we visualize and understand the Earth, but there are other planetary bodies that can be visualized as well. We will demonstrate the use of Google Earth, KML, and other modern mapping tools for visualizing data that's literally out of this world. Extra-terrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow users to explore the increasingly breathtaking imagery being sent back to Earth by modern planetary science satellites. We will demonstrate several uses of the latest Google Earth and KML features to visualize planetary data. Global maps of planetary bodies---not just visible imagery maps, but also terrain maps, infra-red maps, minerological maps, and more---can be overlaid on the Google Earth globe using KML, and a number of sources are already making many such maps available. Coverage maps show the polygons that have been imaged by various satellite sensors, with links to the imagery and science data. High-resolution regionated ground overlays allow you to explore the most breathtaking imagery at full resolution, in its geological context, just as we have become accustomed to doing with Earth imagery. Panoramas from landed missions to the Moon and Mars can even be embedded, giving users a first-hand experience of other worlds. We will take you on a guided tour of how these features can best be used to visualize places other than the Earth, and provide pointers to KML from many sources---ourselves and others---that users can build on in constructing their own KML content of other planetary bodies. Using this paradigm for sharing geospatial data will not only enable planetary scientists to more easily build and share data within the scientific community, but will also provide an easy platform for public outreach and education efforts, and will easily allow anyone to layer geospatial information on top of planetary data.

  10. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  11. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  12. NASA Earth Exchange: A Collaborative Earth Science Platform

    Science.gov (United States)

    Nemani, R. R.; Votava, P.; Michaelis, A.; Melton, F. S.; Hashimoto, H.; Milesi, C.; Wang, W.; Ganguly, S.

    2010-12-01

    The NASA Earth Exchange (NEX) is a collaboration platform for the Earth science community creating new ways for scientific interaction and knowledge sharing. Funded through ARRA, NEX combines state-of-the-art supercomputing, Earth system modeling, workflow management, NASA remote sensing data feeds, and a social networking platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. The work environment provides NEX members with community supported modeling, analysis and visualization software in conjunction with datasets that are common to the Earth systems science domain. By providing data, software, and large-scale computing power together in a flexible framework, NEX reduces the need for duplicated efforts in downloading data, developing pre-processing software tools, and expanding local compute infrastructures—while accelerating fundamental research, development of new applications, and reducing project costs. The social networking platform provides a forum for NEX members to efficiently share datasets, results, algorithms, codes, and expertise with other members. Since all members' work environments reside on the collaborative platform, sharing may be done without the transfer of large volumes of data or the porting of complex codes—making NEX an ideal platform for building upon and exchanging research, and fostering innovation. Architecture of NEX integrating social networking, super-computing and data center. The prototyping facility allows users to test their models, algorithms prior to deploying them on the super-computers when required.

  13. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    Science.gov (United States)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  14. A hypothesis of earth quake

    CERN Document Server

    Tsai, Yeong-Shyeong

    2008-01-01

    Without a model, it is impossible for a geophysicist to study the possibility of forecasting earth quakes. In order to make a simple model, we make a hypothesis of earth quakes. The hypothesis is: (i) There are two kinds of earth quakes, one is the triggered breaking (earth quake), the other is spontaneous breaking (earth quake). (ii) Most major quakes in continental plates Eurasian Plate, North America Plate, South America Plate, Africa Plate and Australia Plate are triggered breaking. (iii) These triggered quakes are triggered by the movements of high pressure centers and low pressure centers of the atmosphere on continental plates. (iv) How can the movements of the high pressure centers trigger a quake? It depends on the extent of the high pressure center and the speed of the movement. Here, we stress high pressure center instead of low pressure center because it is dominated by high pressure center mostly. Of course, the boundary of the plates must have stored enough energy to have quakes, that is, near t...

  15. Development Trend of Rare Earth Standardion Work

    Institute of Scientific and Technical Information of China (English)

    Ma Jie; Lin Jirong; Zhao Fei; Zhang Xiuyan

    2004-01-01

    Rare earth standardization was developed along with rare earth industry.In recent decades, great advances have been made in China rare earth industry.This paper describes the status of rare earth standardization, problems existed and ways to perfect.Now the number of Chinese Rare Earth Standards has increased to 232 with expanding of the categories and covering scope of rare earth products.But the present standard system cannot be completely suited with rare earth production and trade, and not keep pace with the advance of technology.Standards are important rules in world trade and must be acted on.

  16. ESA's Earth Observation in Support of Geoscience

    Science.gov (United States)

    Liebig, Volker

    2016-04-01

    The intervention will present ESA's Earth Observation Programme and its contribution to Geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. A special focus will be put on the Earth Explorers, who form the science and research element of ESA's Living Planet Programme and focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. In addition the operational Sentinel satellites have a huge potential for Geoscience. Earth Explorers' emphasis is also on learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The process of Earth Explorer mission selection has given the Earth science community an efficient tool for advancing the understanding of Earth as a system.

  17. Revolutions that made the earth

    CERN Document Server

    Lenton, Tim

    2013-01-01

    The Earth that sustains us today was born out of a few remarkable, near-catastrophic revolutions, started by biological innovations and marked by global environmental consequences. The revolutions have certain features in common, such as an increase in the complexity, energy utilization, and information processing capabilities of life. This book describes these revolutions, showing the fundamental interdependence of the evolution of life and its non-living environment. We would not exist unless these upheavals had led eventually to 'successful' outcomes - meaning that after each one, at length, a new stable world emerged. The current planet-reshaping activities of our species may be the start of another great Earth system revolution, but there is no guarantee that this one will be successful. This book explains what a successful transition through it might look like, if we are wise enough to steer such a course. This book places humanity in context as part of the Earth system, using a new scientific synthe...

  18. Earth's Heat Source - The Sun

    CERN Document Server

    Manuel, Oliver K

    2009-01-01

    The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

  19. Rare Earth Separation in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    During the last decade, China rare earth (RE) industry has made significant progress and become one of the most important producers in the world. In this paper, the recent developments in both fundamental research and industrial application are briefly reviewed: (1) the development and application of Theory of Countercurrent Extraction, (2) the novel solvent extraction process and its application in industry for separating heavy rare earth elements (Tm, Yb, Lu), yttrium (Y), and scandium (Sc), (3) the on-line analysis and automatic control of countercurrent extraction, (4) the eco-friendly process for RE/Th separation of bastnasite in Sichuan Province and electrochemical process for Eu/RE separation, and (5) the optimized flowcharts for typical rare earth minerals in China.

  20. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  1. An Earth Penetrating Modeling Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, E; Yarrington, P; Glenn, L

    2005-06-21

    Documentation of a study to assess the capability of computer codes to predict lateral loads on earth penetrating projectiles under conditions of non-normal impact. Calculations simulated a set of small scale penetration tests into concrete targets with oblique faces at angles of 15 and 30 degrees to the line-of-flight. Predictive codes used by the various calculational teams cover a wide range of modeling approaches from approximate techniques, such as cavity expansion, to numerical methods, such as finite element codes. The modeling assessment was performed under the auspices of the Phenomenology Integrated Product Team (PIPT) for the Robust Nuclear Earth Penetrator Program (RNEP). Funding for the penetration experiments and modeling was provided by multiple earth penetrator programs.

  2. Diseases of the Earth's skin

    Science.gov (United States)

    The German Government's Scientific Advisory Council on Global Climate Change recently diagnosed a score of ailments of the “Earth's skin,” according to the German Research Service. Like numerous viral and bacterial diseases, many of the earthidermal diseases are named for the regions where scientists first discovered them. For some symptoms, the German Council has also recommended therapeutic treatments, such as terracing of slopes near rivers. It remains to be seen whether universities worldwide will start cranking out specialists in Earth dermatology. But judging by the condition of many regions of the world, it appears this field may offer great growth potential for the Earth sciences, which is welcome news in the current tight job market.

  3. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  4. A Mission to Earth's Center

    Science.gov (United States)

    Olson, P.

    2016-12-01

    The last few decades have witnessed extraordinary progress on Earth's deep interior, particularly for Earth's core. Notable examples include seismic detection of fine structure and heterogeneity from the CMB to the depths of the inner core; improved constraints on the thermal regime and critical physical properties; direct experimental access to core pressures and temperatures; partial resolution of geomagnetic history into the deep past, new cosmochemical constraints on core formation, plus a first-order solution of the dynamo problem. Nevertheless, many fundamental questions about Earth's core remain unanswered, representing significant impediments to further understanding, not just of the Earth system, but also the interiors of other planets. A partial list of unsolved problems includes the composition of the core especially its light element inventory, the nature of heterogeneity in the core and its dynamical significance, quantifying heat and mass exchanges between core and mantle, the record of core evolution exemplified by inner core nucleation and the magnetic superchron cycle, and the role of core formation in governing Earth history. A more concerted and better-focused interdisciplinary effort is needed to resolve these long-standing problems, one that is comparable in its scale and structure to a planetary exploration mission. Such a Mission to Earth's Center would foster technological developments aimed specifically at these questions, such as seismic arrays designed for imaging the core, experimental capability for determining the phase diagram of the core, resolution of geomagnetic history into the deep past, plus next-generation dynamical models for the mantle, the core, and their interaction.

  5. Physical Processes Controlling Earth's Climate

    Science.gov (United States)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  6. Business earth stations for telecommunications

    Science.gov (United States)

    Morgan, Walter L.; Rouffet, Denis

    The current status of technology for small commercial satellite-communication earth stations is reviewed on the basis of an application study undertaken in the U.S. and Europe. Chapters are devoted to an overview of satellite communication networks, microterminal design and hardware implementation, microterminal applications, the advantages of microterminals, typical users, services provided, the U.S. market for small earth stations, network operators, and the economics of satellite and terrestrial communication services. Consideration is given to the operation of a microterminal network, standards and regulations, technological factors, space-segment requirements, and insurance aspects. Diagrams, graphs, tables of numerical data, and a glossary of terms are provided.

  7. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    August 20-31, 2011 Rare earth market did not show the sign of picking-up and remained stagnant recently. Most suppliers continued to decrease their quoted price, but leading producers in northern and southern China did not adjust their quoted price. Most rare earth plants in southern China had not yet resumed production. Quoted price of didymium products swung and the quoted prices of dysprosium-related products were slipping affected by weak demand. Inquiries for europium oxide were decreasing affected by the slow phosphor market.

  8. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  9. Earth: 15 Million Years Ago

    CERN Document Server

    Mizushima, Masataka

    2008-01-01

    In Einstein's general relativity theory the metric component gxx in the direction of motion (x-direction) of the sun deviates from unity due to a tensor potential caused by the black hole existing around the center of the galaxy. Because the solar system is orbiting around the galactic center at 200 km/s, the theory shows that the Newtonian gravitational potential due to the sun is not quite radial. At the present time, the ecliptic plane is almost perpendicular to the galactic plane, consistent with this modification of the Newtonian gravitational force. The ecliptic plane is assumed to maintain this orientation in the galactic space as it orbits around the galactic center, but the rotational angular momentum of the earth around its own axis can be assumed to be conserved. The earth is between the sun and the galactic center at the summer solstice all the time. As a consequence, the rotational axis of the earth would be parallel to the axis of the orbital rotation of the earth 15 million years ago, if the so...

  10. NSTA's New Earth Science Test.

    Science.gov (United States)

    Callister, Jeffrey C.; Mayer, Victor J.

    1988-01-01

    Describes the purpose and possible uses of the new American Geological Institute/National Science Teachers Association Earth Science Examination. Provides an order blank for obtaining the test. Stresses that the test is specifically designed to test concepts and problem-solving ability. (CW)

  11. The Greatest Shadow on Earth

    Science.gov (United States)

    Hughes, Stephen; Wimmer, Jason; Towsey, Michael; Fahmi, Marco; Winslett, Greg; Dubler, Gabriel; Le Prou, Angela; Loose, David

    2014-01-01

    In a total solar eclipse, the Moon completely covers the Sun, casting a shadow several hundred km wide across the face of the Earth. This paper describes observations of the 14 November 2012 total eclipse of the Sun visible from north Queensland, Australia. The edge of the umbra was captured on video during totality, and this video is provided for…

  12. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  13. The Hottest Job on Earth

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The Hottest Job on Earth Kim inched his way along. Heat covered him like ablanket. Cracks alive with fire opened beneath his feet."Maybe this wasn't such a good idea," Kim said to himself. "Maybe I should have left this volcano alone!"

  14. Earth Day 2012: Greening Government

    Centers for Disease Control (CDC) Podcasts

    2012-04-19

    This podcast describes sustainability efforts at CDC in relation to Earth Day celebrations and details agency greenhouse gas reduction strategies and successes.  Created: 4/19/2012 by Office of the Chief Operating Officer (OCOO)/ Chief Sustainability Office (CSO).   Date Released: 4/23/2012.

  15. The Nitrogen Budget of Earth

    CERN Document Server

    Johnson, Ben

    2015-01-01

    We comprehensively compile and review N content in geologic materials to calculate a new N budget for Earth. Using analyses of rocks and minerals in conjunction with N-Ar geochemistry demonstrates that the Bulk Silicate Earth (BSE) contains \\sim7\\pm4 times present atmospheric N (4\\times10^18 kg N, PAN), with 27\\pm16\\times10^18 kg N. Comparison to chondritic composition, after subtracting N sequestered into the core, yields a consistent result, with BSE N between 17\\pm13\\times10^18 kg to 31\\pm24\\times10^18 kg N. In the chondritic comparison we calculate a N mass in Earth's core (180\\pm110 to 300\\pm180\\times10^18 kg) and discuss the Moon as a proxy for the early mantle. Significantly, we find the majority of the planetary budget of N is in the solid Earth. The N estimate herein precludes the need for a "missing N" reservoir. Nitrogen-Ar systematics in mantle rocks and basalts identify two mantle reservoirs: MORB-source like (MSL) and high-N. High-N mantle is composed of young, N-rich material subducted from the...

  16. Polar Views of Planet Earth.

    Science.gov (United States)

    Brochu, Michel

    1983-01-01

    In August, 1981, National Aeronautics and Space Administration launched Dynamics Explorer 1 into polar orbit equipped with three cameras built to view the Northern Lights. The cameras can photograph aurora borealis' faint light without being blinded by the earth's bright dayside. Photographs taken by the satellite are provided. (JN)

  17. Earth Pressure on Tunnel Crown

    DEFF Research Database (Denmark)

    Andersen, Lars

    Two different analyses have been carried out in order to find the vertical earth pressure, or overburden pressure, at the crown of a tunnel going through a dike. Firstly, a hand calculation is performed using a simple dispersion of the stresses over depth. Secondly, the finite‐element program...

  18. Warriors of Heaven and Earth

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    "Movies are like a magic carpet,"according to He Ping, the Chinese director who's just seen the fruit of 15 yuars of work finally hit the big screen, On September 23, Warriors of Heaven and Earth descended on Beijing theaters.

  19. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  20. Earth Pressure on Tunnel Crown

    DEFF Research Database (Denmark)

    Andersen, Lars

    Two different analyses have been carried out in order to find the vertical earth pressure, or overburden pressure, at the crown of a tunnel going through a dike. Firstly, a hand calculation is performed using a simple dispersion of the stresses over depth. Secondly, the finite‐element program...

  1. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    June 20-30, 2011 Prices of heavy rare earth products remained soaring. The same happened to dysprosium and its related products due to tight supply. Separation plants held tightly of europium oxide. Refining plants took a positive attitude toward the ma

  2. Earth and Terrestrial Planet Formation

    CERN Document Server

    Jacobson, Seth A

    2015-01-01

    The growth and composition of Earth is a direct consequence of planet formation throughout the Solar System. We discuss the known history of the Solar System, the proposed stages of growth and how the early stages of planet formation may be dominated by pebble growth processes. Pebbles are small bodies whose strong interactions with the nebula gas lead to remarkable new accretion mechanisms for the formation of planetesimals and the growth of planetary embryos. Many of the popular models for the later stages of planet formation are presented. The classical models with the giant planets on fixed orbits are not consistent with the known history of the Solar System, fail to create a high Earth/Mars mass ratio, and, in many cases, are also internally inconsistent. The successful Grand Tack model creates a small Mars, a wet Earth, a realistic asteroid belt and the mass-orbit structure of the terrestrial planets. In the Grand Tack scenario, growth curves for Earth most closely match a Weibull model. The feeding zon...

  3. Earth Works Central. [Educational Packet].

    Science.gov (United States)

    Kids for Saving Earth Worldwide, Minneapolis, MN.

    Earth Works Central is an educational curriculum tool designed to provide environmental education support for the classroom. It features environmental materials for science, geography, history, art, music, dramatics, and physical education. It includes information on creating an environmental center where kids can learn and become empowered to…

  4. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  5. Joint Interdisciplinary Earth Science Information Center

    Science.gov (United States)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  6. Mission to Very Early Earth

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheon, I D; Weber, P K; Fallon, S J; Smith, J B; Aleon, J; Ryerson, F J; Harrison, T M; Cavosie, A J; Valley, J W

    2007-03-13

    The Hadean Earth is often viewed as an inhospitable and, perhaps, unlikely setting for the rise of primordial life. However, carbonaceous materials supplied by accreting meteorites and sources of chemical energy similar to those fueling life around modern deep-sea volcanic vents would have been present in abundance. More questionable are two other essential ingredients for life - liquid water and clement temperatures. Did the Hadean Earth possess a hydrosphere and temperate climate compatible with the initiation of biologic activity? If so, the popular model of an excessively hot planetary surface characterized by a basaltic crust, devoid of continental material is invalid. Similarly, establishment of an Hadean hydrosphere prior to the cessation of heavy asteroid bombardment may mean that primitive life could have evolved and then been extinguished, only to rise again. The most effective means of determining the environmental conditions on this young planet is through geochemical analysis of samples retrieved from the Early Earth. While rocks older than 4 billion years (4 Ga) have not been found, individual zircon grains, the detritus of rocks long since eroded away, have been identified with ages as old as 4.4 Ga - only {approx}160 million years younger than the Earth itself. If we can use the geochemical information contained in these unique samples to infer the nature of their source rocks and the processes that formed them, we can place constraints on the conditions prevailing at the Earth's surface shortly after formation. This project utilizes a combined analytical and experimental approach to gather the necessary geochemical data to determine the parameters required to relate the zircons to their parent materials. Mission to Early Earth involves dating, isotopic and chemical analyses of mineral and melt inclusions within zircons and of the zircons themselves. The major experimental activity at LLNL focused on the partitioning of trace elements between

  7. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  8. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2015-09-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  9. The ESA earth observation polar platform programme

    Science.gov (United States)

    Rast, M.; Readings, C. J.

    1991-08-01

    The overall scenario of ESA earth observation polar platform program is reviewed with particular attention given to instruments currently being considered for flight on the first European polar platforms. The major objectives of the mission include monitoring the earth's environment on various scales; management and monitoring of the earth's resources; improvement of the service provided to the worldwide operational meteorological community, investigation of the structure and dynamics of the earth's crust and interior. The program encompasses four main elements: an ERS-1 follow-on mission (ERS-2), a solid earth gravity mission (Aristoteles), a Meteosat Second Generation, and a series of polar orbit earth observation missions.

  10. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  11. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    Science.gov (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  12. Earth System Oxygenation: Toward an Integrated Theory of Earth Evolution

    Science.gov (United States)

    Anbar, A. D.

    2015-12-01

    The cause of the progressive oxygenation of Earth's biosphere remains poorly understood. The problem is bounded by the interplay of three irreversible, secular changes: the escape of H to space, which makes the planet more oxidized; the evolution of photoautotrophy - which converts solar energy into redox disequilbrium - and related metabolisms; and the cooling of the planet, which affects the exchange of material between Earth's reduced interior and relatively oxidized surface through a variety of processes. The first of these changes is quantitatively considered elsewhere, and is connected to the other two because H escape depends on atmospheric H2 and CH4 contents. The second of these changes is an area of vigorous research, particularly over the past decade. Important work included efforts to constrain the timing of key evolutionary events using organic geochemical and genomic records, and to understand the timing and tempo of environmental oxidation, particularly preceding the "Great Oxidation Event" (GOE) at ~2.4 Ga. As the community sorts through various debates, evidence is accumulating that the pre-GOE period was a dynamic era of transient "whiffs" of oxidation, most likely due to small amounts of biogenic O2 that appeared as early as ~3.0 Ga. The implication is that O2 sinks generally overwhelmed substantial O2 sources through the first half of Earth history, and that a decrease in sink strength and/or increase in source strength could have resulted in increasing instability of trace pO2 in the runup to the GOE. The most likely sinks are coupled to reductants in Earth's interior, which leads us to the third major change—secular cooling of the planet. It is almost certain that this cooling led to changes in mantle dynamics, rates of plate motion, and melting behaviors, which in turn affected volcanism, crust composition, hydrothermal and metamorphic alteration, ocean nutrient budgets, and recycling at subduction zones. These factors have all been

  13. Earth Observing System Covariance Realism Updates

    Science.gov (United States)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  14. Mapping Near-Earth Hazards

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    How can we hunt down all the near-Earth asteroids that are capable of posing a threat to us? A new study looks at whether the upcoming Large Synoptic Survey Telescope (LSST) is up to the job.Charting Nearby ThreatsLSST is an 8.4-m wide-survey telescope currently being built in Chile. When it goes online in 2022, it will spend the next ten years surveying our sky, mapping tens of billions of stars and galaxies, searching for signatures of dark energy and dark matter, and hunting for transient optical events like novae and supernovae. But in its scanning, LSST will also be looking for asteroids that approach near Earth.Cumulative number of near-Earth asteroids discovered over time, as of June 16, 2016. [NASA/JPL/Chamberlin]Near-Earth objects (NEOs) have the potential to be hazardous if they cross Earths path and are large enough to do significant damage when they impact Earth. Earths history is riddled with dangerous asteroid encounters, including the recent Chelyabinsk airburst in 2013, the encounter that caused the kilometer-sized Meteor Crater in Arizona, and the impact thought to contribute to the extinction of the dinosaurs.Recognizing the potential danger that NEOs can pose to Earth, Congress has tasked NASA with tracking down 90% of NEOs larger than 140 meters in diameter. With our current survey capabilities, we believe weve discovered roughly 25% of these NEOs thus far. Now a new study led by Tommy Grav (Planetary Science Institute) examines whether LSST will be able to complete this task.Absolute magnitude, H, of asynthetic NEO population. Though these NEOs are all larger than 140 m, they have a large spread in albedos. [Grav et al. 2016]Can LSST Help?Based on previous observations of NEOs and resulting predictions for NEO properties and orbits, Grav and collaborators simulate a synthetic population of NEOs all above 140 m in size. With these improved population models, they demonstrate that the common tactic of using an asteroids absolute magnitude as a

  15. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....

  16. ``An Earth-Shaking Experience''

    Science.gov (United States)

    Achenbach, Joel

    2005-03-01

    Last month's annual meeting of the American Geophysical Union in San Francisco drew an estimated 11,000 scientists, teachers, journalists and geophysics groupies. The schedule of talks could be found in a bound volume as thick as a phone book. You never see a geophysicist in ordinary life, but apparently the world is crawling with them. They came to talk about everything from the ozone layer to the big wad of iron at the center of the Earth. Also about other planets. And magnetic fields. Solar wind. Water on Mars. To be at this convention was to be immersed to the eyebrows in scientific knowledge. It is intellectually fashionable to fetishize the unknown, but at AGU, a person will get the opposite feeling-that science is a voracious, relentless and tireless enterprise, and that soon there may not remain on this Earth an unturned stone.

  17. Stamping the Earth from space

    CERN Document Server

    Dicati, Renato

    2017-01-01

    This unique book presents a historical and philatelic survey of Earth exploration from space. It covers all areas of research in which artificial satellites have contributed in designing a new image of our planet and its environment: the atmosphere and ionosphere, the magnetic field, radiation belts and the magnetosphere, weather, remote sensing, mapping of the surface, observation of the oceans and marine environments, geodesy, and the study of life and ecological systems. Stamping the Earth from Space presents the results obtained with the thousands of satellites launched by the two former superpowers, the Soviet Union and the United States, and also those of the many missions carried out by the ESA, individual European countries, Japan, China, India, and the many emerging space nations. Beautifully illustrated, it contains almost 1100 color reproductions of philatelic items. In addition to topical stamps and thematic postal documents, the book provides an extensive review of astrophilatelic items. The most...

  18. Studying the Earth with Geoneutrinos

    Directory of Open Access Journals (Sweden)

    L. Ludhova

    2013-01-01

    Full Text Available Geoneutrinos, electron antineutrinos from natural radioactive decays inside the Earth, bring to the surface unique information about our planet. The new techniques in neutrino detection opened a door into a completely new interdisciplinary field of neutrino geoscience. We give here a broad geological introduction highlighting the points where the geoneutrino measurements can give substantial new insights. The status-of-art of this field is overviewed, including a description of the latest experimental results from KamLAND and Borexino experiments and their first geological implications. We performed a new combined Borexino and KamLAND analysis in terms of the extraction of the mantle geo-neutrino signal and the limits on the Earth's radiogenic heat power. The perspectives and the future projects having geo-neutrinos among their scientific goals are also discussed.

  19. The Search for Another Earth

    Indian Academy of Sciences (India)

    2016-07-01

    Is there life anywhere else in the vast cosmos?Are there planets similar to the Earth? For centuries,these questions baffled curious minds. Eithera positive or negative answer, if found oneday, would carry a deep philosophical significancefor our very existence in the universe. Althoughthe search for extra-terrestrial intelligence wasinitiated decades ago, a systematic scientific andglobal quest towards achieving a convincing answerbegan in 1995 with the discovery of the firstconfirmed planet orbiting around the solar-typestar 51 Pegasi. Since then, astronomers have discoveredmany exoplanets using two main techniques,radial velocity and transit measurements.In the first part of this article, we shall describethe different astronomical methods through whichthe extrasolar planets of various kinds are discovered.In the second part of the article we shalldiscuss the various kinds of exoplanets, in particularabout the habitable planets discovered tilldate and the present status of our search for ahabitable planet similar to the Earth.

  20. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  1. Rare Earths and Magnetic Refrigeration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed.

  2. Earth Science Education in Sudan

    Science.gov (United States)

    Abdullatif, Osman M.; Farwa, Abdalla G.

    1999-05-01

    This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.

  3. MATLAB Recipes for Earth Sciences

    Science.gov (United States)

    Trauth, M. H.

    MATLAB is used in a wide range of applications in geosciences, such as image processing in remote sensing, generation and processing of digital elevation models and the analysis of time series. This book introduces basic methods of data analysis in geosciences using MATLAB. The text includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences. All MATLAB recipes can be easily modified in order to analyse the reader's own data sets.

  4. Hurricane Excitation of Earth Eigenmodes

    OpenAIRE

    Peters, Randall D.

    2005-01-01

    A non-conventional vertical seismometer, with good low-frequency sensitivity, was used to study earth motions in Macon, Georgia USA during the time of hurricane Charley, August 2004. During its transitions between water and land, the powerful storm showed an interesting history of microseisms and also generated more than half-a-dozen surprisingly coherent oscillations, whose frequencies ranged from 0.9 to 3 mHz.

  5. International Sun-Earth Explorer (ISEE)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Series of three US satellites designed to study the solar wind and its interaction with the Earth's magnetosphere. ISEE-1 and 2 were placed into highly elliptical Earth orbits. ISEE-3 was placed in a halo orbit at the L1 Lagrangian point between the Sun and Earth. It gave advance warning of solar storms heading towards Earth. (See also INTERNATIONAL COMETARY EXPLORER and EXPLORER.)...

  6. Lime-Crusted Rammed Earth: Materials Study

    OpenAIRE

    Mileto, Camilla; Vegas López-Manzanares, Fernando; Alejandre, Francisco Javier; Martín, Juan Jesús; Garcia Soriano, Lidia

    2013-01-01

    This study analyses the durability of rammed-earth wall construction techniques. The analysis focuses on three medieval masonry types from the Castle of Villavieja (Castellón, Spain) using two variations of lime-reinforced rammed earth in its walls: lime-crusted rammed earth and brick-reinforced rammed earth. Materials analysis reveals the good properties of the materials used in the outer wall facing despite its age. It also clearly shows how deterioration depends more on the construction t...

  7. Mass Extinctions in Earth's History

    Science.gov (United States)

    Ward, P. D.

    2002-12-01

    Mass extinctions are short intervals of elevated species death. Possible causes of Earth's mass extinctions are both external (astronomical) and internal (tectonic and biotic changes from planetary mechanisms). Paleontologists have identified five "major" mass extinctions (>50 die-off in less than a million years) and more than 20 other minor events over the past 550 million years. Earlier major extinction events undoubtedly also occurred, but we have no fossil record; these were probably associated with, for example, the early heavy bombardment that cleared out the solar system, the advent of oxygen in the atmosphere, and various "snowball Earth" events. Mass extinctions are viewed as both destructive (species death ) and constructive, in that they allow evolutionary innovation in the wake of species disappearances. From an astrobiological perspective, mass extinctions must be considered as able both to reduce biodiversity and even potentially end life on any planet. Of the five major mass extinctions identified on Earth, only one (the Cretaceous/Tertiary event 65 million years ago that famously killed off the dinosaurs ) is unambiguously related to the impact of an asteroid or comet ( 10-km diameter). The Permian/Triassic (250 Myr ago) and Triassic/Jurassic (202 Myr ago) events are now the center of debate between those favoring impact and those suggesting large volume flooding by basaltic lavas. The final two events, Ordovician (440 Myr ago) and Devonian (370 Myr ago) have no accepted causal mechanisms.

  8. Rare Earths; The Fraternal Fifteen (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, Jr., Karl A. [Iowa State University; Ames Laboratory

    1966-01-01

    Rare earths are a set of 15 elements: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. They are not rare and not earths; they are metals and quite abundant. They are studied to develop commercial products which are beneficial to mankind, and because some rare earths are important to fission products.

  9. 78 FR 67309 - Earth Stations Aboard Aircraft

    Science.gov (United States)

    2013-11-12

    ... COMMISSION 47 CFR Part 25 Earth Stations Aboard Aircraft AGENCY: Federal Communications Commission. ACTION... collection associated with the Commission's Earth Station Aboard Aircraft, Report and Order (Order), which adopted licensing and service rules for Earth Stations Aboard Aircraft (ESAA) communicating with Fixed...

  10. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  11. In the Red Shadow of the Earth

    Science.gov (United States)

    Hughes, Stephen W.; Hosokawa, Kazuyuki; Carroll, Joshua; Sawell, David; Wilson, Colin

    2015-01-01

    A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth's umbra during a total lunar eclipse making the Moon red. This "Rim of Fire" is due to refracted unscattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed…

  12. Designing and building walls with Rammed Earth

    NARCIS (Netherlands)

    Galiouna, E.A.; Hammer, L.; Piscitelli, G.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Today, a lot of people in the world live in earth dwellings. There are many different techniques for constructing solid walls of raw earth (adobe, bale, cob, mud wall, light clay, wattle and daub, earth bags

  13. Designing and building walls with Rammed Earth

    NARCIS (Netherlands)

    Galiouna, E.A.; Hammer, L.; Piscitelli, G.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Today, a lot of people in the world live in earth dwellings. There are many different techniques for constructing solid walls of raw earth (adobe, bale, cob, mud wall, light clay, wattle and daub, earth

  14. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  15. In the Red Shadow of the Earth

    Science.gov (United States)

    Hughes, Stephen W.; Hosokawa, Kazuyuki; Carroll, Joshua; Sawell, David; Wilson, Colin

    2015-01-01

    A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth's umbra during a total lunar eclipse making the Moon red. This "Rim of Fire" is due to refracted unscattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed…

  16. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics" categories; the most…

  17. The Chinese Society of Rare Earth is Studying The Feasibility of Marketing Rare Earth Futures

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Lin Donglu,secretary-general of the Chinese Society of Rare Earth recently said,the Chinese Society of Rare Earth undertook the research on subject of the National Social Science Fund Foundation on the reform of Chinese rare earth trading pricing mechanism on promoting RMB globalization,and is focusing on studying the feasibility of marketing rare earth futures variety.

  18. ISS EarthKam: Taking Photos of the Earth from Space

    Science.gov (United States)

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  19. Research on Rare Earth Encapsulated Luminescent Material

    Institute of Scientific and Technical Information of China (English)

    Yu Zhiwei; Liu Chengdong; Qi Xiaopeng

    2004-01-01

    A new method of preparation of irradiative material by using rare earth as luminophor and inorganic powder as base nucleus was presented.Rare earth was used to make colloid, which was mixed with base nucleus solution,where deposition/attachment reaction took place and rare earth was adhered onto the surface of base nucleus, hence yielding a new rare earth encapsulated irradiative material.Fluorescent spectrum analysis shows that this material possesses two emission peaks, one within 400 ~ 500 nm and the other within 580 ~ 700 nm, reflecting the luminous characteristics of original rare earth material.

  20. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  1. Earth current monitoring circuit for inductive loads

    CERN Document Server

    Montabonnet, V; Thurel, Y; Cussac, P

    2010-01-01

    The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...

  2. Environmental Problems on the Earth and Life Beyond the Earth

    Science.gov (United States)

    McKenney, Denise; Listiak, Tamara; Matthews, Ethel

    The adaptability and metabolic resourcefulness of microbial life was highlighted during a bioremediation study. The soil in need of remediation was contained in a pit located next to crude oil storage tanks where overflow oil and saltwater had been collecting for at least 30 years. The pit was located in West Texas in a semi-arid environment known for high summer temperatures and low rainfall. The lighter oil fractions had vaporized, leaving only the heave end hydrocarbons known as weathered crude. Analysis of the soil showed low nitrogen, low phosphorous, high salt, high iron levels and high chromium levels, as well as high concentrations of the heavy end hydrocarbons that inhibited water absorption. The extreme environment found in the pit presented biological problems for the organisms living there, and yet both bacterial and fungal species were isolated that could use the hydrocarbons for their energy needs. The ability of organisms on Earth to survive and thrive in such an environment illustrates both their use in solving pollution problems here on Earth, and also that extreme extraterrestrial environments could support life.

  3. NASA's Earth Data Coherent Web

    Science.gov (United States)

    Gonzalez, R.; Murphy, K. J.; Cechini, M. F.

    2011-12-01

    NASA Earth Science Data Systems are a large and continuing investment in science data management activities. The Earth Science Data and Information System (ESDIS) project manages the science systems of the Earth Observing System Data and Information System (EOSDIS). EOSDIS provides science data to a wide community of users. Websites are the front door to data and services for users (science, programmatic, missions, citizen scientist, etc...), but these are disparate and disharmonious. Earth science is interdisciplinary thus, EOSDIS must enable users to discover and use the information, data and services they need in an easy and coherent manner. Users should be able to interact with each EOSDIS element in a predictable way and see EOSDIS as a program of inter-related but distinct systems each with expertise in a different science and/or information technology domain. Additionally, users should be presented with a general search capability that can be customized for each research discipline. Furthermore, the array of domain specific expertise along with crosscutting capabilities should be harmonized so users are presented with a common language and information framework to efficiently perform science investigations. The Earthdata Coherent Web Project goals are (1) to present NASA's EOSDIS as a coherent yet transparent system of systems that provide a highly functioning, integrated web presence that ties together information content and web services throughout EOSDIS so science users can easily find, access, and use data collected by NASA's Earth science missions. (2) Fresh, engaging and continually updated and coordinated content. (3) Create an active and immersive science user experience leveraging Web Services (e.g. W*S, SOAP, RESTful) from remote and local data centers and projects to reduce barriers to using EOSDIS data. Goals will be reached through a phased approach where functionality and processes are incrementally added. Phase I focused on the following main

  4. The Earth: A Changing Planet

    Science.gov (United States)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  5. CMEs at Earth and Mars

    Science.gov (United States)

    Falkenberg, T. V.; Vennerstrom, S.; Taktakishvili, A.; Pulkkinen, A.; Brain, D. A.; Delory, G. T.; Mitchell, D.

    2010-12-01

    We perform a survey of the longitudinal extent and general nature of fast Coronal Mass Ejections (CMEs) identifiable at both Mars and Earth and use the ENLIL Magneto-Hydro-Dynamic model to replicate data for the CMEs at both planets. We have chosen 18 fast CMEs with initial velocities, according to the SOHO/LASCO catalogue, between 1200 and 2700 km/s in the period 2001-2003. CME arrival is identified at Earth by sharp increases in velocity, density and magnetic field strength in data compiled from the ACE,WIND and Geotail spacecraft, while CME arrival at Mars is identified by a large increase in magnetic field strength and by increases in the background countrate of the Electron Reflectometer (ER) instrument on Mars Global Surveyor (MGS). The ER backgrounds are used to determine the presence of Solar Energetic Particles related to fast CMEs. We run ENLIL using two different sets of input parameters, both estimated from SOHO/LASCO images, but one set is estimated manually and one set is estimated using an automated method. Specific parameters of interest are arrival time, longitudinal span, and propagation direction of the CMEs. At Earth the velocity, density and magnetic field strength are compared to Omni data, while at Mars the solar wind dynamic pressure is compared to an upstream pressure proxy estimated from magnetic field data from MGS. A qualitative estimate of the usefulness of ENLIL in CME modeling will be given, as well as a comparison of the effectiveness of the two methods used to find input parameters for the model.

  6. Ringberg15: Earth's Climate Sensitivities

    Science.gov (United States)

    Stevens, Bjorn; Abe-Ouchi, Ayako; Bony, Sandrine; Hegerl, Gabi; Schmidt, Gavin; Sherwood, Steven; Webb, Mark

    2015-01-01

    To assess gaps in understanding of Earth's climate sensitivities a workshop was organised under the auspices of the WCRP (World Climate Research Programme) Grand Science Challenge on Clouds, Circulation and Climate Sensitivity (Ringberg15). The workshop took place in March 2015 and gathered together over thirty experts from around the world for one week. Attendees each gave short presentations and participated in moderated discussions of specific questions related to understanding Earth's climate sensitivities. Most of the time was focused on understanding of the equilibrium climate sensitivity, defined as the equilibrium near-surface warming associated with a doubling of atmospheric carbon dioxide. The workshop produced nine recommendations, many of them focusing on specific research avenues that could be exploited to advance understanding of climate sensitivity. Many of these dealt, in one fashion or another, with the need to more sharply focus research on identifying and testing story lines for a high (larger than 4 degrees Kelvin) or low (less than 2 degrees Kelvin) equilibrium climate sensitivity. Additionally, a subset of model intercomparison projects (CFMIP (Cloud Feedback Model Intercomparison Project), PMIP (Palaeoclimate Modelling Intercomparison Project), PDRMIP (Precipitation Driver and Response Model Intercomparison Project), RFMIP (Radiative Forcing Model Intercomparison Project) and VolMIP (Volcanic Forcings Model Intercomparison Project)) that have been proposed for inclusion within CMIP were identified as being central to resolving important issues raised at the workshop; for this reason modelling groups were strongly encouraged to participate in these projects. Finally the workshop participants encouraged the WCRP to initiate and support an assessment process lead by the Grand Science Challenge on Clouds, Circulation and Climate Sensitivity on the topic of Earth's Climate Sensitivities, culminating in a report that will be published in 2019

  7. Earthing the human body influences physiologic processes.

    Science.gov (United States)

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  8. Magnetic Rare-Earth Superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Gibbs, D.; Böni, P.

    1988-01-01

    The magnetic structures of several single‐crystal, magnetic rare‐earth superlattice systems grown by molecular‐beam epitaxy are reviewed. In particular, the results of recent neutron diffraction investigations of long‐range magnetic order in Gd‐Y, Dy‐Y, Gd‐Dy, and Ho‐Y periodic superlattices...... are presented. In the Gd‐Y system, an antiphase domain structure develops for certain Y layer spacings, whereas modified helical moment configurations are found to occur in the other systems, some of which are commensurate with the chemical superlattice wavelength. References are made to theoretical interaction...

  9. Earth's core and the geodynamo

    Science.gov (United States)

    Buffett

    2000-06-16

    Earth's magnetic field is generated by fluid motion in the liquid iron core. Details of how this occurs are now emerging from numerical simulations that achieve a self-sustaining magnetic field. Early results predict a dominant dipole field outside the core, and some models even reproduce magnetic reversals. The simulations also show how different patterns of flow can produce similar external fields. Efforts to distinguish between the various possibilities appeal to observations of the time-dependent behavior of the field. Important constraints will come from geological records of the magnetic field in the past.

  10. Earth Sciences annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J. (eds.)

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  11. 2006 Rare Earth Export Quota

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ According to correlative stipulations in "Goods Import εt Export Administrating Statute of P.R.C", 2006export quota for important industrial products was issued by the Ministry of Commerce of P.R.C. on December 30th of 2005. Export quota of rare earth products is 45,000 tons. It is said the quota will be distributed in two batches. The first batch of quota will reach 70-80% of the total with 21,700 - 24,800tons for domestic companies and 10,500 - 12,000 tons for foreign invested companies. Quota will be distributed to relevant enterprises directly in recent days.

  12. Fire in the Earth system

    Science.gov (United States)

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Carlson, Jean M.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth S.; Doyle, John C.; Harrison, Sandy P.; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Marston, J. Brad; Moritz, Max A.; Prentice, I. Colin; Roos, Christopher I.; Scott, Andrew C.; Swetnam, Thomas W.; van der Werf, Guido R.; Pyne, Stephen

    2009-01-01

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  13. Fire in the Earth system.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  14. Earth Science Education in Zimbabwe

    Science.gov (United States)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  15. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  16. Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  17. Locating a buried earth penetrator

    Energy Technology Data Exchange (ETDEWEB)

    Caffey, T.W.H.

    1977-11-01

    The purpose of this work was to assist the recovery of a buried earth penetrator by locating the vertical projection of the penetator upon the surface within a horizontal radius error of one meter. The penetrator will carry a small coil which is driven by an alternating current to form a magnetic dipole. Five measurements of the magnetic field vector upon the surface of the earth are shown to be sufficient for determining not only the xyz-coordinates of the dipole, but also the orientation of the dipole axis. The theory, computation process, and field tests are comprehensively described. Results of 26 field tests with the dipole at 9 different combinations of location and orientation are given. Average radial and vertical location errors are 0.27 m and -0.05 m, respectively, while the mean errors in the tilt and orientation angles of the dipole axis are 3 degrees and 8 degrees, respectively. The results are applied to the design of a locating system for a Pershing II penetrator which contains a recessed, rear-mounted coil.

  18. The earth orbiting space debris

    Directory of Open Access Journals (Sweden)

    Rossi A.

    2005-01-01

    Full Text Available The space debris population is similar to the asteroid belt, since it is subject to a process of high-velocity mutual collisions that affects the long-term evolution of its size distribution. Presently, more than 10 000 artificial debris particles with diameters larger than 10 cm (and more than 300 000 with diameters larger than 1 cm are orbiting the Earth, and are monitored and studied by a large network of sensors around the Earth. Many objects of different kind compose the space debris population, produced by different source mechanisms ranging from high energy fragmentation of large spacecraft to slow diffusion of liquid metal. The impact against a space debris is a serious risk that every spacecraft must face now and it can be evaluated with ad-hoc algorithms. The long term evolution of the whole debris population is studied with computer models allowing the simulation of all the known source and sink mechanisms. One of these codes is described in this paper and the evolution of the debris environment over the next 100 years, under different traffic scenarios, is shown, pointing out the possible measures to mitigate the growth of the orbital debris population. .

  19. Towards "open applied" Earth sciences

    Science.gov (United States)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  20. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  1. Intelligent Design and Earth History

    Science.gov (United States)

    Elders, W. A.

    2001-05-01

    Intelligent Design (ID), the idea that the Earth's biota was intelligently designed and created, is not a new species recently evolved by allopatric speciation at the fringes of the creationist gene pool. In spite of its new veneer of sophistication, ID is a variant of an already extant species of religious polemics. In the western world, arguments about causative relationships between the complexity of nature and the supernatural can be traced from the fifth century St. Augustine, to the eighteenth century David Hume and the nineteenth century William Paley. Along this descent tree some argued from the existence of supernatural agencies to the creation of nature with its complexities, while others argued from the complexities of nature to the existence of supernatural agencies. Today, Phillip Johnson promotes ID by attacking evolution rather than by presenting evidence for ID. He argues that the evidence for macroevolution is either absent, misinterpreted or fraudulent. His "Wedge Strategy" attempts to separate his "objective science" from the "philosophical mechanistic naturalism" which he posits is responsible for the survival of Darwinism. To make his appeal as wide as possible he tries not to offend anyone (except evolutionists) by deliberately avoiding discussion of biblical literalism or the age of the Earth. Although in 1859 Darwin admitted that the geological evidence was "the most obvious and gravest objection which can be urged against my theory", subsequently geological evidence has become one of the chief supports of his theory. However, the fossil record is now seen to be not simply one of slow gradual descent with modification. Rates of divergence and disappearance of organisms have varied enormously through time. Repeated mass extinctions indicate a strong element of contingency in evolution. Accepting the postulate of an intelligent designer also requires the postulate of an intelligent destroyer. Darwin hinted at this when he referred to, "The

  2. a Walk Through Earth's Time

    Science.gov (United States)

    Turrin, B. D.; Turrin, M.

    2012-12-01

    After "What is this rock?" the most common questions that is asked of Geologists is "How old is this rock/fossil?" For geologists considering ages back to millions of years is routine. Sorting and cataloguing events into temporal sequences is a natural tendency for all humans. In fact, it is an everyday activity for humans, i.e., keeping track of birthdays, anniversaries, appointments, meetings, AGU abstract deadlines etc… However, the time frames that are most familiar to the non scientist (seconds, minutes, hours, days, years) generally extend to only a few decades or at most centuries. Yet the vast length of time covered by Earth's history, 4.56 billion years, greatly exceeds these timeframes and thus is commonly referred to as "Deep Time". This is a challenging concept for most students to comprehend as it involves temporal and abstract thinking, yet it is key to their successful understanding of numerous geologic principles. We have developed an outdoor learning activity for general Introductory Earth Science courses that incorporates several scientific and geologic concepts such as: linear distance or stratigraphic thickness representing time, learning about major events in Earth's history and locating them in a scaled temporal framework, field mapping, abstract thinking, scaling and dimensional analysis, and the principles of radio isotopic dating. The only supplies needed are readily available in local hardware stores i.e. a 300 ft. surveyor's tape marked in feet, and tenths and hundredths of a foot, and the student's own introductory geology textbook. The exercise employs a variety of pedagogical learning modalities, including traditional lecture-based, the use of Art/Drawing, use of Visualization, Collaborative learning, and Kinesthetic and Experiential learning. Initially the students are exposed to the concept of "Deep Time" in a short conventional introductory lecture; this is followed by a 'field day'. Prior to the field exercise, students work with

  3. Google Earth: A Virtual Globe for Elementary Geography

    Science.gov (United States)

    Britt, Judy; LaFontaine, Gus

    2009-01-01

    Originally called Earth Viewer in 2004, Google Earth was the first virtual globe easily available to the ordinary user of the Internet. Google Earth, at earth.google.com, is a free, 3-dimensional computer model of Earth, but that means more than just a large collection of pretty pictures. It allows the viewer to "fly" anywhere on Earth "to view…

  4. Google Earth: A Virtual Globe for Elementary Geography

    Science.gov (United States)

    Britt, Judy; LaFontaine, Gus

    2009-01-01

    Originally called Earth Viewer in 2004, Google Earth was the first virtual globe easily available to the ordinary user of the Internet. Google Earth, at earth.google.com, is a free, 3-dimensional computer model of Earth, but that means more than just a large collection of pretty pictures. It allows the viewer to "fly" anywhere on Earth "to view…

  5. Grid for Earth Science Applications

    Science.gov (United States)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to

  6. "Thinking about a Sustainable Earth"

    Science.gov (United States)

    Ikeshita, Makoto

    2014-05-01

    1.Introduction The Course of study for Junior high school teaching was changed in 2008 in Japan. We should especially mention about this change that ESD, "Education for Sustainable Development," was written as a point of view. ESD is a kind of educations that is studied with a target for a region and that aims at reorganize of consciousness through thinking of how to be a better region. ESD's view was written for Social studies, Science, Foreign Languages, Health and Physical Education, Home Economics and Technical Arts, and the Period for Integrated Studies. Of these subjects, Social studies are the one of core subjects. Social studies for Junior high school consist of Geography, History and Civics. "Problem of us and international society" is the last part of Civics. Teacher helps students to understand international society deeply and think about the role of our country for it. Students research many problems (global environment, resources and energy, poverty etc.) and organize their thoughts on how make a better society as a part of the human family. I taught them to think about how to solve many themes like religious problems, terrorism problems, the North-South problems, and resource and energy problems. It is my practice to let them think about what they should do to solve the global warming problem. 2.The truth of my class I pointed out to the students that the length of summer time in Japan is increasing, and we can anticipate it will continue to increase in the future. After that, I explained to them that occurrence of sudden, heavy downpour of rain is increasing and helped them understand the process of this kind of downpour through some diagrams and pictures. I helped them understand the context of this increase of the length of summer time and heavy downpour within the whole earth's ecosystem. Such increases as these things are causing global warming. I asked them to think about what are the possible problems if global warming progresses. The ideas the

  7. Spectrometry of the Earth using neutrino oscillations

    Science.gov (United States)

    Taketa, Akimichi; Rott, Carsten

    2016-04-01

    Neutrinos have favorable properties for measuring the elemental composition deep inside the earth's interior. First, they propagate a long distance almost undisturbed through the earth due to their weak interactions with matter. Secondly, neutrino oscillations in matter are sensitive to the electron density of the medium traversed by them. Therefore, neutrinos can be used for a probe to determine the average atomic mass ratio Z/A of the earth's core by comparing with the earth's nucleus density distribution that is inferred from seismic observations. There is a little uncertainty in densities of the earth's core, but our knowledge of its main light element is still not fixed. With the advent of the new-generation megaton neutrino detectors, neutrino oscillation mass spectrometry will allow us to constrain directly the light elements in the earth's outer core. We report the detail of this novel technic and the sensitivity study.

  8. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  9. A View of Earth System Model Development

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tianjun; YU Yongqiang; WANG Bin

    2009-01-01

    This paper gives a definition of earth system model and shows three development phases of it, including physical climate system model, earth climate system model, and earth system model, based on an inves-tigation of climate system models in the world. It provides an expatiation on the strategic significance of future development of earth system model, an introduction of some representative scientific research plans on development of earth system model home and abroad, and a review of its status and trends based on the models of the fourth assessment report (AR4) of the Intergovernmental Panel on Climate Change (IPCC).Some suggestions on future development of earth system model in China are given, which are expected to be helpful to advance the development.

  10. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  11. Interplay between solid Earth and biological evolution

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2017-04-01

    Major shifts in Earth's evolution led to progressive adaptations of the biosphere. Particularly the emergence of continents permitted efficient use of solar energy. However, the widespread evolution of the biosphere fed back to the Earth system, often argued as a cause for the great oxidation event or as an important component in stabilizing Earth's climate. Furthermore, biologically enhanced weathering rates alter the flux of sediments in subduction zones, establishing a potential link to the deep interior. Stably bound water within subducting sediments not only enhances partial melting but further affects the mantle rheology. The mantle responds by enhancing its rates of convection, water outgassing, and subduction. How crucial is the emergence and evolution of life on Earth to these processes, and how would Earth have been evolved without the emergence of life? We here discuss concepts and present models addressing these questions and discuss the biosphere as a major component in evolving Earth system feedback cycles.

  12. Information Theory and the Earth's Density Distribution

    Science.gov (United States)

    Rubincam, D. P.

    1979-01-01

    An argument for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia lead to a density distribution which was surprisingly close to the optimum distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.

  13. Earth architecture: An alternative for sustainable construction

    Directory of Open Access Journals (Sweden)

    Gloria Zuleta Roa

    2012-01-01

    Full Text Available The interest on the sustainability of the architecture done with earth becomes the departure point of this article on the use of earth as an option for sustainable constructions. It begins with an historical review of the use of earth as a building material in the World and specifically in Colombia; its characteristics in relation to the sustainability of the constructive processes and finally its contextualization within the regulations that govern the building processes.

  14. Earth Knowledge Acquired by Middle School Students

    Science.gov (United States)

    Ride, Sally

    2008-01-01

    Earth Knowledge Acquired by Middle School Students (EarthKAM), an education activity, allows middle school students to program a digital camera on board the International Space Station to photograph a variety of geographical targets for study in the classroom. Photos are made available on the web for viewing and study by participating schools around the world. Educators use the images for projects involving Earth Science, geography, physics, and social science.

  15. Funing Rare Earths Industrial Co. Ltd

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The company covers separation with whole lines of light, medium and heavy rare earths, with annual separation volume of rare earth oxides of 4,500 tons. It also produces rare earth oxides, fluorides and salts. Products with high-purity and super-high-purity are produced according to customer's request. Under the technological guidance of domestic experts and application of modern high-pressure

  16. From Discovery to Impact - Near Earth Asteroids

    Directory of Open Access Journals (Sweden)

    Miloš Tichý

    2012-10-01

    Full Text Available The Near-Earth Objects (NEOs are the most important of the small bodies of the solar system, having the capability of close approaches to the Earth and the chance to collide with the Earth.  We present here the current system of discovery of these dangerous objects, standards for selecting useful and important targets for NEO follow-up astrometry, system of impact probabilities calculations, and also determination of impact site and evacuation area.

  17. Towards a living earth simulator

    Science.gov (United States)

    Paolucci, M.; Kossman, D.; Conte, R.; Lukowicz, P.; Argyrakis, P.; Blandford, A.; Bonelli, G.; Anderson, S.; de Freitas, S.; Edmonds, B.; Gilbert, N.; Gross, M.; Kohlhammer, J.; Koumoutsakos, P.; Krause, A.; Linnér, B.-O.; Slusallek, P.; Sorkine, O.; Sumner, R. W.; Helbing, D.

    2012-11-01

    The Living Earth Simulator (LES) is one of the core components of the FuturICT architecture. It will work as a federation of methods, tools, techniques and facilities supporting all of the FuturICT simulation-related activities to allow and encourage interactive exploration and understanding of societal issues. Society-relevant problems will be targeted by leaning on approaches based on complex systems theories and data science in tight interaction with the other components of FuturICT. The LES will evaluate and provide answers to real-world questions by taking into account multiple scenarios. It will build on present approaches such as agent-based simulation and modeling, multiscale modelling, statistical inference, and data mining, moving beyond disciplinary borders to achieve a new perspective on complex social systems.

  18. Towards a living earth simulator

    CERN Document Server

    Paolucci, M; Conte, R; Lukowicz, P; Argyrakis, P; Blandford, A; Bonelli, G; Anderson, S; de Freitas, S; Edmonds, B; Gilbert, N; Gross, M; Kohlhammer, J; Koumoutsakos, P; Krause, A; Linnér, B -O; Slusallek, P; Sorkine, O; Sumner, R W; Helbing, D; 10.1140/epjst/e2012-01689-8

    2013-01-01

    The Living Earth Simulator (LES) is one of the core components of the FuturICT architecture. It will work as a federation of methods, tools, techniques and facilities supporting all of the FuturICT simulation-related activities to allow and encourage interactive exploration and understanding of societal issues. Society-relevant problems will be targeted by leaning on approaches based on complex systems theories and data science in tight interaction with the other components of FuturICT. The LES will evaluate and provide answers to real-world questions by taking into account multiple scenarios. It will build on present approaches such as agent-based simulation and modeling, multiscale modelling, statistical inference, and data mining, moving beyond disciplinary borders to achieve a new perspective on complex social systems.

  19. ACSSB land mobile earth station

    Science.gov (United States)

    Taira, Shinichi; Ikegami, Tetsushi; Suzuki, Ryutaro; Suzuki, Shoichi; Kawahara, Hideki; Tada, Shun-Ichi

    1990-03-01

    This paper describes the performance of the land mobile earth station using the Amplitude Companded Single Sideband (ACSSB) modulation technique developed for mobile satellite communications and results of the field experiments which were conducted in rural, suburban, and urban areas. This ACSSB system uses a 3-kHz pilot tone, and the voice frequency band is from 300 to 2500 Hz. The experiments show that the required C/N0 for voice communications is 40 dBHz and the required C/N0 for pilot signal tracking is 34 dBHz. Voice quality in rural and suburban areas was degraded slightly. In urban areas shadowings due to the presence of large buildings and trees caused signal losses. A comparison of the ACSSB system with the conventional narrow-band frequency-modulation system indicates that the ACSSB system can transmit voice signals more efficiently.

  20. Anisotropy in the deep Earth

    Science.gov (United States)

    Romanowicz, Barbara; Wenk, Hans-Rudolf

    2017-08-01

    Seismic anisotropy has been found in many regions of the Earth's interior. Its presence in the Earth's crust has been known since the 19th century, and is due in part to the alignment of anisotropic crystals in rocks, and in part to patterns in the distribution of fractures and pores. In the upper mantle, seismic anisotropy was discovered 50 years ago, and can be attributed for the most part, to the alignment of intrinsically anisotropic olivine crystals during large scale deformation associated with convection. There is some indication for anisotropy in the transition zone, particularly in the vicinity of subducted slabs. Here we focus on the deep Earth - the lower mantle and core, where anisotropy is not yet mapped in detail, nor is there consensus on its origin. Most of the lower mantle appears largely isotropic, except in the last 200-300 km, in the D″ region, where evidence for seismic anisotropy has been accumulating since the late 1980s, mostly from shear wave splitting measurements. Recently, a picture has been emerging, where strong anisotropy is associated with high shear velocities at the edges of the large low shear velocity provinces (LLSVPs) in the central Pacific and under Africa. These observations are consistent with being due to the presence of highly anisotropic MgSiO3 post-perovskite crystals, aligned during the deformation of slabs impinging on the core-mantle boundary, and upwelling flow within the LLSVPs. We also discuss mineral physics aspects such as ultrahigh pressure deformation experiments, first principles calculations to obtain information about elastic properties, and derivation of dislocation activity based on bonding characteristics. Polycrystal plasticity simulations can predict anisotropy but models are still highly idealized and neglect the complex microstructure of polyphase aggregates with strong and weak components. A promising direction for future progress in understanding the origin of seismic anisotropy in the deep mantle

  1. Ultrasound: from Earth to space.

    Science.gov (United States)

    Law, Jennifer; Macbeth, Paul B

    2011-06-01

    Ultrasonography is a versatile imaging modality that offers many advantages over radiography, computed tomography, and magnetic resonance imaging. On Earth, the use of ultrasound has become standard in many areas of medicine including diagnosis of medical and surgical diseases, management of obstetric and gynecologic conditions, assessment of critically ill patients, and procedural guidance. Advances in telecommunications have enabled remotely-guided ultrasonography for both geographically isolated populations and astronauts aboard the International Space Station. While ultrasound has traditionally been used in spaceflight to study anatomical and physiological adaptations to microgravity and evaluate countermeasures, recent years have seen a growth of applications adapted from terrestrial techniques. Terrestrial, remote, and space applications for ultrasound are reviewed in this paper.

  2. New ESA Earth Explorer Missions

    Science.gov (United States)

    Herland, E.

    2006-12-01

    The European Space Agency has recently selected a set of six mission candidates for its next Earth Explorer Core mission. This mission will be launched in the beginning of the next decade, and will contribute significantly to Earth science in addition to the already approved six missions in the programme. The scientific priorities for the call for proposals were the global water cycle, the global carbon cycle, atmospheric chemistry and the human element in the Earth system. The presentation will outline the scientific objectives of each of the six mission proposals, and in particular address the potential contribution to the water and energy cycle research and CEOP. The six mission proposals are: BIOMASS global measurements of forest biomass. The measurement is accomplished by a space-borne P-band synthetic aperture polarimetric radar. The technique is mainly based on the measurement of the cross- polar backscattering coefficient, from which forest biomass is directly retrieved. Also uses multipolarization measurements and interferometry. The studies for this mission will include comparative studies to measure terrestrial biomass using P- or L-band and consideration of alternative implementations using L-band. TRAQ TRopospheric composition and Air Quality: Monitoring of air quality and long-range transport of air pollutants. A new synergistic sensor concept for process studies, particularly with respect to aerosol-cloud interactions. Focus on the rate of air quality change on regional and global scales, the strength and distribution of sources and sinks of tropospheric trace gases and aerosols influencing air quality, and the role of tropospheric composition in global change. Carries imaging spectrometers in the range from ultraviolet to short-wave infrared. PREMIER PRocess Exploration through Measurements of Infrared and millimetre-wave Emitted Radiation: Aims at understanding processes that link trace gases, radiation, chemistry and climate in the atmosphere

  3. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  4. Google Earth Grand Tour Themes

    Science.gov (United States)

    De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.; Dordevic, M. M.

    2014-12-01

    As part of an NSF TUES Type 3 project entitled "Google Earth for Onsite and Distance Education (GEODE)," we are assembling a "Grand Tour" of locations on Earth and other terrestrial bodies that every geoscience student should know about and visit at least in virtual reality. Based on feedback from colleagues at previous meetings, we have identified nine Grand Tour themes: "Plates and Plumes," "Rocks and Regions," "Geology Through Time," "The Mapping Challenge*," "U.S. National Parks*," "The Magical Mystery Tour*," "Resources and Hazards," "Planets and Moons," and "Top of the Pops." Themes marked with an asterisk are most developed at this stage and will be demonstrated in real time. The Mapping Challenge invites students to trace geological contacts, measure bedding strike and dip and the plunge, trend, and facing of a fold. There is an advanced tool for modeling periclinal folds. The challenge is presented in a game-like format with an emphasis on puzzle-solving that will appeal to students regardless of gender. For the tour of U.S. national parks, we divided the most geologically important parks into four groups—Western Pacific, West Coast, Rockies, and East Coast. We are combining our own team's GigaPan imagery with imagery already available on the Internet. There is a great deal of imagery just waiting to be annotated for geological education purposes. The Magical Mystery Tour takes students to Google Streetview locations selected by instructors. Students are presented with questions or tasks and are given automatic feedback. Other themes are under development. Within each theme, we are crowd-sourcing contributions from colleagues and inviting colleagues to vote for or against proposed locations and student interactions. The GEODE team includes the authors and: Heather Almquist, Stephen Burgin, Cinzia Cervato, Gene Cooper, Paul Karabinos, Terry Pavlis, Jen Piatek, Bill Richards, Jeff Ryan, Ron Schott, Kristen St. John, and Barb Tewksbury.

  5. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    Science.gov (United States)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  6. Looking at the earth from space

    Science.gov (United States)

    Geller, Marvin A.

    1988-01-01

    Some of the scientific accomplishments attained in observing the earth from space are discussed. A brief overview of findings concerning the atmosphere, the oceans and sea ice, the solid earth, and the terrestrial hydrosphere and biosphere is presented, and six examples are examined in which space data have provided unique information enabling new knowledge concerning the workings of the earth to be derived. These examples concern stratospheric water vapor, hemispheric differences in surface and atmosphere parameters, Seasat altimeter mesoscale variability, variability of Antarctic sea ice, variations in the length of day, and spaceborne radar imaging of ancient rivers. Future space observations of the earth are briefly addressed.

  7. Earth Rings for Planetary Environment Control

    Science.gov (United States)

    Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph

    2002-01-01

    For most of its past, large parts of the Earth have experienced subtropical climates, with high sea levels and no polar icecaps. This warmer environment was punctuated 570, 280, and 3 million years ago with periods of glaciation that covered temperate regions with thick ice for millions of years. At the end of the current ice age, a warmer climate could flood coastal cities, even without human-caused global warming. In addition, asteroids bombard the Earth periodically, with impacts large enough to destroy most life on Earth, and the sun is warming inexorably. This paper proposes a concept to solve these problems simultaneously, by creating an artificial planetary ring about the Earth to shade it. Past proposals for space climate control have depended on gigantic engineering structures launched from Earth and placed in Earth orbit or at the Earth-Sun L1 libration point, requiring fabrication, large launch masses and expense, constant control, and repair. Our solution is to begin by using lunar material, and then mine and remove Earth-orbit-crossing asteroids and discard the tailings into Earth orbit, to form a broad, flat ring like those of Saturn. This solution is evaluated and compared with other alternatives. Such ring systems can persist for thousands of years, and can be maintained by shepherding satellites or by continual replenishment from new asteroids to replace the edges of the ring lost by diffusion. An Earth ring at R = 1.3-1.83 RE would shade only the equatorial regions, moderating climate extremes, and could reverse a century of global warming. It could also absorb particles from the radiation belts, making trips to high Earth orbit and GEO safer for humans and for electronics. It would also light the night many times as bright as the full moon. A preliminary design of the ring is developed, including its location, mass, composition, stability, and timescale required. A one-dimensional climate model is used to evaluate the Earth ring performance

  8. Review on Rare Earth/Polymer Composite

    Institute of Scientific and Technical Information of China (English)

    刘力; 张立群; 赵素合; 金日光; 刘美琳

    2002-01-01

    The special properties of rare earth/polymer composite were described. More emph asis was put on the radiation shielding and magnetic properties. In the applicat ion to X-ray shielding, rare earth/polymer composite can make up the feeble abs o rbing area. If the rare earth content is high enough, it can demonstrate strong ability for thermal neutron absorption; The composite has strong paramagnetism. The feasibility of preparing magnetic rare earth/polymer composite was discussed . In addition, three preparation methods were introduced: simple polymerization, mixing and reaction processing. The effect of the rare earth/polymer composites pre -sturcture and the coordinate number of rare earth ions on the light property w as a nalyzed. Rare earth/polymer composite may have the structure and property simlar to those of the ionomer. The feasibility of the in-situ preparation of the rare earth/polymer nano structure is indicated. Besides, the relationship betwe en structure and properties of the rare earth/polymer composite was discussed. T he problems associated with such composite materials were also presented.

  9. Earth tides of an ellipsoidal, inelastic, and laterally heterogeneous Earth

    Science.gov (United States)

    Kim, T.; Shibuya, K.

    2012-12-01

    We used five stations covering a range of latitudes from 60°N to 70°S: METSÄHOVI, STRASBOURG, SUTHERLAND, CANBERRA, and SYOWA with Superconducting Gravimeter with sufficiently high-resolution data available for durations of at least five years to validate theoretical estimation based on an existing method. For the Earth model, we selected the model of Dehant et al. (1999) to validate the latitude dependency and inelasticity of gravimetric factor. We also used the model of Métivier and Conrad (2008) to validate the lateral heterogeneity of gravity observation. For the correction of ocean loading effect, we tested recent four global ocean tide models (TPXO7-atlas, EOT11a, DTU10, and HAMTIDE11a) as well as old ocean tide models. We estimated the misfit between the observed loading effect and the modeled ocean loading effect for the three main waves (O1, K1, and M2) at each station. Anomalous discrepancies at METSÄHOVI and SYOWA based on old ocean tide models were diminished by the use of recent ocean tide models. Gravimetric factors for K1, corrected using optimum recent ocean tide models, showed the possibility of obtaining parameters conforming to the prediction curve of model of inelastic non-hydrostatic Earth. Gravimetric factors corrected using optimum ocean tide models at METSÄHOVI, STRASBOURG, and CANBERRA showed tendencies towards the theoretical values for latitude dependence. However, at SUTHERLAND and SYOWA, large offsets from theoretical values were observed. These stations show the remaining misfits, 0.0733 and 0.0847 microGal, respectively. We think the portion of the anomaly could not be explained by the perturbation from the mantle convection, because the amplitude of gravity perturbation at these stations is very small. For example, at SUTHERLAND, the final residual for K1 band is 85 nanoGal but gravity perturbation by lateral heterogeneity is just ~0.81 nanoGal: Gravity perturbations up to 120 nanoGal for all bands come from mostly in Indonesia

  10. Global rare earth resources and scenarios of future rare earth industry

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhanheng

    2011-01-01

    It is known to all that China is abundant in rare earth resources. But rare earth deposits are really not that rare in the earth crust. In the five continents, i.e. Asia, Europe, Australia, North and South America, and Africa, there are about thirty four countries found to have rare earth deposits; Brazil might surpass China and rank the first in rare earth deposits. At present, investment in rare earth production was surged,there have been about 200 projects, and the total production for 25 of them would be more than 170 thousand tons after 2015, a multi-supply system on rare earths is being established worldwide. Cautions on the investment of rare earth production are involved.

  11. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery 3

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages the Earth as Art Three exhibit, which provides fresh and inspiring glimpses of different parts of...

  12. Chinalco Rare Earth has Surpassed Ganzhou to Become the Biggest Giant in South China Rare Earth

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As the pillar enterprise in Chinalco rare earth unit,Chinalco Guangxi Rare Earth Company firmly grasped the historical opportunity of the state government supporting six big groups including Chinalco to integrate and develop domestic rare earth enterprises,riding the east wind to stand out,recently,it made significant

  13. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  14. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  15. An Analog Earth Climate Model

    Science.gov (United States)

    Varekamp, J. C.

    2010-12-01

    The earth climate is broadly governed by the radiative power of the sun as well as the heat retention and convective cooling of the atmosphere. I have constructed an analog earth model for an undergraduate climate class that simulates mean climate using these three parameters. The ‘earth’ is a hollow, black, bronze sphere (4 cm diameter) mounted on a thin insulated rod, and illuminated by two opposite optic fibers, with light focused on the sphere by a set of lenses. The sphere is encased in a large double-walled aluminum cylinder (34 cm diameter by 26 cm high) with separate water cooling jackets at the top, bottom, and sides. The cylinder can be filled with a gas of choice at a variety of pressures or can be run in vacuum. The exterior is cladded with insulation, and the temperature of the sphere, atmosphere and walls is monitored with thermocouples. The temperature and waterflow of the three cooling jackets can be monitored to establish the energy output of the whole system; the energy input is the energy yield of the two optic fibers. A small IR transmissive lens at the top provides the opportunity to hook up the fiber of a hyper spectrometer to monitor the emission spectrum of the black ‘earth’ sphere. A pressure gauge and gas inlet-outlet system for flushing of the cell completes it. The heat yield of the cooling water at the top is the sum of the radiative and convective components, whereas the bottom jacket only carries off the radiative heat of the sphere. Undergraduate E&ES students at Wesleyan University have run experiments with dry air, pure CO2, N2 and Ar at 1 atmosphere, and a low vacuum run was accomplished to calibrate the energy input. For each experiment, the lights are flipped on, the temperature acquisition routine is activated, and the sphere starts to warm up until an equilibrium temperature has been reached. The lights are then flipped off and the cooling sequence towards ambient is registered. The energy input is constant for a given

  16. Earth's Most Important Producers: Meet the Phytoplankton!

    Science.gov (United States)

    Marrero, Meghan E.; Stevens, Nicole

    2011-01-01

    The ocean is home to some of Earth's most important producers. Single-celled organisms in the ocean are responsible for more than half of Earth's productivity, as well as most of its oxygen. Phytoplankton are single-celled, plantlike organisms. That is, they have chloroplasts and perform photosynthesis, but are not true plants, which are typically…

  17. Rotation and Magnetism of Earth's Inner Core

    Science.gov (United States)

    Glatzmaier; Roberts

    1996-12-13

    Three-dimensional numerical simulations of the geodynamo suggest that a super- rotation of Earth's solid inner core relative to the mantle is maintained by magnetic coupling between the inner core and an eastward thermal wind in the fluid outer core. This mechanism, which is analogous to a synchronous motor, also plays a fundamental role in the generation of Earth's magnetic field.

  18. Near Earth Asteroids:The Celestial Chariots

    CERN Document Server

    Green, Marc; Lacroix, Tom; Marchetto, Jordan; McCaffrey, Erik; Scougal, Erik; Humi, Mayer

    2013-01-01

    In this paper we put forward a proposal to use Near Earth Objects as radiation shield for deep space exploration. In principle these objects can provide also a spacious habitat for the astronauts and their supplies on their journeys. We undertake also a detailed assessment of this proposal for a mission from Earth to Mars.

  19. 21 CFR 573.340 - Diatomaceous earth.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diatomaceous earth. 573.340 Section 573.340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.340 Diatomaceous earth. (a) Identity. The additive consists of siliceous skeletal...

  20. Earth Charter, ESD and Chinese Philosophies

    Science.gov (United States)

    Liu, Yunhua; Constable, Alicia

    2010-01-01

    This article examines the relationship between the Earth Charter and education for sustainable development (ESD), as part of the UN Decade of Education for Sustainable Development. The areas of shared interest between the two are assessed and the invaluable nature of the Earth Charter as a resource outlining global values and principles for a…

  1. Moving dunes on the Google Earth

    CERN Document Server

    Sparavigna, Amelia Carolina

    2013-01-01

    Several methods exist for surveying the dunes and estimate their migration rate. Among methods suitable for the macroscopic scale, the use of the satellite images available on Google Earth is a convenient resource, in particular because of its time series. Some examples of the use of this feature of Google Earth are here proposed.

  2. Earth Charter, ESD and Chinese Philosophies

    Science.gov (United States)

    Liu, Yunhua; Constable, Alicia

    2010-01-01

    This article examines the relationship between the Earth Charter and education for sustainable development (ESD), as part of the UN Decade of Education for Sustainable Development. The areas of shared interest between the two are assessed and the invaluable nature of the Earth Charter as a resource outlining global values and principles for a…

  3. Reliability methods in OpenEarthTools

    NARCIS (Netherlands)

    Den Heijer, C.

    2012-01-01

    OpenEarthTools contains, apart from a lot of other tools in various programming languages, the probabilistic reliability methods FORM and Monte Carlo. This document aims at describing and providing background information and examples on the FORM and Monte Carlo implementation available in OpenEarthT

  4. Rare earth elements and strategic mineral policy

    NARCIS (Netherlands)

    Kooroshy, J.; Korteweg, R.; Ridder, M. de

    2010-01-01

    Newspapers report almost daily on international tensions around ‘strategic’ or ‘critical’ minerals such as rare earth elements. The temporary freeze of rare earth exports from China to Japan in late 2010 in retaliation of the capture of a Chinese captain is but one example of the strategic use of no

  5. Ultraviolet protection on a snowball Earth

    OpenAIRE

    Cockell, C.S.; Wynn-Williams, D. D.; Horneck, G

    2001-01-01

    Habitats in the Antarctic provide an insight into habitats available on snowball earth. Physical UV protection on snowball earth would have been dominated by the manifestations of ice and snow in different habitats. The snowball period was a golden age of UV protection.

  6. The Earth is a Planet Too!

    Science.gov (United States)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  7. Earth Control and Investigations: Training Course 1974.

    Science.gov (United States)

    Department of the Interior, Denver, CO. Engineering and Research Center.

    This document contains the outlines of each of 34 lectures given in the Earth Control and Investigations course sponsored by the Denver Laboratories. Topics covered include construction control of earth dams, canals, and filters; field and laboratory test procedures; soil classification and logging; and field investigations. (DT)

  8. Efficient Calculation of Earth Penetrating Projectile Trajectories

    Science.gov (United States)

    2006-09-01

    CALCULATION OF EARTH PENETRATING PROJECTILE TRAJECTORIES by Daniel F . Youch September 2006 Thesis Advisor: Joshua Gordis... Daniel F . Youch 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING...EFFICIENT CALCULATION OF EARTH PENETRATING PROJECTILE TRAJECTORIES Daniel F . Youch Lieutenant Commander, United States Navy B.S., Temple

  9. Ancient and Medieval Earth in Armenia

    Science.gov (United States)

    Farmanyan, S. V.

    2015-07-01

    Humankind has always sought to recognize the nature of various sky related phenomena and tried to give them explanations. The purpose of this study is to identify ancient Armenians' pantheistic and cosmological perceptions, world view, notions and beliefs related to the Earth. The paper focuses on the structure of the Earth and many other phenomena of nature that have always been on a major influence on ancient Armenians thinking. In this paper we have compared the term Earth in 31 languages. By discussing and comparing Universe structure in various regional traditions, myths, folk songs and phraseological units we very often came across to "Seven Heavens" (Seven heavens is a part of religious cosmology found in many major religions such as Islam, Judaism, Hinduism and Christianity (namely Catholicism) and "Seven Earths". Armenians in their turn divided Earth and Heavens into seven layers. And in science too, both the Earth and the Heavens have 7 layers. The Seven Heavens refer to the layers of our atmosphere. The Seven Earths refer to the layers of the Earth (from core to crust), as well as seven continents. We conclude that the perception of celestial objects varies from culture to culture and preastronomy had a significant impact on humankind, particularly on cultural diversities.

  10. Exploring Earth Systems Through STEM

    Science.gov (United States)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to

  11. Virtual Exploration of Earth's Evolution

    Science.gov (United States)

    Anbar, A. D.; Bruce, G.; Semken, S. C.; Summons, R. E.; Buxner, S.; Horodyskyj, L.; Kotrc, B.; Swann, J.; Klug Boonstra, S. L.; Oliver, C.

    2014-12-01

    Traditional introductory STEM courses often reinforce misconceptions because the large scale of many classes forces a structured, lecture-centric model of teaching that emphasizes delivery of facts rather than exploration, inquiry, and scientific reasoning. This problem is especially acute in teaching about the co-evolution of Earth and life, where classroom learning and textbook teaching are far removed from the immersive and affective aspects of field-based science, and where the challenges of taking large numbers of students into the field make it difficult to expose them to the complex context of the geologic record. We are exploring the potential of digital technologies and online delivery to address this challenge, using immersive and engaging virtual environments that are more like games than like lectures, grounded in active learning, and deliverable at scale via the internet. The goal is to invert the traditional lecture-centric paradigm by placing lectures at the periphery and inquiry-driven, integrative virtual investigations at the center, and to do so at scale. To this end, we are applying a technology platform we devised, supported by NASA and the NSF, that integrates a variety of digital media in a format that we call an immersive virtual field trip (iVFT). In iVFTs, students engage directly with virtual representations of real field sites, with which they interact non-linearly at a variety of scales via game-like exploration while guided by an adaptive tutoring system. This platform has already been used to develop pilot iVFTs useful in teaching anthropology, archeology, ecology, and geoscience. With support the Howard Hughes Medical Institute, we are now developing and evaluating a coherent suite of ~ 12 iVFTs that span the sweep of life's history on Earth, from the 3.8 Ga metasediments of West Greenland to ancient hominid sites in East Africa. These iVFTs will teach fundamental principles of geology and practices of scientific inquiry, and expose

  12. The Nearest of the Near Earth Asteroids

    Science.gov (United States)

    Kortenkamp, Stephen J.

    2014-11-01

    While the orbits of many known near-Earth objects (NEOs) may cross that of Earth, very few NEOs actually approach near to Earth itself. In fact, the majority of NEOs spend most of their orbital periods in the asteroid belt beyond Mars. However, there is a subset of NEOs on orbits which allow for repeated close-encounters with Earth. These objects are locked in a co-orbital resonance with Earth, orbiting the sun in exactly one year. This unusual one-to-one resonance causes the NEOs to appear to be orbiting Earth and gives them their name; quasi-satellites.Despite their close proximity to Earth, only recently have the first quasi-satellites of Earth been detected. These are the asteroids 2003 YN107, 2004 GU9, and 2006 FV35. We carried out N-body computer simulations of these asteroids as well as a larger theoretical population. We demonstrate that quasi-satellite asteroids always remain exceptionally close to Earth, typically just 20-60 times farther than the moon, and undergo two close-encounters with Earth each year. Furthermore, quasi-satellites that eventually escape the resonance can have extremely deep low-velocity close-encounters with Earth as they leave the resonance, some coming well inside the orbit of the moon.When weak drag forces are included in the simulations quasi-satellite objects evolve onto more Earth-like orbits and spiral closer and closer to Earth. This dramatically reduces the relative velocity and distance of closest approach between Earth and the quasi-satellite object. Under the influence of weak drag quasi-satellites objects can develop effective encounter velocities of just a few hundred meters per second, often much less. These low encounter velocities lead to a strong enhancement in Earth’s gravitationally enhanced impact cross-section compared to close-encounters of non-resonant objects with similar initial orbital elements.This research is supported by NASA grant NNX14AN23G.

  13. Rare Earth Metals: Resourcefulness and Recovery

    Science.gov (United States)

    Wang, Shijie

    2013-10-01

    When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.

  14. Detecting supernovae neutrino with Earth matter effect

    CERN Document Server

    Liao, Wei

    2016-01-01

    We study Earth matter effect in oscillation of supernovae neutrinos. We show that detecting Earth matter effect gives an independent measurement of spectra of supernovae neutrinos, i.e. the flavor difference of the spectra of supernovae neutrinos. We study the effect of energy resolution and angular resolution of final electron or positron on detecting the signal of Earth matter effect. We show that varying the widths of energy bins in analysis can change the signal strength of Earth matter effect and the statistical fluctuation. A reasonable choice of energy bins can both suppress the statistical fluctuation and make out a good signal strength relative to the statistical fluctuation. Neutrino detectors with good energy resolution and good angular resolution are therefore preferred so that there are more freedom to vary energy bins and to optimize the signal of Earth matter effect in analyzing events of supernovae neutrinos.

  15. Geoneutrinos and the Earth inner parts structure

    CERN Document Server

    Sinev, V V

    2010-01-01

    The connection between geoneutrino registration and the Earth theory test is discussed. We compare standard theory of lithosphere plates and hypothesis of hydride Earth. Last hypothesis adds additional neutrino source $-$ planet core in which the initial Earth composition is conserved. Large volume scintillation detector is supposed to install at Baksan neutrino observatory INR RAS at Caucasus. The detector will register all possible neutrino fluxes, but mainly geo-neutrinos. So kind a detector (or detector net) placed in a number of sites on the Earth surface can measure all radioactivity from $^{238}$U and $^{232}$Th, because their neutrino energy exceeds the inverse beta-decay reaction threshold. By this way it will it possible to understand if there are any more neutrino sources in the Earth other than the crust and mantle.

  16. Alternative paths to Earth-Moon transfer

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The planar, circular, restricted three-body problem predicts the existence of periodic orbits around the Lagrangian equilibrium point L1. Considering the Earth-lunar-probe system, some of these orbits pass very close to the surfaces of the Earth and the Moon. These characteristics make it possible for these orbits, in spite of their instability, to be used in transfer maneuvers between Earth and lunar parking orbits. The main goal of this paper is to explore this scenario, adopting a more complex and realistic dynamical system, the four-body problem Sun-Earth-Moon-probe. We defined and investigated a set of paths, derived from the orbits around L1, which are capable of achieving transfer between low-altitude Earth (LEO and lunar orbits, including high-inclination lunar orbits, at a low cost and with flight time between 13 and 15 days.

  17. Spectrometry of the Earth using Neutrino Oscillations

    CERN Document Server

    Rott, Carsten; Bose, Debanjan

    2015-01-01

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth's inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth's electron density. The Earth's chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth's matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject outer core models with large hydrogen content and thereby demonstrate the potential of this novel method. In the future, dedicated instruments could be capable of distin...

  18. Enforced Development Of The Earth's Atmosphere

    CERN Document Server

    Iudin, M

    2010-01-01

    We review some basic issues of the life-prescribed development of the Earth's system and the Earth's atmosphere and discourse the unity of Earth's type of life in physical and transcendental divisions. In physical division, we exemplify and substantiate the origin of atmospheric phenomena in the metabolic pathways acquired by the Earth's life forms. We are especially concerned with emergence of pro-life superficial environments under elaboration of the energy transformations. Analysis of the coupling phenomena of elaborated ozone-oxygen transformation and Arctic bromine explosion is provided. Sensing is a foundation of life and the Earth's life. We offer our explanation of human-like perception, reasoning and creativity. We suggest a number of propositions about association of transcendental and physical divisions and the purpose of existence. The study relates to the tradition of natural philosophy which it follows. The paper is suitable for the popular reading.

  19. Gravitational potential, inertia and Earth rotation

    CERN Document Server

    Bourda, G

    2007-01-01

    Several satellite missions, devoted to the study of the Earth gravity field, have been launched (like CHAMP, recently). This year, GRACE (Gravity Recovery and Climate Experiment) will allow us to obtain a more precise geoid. But the most important is that they will supply the temporal variations of the geopotential coefficients (called Stokes coefficients). In the poster we show how the Earth gravitational potential is linked to the Earth rotation parameters. Indeed, through the Earth inertia coefficients, we can connect the variation of LOD and Polar Motion with the temporal variations of the Stokes coefficients. We also consider the nutations, that are related to the gravitational geopotential coefficients. We discuss the possibility of using the Stokes coefficients in order to improve our knowledge of the Earth rotation.

  20. Earth's energy imbalance and implications

    Directory of Open Access Journals (Sweden)

    J. Hansen

    2011-12-01

    Full Text Available Improving observations of ocean heat content show that Earth is absorbing more energy from the Sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.58 ± 0.15 W m−2 during the 6-yr period 2005–2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be −1.6 ± 0.3 W m−2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade.

  1. Near Earth Asteroid (NEA) Scout

    Science.gov (United States)

    Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared; McNutt, Leslie

    2017-01-01

    NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission that will lay the groundwork for the future use of solar sails. The NEA Scout mission will use the sail as primary propulsion allowing it to survey and image one NEA's of interest for future human exploration. NEA Scout will launch on the first mission of the Space Launch System (SLS) in 2018. After its first encounter with the Moon, NEA Scout will enter the sail characterization phase by the 86 square meter sail deployment. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. The spacecraft will perform a series of lunar flybys to achieve optimum departure trajectory before beginning its two year-long cruise. About one month before the asteroid flyby, NEA Scout will start its approach phase using optical navigation on top of radio tracking. The solar sail will provide NEA Scout continuous low thrust to enable a relatively slow flyby of the target asteroid under lighting conditions favorable to geological imaging. Once complete, NASA will have demonstrated the capability to fly low-cost, high delta V CubeSats to perform interplanetary missions.

  2. Recycling of Rare Earth Elements

    Science.gov (United States)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  3. Earth rotation and core topography

    Science.gov (United States)

    Hager, Bradford H.; Clayton, Robert W.; Spieth, Mary Ann

    1988-01-01

    The NASA Geodynamics program has as one of its missions highly accurate monitoring of polar motion, including changes in length of day (LOD). These observations place fundamental constraints on processes occurring in the atmosphere, in the mantle, and in the core of the planet. Short-timescale (t less than or approx 1 yr) variations in LOD are mainly the result of interaction between the atmosphere and the solid earth, while variations in LOD on decade timescales result from the exchange of angular momentum between the mantle and the fluid core. One mechanism for this exchange of angular momentum is through topographic coupling between pressure variations associated with flow in the core interacting with topography at the core-mantel boundary (CMB). Work done under another NASA grant addressing the origin of long-wavelength geoid anomalies as well as evidence from seismology, resulted in several models of CMB topography. The purpose of work supported by NAG5-819 was to study further the problem of CMB topography, using geodesy, fluid mechanics, geomagnetics, and seismology. This is a final report.

  4. Earth's Energy Imbalance and Implications

    CERN Document Server

    Hansen, James; Kharecha, Pushker; von Schuckmann, Karina

    2011-01-01

    Improving observations of ocean temperature confirm that Earth is absorbing more energy from the sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.59 \\pm 0.15 W/m2 during the 6-year period 2005-2010, provides fundamental verification of the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be -1.6 \\pm 0.3 W/m2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. A recent decrease in ocean heat uptake ...

  5. Mode-locked Lasers Applied to Deflecting a Near Earth Object on Collision Course with Earth

    CERN Document Server

    Fork, Richard; Burgess, Luke; Bergstue, Grant

    2013-01-01

    We consider synchronized trains of sub-picosecond pulses generated by mode-locked lasers applied to deflection of near Earth objects (NEO) on collision course with Earth. Our method is designed to avoid a predicted collision of the NEO with Earth by at least the diameter of Earth. We estimate deflecting a 10,000 MT NEO, such as the asteroid which struck Earth near Chelyabinsk, Russia to be feasible within several months using average power in the ten kilowatt range. We see this deflection method as scalable to larger NEO to a degree not possible using continuous laser systems.

  6. Moving KML geometry elements within Google Earth

    Science.gov (United States)

    Zhu, Liang-feng; Wang, Xi-feng; Pan, Xin

    2014-11-01

    During the process of modeling and visualizing geospatial information on the Google Earth virtual globe, there is an increasing demand to carry out such operations as moving geospatial objects defined by KML geometry elements horizontally or vertically. Due to the absence of the functionality and user interface for performing the moving transformation, it is either hard or impossible to interactively move multiple geospatial objects only using the existing Google Earth desktop application, especially when the data sets are in large volume. In this paper, we present a general framework and associated implementation methods for moving multiple KML geometry elements within Google Earth. In our proposed framework, we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from the imported KML objects. Subsequently, we interactively control the movement distance along a specified orientation by employing a custom user interface, calculate the transformed geographic location for each KML geometry element, and adjust geographic coordinates of the points in each KML objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D visualization and spatial analysis. A key advantage of the proposed framework is that it provides a simple, uniform and efficient user interface for moving multiple KML geometry elements within Google Earth. More importantly, the proposed framework and associated implementations can be conveniently integrated into other customizable Google Earth applications to support interactively visualizing and analyzing geospatial objects defined by KML geometry elements.

  7. Research and Teaching About the Deep Earth

    Science.gov (United States)

    Williams, Michael L.; Mogk, David W.; McDaris, John

    2010-08-01

    Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.

  8. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  9. Journey to the Center of the Earth

    Science.gov (United States)

    Stevenson, David

    2014-03-01

    The center of Earth is at about the temperature of the surface of the Sun (about 6000K) but frozen because of the extreme pressure. I will place the Earth in a more general context of planets (including exoplanets) and explain how it is that the materials deep in Earth can behave differently from the same composition at low pressure.I will describe the sequence of layers and materials and conditions as one travels in a hypothetical probe from the surface to the center, emphasizing the things we do not understand well. I will talk about he extent to which Earth's mantle is imperfectly mixed and may have a bottom layer above the core that is different in composition. I will discuss the Urey number puzzle (what explains Earth's heat flow?). I will focus on the puzzle that Earth's magnetic field presents: How is it generated and how has this worked for billions of years? It seems that we need another energy source. I will talk about how Earth has a memory of how it formed, in particulate the high temperatures resulting from events such as the giant impact that led to our Moon. I will end with a discussion of what to do about the remaining puzzles, in particular the possible value of the geoneutrino experiment and attempts to directly probe the interior.

  10. Solar Energy Cell with Rare Earth Film

    Institute of Scientific and Technical Information of China (English)

    Li Baojun; Yang Tao; Zhou Yao; Zhou Meng; Fu Xiliang; Fu Li

    2004-01-01

    The characteristic of the solar energy cell with the rare earth film according to theory of molecular structure was introduced.When sunlight shines, the molecules of the rare earth film can absorb energy of the photon and jump to the excited state from the basic state, and play a role in storing solar energy.When sunlight do not shine, the electron of the excited state returns to the basic state, the rare earth film can automatically give out light and shine to surface of the solar cell, which can make solar cell continuously generate electric current.The rare earth film can absorb direct,scattering sunlight, and increase density of solar energy to reach surface of the solar cell, and play focusing function.The rare earth film can bear 350 ~ 500 ℃, which make the solar cell be able to utilize the focusing function system.Because after luminescence of the rare earth film, it can release again the absorbed solar energy through 1 ~ 8 h, and play a role in storing solar energy; The solar cell with the rare-earth film can generate electricity during night and cloudy days, and remarkably increase efficiency of the solar cell.

  11. USGEO Common Framework For Earth Observation Data

    Science.gov (United States)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  12. Earth Science Mining Web Services

    Science.gov (United States)

    Pham, Long; Lynnes, Christopher; Hegde, Mahabaleshwa; Graves, Sara; Ramachandran, Rahul; Maskey, Manil; Keiser, Ken

    2008-01-01

    To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at he GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADam components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestras the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to the infusion is the loosely coupled, Web-Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.

  13. Earth Science Mining Web Services

    Science.gov (United States)

    Pham, L. B.; Lynnes, C. S.; Hegde, M.; Graves, S.; Ramachandran, R.; Maskey, M.; Keiser, K.

    2008-12-01

    To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at the GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADaM components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestrates the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to this infusion is the loosely coupled, Web- Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.

  14. Evolution of Earth Like Planets

    Science.gov (United States)

    Monroy-Rodríguez, M. A.; Vega, K. M.

    2017-07-01

    In order to study and explain the evolution of our own planet we have done a review of works related to the evolution of Earth-like planets. From the stage of proto-planet to the loss of its atmosphere. The planetary formation from the gas and dust of the proto-planetary disk, considering the accretion by the process of migration, implies that the material on the proto-planet is very mixed. The newborn planet is hot and compact, it begins its process of stratification by gravity separation forming a super dense nucleus, an intermediate layer of convective mantle and an upper mantle that is less dense, with material that emerges from zones at very high pressure The surface with low pressure, in this process the planet expands and cools. This process also releases gas to the surface, forming the atmosphere, with the gas gravitationally bounded. The most important thing for the life of the planet is the layer of convective mantle, which produces the magnetic field, when it stops the magnetic field disappears, as well as the rings of van allen and the solar wind evaporates the atmosphere, accelerating the evolution and cooling of the planet. In a natural cycle of cataclysms and mass extinctions, the solar system crosses the galactic disk every 30 million years or so, the increase in the meteorite fall triggers the volcanic activity and the increase in the release of CO2 into the atmosphere reaching critical levels (4000 billion tons) leads us to an extinction by overheating that last 100 000 years, the time it takes CO2 to sediment to the ocean floor. Human activity will lead us to reach critical levels of CO2 in approximately 300 years.

  15. Earth's energy imbalance and implications

    Directory of Open Access Journals (Sweden)

    J. Hansen

    2011-09-01

    Full Text Available Improving observations of ocean heat content show that Earth is absorbing more energy from the sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.59 ± 0.15 W m−2 during the 6-year period 2005–2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be −1.6 ± 0.3 W m−2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade.

    Humanity is potentially vulnerable to global temperature change, as discussed in the Intergovernmental Panel on Climate Change (IPCC, 2001, 2007 reports and by innumerable authors. Although climate change is driven by many climate forcing agents and the climate system also exhibits unforced (chaotic variability, it is now widely agreed that the strong global warming trend of recent decades is caused predominantly by human-made changes of atmospheric composition (IPCC, 2007.

    The basic physics underlying this global warming, the greenhouse effect, is simple. An increase of gases

  16. The NASA Earth Science Flight Program

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2014-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 17 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission and the Orbiting Carbon Observatory-2 (OCO-2). The ESD has 18 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small competitively selected orbital and instrument missions of opportunity belonging to the Earth Venture (EV) Program. The International Space Station (ISS) is being used to host a variety of NASA Earth science instruments. An overview of plans and current status will be presented.

  17. Digital Earth Initiative: A Joint Interagency Program

    Science.gov (United States)

    Halem, Milton

    1999-01-01

    The Digital Earth is a virtual representation of our planet that enables a person to explore and interact with the vast amounts of natural and cultural information gathered about the Earth. The Digital Earth comprises data interfaces and standards enabling access to geo-referenced data from remote sensing, cartographic, demographic, medical, and other sources to respond to questions posed by the user. In a recent address at the California Science Center in Los Angeles, Vice President Al Gore articulated a Digital Earth Vision. That vision spoke to developing a multi-resolution, three-dimensional representation of the planet, into which we can roam and zoom into vast quantities of embedded geo-referenced data. The vision was not limited to moving through space but also allowing travel over a time-line, which can be set for days, years, centuries, or even geological epochs. As prototypes become available, it would also be possible to interact with the Digital Earth in multiple places around the country with access to high-speed networks and at a more limited level of access over the Internet. NASA was asked by the Vice President to lead an interagency initiative that would take steps to bring this vision to the public. This talk describes the start-up and plans of the Digital Earth Interagency Working Group in the formulation of its charter, an architecture reference model for Digital Earth, public/private partnerships, cooperative agreement notices, Digital Earth prototypes, and testbeds. Animations employing technologies for virtual roaming and zooming through multi-resolution satellite data set as prototype systems will be presented along with examples of potential user scenarios. Plans for engaging academia and industry in implementing the Digital Earth initiative will be discussed.

  18. Partitioning properties of rare earth ores in China

    Institute of Scientific and Technical Information of China (English)

    CHI Ru'an; LI Zhongjun; PENG Cui; ZHU Guocai; XU Shengming

    2005-01-01

    The properties of rare earth partitioning in Chinese industrial rare earth ores were analyzed. Rare earth ores can be divided into the single-mineral type ore with bastnaesite, the multi-mineral type ore with bastnaesite and monazite, and the weathering crust type. Both the Bayan Obo rare earth ore and the Zhushan rare earth ore are a kind of mixed ore, consisting of bastnaesite and monazite. Their rare earth partitionings are strongly enriched in light rare earths, where CeO2 is 50% and the light rare earth partitioning is totally over 95%. The Mianning rare earth ore as well as the Weishan rare earth is a kind of rare earth ore only having bastnaesite. Their rare earth partitionings are also strongly enriched in light rare earths,in which CeO2 is 47% and the light rare earth partitioning is totally over 94%. For the weathering crust type rare earth ore,there are the Longnan rare earth ore, the Xunwu rare earth ore, and the middle yttrium and rich europium ore. In the Longnan rare earth ore, which is strongly enriched in heavy rare earths, Y2O3 is 64.83%, and the heavy and light rare earth partitionings are 89.40% and 10.53%, respectively. In the Xunwu rare earth ore, which is strongly enriched in light rare earths, CeO2 is 47.16%, and the light rare earth partitioning is totally 93.25%. Y and Eu are enriched in the middle yttrium and rich europium ore. Its middle rare earth partitioning is totally over 10%, and Eu2O3 and Y2O3 are over 0.5% and 20%,respectively, which are mainly industrial resources of the middle and the heavy rare earths.

  19. Space and Earth Science Data Compression Workshop

    Science.gov (United States)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  20. Earth Sciences Division collected abstracts: 1979

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  1. Evolution of the Earth-Moon system

    Science.gov (United States)

    Touma, Jihad; Wisdom, Jack

    1994-01-01

    The tidal evolution of the Earth-Moon system is reexamined. Several models of tidal friction are first compared in an averaged Hamiltonian formulation of the dynamics. With one of these models, full integrations of the tidally evolving Earth-Moon system are carried out in the complete, fully interacting, and chaotically evolving planetary system. Classic results on the history of the lunar orbit are confirmed by our more general model. A detailed history of the obliquity of the Earth which takes into account the evolving lunar orbit is presented.

  2. How Inge Lehmann Discovered the Inner Core of the Earth

    Science.gov (United States)

    Rousseau, Christiane

    2013-01-01

    The mathematics behind Inge Lehmann's discovery that the inner core of the Earth is solid is explained using data collected around the Earth on seismic waves and their travel time through the Earth.

  3. An Earth-sized planet with an Earth-like density.

    Science.gov (United States)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  4. Not So Rare Earth? New Developments in Understanding the Origin of the Earth and Moon

    Science.gov (United States)

    Righter, Kevin

    2007-01-01

    A widely accepted model for the origin of the Earth and Moon has been a somewhat specific giant impact scenario involving an impactor to proto-Earth mass ratio of 3:7, occurring 50-60 Ma after T(sub 0), when the Earth was only half accreted, with the majority of Earth's water then accreted after the main stage of growth, perhaps from comets. There have been many changes to this specific scenario, due to advances in isotopic and trace element geochemistry, more detailed, improved, and realistic giant impact and terrestrial planet accretion modeling, and consideration of terrestrial water sources other than high D/H comets. The current scenario is that the Earth accreted faster and differentiated quickly, the Moon-forming impact could have been mid to late in the accretion process, and water may have been present during accretion. These new developments have broadened the range of conditions required to make an Earth-Moon system, and suggests there may be many new fruitful avenues of research. There are also some classic and unresolved problems such as the significance of the identical O isotopic composition of the Earth and Moon, the depletion of volatiles on the lunar mantle relative to Earth's, the relative contribution of the impactor and proto-Earth to the Moon's mass, and the timing of Earth's possible atmospheric loss relative to the giant impact.

  5. Recovering heavy rare earth metals from magnet scrap

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  6. Platinum in Earth surface environments

    Science.gov (United States)

    Reith, F.; Campbell, S. G.; Ball, A. S.; Pring, A.; Southam, G.

    2014-04-01

    Platinum (Pt) is a rare precious metal that is a strategic commodity for industries in many countries. The demand for Pt has more than doubled in the last 30 years due to its role in the catalytic conversion of CO, hydrocarbons and NOx in modern automobiles. To explore for new Pt deposits, process ores and deal with ecotoxicological effects of Pt mining and usage, the fundamental processes and pathways of Pt dispersion and re-concentration in surface environments need to be understood. Hence, the aim of this review is to develop a synergistic model for the cycling of Pt in Earth surface environments. This is achieved by integrating the geological/(biogeo)chemical literature, which focuses on naturally occurring Pt mobility around ore deposits, with the environmental/ecotoxicological literature dealing with anthropogenic Pt dispersion. In Pt deposits, Pt occurs as sulfide-, telluride- and arsenide, native metal and alloyed to other PGEs and iron (Fe). Increased mining and utilization of Pt combined with the burning of fossil fuels have led to the dispersion of Pt-containing nano- and micro-particles. Hence, soils and sediments in industrialized areas, urban environments and along major roads are now commonly Pt enriched. Platinum minerals, nuggets and anthropogenic particles are transformed by physical and (bio)geochemical processes. Complexation of Pt ions with chloride, thiosulfate, ammonium, cyanide, low- and high molecular weight organic acids (LMWOAs and HMWOAs) and siderophores can facilitate Pt mobilization. Iron-oxides, clays, organic matter and (micro)biota are known to sequester Pt-complexes and -particles. Microbes and plants are capable of bioaccumulating and reductively precipitating mobile Pt complexes. Bioaccumulation can lead to toxic effects on plants and animals, including humans. (Bio)mineralization in organic matter-rich sediments can lead to the formation of secondary Pt particles and -grains. Ultimately, Pt is enriched in oceanic sediments

  7. Interferometric Search for Exo-Earths

    Science.gov (United States)

    Shao, Michael

    2008-01-01

    This slide presentation reviews the use of the a reduced cost version of the Space Interferometry Mission (SIM), called SIM "Lite" to detect potential planets that are earth like around about 60 of the nearest stars.

  8. Factors Influencing the Earth's Magnetic Field Evolution

    CERN Document Server

    Kurazhkovskii, A Yu; Klain, B I

    2008-01-01

    The relationship between the behavior of an ancient geomagnetic field characteristics (paleointensity and frequency of inversions) and cyclic recurrence of endogenic and cosmogeneous processes which are conceivably connected with radial mantle heat transmission and the Earth rotation speed has been studied. It is shown that endogenic processes affect the behavior of the paleointensity and frequency of inversions. Large basalt effusions identified with plumes are accompanied by the changes in paleointensity (by 30-40)% and the frequency of inversions. Characteristic time intervals of paleointensity variations caused by the formation of plumes makes up 10-20 Ma. The paleointensity varies (by 15-30)% according to phases of the riftogenesis activization and tension - compression cycles. The dependence of geomagnetic field behavior on changes of the Earth rotation speed which occurred as a result of the Earth - Moon - Sun system evolution has been analyzed. Thus, in accordance with phases of the Earth - Moon dista...

  9. The Kentucky Earth System Science Education Project

    Science.gov (United States)

    Whitworth, J. M.; Siewers, F. D.

    2003-12-01

    The Kentucky Earth Systems Education Project is a partnership between Western Kentucky University and Morehead State University to deliver the Earth Systems Science Alliance (ESSEA) courses via the Kentucky Virtual University to classroom teachers in Kentucky and beyond. One goal of the project has been to integrate the courses into the teacher preparation programs at both institutions, as well as providing professional development to practicing K-12 teachers. This presentation will highlight how team teaching courses with professors from different institutions at opposite ends of the state, as well as teaching in a different way, has brought new challenges and its own rewards. The instructors will present their own experiences and lessons learned that resulted in more effective ways of communicating and engaging students in the study of Earth Systems. They will also discuss how teaching strategies used in the course has changed their own teaching and student reactions to their online experience learning earth systems science.

  10. Rare earth elements in nuclear medicine

    OpenAIRE

    Kodina G.E.; Kulakov V.N.; Sheino I.N.

    2014-01-01

    The review focuses on the key applications of stable and radioactive isotopes of rare earth elements in the technology of nuclear medicine, radionuclide diagnostics and therapy, as well as magnetic resonance imaging and binary radiotherapy technologies.

  11. Rare earth elements in nuclear medicine

    Directory of Open Access Journals (Sweden)

    Kodina G.E.

    2014-12-01

    Full Text Available The review focuses on the key applications of stable and radioactive isotopes of rare earth elements in the technology of nuclear medicine, radionuclide diagnostics and therapy, as well as magnetic resonance imaging and binary radiotherapy technologies.

  12. Rare earth element mines, deposits, and occurrences

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains location, geologic and mineral economic data for world rare earth mines, deposits, and occurrences. The data in this compilation were derived...

  13. The Evolution of the Earth's Magnetic Field.

    Science.gov (United States)

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  14. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.;

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements...... will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect...

  15. Volatile accretion history of the Earth.

    Science.gov (United States)

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.

  16. Coherent flow structures at earth's surface

    National Research Council Canada - National Science Library

    Venditti, J.G; Best, J.L; Church, M; Hardy, R.J

    2013-01-01

    This book reviews the recent progress in the study of the turbulent flows that sculpt the Earth's surface, focusing in particular on the organized structures that have been identified in recent years...

  17. A Grid portal for Earth Observation community

    Science.gov (United States)

    Aloisio, G.; Cafaro, M.; Cartenì, G.; Epicoco, I.; Quarta, G.

    2005-03-01

    Earth Observation techniques offer many powerful instruments for Earth planet study, urban development planning, military intelligence helping and so on. Terabytes of EO and geospatial data about lands, oceans, glaciers, cities, etc. are continuously downloaded through remote-sensing infrastructures and stored into heterogeneous, distributed repositories usually belonging to different virtual organizations. A problem-solving environment can be a viable solution to handle, coordinate and share heterogeneous and distributed resources. Moreover, grid computing is an emerging technology to solve large-scale problems in dynamic, multi-institutional Virtual Organizations coordinated by sharing resources such as high-performance computers, observation devices, data and databases over high-speed networks, etc. In this paper we present the Italian Grid for Earth Observation (I-GEO) project, a pervasive environment based on grid technology to help the integration and processing of Earth Observation data, providing a tool to share and access data, applications and computational resources among several organizations.

  18. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  19. Learning to Improve Earth Observation Flight Planning

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes a method and system for integrating machine learning with planning and data visualization for the management of mobile sensors for Earth science...

  20. Magnetic Reconnection in the Earth's Magnetosphere

    Science.gov (United States)

    Tsurutani, B. T.; Lakhina, G. S.

    1997-01-01

    The process of magnetic reconnection plays an important role during the interaction of the solar wind with the Earth's magnetosphere which leads to the exchange of mass, momentum, and energy between these two highly conducting plasmas.

  1. Life on Earth and other planetary bodies

    CERN Document Server

    Hanslmeier, Arnold; Seckbach, Joseph

    2012-01-01

    This volume covers aspects of life on Earth with all its diversity and the possibilities of extraterrestrial life. It presents contributions by experts from 20 countries who discuss astrobiology emphasizing life "as we know it" to extraterrestrial places.

  2. From Telluric (Earth) To Tectonic (Sky)

    OpenAIRE

    Buchanan, Christopher Taylor

    2008-01-01

    My graduate thesis is a study of telluric and tectonic architecture. These two ideas inspired me to design a baseball stadium for the town of Blacksburg, Virginia that portrayed the contrasting concepts "of the earth" and "of the sky."

  3. Earth Observing-1 Hyperion: 2001-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Earth Observing-1(EO-1) satellite was launched on November 21, 2000 by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration...

  4. The Age-of-the-Earth-Debate.

    Science.gov (United States)

    Badash, Lawrence

    1989-01-01

    Summarizes the development of the Earth's age calculation including the work of Archbishop Ussher, James Hutton, Lord Kelvin, Ernest Rutherford, Bertram Boltwood, and Arthur Holmes. Describes the changes in radioisotope dating methods. (YP)

  5. Rare Earth: Production, Trade and Demand

    Institute of Scientific and Technical Information of China (English)

    HONG Feng

    2007-01-01

    @@ Editor's note: The paper was quoted from the papers collection of the "19th International Workshop on Rare Earth Permanent Magnets & Their Applications", held in Beijing on August 30-Spetember 2 of 2006.

  6. Origin of the earth's ocean basins

    Science.gov (United States)

    Frey, H.

    1977-01-01

    The earth's original ocean basins are proposed to be mare-type basins produced 4 billion y.a. by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upward from the observed number of lunar basins for the greater capture cross-section and impact velocity of the earth indicates that at least 50% of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60% oceanic, 40% continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  7. Electromagnetic sounding of the Earth's interior

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Sounding of the Earth's Interior 2nd edition provides a comprehensive up-to-date collection of contributions, covering methodological, computational and practical aspects of Electromagnetic sounding of the Earth by different techniques at global, regional and local scales. Moreover, it contains new developments such as the concept of self-consistent tasks of geophysics and , 3-D interpretation of the TEM sounding which, so far, have not all been covered by one book. Electromagnetic Sounding of the Earth's Interior 2nd edition consists of three parts: I- EM sounding methods, II- Forward modelling and inversion techniques, and III - Data processing, analysis, modelling and interpretation. The new edition includes brand new chapters on Pulse and frequency electromagnetic sounding for hydrocarbon offshore exploration. Additionally all other chapters have been extensively updated to include new developments. Presents recently developed methodological findings of the earth's study, including seism...

  8. China Not the Only Rare Earth Exporter

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Since China announced it was reducing exports of rare earth,there have been continuous voices in the international community demanding China expand exports or seek alternative resources. The United States has also complained to the WTO that China is hoarding the commodity. Subjected to scathing censure,what difficulties are facing China’s rare earth industry? When other countries seek alternative resources,how is the Chinese rare earth market affected? Economy&Nation Weekly,Xinhua News Agency’s finance magazine,recently interviewed Lin Donglu,Secretary General of the Chinese Society of Rare Earths,and Wang Hongqian, General Manager of China Non-Ferrous Metal Industry’s Foreign Engineering and Construction Co.Ltd.Edited excerpts follow

  9. Leeuwenhoek's "Proof" of the Earth's Rotation.

    Science.gov (United States)

    Kruglak, Haym; Johnson, Rand H.

    1995-01-01

    Leeuwenhoek's demonstration proving the Earth's rotation, which leads to some significant errors in reasoning, can be reproduced from this article and used to provide an interesting discussion in undergraduate astronomy and physics courses or clubs. (LZ)

  10. Geomagnetism solid Earth and upper atmosphere perspectives

    CERN Document Server

    Basavaiah, Nathani

    2011-01-01

    This volume elaborates several important aspects of solid Earth geomagnetism. It covers all the basics of the subject, including biomagnetism and instrumentation, and offers a number of practical applications with carefully selected examples and illustrations.

  11. Quantitative Modeling of Earth Surface Processes

    Science.gov (United States)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes. More details...

  12. Earth Observing One - Hyperion (2001 - present) Privileged

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Earth Observing-1(EO-1) satellite was launched on November 21, 2000 by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration...

  13. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  14. Earth Sciences Division, collected abstracts, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Taasevigen, D.K.; Henry, A.L.; Madsen, S.K.

    1979-03-30

    Abstracts of papers, internal reports, and talks presented during 1978 at national and international meetings by members of the Earth Sciences Division of the Lawrence Livermore Laboratory are compiled. The arrangement is alphabetical (by author). For any given report, a bibliographic reference appears under the name of each coauthor. A topical index at the end provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  15. Thermospheric emissions of the early Earth

    Science.gov (United States)

    Bernard, D.; Barthélémy, M.; Gronoff, G.; Ménager, H.; Lilensten, J.

    2012-09-01

    The aim of this work is to examine the thermospheric emission of the Earth over its history. In this first step, we adapt a kinetic transport code developed for different planets of the Solar System to the first atmosphere of the Earth. We take into account the possible changes in the solar emission spectrum to compute the diurnal ionizations, excitations and dissociations. We deduce a thermospheric spectrum averaged over the planet. The effect of solar wind electron precipitation is also considered.

  16. Bringing Space Crisis Stability Down to Earth

    Science.gov (United States)

    2015-01-01

    JFQ 76, 1st Quarter 2015 Finch 15 Bringing Space Crisis Stability Down to Earth By James P. Finch T ensions in the South and East China seas have...0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing...2015 to 00-00-2015 4. TITLE AND SUBTITLE Bringing Space Crisis Stability Down to Earth 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  17. 2004 Top 10 Chinese Rare Earth Events

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1. Management to the Investment in Rare Earth IndustryConfirmedIn July 2004, "Decision on the Reform in Investment System" was formally publicized by the State Council of the People's Republic of China. The fifth item in the Decision stipulates that ore exploitation, smelting & separation and rare earth deep-processed projects with total investment over RMB¥100 million should be approved by the investment governing department of the State Council, and that other

  18. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  19. 12 Ministries Control Rare Earth Exports

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>"It is very natural to reserve rare earth as a strategic resource.Many countries do this,including China."On April 8,Sun Lihui,Vice Director of Metal Section of Chemicals Import & Export Commerce Chamber of China Minmetals Corporation told a reporter that as early as 2006,China has launched a strategic plan for rare earth,"but it was interrupted by the subsequent financial crisis."

  20. Thermal Energy Generation in the Earth

    CERN Document Server

    Mayer, Frederick J

    2014-01-01

    We show that a recently introduced class of electromagnetic composite particles can explain some discrepancies in observations involving heat and helium released from the earth. Energy release during the formation of the composites and subsequent nuclear reactions involving the composites are described that can quantitatively account for the discrepancies and are expected to have implications in other areas of geophysics, for example, a new picture of heat production and volcanism in the earth is presented.

  1. Earth Sciences Division collected abstracts: 1980

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Hornady, B.F. (eds.)

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  2. Ternary rare earth-lanthanide sulfides

    Science.gov (United States)

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  3. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    Directory of Open Access Journals (Sweden)

    Gaétan Chevalier

    2012-01-01

    Full Text Available Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding refers to the discovery of benefits—including better sleep and reduced pain—from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance.

  4. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  5. Spacewatch discovery of near-Earth asteroids

    Science.gov (United States)

    Gehrels, Tom

    1992-01-01

    Our overall scientific goal is to survey the solar system to completion - that is, to find the various populations and to study their statistics, interrelations, and origins. The practical benefit to SERC is that we are finding Earth-approaching asteroids that are accessible for mining. Our system can detect Earth-approachers in the 1-km size range even when they are far away, and can detect smaller objects when they are moving rapidly past Earth. Until Spacewatch, the size range of 6-300 meters in diameter for the near-Earth asteroids was unexplored. This important region represents the transition between the meteorites and the larger observed near-Earth asteroids. One of our Spacewatch discoveries, 1991 VG, may be representative of a new orbital class of object. If it is really a natural object, and not man-made, its orbital parameters are closer to those of the Earth than we have seen before; its delta V is the lowest of all objects known thus far. We may expect new discoveries as we continue our surveying, with fine-tuning of the techniques.

  6. Transits of Earth-Like Planets

    CERN Document Server

    Kaltenegger, L

    2009-01-01

    Transmission spectroscopy of Earth-like exoplanets is a potential tool for habitability screening. Transiting planets are present-day "Rosetta Stones" for understanding extrasolar planets because they offer the possibility to characterize giant planet atmospheres and should provide an access to biomarkers in the atmospheres of Earth-like exoplanets, once they are detected. Using the Earth itself as a proxy we show the potential and limits of the transiting technique to detect biomarkers on an Earth-analog exoplanet in transit. We quantify the Earths cross section as a function of wavelength, and show the effect of each atmospheric species, aerosol, and Rayleigh scattering. Clouds do not significantly affect this picture because the opacity of the lower atmosphere from aerosol and Rayleigh losses dominates over cloud losses. We calculate the optimum signal-to-noise ratio for spectral features in the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star and also M stars, for a 6.5-m telesco...

  7. Earth from Space: The Power of Perspective

    Science.gov (United States)

    Abdalati, W.

    2016-12-01

    Throughout history, humans have always valued the view from above, seeking high ground to survey the land, find food, assess threats, and understand their immediate environment. The advent of aircraft early in the 20th century took this capability literally to new levels, as aerial photos of farm lands, hazards, military threats, etc. provided new opportunities for security and prosperity. And in 1960, with the launch of the first weather satellite, TIROS, we came to know our world in ways that were not possible before, as we saw the Earth as a system of interacting components. In the decades since, our ability to understand the Earth System and its dynamic components has been transformed profoundly and repeatedly by satellite observations. From examining changes in sea level, to deformation of the Earth surface, to ozone depletion, to the Earth's energy balance, satellites have helped us understand our changing planet in ways that would not have otherwise been possible. The challenge moving forward is to continue to evolve beyond watching Earth processes unfold and understanding the underlying mechanisms of change, to anticipating future conditions, more comprehensively than we do today, for the benefit of society. The capabilities to do so are well within our reach, and with appropriate investments in observing systems, research, and activities that support translating observations into societal value, we can realize the full potential of this tremendous space-based perspective. Doing so will not just change our views of the Earth, but will improve our relationship with it.

  8. An Earth-sized planet with an Earth-like density

    DEFF Research Database (Denmark)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W.

    2013-01-01

    significantly larger than the Earth. Recently, the planet Kepler-78b was discovered(8) and found to have a radius of only 1.16R(circle plus). Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth...

  9. Building a Dashboard of the Planet with Google Earth and Earth Engine

    Science.gov (United States)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  10. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages this collection of Landsat 7 scenes created for aesthetic purposes rather than scientific...

  11. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  12. Timing And Processes Of Earth's Core Differentiation.

    Science.gov (United States)

    Allegre, C. J.; Manhes, G.; Gopel, C.

    2004-12-01

    Small 182W abundance excess of terrestrial W relative to W in bulk chondrites has been recently established (Yin et al. 2002, Kleine et al. 2002, Schoenberg et al. 2002). Rapid terrestrial accretion and early core formation, with completion of the bulk metal-silicate separation within less than 30 Myr have been proposed on this basis. These studies underline how much this 182W/182Hf time scale agrees with dynamic accretion models (Wetherill, 1986) that predict a ˜10 Myr interval for the main growth stage of Earth's formation. This W model time scale for terrestrial accretion is shorter than current estimates based on Pb isotope systematics of mantle-derived basalts and terrestrial Xe isotope systematics. The end of metal-silicate differentiation and large scale mantle degassing has been defined ˜100 My after beginning of the accretion. These studies also indicate agreement of this time scale with dynamic accretion models that predict 100 My for the end of Earth's accretion. The Hf-W time scale for accretion and core formation assumes total equilibration of incoming metal and silicate of impactors with the bulk silicate Earth (BSE) during planet's growth. Recently, the assumption of incomplete equilibration of metal and silicate components with BSE has been investigated (Halliday, 2004). It is proposed that impacting core material has not always efficiently mixed with the silicate portions of the Earth before being added to the Earth's core Our approach also considers that equilibration between metal and silicate has not been complete in BSE during Earth's growth, and we argue that early part of the Earth's core has segregated through unmelted silicate material. When the baby Earth was large enough, the increase of the temperature induced Fe-FeS eutectic melting. The liquid metal segregated through the crystalline silicate matrix and formed the early part of the Earth's core. Experimental study (Yoshino et al. 2003) indicates the percolation threshold for molten

  13. Reactive dye extraction utilizing regenerated bleaching earth

    Directory of Open Access Journals (Sweden)

    M. Shahi

    2017-09-01

    Full Text Available Bentonite bleaching earth is utilized for purifying used motor oil through a recovery process in order to improve the quality and stability of the final product. Indeed, spent bleaching earth is generated due to adsorbing oil impurities. Polluted spent bleaching earth contains 20-40% (w/w oil and is flammable. Its disposal without pre-treatment leads to loss of oil along with environmental impacts. Accordingly, similar studies have been conducted since 1979 until now. This research was a laboratory study on reactive dye adsorption. Cleaning bleaching clay, thermal remediation and acid washing activation methods were utilized. Response surface methodology was used to design the experiments and determine the optimal parameters in order to run the dye adsorption process. The main experimental parameters have been concluded as temperature (200-800 °C, acid solution concentration (0.1-3 M, dye solution concentration (1-35 ppm, and ratio of activated earth to dye solution (0.1-2 %, w/w. Results revealed that dye adsorption process along with oil removal at a temperature of 650 °C, acid solution concentration of 0.83 M, dye solution concentration of 11.75 ppm and ratio of activated earth to dye solution of 1.52 % (w/w results in an adsorption efficiency of 68.57%. This removal efficiency is a bit higher than activated virgin bleaching earth and much higher than virgin bleaching earth, which has adsorption capacities of 66.75% and 51.56%, respectively. Considering this recycling process, the purified material is quite acceptable technically, environmentally and economically.

  14. The Oxford Companion to the Earth

    Science.gov (United States)

    Hancock, Paul L.

    2001-06-01

    Here is a wealth of information on planet Earth, ranging from the heights of the ionsphere down to the red-hot molten core. Written by some 200 expert contributors, and illustrated with over 600 pictures, including 16 pages of color plates, The Oxford Companion to the Earth offers 900 alphabetically arranged entries that cover everything from deserts and wetlands to mountains, caves, glaciers, and coral reefs. There are articles on natural phenomena such as tornadoes and tsunamis, volcanoes and earthquakes, jet streams and weather fronts; on the history of Earth, including the origin of life, Burgess Shale fauna, dinosaurs, and the Ice Ages; on key figures, such as Agassiz, Cuvier, Darwin, and Lamarck; and on such important ecological concerns as acid rain, the ozone layer, industrial waste disposal, and the greenhouse effect. The Companion also examines the great sources of wealth to be found in the Earth, from coal and oil to gold, silver, and diamonds, and many curious land formations, from sinkholes and fiords to yardangs and quicksand. There are brief entries on rock types, from amber to travertine, and extensive essays on cutting-edge aspects of the earth sciences, such as seismology and marine geology. The Companion includes extensive cross-references, suggested further reading, an index, and many useful appendices, with a geological timescale, facts and figures about the Earth, and a table of chemical elements. The Oxford Companion to the Earth is a unique reference work, offering unrivaled coverage of our home planet. Generously illustrated and vividly written, it is a treasure house of information for all lovers of natural history, geology, and ecology, whether professional or amateur.

  15. Dynamics of a Snowball Earth ocean.

    Science.gov (United States)

    Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli

    2013-03-01

    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

  16. Coorbital Formation with Earth and Theia's Origin

    Science.gov (United States)

    Amarante, André; Winter, O.; Tsuchida, M.; Grupo de Dinámica Orbita e Planetologia

    2013-05-01

    Abstract (2,250 Maximum Characters): The most accepted hypothesis of the origin of the Moon, it could have been born from debris generated by a big collision between the proto-Earth and a proto-planet of similar size to Mars, known as Theia. Simulations showed that if this impact happened in the last stages of Earth's formation, one can reproduce the lack of iron in the Moon, the masses of the Earth and Moon and the angular momentum of the current Earth-Moon system (Canup and Asphaug, 2001). To this end, the collision must have occurred in a particular way. The angle between the vectors speeds of Earth and Theia should be small, and the magnitudes of these vectors should be similar. Therefore, it was proposed that the bodies would be sharing the same orbit, in others words, Earth and Theia should be coorbitals, so that the impact velocity and impact would be low subtle (Belbruno and Gott, 2005). In this work we study the possibility of forming a body with mass similar to Mars and coorbital of the Earth. The dynamic system considered is formed by the Sun, the Earth and a cloud of planetesimals in the region coorbital to Earth. The cloud of planetesimals always was initially distributed randomly in a sector around L4 or L5. The sector is delimited by an arc of 80°, centered on the lagrangian point with orbital radius within the limits of larger orbit horseshoe predicted by the theory (Dermott and Murray, 1981a). In the simulations we consider that all planetesimals have the same initial mass and adopt different clouds of planetesimals, with 1000 planetesimals, each one with initial mass of 10^(-12) to 10^(-8) solar masses, with 5000 planetesimals, each one with initial mass from 10^(-12) to 10^(-9) solar masses. We did three independent simulations for each case. The results of numerical simulations of this work showed that it is unlikely the coorbital formation of a body with the mass of Mars. We are still doing tests to identify other parameters to form Theia. All

  17. Effect of the spherical Earth on a simple pendulum

    OpenAIRE

    2003-01-01

    We consider the period of a simple pendulum in the gravitational field of the spherical Earth. Effectively, gravity is enhanced compared with the often used flat Earth approximation, such that the period of the pendulum is shortened. We discuss the flat Earth approximation, and show when the corrections due to the spherical Earth may be of interest.

  18. 2011 Review and outlook of China rare earth market

    Institute of Scientific and Technical Information of China (English)

    Zhang Lihua; Bai Jinlong

    2012-01-01

    In 2011, the start year of the "Twelfth-Five Year Plan" program, a series of policies were issued targeting on rare earth industry. Price of rare earths fluctuated sharply during 2011 and consumers were concerned about the supply of rare earth. There was a big change in rare earth industry.

  19. 2007 China Rare Earths Import & Export Analysis and Suggestions (continued)

    Institute of Scientific and Technical Information of China (English)

    Yin Jianhua; Zuo Xichao

    2008-01-01

    @@ 4. Increasing import of rare earth resources products As a big producer and an important export country of rare earth products for years, rare earths import is in an auxiliary position in China. import volume is rather small. However, since the strengthened macro control measures and restriction of mining scale in 2007, domestic rare earth supply was tight in China.

  20. Prices of Rare Earth Products Tend to Rise(Continued)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    8. Ji Daiyu, General Manager of Baotou Xinyuan RareEarth Hi-Tech Materials Co. LtdControl gross to stabilize prices. Chinese rare earth is precious strategic resource. The more it is exploit, the less it will be. The State has put forward rare earth policy of "strengthen management, protect resource, develop scientifically and face international". Chinese rare earth

  1. iSTEM: Celebrating Earth Day with Sustainability

    Science.gov (United States)

    Sibley, Amanda; Kurz, Terri L.

    2014-01-01

    Earth Day is celebrated annually on April 22. Teachers often commemorate Earth Day with their classes by planting trees, discussing important conservation topics (such as recycling or preventing pollution), and encouraging students to take care of planet Earth. To promote observance of Earth Day in an intermediate elementary school classroom, this…

  2. Big Earth Data Initiative: Metadata Improvement: Case Studies

    Science.gov (United States)

    Kozimor, John; Habermann, Ted; Farley, John

    2016-01-01

    Big Earth Data Initiative (BEDI) The Big Earth Data Initiative (BEDI) invests in standardizing and optimizing the collection, management and delivery of U.S. Government's civil Earth observation data to improve discovery, access use, and understanding of Earth observations by the broader user community. Complete and consistent standard metadata helps address all three goals.

  3. Data Assimilation: Making Sense of Earth Observation

    Directory of Open Access Journals (Sweden)

    William Albert Lahoz

    2014-05-01

    Full Text Available Climate change, air quality and environmental degradation are important societal challenges for the 21st Century. These challenges require an intelligent response from society, which in turn requires access to information about the Earth System. This information comes from observations and prior knowledge, the latter typically embodied in a model describing relationships between variables of the Earth System. Data assimilation provides an objective methodology to combine observational and model information to provide an estimate of the most likely state and its uncertainty for the whole Earth System. This approach adds value to the observations – by filling in the spatio-temporal gaps in observations; and to the model – by constraining it with the observations. In this review paper we motivate data assimilation as a methodology to fill in the gaps in observational information; illustrate the data assimilation approach with examples that span a broad range of features of the Earth System (atmosphere, including chemistry; ocean; land surface; and discuss the outlook for data assimilation, including the novel application of data assimilation ideas to observational information obtained using Citizen Science. Ultimately, a strong motivation of data assimilation is the many benefits it provides to users. These include: providing the initial state for weather and air quality forecasts; providing analyses and reanalyses for studying the Earth System; evaluating observations, instruments and models; assessing the relative value of elements of the Global Observing System (GOS; and assessing the added value of future additions to the GOS.

  4. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  5. Dynamic active earth pressure on retaining structures

    Indian Academy of Sciences (India)

    Deepankar Choudhury; Santiram Chatterjee

    2006-12-01

    Earth-retaining structures constitute an important topic of research in civil engineering, more so under earthquake conditions. For the analysis and design of retaining walls in earthquake-prone zones, accurate estimation of dynamic earth pressures is very important. Conventional methods either use pseudo-static approaches of analysis even for dynamic cases or a simple single-degree of freedom model for the retaining wall–soil system. In this paper, a simplified two-degree of freedom mass–spring–dashpot (2-DOF) dynamic model has been proposed to estimate the active earth pressure at the back of the retaining walls for translation modes of wall movement under seismic conditions. The horizontal zone of influence on dynamic earth force on the wall is estimated. Results in terms of displacement, velocity and acceleration-time history are presented for some typical cases, which show the final movement of the wall in terms of wall height, which is required for the design. The non-dimensional design chart proposed in the present study can be used to compute the total dynamic earth force on the wall under different input ground motion and backfill conditions. Finally, the results obtained have been compared with those of the available Scott model and the merits of the present results have been discussed.

  6. Tracking a Very Near Earth Asteroid

    Science.gov (United States)

    Bruck, R.; Rashid, S.; Peppard, T.

    2013-09-01

    The potential effects of an asteroid passing within close proximity to the Earth were recently realized. During the February 16, 2013 event, Asteroid 2012 DA14 passed within an estimated 27,700 kilometers of the earth, well within the geosynchronous (GEO) orbital belt. This was the closest known approach of a planetoid of this size, in modern history. The GEO belt is a region that is filled with critical communications satellites which provide relays for essential government, business and private datum. On the day of the event, optical instruments at Detachment 3, 21OG, Maui GEODSS were able to open in marginal atmospheric conditions, locate and collect metric and raw video data on the asteroid as it passed a point of near heliocentric orbital propinquity to the Earth. Prior to the event, the Joint Space Operations Center (JSpOC) used propagated trajectory data from NASA's Near Earth Object Program Office at the Jet Propulsion Laboratory to assess potential collisions with man-made objects in Earth orbit. However, the ability to actively track this asteroid through the populated satellite belt not only allowed surveillance for possible late orbital perturbations of the asteroid, but, afforded the ability to monitor possible strikes on all other orbiting bodies of anthropogenic origin either not in orbital catalogs or not recently updated in those catalogs. Although programmed only for tracking satellites in geocentric orbits, GEODSS was able to compensate and maintain track on DA14, collecting one hundred and fifty four metric observations during the event.

  7. Anisotropy of rare-earth magnets

    Institute of Scientific and Technical Information of China (English)

    R.Skomski; D.J.Sellmyer

    2009-01-01

    Rare-earth intermetallics such as Nd2FeI4B and Sm-Co are widely used as high-performance permanent magnets,because they combine high magnetocrystalline anisotropy with reasonable magnetization and Curie temperature.The anisotropy is a combined effect of spin-orbit coupling and electrostatic crystal-field interactions.The main contribution comes from the rare-earth 4f electrons,which are well-screened from the crystalline environment but exhibit a strong spin-orbit coupling.In this limit,the magnetocrystalline anisotropy has a very transparent physical interpretation,the anisotropy energy essentially being equal to the energy of Hund's-rules 4f ion in the crystal field.The corresponding expression for the lowest-order uniaxial anisotropy constant K1 is used to discuss rare-earth substitutions,which have recently attracted renewed interest due to shifts in the rare-earth production and demand.Specific phenomena reviewed in this article are the enhancement of the anisotropy of Sm2Fe17 due to interstitial nitrogen,the use of Sm-Co magnets for high-temperature applications,and the comparison of rare-earth single-ion anisotropy with other single-ion and two-ion mechanisms.

  8. Earth pressure balance control for EPB shield

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper mainly deals with the critical technology of earth pressure balance (EPB) control in shield tunneling. On the assumption that the conditioned soil in the working chamber of the shield is plasticized, a theoretical principle for EPB control is proposed. Dynamic equilibrium of intake volume and discharge volume generated by thrust and discharge is modeled theoretically to simulate the earth pressure variation during excavating. The thrust system and the screw conveyor system for earth pressure control are developed based on the electro-hydraulic technique. The control models of the thrust speed regulation of the cylinders and the rotating speed adjustment of the screw conveyor are also presented. Simulation for earth pressure control is conducted with software AMESim and MATLAB/Simulink to verify the models. Experiments are carried out with intake control in clay soil and discharge control in sandy gravel section, respectively. The experimental results show that the earth pressure variations in the working chamber can be kept at the expected value with a practically acceptable precision by means of real-time tuning the thrust speed or the revolving speed of discharge system.

  9. Evaluating rammed earth walls: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P. [Deakin University, Geelong (Australia). Built Environment Research Group; La Trobe University, Wodonga (Australia); Luther, M.B. [Deakin University, Geelong (Australia). Built Environment Research Group

    2004-03-01

    The following research has been undertaken as a response to the recent controversy regarding the suitability of rammed earth wall construction as an effective building envelope in regard to its thermal performance. The R-value for rammed earth walls is low hence they might be expected to conduct heat into a building during summer. However the large mass of these walls and the associated thermal lag in heat transfer from outside to inside may result in the walls performing satisfactorily in a building which is only occupied during working hours. Internal rammed earth walls may act as moderators of large diurnal temperature swings helping to produce an even comfortable temperature within a building. Empirical (in situ) measurements of temperature and heat flux were taken on the walls of an existing rammed earth office building in New South Wales, Australia during the summer. An analysis was performed which established a methodology to measure the heat flow associated with the walls, floor, ceiling, windows and infiltration for one office during occupied hours and the net energy transferred between the office and these elements was established. During this time the earth walls performed well. External walls were found to transmit comparatively little heat to the office and the internal walls absorbed heat during this time. Diffuse sky radiation transmitted by the window and infiltration are both likely to be important factors in the summer heat load. (author)

  10. World Wind 3D Earth Viewing

    Science.gov (United States)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  11. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  12. The Near-Earth Plasma Environment

    Science.gov (United States)

    Pfaff, Robert F., Jr.

    2012-01-01

    An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth's plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.

  13. Searching for Frozen Super Earth via Microlensing

    Science.gov (United States)

    Batista, V.; Beaulieu, J. P.; Cassan, A.; Coutures, C.; Donatowicz, J.; Fouqué, P.; Kubas, D.; Marquette, J. B.

    2009-04-01

    Microlensing planet hunt is a unique method to probe efficiently for frozen Super Earth orbiting the most common stars of our galaxy. It is nicely complementing the parameter space probed by very high accuracy radial velocity measurements and future space based detections of low mass transiting planets. In order to maximize the planet catch, the microlensing community is engaged in a total cooperation among the different groups (OGLE, MicroFUN, MOA, PLANET/RoboNET) by making the real time data available, and mutual informing/reporting about modeling efforts. Eight planets have been published so far by combinations of the different groups, 4 Jovian analogues, one Neptune and two Super Earth. Given the microlensing detection efficiency, it suggests that these Neptunes/Super Earths may be quite common. Using networks of dedicated 1-2m class telescopes, the microlensing community has entered a new phase of planet discoveries, and will be able to provide constraints on the abundance of frozen Super-Earths in the near future. Statistics about Mars to Earth mass planets, extending to the habitable zone will be achieved with space based wide field imagers (EUCLID) at the horizon 2017.

  14. COMS normal operation for Earth Observation mission

    Science.gov (United States)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  15. Direct and indirect capture of near-Earth asteroids in the Earth-Moon system

    Science.gov (United States)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2017-09-01

    Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth-Moon L1 and L2 points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun-Earth-Moon restricted four-body problem until its insertion, with a second impulse, onto the L2 stable manifold in the Earth-Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid's initial obit to the stable manifold associated with Earth-Moon L2 point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun-Earth circular restricted three-body problem and subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth-Moon system.

  16. Three dimensional presentation of the Earth and planets using Dagik Earth

    Science.gov (United States)

    Saito, A.; Tsugawa, T.

    2013-12-01

    Dagik Earth is a portable, scalable and affordable three-dimensional digital globe system to present the scientific data of the Earth and planets. It has been developed in the collaboration of Kyoto University, NICT, Shizuoka University, National Museum of Nature and Science, Tokyo, Shizuoka Science Museum and others. It uses a spherical or hemispherical screen to project data and images using normal PC and PC projectors. The minimum size is 8cm and the largest size is 8m in diameter. The three-dimensional presentation is the only way to present the correct shape on the Earth while any two-dimensional map formats distort the shape. Furthermore it helps audience to understand the scale size and phenomena of the Earth and planets in an intuitive way. The Dagik Earth project provides the software of the 3D projection to the science museums and school teachers for the educational purpose. Because the same system can be used in museums and schools, several science museums are worked as a hub of the school teachers' training on the earth and planetary science class with Dagik Earth. International collaboration with Taiwan, Thailand, and other countries is in progress. In the presentation, we introduce the system of Dagik Earth and the activities using it in the collaboration among museums, universities and research institutes.

  17. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications

    NARCIS (Netherlands)

    Büscher, Bram; Fletcher, Robert; Brockington, Dan; Sandbrook, Chris; Adams, William M.; Campbell, Lisa; Corson, Catherine; Dressler, Wolfram; Duffy, Rosaleen; Gray, Noella; Holmes, George; Kelly, Alice; Lunstrum, Elizabeth; Ramutsindela, Maano; Shanker, Kartik

    2017-01-01

    We question whether the increasingly popular, radical idea of turning half the Earth into a network of protected areas is either feasible or just. We argue that this Half-Earth plan would have widespread negative consequences for human populations and would not meet its conservation objectives. It

  18. OpenEarth: Using Google Earth as outreach for NCK's data

    NARCIS (Netherlands)

    de Boer, G.J.; Baart, F.; Bruens, A.; Damsma, T.; van Geer, P.; Grasmeijer, B.; den Heijer, C.; van Koningsveld, M.; Santinelli, G.

    2012-01-01

    In 2003 various projects at Deltares and the TU-Delft merged their toolboxes for marine and coastal science and engineering into one toolbox, culminating in 2008 in an open source release, known as OpenEarthTools (OET). OpenEarth adopts the wikipedia approach to growth: web 2.0 crowd sourcing. All u

  19. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    Science.gov (United States)

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  20. Studies with the EC-Earth seamless Earth system prediction model

    NARCIS (Netherlands)

    Hazeleger, W.; Bintanja, R.

    2012-01-01

    EC-Earth is a new Earth System Model (ESM) based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). Climate and weather forecasting applications share a common ancestry and are build on the same physical principles. The emerging concept of

  1. Building houses with earth blocks: A guide for upgrading traditional building methods using handmade earth blocks

    CSIR Research Space (South Africa)

    Bolton, M

    2001-01-01

    Full Text Available This report is a guide to building strong earth houses that will last a long time but without having to spend a lot of extra money or hire outside experts to do the building. It supports the process of improving the quality of earth housing...

  2. Earth-Affecting Solar Causes Observatory (EASCO): a mission at the Sun-Earth L5

    DEFF Research Database (Denmark)

    Gopalswamy, Nat; Davila, Joseph M.; Auchère, Frédéric

    2011-01-01

    . The Earth-Affecting Solar Causes Observatory (EASCO) is a proposed mission to be located at the Sun-Earth L5 that overcomes these deficiencies. The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center, to see how the mission can be implemented...

  3. Solar Power Beaming: From Space to Earth

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  4. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  5. On Neutrino Absorption Tomography of the Earth

    CERN Document Server

    Reynoso, M M; Reynoso, Matias M.; Sampayo, Oscar A.

    2004-01-01

    We study the passage of UHE neutrinos through the Earth in order to perform an absorption tomography of its inner structure. The aim of this work is to study the extraction methods of the Earth's density, in this conditions, we do not need to implement a realistic Monte Carlo simulation, as we are only interested in comparing the goodness of a standard method \\cite{ralston} with the one we propose. The Earth's density is reconstructed using the 2-d Radon transform and we compare the density obtained considering neutral current regeneration through the complete transport equation, with the one obtained making use of the effective cross section approximation (standard method). We see that the effective cross section leads in general to inaccurate results, especially for flat initial neutrino fluxes, while the full transport equation method works regardless of the initial flux. Finally, an error propagation analysis made for different uncertainties in the surviving neutrino flux shows that the recovered density ...

  6. Heat transfer in earth science studies

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. (Lawrence Livermore National Lab., CA (United States)); Chu, T.Y. (Sandia National Labs., Albuquerque, NM (United States))

    1990-01-01

    Earth scientists have long recognized that quantitative models of heat and mass transfer are fundamental to understanding many geophysical phenomena. Transport models have been used to simulate a wide range of earth processes from the crystallization of rock melts to those global mechanisms responsible for driving lithospheric plates and the geodynamo. Since the elegant conductive cooling models of igneous instrusions by Lovering and Jaeger in the 1930's and 1940's, calculations have evolved in their sophistication with the realization of the importance of convective transport and the advent of new methods and supercomputers. Many of the modeling techniques currently used by geoscientists have been adapted from techniques that were originally developed to solve engineering problems. Processes, such as those involving magma transport in volcanic systems, may often be understood by establishing their dynamical similarity with a well-studied engineering application. This book contains a series of papers regarding heat transfer and earth science studies.

  7. Atmospheric neutrino oscillations for Earth tomography

    Science.gov (United States)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  8. Harvesting space for a greener earth

    CERN Document Server

    Matloff, Greg; Johnson, Les

    2014-01-01

    What was our planet like in years past? How has our civilization affected Earth and its ecology? Harvesting Space for a Greener Planet, the Second Edition of Paradise Regained: The Regreening of the Earth, begins by discussing these questions, and then generates a scenario for the restoration of Earth. It introduces new and innovative ideas on how we could use the Solar System and its resources for terrestrial benefit. The environmental challenges that face us today cannot be resolved by conservation and current technologies alone. Harvesting Space highlights the risk of humankind’s future extinction from environmental degradation. Population growth, global climate change, and maintaining sustainability of habitats for wildlife are all considered, among other issues. Rather than losing heart, we need to realize that the solutions to these problems lie in being good stewards of the planet and in the development of space. Not only will the solutions offered here avert a crisis, they will also provide the basi...

  9. Atmospheric Neutrino Oscillations for Earth Tomography

    CERN Document Server

    Winter, Walter

    2015-01-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can robustly measure the lower mantle density of the earth with a precision at the level of 4-5 percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  10. Earth Sciences report, 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Peterson, S.J.; Price, M.E. (eds.)

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

  11. Utah's Mobile Earth Science Outreach Vehicle

    Science.gov (United States)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  12. Atmospheric neutrino oscillations for Earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter, E-mail: walter.winter@desy.de

    2016-07-15

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  13. Earth Processes: Reading the Isotopic Code

    Science.gov (United States)

    Basu, Asish; Hart, Stan

    Publication of this monograph will coincide, to a precision of a few per mil, with the centenary of Henri Becquerel's discovery of "radiations actives" (C. R. Acad. Sci., Feb. 24, 1896). In 1896 the Earth was only 40 million years old according to Lord Kelvin. Eleven years later, Boltwood had pushed the Earth's age past 2000 million years, based on the first U/Pb chemical dating results. In exciting progression came discovery of isotopes by J. J. Thomson in 1912, invention of the mass spectrometer by Dempster (1918) and Aston (1919), the first measurement of the isotopic composition of Pb (Aston, 1927) and the final approach, using Pb-Pb isotopic dating, to the correct age of the Earth: close—2.9 Ga (Gerling, 1942), closer—3.0 Ga (Holmes, 1949) and closest—4.50 Ga (Patterson, Tilton and Inghram, 1953).

  14. An MHD model of the earth's magnetosphere

    Science.gov (United States)

    Wu, C. C.

    1985-01-01

    It is pointed out that the earth's magnetosphere arises from the interaction of the solar wind with the earth's geomagnetic field. A global magnetohydrodynamics (MHD) model of the earth's magnetosphere has drawn much attention in recent years. In this model, MHD equations are used to describe the solar wind interaction with the magnetosphere. In the present paper, some numerical aspects of the model are considered. Attention is given to the ideal MHD equations, an equation of state for the plasma, the model as an initial- and boundary-value problem, the shock capturing technique, computational requirements and techniques for global MHD modeling, a three-dimensional mesh system employed in the global MHD model, and some computational results.

  15. Atmospheric neutrino oscillations for earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter

    2016-04-05

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  16. Management Approach for Earth Venture Instrument

    Science.gov (United States)

    Hope, Diane L.; Dutta, Sanghamitra

    2013-01-01

    The Earth Venture Instrument (EVI) element of the Earth Venture Program calls for developing instruments for participation on a NASA-arranged spaceflight mission of opportunity to conduct innovative, integrated, hypothesis or scientific question-driven approaches to pressing Earth system science issues. This paper discusses the EVI element and the management approach being used to manage both an instrument development activity as well as the host accommodations activity. In particular the focus will be on the approach being used for the first EVI (EVI-1) selected instrument, Tropospheric Emissions: Monitoring of Pollution (TEMPO), which will be hosted on a commercial GEO satellite and some of the challenges encountered to date and corresponding mitigations that are associated with the management structure for the TEMPO Mission and the architecture of EVI.

  17. Preparing the Next Generation of Earth Scientists: An Examination of 25 Federal Earth Science Education Programs

    Science.gov (United States)

    Linn, A. M.; Goldstein, A.; Manduca, C. A.; Pyle, E. J.; Asher, P. M.; White, L. D.; Riggs, E. M.; Cozzens, S.; Glickson, D.

    2013-12-01

    Federal agencies play a key role in educating the next generation of earth scientists, offering programs that attract students to the field, support them through formal education, and provide training for an earth science career. In a time of reduced budgets, it is important for federal agencies to invest in education programs that are effective. A National Research Council committee examined 25 federal earth science education programs and described ways to evaluate the success of these programs and opportunities for leveraging federal education resources. Although the programs cover a wide range of objectives and audiences, they are part of a system of opportunities and experiences that attract individuals to the field and prepare them for employment. In this conceptual framework, individuals become aware of earth science, then engage in learning about the Earth and the nature of earth science, and finally prepare for a career by acquiring specialized knowledge, skills, and expertise and by exploring different employment options. The federal education programs considered in this report provide a range of opportunities for raising awareness of earth science (e.g., USDA 4-H Club), nurturing that interest to engage students in the field (e.g., USGS Youth Internship Program), and preparing students for earth science careers (NSF Research Experiences for Undergraduates, DOE Science Undergraduate Laboratory Internships). These efforts can also contribute toward the development of a robust earth science workforce by connecting programs and providing pathways for students to move through informal and formal education to careers. The conceptual framework shows how the various education opportunities fit together and where connections are needed to move students along earth science pathways. The framework can also be used by federal agencies to identify gaps, overlaps, and imbalances in existing programs; to identify potential partners in other agencies or organizations

  18. Global Earthing Systems: Characterization of Buried Metallic Parts

    OpenAIRE

    Tommasini, Riccardo; Colella, Pietro; Pons, Enrico

    2016-01-01

    International Standards IEC 61936-1 and EN 50522 define a Global Earthing System (GES) as the earthing network, created by the interconnection of local earthing systems, that should guarantee the absence of dangerous touch voltages. This is achieved through two effects: the division of the earth fault current between many earthing systems and the creation of a quasi equipotential surface. The second effect can be enhanced by the presence of buried metallic parts, such as light poles and water...

  19. Earth system multi-body restriction dynamics model research

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Qingxian; BI; Siwen; GONG; Huili

    2006-01-01

    Research provides a theoretical basis for an Earth system multi-body mechanics model and its dynamics, including the Earth system multi-body restriction function and its power, Earth system multi-body restriction under decreasing generalized velocity and decreasing partial palstance, the Earth system multi-body decreasing generalized force, a moving mechanics function, and the Earth system multi-body restriction's wattful and wattless forces.

  20. Application of Ontologies for Big Earth Data

    Science.gov (United States)

    Huang, T.; Chang, G.; Armstrong, E. M.; Boening, C.

    2014-12-01

    Connected data is smarter data! Earth Science research infrastructure must do more than just being able to support temporal, geospatial discovery of satellite data. As the Earth Science data archives continue to expand across NASA data centers, the research communities are demanding smarter data services. A successful research infrastructure must be able to present researchers the complete picture, that is, datasets with linked citations, related interdisciplinary data, imageries, current events, social media discussions, and scientific data tools that are relevant to the particular dataset. The popular Semantic Web for Earth and Environmental Terminology (SWEET) ontologies is a collection of ontologies and concepts designed to improve discovery and application of Earth Science data. The SWEET ontologies collection was initially developed to capture the relationships between keywords in the NASA Global Change Master Directory (GCMD). Over the years this popular ontologies collection has expanded to cover over 200 ontologies and 6000 concepts to enable scalable classification of Earth system science concepts and Space science. This presentation discusses the semantic web technologies as the enabling technology for data-intensive science. We will discuss the application of the SWEET ontologies as a critical component in knowledge-driven research infrastructure for some of the recent projects, which include the DARPA Ontological System for Context Artifact and Resources (OSCAR), 2013 NASA ACCESS Virtual Quality Screening Service (VQSS), and the 2013 NASA Sea Level Change Portal (SLCP) projects. The presentation will also discuss the benefits in using semantic web technologies in developing research infrastructure for Big Earth Science Data in an attempt to "accommodate all domains and provide the necessary glue for information to be cross-linked, correlated, and discovered in a semantically rich manner." [1] [1] Savas Parastatidis: A platform for all that we know

  1. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  2. Deriving Earth Science Data Analytics Requirements

    Science.gov (United States)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  3. Vocabulary related to earth sciences through etymology

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    and strengthening vocabulary in earth sci- ences through etymology? has appeared in the May 2006 issue of Journal of Earth System Science Education (http://jesse. usra.edu/archive/jesse), a popular on-line journal of NASA, USA, that publishes papers relating... subject and cross-curricular learning. Sarma?s effort is laudable as he has etymologically connected as many as 1600 technical terms through ~300 root words. The etymological approach adopted by the author is simple and effective; learnt from his...

  4. Renewable energy and characteristics of the Earth

    Science.gov (United States)

    Léger, Valérie

    2016-04-01

    During studying sustainable development, my sixth-form pupils have to devise and carry out experiments to show connection between some characteristics of the Earth and renewable energy. Thus, helping by a list of equipment, they can show, using simples' experiments, causal link. For example, they show that the layout in latitude of solar energy received on the ground, creates ocean and atmospheric currents. These currents are useful to product renewable energy. These researches allow me to show them new jobs link with renewable energy and sustainable development on the Earth. They can have more information thanks to other teachers working on the professional training centre including my secondary school.

  5. Project Copernicus: An Earth observing system

    Science.gov (United States)

    1991-01-01

    Hunsaker Aerospace Corporation is presenting this proposal for Project Copernicus to fulfill the need for space-based remote sensing of Earth. Concentration is on data acquisition. Copernicus is designed to be a flexible system of spacecraft in a low near-polar orbit. The goal is to acquire data so that the scientists may begin to understand many Earth processes and interactions. The mission objective of Copernicus is to provide a space-based, remote-sensing measurement data acquisition and transfer system for 15 years. A description of the design project is presented.

  6. Naturally occurring radionuclides and Earth sciences

    Directory of Open Access Journals (Sweden)

    G. Ferrara

    1997-06-01

    Full Text Available Naturally occurring radionuclides are used in Earth sciences for two fundamental purposes: age determination of rocks and minerals and studies of variation of the isotopic composition of radiogenic nuclides. The methodologies that are in use today allow us to determine ages spanning from the Earth's age to the late Quaternary. The variations of isotopic composition of radiogenic nuclides can be applied to problems of mantle evolution, magma genesis and characterization with respect to different geodynamic situations and can provide valuable information not obtainable by elemental geochemistry.

  7. Earth and Sky, Unit 1A

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    The assignment known as ‘Earth and sky’ is the final first year course at Unit 1a. The aim of the assignment is to strengthen the student’s abilities to manage a project process individu- ally. The process involves develop- ing the ability to make independent decisions.The point of departure...... for the ‘Earth and sky’ assignment is ex- perience students acquired during their group study tour to Austra- lia. Building in particular on the re- search conducted on the Sydney Opera House and the architectur- al principles of spatial creation that this building represents....

  8. Homeostatic tendencies of the earth's atmosphere

    Science.gov (United States)

    Lovelock, J. E.; Margulis, L.

    1974-01-01

    The concept is developed that the atmosphere of the earth flows in a closed system controlled by and for the biosphere. The environmental factors delimiting the biosphere are examined. It is found that neither oxygen nor pressure per se limit the distribution of life as a whole. Rather the major physical variables determining the distribution of organisms are solar radiation, temperature, water abundance, and the concentrations of hydrogen and other ions and elements. An attempt is made to model temperature and atmospheric composition of a lifeless earth.

  9. Lunar origin from impact on the Earth

    Science.gov (United States)

    Stevenson, D. J.

    1984-01-01

    All theories of lunar origin involve events or processes which seemingly have low efficiencies or low probabilities or both. An impact-triggered fission lunar origin is presented. If the impact ejecta (a mixture of target and projectile) leave the impact site ballistically and are subsequently acted upon only by the gravity field of a spherical Earth, then the ejecta either reimpacts the Earth or escapes on a hyperbolic trajectory. Hence the need for a second burn. Three possible resolutions are considered: pressure gradient acceleration, non-central gravity, and viscous spreading.

  10. Earth observations from space: A dream deferred?

    Science.gov (United States)

    McElroy, John H.

    Earth observations from space are one of the great successes of the space age. However, because the promise of this technology is a long way from being realized, the joy of success is tinged with disappointment for both researchers and operational users of the data. U.S. Earth observation programs have been in turmoil since their inception, with confusion coming to a crescendo over the past 6 years. Neither the executive or legislative branches of the government have shown that they can successfully manage this technological capability created by the space program.

  11. Solar Wind Earth Exchange Project (SWEEP)

    Science.gov (United States)

    2016-10-28

    AFRL-AFOSR-UK-TR-2016-0035 Solar Wind Earth Exchange Project 140200 Steven Sembay UNIVERSITY OF LEICESTER Final Report 10/28/2016 DISTRIBUTION A...To) 01 Sep 2014 to 31 Aug 2016 4. TITLE AND SUBTITLE Solar Wind Earth Exchange Project (SWEEP) 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1...0200 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Steven Sembay 5d.  PROJECT NUMBER 5e.  TASK NUMBER 5f.   WORK UNIT NUMBER 7. PERFORMING

  12. Mitigating Climate Change with Earth Orbital Sunshades

    Science.gov (United States)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  13. Giant Impacts on Earth-Like Worlds

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  14. A Trio of Super-Earths

    Science.gov (United States)

    2008-06-01

    Today, at an international conference, a team of European astronomers announced a remarkable breakthrough in the field of extra-solar planets. Using the HARPS instrument at the ESO La Silla Observatory, they have found a triple system of super-Earths around the star HD 40307. Moreover, looking at their entire sample studied with HARPS, the astronomers count a total of 45 candidate planets with a mass below 30 Earth masses and an orbital period shorter than 50 days. This implies that one solar-like star out of three harbours such planets. A trio of Super-Earths ESO PR Photo 19a/08 A trio of Super-Earths "Does every single star harbour planets and, if yes, how many?" wonders planet hunter Michel Mayor from Geneva Observatory. "We may not yet know the answer but we are making huge progress towards it." Since the discovery in 1995 of a planet around the star 51 Pegasi by Mayor and Didier Queloz, more than 270 exoplanets have been found, mostly around solar-like stars. Most of these planets are giants, such as Jupiter or Saturn, and current statistics show that about 1 out of 14 stars harbours this kind of planet. "With the advent of much more precise instruments such as the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, we can now discover smaller planets, with masses between 2 and 10 times the Earth's mass," says Stéphane Udry, one of Mayor's colleagues. Such planets are called super-Earths, as they are more massive than the Earth but less massive than Uranus and Neptune (about 15 Earth masses). The group of astronomers have now discovered a system of three super-Earths around a rather normal star, which is slightly less massive than our Sun, and is located 42 light-years away towards the southern Doradus and Pictor constellations. "We have made very precise measurements of the velocity of the star HD 40307 over the last five years, which clearly reveal the presence of three planets," says Mayor. The planets, having 4.2, 6.7, and 9.4 times the mass of the

  15. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    Science.gov (United States)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  16. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    Science.gov (United States)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  17. EarthSpace: The Higher Education Clearinghouse for Earth and Space Sciences

    Science.gov (United States)

    Dalton, H.; Cobabe-Ammann, E. A.; Shipp, S. S.

    2012-12-01

    EarthSpace is a searchable database of undergraduate classroom materials designed specifically for faculty teaching planetary sciences, Earth sciences, astrophysics, and solar and space physics at the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets, from homework and computer interactives to laboratory exercises, lectures, and demonstrations. The site capabilities are being expanded to allow assignment of a unique Digital Object Identifier (DOI) to submitted materials, which will provide material developers a way to identify their submitted materials as publications on their CVs. EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities (e.g., Connexions), providing a wider distribution of the resources. In addition to classroom materials, EarthSpace provides the latest news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. This information is emailed monthly in a newsletter to faculty members via the community mailing list, HENews. HENews is a place for the higher education community to share and receive news and information about higher education, teaching, and Earth and space science. EarthSpace also has an RSS feed to notify members when items are added. EarthSpace is a community-driven effort; higher education faculty members contribute and review materials and thus influence the content provided on the site. All materials are peer-reviewed before posting, and authors adhere to the Creative Commons Attribution (CC BY 3.0). You are invited to visit EarthSpace to search for teaching resources, submit your materials, or volunteer to review submitted resources in your discipline with a frequency designed to fit your schedule.

  18. The Earth threatened; La terre menacee

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, S.H

    1999-07-01

    This study was written by an international expert who participated in 1991 to the US national research council in charge of the evaluation of the political implication of the global warming. The study deals with the problems and stakes of a mastery of climates in order to maintain life on the Earth. (J.S.)

  19. Trail of Earth's tail

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, S.W.H. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)

    1985-05-23

    The paper concerns the observations by the ISEE-3 spacecraft of the earth's geomagnetic tail and its environs. The overall structure of the tail is described, as well as the properties of plasmas and fields both in the magnetic tail lobes and in the central current sheet that separates the lobes.

  20. Spaceship earth: take your classroom into space

    NARCIS (Netherlands)

    Hartevelt, S.; van den Putte, W.; Wamsteker, J.; de Vet, S.; van Loon, J.J.W.A.; Celton, E.; Savage, N.D.L.

    2012-01-01

    Schools in Europe actively participated in the educational project "Spaceship Earth", part of ESA astronaut André Kuipers’ PromISSe mission. The initiative, conceptualized by the European Space Agency (ESA) and the Netherlands Space Office (NSO) also involved a unique collaboration of a team

  1. The Search for Another Earth - Part II

    Indian Academy of Sciences (India)

    2016-10-01

    In the first part, we discussed the various methods for thedetection of planets outside the solar system known as theexoplanets. In this part, we will describe various kinds ofexoplanets. The habitable planets discovered so far and thepresent status of our search for a habitable planet similar tothe Earth will also be discussed.

  2. Rapidly changing flows in the Earth's core

    DEFF Research Database (Denmark)

    Olsen, Nils; Mandea, M.

    2008-01-01

    A large part of the Earth's magnetic field is generated by fluid motion in the molten outer core(1). As a result of continuous satellite measurements since 1999, the core magnetic field and its recent variations can now be described with a high resolution in space and time(2). These data have rec...... of future numerical models of the geodynamo....

  3. Ontology of Earth's nonlinear dynamic complex systems

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2017-04-01

    As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.

  4. Prospects for Extrasolar "Earths" in Habitable Zones

    CERN Document Server

    Jones, B W; Sleep, P N

    2005-01-01

    We have shown that Earth-mass planets could survive in variously restricted regions of the habitable zones (HZs) of most of a sample of nine of the 102 main-sequence exoplanetary systems confirmed by 19 November 2003. In a preliminary extrapolation of our results to the other systems, we estimate that roughly a half of these systems could have had an Earth-mass planet confined to the HZ for at least the most recent 1000 Ma. The HZ migrates outwards during the main-sequence lifetime, and so this proportion varies with stellar age. About two thirds of the systems could have such a planet confined to the HZ for at least 1000 Ma at sometime during the main-sequence lifetime. Clearly, these systems should be high on the target list for exploration for terrestrial planets. We have reached this conclusion by launching putative Earth-mass planets in various orbits and following their fate with mixed-variable symplectic and hybrid integrators. Whether the Earth-mass planets could form in the HZs of the exoplanetary sy...

  5. Latour's Gaia – Not down to Earth?

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2014-01-01

    In a recent instantiation by Bruno Latour of how STS can engage with matters of concern, he conceptualises a changing relationship of humans with earth. For Latour, the scientists' notion `anthropocene' illustrates how humans accept that their industrial activities are not merely causing some sur...

  6. 78 FR 24325 - Earth Day, 2013

    Science.gov (United States)

    2013-04-24

    ... Nation, to preserve our planet for future generations. The first Earth Day marked a renewal of America's... reducing mercury and other pollutants. We have made real progress, but we cannot stop there. We cannot... it poses an urgent threat to our people and our planet. That is why my Administration set...

  7. Atmospheric nitrogen evolution on Earth and Venus

    CERN Document Server

    Wordsworth, R D

    2016-01-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0 - 3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to s...

  8. 76 FR 23685 - Earth Day, 2011

    Science.gov (United States)

    2011-04-28

    ... small, wealthy or poor, can escape the impact of climate change. The United States can be a leader in... the clean energy technologies, markets, and practices that will empower us to win the future. While.../EarthDay to learn ways to protect and preserve our environment for centuries to come. ] NOW,...

  9. 75 FR 21977 - Earth Day, 2010

    Science.gov (United States)

    2010-04-27

    ... words rallied our Nation, and the first Earth Day, as it became known, saw millions come together to... this twenty-first day of April, in the year of our Lord two thousand ten, and of the Independence of the United States of America the two hundred and thirty-fourth. (Presidential Sig.) [FR Doc. 2010-9818...

  10. Spaceship earth: take your classroom into space

    NARCIS (Netherlands)

    Hartevelt, S.; van den Putte, W.; Wamsteker, J.; de Vet, S.; van Loon, J.J.W.A.; Celton, E.; Savage, N.D.L.

    2012-01-01

    Schools in Europe actively participated in the educational project "Spaceship Earth", part of ESA astronaut André Kuipers’ PromISSe mission. The initiative, conceptualized by the European Space Agency (ESA) and the Netherlands Space Office (NSO) also involved a unique collaboration of a team includi

  11. Heterogeneity and anisotropy of Earth's inner core

    NARCIS (Netherlands)

    Deuss, Arwen

    2014-01-01

    Seismic observations provide strong evidence that Earth's inner core is anisotropic, with larger velocity in the polar than in the equatorial direction. The top 60-80 km of the inner core is isotropic; evidence for an innermost inner core is less compelling. The anisotropy is most likely due to alig

  12. Colors of extreme exo-Earth environments.

    Science.gov (United States)

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-01-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  13. China Not the Only Rare Earth Exporter

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Since China announced it was reducing exports of rare earth,there have been continuous voices in the international community demanding China expand exports or seek alternative resources.The United States has also complained to the WTO that China is hoarding the commodity.

  14. Precession of the Earth-Moon System

    Science.gov (United States)

    Urbassek, Herbert M.

    2009-01-01

    The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics…

  15. Non-rare earth magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  16. The future of Earth observation in hydrology

    NARCIS (Netherlands)

    McCabe, Matthew F.; Rodell, Matthew; Alsdorf, Douglas E.; Miralles, Diego G.; Uijlenhoet, Remko; Wagner, Wolfgang; Lucieer, Arko; Houborg, Rasmus; Verhoest, Niko E.C.; Franz, Trenton E.

    2017-01-01

    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by

  17. Replacing the Rare Earth Intellectual Capital

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, Jr., Karl

    2011-04-01

    The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they moved to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically trained

  18. Listening to the Songs of the Earth.

    Science.gov (United States)

    Truitt, Carole

    1998-01-01

    Discusses a six month project where pre-K-4 students in a music class explored whether humans were the only beings on earth who could sing or were musical. Explains that the music and science teachers collaborated on this project enabling the students to create hypotheses and test their observations on animals' musical abilities. (CMK)

  19. Teachable Moment: Google Earth Takes Us There

    Science.gov (United States)

    Williams, Ann; Davinroy, Thomas C.

    2015-01-01

    In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…

  20. Heterogeneity and anisotropy of Earth's inner core

    NARCIS (Netherlands)

    Deuss, Arwen

    2014-01-01

    Seismic observations provide strong evidence that Earth's inner core is anisotropic, with larger velocity in the polar than in the equatorial direction. The top 60-80 km of the inner core is isotropic; evidence for an innermost inner core is less compelling. The anisotropy is most likely due to

  1. Positioning and applications for planet earth

    NARCIS (Netherlands)

    Verhagen, S.; Retscher, G.; Santos, M.C.; Ding, X.L.; Gao, Y.; Jin, S.G.

    2009-01-01

    GNSS, InSAR and LIDAR are identified as important techniques when it comes to monitoring and remote sensing of our planet Earth and its atmosphere. In fact, these techniques can be considered as key elements of the Global Geodetic Observing System. Examples of applications are: environmental

  2. How to Create Black Holes on Earth

    Science.gov (United States)

    Bleicher, Marcus

    2007-01-01

    We present a short overview on the ideas of large extra dimensions and their implications for the possible production of micro black holes in the next generation particle accelerator at CERN (Geneva, Switzerland) from this year on. In fact, the possibility of black hole production on Earth is currently one of the most exciting predictions for the…

  3. Global MHD model of the earth's magnetosphere

    Science.gov (United States)

    Wu, C. C.

    1983-01-01

    A global MHD model of the earth's magnetosphere is defined. An introduction to numerical methods for solving the MHD equations is given with emphasis on the shock-capturing technique. Finally, results concerning the shape of the magnetosphere and the plasma flows inside the magnetosphere are presented.

  4. Atmospheric nitrogen evolution on Earth and Venus

    Science.gov (United States)

    Wordsworth, R. D.

    2016-08-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0-3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to space oxidises the mantle, causing enhanced outgassing of nitrogen. This mechanism has implications for understanding the partitioning of other Venusian volatiles and atmospheric evolution on exoplanets.

  5. Teachable Moment: Google Earth Takes Us There

    Science.gov (United States)

    Williams, Ann; Davinroy, Thomas C.

    2015-01-01

    In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…

  6. Positioning and applications for planet earth

    NARCIS (Netherlands)

    Verhagen, S.; Retscher, G.; Santos, M.C.; Ding, X.L.; Gao, Y.; Jin, S.G.

    2009-01-01

    GNSS, InSAR and LIDAR are identified as important techniques when it comes to monitoring and remote sensing of our planet Earth and its atmosphere. In fact, these techniques can be considered as key elements of the Global Geodetic Observing System. Examples of applications are: environmental monitor

  7. Earth cycles:A historical perspective

    Institute of Scientific and Technical Information of China (English)

    David Oldroyd

    2007-01-01

    @@ For at Jeast two centuries,most geologists have been convinced that Earth has experienced a"linear,"directional history.There iS no doubt that our planet is very different from what it was a few billion years ago.

  8. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    , i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... to the time duration of the signal, not the signal amplitude, rendering it critical to sample ongoing events very densely in time to detect Earth-mass planets. The lower limit of planet mass that will give rise to a signal is set by the angular size of the source which illuminates the lensing system. It can...... be shown that in the crowded fields where microlensing is observed, the primary obstacle for detecting Earth-mass planets is the crowding, rendering it hard to extract accurate photometry from faint sources at seeing limited resolutions. As all the sources tend to be at approximately the same distance...

  9. Spaceship earth: take your classroom into space

    NARCIS (Netherlands)

    Hartevelt, S.; van den Putte, W.; Wamsteker, J.; de Vet, S.; van Loon, J.J.W.A.; Celton, E.; Savage, N.D.L.

    2012-01-01

    Schools in Europe actively participated in the educational project "Spaceship Earth", part of ESA astronaut André Kuipers’ PromISSe mission. The initiative, conceptualized by the European Space Agency (ESA) and the Netherlands Space Office (NSO) also involved a unique collaboration of a team includi

  10. Engineering Geological Structures of the Earth

    Science.gov (United States)

    Trofimov, V. T.; Averkina, T. I.

    The term "engineering geological structure" has been defined. Contents, causes, and distinguishing features and hierarchic classification of these structures and the logical set of engineering geological structures of the globe are also discussed. The regularities of spatial distribution of engineering geological super-, mega-, macro-, and meso-structures of the Earth and its continents have been described.

  11. Cloud Computing Technologies Facilitate Earth Research

    Science.gov (United States)

    2015-01-01

    Under a Space Act Agreement, NASA partnered with Seattle-based Amazon Web Services to make the agency's climate and Earth science satellite data publicly available on the company's servers. Users can access the data for free, but they can also pay to use Amazon's computing services to analyze and visualize information using the same software available to NASA researchers.

  12. Demonstrating Earth Connections and Fuses Working Together

    Science.gov (United States)

    Harrison, Mark

    2017-01-01

    Earth wires and fuses work together in UK mains circuits to keep users safe from electric shocks and are taught in many school contexts. The subject can be quite abstract and difficult for pupils to grasp, and a simple but visually clear and direct demonstration is described which would be easy for most physics departments to build and which can…

  13. How photos of planets reach the earth

    Directory of Open Access Journals (Sweden)

    C. Roos

    1983-03-01

    Full Text Available The way in which photos of planets are transmitted to the earth is discussed. Problems that may arise during transmission are mentioned and a method to detect and correct errors is discussed. This is a survey article and the aim was not to give a rigorous mathematical explanation.

  14. 5th Annual Earth System Grid Federation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-01

    The purpose of the Fifth Annual Earth System Grid Federation (ESGF) Face-to-Face (F2F) Conference was to present the most recent information on the state of ESGF’s software stack and to identify and address the data needs and gaps for the climate and weather communities that ESGF supports.

  15. Lithospheric Subduction on Earth and Venus?

    Science.gov (United States)

    Sandwell, D. T.; Garcia, E.; Stegman, D. R.; Schubert, G.

    2016-12-01

    There are three mechanisms by which terrestrial planets can shed excess heat: conduction across a surface thermal boundary layer; advection of heat through volcanic pipes; and mobile plates/subduction. On the Earth about 30% is released by conduction and 70% by subduction. The dominant mode of heat transport on Venus is largely unknown. Plate flexure models rule out significant heat loss by conduction and the resurfacing from active volcanism is in discordance with a surface age of 600 Ma. There are 9000 km of trenches on Venus that may have been subduction sites but they do not appear active today and are only 25% of the length of the subduction zones on the Earth. Turcotte and others have proposed an episodic recycling model that has short bursts ( 150 Ma) of plate tectonic activity followed by long periods ( 450 Ma) of stagnant lid convection. This talk will review the arguments for and against subduction zones on Venus and discuss possible new satellite observations that could help resolve the subduction issue. Figure Caption. (a) Global mosaic of Magellan SAR imagery. (b) Zoom of area along the Artemis trench, which has similar topography and fracture patterns as the Aleutian subduction zone on Earth. Trench and outer rise lines were digitized from the matching topography image (not shown). The Magellan SAR imagery and topography, displayed on Google Earth, can be downloaded at http://topex.ucsd.edu/venus/index.html

  16. Astrobiology: Life on Earth (and Elsewhere?)

    Science.gov (United States)

    Des Marais, David J.

    2016-01-01

    Astrobiology investigates the origins, evolution and distribution of life in the universe. Scientists study how stellar systems and their planets can create planetary environments that sustain biospheres. They search for biosignatures, which are objects, substances and or patterns that indicate the presence of life. Studies of Earth's early biosphere enhance these search strategies and also provide key insights about our own origins.

  17. Comet mission hopes to uncover Earth's origins

    CERN Multimedia

    Henderson, M

    2004-01-01

    "A European spacecraft that will hunt down a comet in search of clues to the origin of life on Earth will blast off tomorrow from the Kourou spaceport in French Guiana. The Rosetta probe will take 12 years to catch up with Churyumov-Gerasimenko before becoming the first spacecraft to make a soft, controlled landing on a comet's nucleus" (1 page).

  18. Interactive web-based Earth visualization telling the earth science story.

    Science.gov (United States)

    Stein, C.

    2006-12-01

    Interactive earth visualization applications provide a new level of understanding of complex spatial and time based environmental information. GeoFusion's earth visualization tools provide a web-based platform for sharing results of scientific research. One hundred years of predicted sea ice coverage is animated on an interactive globe in a web page. Watershed visualization comes alive with interactive control of terrain, map, satellite, and digital raster graph layers. Animating NASA's Blue Marble Next Generation half kilometer monthly datasets becomes a background for discussing yearly earth cycles. GeoFusion's tools are used for creating custom museum and web-based applications that engage users in an interactive exploration of environmental phenomena.

  19. OpenEarth: Using Google Earth as outreach for NCK's data

    OpenAIRE

    Boer, G. J.; F. Baart; Bruens, A.; Damsma, T.; van Geer, P.; Grasmeijer, B.; Den Heijer, C.; Van Koningsveld, M.; Santinelli, G.

    2012-01-01

    In 2003 various projects at Deltares and the TU-Delft merged their toolboxes for marine and coastal science and engineering into one toolbox, culminating in 2008 in an open source release, known as OpenEarthTools (OET). OpenEarth adopts the wikipedia approach to growth: web 2.0 crowd sourcing. All users are given full write access to help improve the collection. Quality is assured by version control, tracking all changes. OpenEarth started as a social experiment to investigate whether crowd s...

  20. The problem of the near-earth asteroids encountering the earth

    Institute of Scientific and Technical Information of China (English)

    季江徽[1; 刘林[2

    2000-01-01

    The asteroids are the most important small bodies in the solar system, while the movement of the near-earth-asteroids (NEAs) is specially concerned by the world. The focus on these asteroids is that they encounter the earth. The orbital evolution of this kind of asteroid is studied by analyzing and comparing them; reasonable dynamical models and corresponding algorithm are given, and the formal numbered NEAs are calculated. The results of the minimal distance and the very close-approach time with the earth agree well with those announced by the Minor Planet Center (MFC).