WorldWideScience

Sample records for earth sciences division

  1. Earth Sciences Division collected abstracts: 1979

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  2. Earth Sciences Division, collected abstracts, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Taasevigen, D.K.; Henry, A.L.; Madsen, S.K.

    1979-03-30

    Abstracts of papers, internal reports, and talks presented during 1978 at national and international meetings by members of the Earth Sciences Division of the Lawrence Livermore Laboratory are compiled. The arrangement is alphabetical (by author). For any given report, a bibliographic reference appears under the name of each coauthor. A topical index at the end provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  3. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  4. Earth Sciences Division collected abstracts: 1980

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Hornady, B.F. (eds.)

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  5. Earth Sciences Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  6. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  7. Earth Sciences Division, collected abstracts-1977. [Research programs

    Energy Technology Data Exchange (ETDEWEB)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-05-24

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division.

  8. Earth Sciences Division annual report 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  9. Geosciences program annual report 1978. [LBL Earth Sciences Division

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.

    1978-01-01

    This report is a reprint of the Geosciences section of the LBL Earth Sciences Division Annual Report 1978 (LBL-8648). It contains summary papers that describe fundamental studies addressing a variety of earth science problems of interest to the DOE. They have applications in such diverse areas as geothermal energy, oil recovery, in situ coal gasification, uranium resource evaluation and recovery, and earthquake prediction. Completed work has been reported or likely will be in the usual channels. (RWR)

  10. Earth Sciences Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This annual report contains articles describing the research programs conducted during the year. Major areas of interest include geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, geothermal environmental research, basic geosciences studies, applied geosciences studies, nuclear waste isolation, and marine sciences. (ACR)

  11. Earth Sciences Division Research Summaries 2002-2003

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4

  12. Earth Sciences Division Research Summaries 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  13. Earth Sciences Division Research Summaries 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  14. Research results reported by OEO summer (1981) student employees of LLNL working with Earth Sciences (K) Division personnel

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, M. C.; Griffith, P. J.; Kreevoy, E. P.; Turner, III, H. J.; Tatman, D. A.

    1982-01-01

    Significant experimental results were achieved in a number of research programs that were carried out during the summer of 1981 by students sponsored by the Office of Equal Opportunity at the Lawrence Livermore National Laboratory. These students were working with Earth Sciences (K) Division personnel. Accomplishments include the following: (1) preparation of post-burn stratigraphic sections for the Hoe Creek III experiment, Underground Coal Gasification project; (2) preparation of miscellaneous stratigraphic sections in the Climax granite near the Spent Fuel Test, Nevada Test Site, for the Waste Isolation Project; (3) confirmation of the applicability of a new theory relating to subsidence (solid matrix movement); (4) experimental confirmation that organic groundwater contaminants produced during an underground coal gasification experiment can be removed by appropriate bacterial treatment; (5) development of data supporting the extension of the Greenville Fault Zone into the Northern Diablo Range (Alameda and Santa Clara Counties, California); (6) completion of a literature review on hazardous waste (current disposal technology, regulations, research needs); (7) preparation of a map showing levels of background seismic noise in the USSR; (8) demonstration of a correlation of explosion size with the P-wave magnitude of the seismic signal produced by the explosion; and (9) reduction of data showing the extent of ground motion resulting from subsidence in the vicinity of the Hoe Creek III experiment, Underground Coal Gasification Project.

  15. A survey of geographical information systems applications for the Earth Science and Applications Division, Space Sciences Laboratory, Marshall Space Flight Center

    Science.gov (United States)

    Rickman, D.; Butler, K. A.; Laymon, C. A.

    1994-01-01

    The purpose of this document is to introduce Geographical Information System (GIS) terminology and summarize interviews conducted with scientists in the Earth Science and Applications Division (ESAD). There is a growing need in ESAD for GIS technology. With many different data sources available to the scientists comes the need to be able to process and view these data in an efficient manner. Since most of these data are stored in vastly different formats, specialized software and hardware are needed. Several ESAD scientists have been using a GIS, specifically the Man-computer Interactive Data Access System (MCIDAS). MCIDAS can solve many of the research problems that arise, but there are areas of research that need more powerful tools; one such example is the multispectral image analysis which is described in this document. Given the strong need for GIS in ESAD, we recommend that a requirements analysis and implementation plan be developed using this document as a basis for further investigation.

  16. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  17. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  18. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  19. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, M.F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  20. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics" categories; the most…

  1. Cognitive and Neural Sciences Division, 1991 Programs.

    Science.gov (United States)

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  2. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  3. Environmental Sciences Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  4. Medical Sciences Division report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This year`s Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE`s core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE).

  5. Earth Science Multimedia Theater

    Science.gov (United States)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  6. Chemical Sciences Division: Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  7. Nuclear Science Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  8. Life Sciences Division annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, B.L.; Cram, L.S. (comps.)

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  9. New visiting scientists in NSF's Earth sciences

    Science.gov (United States)

    MacGregor, Ian

    The National Science Foundation's Division of Earth Sciences has hired two new rotators to serve as program directors, as part of the ongoing visiting scientists program. The new directors are Jonathan Fink in Geochemistry and Petrology, and L. Douglas James in Hydrological Sciences.Fink has exchanged roles for 1 year with NSF's John Snyder, who is on sabbatical at Arizona State University. Fink's current research includes studies of how the Theological properties of magma govern the emplacement of volcanic domes and lava flows, and the gravitational control on their mass movements. This research extends to the mechanisms of igneous intrusion and interpretation of volcanic features in extraterrestrial and submarine environments.

  10. Mathematical Sciences Division 1992 Programs

    Science.gov (United States)

    1992-10-01

    Behavior of Multipolar Viscous Fluids PI: Hamid Bellout Northern Illinois University Department of Mathematical Sciences (815) 753-6763 FUNDING AGENCY...Madani Technical Objective: A new constitutive " multipolar " theory to describe the flow of viscous fluids will be formulated. This theory assumes nonlinear...variability in the response characteristics of individual neurons . Since the individual neurons are nodes in a network, this will yield a better

  11. Environmental Sciences Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  12. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  13. Life Sciences Division Spaceflight Hardware

    Science.gov (United States)

    Yost, B.

    1999-01-01

    The Ames Research Center (ARC) is responsible for the development, integration, and operation of non-human life sciences payloads in support of NASA's Gravitational Biology and Ecology (GB&E) program. To help stimulate discussion and interest in the development and application of novel technologies for incorporation within non-human life sciences experiment systems, three hardware system models will be displayed with associated graphics/text explanations. First, an Animal Enclosure Model (AEM) will be shown to communicate the nature and types of constraints physiological researchers must deal with during manned space flight experiments using rodent specimens. Second, a model of the Modular Cultivation System (MCS) under development by ESA will be presented to highlight technologies that may benefit cell-based research, including advanced imaging technologies. Finally, subsystems of the Cell Culture Unit (CCU) in development by ARC will also be shown. A discussion will be provided on candidate technology requirements in the areas of specimen environmental control, biotelemetry, telescience and telerobotics, and in situ analytical techniques and imaging. In addition, an overview of the Center for Gravitational Biology Research facilities will be provided.

  14. Chemical and Laser Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    Haines, N. (ed.)

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  15. Earth Science Imagery Registration

    Science.gov (United States)

    LeMoigne, Jacqueline; Morisette, Jeffrey; Cole-Rhodes, Arlene; Johnson, Kisha; Netanyahu, Nathan S.; Eastman, Roger; Stone, Harold; Zavorin, Ilya

    2003-01-01

    The study of global environmental changes involves the comparison, fusion, and integration of multiple types of remotely-sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, as well as for the validation of new instruments or for new data analysis. Furthermore, future multiple satellite missions will include many different sensors carried on separate platforms, and the amount of remote sensing data to be combined is increasing tremendously. For all of these applications, the first required step is fast and automatic image registration, and as this need for automating registration techniques is being recognized, it becomes necessary to survey all the registration methods which may be applicable to Earth and space science problems and to evaluate their performances on a large variety of existing remote sensing data as well as on simulated data of soon-to-be-flown instruments. In this paper we present one of the first steps toward such an exhaustive quantitative evaluation. First, the different components of image registration algorithms are reviewed, and different choices for each of these components are described. Then, the results of the evaluation of the corresponding algorithms combining these components are presented o n several datasets. The algorithms are based on gray levels or wavelet features and compute rigid transformations (including scale, rotation, and shifts). Test datasets include synthetic data as well as data acquired over several EOS Land Validation Core Sites with the IKONOS and the Landsat-7 sensors.

  16. The NASA Earth Science Flight Program

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2014-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 17 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission and the Orbiting Carbon Observatory-2 (OCO-2). The ESD has 18 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small competitively selected orbital and instrument missions of opportunity belonging to the Earth Venture (EV) Program. The International Space Station (ISS) is being used to host a variety of NASA Earth science instruments. An overview of plans and current status will be presented.

  17. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  18. Encyclopedia of earth system science

    National Research Council Canada - National Science Library

    Nierenberg, William Aaron

    1992-01-01

    .... The very diversity of the articles attests to the complexity of earth system science as a unique interdisciplinary venture to place humanity in a position to move wisely to protect the global habitat...

  19. Earth science: Extraordinary world

    Science.gov (United States)

    Day, James M. D.

    2016-09-01

    The isotopic compositions of objects that formed early in the evolution of the Solar System have been found to be similar to Earth's composition -- overturning notions of our planet's chemical distinctiveness. See Letters p.394 & p.399

  20. CAS Panel Proposes Priorities for Earth Science in Next Two Decades

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ CAS member Zhao Zhongxian, director of Working Committee on Consultation and Evaluation of the CAS Academic Divisions (CASAD),has announced that the Academic Division of Earth Sciences has drafted a consultative report on planning and strategic studies of the mid- and long-term development for earth sciences in China.

  1. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  2. NSTA's New Earth Science Test.

    Science.gov (United States)

    Callister, Jeffrey C.; Mayer, Victor J.

    1988-01-01

    Describes the purpose and possible uses of the new American Geological Institute/National Science Teachers Association Earth Science Examination. Provides an order blank for obtaining the test. Stresses that the test is specifically designed to test concepts and problem-solving ability. (CW)

  3. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  4. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  5. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  6. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  7. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  8. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  9. Nuclear Science Division 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  10. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  11. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  12. Joint Interdisciplinary Earth Science Information Center

    Science.gov (United States)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  13. The Denali Earth Science Education Project

    Science.gov (United States)

    Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.

    2004-12-01

    In partnership with Denali National Park and Preserve and the Denali Institute, the Alaska Earthquake Information Center (AEIC) will capitalize upon an extraordinary opportunity to raise public interest in the earth sciences. A coincidence of events has made this an ideal time for outreach to raise awareness of the solid earth processes that affect all of our lives. On November 3, 2002, a M 7.9 earthquake occurred on the Denali Fault in central Alaska, raising public consciousness of seismic activity in this state to a level unmatched since the M 9.2 "Good Friday" earthquake of 1964. Shortly after the M 7.9 event, a new public facility for scientific research and education in Alaska's national parks, the Murie Science and Learning Center, was constructed at the entrance to Denali National Park and Preserve only 43 miles from the epicenter of the Denali Fault Earthquake. The AEIC and its partners believe that these events can be combined to form a synergy for the creation of unprecedented opportunities for learning about solid earth geophysics among all segments of the public. This cooperative project will undertake the planning and development of education outreach mechanisms and products for the Murie Science and Learning Center that will serve to educate Alaska's residents and visitors about seismology, tectonics, crustal deformation, and volcanism. Through partnerships with Denali National Park and Preserve, this cooperative project will include the Denali Institute (a non-profit organization that assists the National Park Service in operating the Murie Science and Learning Center) and Alaska's Denali Borough Public School District. The AEIC will also draw upon the resources of long standing state partners; the Alaska Division of Geological & Geophysical Surveys and the Alaska Division of Homeland Security and Emergency Services. The objectives of this project are to increase public awareness and understanding of the solid earth processes that affect life in

  14. Towards "open applied" Earth sciences

    Science.gov (United States)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  15. Science Data Infrastructure for Preservation - Earth Science

    OpenAIRE

    Albani, Mirko; Marelli, Fulvio; Giaretta, David; Shaon, Arif

    2012-01-01

    The proper preservation of both current and historical scientific data will underpin a multitude of ecological, economic and political decisions in the future of our society. The SCIDIP-ES project addresses the long-term persistent storage, access and management needs of scientific data by providing preservation infrastructure services. Taking exemplars from the Earth Science domain we highlight the key preservation challenges and barriers to be overcome by the SCIDIP-ES infrastructure. SCIDI...

  16. Earth Science Education in Sudan

    Science.gov (United States)

    Abdullatif, Osman M.; Farwa, Abdalla G.

    1999-05-01

    This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.

  17. MATLAB Recipes for Earth Sciences

    Science.gov (United States)

    Trauth, M. H.

    MATLAB is used in a wide range of applications in geosciences, such as image processing in remote sensing, generation and processing of digital elevation models and the analysis of time series. This book introduces basic methods of data analysis in geosciences using MATLAB. The text includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences. All MATLAB recipes can be easily modified in order to analyse the reader's own data sets.

  18. Earth Science Education in Zimbabwe

    Science.gov (United States)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  19. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  20. Earth Sciences annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J. (eds.)

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  1. Strategy for earth explorers in global earth sciences

    Science.gov (United States)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  2. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  3. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  4. Nuclear Science Division, 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Poskanzer, A.M. [ed.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  5. Environmental Sciences Division. Annual progress report for period ending September 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report.

  6. NASA Earth Science Update with Information Science Technology

    Science.gov (United States)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  7. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs.

  8. Nutritional Science Staff | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grid for Earth Science Applications

    Science.gov (United States)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to

  10. Senior High School Earth Sciences and Marine Sciences.

    Science.gov (United States)

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  11. Earth Science Mining Web Services

    Science.gov (United States)

    Pham, Long; Lynnes, Christopher; Hegde, Mahabaleshwa; Graves, Sara; Ramachandran, Rahul; Maskey, Manil; Keiser, Ken

    2008-01-01

    To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at he GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADam components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestras the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to the infusion is the loosely coupled, Web-Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.

  12. Earth Science Mining Web Services

    Science.gov (United States)

    Pham, L. B.; Lynnes, C. S.; Hegde, M.; Graves, S.; Ramachandran, R.; Maskey, M.; Keiser, K.

    2008-12-01

    To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at the GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADaM components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestrates the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to this infusion is the loosely coupled, Web- Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.

  13. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  14. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    Science.gov (United States)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  15. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  16. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  17. EarthSpace: The Higher Education Clearinghouse for Earth and Space Sciences

    Science.gov (United States)

    Dalton, H.; Cobabe-Ammann, E. A.; Shipp, S. S.

    2012-12-01

    EarthSpace is a searchable database of undergraduate classroom materials designed specifically for faculty teaching planetary sciences, Earth sciences, astrophysics, and solar and space physics at the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets, from homework and computer interactives to laboratory exercises, lectures, and demonstrations. The site capabilities are being expanded to allow assignment of a unique Digital Object Identifier (DOI) to submitted materials, which will provide material developers a way to identify their submitted materials as publications on their CVs. EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities (e.g., Connexions), providing a wider distribution of the resources. In addition to classroom materials, EarthSpace provides the latest news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. This information is emailed monthly in a newsletter to faculty members via the community mailing list, HENews. HENews is a place for the higher education community to share and receive news and information about higher education, teaching, and Earth and space science. EarthSpace also has an RSS feed to notify members when items are added. EarthSpace is a community-driven effort; higher education faculty members contribute and review materials and thus influence the content provided on the site. All materials are peer-reviewed before posting, and authors adhere to the Creative Commons Attribution (CC BY 3.0). You are invited to visit EarthSpace to search for teaching resources, submit your materials, or volunteer to review submitted resources in your discipline with a frequency designed to fit your schedule.

  18. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  19. Earth Sciences report, 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Peterson, S.J.; Price, M.E. (eds.)

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

  20. Utah's Mobile Earth Science Outreach Vehicle

    Science.gov (United States)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  1. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  2. Space and Earth Science Data Compression Workshop

    Science.gov (United States)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  3. NASA Earth Exchange: A Collaborative Earth Science Platform

    Science.gov (United States)

    Nemani, R. R.; Votava, P.; Michaelis, A.; Melton, F. S.; Hashimoto, H.; Milesi, C.; Wang, W.; Ganguly, S.

    2010-12-01

    The NASA Earth Exchange (NEX) is a collaboration platform for the Earth science community creating new ways for scientific interaction and knowledge sharing. Funded through ARRA, NEX combines state-of-the-art supercomputing, Earth system modeling, workflow management, NASA remote sensing data feeds, and a social networking platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. The work environment provides NEX members with community supported modeling, analysis and visualization software in conjunction with datasets that are common to the Earth systems science domain. By providing data, software, and large-scale computing power together in a flexible framework, NEX reduces the need for duplicated efforts in downloading data, developing pre-processing software tools, and expanding local compute infrastructures—while accelerating fundamental research, development of new applications, and reducing project costs. The social networking platform provides a forum for NEX members to efficiently share datasets, results, algorithms, codes, and expertise with other members. Since all members' work environments reside on the collaborative platform, sharing may be done without the transfer of large volumes of data or the porting of complex codes—making NEX an ideal platform for building upon and exchanging research, and fostering innovation. Architecture of NEX integrating social networking, super-computing and data center. The prototyping facility allows users to test their models, algorithms prior to deploying them on the super-computers when required.

  4. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  5. JPRS Report Science & Technology USSR: Earth Sciences.

    Science.gov (United States)

    2007-11-02

    of changes in climate requires a study of the earth’s paleoclimate , the climates of other planets and the specifics of the climate of large...changes in climate related to the increasing content of CO2 in the atmosphere itself is a small part of this. In any case, at present no reliable...radiation-active components in variations of the climate and related effects." Papers presented at the conference discussed the CO2 cycle and CO2

  6. NASA Citizen Science for Earth Systems Program

    Science.gov (United States)

    Sherman, R. A.; Murphy, K. J.

    2016-12-01

    NASA has recently kicked off the Citizen Science for Earth Systems Program. The program's purpose is to develop and implement capabilities to harness voluntary contributions from members of the general public and complement NASA's remote sensing capabilities. The program is a multi-million dollar and multi-year effort to incorporate crowdsourced data and citizen science analysis into NASA's portfolio of Earth science research. NASA is funding a number of citizen science research and development projects over the next three years as part of this program. NASA has long supported citizen science across the Science Mission Directorate, and this program is NASA's biggest investment into furthering citizen science research. The program received an extremely enthusiastic response, with >100 proposals submitted from all across the country. The projects selected are currently developing prototypes, and next summer the most promising will be selected to fully implement their research and engage citizens to participate in collecting and analyzing data to support NASA Earth Science across a range of topic areas, including ecosystems, atmosphere, and water systems. In the years to come, this program has an interest in advancing the use of citizen science as a research tool, in particular by promoting sound data management practices to support open data access and re-use, including information regarding data quality and provenance.

  7. What K-12 Teachers of Earth Science Need from the Earth Science Research Community: Science Teaching and Professional Learning in the Earth Sciences (STAPLES), a Minnesota Case Study

    Science.gov (United States)

    Campbell, K. M.; Pound, K. S.; Rosok, K.; Baumtrog, J.

    2009-12-01

    NSF-style Broader Impacts activities in the Earth Sciences take many forms, from long term partnerships between universities and informal science institutions to one-time K-12 classroom visits by scientists. Broader Impacts that include K-12 teachers range from those that convey broad Earth Science concepts to others stressing direct connections to very specific current research methods and results. Design of these programs is often informed by prior successful models and a broad understanding of teacher needs, but is not specifically designed to address needs expressed by teachers themselves. In order to better understand teachers’ perceived needs for connections to Earth Science research, we have formed the Science Teaching and Professional Learning in the Earth Sciences (STAPLES) research team. Our team includes a geology faculty member experienced in undergraduate and professional Earth Science teacher training, two in-service middle school Earth Science teachers, and the Education Director of the National Center for Earth-surface Dynamics (NCED), a National Science Foundation Science and Technology Center. Members of the team have designed, taught and experienced many of these models, from the Andrill ARISE program to NCED’s summer institutes and teacher internship program. We are administering the STAPLES survey to ask Earth Science teachers in our own state (Minnesota) which of many models they use to 1) strengthen their own understanding of current Earth Science research and general Earth Science concepts and 2) deepen their students’ understanding of Earth Science content. Our goal is to share survey results to inform more effective Broader Impacts programs in Minnesota and to stimulate a wider national discussion of effective Broader Impacts programs that includes teachers’ voices.

  8. Earth Sciences Requirements for the Information Sciences Experiment System

    Science.gov (United States)

    Bowker, David E. (Editor); Katzberg, Steve J. (Editor); Wilson, R. Gale (Editor)

    1990-01-01

    The purpose of the workshop was to further explore and define the earth sciences requirements for the Information Sciences Experiment System (ISES), a proposed onboard data processor with real-time communications capability intended to support the Earth Observing System (Eos). A review of representative Eos instrument types is given and a preliminary set of real-time data needs has been established. An executive summary is included.

  9. Environmental Sciences Division: Summaries of research in FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  10. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  11. Atmospheric sciences division. Annual report, fiscal year 1981

    Energy Technology Data Exchange (ETDEWEB)

    Raynor, G. S. [ed.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included.

  12. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  13. The Kentucky Earth System Science Education Project

    Science.gov (United States)

    Whitworth, J. M.; Siewers, F. D.

    2003-12-01

    The Kentucky Earth Systems Education Project is a partnership between Western Kentucky University and Morehead State University to deliver the Earth Systems Science Alliance (ESSEA) courses via the Kentucky Virtual University to classroom teachers in Kentucky and beyond. One goal of the project has been to integrate the courses into the teacher preparation programs at both institutions, as well as providing professional development to practicing K-12 teachers. This presentation will highlight how team teaching courses with professors from different institutions at opposite ends of the state, as well as teaching in a different way, has brought new challenges and its own rewards. The instructors will present their own experiences and lessons learned that resulted in more effective ways of communicating and engaging students in the study of Earth Systems. They will also discuss how teaching strategies used in the course has changed their own teaching and student reactions to their online experience learning earth systems science.

  14. Deriving Earth Science Data Analytics Requirements

    Science.gov (United States)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  15. Connecting NASA science and engineering with earth science applications

    Science.gov (United States)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  16. The 2009 Earth Science Literacy Principles

    Science.gov (United States)

    Wysession, M. E.; Budd, D. A.; Campbell, K. M.; Conklin, M. H.; Kappel, E. S.; Ladue, N.; Lewis, G.; Raynolds, R.; Ridky, R. W.; Ross, R. M.; Taber, J.; Tewksbury, B. J.; Tuddenham, P.

    2009-12-01

    In 2009, the NSF-funded Earth Science Literacy Initiative (ESLI) completed and published a document representing a community consensus about what all Americans should understand about Earth sciences. These Earth Science Literacy Principles, presented as a printed brochure and on the Internet at www.earthscienceliteracy.org, were created through the work of nearly 1000 geoscientists and geoeducators who helped identify nine “big ideas” and seventy-five “supporting concepts” fundamental to terrestrial geosciences. The content scope involved the geosphere and land-based hydrosphere as addressed by the NSF-EAR program, including the fields of geobiology and low-temperature geochemistry, geomorphology and land-use dynamics, geophysics, hydrologic sciences, petrology and geochemistry, sedimentary geology and paleobiology, and tectonics. The ESLI Principles were designed to complement similar documents from the ocean, atmosphere, and climate research communities, with the long-term goal of combining these separate literacy documents into a single Earth System Science literacy framework. The aim of these principles is to educate the public, shape the future of geoscience education, and help guide the development of government policy related to Earth science. For example, K-12 textbooks are currently being written and museum exhibits constructed with these Principles in hand. NPR-funded educational videos are in the process of being made in alignment with the ESLP Principles. US House and Senate representatives on science and education committees have been made aware that the major geoscience organizations have endorsed such a document generated and supported by the community. Given the importance of Earth science in so many societally relevant topics such as climate change, energy and mineral resources, water availability, natural hazards, agriculture, and human impacts on the biosphere, efforts should be taken to ensure that this document is in a position to

  17. Music Education and the Earth Sciences

    Science.gov (United States)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  18. Medical Sciences Division Oak Ridge Institute for Science and Education report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Research programs from the medical science division of the Oak Ridge Institute for Science and Education (ORISE) are briefly described in the following areas: Biochemistry, cytogenetics, microbiology, center for epidemiologic research, radiation medicine, radiation internal dose information center, center for human reliability studies, facility safety, occupational medicine, and radiation emergency assistance center/training site.

  19. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  20. Public Access to NASA's Earth Science Data

    Science.gov (United States)

    Behnke, J.; James, N.

    2013-12-01

    Many steps have been taken over the past 20 years to make NASA's Earth Science data more accessible to the public. The data collected by NASA represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. Consequently, NASA developed a free, open and non-discriminatory policy consistent with existing international policies to maximize access to data and to keep user costs as low as possible. These policies apply to all data archived, maintained, distributed or produced by NASA data systems. The Earth Observing System Data and Information System (EOSDIS) is a major core capability within NASA Earth Science Data System Program. EOSDIS is designed to ingest, process, archive, and distribute data from approximately 90 instruments. Today over 6800 data products are available to the public through the EOSDIS. Last year, EOSDIS distributed over 636 million science data products to the user community, serving over 1.5 million distinct users. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. A core philosophy of EOSDIS is that the general user is best served by providing discipline specific support for the data. To this end, EOSDIS has collocated NASA Earth science data with centers of science discipline expertise, called Distributed Active Archive Centers (DAACs). DAACs are responsible for data management, archive and distribution of data products. There are currently twelve DAACs in the EOSDIS system. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. Over the years, we have developed several methods for determining needs of the user community including use of the American Customer Satisfaction Index survey and a broad metrics program. Annually, we work with an independent organization (CFI Group) to send this

  1. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  2. Technology thrusts for future Earth science applications

    Science.gov (United States)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  3. Data processing guide for the Environmental Sciences Division

    Energy Technology Data Exchange (ETDEWEB)

    Strand, R. H.; Olson, R. J.; Kumar, K. D.; Tharp, M. L.; Watts, J. A.; Griffith, N. A.; Anderson, R. M.

    1977-08-01

    The data processing guide provides information on the availability and use of computer facilities for Environmental Sciences Division (ESD) personnel. This guide addresses recent data processing developments in ESD, little-known capabilities for handling data and using programs, and illustrates the mechanics of these developments and capabilities. Some of the specific developments are: storing data or source code on tape or disk for insertion into a computer job stream, creating a DECSYSTEM10 file from punched paper tape, data storage and input using a computer terminal with cassette tapes, and generation of microfiche output.

  4. An experience of science theatre: Earth Science for children

    Science.gov (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  5. Communicating Ocean Science at the Lower-Division Level

    Science.gov (United States)

    Coopersmith, A.

    2011-12-01

    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their

  6. Vocabulary related to earth sciences through etymology

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    and strengthening vocabulary in earth sci- ences through etymology? has appeared in the May 2006 issue of Journal of Earth System Science Education (http://jesse. usra.edu/archive/jesse), a popular on-line journal of NASA, USA, that publishes papers relating... subject and cross-curricular learning. Sarma?s effort is laudable as he has etymologically connected as many as 1600 technical terms through ~300 root words. The etymological approach adopted by the author is simple and effective; learnt from his...

  7. Naturally occurring radionuclides and Earth sciences

    Directory of Open Access Journals (Sweden)

    G. Ferrara

    1997-06-01

    Full Text Available Naturally occurring radionuclides are used in Earth sciences for two fundamental purposes: age determination of rocks and minerals and studies of variation of the isotopic composition of radiogenic nuclides. The methodologies that are in use today allow us to determine ages spanning from the Earth's age to the late Quaternary. The variations of isotopic composition of radiogenic nuclides can be applied to problems of mantle evolution, magma genesis and characterization with respect to different geodynamic situations and can provide valuable information not obtainable by elemental geochemistry.

  8. Exploiting Untapped Information Resources in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  9. The NASA Earth Science Flight Program: an update

    Science.gov (United States)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  10. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  11. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  12. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  13. Heat transfer in earth science studies

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. (Lawrence Livermore National Lab., CA (United States)); Chu, T.Y. (Sandia National Labs., Albuquerque, NM (United States))

    1990-01-01

    Earth scientists have long recognized that quantitative models of heat and mass transfer are fundamental to understanding many geophysical phenomena. Transport models have been used to simulate a wide range of earth processes from the crystallization of rock melts to those global mechanisms responsible for driving lithospheric plates and the geodynamo. Since the elegant conductive cooling models of igneous instrusions by Lovering and Jaeger in the 1930's and 1940's, calculations have evolved in their sophistication with the realization of the importance of convective transport and the advent of new methods and supercomputers. Many of the modeling techniques currently used by geoscientists have been adapted from techniques that were originally developed to solve engineering problems. Processes, such as those involving magma transport in volcanic systems, may often be understood by establishing their dynamical similarity with a well-studied engineering application. This book contains a series of papers regarding heat transfer and earth science studies.

  14. Beyond Earth: Weaving Science and Indigenous Culture

    Science.gov (United States)

    Young, Timothy; Guy, M.; Baker-Big Back, C.; Froelich, K.; Munski, L.; Johnson, T.

    2010-01-01

    Beyond Earth is an NSF planning grant designed to engage urban and rural families in science learning while piloting curriculum development and implementation that incorporates both Native and Western epistemologies. Physical, earth, and space science content is juxtaposed with indigenous culture, stories, language and epistemology in after-school programs and teacher training. Project partners include the Dakota Science Center, Fort Berthold Community College, and Sitting Bull College. The Native American tribes represented in this initiative illustrate partnerships between the Dakota, Lakota, Nakota, Hidatsa, Mandan, and Arikara. The primary project deliverables include a culturally responsive curriculum Beyond Earth Moon Module, teacher training workshops, a project website. The curriculum module introduces students to the moon's appearance, phases, and positions in the sky using the Night Sky Planetarium Experience Station to explore core concepts underlying moon phases and eclipses using the interactive Nature Experience Station before engaging in the culminating Mission Challenge in which they apply their knowledge to problem solving situations and projects. The website and developed explorations are presented.

  15. Earth Science by Design: Teaching the Big Ideas in Earth System Science

    Science.gov (United States)

    McWilliams, H.; McAuliffe, C.

    2007-12-01

    Developed by TERC and the American Geological Institute with funding from the National Science Foundation, Earth Science by Design (ESBD) is a year-long program of professional development for middle or high school teachers based on the Understanding by Design approach pioneered by Grant Wiggins and Jay McTighe. ESBD is designed to help teachers: · Teach for deep and enduring understanding of the "big ideas" in Earth system science. · Use "backward design" to create curriculum units and lessons that are engaging, rigorous, and aligned with national, state, and local standards. · Design effective classroom assessments and rubrics. · Incorporate powerful web-based Earth science visualizations and satellite imagery into an Earth system science approach. ESBD has developed a complete professional development package for staff developers and geoscience educators, including: · The ESBD Handbook, which provides everything you need to offer the program, including detailed workshop lesson plans. · The ESBD Web Site, where teachers can develop curriculum units online (www.esbd.org). · Online resources for Earth Science teaching and learning. · PowerPoint presentations for workshops and courses. · DVD of teacher reflections on their implementation experiences. In this session we will review the resources which ESBD makes available for geoscience educators: ·sample Earth science units produced by teachers in the program, ·field test results, ·the effect of the program on teacher practice, ·and how geoscience educators can get involved with ESBD. ESBD has been field-tested by staff developers in eight sites nationwide and is being adapted by college and university geoscience educators for use with pre-service teachers. In this session we will report on the results of field testing and on an experimental study of ESBD and other professional development approaches funded by the US Department of Education, Institute of Educational Sciences.

  16. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  17. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  18. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  19. The Earth Science for Tomorrows Classroom

    Science.gov (United States)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  20. Terra Incognita: Explanation and Reductionism in Earth Science

    NARCIS (Netherlands)

    Kleinhans, M.G.

    2005-01-01

    The present paper presents a philosophical analysis of earth science, a discipline that has received relatively little attention from philosophers of science. We focus on the question of whether earth science can be reduced to allegedly more fundamental sciences, such as chemistry or physics. In

  1. Life Sciences Division and Center for Human Genome Studies

    Energy Technology Data Exchange (ETDEWEB)

    Spitzmiller, D.; Bradbury, M.; Cram, S. (comps.)

    1992-05-01

    This report summarizes the research and development activities of Los Alamos National Laboratories Life Sciences Division and biological aspects of the Center for Human Genome Studies for the calendar year 1991. Selected research highlights include: yeast artificial chromosome libraries from flow sorted human chromosomes 16 and 21; distances between the antigen binding sites of three murine antibody subclasses measured using neutron and x-ray scattering; NFCR 10th anniversary highlights; kinase-mediated differences found in the cell cycle regulation of normal and transformed cells; and detecting mutations that cause Gaucher's disease by denaturing gradient gel electrophoresis. Project descriptions include: genomic structure and regulation, molecular structure, cytometry, cell growth and differentiation, radiation biology and carcinogenesis, and pulmonary biology.

  2. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  3. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    Science.gov (United States)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  4. Edible Earth and Space Science Activities

    Science.gov (United States)

    Lubowich, D.; Shupla, C.

    2014-07-01

    In this workshop we describe using Earth and Space Science demonstrations with edible ingredients to increase student interest. We show how to use chocolate, candy, cookies, popcorn, bagels, pastries, Pringles, marshmallows, whipped cream, and Starburst candy for activities such as: plate tectonics, the interior structure of the Earth and Mars, radioactivity/radioactive dating of rocks and stars, formation of the planets, lunar phases, convection, comets, black holes, curvature of space, dark energy, and the expansion of the Universe. In addition to creating an experience that will help students remember specific concepts, edible activities can be used as a formative assessment, providing students with the opportunity to create something that demonstrates their understanding of the model. The students often eat the demonstrations. These demonstrations are an effective teaching tool for all ages, and can be adapted for cultural, culinary, and ethnic differences among the students.

  5. European grid services for global earth science

    Science.gov (United States)

    Brewer, S.; Sipos, G.

    2012-04-01

    This presentation will provide an overview of the distributed computing services that the European Grid Infrastructure (EGI) offers to the Earth Sciences community and also explain the processes whereby Earth Science users can engage with the infrastructure. One of the main overarching goals for EGI over the coming year is to diversify its user-base. EGI therefore - through the National Grid Initiatives (NGIs) that provide the bulk of resources that make up the infrastructure - offers a number of routes whereby users, either individually or as communities, can make use of its services. At one level there are two approaches to working with EGI: either users can make use of existing resources and contribute to their evolution and configuration; or alternatively they can work with EGI, and hence the NGIs, to incorporate their own resources into the infrastructure to take advantage of EGI's monitoring, networking and managing services. Adopting this approach does not imply a loss of ownership of the resources. Both of these approaches are entirely applicable to the Earth Sciences community. The former because researchers within this field have been involved with EGI (and previously EGEE) as a Heavy User Community and the latter because they have very specific needs, such as incorporating HPC services into their workflows, and these will require multi-skilled interventions to fully provide such services. In addition to the technical support services that EGI has been offering for the last year or so - the applications database, the training marketplace and the Virtual Organisation services - there now exists a dynamic short-term project framework that can be utilised to establish and operate services for Earth Science users. During this talk we will present a summary of various on-going projects that will be of interest to Earth Science users with the intention that suggestions for future projects will emerge from the subsequent discussions: • The Federated Cloud Task

  6. How earth science has become a social science

    OpenAIRE

    Oreskes, Naomi

    2015-01-01

    Many major questions in earth science research today are not matters of the behavior of physical systems alone, but of the interaction of physical and social systems. Information and assumptions about human behavior, human institutions and infrastructures, and human reactions and responses, as well as consideration of social and monetary costs, play a role in climate prediction, hydrological research, and earthquake risk assessment. The incorporation of social factors into “physical” models b...

  7. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  8. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  9. Understanding our Changing Planet: NASA's Earth Science Enterprise

    Science.gov (United States)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  10. Earth Science Informatics Comes of Age

    Science.gov (United States)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  11. National Earth Science Teachers Association Achievements in Earth Science Education Leadership

    Science.gov (United States)

    Passow, M. J.; Johnson, R. M.; Pennington, P.; Herrold, A.; Holzer, M.; Ervin, T.; Hall, B.

    2008-12-01

    The National Earth Science Teachers Association (NESTA) continues its 25-year-long effort to advance geoscience education at all levels. NESTA especially employs multiple approaches to provide leadership, support, and resources to teachers so that all K - 12 students may receive a quality Earth and Space Science education. NESTA presents Share-a-thons, Earth and Space Science Resources Days, lectures, Rock and Mineral Raffles, field experiences, and social events that foster networking at national and regional science education conferences. Our quarterly journal,The Earth Scientist,provides quality classroom activities as well as background science information and news of opportunities of value to classroom teachers and their students. Recent issues have focused on the International Polar Year, professional development in the Earth Sciences, and recent advances in astronomy. These have included contributions from classroom and university educators and researchers. NESTA's web site, www.nestanet.org, provides timely information about upcoming events and opportunities, links to useful resources for geoscience teachers, access to the current and archived journals, and organizational information. A revised website, supported by an NSF grant, will be unveiled before the next NSTA National Conference on Science Education. These are supplemented by a monthly E-News and special "e-blasts". NESTA's leadership engages in frequent teleconferences to keep current with organizational planning. Among other accomplishments during the past year, NESTA revitalized our State contact network, identifying a member in almost every state plus some Canadian Provinces. This network will help disseminate information from NESTA, as well as provide feedback on issues of importance to members around the country. NESTA leaders and members interact with other national geoscience education organizations, including NAGT, GSA, AGI, AMS, and the Triangle Coalition. NESTA representatives also serve

  12. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects.

  13. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    Science.gov (United States)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  14. Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.

    Science.gov (United States)

    Ford, Brent A.; Smith, P. Sean

    This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…

  15. Cross-Cutting Interoperability in an Earth Science Collaboratory

    Science.gov (United States)

    Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen

    2011-01-01

    An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge

  16. Earth Science Data for a Mobile Age

    Science.gov (United States)

    Oostra, D.; Chambers, L. H.; Lewis, P. M.; Baize, R.; Oots, P.; Rogerson, T.; Crecelius, S.; Coleman, T.

    2012-12-01

    Earth science data access needs to be interoperable and automatic. Recently, increasingly savvy data users combined with more complex web and mobile applications have placed increasing demands on how this Earth science data is being delivered to educators and students. The MY NASA DATA (MND) and S'COOL projects are developing a strategy to interact with the education community in the age of mobile devices and platforms. How can we provide data and meaningful scientific experiences to educational users through mobile technologies? This initiative will seek out existing technologies and stakeholders within the Earth Science community to identify datasets that are relevant and appropriate for mobile application development and use by the educational community. Targeting efforts within the educational community will give the project a better understanding of the previous attempts at data/mobile application use in the classroom and its problems. In addition, we will query developers and data providers on what successes and failures they've experienced in trying to provide data for applications designed on mobile platforms. This feedback will be implemented in new websites, applications and lessons that will provide authentic scientific experiences for students and end users. We want to create tools that help sort through the vast amounts of NASA data, and deliver it to users automatically. NASA provides millions of gigabytes of data that is publicly available through a large number of services spread across the World Wide Web. Accessing and navigating this data can be time consuming and problematic with variety of file types and methods for accessing this data. The MND project, through its' Live Access Server system, provides selected datasets that are relevant and targets National Standards of Learning for educators to easily integrate into existing curricula. In the future, we want to provide desired data to users with automatic updates, anticipate future data queries

  17. Can Earth Sciences Help Alleviate Global Poverty?

    Science.gov (United States)

    Mutter, J. C.

    2004-12-01

    Poverty is not properly described solely in terms of economics. Certainly the billion people living on less than a dollar a day are the extreme poor and the two billion people who are living today on two dollars a day or less are poor also. One third of all humans live in poverty today. But poverty concerns deprivation - of good health, adequate nutrition, adequate education, properly paid employment, clean water, adequate housing and good sanitation. It is a fundamental denial of opportunity and a violation of basic human rights. Despite its prevalence and persistence of poverty and the attention given it by many scholars, the causes of poverty are not well understood and hence interventions to bring poor societies out of their condition often fail. One commonly missed component in the search for solutions to poverty is the fundamental co-dependence between the state of the Earth and the state of human well-being. These relationships, are compelling but often indirect and non-linear and sometimes deeply nuanced. They are also largely empirical in nature, lacking theory or models that describe the nature of the relationships. So while it is quite apparent that the poorest people are much more vulnerable than the rich to the Earths excesses and even to relatively small natural variations in places where the base conditions are poor, we do not presently know whether the recognized vulnerability is both an outcome of poverty and a contributing cause. Are societies poor, or held from development out of poverty because of their particular relationship to Earth's natural systems? Does how we live depend on where we live? Providing answers to these questions is one of the most fundamental research challenges of our time. That research lies in a domain squarely at the boundary between the natural and social sciences and cannot be answered by studies in either domain alone. What is clear even now, is that an understanding of the Earth gained from the natural sciences is

  18. Experiential learning for education on Earth Sciences

    Science.gov (United States)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  19. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    Science.gov (United States)

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  20. PLANETarium - Visualizing Earth Sciences in the Planetarium

    Science.gov (United States)

    Ballmer, M. D.; Wiethoff, T.; Kraupe, T. W.

    2013-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and public education, have advanced from instruments that can visualize the motion of stars as beam spots moving over spherical projection areas to systems that are able to display multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education. A few documentaries on e.g. climate change or volcanic eruptions have been brought to planetariums, but are taking little advantage of the true potential of the medium, as mostly based on standard two-dimensional videos and cartoon-style animations. Along these lines, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100,000,000 per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to directly show visualizations of scientific datasets or models, originally designed for basic research. Such visualizations in solid-Earth, as well as athmospheric and ocean sciences, are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., surface temperature, gravity, magnetic field), or horizontal slices of seismic-tomography images and of spherical computer simulations (e.g., climate evolution, mantle flow or ocean currents) requires almost no rendering at all. Three-dimensional Cartesian datasets or models can be rendered using standard methods. With the appropriate audio support, present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly more

  1. NASA's Earth Science Data Systems Standards Process

    Science.gov (United States)

    Ullman, R.; Enloe, Y.

    2006-12-01

    Starting in January 2004, NASA instituted a set of internal working groups to develop ongoing recommendations for the continuing broad evolution of Earth Science Data Systems development and management within NASA. One of these Data Systems Working Groups is called the Standards Process Group (SPG). This group's goal is to facilitate broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the approval of proposed standards and directing the evolution of standards. We have found that the candidate standards that self defined communities are proposing for approval to the SPG are one of 3 types: (1) A NASA community developed standard used within at least one self defined community where the proposed standard has not been approved or adopted by an external standards organization and where new implementations are expected to be developed from scratch, using the proposed standard as the implementation specification; (2) A NASA community developed standard used within at least one self defined community where the proposed standard has not been approved or adopted by an external standards organization and where new implementations are not expected to be developed from scratch but use existing software libraries or code;. (3) A standard already approved by an external standards organization but is being proposed for use for the NASA Earth science community. There are 3 types of reviews potentially needed to evaluate a proposed standard: (1) A detailed technical review to determine the quality, accuracy, and clarity of the proposed specification and where a detailed technical review ensures that implementers can use the proposed standard as an implementation specification for any future implementations with confidence; (2) A "usefulness" user review that determines if the proposed standard is useful or helpful or necessary to the user to carry out his work; (3) An operational review that evaluates if the

  2. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16).

  3. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery 3

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages the Earth as Art Three exhibit, which provides fresh and inspiring glimpses of different parts of...

  4. Personal Inquiry in the Earth Sciences.

    Science.gov (United States)

    Kaufman, W. Paul

    Designed as a basic workbook using the inquiry process or as a supplementary text in the classroom, this 129 page booklet is divided into five units: Moving in on the Earth From Space, The Earth's Great Bodies of Water, Composition of the Solid Earth, The Earth's Crust is Constantly Changing, and Studying the Earth's History. The exercises are…

  5. High Performance Database Management for Earth Sciences

    Science.gov (United States)

    Rishe, Naphtali; Barton, David; Urban, Frank; Chekmasov, Maxim; Martinez, Maria; Alvarez, Elms; Gutierrez, Martha; Pardo, Philippe

    1998-01-01

    The High Performance Database Research Center at Florida International University is completing the development of a highly parallel database system based on the semantic/object-oriented approach. This system provides exceptional usability and flexibility. It allows shorter application design and programming cycles and gives the user control via an intuitive information structure. It empowers the end-user to pose complex ad hoc decision support queries. Superior efficiency is provided through a high level of optimization, which is transparent to the user. Manifold reduction in storage size is allowed for many applications. This system allows for operability via internet browsers. The system will be used for the NASA Applications Center program to store remote sensing data, as well as for Earth Science applications.

  6. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  7. Physics, Computer Science and Mathematics Division. Annual report, 1 January-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1980-09-01

    This annual report describes the research work carried out by the Physics, Computer Science and Mathematics Division during 1979. The major research effort of the Division remained High Energy Particle Physics with emphasis on preparing for experiments to be carried out at PEP. The largest effort in this field was for development and construction of the Time Projection Chamber, a powerful new particle detector. This work took a large fraction of the effort of the physics staff of the Division together with the equivalent of more than a hundred staff members in the Engineering Departments and shops. Research in the Computer Science and Mathematics Department of the Division (CSAM) has been rapidly expanding during the last few years. Cross fertilization of ideas and talents resulting from the diversity of effort in the Physics, Computer Science and Mathematics Division contributed to the software design for the Time Projection Chamber, made by the Computer Science and Applied Mathematics Department.

  8. Earth Science Futuristic Trends and Implementing Strategies

    Science.gov (United States)

    Habib, Shahid

    2003-01-01

    For the last several years, there is a strong trend among the science community to increase the number of space-based observations to get a much higher temporal and spatial resolution. Such information will eventually be useful in higher resolution models that can provide predictability with higher precision. Such desirability puts a tremendous burden on any single implementing entity in terms of budget, technology readiness and compute power. The health of planet Earth is not governed by a single country, but in reality, is everyone's business living on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to undertake. So far, each country per their means has proceeded along satisfactorily in implementing or benefiting directly or indirectly from the Earth observation data and scientific products. However, time has come that this is becoming a humongous problem to be undertaken by a single country. Therefore, this paper gives some serious thoughts in what options are there in undertaking this tremendous challenge. The problem is multi-dimensional in terms of budget, technology availability, environmental legislations, public awareness, and communication limitations. Some of these issues are introduced, discussed and possible implementation strategies are provided in this paper to move out of this predicament. A strong emphasis is placed on international cooperation and collaboration to see a collective benefit for this effort.

  9. Art with Science: Connecting to Earth

    Science.gov (United States)

    Bendel, W. B.; Kirn, M.; Gupta, S.

    2013-12-01

    Why are so many people aware of climate change and sustainable solutions, but so few are actually doing anything about them? Social science research now suggests that to foster effective decision-making and action, good communication must include both cognition (e.g., intellect, facts, analysis) and affect (e.g., emotions, values, beliefs) working together. The arts have been used since prehistoric times not only to document and entertain, but to inspire, communicate, educate and motivate people to do things they might not otherwise have the interest or courage to do. Two projects, both funded by the National Oceanic and Atmospheric Administration (NOAA), are presented that explore art and science collaborations, designed to engage both the analytical and experiential information processing systems of the brain while fostering transformative thinking and behavior shifts for Earth-sustainability. The first project, Raindrop, is a smartphone application created at Butler University through a collaboration with artist Mary Miss and EcoArts Connections in the project FLOW: Can You See the River? Raindrop uses geographic information systems and GPS technology to map a raindrop's path from a user's location in Marion County to the White River as it flows through Indianapolis. Raindrop allows users to identify various flow paths and pollutant constituents transported by this water from farms, buildings, lawns, and streets along the way. Miss, with the help of scientists and others, created public art installations along the river engaging viewers in its infrastructure, history, ecology, and uses, and allowed for virtual features of the Raindrop app to be grounded in physical space. By combining art, science and technology, the project helped people not only to connect more personally to watershed and climate information, but also to understand viscerally that 'all property is river front property' connecting their own behavior with the health of the river. The second

  10. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages this collection of Landsat 7 scenes created for aesthetic purposes rather than scientific...

  11. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  12. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  13. Environmental Sciences Division Groundwater Program Office. Annual report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO`s staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater).

  14. The ongoing educational anomaly of earth science placement

    Science.gov (United States)

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  15. Earth and Space Science. A Guide for Secondary Teachers.

    Science.gov (United States)

    Bolles, William H.; And Others

    Designed for use in Pennsylvania secondary school science classes, this guide is intended to provide fundamental information in each of the various disciplines of the earth sciences. Some of the material contained in the guide is intended as background material for teachers. Five units are presented: The Earth, The Oceans, The Space Environment,…

  16. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    Science.gov (United States)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  17. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  18. Earth and environmental sciences annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L

    1999-05-18

    Lawrence Livermore National Laboratory (LLNL) provides broad-based, integrated scientific and engineering capabilities to address some of the nation's top national security and environmental priorities. National security priorities are to ensure the safety and reliability of the U.S. nuclear weapons stockpile and to counter the spread of weapons of mass destruction; environmental priorities are to keep our environment healthy for the long term and to assess the consequences of environmental change. The Earth and Environmental Sciences (E&ES) Directorate at LLNL pursues applied and basic research across many disciplines to advance the technologies needed to address these national concerns. Our current work focuses on: Storage and ultimate disposition of U.S. spent reactor fuel and other nuclear materials; Assessment of the current global climate and simulation of future changes caused by humans or nature; Development of broadly applicable technologies for environmental remediation and risk reduction; Tools to support U.S. goals for verifying the international Comprehensive Nuclear-Test-Ban Treaty; subcritical tests for stockpile stewardship; Real-time assessments of the health and environmental consequences of atmospheric releases of radioactive or other hazardous materials; and Basic science research that investigates fundamental physical and chemical properties of interest to these applied research programs. For each of these areas we present an overview in this report, followed by an article featuring one project in that area. Then we delineate E&ES's resources, including workforce, facilities, and funding. Finally, we list the publications by and the awards and patents received by E&ES personnel during 1998.

  19. Earth Science Pipeline: Enhancing Diversity in the Geosciences

    Science.gov (United States)

    McGill, S.; Smith, A.; Fryxell, J.; Leatham, W.; Brunkhorst, B. J.

    2002-12-01

    Our initial efforts to recruit and retain students from under-represented ethnic groups were guided by results from a survey of students in our introductory geology courses. Among students from under-represented ethnic groups, the most common reasons for NOT majoring in geology were (1) lack of exposure to geosciences, (2) lack of knowledge about careers in geology, (3) a student's perception that he or she is not a "science-type" of person, (4) the difficulty of science, (5) the fact that the student had no friends or family members that had majored in geology, (6) the lack of role models from their ethnicity in geology, (7) boredom with science. The first reasons listed above were rated as "very important" to the greatest number of students [45%], and the following reasons were considered "very important" to decreasing numbers of students [down to 20%]. Issues related to prestige, religion and gender role models were considered "very important" to schools. We have presented in science classes, to students in Project UPBEAT, as well as to students in the Advancement Via Independent Determination (AVID) program at local high schools. We also participated in the Earth Science portion of a Science Olympiad for high-achieving middle and high school students, offered consulting for science fair projects and led students on field trips to the San Andreas fault and Pisgah Crater. We hired CSUSB students from both our introductory and upper-division geology courses to help with these outreach activities. Several of these students were from under-represented ethnic groups, and they thus served as role models for the pre-college students from those ethnic groups. These outreach assistants have also continued taking geology courses, and some have become geology majors or minors. A total of 44 presentations/field trips/other activities with students were conducted during 2001-02, resulting in over 4300 contact hours with more than 2300 pre-college students. The majority (66

  20. CAS Academic Divisions in 2001

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ 1.Election of New Members In 2001, 56 scientists were elected new CAS members, including l0 in the Division of Mathematics & Physics, 10 in the Division of Chemistry, 12 in the Division of Biology, nine in the Division of Earth Sciences and 15 in the Division of Engineering Sciences.The average age of the new members is 60.4, and the youngest one is 38 years old. They are now working in nine provinces or municipalities, or governmental departments under the State Council, including 23 outstanding experts working for the CAS.

  1. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  2. An Analysis of Misconceptions in Science Textbooks: Earth science in England and Wales

    Science.gov (United States)

    King, Chris John Henry

    2010-03-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/misconception per page. Science syllabuses and examinations surveyed also showed errors/misconceptions. More than 500 instances of misconception were identified through the surveys. These were analysed for frequency, indicating that those areas of the earth science curriculum most prone to misconception are sedimentary processes/rocks, earthquakes/Earth's structure, and plate tectonics. For the 15 most frequent misconceptions, examples of quotes from the textbooks are given, together with the scientific consensus view, a discussion, and an example of a misconception of similar significance in another area of science. The misconceptions identified in the surveys are compared with those described in the literature. This indicates that the misconceptions found in college students and pre-service/practising science teachers are often also found in published materials, and therefore are likely to reinforce the misconceptions in teachers and their students. The analysis may also reflect the prevalence earth science misconceptions in the UK secondary (high school) science-teaching population. The analysis and discussion provide the opportunity for writers of secondary science materials to improve their work on earth science and to provide a platform for improved teaching and learning of earth science in the future.

  3. An Analysis of Earth Science Data Analytics Use Cases

    Science.gov (United States)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  4. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J. (ed.)

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

  5. Earth System and Space Science Curriculum for High Schools

    Science.gov (United States)

    Leck, J. P.

    2005-12-01

    Earth System and Space Science emphasizes the dynamic interrelationships between the atmosphere, the geosphere, the hydrosphere, the biosphere and the earth-universe system. There is a strong emphasis on internet-based and technology activities, and laboratory activities. Science skills and processes learned in this course prepare for continued development of scientific inquiry in other science disciplines. A partnership with the Goddard Space Flight Center and collaboration with Anne Arundel County Public Schools provides enhanced richness to the learning activities. Earth and Space scientists from NASA GSFC gave their expertise in the development of ESSS. Their suggestions were the foundation for the development of this curriculum. Earth System and Space Science is a course, which develops student knowledge and understanding of the Earth System and its place in the universe. This course seeks to empower students to understand their dynamic local and global environments and the Earth as part of a complex system. The student will learn the science content necessary to make wise personal and social decisions related to quality of life, and the management of the Earth's finite resources, environments, and hazards. During much of the recent past, scientists have been concerned with examining individual physical, chemical, and biological processes or groups of processes in the atmosphere, hydrosphere, lithosphere, and biosphere. Recently, however, there has been a movement in Earth Science to take a planetary or "system" approach to investigating our planet. Satellite images show planet Earth as one entity without boundaries. There are concerns with environmental issues on regional, global, and even planetary scales. In Earth/Space Systems Science, Earth is viewed as a complex evolving planet that is characterized by continually interacting change over a wide scale of time and space.

  6. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    Science.gov (United States)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies

  7. Preparing the Next Generation of Earth Scientists: An Examination of 25 Federal Earth Science Education Programs

    Science.gov (United States)

    Linn, A. M.; Goldstein, A.; Manduca, C. A.; Pyle, E. J.; Asher, P. M.; White, L. D.; Riggs, E. M.; Cozzens, S.; Glickson, D.

    2013-12-01

    Federal agencies play a key role in educating the next generation of earth scientists, offering programs that attract students to the field, support them through formal education, and provide training for an earth science career. In a time of reduced budgets, it is important for federal agencies to invest in education programs that are effective. A National Research Council committee examined 25 federal earth science education programs and described ways to evaluate the success of these programs and opportunities for leveraging federal education resources. Although the programs cover a wide range of objectives and audiences, they are part of a system of opportunities and experiences that attract individuals to the field and prepare them for employment. In this conceptual framework, individuals become aware of earth science, then engage in learning about the Earth and the nature of earth science, and finally prepare for a career by acquiring specialized knowledge, skills, and expertise and by exploring different employment options. The federal education programs considered in this report provide a range of opportunities for raising awareness of earth science (e.g., USDA 4-H Club), nurturing that interest to engage students in the field (e.g., USGS Youth Internship Program), and preparing students for earth science careers (NSF Research Experiences for Undergraduates, DOE Science Undergraduate Laboratory Internships). These efforts can also contribute toward the development of a robust earth science workforce by connecting programs and providing pathways for students to move through informal and formal education to careers. The conceptual framework shows how the various education opportunities fit together and where connections are needed to move students along earth science pathways. The framework can also be used by federal agencies to identify gaps, overlaps, and imbalances in existing programs; to identify potential partners in other agencies or organizations

  8. Theories of the Earth and the Nature of Science.

    Science.gov (United States)

    Williams, James

    1991-01-01

    Describes the history of the science of geology. The author expounds upon the discovery of deep time and plate tectonics, explaining how the theory of deep time influenced the development of Darwin and Wallace's theory of evolution. Describes how the history of earth science helps students understand the nature of science. (PR)

  9. New Dimensions of GIS Data: Exploring Virtual Reality (VR) Technology for Earth Science

    Science.gov (United States)

    Skolnik, S.; Ramirez-Linan, R.

    2016-12-01

    NASA's Science Mission Directorate (SMD) Earth Science Division (ESD) Earth Science Technology Office (ESTO) and Navteca are exploring virtual reality (VR) technology as an approach and technique related to the next generation of Earth science technology information systems. Having demonstrated the value of VR in viewing pre-visualized science data encapsulated in a movie representation of a time series, further investigation has led to the additional capability of permitting the observer to interact with the data, make selections, and view volumetric data in an innovative way. The primary objective of this project has been to investigate the use of commercially available VR hardware, the Oculus Rift and the Samsung Gear VR, for scientific analysis through an interface to ArcGIS to enable the end user to order and view data from the NASA Discover-AQ mission. A virtual console is presented through the VR interface that allows the user to select various layers of data from the server in both 2D, 3D, and full 4pi steradian views. By demonstrating the utility of VR in interacting with Discover-AQ flight mission measurements, and building on previous work done at the Atmospheric Science Data Center (ASDC) at NASA Langley supporting analysis of sources of CO2 during the Discover-AQ mission, the investigation team has shown the potential for VR as a science tool beyond simple visualization.

  10. Ocean Color and Earth Science Data Records

    Science.gov (United States)

    Maritorena, S.

    2014-12-01

    The development of consistent, high quality time series of biogeochemical products from a single ocean color sensor is a difficult task that involves many aspects related to pre- and post-launch instrument calibration and characterization, stability monitoring and the removal of the contribution of the atmosphere which represents most of the signal measured at the sensor. It is even more challenging to build Climate Data Records (CDRs) or Earth Science Data Records (ESDRs) from multiple sensors as design, technology and methodologies (bands, spectral/spatial resolution, Cal/Val, algorithms) differ from sensor to sensor. NASA MEaSUREs, ESA Climate Change Initiative (CCI) and IOCCG Virtual Constellation are some of the underway efforts that investigate or produce ocean color CDRs or ESDRs from the recent and current global missions (SeaWiFS, MODIS, MERIS). These studies look at key aspects of the development of unified data records from multiple sensors, e.g. the concatenation of the "best" individual records vs. the merging of multiple records or band homogenization vs. spectral diversity. The pros and cons of the different approaches are closely dependent upon the overall science purpose of the data record and its temporal resolution. While monthly data are generally adequate for biogeochemical modeling or to assess decadal trends, higher temporal resolution data records are required to look into changes in phenology or the dynamics of phytoplankton blooms. Similarly, short temporal resolution (daily to weekly) time series may benefit more from being built through the merging of data from multiple sensors while a simple concatenation of data from individual sensors might be better suited for longer temporal resolution (e.g. monthly time series). Several Ocean Color ESDRs were developed as part of the NASA MEaSUREs project. Some of these time series are built by merging the reflectance data from SeaWiFS, MODIS-Aqua and Envisat-MERIS in a semi-analytical ocean color

  11. Earth Science Teaching Strategies Used in the International Polar Year

    Science.gov (United States)

    Sparrow, E. B.

    2009-04-01

    There are many effective methods for teaching earth science education that are being successfully used during the fourth International Polar Year (IPY). Relevance of IPY and the polar regions is better understood using a systems thinking approach used in earth science education. Changes in components of the earth system have a global effect; and changes in the polar regions will affect the rest of the world regions and vice versa. Teaching strategies successfully used for primary, secondary, undergraduate and graduate student earth science education and IPY education outreach include: 1) engaging students in earth science or environmental research relevant to their locale; 2) blending lectures with research expeditions or field studies, 3) connecting students with scientists in person and through audio and video conferencing; 4) combining science and arts in teaching, learning and communicating about earth science and the polar regions, capitalizing on the uniqueness of polar regions and its inhabitants, and its sensitivity to climate change; and 5) integrating different perspectives: western science, indigenous and community knowledge in the content and method of delivery. Use of these strategies are exemplified in IPY projects in the University of the Arctic IPY Higher Education Outreach Project cluster such as the GLOBE Seasons and Biomes project, the Ice Mysteries e-Polar Books: An Innovative Way of Combining Science and Literacy project, the Resilience and Adaptation Integrative Graduate Education and Research Traineeship project, and the Svalbard Research Experience for Undergraduates project.

  12. Transitioning Unmanned Technologies for Earth Science Applications

    Science.gov (United States)

    Wardell, L. J.; Douglas, J.

    2008-12-01

    Development of small unmanned aerial systems (UAS) has progressed dramatically in recent years along with miniaturization of sensor technology. This confluence of development paths has resulted in greater capability in smaller, less expensive platforms allowing research to be performed where manned airborne platforms are impractical or dangerous. Recent applications include small UAS for studies involving hurricanes, volcanic activity, sea ice changes, glacier melt, biological monitoring of land and sea species, wildfire monitoring, and others. However, the majority of UAS employed in these investigations were originally developed for non-civilian applications and many of the required interfaces are locked behind proprietary specifications, requiring expensive customization by the manufacturer to transform a military UAS into one suitable for civilian work. A small UAS for scientific research should be standards-based, low-cost, user friendly, field serviceable, and be designed to accept a range of payloads. The AV8R UAS is one example of an unmanned system that has been developed for specific application to earth observation missions. This system is designed to be operated by the user with difficult environmental conditions and field logistics in mind. Numerous features and innovations that advance this technology as a research tool as well as its planned science missions will be presented. Most importantly, all interfaces to the system required for successful design and integration of various payloads will be openly available. The environment of open, standards based development allow the small technologies companies that serve as the backbone for much of the technology development to participate in the rapid development of industry capabilities. This is particularly true with UAS technologies. Programs within the USA such as the STTR foster collaborations with small businesses and university researchers. Other innovations related to autonomous unmanned systems

  13. Active Nutritional Science Grants | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Nutritional Science Funding Opportunities | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Nutritional Science Clinical Trials | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Nutritional Science Meetings and Events | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. A Mathematical Sciences Program at an Upper-Division Campus.

    Science.gov (United States)

    Swetz, Frank J.

    1978-01-01

    The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)

  18. A Mathematical Sciences Program at an Upper-Division Campus.

    Science.gov (United States)

    Swetz, Frank J.

    1978-01-01

    The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)

  19. 77 FR 67027 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2012-11-08

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the ] NASA Advisory... Thursday, November 29, 2012, 8:30 a.m. to 2:00 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E...

  20. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2011-08-10

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the NASA Advisory... meeting will take place telephonically. Any interested person may call the USA toll free conference...

  1. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2013-03-26

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the NASA Advisory.... ADDRESSES: This meeting will take place telephonically. Any interested person may call the USA toll...

  2. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2012-05-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the NASA Advisory.... ADDRESSES: This meeting will take place telephonically. Any interested person may call the USA toll...

  3. 75 FR 8997 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2010-02-26

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting... Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the NASA...., and Wednesday, March 17, 8:30 a.m. to 1:30 p.m. EST. ADDRESSES: NASA Headquarters, 300 E Street,...

  4. Materials and Chemical Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  5. Collaboration between research scientists and educators to prepare new Earth Science teachers

    Science.gov (United States)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  6. Earth science: Making a mountain out of a plateau

    Science.gov (United States)

    Sinclair, Hugh

    2017-02-01

    A theory proposed in 2015 suggested that relatively flat surfaces in mountain ranges were formed by the reorganization of river networks. A fresh analysis rebuts this idea, reigniting discussion of a long-standing problem in Earth science.

  7. Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and...

  8. Combined Industry, Space and Earth Science Data Compression Workshop

    Science.gov (United States)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  9. [Funding in 2012 for Division of Microbiology by National Natural Science Foundation of China].

    Science.gov (United States)

    Wen, Mingzhang; Guo, Yiran; Zhao, Kai; Nie, Yong; Zhou, Min; Fang, Zemin

    2013-01-04

    We provide here an overview of proposals applied and projects funded by the division of microbiology, department of life sciences, National Natural Science Foundation of China in 2012. We analyzed the traits and problems in different sub-disciplines, and illustrated the stimulating policy for future funding. This overview provides reference for Chinese researchers to apply relevant funding for projects in microbiology.

  10. [Funding for division of microbiology by National Natural Science Foundation of China in 2013].

    Science.gov (United States)

    Qiao, Jianjun; Kang, Yijun; Weng, Qingbei; Wen, Mingzhang

    2014-01-04

    We provide an overview of proposals applied and projects funded by the division of microbiology, department of life sciences, National Natural Science Foundation of China in 2013,. The traits and problems in different sub-disciplines were also analyzed, which provides reference for Chinese researchers to apply funding in microbiology next year.

  11. Can Peer Instruction Be Effective in Upper-Division Computer Science Courses?

    Science.gov (United States)

    Bailey Lee, Cynthia; Garcia, Saturnino; Porter, Leo

    2013-01-01

    Peer Instruction (PI) is an active learning pedagogical technique. PI lectures present students with a series of multiple-choice questions, which they respond to both individually and in groups. PI has been widely successful in the physical sciences and, recently, has been successfully adopted by computer science instructors in lower-division,…

  12. Digital Geological Mapping for Earth Science Students

    Science.gov (United States)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the

  13. Progress Towards a NASA Earth Science Reuse Enablement System (RES)

    Science.gov (United States)

    Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.

    2010-01-01

    A Reuse Enablement System (RES) allows developers of Earth science software to contribute software for reuse by others and.for users to find, select, and obtain software for reuse in their own systems. This paper describes work that the X4S,4 Earth Science Data Systems (ESDS) Software Reuse Working Group has completed to date in the development of an RES for NASA.

  14. Syllabus for Weizmann Course: Earth System Science 101

    Science.gov (United States)

    Wiscombe, Warren J.

    2011-01-01

    This course aims for an understanding of Earth System Science and the interconnection of its various "spheres" (atmosphere, hydrosphere, etc.) by adopting the view that "the microcosm mirrors the macrocosm". We shall study a small set of microcosims, each residing primarily in one sphere, but substantially involving at least one other sphere, in order to illustrate the kinds of coupling that can occur and gain a greater appreciation of the complexity of even the smallest Earth System Science phenomenon.

  15. Goddard Earth Science Data and Information Center (GES DISC)

    Science.gov (United States)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  16. Streaming Seismograms into Earth-Science Classrooms

    Science.gov (United States)

    Ammon, C. J.

    2011-12-01

    Seismograms are the fundamental observations upon which seismology is based; they are central to any course in seismology and important for any discussion of earthquake-related phenomena based on seismic observations. Advances in the collection and distribution of seismic data have made the use of research-quality seismograms in any network capable classroom feasible. The development of large, deep seismogram archives place an unprecedented quantity of high-quality data within reach of the modern classroom environment. I describe and discuss several computer tools and classroom activities that I use in introductory (general education) and advanced undergraduate courses that present near real-time research-quality seismic observations in the classroom. The Earth Motion Monitor Application (EMMA), is a MacOS application that presents a visually clear seismogram display that can be projected in classrooms with internet access. Seismic signals from thousands of station are available from the IRIS data center and the bandwidth can be tailored to the particular type of signal of interest (large event, low frequencies; small event, high frequencies). In introductory classes for non-science students, the near realtime display routinely shows magnitude 4.0-5.0 earthquake-generated signals, demonstrating to students the frequency of earthquake occurrence. Over the next few minutes as the waves travel through and across the planet, their arrival on the seismogram display provides some basic data for a qualitative estimate of the event's general location. When a major or great earthquake occurs, a broad-band display of signals from nearby stations can dramatically and dynamically illuminate the frequent activity associated with the aftershock sequence. Routine use of the display (while continuing the traditional classroom activities) provides students with a significant dose of seismogram study. Students generally find all the signals, including variations in seismic

  17. Addressing Earth Science Data Access Challenges through User Experience Research

    Science.gov (United States)

    Hemmings, S. N.; Banks, B.; Kendall, J.; Lee, C. M.; Irwin, D.; Toll, D. L.; Searby, N. D.

    2013-12-01

    The NASA Capacity Building Program (Earth Science Division, Applied Sciences Program) works to enhance end-user capabilities to employ Earth observation and Earth science (EO/ES) data in decision-making. Open data access and user-tailored data delivery strategies are critical elements towards this end. User Experience (UX) and User Interface (UI) research methods can offer important contributions towards addressing data access challenges, particularly at the interface of science application/product development and product transition to end-users. This presentation focuses on developing nation contexts and describes methods, results, and lessons learned from two recent UX/UI efforts conducted in collaboration with NASA: the SERVIRglobal.net redesign project and the U.S. Water Partnership (USWP) Portal development effort. SERVIR, a collaborative venture among NASA, USAID, and global partners, seeks to improve environmental management and climate change response by helping governments and other stakeholders integrate EO and geospatial technologies into decision-making. The USWP, a collaboration among U.S. public and private sectors, harnesses U.S.-based resources and expertise to address water challenges in developing nations. SERVIR's study, conducted from 2010-2012, assessed and tested user needs, preferences, and online experiences to generate a more user-friendly online data portal at SERVIRglobal.net. The portal provides a central access interface to data and products from SERVIR's network of hubs in East Africa, the Hindu Kush Himalayas, and Mesoamerica. The second study, conducted by the USWP Secretariat and funded by the U.S. Department of State, seeks to match U.S.-based water information resources with developing nation stakeholder needs. The USWP study utilizes a multi-pronged approach to identify key design requirements and to understand the existing water data portal landscape. Adopting UX methods allows data distributors to design customized UIs that

  18. Oak Ridge Institute for Science and Education, Medical Sciences Division report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, F.; Poston, S.; Engle, J. [eds.

    1995-08-01

    The primary mission of the Medical Sciences Division is (1) to conduct basic and applied biomedical research on human health related to energy systems, (2) to provide technical assistance and training in occupational and environmental medicine, and (3) to make related biomedical applications available to others through technology transfer. As can be gleaned from this report, the strengths and capabilities of their staff in carrying out this mission are closely aligned with the four core competencies of ORISE: (1) occupational and environmental health, (2) environmental and safety evaluation and analysis, (3) education and training, and (4) enabling research. Brief descriptions of the various scientific and technical programs and their progress, as well as the staff responsible for the accomplishments made during 1994, are presented in this report. Research programs include the following: biochemistry; cytogenetics; Center for Epidemiologic Research; Center for Human Reliability Studies; occupational medicine; Radiation Emergency Assistance Center/Training Site; and Radiation Internal Dose Information Center.

  19. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages this collection of forty-five new scenes developed for their aesthetic beauty, rather than for...

  20. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  1. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1984-11-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys.

  2. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  3. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  4. Chemical and Analytical Sciences Division progress report for the period January 1, 1993--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.

    1995-06-01

    This report provides brief summaries of progress in the Chemical and Analytical Sciences Division (CASD) during 1993 and 1994. The first four chapters, which cover the research mission, are organized to mirror the major organizational units of the division and indicate the scope of the research portfolio. These divisions are the Analytical Spectroscopy Section, Nuclear and Radiochemistry Section, Organic Chemistry Section, and Physical and Materials Chemistry Section. The fifth and sixth chapters summarize the support activities within CASD that are critical for research progress. Finally, the appendices indicate the productivity and recognition of the staff in terms of various forms of external publications, professional activities, and awards.

  5. From Sky to Earth: Data Science Methodology Transfer

    Science.gov (United States)

    Mahabal, Ashish A.; Crichton, Daniel; Djorgovski, S. G.; Law, Emily; Hughes, John S.

    2017-06-01

    We describe here the parallels in astronomy and earth science datasets, their analyses, and the opportunities for methodology transfer from astroinformatics to geoinformatics. Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory for the earth sciences - we discuss essential steps for better transfer of tools and techniques in the future e.g. domain adaptation. Finally we point out that it is never a one-way process and there is enough for astroinformatics to learn from geoinformatics as well.

  6. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    Science.gov (United States)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  7. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    Science.gov (United States)

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  8. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    Science.gov (United States)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  9. The Federation of Earth Science Information Partners ESIP

    Science.gov (United States)

    Tilmes, Curt

    2013-01-01

    A broad-based, distributed community of science, data and information technology practitioners. With over 150 member organizations, the ESIP Federation brings together public, academic, commercial, and nongovernmental organizations to share knowledge, expertise, technology and best practices to improve opportunities for increasing access, discovery, integration and usability of Earth science data.

  10. Earthspace: A National Clearinghouse For Higher Education In Space And Earth Sciences

    Science.gov (United States)

    CoBabe-Ammann, Emily; Shipp, S.; Dalton, H.

    2012-10-01

    The EarthSpace is a searchable database of undergraduate classroom materials for undergraduate faculty teaching earth and space sciences at both the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets - from homeworks and computerinteractives to laboratories and demonstrations. All materials are reviewedbefore posting, and authors adhere to the Creative Commons Non-Commercial Attribution (CC-BY NC 3.0). If authors wish, their EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities(e.g., Connexions). As new electronic repositories come online, EarthSpace materials will automatically be sent. So faculty submit their materials only once and EarthSpace ensures continual distribution as time goes on and new opportunities arise. In addition to classroom materials, EarthSpace provides news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. http://www.lpi.usra.edu/earthspace

  11. The Role and Evolution of NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  12. Story-telling, Earth-Sciences and Geoethics

    Science.gov (United States)

    Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.

    2015-04-01

    People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens

  13. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  14. Sun-Earth Day Connects History, Culture and Science

    Science.gov (United States)

    Cline, T.; Thieman, J.

    2003-12-01

    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  15. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  16. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    Science.gov (United States)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  17. Increasing Participation in the Earth Sciences A 35 year Journey

    Science.gov (United States)

    Blueford, J. R.

    2006-12-01

    In the 1970's the fact that woman and ethnic minorities men made up approximately10% of the workforce in the geosciences created concern. Determining ways to increase the participation became a topic of discussion amongst many of the geosciences agencies in the United States. Many created scholarships and work opportunities for students. One of the most successful projects was the MPES (Minority Participation in the Earth Science) Program implemented by the U.S. Geological Survey. A key factor in its success was its outreach programs which used employees to work in elementary schools to get children excited about earth sciences. Successive years added teacher workshops and developing career day presentations to help school districts increase the awareness of the earth sciences. However, cutbacks prevented the continuation of these programs, but from the ashes a new non-profit organization of scientists, the Math Science Nucleus, developed curriculum and implementation strategies that used Earth Sciences as a core content area. Using the power of the internet, it provided teachers and parents around the world content driven curriculum. The Integrating Science, Math, and Technology Reference Curriculum is used around the world to help teachers understand how children learn science content.

  18. Broadening the Participation of Native Americans in Earth Science

    Science.gov (United States)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  19. Overview of the Earth System Science Education Alliance Online Courses

    Science.gov (United States)

    Botti, J.; Myers, R.

    2002-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational Technologiestm at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system-for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events-volcanic eruptions

  20. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977. [LBL, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures. (RWR)

  1. Social Science Libraries Section. Special Libraries Division. Papers.

    Science.gov (United States)

    International Federation of Library Associations, The Hague (Netherlands).

    Three papers on the nonconventional literature and social science libraries were presented at the 1983 International Federation of Library Associations (IFLA) conference. In "Grey Material: A Scandinavian View," Birgitta Bergdahl (Sweden) outlines the etymology and meaning of the concept of "grey literature" (which can include…

  2. About the Nutritional Science Research Group | Division of Cancer Prevention

    Science.gov (United States)

    The Nutritional Science Research Group (NSRG) promotes and supports studies establishing a comprehensive understanding of the precise role of diet and food components in modulating cancer risk and tumor cell behavior. This focus includes approaches to characterize molecular targets and variability in individual responses to nutrients and dietary patterns. |

  3. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  4. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

  5. Environmental Sciences Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1993, which extended from October 1, 1992, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to convey the scope of the work in the division. An organizational chart of staff and long-term guests who were in ESD and the end of FY 1993 is located in the final section of the report.

  6. Environmental Sciences Division annual progress report for period ending September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD at the end of FY 1994 is located in the final section of the report.

  7. NAGT: Partnering to Expand and Improve the Teaching of Earth Sciences at all Levels of Instruction while Increasing Earth Literacy to the General Public

    Science.gov (United States)

    Herbstrith, K. G.

    2016-12-01

    Now more than ever, we need an Earth literate public and a workforce that can develop and be engaged in viable solutions to current and future environmental and resource challenges. The National Association of Geoscience Teachers (NAGT) is a member driven organization dedicated to fostering improvement in the teaching of the Earth Sciences at all levels of formal and informal instruction, to emphasizing the cultural significance of the Earth sciences and to disseminating knowledge in this field to the general public. NAGT offers a number of ways to partner and collaborate including our sponsored sessions, events and programs; two publications; workshop programming; three topical focused divisions; educational advocacy; and website offerings hosted through the Science Education Resource Center (SERC). A growing number of associations, institutions, projects, and individual educators are strengthening their professional networks by partnering with NAGT. Locating and connecting members of the Earth education community with shared values and interest is an important part of collaborating and NAGT's topical divisions assist community members who wish to work on the topics of 2-year college faculty, geoscience education research, and teacher preparation. The NAGT website and the linked websites of its collaborating partners provides a peer reviewed venue for educators to showcase their pedagogy and to learn best practices of others. The annual Earth Educators' Rendezvous is an opportunity to network face-to-face with the Earth education community, strengthening our relationships while working with those who share our interests and challenges while also learning from those who have divergent experiences. NAGT is a non-profit organization that advocates for the advancement of the geosciences and supports the work of Earth educators and geoscience education researchers. For more information about NAGT, visit our website at www.nagt.org

  8. Introduction. Progress in Earth science and climate studies.

    Science.gov (United States)

    Thompson, J Michael T

    2008-12-28

    In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.

  9. Introduction to modern Fortran for the Earth system sciences

    CERN Document Server

    Chirila, Dragos B

    2014-01-01

    This work provides a short "getting started" guide to Fortran 90/95. The main target audience consists of newcomers to the field of numerical computation within Earth system sciences (students, researchers or scientific programmers). Furthermore, readers accustomed to other programming languages may also benefit from this work, by discovering how some programming techniques they are familiar with map to Fortran 95. The main goal is to enable readers to quickly start using Fortran 95 for writing useful programs. It also introduces a gradual discussion of Input/Output facilities relevant for Earth system sciences, from the simplest ones to the more advanced netCDF library (which has become a de facto standard for handling the massive datasets used within Earth system sciences). While related works already treat these disciplines separately (each often providing much more information than needed by the beginning practitioner), the reader finds in this book a shorter guide which links them. Compared to other book...

  10. Benefits of Delay Tolerant Networking for Earth Science Missions

    Science.gov (United States)

    Davis, Faith; Marquart, Jane; Menke, Greg

    2012-01-01

    To date there has been much discussion about the value of Delay Tolerant Networking (DTN) for space missions. Claims of various benefits, based on paper analysis, are good; however a benefits statement with empirical evidence to support is even better. This paper presents potential and actual advantages of using DTN for Earth science missions based on results from multiple demonstrations, conducted by the Communications, Standards, and Technology Laboratory (CSTL) at NASA Goddard Space Flight Center (GSFC). Demonstrations included two flight demonstrations using the Earth Observing Mission 1 (EO-1) and the Near Earth Network (NEN), a ground based demonstration over satellite links to the Internet Router in Space (IRIS) payload on Intelsat-14, and others using the NASA Tracking Data Relay Satellite System (TDRSS). Real and potential findings include increased flexibility and efficiency in science campaigns, reduced latency in a collaborative science scenario, and improved scientist-instrument communication and control.

  11. USSR Report, Earth Sciences, No. 24

    Science.gov (United States)

    1983-02-01

    Evaluations of Velocities of Antarctic Circumpolar Current in Pacific Ocean (A. M. Gritsenko , OKEANOLOGIYA, Jul-Aug 82) 28 Discriminating Synoptic... GRITSENKO , A. M., Institute of Oceanology imeni P. P. Shirshov, USSR Academy of Sciences, Moscow [Abstract] Long-term statistical studies have been made

  12. Electrokinetics in Earth Sciences: A Tutorial

    Directory of Open Access Journals (Sweden)

    L. Jouniaux

    2012-01-01

    in porous media, to be included in the special issue “Electrokinetics in Earth Sciences” of International Journal of Geophysics. We describe the methodology used for self-potential (SP and for seismoelectromagnetic measurements, for both field and laboratory experiments and for modelling. We give a large bibliography on the studies performed in hydrology to detect at distance the water flow, to deduce the thickness of the aquifer and to predict the hydraulic conductivity. The observation of SP has also been proposed to detect fractures in boreholes, to follow the hydraulic fracturing, and to predict the earthquakes. Moreover, we detail the studies on geothermal applications.

  13. [Funding for Division of Microbiology in 2014 by National Natural Science Foundation of China].

    Science.gov (United States)

    Qiao, Jianjun; Huang, Chenyang; Liu, Lin; Wen, Mingzhang

    2015-02-04

    In this paper, we provided an overview of proposals submitted and projects funded in 2014 at the Division of Microbiology, Department of Life Sciences, National Natural Science Foundation of China. The traits and problems in different sub-disciplines were analyzed, the background, results and analysis of internet voting before panel meetings in Microbiology discipline were also introduced. The information will provide references for Chinese researchers to apply funding in microbiology discipline in the future.

  14. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  15. Design of Scalable and Effective Earth Science Collaboration Tool

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  16. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    Science.gov (United States)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  17. EOS ART: Six Artistic Projects Inspired by Earth Science

    Science.gov (United States)

    Kerlow, Isaac

    2015-04-01

    The six projects produced under the artists' residencies at the Earth Observatory of Singapore (EOS) were inspired by Earth science and by the human experience in naturally hazardous regions. These contemporary artworks were created within an interdisciplinary framework that fostered collaborations between artists and scientists. EOS ART was a pilot program that also facilitated the active engagement of regional artists with issues related to Earth science, sustainable societies, and innovative methods for science outreach. An interdisciplinary jury of art critics, curators and Earth scientists selected art projects proposed by regional artists, and funds were awarded to develop and realize the projects. The artworks-including installations, photographs, and video art-were showcased in the "Unearthed" public exhibit at the Singapore Art Museum from March to July of 2014. A 92-page catalog accompanied the show and public seminars about interdisciplinary connections complemented the event. This was a unique example of collaboration between scientific and artistic institutions in Southeast Asia. The paper provides an overview of the motivations, process and accomplished results. The art projects include "Coastline" by Zhang Xiao (China), "Lupang" by Clara Balaguer and Carlos Casas (Philippines and Spain), "Sound of the Earth" by Chen Sai Hua Kuan (Singapore), "Sudden Nature" by Isaac Kerlow (Mexico/USA), "The Possibility of Knowing" by Robert Zhao Renhui (Singapore), and "When Need Moves the Earth" by Sutthirat Supaparinya (Thailand).

  18. Virtual Collections: An Earth Science Data Curation Service

    Science.gov (United States)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.

    2016-12-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  19. Virtual Collections: An Earth Science Data Curation Service

    Science.gov (United States)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2016-01-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility, and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of the time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  20. Application of Pascal Principle in Earth Science

    Science.gov (United States)

    Samimi Namin, M.

    2009-12-01

    The Pascal experiment is interpreted and the chamber is roughly defined. Pascal experiment in relation to Pascal principle compared with a chamber in the earth crust. It is conclude that: 1: The pressure (P) inside the Pascal's cylinder is the combination of two pressure; the external pressure (P1) and the hydraulic pressure (P2). Pc=P1+P2 The direction of the force is from top to bottom. In the case of the chamber the pressure is Pch=P1-P2 and its positive direction is regarded to be from bottom to top. P1 is the external pressure, and is the maximum pressure applied to chamber .The external pressure creates a constant internal pressure throughout the chamber .The magnitude of the constant pressure is based on the litho static pressure of the bottom of the chamber; because it is the maximum pressure that the chamber is connected. P1=ρ1gH+ρ2gh Where H is the overburden thickness, h is the highness of the chamber, ρ1 is the density of the overburden and ρ2 is density of country rock. The hydrostatic pressure within the chamber is P2=ρ3gh. Also ρ3 is the density of the chamber. So the pressure inside the chamber would be: Pch=P1-P2 then Pch=ρ1gH+(ρ2-ρ3)gh. The equation above means that, the chamber pressure equals to the overburden pressure plus Archimedes pressure. 2: The word squeezing which is a vulgar word has an important physical meaning that is ((Pascal principle driving movement)).In another word, almost all movements, related to chambers, within the earth are a squeezing event which's, driving force is the steady constant pressure mentioned above. Any change in this pressure depends on the rupturing of the chamber and the behavior of the movement of the chamber matter. 3: If we provide a safety valve on piston of the Pascal's cylinder and increase the load we see the safety valve bursts and the matter inside the cylinder squeeze out .The pressure is from top to bottom but the movement is from bottom to top. The direction of force has changed 180

  1. Tools and Techniques to Teach Earth Sciences to Young People

    Science.gov (United States)

    Constantino, R.; Dicelis, G.; Molina, E. C.

    2010-12-01

    This study aims to identify the tools available to disseminate the Earth sciences to young people in Brazil and to propose new techniques that may help in the teaching of such subjects. The use of scientific dissemination can be a great tool for the consolidation of a scientific culture, especially for a public of young students. The starting point of this study is an important characteristic that is present in virtually all the children: curiosity. The young public tries to understand how the world is and how it works. The use of scientific dissemination and some educational experiences have shown that these students have a great ability to learn and deal with various topics within the Earth Sciences. Another relevant point is the possibility to show that the Earth sciences, e.g., geophysics, oceanography, meteorology, geology and geography, can be an educational attractive option. Several ways of disseminating Earth sciences are commonly used with the purpose of attracting and mainly teaching these subjects, such as websites, interactive museums and cultural and educational spaces. The objectives of this work are: i) Investigate the role of science centers as motivators in disseminating the scientific knowledge by examining the communication resources that are being employed, the acceptance, reaction, and interest of children to these means, and ii) From this analysis, to list suggestions of contents and new tools that could be used for obtaining better results.

  2. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences

    Science.gov (United States)

    Barnett, Philip; Lascar, Claudia

    2012-01-01

    The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…

  3. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences

    Science.gov (United States)

    Barnett, Philip; Lascar, Claudia

    2012-01-01

    The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…

  4. Public Science: From Earth to the Solar System

    Science.gov (United States)

    Arcand, K. K.; Watzke, M.

    2012-09-01

    This talk will describe how the International Year of Astronomy (IYA2009) was used to launch a new initiative of science outreach, which the authors describe as "public science." The enormous scope and range of IYA2009 allowed From Earth to the Universe (FETTU) to reach millions of people around the globe by putting large-scale astronomical images into public and community-based settings such as parks, metro stations, libraries, and more. Currently, its derivative project, From Earth to the Solar System (FETTSS), continues the implementation of this public science paradigm. Public science projects, like FETTU and FETTSS, are very much akin to public art, which attempts to gain attention and expose large numbers of people to its content. Can such public science projects be used to increase exposure and awareness for STEM (science, technology, engineering, and mathematics) topics? This talk will briefly describe some of the measureable outcomes in this area found in FETTU, which have already been published in scholarly journals. We will also share some preliminary findings from new data being collected from FETTSS, as well as discuss other public science projects in development. The presenter will finally explore how this concept of public science may be useful for science communication efforts in the future.

  5. Earth benefits from space life sciences

    Science.gov (United States)

    Garshnek, V.; Nicogossian, A. E.; Griffiths, L.

    Contributions of space exploration which are widely recognized are those dealing with the impact of space technology on public health and medical services in both urban and remote rural areas. Telecommunications, image enhancement, 3-dimensional image reconstructions, miniaturization, automation, and data analysis, have transformed the delivery of medical care and have brought about a new impetus to the field of biomedicine. Many areas of medical care and biological research have been affected. These include technological breakthroughs in such areas as: (1) diagnosis, treatment, and prevention of cardiovascular diseases, (2) new approaches to the understanding of osteoporosis, (3) early detection of genetic birth defects, (4) emergency medical care, and (5) treatment of chronic metabolic disorders. These are but a few examples where technology originally developed to support space medicine or space research has been applied to solving medical and health care delivery problems on Earth.

  6. EarthCache as a Tool to Promote Earth-Science in Public School Classrooms

    Science.gov (United States)

    Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.

    2011-12-01

    Geoscientists often find it difficult to bridge the gap in communication between university research and what is learned in the public schools. Today's schools operate in a high stakes environment that only allow instruction based on State and National Earth Science curriculum standards. These standards are often unknown by academics or are written in a style that obfuscates the transfer of emerging scientific research to students in the classroom. Earth Science teachers are in an ideal position to make this link because they have a background in science as well as a solid understanding of the required curriculum standards for their grade and the pedagogical expertise to pass on new information to their students. As part of the Michigan Teacher Excellence Program (MiTEP), teachers from Grand Rapids, Kalamazoo, and Jackson school districts participate in 2 week field courses with Michigan Tech University to learn from earth science experts about how the earth works. This course connects Earth Science Literacy Principles' Big Ideas and common student misconceptions with standards-based education. During the 2011 field course, we developed and began to implement a three-phase EarthCache model that will provide a geospatial interactive medium for teachers to translate the material they learn in the field to the students in their standards based classrooms. MiTEP participants use GPS and Google Earth to navigate to Michigan sites of geo-significance. At each location academic experts aide participants in making scientific observations about the locations' geologic features, and "reading the rocks" methodology to interpret the area's geologic history. The participants are then expected to develop their own EarthCache site to be used as pedagogical tool bridging the gap between standards-based classroom learning, contemporary research and unique outdoor field experiences. The final phase supports teachers in integrating inquiry based, higher-level learning student

  7. EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education

    Science.gov (United States)

    Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.

    2004-12-01

    EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data

  8. Earthworks: Educating Teachers in Earth System Sciences

    Science.gov (United States)

    Spetzler, H.; Weaver, A.; Buhr, S.

    2000-01-01

    Earthworks is a national community of teachers and scientists. Initiated in 1998 with funding from NASA, our summer workshops in the Rocky Mountains each year provide unique opportunities for teachers to design and conduct field research projects, working closely with scientists. Teachers then develop plans for classroom implementation during the school year, sharing their ideas and experiences with other community members through e-mail and a listserv. Scientists, from graduate students to expert senior researchers, share their knowledge of field methods in environmental science, and learn how to better communicate and teach about their research.

  9. UNH's Transforming Earth System Science Education (TESSE) Program

    Science.gov (United States)

    Varner, R. K.; Graham, K.; Bryce, J.; Finkel, L.; Froburg, E.; Hale, S. R.; Johnson, J.; von Damm, K.

    2008-12-01

    The University of New Hampshire's Transforming Earth System Science Education (UNH TESSE) project is designed to enrich the education and professional development of in-service and pre-service teachers who currently teach or plan to teach Earth science curricula. A key TESSE program goal is to foster the development of middle and high school students' ESS literacy by training teachers through an intensive summer institute, authentic research experiences, and an academic-year follow-up scientist-liaison program. The TESSE approach integrates inquiry-based teaching practices with ESS content, emphasizing both timescales and systems. Earth System Science Teaching 1 (ESST-1) is a course offered to in-service teachers in need of ESS content or interested in updating their traditional content background to include a systems approach and is also designed to provide teachers with the tools necessary to implement an inquiry- based approach to teaching Earth science. Time scale and system interactions significant in the Earth System are introduced through authentic research conducted during field trips, research experiences and via working with long-term datasets. ESST-1 teachers are also provided the opportunity to work with graduate fellows who act as scientist liaisons during the academic year, bringing research expertise and resources into the classroom. Earth System Science Teaching 2 (ESST-2) is a ten-day intensive research experience wherein in-service teachers pose their own research questions, collect and analyze samples and report their findings in a public forum. Pre-service science teachers in the TESSE program participate in an eight-week summer Research Immersion Experience (RIE) and participate with faculty, graduate fellows and in-service teachers in the two-week ESST-1 workshop. The goal of the RIE is to provide authentic research skills and with the goal of bringing research-based inquiry into these future teachers' classrooms. Pre-service teachers work

  10. The Path from Large Earth Science Datasets to Information

    Science.gov (United States)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  11. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    Science.gov (United States)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  12. Earth Science Data Education through Cooking Up Recipes

    Science.gov (United States)

    Weigel, A. M.; Maskey, M.; Smith, T.; Conover, H.

    2016-12-01

    One of the major challenges in Earth science research and applications is understanding and applying the proper methods, tools, and software for using scientific data. These techniques are often difficult and time consuming to identify, requiring novel users to conduct extensive research, take classes, and reach out for assistance, thus hindering scientific discovery and real-world applications. To address these challenges, the Global Hydrology Resource Center (GHRC) DAAC has developed a series of data recipes that novel users such as students, decision makers, and general Earth scientists can leverage to learn how to use Earth science datasets. Once the data recipe content had been finalized, GHRC computer and Earth scientists collaborated with a web and graphic designer to ensure the content is both attractively presented to data users, and clearly communicated to promote the education and use of Earth science data. The completed data recipes include, but are not limited to, tutorials, iPython Notebooks, resources, and tools necessary for addressing key difficulties in data use across a broad user base. These recipes enable non-traditional users to learn how to use data, but also curates and communicates common methods and approaches that may be difficult and time consuming for these users to identify.

  13. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  14. Soil moisture needs in earth sciences

    Science.gov (United States)

    Engman, Edwin T.

    1992-01-01

    The author reviews the development of passive and active microwave techniques for measuring soil moisture with respect to how the data may be used. New science programs such as the EOS, the GEWEX Continental-Scale International Project (GCIP) and STORM, a mesoscale meteorology and hydrology project, will have to account for soil moisture either as a storage in water balance computations or as a state variable in-process modeling. The author discusses future soil moisture needs such as frequency of measurement, accuracy, depth, and spatial resolution, as well as the concomitant model development that must proceed concurrently if the development in microwave technology is to have a major impact in these areas.

  15. Using Copy Change with Trade Books to Teach Earth Science

    Science.gov (United States)

    Bintz, William P.; Wright, Pam; Sheffer, Julie

    2010-01-01

    Developing and implementing relevant, challenging, integrative, and exploratory curriculum is critical at all levels of schooling. This article describes one attempt to develop and implement an instance of interdisciplinary curriculum by using copy change with trade books to teach earth science. Specifically, it introduces trade books as a way to…

  16. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    Science.gov (United States)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  17. Using Copy Change with Trade Books to Teach Earth Science

    Science.gov (United States)

    Bintz, William P.; Wright, Pam; Sheffer, Julie

    2010-01-01

    Developing and implementing relevant, challenging, integrative, and exploratory curriculum is critical at all levels of schooling. This article describes one attempt to develop and implement an instance of interdisciplinary curriculum by using copy change with trade books to teach earth science. Specifically, it introduces trade books as a way to…

  18. Activities in planetary geology for the physical and earth sciences

    Science.gov (United States)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  19. Snow as Field-Teaching Medium for Earth Science.

    Science.gov (United States)

    Custer, Stephan Gregory

    1991-01-01

    Snow is a widely available earth-science teaching medium which can be used to explore scientific concepts in the field, either directly or by analogy. Snow can be considered a mineral, sediment, sedimentary rock, or metamorphic rock. Natural processes such as crystal growth, melting, sedimentation, and metamorphism can be studied in practical time…

  20. Data Mining in Earth System Science (DMESS 2011)

    Science.gov (United States)

    Forrest M. Hoffman; J. Walter Larson; Richard Tran Mills; Bhorn-Gustaf Brooks; Auroop R. Ganguly; William Hargrove; et al

    2011-01-01

    From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniques—such as cluster analysis, singular value decomposition, block entropy, Fourier and...

  1. Evolving Metadata in NASA Earth Science Data Systems

    Science.gov (United States)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  2. GENESIS: GPS Environmental and Earth Science Information System

    Science.gov (United States)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  3. Using immersive media and digital technology to communicate Earth Science

    Science.gov (United States)

    Kapur, Ravi

    2016-04-01

    A number of technologies in digital media and interactivity have rapidly advanced and are now converging to enable rich, multi-sensoral experiences which create opportunities for both digital art and science communication. Techniques used in full-dome film-making can now be deployed in virtual reality experiences; gaming technologies can be utilised to explore real data sets; and collaborative interactivity enable new forms of public artwork. This session will explore these converging trends through a number of emerging and forthcoming projects dealing with Earth science, climate change and planetary science.

  4. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2010-10-26

    ... the purpose of soliciting from the scientific community and other persons scientific and technical... capacity of the room. The agenda for the meeting includes the following topics: --Earth Science...

  5. The inclusion of Science Technology Society topics in junior high school earth science textbooks

    Science.gov (United States)

    Fadhli, Fathi Ali

    2000-10-01

    The Science Technology Society (STS) approach is a major science education reform through which a scientifically literate citizen could be produced. The teaching of science through STS approach is centered on science and technology related issues and problems. The purpose of this study was to analyze five earth science textbooks published in the 1990's for their inclusion of twelve sciences and technology related issues and problems and for their inclusion of activities focused on STS. The selected earth science textbooks were; Scott Foresman, Heath, Holt, Merrill and Prentice-Hall. The targeted twelve issues and problems were identified by Bybee (1987), as the most important global science and technology related issues and problems. The numbers of full text pages devoted to each topic were determined by classifying each segment to one of the targeted topics. In addition, the numbers of STS activities were also determined by using criteria developed for this study. ANOVA statistical analyses and t-tests showed that the analyzed earth science textbooks treated the studied STS issues and problems and treated the STS activities differently. It was found that six of the studied issues and problems were constantly receiving more attention in all the analyzed earth science textbooks than the rest of the topics. These topics were; Air Quality and Atmosphere, Energy Shortages, Water Resources, Land Use, Hazardous Substances, and Mineral Resources. The overall results revealed that only an average of 8.82% of the text pages in all the analyzed earth science textbooks were devoted to STS topics and 5.49% of the activities in all the analyzed earth science textbooks were focused on STS topics. However, none of the activities focused on STS topics were presented in STS approach as defined by NSTA. The percentage of STS topics inclusion and the percentage of activities focused on STS topics were considered to be very low. Accordingly, the objectives and goals of STS approach

  6. Earth Science Data Analytics: Preparing for Extracting Knowledge from Information

    Science.gov (United States)

    Kempler, Steven; Barbieri, Lindsay

    2016-01-01

    Data analytics is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. Data analytics is a broad term that includes data analysis, as well as an understanding of the cognitive processes an analyst uses to understand problems and explore data in meaningful ways. Analytics also include data extraction, transformation, and reduction, utilizing specific tools, techniques, and methods. Turning to data science, definitions of data science sound very similar to those of data analytics (which leads to a lot of the confusion between the two). But the skills needed for both, co-analyzing large amounts of heterogeneous data, understanding and utilizing relevant tools and techniques, and subject matter expertise, although similar, serve different purposes. Data Analytics takes on a practitioners approach to applying expertise and skills to solve issues and gain subject knowledge. Data Science, is more theoretical (research in itself) in nature, providing strategic actionable insights and new innovative methodologies. Earth Science Data Analytics (ESDA) is the process of examining, preparing, reducing, and analyzing large amounts of spatial (multi-dimensional), temporal, or spectral data using a variety of data types to uncover patterns, correlations and other information, to better understand our Earth. The large variety of datasets (temporal spatial differences, data types, formats, etc.) invite the need for data analytics skills that understand the science domain, and data preparation, reduction, and analysis techniques, from a practitioners point of view. The application of these skills to ESDA is the focus of this presentation. The Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster was created in recognition of the practical need to facilitate the co-analysis of large amounts of data and information for Earth science. Thus, from a to

  7. Educating the Public about Deep-Earth Science

    Science.gov (United States)

    Cronin, V. S.

    2010-12-01

    The nature of Earth’s interior is an active frontier of scientific research. Much of our current understanding of sub-crustal Earth is based on knowledge acquired in the last 2-3 decades, made possible by public funding and by dense seismic arrays, satellite remote sensing, increases in computer power that enable use of enhanced numerical techniques, improved theoretical and experimental knowledge of high PT mineral physics and chemistry, and a vigorous scientific community that has been trained to take advantage of these opportunities. An essential component of science is effective communication; therefore, providing for public education about science is a responsibility of the research community. Current public understanding of Earth’s interior is meager at best. In pre-college texts and in non-technical mass media, Earth's interior is typically visualized as an onion or baseball of concentric different-colored shells along whose upper surface "crustal" plates move like packages on conveyor belts of convecting mantle. Or the crust is thought to float on a molten mantle, as in the 19th century ideas of William Lowthian Green. Misconceptions about Earth that are brought to the undergraduate classroom must be confronted frankly and replaced by current understanding based on good science. Persistent ignorance has consequences. What do we want the public to know? First, the public should understand that knowledge of Earth's interior is important, not irrelevant. The public should know that deep-Earth processes result in Earth's dynamic magnetic field. Deep-Earth processes affect how radiation from the Sun reaches Earth, consequently affecting the atmosphere, the oceans, and the viability of life on Earth. The composition and differentiated structure of Earth's interior is a result of the early accretionary history of Earth and the Earth-Moon system. The public should also know that lithospheric tectonics, with all of its consequences (dynamic topography, volcanoes

  8. Natural Hazards in Earth Science education projects

    Science.gov (United States)

    Ferrero, Elena; Magagna, Alessandra

    2013-04-01

    reconstructing situations recognizable only by clues and following events widely spread in geologic times. These examples will illustrate how methodologies and strategies have been applied to achieve the following purposes: (i) to act according to the principles of geoethics in the formation of professionals of Geosciences education and communication; (ii) to increase individual and collective awareness of the interference of mankind on natural systems, especially on geological heritage. All the mentioned activities have been designed following these common strategies: - to respect and to value the great emotional impact of the issues proposed; - to lighten the irrational aspects of an approximate communication carried out by some media; - to place the impulsive events between the effects of "normal" terrestrial dynamical processes; - to train to a constant and curious attention towards "common" situations, in order to be able to interpret them with awareness; - to highlight the complexity of the phenomena and the richness of the relations between abiotic and living world, despite of convenient simplifications; - to highlight the role of mankind in the system of relationships, as "victim" or "creator" of the changes; - to encourage the awareness of individual responsibility, to enhance the development of a respectful and careful attitude towards other living beings and the Earth system, attitude mindful of the values and the need to protect them. The importance of taking care of the communication approach has been evaluated and tested, giving constant attention to the interlocutors participation, creating informal moments of dialogue, valuing the contributions of their previous knowledge and experience, integrating other contributions of knowledge, relevant to the humanities and the arts.

  9. Discover Earth: an earth system science program for libraries and their communities

    Science.gov (United States)

    Dusenbery, P.

    2011-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public's understanding of Earth's physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The Space Science Institute's National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. STAR-Net includes two exhibitions: Discover Earth and Discover Tech. The Discover Earth exhibition will focus on local earth science topics-such as weather, water cycle, and ecosystem changes-as well as a global view of our changing planet. The main take-away message (or Big Idea) for this exhibition is that the global environment changes - and is changed by - the host community's local environment. The project team is testing whether this approach will be a good strategy for engaging the public, especially in rural America. This presentation will provide an overview of the Discover Earth project and how it is integrating climate change ideas into the exhibit

  10. Environmental Earth System Science/Engineering Within an Earth Systems Curriculum at City College of the City University of New York

    Science.gov (United States)

    Rudolph, E.; Steiner, J.

    2007-12-01

    The Science Division of City College (CCNY) has implemented a joint undergraduate program with the Grove School of Engineering at CCNY that allows for both a Bachelors of Science and a Bachelors of Engineering using a synergistic Earth System Science (ESS) curriculum . The Science Core uses creative new courses that include ESS: Systems Analysis of the Earth, ESS: Modeling/Databases, Geographic Information Science, and Remote Sensing to expand the spatial science consideration. The Engineering Core supplies background fundamentals in instrumentation design and operation through courses such as Computer- aided Analysis Tools, Basics of Electrical Circuits and Introduction to Satellite Remote Sensing. This represents a dramatic broadening of a classical earth science degree and a shift to a global resource paradigm. The original geology course is now reconstructed to reflect the new points of emphasis. The Freshman level course, ESS: Introduction to Earth System Science and Engineering contains a dramatically modified set of laboratory exercises and exercises with an entirely new focus that incorporate experimental design, and an application of engineering skills. The new laboratory exercise utilize optical benches with light sources and photovoltaic solar cells to study optical phenomena. From a scientific standpoint, students locate the theoretical sun position, and estimate atmospheric light scattering properties, and then use the solar cell information to construct design plans for renewable energy installations. Laboratory simulations are linked to issues such as global warming and satellite data recovery systems. Laboratory exercises also simulate data streams recovered at CCNY using LIDAR and other information published at CCNY on AERONET. The effectiveness of the exercises, including qualitative student responses, is measured to estimate the impact of exercises on student comprehension. We are specifically interested in the manner in which students apply

  11. The International Year of Planet Earth (2007-2009):Earth Sciences for Society

    Institute of Scientific and Technical Information of China (English)

    Eduardo F.J.de Mulder; Ted Nield; Edward Derbyshire

    2006-01-01

    Natural disasters like the 2004 tsunami bear graphic testimony to the Earth's incredible power. More effective use of geoscientific knowledge can save lives and protect property. Such knowledge also enables us to satisfy, in a sustainable manner,the growing need for Earth's resources by an expanding human population. Such knowledge is readily available in the practical experience and publications of some half a million Earth scientists all over the world, a professional community that is ready and willing to contribute to a safer, healthier and wealthier society if called upon by politicians and decision makers. Professional guidance by Earth scientists is available in many aspects of everyday life including, for example, identification of the best areas for urban expansion, sites to avoid for waste disposal, the location of new underground fresh water resources, and where certain toxic agents implicated in Earth-related diseases may be located, etc.The International Year of Planet Earth (2007-2009) aims to build on existing knowledge and make it more available for the improvement of everyday life, especially in the less developed countries, as expressed in the Year's subtitle: Earth sciences for Society. Ambitious outreach and science programmes constitute the backbone of the International Year, now politically endorsed by all 191 member states of the United Nations Organisation which has proclaimed 2008, the central year of the triennium, as the UN Year of Planet Earth. This paper describes who is behind the initiative,how it will work, and how the political process leading to United Nations proclamation proceeded. It also describes the financial and organisational aspects of the International Year, sets out the commitments necessary for the realization of the Year's ambitions by all nations, and explains how the raising of US$ 20 million will be approached.

  12. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    Science.gov (United States)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  13. Earth Science Data Analysis in the Era of Big Data

    Science.gov (United States)

    Kuo, K.-S.; Clune, T. L.; Ramachandran, R.

    2014-01-01

    Anyone with even a cursory interest in information technology cannot help but recognize that "Big Data" is one of the most fashionable catchphrases of late. From accurate voice and facial recognition, language translation, and airfare prediction and comparison, to monitoring the real-time spread of flu, Big Data techniques have been applied to many seemingly intractable problems with spectacular successes. They appear to be a rewarding way to approach many currently unsolved problems. Few fields of research can claim a longer history with problems involving voluminous data than Earth science. The problems we are facing today with our Earth's future are more complex and carry potentially graver consequences than the examples given above. How has our climate changed? Beside natural variations, what is causing these changes? What are the processes involved and through what mechanisms are these connected? How will they impact life as we know it? In attempts to answer these questions, we have resorted to observations and numerical simulations with ever-finer resolutions, which continue to feed the "data deluge." Plausibly, many Earth scientists are wondering: How will Big Data technologies benefit Earth science research? As an example from the global water cycle, one subdomain among many in Earth science, how would these technologies accelerate the analysis of decades of global precipitation to ascertain the changes in its characteristics, to validate these changes in predictive climate models, and to infer the implications of these changes to ecosystems, economies, and public health? Earth science researchers need a viable way to harness the power of Big Data technologies to analyze large volumes and varieties of data with velocity and veracity. Beyond providing speedy data analysis capabilities, Big Data technologies can also play a crucial, albeit indirect, role in boosting scientific productivity by facilitating effective collaboration within an analysis environment

  14. Earth Science Big Data Activities at Research Data Alliance

    Science.gov (United States)

    Kuo, Kwo-Sen; Baumann, Peter; Evans, Ben; Riedel, Morris

    2016-04-01

    In this presentation we introduce Earth science related activities of the Big Data Interest Group (BDIG) in Research Data Alliance (RDA). "RDA is an international organization focused on the development of infrastructure and community activities that reduce barriers to data sharing and exchange, and the acceleration of data driven innovation worldwide." The participation of researchers in RDA is voluntary. As the name implies, an Interest Group is a collection of participants sharing the same interest. The BDIG seeks to address community needs on all things having to do with Big Data. The ultimate goal of RDA Big Data Interest Group is to produce a set of recommendation documents to advise diverse research communities with respect to: • How to select an appropriate Big Data solution for a particular science application to realize optimal value? and • What are the best practices in dealing with various data and computing issues associated with such a solution? The primary means to reaching such recommendations is through the establishment and work of Working Groups, each of which focuses on a specific issue. Although BDIG is not specific to Earth science, its recent activities revolve mostly around it. We introduce some of these activities that are designed to advance our knowledge and to characterize Big Data in Earth science.

  15. A relevancy algorithm for curating earth science data around phenomenon

    Science.gov (United States)

    Maskey, Manil; Ramachandran, Rahul; Li, Xiang; Weigel, Amanda; Bugbee, Kaylin; Gatlin, Patrick; Miller, J. J.

    2017-09-01

    Earth science data are being collected for various science needs and applications, processed using different algorithms at multiple resolutions and coverages, and then archived at different archiving centers for distribution and stewardship causing difficulty in data discovery. Curation, which typically occurs in museums, art galleries, and libraries, is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest. Curating data sets around topics or areas of interest addresses some of the data discovery needs in the field of Earth science, especially for unanticipated users of data. This paper describes a methodology to automate search and selection of data around specific phenomena. Different components of the methodology including the assumptions, the process, and the relevancy ranking algorithm are described. The paper makes two unique contributions to improving data search and discovery capabilities. First, the paper describes a novel methodology developed for automatically curating data around a topic using Earth science metadata records. Second, the methodology has been implemented as a stand-alone web service that is utilized to augment search and usability of data in a variety of tools.

  16. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    Science.gov (United States)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition

  17. Environmental Sciences Division. Annual progress report for period ending September 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The energy crisis and creation of ERDA were dominant factors affecting the activities of the Environmental Sciences Division during the past year. Efforts primarily centered on coal conversion effluents, aquatic effects from power plants, terrestrial modeling of both radioactive and nonradioactive waste transport, mineral cycling, forest management, and information handling codes and techniques. A bibliography of publications, presentation, these, and other professional activities is included. (PCS)

  18. A Knowledge Portal and Collaboration Environment for the Earth Sciences

    Science.gov (United States)

    D'Agnese, F. A.

    2008-12-01

    Earth Knowledge is developing a web-based 'Knowledge Portal and Collaboration Environment' that will serve as the information-technology-based foundation of a modular Internet-based Earth-Systems Monitoring, Analysis, and Management Tool. This 'Knowledge Portal' is essentially a 'mash- up' of web-based and client-based tools and services that support on-line collaboration, community discussion, and broad public dissemination of earth and environmental science information in a wide-area distributed network. In contrast to specialized knowledge-management or geographic-information systems developed for long- term and incremental scientific analysis, this system will exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize existing environmental datasets using Google Earth and Google Maps. An early form of these tools and services is being used by Earth Knowledge to facilitate the investigations and conversations of scientists, resource managers, and citizen-stakeholders addressing water resource sustainability issues in the Great Basin region of the desert southwestern United States. These ongoing projects will serve as use cases for the further development of this information-technology infrastructure. This 'Knowledge Portal' will accelerate the deployment of Earth- system data and information into an operational knowledge management system that may be used by decision-makers concerned with stewardship of water resources in the American Desert Southwest.

  19. The EPOS implementation of thematic services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2014-05-01

    The mission of EPOS is to build an efficient and comprehensive multidisciplinary research platform for the solid Earth sciences in Europe. In particular, EPOS is a long-term plan to facilitate integrated use of data, models and facilities from mainly distributed existing, but also new, research infrastructures for Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, unrest episodes, ground stability, and tsunamis as well as those processes driving tectonics and Earth surface dynamics. EPOS will allow the Earth Science community to make a significant step forward by developing new concepts and tools for accurate, durable, and sustainable answers to societal questions concerning geo-hazards and those geodynamic phenomena relevant to the environment and human welfare. EPOS coordinates the existing and new solid Earth RIs within Europe and is building the integrating RI elements. This integration requires a significant coordination between, among others, disciplinary (thematic) communities, national RIs policies and initiatives, as well as geo- and IT-scientists. The RIs that EPOS coordinates include: i) Regionally-distributed geophysical observing systems (seismological and geodetic networks); ii) Local observatories (including geomagnetic, near-fault and volcano observatories); iii) Analytical and experimental laboratories; iv) Integrated satellite data and geological information services. We present the results achieved during the EPOS Preparatory Phase (which will end on October 2014) and the progress towards construction in terms of both the design of the integrated core services (ICS) and the development of thematic core services (TCS) for the different communities participating to the integration plan. We will focus on discussing the strategies adopted to foster the necessary implementation of TCS, clarifying their crucial role as domain

  20. Earth Observation for Land-Atmosphere Interaction Science

    Science.gov (United States)

    Marconcini, M.; Fernandez-Prieto, D.; Reissell, A.; Ellis, M.; Blyth, E. M.; Burrows, J. P.; de Leeuw, G.; Gerard, F. F.; Houweling, S.; Kaminski, T.; Krol, M.; Muller, J.-P.; North, P. R. J.; Palmer, P.; Pinty, B.; Plummer, S.; Quegan, S.; Reichstein, M.; Remedios, J. J.; Roberts, G. J.; Shvidenko, A.; Scipal, K.; Sobrino, J. A.; Teuling, A. J.; van der Werf, G. R.

    2011-01-01

    The European Space Agency (ESA), iLEAPS (Integrated Land Ecosystem-Atmosphere Processes Study, i.e. the land-atmosphere core project of the International Geosphere-Biosphere Programme), and the European Geosciences Union (EGU) jointly organized the “Earth Observation for Land-Atmosphere Interaction Science” conference, which took place from 3rd to 5th November 2010 at the Italian premises of ESA in Frascati (Rome). The event represented an attempt to effectively draw together Earth-Observation (EO) and Earth-system scientists investigating land-atmosphere processes in order to better understand the current gaps in science and derive recommendations to advance in the use of EO technology in the context of this important topic. Around 200 people from more than 30 countries world- wide met and discussed for three intensive days. This paper reports key points and the main recommendations of the conference for each of the key themes addressed.

  1. Earth Science Markup Language: Transitioning From Design to Application

    Science.gov (United States)

    Moe, Karen; Graves, Sara; Ramachandran, Rahul

    2002-01-01

    The primary objective of the proposed Earth Science Markup Language (ESML) research is to transition from design to application. The resulting schema and prototype software will foster community acceptance for the "define once, use anywhere" concept central to ESML. Supporting goals include: 1. Refinement of the ESML schema and software libraries in cooperation with the user community. 2. Application of the ESML schema and software libraries to a variety of Earth science data sets and analysis tools. 3. Development of supporting prototype software for enhanced ease of use. 4. Cooperation with standards bodies in order to assure ESML is aligned with related metadata standards as appropriate. 5. Widespread publication of the ESML approach, schema, and software.

  2. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Science.gov (United States)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  3. NASA Global Hawk: A New Tool for Earth Science Research

    Science.gov (United States)

    Hall, Phill

    2009-01-01

    This slide presentation reviews the Global Hawk, a unmanned aerial vehicle (UAV) that NASA plans to use for Earth Sciences research. The Global Hawk is the world's first fully autonomous high-altitude, long-endurance aircraft, and is capable of conducting long duration missions. Plans are being made for the use of the aircraft on missions in the Arctic, Pacific and Western Atlantic Oceans. There are slides showing the Global Hawk Operations Center (GHOC), Flight Control and Air Traffic Control Communications Architecture, and Payload Integration and Accommodations on the Global Hawk. The first science campaign, planned for a study of the Pacific Ocean, is reviewed.

  4. Solar Energy Education. Renewable energy activities for earth science

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  5. Grids for Dummies: Featuring Earth Science Data Mining Application

    Science.gov (United States)

    Hinke, Thomas H.

    2002-01-01

    This viewgraph presentation discusses the concept and advantages of linking computers together into data grids, an emerging technology for managing information across institutions, and potential users of data grids. The logistics of access to a grid, including the use of the World Wide Web to access grids, and security concerns are also discussed. The potential usefulness of data grids to the earth science community is also discussed, as well as the Global Grid Forum, and other efforts to establish standards for data grids.

  6. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    Science.gov (United States)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  7. Implications of the Next Generation Science Standards for Earth and Space Sciences

    Science.gov (United States)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  8. Interdisciplinary Earth Science Applications Using Satellite Radar Altimetry

    Science.gov (United States)

    Kuo, C.; Shum, C.; Lee, H.; Dai, C.; Yi, Y.

    2012-12-01

    Satellite altimetry was conceived as a space geodetic concept for ocean surface topography mapping in the NASA-sponsored 1969 Williamstown, MA Conference, and was tested as part of the passive and active radar payload (S192), along with a radiometer and a scatterometer, on Skylab-1 in May 14, 1973. Since then, numerous radar and laser satellite altimetry missions orbiting/flying-by the Earth, Mars, Mercury, Titan and the Moon have been launched, evolving from the original scientific objective of marine gravity field mapping to a geodetic tool to address interdisciplinary Earth and planetary sciences. The accuracy of the radar altimeter has improved from 0.9 m RMS for the S-192 Skylab Ku-band compressed-pulse altimeter, to 2 cm RMS (2 second average) for the dual-frequency pulse-limited radar altimetry and associated sensors onboard TOPEX/POSEIDON. Satellite altimetry has evolved into a unique cross-disciplinary geodetic tool in addressing contemporary Earth science problems including sea-level rise, large-scale general ocean circulation, ice-sheet mass balance, terrestrial hydrology, and bathymetry. Here we provide a concise review and describe specific results on the additional recent innovative and unconventional applications of interdisciplinary science research using satellite radar altimetry, including geodynamics, land subsidence, snow depth, wetland and cold region hydrology.

  9. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    Science.gov (United States)

    Pyle, E. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims

  10. Environmental Sciences Division annual progress report for period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  11. Environmental Sciences Division annual progress report for period ending September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-01

    This annual report summarizes activities in the Aquatic Ecology, Earth Sciences, Environmental Analyses, and Terrestrial Ecology sections, as well as in the Fossil Energy, Biomass, Low-Level Waste Research and Management, and Global Carbon Cycle Programs. Separate abstracts have been prepared for each section. (ACR)

  12. European Marine Infrastructures: perspectives for Marine and Earth Sciences

    Science.gov (United States)

    Favali, P.; Beranzoli, L.; Egerton, P.; Le Traon, P. Y.; Los, W.

    2009-04-01

    The European Commission (EC) is supporting a variety of Research Infrastructures in many different scientific fields: Social Sciences and Humanities, Environmental Sciences, Energy, Biological and Medical Sciences, Physical Sciences and Engineering and e-Infrastructures. All these infrastructures are included in the new report of the "European Roadmap for Research Infrastructures" published in late 2008 by ESFRI (European Strategy Forum on Research Infrastructures, http://cordis.europa.eu/esfri/). In particular, some research infrastructures for the Environmental Sciences specifically addressed to the marine environment are presented: • EMSO (European Multidisciplinary Seafloor Observatory). The development of this underwater network is being supported by several other EC initiatives, ESONET-NoE (European Seas Network), coordinated by IFREMER (http://www.esonet-emso.org/esonet-noe/). • ERICON AURORA BOREALIS (European Research Icebreaker Consortium, http://www.eri-aurora-borealis.eu/). • EURO-ARGO (Global Ocean Observing Infrastructure, http://www.euro-argo.eu/). • LIFEWATCH (E-science and technology infrastructure for biodiversity data and observatories, http://www.lifewatch.eu/). In particular through its scientific marine networks: EUR-OCEANS (European Network of Excellence for Ocean Ecosystems Analysis, http://www.eur-oceans.eu/); MARBEF-NoE (MARine Biodiversity and Ecosystem Functioning, http://www.marbef.org/ and Marine Genomics (http://www.marine-genomics-europe.org/). Possible profitable links with new research infrastructures recently included in the roadmap, such as EPOS (European Plate Observing System) and SIAEOS (Svalbard Integrated Arctic Earth Observing System) are also pointed out. The marine EC infrastructures presented constitute the fundamental tools to support the Earth Sciences, both terrestrial and marine.

  13. Enabling Earth Science Measurements with NASA UAS Capabilites

    Science.gov (United States)

    Albertson, Randal; Schoenung, Susan; Fladeland, Matthew M.; Cutler, Frank; Tagg, Bruce

    2015-01-01

    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described.

  14. A Science Information Infrastructure for Access to Earth and Space Science Data through the Nation's Science Museums

    Science.gov (United States)

    Murray, S.

    1999-01-01

    In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.

  15. A strategy for Earth science from space in the 1980s. Part 1: Solid earth and oceans

    Science.gov (United States)

    1982-01-01

    The report develops a ten-year science strategy for investigating the solid earth and dynamics of world oceans from Earth orbit. The strategy begins from the premise that earth studies have proceeded to the point where further advances in understanding Earth processes must be based on a global perspective and that the U.S. is technically ready to begin a global study approach from Earth orbit. The major areas of study and their fundamental problems are identified. The strategy defines the primary science objectives to be addressed and the essential measurements and precision to achieve them.

  16. Using Federally Funded Curricular Materials to meet Next Geneartion Science Standards in Earth System Science

    Science.gov (United States)

    McAuliffe, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) describe teaching and learning goals for Earth system science at all levels of K-12, including elementary, middle school, and high school. Teachers must consider science and engineering practices, cross-cutting concepts, and disciplinary core ideas. The National Science Foundation and other federal organizations have supported the development of reformed curricular materials at the K-12 level for many years. Although developed before the adoption of NGSS, many of these Earth system science resources are, in fact, NGSS congruent. Such resources include those developed by TERC, SERC, EDC, NASA, NOAA, USGS, and others. This session features NGSS congruent materials, carefully examining and dissecting the performance expectations that embody these materials. It also shares a process of tagging these materials via NSTA's, NGSS portal guidelines.

  17. Applications of surface analytical techniques in Earth Sciences

    Science.gov (United States)

    Qian, Gujie; Li, Yubiao; Gerson, Andrea R.

    2015-03-01

    This review covers a wide range of surface analytical techniques: X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), photoemission electron microscopy (PEEM), dynamic and static secondary ion mass spectroscopy (SIMS), electron backscatter diffraction (EBSD), atomic force microscopy (AFM). Others that are relatively less widely used but are also important to the Earth Sciences are also included: Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). All these techniques probe only the very top sample surface layers (sub-nm to several tens of nm). In addition, we also present several other techniques i.e. Raman microspectroscopy, reflection infrared (IR) microspectroscopy and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) that penetrate deeper into the sample, up to several μm, as all of them are fundamental analytical tools for the Earth Sciences. Grazing incidence synchrotron techniques, sensitive to surface measurements, are also briefly introduced at the end of this review. (Scanning) transmission electron microscopy (TEM/STEM) is a special case that can be applied to characterisation of mineralogical and geological sample surfaces. Since TEM/STEM is such an important technique for Earth Scientists, we have also included it to draw attention to the capability of TEM/STEM applied as a surface-equivalent tool. While this review presents most of the important techniques for the Earth Sciences, it is not an all-inclusive bibliography of those analytical techniques. Instead, for each technique that is discussed, we first give a very brief introduction about its principle and background, followed by a short section on approaches to sample preparation that are important for researchers to appreciate prior to the actual sample analysis. We then use examples from publications (and also some of our known unpublished results) within the Earth Sciences

  18. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  19. SCIDIP-ES - A science data e-infrastructure for preservation of earth science data

    Science.gov (United States)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. In many branches of the earth sciences the capture of key observational data may be difficult or impossible to repeat. For example, a specific geological exposure or subsurface borehole may be only temporarily available, and deriving earth observation data from a particular satellite mission is clearly often a unique opportunity. At the same time such unrepeatable observations may be a critical input to environmental, economic and political decision making. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide e-infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong

  20. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    Science.gov (United States)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  1. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  2. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  3. INDIGO-DataCloud solutions for Earth Sciences

    Science.gov (United States)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Fiore, Sandro; Monna, Stephen; Chen, Yin

    2017-04-01

    INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is a European Commission funded project aiming to develop a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The development of INDIGO solutions covers the different layers in cloud computing (IaaS, PaaS, SaaS), and provides tools to exploit resources like HPC or GPGPUs. INDIGO is oriented to support European Scientific research communities, that are well represented in the project. Twelve different Case Studies have been analyzed in detail from different fields: Biological & Medical sciences, Social sciences & Humanities, Environmental and Earth sciences and Physics & Astrophysics. INDIGO-DataCloud provides solutions to emerging challenges in Earth Science like: -Enabling an easy deployment of community services at different cloud sites. Many Earth Science research infrastructures often involve distributed observation stations across countries, and also have distributed data centers to support the corresponding data acquisition and curation. There is a need to easily deploy new data center services while the research infrastructure continuous spans. As an example: LifeWatch (ESFRI, Ecosystems and Biodiversity) uses INDIGO solutions to manage the deployment of services to perform complex hydrodynamics and water quality modelling over a Cloud Computing environment, predicting algae blooms, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator for deployment, AAI (AuthN, AuthZ) and OneData (Distributed Storage System). -Supporting Big Data Analysis. Nowadays, many Earth Science research communities produce large amounts of data and and are challenged by the difficulties of processing and analysing it. A climate models intercomparison data analysis case study for the European Network for Earth System Modelling (ENES) community has been setup, based on the Ophidia big

  4. Experiences & Tools from Modeling Instruction Applied to Earth Sciences

    Science.gov (United States)

    Cervenec, J.; Landis, C. E.

    2012-12-01

    The Framework for K-12 Science Education calls for stronger curricular connections within the sciences, greater depth in understanding, and tasks higher on Bloom's Taxonomy. Understanding atmospheric sciences draws on core knowledge traditionally taught in physics, chemistry, and in some cases, biology. If this core knowledge is not conceptually sound, well retained, and transferable to new settings, understanding the causes and consequences of climate changes become a task in memorizing seemingly disparate facts to a student. Fortunately, experiences and conceptual tools have been developed and refined in the nationwide network of Physics Modeling and Chemistry Modeling teachers to build necessary understanding of conservation of mass, conservation of energy, particulate nature of matter, kinetic molecular theory, and particle model of light. Context-rich experiences are first introduced for students to construct an understanding of these principles and then conceptual tools are deployed for students to resolve misconceptions and deepen their understanding. Using these experiences and conceptual tools takes an investment of instructional time, teacher training, and in some cases, re-envisioning the format of a science classroom. There are few financial barriers to implementation and students gain a greater understanding of the nature of science by going through successive cycles of investigation and refinement of their thinking. This presentation shows how these experiences and tools could be used in an Earth Science course to support students developing conceptually rich understanding of the atmosphere and connections happening within.

  5. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  6. Building Knowledge Graphs for NASA's Earth Science Enterprise

    Science.gov (United States)

    Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.

    2016-12-01

    Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of

  7. Importance and Perspectives of the Earth Sciences Popularization in Mexico

    Science.gov (United States)

    Flores-Estrella, H.; Yussim, S.

    2007-05-01

    In our days the scientific popularization in Mexico has not a promising future and with the earth sciences is not better; most of the papers in the popularization magazines deal with subjects as earthquakes, volcanoes, plate tectonics, meteorite impacts and the massive extensions associated with them (e.g. Chicxulub). However, these subjects have not been enough to create conscience about the importance of earth sciences in the society and it has even motivated the idea of a community distant scientific with no social obligation, the idea that the earth scientists are responsible for all the problems in the planet (global warming, catastrophes) is wide spread. In these days that we need a change in our consumption, mainly in the energetic one, it's compulsory to change the relation between the subject and its environment; then, as we can not take care of something that we don't know, the scientific popularization has a fundamental role that we must start to pay attention to.

  8. Multimedia, spatial visualization, and the Earth and Space Science classroom

    Science.gov (United States)

    Glavich, Carrie

    It is important that Earth and Space science educators understand how their students develop the ability to visualize three-dimensional (3D) concepts. The purpose of this study is to provide Earth and Space Science instructors with information on what spatial skills that are needed in the classroom can be integrated from outside sources. Two specific questions guided the research: (1) Do spatial skills developed in one academic subject transfer to another academic subject? (2) Do spatial skills developed outside of the classroom via 3D multimedia have a significant impact on performance on academic tasks? Fifty-three students at the University of Texas at Dallas were tested on three types of spatial tasks: spatial rotation ability, geo-spatial penetrative ability, and geometry of the Earth-Moon-Sun system. Demographic data collected included academic major, previous coursework in geology and astronomy, and computer usage habits. The computer usage data was divided into three- dimensional multimedia use, and other types of computer use such as word processing and Internet browsing. (Abstract shortened by UMI.)

  9. Worldwide Telescope as an earth and planetary science educational platform

    Science.gov (United States)

    Fatland, D. R.; Rush, K.; van Ingen, C.; Wong, C.; Fay, J.; Xu, Y.; Fay, D.

    2009-12-01

    Worldwide Telescope (WWT) -available at no cost from Microsoft Research as both Windows desktop and web browser applications - enables personal computers to function as virtual telescopes for viewing the earth, the solar system and the cosmos across many wavelengths. Bringing together imagery from ground and space-based telescopes as well as photography from Mars rovers and Apollo astronauts, WWT is designed to work as both a research tool and a platform for educational exploration. Central to the latter purpose is the Tour authoring facility which enables a student or educator to create narrative stories with dynamic perspective, voice-over narrative, background sound and superimposed content. We describe here the application of recent developments in WWT, particularly the 2009 updates, towards planetary science education with particular emphasis on WWT earth models. Two core themes informing this development are the notions of enabling social networking through WWT Communities and including the earth as part of the bigger picture, in effect swinging the telescope around from the deep sky to look back at our observatory. moon, earth (WWT solar system view)

  10. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    Science.gov (United States)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  11. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M. (ed.)

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31.

  12. Earth Viewer-An interactive learning tool for making connections between earth and biological sciences

    Science.gov (United States)

    Nielsen, M. E.; Amagai, S.; Porch, B.; Clark, M.; Liu, D.

    2012-12-01

    Crosscutting concepts represent one of the three principal dimensions of the Next Generation Science Standards. They are broad concepts that link across multiple domains of science and include: patterns, similarity, and diversity; cause and effect; scale, proportion and quantity; systems and system models; energy and matter; structure and function; stability and change. With these crosscutting concepts in mind we developed an interactive iPad application that seeks to build bridges across themes in biological and geological sciences. Our application, called Earth Viewer, explores the history of the Earth and emphasizes connections between planetary and biological evolution. For example, what is the relationship between plate tectonics and carbon dioxide and oxygen concentrations in the atmosphere and how is that reflected in biological diversity? Grounded firmly in primary literature, the application is based on continental reconstructions dating to the Archean eon. To those reconstructions we added a variety of data layers including atmospheric CO2 and O2, temperature, biodiversity indices and discrete events (mass extinctions, impact events, critical fossil markers, etc.,). The result is an interactive tool that instructors can use to draw connections between traditionally separated fields of biology and geology and to illustrate key concepts of scale and geologic time. The application is a launching platform for classroom resources and inquiry based activities. We work directly with teachers to develop specific lesson plans targeted to a variety of high school and middle school science classes. We will provide examples of such resources that illustrate how our application is grounded in the classroom but also enables new connections across scientific disciplines. Howard Hughes Medical Institute is one of the nation's largest philanthropies dedicated to supporting research and science education. The resources we develop are freely available from Bio

  13. ESIP Earth Sciences Data Analytics (ESDA) Cluster - Work in Progress

    Science.gov (United States)

    Kempler, Steven

    2015-01-01

    The purpose of this poster is to promote a common understanding of the usefulness of, and activities that pertain to, Data Analytics and more broadly, the Data Scientist; Facilitate collaborations to better understand the cross usage of heterogeneous datasets and to provide accommodating data analytics expertise, now and as the needs evolve into the future; Identify gaps that, once filled, will further collaborative activities. Objectives Provide a forum for Academic discussions that provides ESIP members a better understanding of the various aspects of Earth Science Data Analytics Bring in guest speakers to describe external efforts, and further teach us about the broader use of Data Analytics. Perform activities that:- Compile use cases generated from specific community needs to cross analyze heterogeneous data- Compile sources of analytics tools, in particular, to satisfy the needs of the above data users- Examine gaps between needs and sources- Examine gaps between needs and community expertise- Document specific data analytics expertise needed to perform Earth science data analytics Seek graduate data analytics Data Science student internship opportunities.

  14. Gravitation and the earth sciences: the contributions of Robert Dicke

    CERN Document Server

    Kragh, Helge

    2015-01-01

    The American physicist Robert Dicke (1916-1997) is primarily known for his important contributions to gravitation, cosmology, and microwave physics. Much less known is his work in geophysics and related areas of the earth sciences in which he engaged himself and several of his collaborators in the period from about 1957 to 1969. Much of Dicke's work in geophysics was motivated by his wish to obtain evidence in support of the non-Einstenian Brans-Dicke theory of gravitation. The idea of a decreasing gravitational constant, as entertained by Dicke and some other physicists (including Pascual Jordan), played some role in the process that transformed the static picture of the Earth to a dynamical picture. It is not by accident that Dicke appears as a minor actor in histories of the plate tectonic revolution in the 1960s.

  15. Concept Mapping: Linking Spheres in Earth System Science

    Science.gov (United States)

    Czajkowski, K. P.; Hedley, M.

    2009-12-01

    The Earth System Science Education Alliance (ESSEA) distance learning courses focus teachers on linking spheres of the earth: atmosphere, hydrosphere, lithosphere and biosphere. The University of Toledo has offered the ESSEA middle school grade course using jigsaw pedagogy nine times since 2002. Traditionally, the ESSEA course has teachers link spheres in linear causal chains. This past year we used concept mapping as a way for the teachers and pre-service students in the class to organize their study of the events: melting of ice sheets, Mt. Pinatubo eruption, Hurricane Katrina and draining of the Great Black Swamp. Concept mapping is a good way to visualize linkages between events and spheres. The outcome was that teachers and pre-service students enjoyed concept mapping, it fostered teamwork and helped with grading the material.

  16. The EPOS Architecture: Integrated Services for solid Earth Science

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2013-04-01

    The European Plate Observing System (EPOS) represents a scientific vision and an IT approach in which innovative multidisciplinary research is made possible for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, unrest episodes and tsunamis as well as those driving tectonics and Earth surface dynamics. EPOS has a long-term plan to facilitate integrated use of data, models and facilities from existing (but also new) distributed research infrastructures, for solid Earth science. One primary purpose of EPOS is to take full advantage of the new e-science opportunities coming available. The aim is to obtain an efficient and comprehensive multidisciplinary research platform for the Earth sciences in Europe. The EPOS preparatory phase (EPOS PP), funded by the European Commission within the Capacities program, started on November 1st 2010 and it has completed its first two years of activity. EPOS is presently mid-way through its preparatory phase and to date it has achieved all the objectives, milestones and deliverables planned in its roadmap towards construction. The EPOS mission is to integrate the existing research infrastructures (RIs) in solid Earth science warranting increased accessibility and usability of multidisciplinary data from monitoring networks, laboratory experiments and computational simulations. This is expected to enhance worldwide interoperability in the Earth Sciences and establish a leading, integrated European infrastructure offering services to researchers and other stakeholders. The Preparatory Phase aims at leveraging the project to the level of maturity required to implement the EPOS construction phase, with a defined legal structure, detailed technical planning and financial plan. We will present the EPOS architecture, which relies on the integration of the main outcomes from legal, governance and financial work following the strategic EPOS roadmap and according to the technical work done during the

  17. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  18. NASA/NOAA: Earth Science Electronic Theater 1999

    Science.gov (United States)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many

  19. EVER-EST: a virtual research environment for Earth Sciences

    Science.gov (United States)

    Marelli, Fulvio; Albani, Mirko; Glaves, Helen

    2016-04-01

    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Researchers will be able to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modelling, which lead to the specific results that need to be attributable, validated and shared both within the community and more widely e.g. in the form of scholarly communications. Central to the EVEREST approach is the concept of the Research Object (RO) , which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although several e-laboratories are incorporating the research object concept in their infrastructure, the EVER-EST VRE will be the first infrastructure to leverage the concept of Research Objects and their application in observational rather than experimental disciplines. Development of the EVEREST VRE will leverage the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as

  20. EVEREST: a virtual research environment for the Earth Sciences

    Science.gov (United States)

    Glaves, H. M.; Marelli, F.; Albani, M.

    2015-12-01

    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Data providers will be also able to monitor user experiences and collect feedback through the VRE, improving their capacity to adapt to the changing requirements of their end-users. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary ES domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and seismicity). Each of the VRC represents a different collaborative use case for the VRE according to its own specific requirements for data, software, best practice and community engagement. The diverse use cases will demonstrate how the VRE can be used for a range of activities from straight forward data/software sharing to investigating ways to improve cooperative working. Development of the EVEREST VRE will leverage on the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those initiatives which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows.

  1. NASA/NOAA/AMS Earth Science Electronic Theatre

    Science.gov (United States)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat 7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite, Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  2. EVEREST: a virtual research environment for the Earth SciencesEVEREST: a virtual research environment for the Earth Sciences

    Science.gov (United States)

    Marelli, Fulvio; Glaves, Helen; Albani, Mirko

    2017-04-01

    Advances in technologies and measuring techniques in the Earth science and Earth observation domains have resulted in huge amounts of data about our Planet having been acquired. By making this data readily discoverable and accessible, and providing researchers with the necessary processing power, tools, and technologies to work collaboratively and share the results with their peers, will create new opportunities and innovative approaches for cross-disciplinary research. The EVER-EST project aims to support these advancements in scientific research by developing a generic Virtual Research Environment (VRE) which is tailored to the needs of the Earth Science domain. It will provide scientists with the means to manage, share and preserve the data and methodologies applied in their research, and lead to results that are validated, attributable and can be shared within and beyond their often geographically dispersed communities e.g. in the form of scholarly communications. The EVER-EST VRE is being implemented as a Service Oriented Architecture (SOA) that is based on loosely coupled services which can be differentiated as being either generic or specific to the requirements of the Earth Science domain. Central to the EVEREST approach is the concept of the Research Object (RO) which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although the concept of Research Objects has previously been validated by other experimental disciplines this application in the Earth Sciences represents its first implementation in observational research. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and

  3. Earth System Science in the Schoolyard: How ESSEA Helped Transform a Middle School Science Classroom

    Science.gov (United States)

    Popiolkowski, G.

    2008-12-01

    Teaching science at times means teaching the way we were taught as undergraduates; giving lectures, giving notes and giving worksheets. That was my teaching style in the middle school science classroom for years. I then had the opportunity to take one of the first ESSEA online Earth System Science course for Middle School Science teachers. I discovered from that course different ways to challenge students to question, to research, and to become active learners instead of passive learners. It also made me reflect and analyze the way I had been teaching. Since that time, my program has developed directly as the result of that ESSEA Earth System Science course. It is a combination of several different learning paradigms, direct instruction, constructivism and inquiry. This has taken several years of searching, researching and revising to get to where I am today. The four spheres of Earth System Science, the Biosphere, the Geosphere, the Atmosphere and the Hydrosphere are used and aligned with the Pennsylvania Ecology and Environment standards. Students focus on each sphere's essential question and objectives as they work on several Problem Based Learning(PBL) scenarios and inquiry based hands on activities relating to each sphere. Consequently, the students are personally involved with the construction of meaningful and relevant content and are actively engaged throughout their learning process.

  4. The water-energy nexus: an earth science perspective

    Science.gov (United States)

    Healy, Richard W.; Alley, William M.; Engle, Mark A.; McMahon, Peter B.; Bales, Jerad D.

    2015-01-01

    Water availability and use are closely connected with energy development and use. Water cannot be delivered to homes, businesses, and industries without energy, and most forms of energy development require large amounts of water. The United States faces two significant and sometimes competing challenges: to provide sustainable supplies of freshwater for humans and ecosystems and to ensure adequate sources of energy for future generations. This report reviews the complex ways in which water and energy are interconnected and describes the earth science data collection and research that can help the Nation address these important challenges.

  5. ODISEES: Ontology-Driven Interactive Search Environment for Earth Sciences

    Science.gov (United States)

    Rutherford, Matthew T.; Huffer, Elisabeth B.; Kusterer, John M.; Quam, Brandi M.

    2015-01-01

    This paper discusses the Ontology-driven Interactive Search Environment for Earth Sciences (ODISEES) project currently being developed to aid researchers attempting to find usable data among an overabundance of closely related data. ODISEES' ontological structure relies on a modular, adaptable concept modeling approach, which allows the domain to be modeled more or less as it is without worrying about terminology or external requirements. In the model, variables are individually assigned semantic content based on the characteristics of the measurements they represent, allowing intuitive discovery and comparison of data without requiring the user to sift through large numbers of data sets and variables to find the desired information.

  6. Earth Science Week 2009, "Understanding Climate", Highlights and News Clippings

    Energy Technology Data Exchange (ETDEWEB)

    Robeck, Edward C. [American Geological Inst., Alexandria, VA (United States)

    2010-01-05

    The American Geological Institute (AGI) proposes to expand its influential Earth Science Week Program in 2009, with the support of the U.S. Department of Energy, to disseminate DOE's key messages, information, and resources on climate education and to include new program components. These components, ranging from online resources to live events and professional networks, would significantly increase the reach and impact of AGI's already successful geoscience education and public awareness effort in the United States and abroad in 2009, when the campaign's theme will be "Understanding Climate."

  7. Annual review of earth and planetary sciences. Volume 17

    Energy Technology Data Exchange (ETDEWEB)

    Wetherill, G.W.; Albee, A.L.; Stehli, F.G.

    1989-01-01

    Recent advances in earth and planetary science are examined in reviews by leading experts. The subjects discussed include geochemistry and the dynamics of the Yellowstone hydrothermal system, Alpine and Himalayan blueschists, pressure solution during diagenesis, achondrites and igneous processes on asteroids, Sr isotopes in seawater, sediment magnetization and the evolution of magnetite biomineralization, active deformation of the continents, the nature of deep-focus earthquakes, and the use of Raman spectroscopy in mineralogy and geochemistry. Consideration is given to the mechanics of faulting, the crustal structure of western Europe, gases in diamonds, metamorphic fluids in the deep crust, faunal dynamics of pleistocene mammals, magma chambers, and the nature of the Mohorovicic discontinuity.

  8. Geocoded data structures and their applications to Earth science investigations

    Science.gov (United States)

    Goldberg, M.

    1984-01-01

    A geocoded data structure is a means for digitally representing a geographically referenced map or image. The characteristics of representative cellular, linked, and hybrid geocoded data structures are reviewed. The data processing requirements of Earth science projects at the Goddard Space Flight Center and the basic tools of geographic data processing are described. Specific ways that new geocoded data structures can be used to adapt these tools to scientists' needs are presented. These include: expanding analysis and modeling capabilities; simplifying the merging of data sets from diverse sources; and saving computer storage space.

  9. Citizen Observatories and the New Earth Observation Science

    Directory of Open Access Journals (Sweden)

    Alan Grainger

    2017-02-01

    Full Text Available Earth observation is diversifying, and now includes new types of systems, such as citizen observatories, unmanned aerial vehicles and wireless sensor networks. However, the Copernicus Programme vision of a seamless chain from satellite data to usable information in the hands of decision makers is still largely unrealized, and remote sensing science lacks a conceptual framework to explain why. This paper reviews the literatures on citizen science, citizen observatories and conceptualization of remote sensing systems. It then proposes a Conceptual Framework for Earth Observation which can be used in a new Earth observation science to explain blockages in the chain from collecting data to disseminating information in any Earth observation system, including remote sensing systems. The framework differs from its predecessors by including social variables as well as technological and natural ones. It is used here, with evidence from successful citizen science projects, to compare the factors that are likely to influence the effectiveness of satellite remote sensing systems and citizen observatories. The paper finds that constraints on achieving the seamless “Copernicus Chain” are not solely technical, as assumed in the new Space Strategy for Europe, but include social constraints too. Achieving the Copernicus Chain will depend on the balance between: (a the ‘forward’ momentum generated by the repetitive functioning of each component in the system, as a result of automatic operation or human institutions, and by the efficiency of interfaces between components; and (b the ‘backward’ flow of information on the information needs of end users. Citizen observatories will face challenges in components which for satellite remote sensing systems are: (a automatic or straightforward, e.g., sensor design and launch, data collection, and data products; and (b also challenging, e.g., data processing. Since citizen observatories will rely even more on

  10. Geostationary orbit Earth science platform concepts for global change monitoring

    Science.gov (United States)

    Farmer, Jeffery T.; Campbell, Thomas G.; Davis, William T.; Garn, Paul A.; King, Charles B.; Jackson, Cheryl C.

    1991-01-01

    Functionality of a geostationary spacecraft to support Earth science regional process research is identified. Most regional process studies require high spatial and temporal resolution. These high temporal resolutions are on the order of 30 minutes and may be achievable with instruments positioned in a geostationary orbit. A complement of typical existing or near term instruments are identified to take advantage of this altitude. This set of instruments is listed, and the requirements these instruments impose on a spacecraft are discussed. A brief description of the geostationary spacecraft concepts which support these instruments is presented.

  11. Making Connections: Where STEM Learning and Earth Science Data Services Meet

    Science.gov (United States)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda

    2016-01-01

    STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.

  12. Zaccaria Lilio and the shape of the earth: A brief response to Allegro's "Flat earth science".

    Science.gov (United States)

    Nothaft, C Philipp E

    2017-06-01

    This is a response to James J. Allegro's article "The Bottom of the Universe: Flat Earth Science in the Age of Encounter," published in Volume 55, Number 1, of this journal. Against the solid consensus of modern scholars, Allegro contends that the decades around 1500 saw a resurgence of popular and learned doubts about the existence of a southern hemisphere and the concept of a spherical earth more generally. It can be shown that a substantial part of Allegro's argument rests on an erroneous reading of his main textual witness, Zaccaria Lilio's Contra Antipodes (1496), and on a failure adequately to place this source in the context of the cosmographical debate of the late fifteenth and early sixteenth centuries. Once this context is taken into account, the notion that Lilio was a flat-earther falls flat.

  13. The Earth System CoG Collaboration Environment: Connecting Resources in the Earth Sciences

    Science.gov (United States)

    Murphy, S.; DeLuca, C.; Cinquini, L.; Overeem, I.; Edwards, P. N.; Jablonowski, C.; Rood, R. B.; Balaji, V.

    2012-12-01

    The Earth System CoG collaboration environment supports Earth science research and product development in virtual organizations comprised of multiple projects and communities. It provides data, metadata, and visualization services along with tools for collaboration, and can be used to host individual projects or to profile projects hosted elsewhere. All projects on CoG are described using a project ontology - an organized common vocabulary - that exposes information needed for collaboration and decision-making. Projects can be linked into a network, and the underlying ontology enables views of this information across the network. This access to information, and the community-driven evolution of a project ontology that includes a description of management and governance roles, bodies, and processes, promote the creation of active and knowledgeable project governance, at both individual and aggregate project levels. A description of the environment along with results of recent use by an model intercomparison project (MIP) and international software project will be presented.

  14. Earth Science Data Fusion with Event Building Approach

    Science.gov (United States)

    Lukashin, C.; Bartle, Ar.; Callaway, E.; Gyurjyan, V.; Mancilla, S.; Oyarzun, R.; Vakhnin, A.

    2015-01-01

    Objectives of the NASA Information And Data System (NAIADS) project are to develop a prototype of a conceptually new middleware framework to modernize and significantly improve efficiency of the Earth Science data fusion, big data processing and analytics. The key components of the NAIADS include: Service Oriented Architecture (SOA) multi-lingual framework, multi-sensor coincident data Predictor, fast into-memory data Staging, multi-sensor data-Event Builder, complete data-Event streaming (a work flow with minimized IO), on-line data processing control and analytics services. The NAIADS project is leveraging CLARA framework, developed in Jefferson Lab, and integrated with the ZeroMQ messaging library. The science services are prototyped and incorporated into the system. Merging the SCIAMACHY Level-1 observations and MODIS/Terra Level-2 (Clouds and Aerosols) data products, and ECMWF re- analysis will be used for NAIADS demonstration and performance tests in compute Cloud and Cluster environments.

  15. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES topics…

  16. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES topics…

  17. Proposed School of Earth And Space Sciences, Hyderabad, India

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    The hallmarks of the proposed school in the University of Hyderabad, Hyderabad,India, would be synergy, inclusivity and globalism. The School will use the synergy between the earth (including oceanic and atmospheric realms), space and information sciences to bridge the digital divide, and promote knowledge-driven and job-led economic development of the country. It will endeavour to (i) provide the basic science underpinnings for Space and Information Technologies, (ii) develop new methodologies for the utilization of natural resources (water, soils, sediments, minerals, biota, etc.)in ecologically-sustainable, employment-generating and economically-viable ways, (iii) mitigate the adverse consequences of natural hazards through preparedness systems,etc. The School will undertake research in the inter-disciplinary areas of earth and space sciences (e.g. climate predictability, satellite remote sensing of soil moisture) and linking integrative science with the needs of the decision makers. It will offer a two-year M.Tech. (four semesters, devoted to Theory, Tools, Applications and Dissertation, respectively ) course in Earth and Space Sciences. The Applications will initially cover eight course clusters devoted to Water Resources Management, Agriculture, Ocean studies, Energy Resources, Urban studies, Environment, Natural Hazards and Mineral Resources Management. The School will also offer a number of highly focused short-term refresher courses / supplementary courses to enable cadres to update their knowledge and skills. The graduates of the School would be able to find employment in macro-projects, such as inter-basin water transfers, and Operational crop condition assessment over large areas, etc. as well as in micro-projects, such as rainwater harvesting, and marketing of remote sensing products to stake-holders (e.g. precision agricultural advice to the farmers, using the large bandwidth of thousands of kilometres of unlit optical fibres). As the School is highly

  18. Art-inspired Presentation of Earth Science Research

    Science.gov (United States)

    Bugbee, K.; Smith, D. K.; Smith, T.; Conover, H.; Robinson, E.

    2016-12-01

    This presentation features two posters inspired by modern and contemporary art that showcase different Earth science data at NASA's Global Hydrology Resource Center Distributed Active Archive Center (GHRC DAAC). The posters are intended for the science-interested public. They are designed to tell an interesting story and to stimulate interest in the science behind the art. "Water makes the World" is a photo mosaic of cloud water droplet and ice crystal images combined to depict the Earth in space. The individual images were captured using microphysical probes installed on research aircraft flown in the Mid-latitude Continental Convective Clouds Experiment (MC3E). MC3E was one of a series of ground validation field experiments for NASA's Global Precipitation Measurement (GPM) mission which collected ground and airborne precipitation datasets supporting the physical validation of satellite-based precipitation retrieval algorithms. "The Lightning Capital of the World" is laid out on a grid of black lines and primary colors in the style of Piet Mondrian. This neoplastic or "new plastic art" style was founded in the Netherlands and was used in art from 1917 to 1931. The poster colorfully describes the Catatumbo lightning phenomenon from a scientific, social and historical perspective. It is a still representation of a moving art project. To see this poster in action, visit the GHRC YouTube channel at http://tinyurl.com/hd6crx8 or stop by during the poster session. Both posters were created for a special Research as Art session at the 2016 Federation of Earth Science Information Partners (ESIP) summer meeting in Durham, NC. This gallery-style event challenged attendees to use visual media to show how the ESIP community uses data. Both of these visually appealing posters draw the viewer in and then provide information on the science data used, as well as links for more information available. The GHRC DAAC is a joint venture of NASA's Marshall Space Flight Center and the

  19. Graduate student theses supported by DOE`s Environmental Sciences Division

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parra, Bobbi M. [Dept. of Energy, Germantown, MD (United States). Environmental Sciences Division; comps.

    1995-07-01

    This report provides complete bibliographic citations, abstracts, and keywords for 212 doctoral and master`s theses supported fully or partly by the U.S. Department of Energy`s Environmental Sciences Division (and its predecessors) in the following areas: Atmospheric Sciences; Marine Transport; Terrestrial Transport; Ecosystems Function and Response; Carbon, Climate, and Vegetation; Information; Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP); Atmospheric Radiation Measurement (ARM); Oceans; National Institute for Global Environmental Change (NIGEC); Unmanned Aerial Vehicles (UAV); Integrated Assessment; Graduate Fellowships for Global Change; and Quantitative Links. Information on the major professor, department, principal investigator, and program area is given for each abstract. Indexes are provided for major professor, university, principal investigator, program area, and keywords. This bibliography is also available in various machine-readable formats (ASCII text file, WordPerfect{reg_sign} files, and PAPYRUS{trademark} files).

  20. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    Science.gov (United States)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  1. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  2. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    Science.gov (United States)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  3. Discover our Earth: An Earth Science Information System for undergraduate education

    Science.gov (United States)

    Seber, Dogan; Moore, Alexandra; Brindisi, Carrie; Danowski, Daniel

    In many scientific disciplines, there are currently several large-scale efforts to build comprehensive information management systems. Cornell University's Geoscience Information Systems Project (http://atlas.geo.cornell.edu/) is one of the larger efforts designed to build such a system for geoscience research [Seber et al., 1997; Seber et al., 2000]. Utilizing this resource in education activities has great potential for improving the quality of Earth science education. This article summarizes our work on developing education applications, and discusses issues related to building interactive information systems for education purposes.

  4. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J. (ed.)

    1986-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

  5. Graduate students teaching elementary earth science through interactive classroom lessons

    Science.gov (United States)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  6. Reusable Social Networking Capabilities for an Earth Science Collaboratory

    Science.gov (United States)

    Lynnes, C.; Da Silva, D.; Leptoukh, G. G.; Ramachandran, R.

    2011-12-01

    A vast untapped resource of data, tools, information and knowledge lies within the Earth science community. This is due to the fact that it is difficult to share the full spectrum of these entities, particularly their full context. As a result, most knowledge exchange is through person-to-person contact at meetings, email and journal articles, each of which can support only a limited level of detail. We propose the creation of an Earth Science Collaboratory (ESC): a framework that would enable sharing of data, tools, workflows, results and the contextual knowledge about these information entities. The Drupal platform is well positioned to provide the key social networking capabilities to the ESC. As a proof of concept of a rich collaboration mechanism, we have developed a Drupal-based mechanism for graphically annotating and commenting on results images from analysis workflows in the online Giovanni analysis system for remote sensing data. The annotations can be tagged and shared with others in the community. These capabilities are further supplemented by a Research Notebook capability reused from another online analysis system named Talkoot. The goal is a reusable set of modules that can integrate with variety of other applications either within Drupal web frameworks or at a machine level.

  7. Teleconferences and Audiovisual Materials in Earth Science Education

    Science.gov (United States)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  8. Nonlinear Time Series Analysis in Earth Sciences - Potentials and Pitfalls

    Science.gov (United States)

    Kurths, Jürgen; Donges, Jonathan F.; Donner, Reik V.; Marwan, Norbert; Zou, Yong

    2010-05-01

    The application of methods of nonlinear time series analysis has a rich tradition in Earth sciences and has enabled substantially new insights into various complex processes there. However, some approaches and findings have been controversially discussed over the last decades. One reason is that they are often bases on strong restrictions and their violation may lead to pitfalls and misinterpretations. Here, we discuss three general concepts of nonlinear dynamics and statistical physics, synchronization, recurrence and complex networks and explain how to use them for data analysis. We show that the corresponding methods can be applied even to rather short and non-stationary data which are typical in Earth sciences. References Marwan, N., Romano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems, Physics Reports 438, 237-329 (2007) Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks, Physics Reports 469, 93-153 (2008) Marwan, N., Donges, J.F., Zou, Y., Donner, R. and Kurths, J., Phys. Lett. A 373, 4246 (2009) Donges, J.F., Zou, Y., Marwan, N. and Kurths, J. Europhys. Lett. 87, 48007 (2009) Donner, R., Zou, Y., Donges, J.F., Marwan, N. and Kurths, J., Phys. Rev. E 81, 015101(R) (2010)

  9. Earth Matters: Promoting Science Exploration through Blogs and Social Media

    Science.gov (United States)

    Ward, K.; Voiland, A. P.; Carlowicz, M. J.; Simmon, R. B.; Allen, J.; Scott, M.; Przyborski, P. D.

    2012-12-01

    NASA's Earth Observatory (EO) is a 13-year old online publication focusing on the communication of NASA Earth science research, including climate change, weather, geology, oceanography, and solar flares. We serve two primary audiences: the "attentive public"--people interested in and willing to seek out information about science, technology, and the environment--and popular media. We use the EO website (earthobservatory.nasa.gov) to host a variety of content including image-driven stories (natural events and research-based), articles featuring NASA research and, more recently, blogs that give us the ability to increase interaction with our users. For much of our site's history, our communication has been largely one way, and we have relied primarily on traditional online marketing techniques such as RSS and email listservs. As the information ecosystem evolves into one in which many users expect to play a more active role in distributing and even developing content through social media, we've experimented with various social media outlets (blogs, Twitter, Facebook, Google+, etc.) that offer new opportunities for people to interact with NASA data, scientists, and the EO editorial team. As part of our explorations, we are learning about how, and to what extent, these outlets can be used for interaction and outright promotion and how to achieve those goals with existing personnel and resources.

  10. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    Science.gov (United States)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  11. Comparison of Freshmen's Cognitive Frame about 'Crisis of the Earth' upon Taking the Earth Science 1 in High School

    Science.gov (United States)

    Chung, Duk Ho; Park, Seon Ok

    2016-04-01

    The purpose of this study is to demonstrate if freshmen's cognitive frame about 'Crisis of the Earth' upon taking the Earth science 1I in high school reflects the school curriculum. The data was collected from 67 freshmen who'd graduated high school in formal education. They expressed 'Crisis of the Earth' as a painting with explanation and then we extracted units of meaning from paintings, respectively. We analyzed the words and frame using the Semantic Network Analysis. The result is as follows; First, as every participant forms the cognitive frame for the crisis of the Earth, it is shown that they connect each part which that composes the global environment and realize it as the changing relation with interaction. Secondly, forming a cognitive frame regarding crisis of the Earth, both groups connect it with human endeavor. Especially, it seems that the group of participants who finished Earth Science 1 fully reflects the course of the formal education. It is necessary to make the students recognize it from a universal point of view, not only from the Earth. Also, much effort is required in order to enlighten about the appropriateness regarding problem-solving of the Earth and expand their mind as time changes. Keywords : Earth Science 1, cognitive frame, crisis of the earth, semantic network analysis

  12. Connecting Science and Literacy in the Classroom: Using Space and Earth Science to Support Language Arts

    Science.gov (United States)

    Wessen, A. S.; Cobabe-Ammann, E. A.

    2009-12-01

    The connections between science and literacy in the classroom have received increasing attention over the last two decades, as more and more evidence demonstrates that science provides an exciting vehicle in which to engage students on the path to literacy improvement. Combining literacy with science allows students to creatively explore the world or universe, and it. Combining science and literacy improves both reading and science scores, and increases students’ interest in science. At a time when over 40% of students beyond the 5th grade are reading two or more levels below grade level and are struggling with their current materials, finding ways to excite and engage them in the reading process is key. Literacy programs incorporating unique space science content can help prepare children for standardized language arts tests. It also engages our nation’s youngest learners and their teachers with the science, math, and technology of exploration in a language arts format. This session focuses on programs and products that bring the excitement of earth and space science into the literacy classroom, with a focus on research-based approached to combining science and language arts. Reading, Writing and Rings! Grades 1-2

  13. Earth Sciences at Boston University: Reorientation and Renewal

    Science.gov (United States)

    Murray, R. W.; Simpson, C.

    2003-12-01

    Beginning in 1994 with the renaming of its Department of Geology as the Department of Earth Sciences, Boston University has invested much effort into developing a modern, energetic department that excels in its dual research and teaching mission. These changes required strong leadership at the departmental and senior administrative level, but they have resulted in a moderately sized program (9.5 full time faculty) that is competing with "Top Ten" institutions for graduate students and faculty, and which is also placing its undergraduates in the leading graduate programs. Most of the revitalization was achieved over a 5-year period in which across the board changes occurred in our undergraduate curriculum and during which we recruited junior and mid-level faculty on the basis of their scholarly abilities and for their belief in the culture of our new mission and program. The undergraduate curriculum, which had been oriented towards traditional geologic offerings, was greatly increased in rigor (requiring a full year each of calculus, physics, and chemistry) and redesigned to expand flexibility in the broad field of earth sciences. During the evolution of the curriculum, it was extremely important not to confuse "tradition" with "rigor". Undergraduates became more critically involved with our research mission through senior theses, a formal Undergraduate Research Opportunities program, and by work-study participation in the laboratories. By making the program more challenging, over the period of 3 years we doubled the number of majors and minors and increased the average GPA by 0.5 units. Now, after 8 years, we have nearly tripled our overall number of students, with further improvements in quality and intellectual diversity. The opportunity to replace departing senior faculty was achieved through effectively arguing to the central administration that modern earth sciences are an essential component of any leading institution of higher education. By persuading the

  14. Mission Adaptive Uas Capabilities for Earth Science and Resource Assessment

    Science.gov (United States)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.; Young, Z.

    2015-04-01

    Unmanned aircraft systems (UAS) are important assets for accessing high risk airspace and incorporate technologies for sensor coordination, onboard processing, tele-communication, unconventional flight control, and ground based monitoring and optimization. These capabilities permit adaptive mission management in the face of complex requirements and chaotic external influences. NASA Ames Research Center has led a number of Earth science remote sensing missions directed at the assessment of natural resources and here we describe two resource mapping problems having mission characteristics requiring a mission adaptive capability extensible to other resource assessment challenges. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This constraint exists when collecting imaging spectroscopy data over vegetation for time series analysis or for the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the signal. Furthermore, the primary flight control imperative to minimize tracking error should compromise with the requirement to minimize aircraft motion artifacts in the spatial measurement distribution. A second example involves mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in recent Earth Science missions including the OCEANIA mission directed at improving the capability for spectral and radiometric reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magnetometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and

  15. Ontologies: Semantic Nirvana for Earth Science Model Interoperability? (Invited)

    Science.gov (United States)

    Graybeal, J.

    2009-12-01

    The Challenge: When we build a given model, we do so to meet today's needs. If the model is good, new people will want to use it in new ways. That tests how well the model can work in new contexts: new user groups, new science domains, or new data providers or data users. We can say a model is interoperable if it works well in each new case, with few or no changes. Here we deal with perhaps the least-addressed part of model interoperability: semantic interoperability, the ability of models to understand the meaning of each other's data. The Scenario: A model has been built that uses observational data, and creates output data sets. In subsequent years, the model must (a) be connected to another model and exchange data with it; (b) be evaluated and used by a scientist in another domain; (c) document its outputs for two different repositories that use different keywords; and (d) identify and incorporate new observation streams as they come on-line. All these steps are mostly done manually today, and explanations about the data exchanged in similar form. Can we make them more efficient, or even automated, by leveraging good semantic practices? A problem in each case is the use of local or community naming conventions that are not known to all parties. How can this be improved? The Reality: Many models use the standard name conventions and vocabularies specified by the netCDF COARDS Climate and Forecast conventions. These provide a good basic level of 'semantic interoperability', and for this reason alone Earth science models are semantically far ahead of most other Earth science data systems. Yet these conventions aren't always used, aren't always sufficient, and don't help us interoperate with lots of existing systems. What are the issues for semantic interoperability in modeling, how do ontologies and other semantic capabilities help us fix them, and are ontologies worth the trouble?

  16. NASA's Earth Observatory and Visible Earth: Imagery and Science on the Internet

    Science.gov (United States)

    King, Michael D.; Simmon, Robert B.; Herring, David D.

    2003-01-01

    The purpose of NASA s Earth Observatory and Visible Earth Web sites is to provide freely-accessible locations on the Internet where the public can obtain new satellite imagery (at resolutions up to a given sensor's maximum) and scientific information about our home planet. Climatic and environmental change are the sites main foci. As such, they both contain ample data visualizations and time-series animations that demonstrate geophysical parameters of particular scientific interest, with emphasis on how and why they vary over time. An Image Composite Editor (ICE) tool will be added to the Earth Observatory in October 2002 that will allow visitors to conduct basic analyses of available image data. For example, users may produce scatter plots to correlate images; or they may probe images to find the precise unit values per pixel of a given data product; or they may build their own true-color and false-color images using multi- spectral data. In particular, the sites are designed to be useful to the science community, public media, educators, and students.

  17. Earth-Base: A Free And Open Source, RESTful Earth Sciences Platform

    Science.gov (United States)

    Kishor, P.; Heim, N. A.; Peters, S. E.; McClennen, M.

    2012-12-01

    This presentation describes the motivation, concept, and architecture behind Earth-Base, a web-based, RESTful data-management, analysis and visualization platform for earth sciences data. Traditionally web applications have been built directly accessing data from a database using a scripting language. While such applications are great at bring results to a wide audience, they are limited in scope to the imagination and capabilities of the application developer. Earth-Base decouples the data store from the web application by introducing an intermediate "data application" tier. The data application's job is to query the data store using self-documented, RESTful URIs, and send the results back formatted as JavaScript Object Notation (JSON). Decoupling the data store from the application allows virtually limitless flexibility in developing applications, both web-based for human consumption or programmatic for machine consumption. It also allows outside developers to use the data in their own applications, potentially creating applications that the original data creator and app developer may not have even thought of. Standardized specifications for URI-based querying and JSON-formatted results make querying and developing applications easy. URI-based querying also allows utilizing distributed datasets easily. Companion mechanisms for querying data snapshots aka time-travel, usage tracking and license management, and verification of semantic equivalence of data are also described. The latter promotes the "What You Expect Is What You Get" (WYEIWYG) principle that can aid in data citation and verification.

  18. Brokering Capabilities for EarthCube - supporting Multi-disciplinary Earth Science Research

    Science.gov (United States)

    Jodha Khalsa, Siri; Pearlman, Jay; Nativi, Stefano; Browdy, Steve; Parsons, Mark; Duerr, Ruth; Pearlman, Francoise

    2013-04-01

    The goal of NSF's EarthCube is to create a sustainable infrastructure that enables the sharing of all geosciences data, information, and knowledge in an open, transparent and inclusive manner. Brokering of data and improvements in discovery and access are a key to data exchange and promotion of collaboration across the geosciences. In this presentation we describe an evolutionary process of infrastructure and interoperability development focused on participation of existing science research infrastructures and augmenting them for improved access. All geosciences communities already have, to a greater or lesser degree, elements of an information infrastructure in place. These elements include resources such as data archives, catalogs, and portals as well as vocabularies, data models, protocols, best practices and other community conventions. What is necessary now is a process for levering these diverse infrastructure elements into an overall infrastructure that provides easy discovery, access and utilization of resources across disciplinary boundaries. Brokers connect disparate systems with only minimal burdens upon those systems, and enable the infrastructure to adjust to new technical developments and scientific requirements as they emerge. Robust cyberinfrastructure will arise only when social, organizational, and cultural issues are resolved in tandem with the creation of technology-based services. This is a governance issue, but is facilitated by infrastructure capabilities that can impact the uptake of new interdisciplinary collaborations and exchange. Thus brokering must address both the cyberinfrastructure and computer technology requirements and also the social issues to allow improved cross-domain collaborations. This is best done through use-case-driven requirements and agile, iterative development methods. It is important to start by solving real (not hypothetical) information access and use problems via small pilot projects that develop capabilities

  19. The Journal of Earth System Science Education: Peer Review for Digital Earth and Digital Library Content

    Science.gov (United States)

    Johnson, D.; Ruzek, M.; Weatherley, J.

    2001-05-01

    The Journal of Earth System Science Education is a new interdisciplinary electronic journal aiming to foster the study of the Earth as a system and promote the development and exchange of interdisciplinary learning resources for formal and informal education. JESSE will serve educators and students by publishing and providing ready electronic access to Earth system and global change science learning resources for the classroom and will provide authors and creators with professional recognition through publication in a peer reviewed journal. JESSE resources foster a world perspective by emphasizing interdisciplinary studies and bridging disciplines in the context of the Earth system. The Journal will publish a wide ranging variety of electronic content, with minimal constraints on format, targeting undergraduate educators and students as the principal readership, expanding to a middle and high school audience as the journal matures. JESSE aims for rapid review and turn-around of resources to be published, with a goal of 12 weeks from submission to publication for resources requiring few changes. Initial publication will be on a quarterly basis until a flow of resource submissions is established to warrant continuous electronic publication. JESSE employs an open peer review process in which authors and reviewers discuss directly the acceptability of a resource for publication using a software tool called the Digital Document Discourse Environment. Reviewer comments and attribution will be available with the resource upon acceptance for publication. JESSE will also implement a moderated peer commentary capability where readers can comment on the use of a resource or make suggestions. In the development phase, JESSE will also conduct a parallel anonymous review of content to validate and ensure credibility of the open review approach. Copyright of materials submitted remains with the author, granting JESSE the non-exclusive right to maintain a copy of the resource

  20. Scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (7 December 2015)

    Science.gov (United States)

    2016-05-01

    A scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 7 December 2015. The papers collected in this issue were written based on talks given at the session (the program of the session is available on the RAS Physical Sciences Division website http://www.gpad.ac.ru). (1) Loshchenov V B (Prokhorov General Physics Institute, RAS, Moscow) "Pharmacodynamics of a nanophotosensitizer under irradiation by an electromagnetic field: from THz to Cherenkov radiation"; (2) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Successes and problems in the development of medical radioisotope production in Russia"; (3) Tikhonov Yu A (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Applying nuclear physics methods in healthcare"; (4) Turchin I V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Methods of biomedical optical imaging: from subcellular structures to tissues and organs"; (5) Breus T K, Petrukovich A A (Space Research Institute, RAS, Moscow), Binhi V N (Prokhorov General Physics Institute, RAS, Moscow; Lomonosov Moscow State University, Moscow) "Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research"; (6) Makarov D I (Special Astrophysical Observatory, RAS, Nizhnii Arkhyz, Zelenchukskii region, Karachai-Cherkessian Republic) "Studying the Local University". Papers based on oral reports 2, 4, and 5 are presented below. • Successes and problems in the development of medical radioisotope production in Russia, B L Zhuikov Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 481-486 • Methods of biomedical optical imaging: from subcellular structures to tissues and organs, I V Turchin Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 487-501 • Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and

  1. How Successful Has Earth Science Education Been in Teaching Deep Time and Terminology of the Earth's Structure?

    Science.gov (United States)

    Murphy, Phil

    2012-01-01

    A very limited questioning of undergraduate Environmental Science students at the start of their studies suggests the age of the Earth is being successfully taught in high schools. The same cannot be said for the teaching of the structure of the Earth.

  2. Fostering Indigenous Earth Science: Increasing Native American Participation in the Earth Science Enterprise

    Science.gov (United States)

    Riggs, E. M.

    2004-12-01

    Attracting Native American students into the geosciences is one of the priorities of diversity efforts, but success remains limited and local. The need for geoscientific expertise on American Indian reservations continues to grow as Native populations and economic development on and around reservations expands. Typically tribal governments respond by hiring outside consultants to meet their scientific needs, but these relationships can sometimes be problematic. The solution is to increase the amount of Native American people who have sufficient geoscience education and training to manage tribal resources. However, there are multiple barriers to doing this created by a combination of economic, political, and cultural forces. Many Native American nations are enjoying a modest increase in prosperity, but tribes are still relatively poor compared with the non-Native population, even on gaming reservations. Furthermore, the legal status of Indian reservations as domestic dependent nations creates a unique and complex relationship between tribes, outside agencies and geoscientists, as data from tribal lands is considered proprietary and is guarded closely by tribal governments. There is a clear history of geoscience data collected on tribal lands often being used to drive subsequent instances of natural resources being taken out of tribal hands. These violations of tribal sovereignty make tribes cautious and wary of geoscience, slowing efforts to enhance geoscience education on reservations. Attracting young Native students to geoscience is also beset by difficulties in cross-cultural science instruction, poor understanding of the relevance of geoscience, and logistical problems related to the remote location of most reservations. Despite these problems, real progress is being made through close partnerships between geoscientists and tribal environmental professionals and other tribal organizations. A number of successful, but local, efforts are beginning to draw Native

  3. NASA Earth Exchange (NEX): Earth science collaborative for global change science

    Science.gov (United States)

    Nemani, R. R.

    2012-12-01

    Global change research is conducted in a highly collaborative manner by teams of researchers including climate scientists, hydrologists, biologists, economists, social scientists and resource managers distributed around the world. Their work is characterized by use of community-developed models and analysis codes and by a need to access a broad range of large datasets found in geographically distributed research and data centers. Stovepipes and segmentation currently limit collaboration and often lead to duplication of efforts. As we move forward, we can be more effective and efficient, both scientifically and fiscally. For example, as the length and diversity of the hydrologic observations grow, modeling and analyses of hydrospheric conditions increasingly requires multiple terabytes of data from a diversity of models and sensors. With network bandwidth beginning to flatten, transmission of these data from centralized data archives presents an increasing challenge, and costs associated with local storage and management of data and compute resources are often significant for individual research and application development efforts. Sharing community valued intermediary data sets, results and codes from individual efforts with others that are not in direct funded collaboration can also be a challenge with respect to time, cost and expertise. Over the past two years, we have been working on the NASA Earth Exchange (NEX), a data, modeling and knowledge center that houses NASA satellite data, climate data and ancillary data where a focused community may come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform. NEX tries to accomplish this by providing scientists with four key capabilities: 1) A web-based collaborative environment that includes, among others, social networking and publication tools. 2) A data management environment providing streamlined discovery and access to key datasets, both

  4. On the Structure of Earth Science Data Collections

    Science.gov (United States)

    Barkstrom, B. R.

    2009-12-01

    While there has been substantial work in the IT community regarding metadata and file identifier schemas, there appears to be relatively little work on the organization of the file collections that constitute the preponderance of Earth science data. One symptom of this difficulty appears in nomenclature describing collections: the terms `Data Product,' `Data Set,' and `Version' are overlaid with multiple meanings between communities. A particularly important aspect of this lack of standardization appears when the community attempts to developa schema for data file identifiers. There are four candidate families of identifiers: ● Randomly assigned identifiers, such as GUIDs or UUIDs, ● Segmented numerical identifiers, such as OIDs or the prefixes for DOIs, ● Extensible URL-based identifiers, such as URNs, PURL, ARK, and similar schemas, ● Text-based identifiers based on citations for papers and books, such as those suggested for the International Polar Year (IPY) citations. Unfortunately, these schema families appear to be devoid of content based on the actual structures of Earth science data collections. In this paper, we consider an organization based on an industrial production paradigm that appears to provide the preponderance of Earth science data from satellites and in situ observations. This paradigm produces a hierarchical collection structure, similar to one discussed in Barkstrom [2003: Lecture Notes in Computer Science, 2649, pp. 118-133]. In this organization, three key collection types are ● a Data Product, which is a collection of files that have similar key parameters and included data time interval, ● a Data Set, which is a collection of files within a Data Product that comes from a specified set of Data Sources, ● a Data Set Version, which is a collection of files within a Data Set for which the data producer has attempted to ensure error homogeneity. Within a Data Set Version, files appear as a time series of instances that may be

  5. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  6. Linked Data: what does it offer Earth Sciences?

    Science.gov (United States)

    Cox, Simon; Schade, Sven

    2010-05-01

    'Linked Data' is a current buzz-phrase promoting access to various forms of data on the internet. It starts from the two principles that have underpinned the architecture and scalability of the World Wide Web: 1. Universal Resource Identifiers - using the http protocol which is supported by the DNS system. 2. Hypertext - in which URIs of related resources are embedded within a document. Browsing is the key mode of interaction, with traversal of links between resources under control of the client. Linked Data also adds, or re-emphasizes: • Content negotiation - whereby the client uses http headers to tell the service what representation of a resource is acceptable, • Semantic Web principles - formal semantics for links, following the RDF data model and encoding, and • The 'mashup' effect - in which original and unexpected value may emerge from reuse of data, even if published in raw or unpolished form. Linked Data promotes typed links to all kinds of data, so is where the semantic web meets the 'deep web', i.e. resources which may be accessed using web protocols, but are in representations not indexed by search engines. Earth sciences are data rich, but with a strong legacy of specialized formats managed and processed by disconnected applications. However, most contemporary research problems require a cross-disciplinary approach, in which the heterogeneity resulting from that legacy is a significant challenge. In this context, Linked Data clearly has much to offer the earth sciences. But, there are some important questions to answer. What is a resource? Most earth science data is organized in arrays and databases. A subset useful for a particular study is usually identified by a parameterized query. The Linked Data paradigm emerged from the world of documents, and will often only resolve data-sets. It is impractical to create even nested navigation resources containing links to all potentially useful objects or subsets. From the viewpoint of human user

  7. Three-dimensional presentation of the earth and space science data in collaboration among schools, science museums and scientists

    Science.gov (United States)

    Saito, Akinori; Tsugawa, Takuya

    Three-dimensional presentation of the earth and space science data is a best tool to show the scientific data of the earth and space. It can display the correct shape on the Earth while any two-dimensional maps distort shapes. Furthermore it helps audience to understand the scale size and phenomena of the earth and planets in an intuitive way. There are several projects of the 3-D presentation of the Earth, such as Science on a Sphere (SOS) by NOAA, and Geo-cosmos by Miraikan, Japan. We are developing a simple, portable and affordable 3-D presentation system, called Dagik Earth. It uses a spherical or hemispherical screen to project data and images using normal PC and PC projector. The minimum size is 8cm and the largest size is 8m in diameter. The Dagik Earth project has developed the software of the 3-D projection in collaboration with scientists, and provides the software to the science museums and school teachers. Because the same system can be used in museums and schools, several science museums play a roll of hub for the school teachers' training on the earth and planetary science class with Dagik Earth. International collaboration with Taiwan, Thailand, and other countries is in progress. In the presentation, we introduce the system of Dagik Earth and the activities using it in the collaboration among schools, science centers, universities and research institutes.

  8. Observations on gender equality in a UK Earth Sciences department

    Science.gov (United States)

    Imber, Jonathan; Allen, Mark; Chamberlain, Katy; Foulger, Gillian; Gregory, Emma; Hoult, Jill; Macpherson, Colin; Winship, Sarah

    2016-04-01

    The progress of women to senior positions within UK higher education institutes has been slow. Women are worst represented in science, engineering and technology disciplines, where, in 2011, only 15% of professors were female. The national position is reflected in the Department of Earth Sciences at Durham University. The Department's gender profile shows steadily increasing proportions of females from undergraduate (ca. 38%) to postgraduate (ca. 42%) to postdoctoral (ca. 45%) levels, before dropping sharply with increasing seniority to 33% (n=1), 14% (n=1), 14% (n=1) and 13% (n=2), respectively, of lecturers, senior lecturers, readers and professors. The data suggest there is no shortage of talented female postgraduates and postdoctoral researchers; however, females are not applying, not being shortlisted, or not being appointed to academic roles in the expected proportions. Analysis of applications to academic positions in the Department during the period 2010-2015 suggests that "head hunting" senior academics, in some cases driven by external factors such as the UK Research Excellence Framework, resulted in a small proportion (between 0% and 11%) of female applicants. These results can be explained by the small number of senior female Earth Scientists nationally and, probably, internationally. Junior lectureship positions attracted between 24% and 33% female applicants, with the greatest proportion of females applying where the specialism within Earth Sciences was deliberately left open. In addition to these externally advertised posts, the Department has had some success converting independent research Fellowships, held by female colleagues, into permanent academic positions (n=2 between 2010 and 2015). Data for academic promotions show there is a significant negative correlation between year of appointment to first academic position within the Department (r=0.81, n=19, pgender equality issues, and greater awareness of conscious and unconscious biases against

  9. The Relationship between Science Achievement and Self-Concept among Gifted Students from the Third International Earth Science Olympiad

    Science.gov (United States)

    Chang, Chun-Yen; Lin, Pei-Ling

    2017-01-01

    This study investigated the relationship between gifted students' academic self-concept (ASC) and academic achievement (AC) in earth science with internationally representative high-school students from the third International Earth Science Olympiad (IESO) held in Taiwan in 2009. The results of regression analysis indicated that IESO students' ASC…

  10. Visualizing Meta-Information in Remotely Sensed Earth Science Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Remotely sensed Earth Science datasets are characterized by their complexity and size, which results in difficulty in effectively disseminating this information to...

  11. Environmental Sciences Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3) hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.

  12. Innovative, Yet Familiar Tools to Access USGS Earth Science Data

    Science.gov (United States)

    Frame, M. T.; Serna, B.; Devarakonda, R.

    2016-12-01

    The U.S Geological Survey (USGS) Core Science Systems has been working for the past year to develop innovative and easy-to-use interfaces to access its diverse set of earth science data. As a result of Open Data Policies, the USGS Iin 2014 released the USGS Science Data Catalog (SDC) (data.usgs.gov) and with that several thousand metadata records with links to data were made available through a single search portal. Quickly, the development team realized additional user interfaces into the USGS Science Data Catalog were necessary in order to support easier access to multiple datasets, integration with existing tools/applications, and to eliminate for power users the traditional "go to a web browser, select a dataset, and select a file for download" function. To meet these needs, the USGS created the SDC Drive. SDC Drive is based on an initial prototype developed by the NSF Ssponsored DataONE and USGS several years ago. SDC Drive is a familiar user interface designed to create a virtual drive to USGS SDC Data holdings by simply navigating through Mac Finder to the virtual drive created. USGS created a replicated cache of datasets, due to the majority of datasets being remotely stored across the landscape, and being available through links in the FGDC CSDGM metadata. Users have the ability to mount, filter based on provider/subject, and navigate USGS Data holdings through a very familiar MAC Finder interface. Consequently, USGS data does not have to be downloaded through the browser and most importantly can easily be accessed by all local familiar applications (i.e. MS Excel, R, Matlab, ArcGIS, etc.) through a simple File, Open operation. The session will discuss the current development efforts, plans for gathering formal feedback from USGS scientists and data managers, the paradigm of exposing data to familiar tools for use by the research community, and future strategies by the USGS to continue to expose data through easy to use methods.

  13. [Earth and Space Sciences Project Services for NASA HPCC

    Science.gov (United States)

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  14. Sample processing for earth science studies at ANTARES

    Science.gov (United States)

    Child, D.; Elliott, G.; Mifsud, C.; Smith, A. M.; Fink, D.

    2000-10-01

    AMS studies in earth sciences at ANTARES, ANSTO created a need for the processing of mineral and ice samples for 10Be, 26Al and 36Cl target preparation. Published procedures have been adapted to our requirements and improved upon where necessary. In particular, new methods to isolate Be with reproducible, high recoveries in the presence of excess Al and Ti were achieved. An existing elution scheme for a cation exchange column procedure was modified to incorporate the use of a 0.25 M H2SO4+0.015% H 2O2 washing step to elute the Ti peroxide complex formed. Problems with dust contamination in ice contributing to measured 10Be signals are also addressed and a procedure developed for its removal.

  15. Scientific Data Management and Analysis for Earth Science at Scale

    Science.gov (United States)

    Brown, P. G.

    2015-12-01

    In a talk he delivered in 2007, Turing Award winner Jim Gray challenged computer scientists and systems builders; "We have to do better at producing tools to support the whole [scientific] research cycle—from data capture and data curation to data analysis and data visualization." He had been working closely with the Johns Hopkins team creating the Sloan Digital Sky Survey, and was struck by the disconnects between scientific data management requirements, and the collective orthodoxies of the relational (SQL) world. The SciDB open-source data management and analysis platform is our response to that challenge. In this talk, we will briefly review the state of play within the SciDB project: features, functionality and usage patterns. Then we will exploreseveral active earth science use cases at NASA, INPE and from the commercial sphere that use SciDB.

  16. Earth and Environmental Sciences 1999 Annual Report Meeting National Needs

    Energy Technology Data Exchange (ETDEWEB)

    Yonker, L.; Dannevik, B.

    2000-07-21

    Lawrence Livermore National Laboratory's Earth and Environmental Sciences 1999 Annual Report covers the following topics: (1) Nuclear Materials--Modeling Thermohydrologic Processes at the Proposed Yucca Mountain Nuclear-Waste Repository; Dose Assessments and Resettlement Support on Rongelap Atoll in the Marshall Islands. (2) Climate, Carbon, and Energy--Incorporating Surprise into Models of Global Climate Change: A Simple Climate Demonstrator Model; (3) Environmental Risk Reduction--The NASA Global Modeling Initiative: Analyzing the Atmospheric Impacts of Supersonic Aircraft; (4) National Security--Atmospheric Release Assessment Programs; and (5) Cross-Cutting Technologies/Capabilities--Advances in Technology at the Center for Accelerator Mass Spectrometry; Experimental Geophysics: Investigating Material Properties at Extreme Conditions.

  17. Undergraduate students' earth science learning: relationships among conceptions, approaches, and learning self-efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-06-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.

  18. Using Visualization of Seismic Waves in Teaching Earth Science Informed by Cognitive Science Research

    Science.gov (United States)

    Engelmann, C. A.; Waite, G. P.; Huntoon, J. E.; Hungwe, K.

    2011-12-01

    Seismologists have found visualization of scientific data to be useful in analysis and therefore expect that using visualizations as a pedagogical tool will increase student understanding of seismic waves. This project examines how seismic wave visualization activities should be designed to best take advantage of how students think and learn science as determined by research in cognitive science. Student activities using visualization and auditization of seismic waves as they propagate through the earth and activities using real-time seismometry, the Quake Catcher Network sensors, have been designed or modified for use in 7-12 Earth System Science classrooms, taking into account how students learn science. The activities will incorporate three visualizations introduced at the 2011 On the Cutting Edge workshop, Visualizing Seismic Waves for Teaching and Research: the USArray Visualizations developed by Dr. Charles Ammon, Penn State University; the Quake Catcher Network sensors in conjunction with IRIS's Exploring Seismic Data with Accelerometers; and The Sound of Seismic, John N. Louie's auditization of seismic waves. As part of the Michigan Teacher Excellence Program, a NSF funded Math Science Partnership between Michigan Tech University and Michigan public schools, these activities are being implemented and tested to determine in what ways and to what extent these visualizations impact student learning and understanding of seismic waves.

  19. Array Databases: Agile Analytics (not just) for the Earth Sciences

    Science.gov (United States)

    Baumann, P.; Misev, D.

    2015-12-01

    Gridded data, such as images, image timeseries, and climate datacubes, today are managed separately from the metadata, and with different, restricted retrieval capabilities. While databases are good at metadata modelled in tables, XML hierarchies, or RDF graphs, they traditionally do not support multi-dimensional arrays.This gap is being closed by Array Databases, pioneered by the scalable rasdaman ("raster data manager") array engine. Its declarative query language, rasql, extends SQL with array operators which are optimized and parallelized on server side. Installations can easily be mashed up securely, thereby enabling large-scale location-transparent query processing in federations. Domain experts value the integration with their commonly used tools leading to a quick learning curve.Earth, Space, and Life sciences, but also Social sciences as well as business have massive amounts of data and complex analysis challenges that are answered by rasdaman. As of today, rasdaman is mature and in operational use on hundreds of Terabytes of timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Additionally, its concepts have shaped international Big Data standards in the field, including the forthcoming array extension to ISO SQL, many of which are supported by both open-source and commercial systems meantime. In the geo field, rasdaman is reference implementation for the Open Geospatial Consortium (OGC) Big Data standard, WCS, now also under adoption by ISO. Further, rasdaman is in the final stage of OSGeo incubation.In this contribution we present array queries a la rasdaman, describe the architecture and novel optimization and parallelization techniques introduced in 2015, and put this in context of the intercontinental EarthServer initiative which utilizes rasdaman for enabling agile analytics on Petascale datacubes.

  20. Cloud-Based Computational Tools for Earth Science Applications

    Science.gov (United States)

    Arendt, A. A.; Fatland, R.; Howe, B.

    2015-12-01

    Earth scientists are increasingly required to think across disciplines and utilize a wide range of datasets in order to solve complex environmental challenges. Although significant progress has been made in distributing data, researchers must still invest heavily in developing computational tools to accommodate their specific domain. Here we document our development of lightweight computational data systems aimed at enabling rapid data distribution, analytics and problem solving tools for Earth science applications. Our goal is for these systems to be easily deployable, scalable and flexible to accommodate new research directions. As an example we describe "Ice2Ocean", a software system aimed at predicting runoff from snow and ice in the Gulf of Alaska region. Our backend components include relational database software to handle tabular and vector datasets, Python tools (NumPy, pandas and xray) for rapid querying of gridded climate data, and an energy and mass balance hydrological simulation model (SnowModel). These components are hosted in a cloud environment for direct access across research teams, and can also be accessed via API web services using a REST interface. This API is a vital component of our system architecture, as it enables quick integration of our analytical tools across disciplines, and can be accessed by any existing data distribution centers. We will showcase several data integration and visualization examples to illustrate how our system has expanded our ability to conduct cross-disciplinary research.

  1. Earth-to-Orbit Education Program 'Makes Science Cool'

    Science.gov (United States)

    2002-01-01

    In this photograph, Jeff Alden (left) and Justin O'Cornor, two middle school students at Lane Middle School in Portland, Oregon are demonstrating their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Jeff and Justin, who are just a couple of 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student and any teacher, even those without technical backgrounds. Students in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Tennessee, Virginia, and Washington, are taking part in the MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. The Oregon students' teacher, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Both Justin and Jeff said being involved in a real engineering project has made them realize that 'science is cool.'

  2. Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences

    Science.gov (United States)

    Rakholia, A.; Sugarbaker, A.; Black, A.; Kasecivh, M.; Saif, B.; Luthcke, S.; Callahan, L.; Seery, B.; Feinberg, L.; Mather, J.; hide

    2017-01-01

    We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.

  3. Life Sciences Division and Center for Human Genome Studies. Annual report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Spitzmiller, D.; Bradbury, M.; Cram, S. [comps.

    1992-05-01

    This report summarizes the research and development activities of Los Alamos National Laboratories Life Sciences Division and biological aspects of the Center for Human Genome Studies for the calendar year 1991. Selected research highlights include: yeast artificial chromosome libraries from flow sorted human chromosomes 16 and 21; distances between the antigen binding sites of three murine antibody subclasses measured using neutron and x-ray scattering; NFCR 10th anniversary highlights; kinase-mediated differences found in the cell cycle regulation of normal and transformed cells; and detecting mutations that cause Gaucher`s disease by denaturing gradient gel electrophoresis. Project descriptions include: genomic structure and regulation, molecular structure, cytometry, cell growth and differentiation, radiation biology and carcinogenesis, and pulmonary biology.

  4. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1982-12-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1981. During the year under review the Division devoted roughly half its effort to the final construction stages of the Time Projection Chamber and other equipment for the PEP-4 facility at SLAC. The year was marked by the successful passage of milestone after milestone - the two-sector test of the TPC with cosmic rays in July 1981, the full TPC test in November 1981, and the roll-in onto the PEP beam line on 6 January 1982. In other e/sup +/e/sup -/ experiments, the Mark II detector continued its productive data-taking at PEP. In other areas, the final stages of data analysis, particularly for the structure functions, proceeded for the inelastic muon scattering experiment performed at Fermilab, a muon polarimeter experiment was developed and mounted at TRIUMF to probe for the presence of right-handed currents in muon decay, and the design and then construction began of fine-grained hadron calorimeters for the end caps of the Colliding Detector Facility at Fermilab. The Particle Data Group intensified its activities, despite financial constraints, as it proceeded toward production of a new edition of its authoritative Review of Particle Properties early in 1982. During 1981 the Theoretical Physics Group pursued a diverse spectrum of research in its own right and also interacted effectively with the experimental program. Research and development continued on the segmented mirror for the ten-meter telescope proposed by the University of California. Activities in the Computer Science and Mathematics Department encompassed networking, database management, software engineering, and computer graphics, as well as basic research in nonlinear phenomena in combustion and fluid flow.

  5. Advances in Sensor Webs for NASA Earth Science Missions

    Science.gov (United States)

    Sherwood, R.; Moe, K.; Smith, S.; Prescott, G.

    2007-12-01

    The world is slowly evolving into a web of interconnected sensors. Innovations such as camera phones that upload directly to the internet, networked devices with built-in GPS chips, traffic sensors, and the wireless networks that connect these devices are transforming our society. Similar advances are occurring in science sensors at NASA. NASA developed autonomy software has demonstrated the potential for space missions to use onboard decision-making to detect, analyze, and respond to science events. This software has also enabled NASA satellites to coordinate with other satellites and ground sensors to form an autonomous sensor web. A vision for NASA sensor webs for Earth science is to enable "on-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit." Several technologies for improved autonomous science and sensor webs are being developed at NASA. Each of these technologies advances the state of the art in sensorwebs in different areas including enabling model interactions with sensorwebs, smart autonomous sensors, and sensorweb communications. Enabling model interactions in sensor webs is focused on the creation and management of new sensor web enabled information products. Specifically, the format of these data products and the sensor webs that use them must be standardized so that sensor web components can more easily communicate with each other. This standardization will allow new components such as models and simulations to be included within sensor webs. Smart sensing implies sophistication in the sensors themselves. The goal of smart sensing is to enable autonomous event detection and reconfiguration. This may include onboard processing, self-healing sensors, and self-identifying sensors. The goal of communication enhancements, especially session layer management, is to support dialog control for autonomous operations

  6. Using Earth System Science as Basis for Sustainability Education in an Undergraduate Environmental Science Program

    Science.gov (United States)

    Sinton, C. W.

    2012-12-01

    Undergraduate programs in Environmental Science (ES) have progressively grown over the past decades. One of the many challenges of providing an effective curriculum is deciding what content and which skills are included in such a wide ranging field. Certainly geoscience needs to be included as part of the content but how is this best executed? More precisely, what should ES majors know about how the earth, oceans, and atmosphere work? One possible approach is to include existing undergraduate geology or atmospheric science courses as part of the required core, but this has potential pitfalls. For example, courses may be geared toward general education requirements or may be designed more for geology majors. A better solution is to offer a course or set of courses that are specifically tailored for ES majors. I propose that Earth System Science (ESS) is an excellent approach as it incorporates the earth as a whole system and can be taught within the context of environmental sustainability. My approach to ESS is to focus on the movement/cycles of matter (e.g., carbon, calcium, nitrogen) and energy. By referring back to this focus throughout the semester, students are provided with a structure to begin to make sense of a complex problem. In support of this, lab exercises provide practice in collecting and analyzing data using a variety resources.

  7. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    Science.gov (United States)

    2011-07-01

    The scientific session "Econophysics and evolutionary economics" of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) "The transition from simple reproduction to economic growth"; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) "Experimental data on the development of fast-growing innovative companies in Russia"; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) "Why is it sometimes possible to successfully model an economy? (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) "Theoretical economics"; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) "Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market"; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) "Fractal analysis of financial time series and the prediction problem"; Papers written on the basis of these reports are published below. • The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733 • High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737 • Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742 • On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume

  8. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-31

    The scientific session 'Econophysics and evolutionary economics' of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) 'The transition from simple reproduction to economic growth'; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) 'Experimental data on the development of fast-growing innovative companies in Russia'; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) 'Why is it sometimes possible to successfully model an economy?' (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) 'Theoretical economics'; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) 'Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market'; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) 'Fractal analysis of financial time series and the prediction problem'; Papers written on the basis of these reports are published below. The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733. High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737. Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742. On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov

  9. AIRS Data Support at NASA Goddard Earth Science DISC DAAC

    Science.gov (United States)

    Cho, S.; Qin, J.; Sharma, A.

    2002-05-01

    The Atmospheric Infrared Sounder (AIRS) is selected by NASA to fly on the second Earth Observing System (EOS) polar orbiting platform, EOS Aqua, which is launched in April 2002. AIRS, together with Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB), is designed to meet the requirements of the NASA Earth Science Enterprise climate research program and the NOAA operational weather forecasting The data products from the AIRS/AMSU/HSB will be archived and distributed at the Goddard Distributed Active Archive Center (GDAAC) located in the NASA Goddard Earth Sciences Data and Information Services Center (GES DAAC) in later 2002. This new dataset consists of radiances, geo-locations and atmospheric products, such as, temperature, humidity, cloud and ozone, providing measurements for temperature at an accuracy of 1 o C in layers 1 km thick and humidity with an accuracy of 20 % in layers 2 km thick in the troposphere. The data will be freely available via WWW interfaces, or an FTP containing subsetted and reformatted data products. The GES DISC DAAC Search and Order allows users to search for data by following particular paths down the hierarchy. This simple point-and- click navigational web interface shows temporal and spatial coverage, item size, description and browse images for AIRS data and one can customize search using spatial,temporal, attribute and parameter search. The EOS Data Gateway (EDG) is another user interface for searching and ordering the AIRS data together with other data products obtained from EOS instruments. The Atmospheric Dynamics Data Support Team (ADDST) at the GES DISC/DAAC will provide various services to assist users in understanding, accessing, and using AIRS data product. The ADDST has been developing tools to read, visualize and analyze the AIRS data, channel/parameter subsetting of AIRS HDF-EOS data products and supplying documentation and readme et al. Other services provided by the ADDST will contain assistance

  10. TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science

    Science.gov (United States)

    Wilson, C. R.; Spiegelman, M.; van Keken, P.

    2012-12-01

    Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are

  11. COMUNICA Project: a commitment for strategic communication on Earth Sciences

    Science.gov (United States)

    Cortes-Picas, Jordi; Diaz, Jordi; Fernandez-Turiel, Jose-Luis

    2016-04-01

    The Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) has just celebrated its 50-year anniversary last year. It is a reference research center on Earth Sciences both national and international level. The Institute includes 4 research groups which focus their scientific activity on the structure and dynamics of the Earth, the environmental changes in the geological record, geophysical and geochemical modelling and crystallography and optical properties. Only when large geological disasters happens, mainly earthquakes and volcanic eruptions, some interaction between ICTJA-CSIC researchers and traditional media occurs, which is limited by the fact that the aim of the Institute is the scientific research and it has no responsibilities in the area of civil protection. This relationship reduces the knowledge of our activity to the general public. To overcome this situation, the ICTJA-CSIC has decided to take an active role in the social dissemination of geological and geophysical knowledge. Thus, the ICTJA-CSIC has launched the COMUNICA Project. The project is aimed to increase the social visibility of the ICTJA-CSIC and to promote the outreach of researchers. Therefore ICTJA-CSIC has created the Communication Unit, which is in charge of designing communication strategies to give to different audiences (media, students of secondary and higher education, general public) an overview of the scientific and institutional activity of the ICTJA-CSIC. A global communication plan is being designed to define the strategic actions, both internal and external. An important role has been reserved for digital channels, to promote ICTJA-CSIC activity on social networks such as Twitter, Facebook or Youtube, besides making a major effort in the renovation and maintenance of the corporate website. A strong effort will be done to collect and spread through press releases the major scientific milestones achieved by the researchers, to promote the interest of mass media. Communication

  12. Improving the Accessibility and Use of NASA Earth Science Data

    Science.gov (United States)

    Tisdale, Matthew; Tisdale, Brian

    2015-01-01

    Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) multidimensional tropospheric and atmospheric chemistry data products are stored in HDF4, HDF5 or NetCDF format, which traditionally have been difficult to analyze and visualize with geospatial tools. With the rising demand from the diverse end-user communities for geospatial tools to handle multidimensional products, several applications, such as ArcGIS, have refined their software. Many geospatial applications now have new functionalities that enable the end user to: Store, serve, and perform analysis on each individual variable, its time dimension, and vertical dimension. Use NetCDF, GRIB, and HDF raster data formats across applications directly. Publish output within REST image services or WMS for time and space enabled web application development. During this webinar, participants will learn how to leverage geospatial applications such as ArcGIS, OPeNDAP and ncWMS in the production of Earth science information, and in increasing data accessibility and usability.

  13. Successful Strategies for Earth Science Research in Native Communities

    Science.gov (United States)

    Redsteer, M. H.; Anderson, D.; Ben, N.; Bitsuie, R.; Blackhorse, A.; Breit, G.; Clifford, A.; Salabye, J.; Semken, S.; Weaver, K.; Yazzie, N.

    2004-12-01

    A small U.S. Geological Survey pilot project utilizes strategies that are successful at involving the Native community in earth science research. This work has ignited the interest of Native students in interdisciplinary geoscience studies, and gained the recognition of tribal community leaders from the conterminous United States, Alaska, and Canada. This study seeks to examine land use, climatic variability, and their related impacts on land-surface conditions in the ecologically sensitive Tsezhin Bii' region of the Navajo Nation. Work conducted by predominantly Native American researchers, includes studies of bedrock geology, surficial processes, soil and water quality, and plant ecology, as well as the history of human habitation. Community involvement that began during the proposal process, has helped to guide research, and has provided tribal members with information that they can use for land use planning and natural resource management. Work by Navajo tribal members who have become involved in research as it has progressed, includes K-12 science curriculum development, community outreach and education on environmental and geologic hazards, drought mitigation, grazing management, and impacts of climate change and land use on medicinal plants.

  14. Earth Science Mobile App Development for Non-Programmers

    Science.gov (United States)

    Oostra, D.; Crecelius, S.; Lewis, P.; Chambers, L. H.

    2012-08-01

    A number of cloud based visual development tools have emerged that provide methods for developing mobile applications quickly and without previous programming experience. The MY NASA DATA (MND) team would like to begin a discussion on how we can best leverage current mobile app technologies and available Earth science datasets. The MY NASA DATA team is developing an approach based on two main ideas. The first is to teach our constituents how to create mobile applications that interact with NASA datasets; the second is to provide web services or Application Programming Interfaces (APIs) that create sources of data that educators, students and scientists can use in their own mobile app development. This framework allows data providers to foster mobile application development and interaction while not becoming a software clearing house. MY NASA DATA's research has included meetings with local data providers, educators, libraries and individuals. A high level of interest has been identified from initial discussions and interviews. This overt interest combined with the marked popularity of mobile applications in our societies has created a new channel for outreach and communications with and between the science and educational communities.

  15. How to cite an Earth science data set

    Science.gov (United States)

    Parsons, M. A.

    2011-12-01

    Creating a great data set can be a life's work (consider Charles Keeling). Yet, scientists do not receive much recognition for creating rigorous, useful data. At the same time, in a post "climategate" world there is increased scrutiny on science and a greater need than ever to adhere to scientific principles of transparency and repeatability. The Council of the American Geophysical Union (AGU) asserts that the scientific community should recognize the value of data collection, preparation, and description and that data "publications" should "be credited and cited like the products of any other scientific activity." Currently, however, authors rarely cite data formally in journal articles, and they often lack guidance on how data should be cited. The Federation of Earth Science Information Partners (ESIP) Preservation and Stewardship Cluster has been working this issue for some time now and has begun to address some of the challenges. Overall, scientists and data managers have a professional and ethical responsibility to do their best to meet the data publication goals asserted by AGU. This talk outlines a data citation approach to increase the credit and credibility of data producers.

  16. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    Science.gov (United States)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  17. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    Science.gov (United States)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as

  18. Data Curation Education Grounded in Earth Sciences and the Science of Data

    Science.gov (United States)

    Palmer, C. L.

    2015-12-01

    This presentation looks back over ten years of experience advancing data curation education at two Information Schools, highlighting the vital role of earth science case studies, expertise, and collaborations in development of curriculum and internships. We also consider current data curation practices and workforce demand in data centers in the geosciences, drawing on studies conducted in the Data Curation Education in Research Centers (DCERC) initiative and the Site-Based Data Curation project. Outcomes from this decade of data curation research and education has reinforced the importance of key areas of information science in preparing data professionals to respond to the needs of user communities, provide services across disciplines, invest in standards and interoperability, and promote open data practices. However, a serious void remains in principles to guide education and practice that are distinct to the development of data systems and services that meet both local and global aims. We identify principles emerging from recent empirical studies on the reuse value of data in the earth sciences and propose an approach for advancing data curation education that depends on systematic coordination with data intensive research and propagation of current best practices from data centers into curriculum. This collaborative model can increase both domain-based and cross-disciplinary expertise among data professionals, ultimately improving data systems and services in our universities and data centers while building the new base of knowledge needed for a foundational science of data.

  19. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    Science.gov (United States)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  20. Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution

    Science.gov (United States)

    Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.

    2009-12-01

    The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre

  1. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    Science.gov (United States)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  2. Using GIS in an Earth Sciences Field Course for Quantitative Exploration, Data Management and Digital Mapping

    Science.gov (United States)

    Marra, Wouter A.; van de Grint, Liesbeth; Alberti, Koko; Karssenberg, Derek

    2017-01-01

    Field courses are essential for subjects like Earth Sciences, Geography and Ecology. In these topics, GIS is used to manage and analyse spatial data, and offers quantitative methods that are beneficial for fieldwork. This paper presents changes made to a first-year Earth Sciences field course in the French Alps, where new GIS methods were…

  3. Earth Sciences as a Vehicle for Gifted Education--The Hong Kong Experience

    Science.gov (United States)

    Murphy, Phillip J.; Chan, Lung Sang; Murphy, Elizabeth

    2012-01-01

    The development and delivery of an Earth-science-focused short course designed to prepare Hong Kong students for university level study is described. Earth sciences provide an inspirational and challenging context for learning and teaching in Hong Kong's increasingly skills-based curriculum. (Contains 3 figures and 4 online resources.)

  4. Earth Sciences as a Vehicle for Gifted Education--The Hong Kong Experience

    Science.gov (United States)

    Murphy, Phillip J.; Chan, Lung Sang; Murphy, Elizabeth

    2012-01-01

    The development and delivery of an Earth-science-focused short course designed to prepare Hong Kong students for university level study is described. Earth sciences provide an inspirational and challenging context for learning and teaching in Hong Kong's increasingly skills-based curriculum. (Contains 3 figures and 4 online resources.)

  5. Image Segmentation Analysis for NASA Earth Science Applications

    Science.gov (United States)

    Tilton, James C.

    2010-01-01

    NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.

  6. An OpenEarth Framework (OEF) for Integrating and Visualizing Earth Science Data

    Science.gov (United States)

    Moreland, J. L.; Nadeau, D. R.; Baru, C.; Crosby, C. J.

    2009-12-01

    The integration of data is essential to make transformative progress in understanding the complex processes operating at the Earth’s surface and within its interior. While our current ability to collect massive amounts of data, develop structural models, and generate high-resolution dynamics models is well developed, our ability to quantitatively integrate these data and models into holistic interpretations of Earth systems is poorly developed. We lack the basic tools to realize a first-order goal in Earth science of developing integrated 4D models of Earth structure and processes using a complete range of available constraints, at a time when the research agenda of major efforts such as EarthScope demand such a capability. Among the challenges to 3D data integration are data that may be in different coordinate spaces, units, value ranges, file formats, and data structures. While several file format standards exist, they are infrequently or incorrectly used. Metadata is often missing, misleading, or relegated to README text files along side the data. This leaves much of the work to integrate data bogged down by simple data management tasks. The OpenEarth Framework (OEF) being developed by GEON addresses these data management difficulties. The software incorporates file format parsers, data interpretation heuristics, user interfaces to prompt for missing information, and visualization techniques to merge data into a common visual model. The OEF’s data access libraries parse formal and de facto standard file formats and map their data into a common data model. The software handles file format quirks, storage details, caching, local and remote file access, and web service protocol handling. Heuristics are used to determine coordinate spaces, units, and other key data features. Where multiple data structure, naming, and file organization conventions exist, those heuristics check for each convention’s use to find a high confidence interpretation of the data. When

  7. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    Science.gov (United States)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  8. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  9. Introducing Earth Sciences Students to Modeling Using MATLAB Exercises

    Science.gov (United States)

    Anderson, R. S.

    2003-12-01

    While we subject our students to math and physics and chemistry courses to complement their geological studies, we rarely allow them to experience the joys of modeling earth systems. Given the degree to which modern earth sciences relies upon models of complex systems, it seems appropriate to allow our students to develop some experience with this activity. In addition, as modeling is an unforgivingly logical exercise, it demands the student absorb the fundamental concepts, the assumptions behind them, and the means of constraining the relevant parameters in a problem. These concepts commonly include conservation of some quantity, the fluxes of that quantity, and careful prescription of the boundary and initial conditions. I have used MATLAB as an entrance to this world, and will illustrate the products of the exercises we have worked. This software is platform-independent, and has a wonderful graphics package (including movies) that is embedded intimately as one-to-several line calls. The exercises should follow a progression from simple to complex, and serve to introduce the many discrete tasks within modeling. I advocate full immersion in the first exercise. Example exercises include: growth of spatter cones (summation of parabolic trajectories of lava bombs); response of thermal profiles in the earth to varying surface temperature (thermal conduction); hillslope or fault scarp evolution (topographic diffusion); growth and subsidence of volcanoes (flexure); and coral growth on a subsiding platform in the face of sealevel fluctuations (coral biology and light extinction). These exercises can be motivated by reading a piece in the classical or modern literature that either describes a model, or better yet serves to describe the system well, but does not present a model. I have found that the generation of movies from even the early simulation exercises serves as an additional motivator for students. We discuss the models in each class meeting, and learn that there

  10. Earth Science Computational Architecture for Multi-disciplinary Investigations

    Science.gov (United States)

    Parker, J. W.; Blom, R.; Gurrola, E.; Katz, D.; Lyzenga, G.; Norton, C.

    2005-12-01

    Understanding the processes underlying Earth's deformation and mass transport requires a non-traditional, integrated, interdisciplinary, approach dependent on multiple space and ground based data sets, modeling, and computational tools. Currently, details of geophysical data acquisition, analysis, and modeling largely limit research to discipline domain experts. Interdisciplinary research requires a new computational architecture that is optimized to perform complex data processing of multiple solid Earth science data types in a user-friendly environment. A web-based computational framework is being developed and integrated with applications for automatic interferometric radar processing, and models for high-resolution deformation & gravity, forward models of viscoelastic mass loading over short wavelengths & complex time histories, forward-inverse codes for characterizing surface loading-response over time scales of days to tens of thousands of years, and inversion of combined space magnetic & gravity fields to constrain deep crustal and mantle properties. This framework combines an adaptation of the QuakeSim distributed services methodology with the Pyre framework for multiphysics development. The system uses a three-tier architecture, with a middle tier server that manages user projects, available resources, and security. This ensures scalability to very large networks of collaborators. Users log into a web page and have a personal project area, persistently maintained between connections, for each application. Upon selection of an application and host from a list of available entities, inputs may be uploaded or constructed from web forms and available data archives, including gravity, GPS and imaging radar data. The user is notified of job completion and directed to results posted via URLs. Interdisciplinary work is supported through easy availability of all applications via common browsers, application tutorials and reference guides, and worked examples with

  11. The Importance of Cultural Heritage in Earth Science

    Science.gov (United States)

    Avvisati, Gala; Di Vito, Mauro; Marotta, Enrica; Sangianantoni, Agata; Peluso, Rosario; de Vita, Sandro; Nave, Rosella; Vertechi, Enrico; De Natale, Giuseppe; Ghilardi, Massimo

    2016-04-01

    In recent years the Earth Sciences community is facing the need to achieve a more effective and efficient dissemination of its scientific culture. There is now a growing needing to integrate the use of "traditional" dissemination media of cultural heritage with the new digital technologies. Getting people involved in geoheritage site's activities represents a crucial issue in order to better communicate and increase the collective awareness of natural hazards, risk, and environmental change. The Reale Osservatorio Vesuviano (ROV) which is part of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), owns collections unique in their combination of scientific, historical and artistic importance. The long history of ROV is extensively documented in its collections. This heritage - of great scientific and cultural value and unique for its abundance and variety - tells the story of the first observatory in the world, closely linked to the activity of Vesuvius, and the commitment of many scientists who dedicated their lives to study the volcano. The collections include: a) old books on volcanological matters, b) collection of rocks, minerals, volcanic ash and other materials from historical eruptions of Vesuvius, c) recordings on smoked paper of Vesuvius seismic activity from 1915 until 1970, d) scientific instruments, e) geological and geomorphological maps and models, f) vintage photographs and filmed sequences of eruptions, g) gouaches of Vesuvius and h) lava medals. The exposition of these collections, improved with the new digital contents, may trace new and unexplored routes for the dissemination of Earth Sciences related culture. The ethical duty of the ROV is the creation of an universal identity by taking a picture of the evolution of the society through the training of the culture of seismic and volcanic risk. A disappearance of its heritage could represent an huge impoverishment of its community: the ROV carries in fact the cultural identity of the

  12. Do we teach earth science in situ adequately?

    Science.gov (United States)

    Rakhmenkulova, I.; Zhitov, E.; Zhitova, L.

    2006-12-01

    The Russian education system for future earth scientists inherited many good features from ex-Soviet times. Some schools even have unique conditions for teaching earth sciences, both in general, and in situ. For example, at the Department of Geology and Geophysics (DGG) of Novosibirsk State University (NSU) students apart from traditional academic geoscience field excursions are supposed to participate in real scientific expeditions, and the materials they get as the result are actually the basis of their course papers, diploma thesis, and PhD thesis. This is possible because Novosibirsk State University works in close connection with scientific institutions (the Institute of Geology and Mineralogy, the Institute of Oil and Gas Geophysics and others), and most instructors, professors and lecturers are from these institutions. There are five traditional field trips for DGG students of NSU: 1. Geology field trip at the Altay mountain region, a place of unique geological conditions and beautiful nature. 2. Geodesy field work in Academgorodok ( 30km from Novosibirsk). 3. Field trip in structural geology in Khakassia (Shira, the southern part of the Krasnoyarsk region, Siberia) (NSU has its own field camp there). 4. Geophysics field work in Burmistrovo (NSU has its own field camp there). 5. Mineralogy field trip in Tuva (Siberia). Besides the above mentioned field trips (being the academic part DGG education) each student is supposed to participate in at least one real scientific field trip for BsD, in two trips for MsD and much more for PhD. These field trips are chosen by students and the geography of these trips covers Siberia, Far East, Kamchatka, Sahkalin, and even foreign countries (Mongolia, China, etc). The students pay neither for their academic education, not for their later field trips; on the contrary, they get money for their work in real scientific field trips. However, there are many problems the Russian education system and universities face these days

  13. Earth Science applications on Grid -advantages and limitations

    Science.gov (United States)

    Petitdidier, M.; Schwichtenberg, H.

    2012-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies…. Our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly… The technical challenge is to put together databases and computing resources to answer the ES challenges. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites, (2) new algorithms and methodologies have been developed using new technologies and compute resources. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity were deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted to decrease uncertainties by increasing the probability of occurrence via a larger number of runs. Some limitations are related to the combination of databases-outside the grid infrastructure- and grid compute resources; and to real-time applications that need resource reservation in order to insure results at given time. As a matter of fact ES scientists use different compute resources according to the phase of their application are used to work in large projects and share their results. They need a service-oriented architecture and a platform of

  14. European analytical column No. 36 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Emons, Hendrik; Andersen, Jens Enevold Thaulov

    2008-01-01

    European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)......European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)...

  15. Earth science teachers' knowledge of the water system and its reflections in their lesson plans

    Science.gov (United States)

    Nam, Younkyeong

    2011-12-01

    Over the last two decades, scientists have recognized the necessity of studying the earth as an integrated system. Consequently, the knowledge of physical earth systems and human interactions was integrated to form a new discipline, Earth System Science (ESS). Given the acceleration of environmental change, such as that of the global climate system, understanding the earth as a system has become essential in order to create a scientifically literate citizenry. However, our understanding of teachers' and students' conceptual understanding of earth as a system is still in its infancy. Due to the interdisciplinary nature of the ESS discipline as well as the complexity of the ESS knowledge structure, there is no consensus about important ESS knowledge for teachers or students. This study presents an analytical framework, Earth System Knowledge Framework (ESKF), to assess teachers' conceptual understanding of earth systems using the concept of water. By utilizing the framework, this study investigates five secondary earth science teachers' conceptual understandings of water in earth system. This study also probes how the teachers' conceptual understanding of water in the earth system affects their selection and organization of the topics and related content knowledge for lesson planning. Through intensive interviews with the teachers, this study employs multiple case studies using inductive and qualitative analysis methods. The findings of this study demonstrate that the teachers' conceptual understandings of water in earth system are highly related to their Earth System Knowledge (ESK). Furthermore, the science teachers' conceptual understanding of water in earth system directly affects the topic choices and content knowledge used for teaching the concept of water. This study implies that the teachers not only need to possess knowledge of physical earth systems but also knowledge of earth's biosphere and ecosystems to understand earth as a system. This study also

  16. The Ridge 2000 Program: Promoting Earth Systems Science Literacy Through Science Education Partnerships

    Science.gov (United States)

    Simms, E.; Goehring, E.; Larsen, J.; Kusek, K.

    2007-12-01

    Sponsored by the National Science Foundation, Ridge 2000 (R2K) is a mid-ocean ridge and hydrothermal vent research program with a history of successful education and public outreach (EPO) programs and products. This presentation will share general science and education partnership strategies and best practices employed by the R2K program, with a particular emphasis on the innovative R2K project From Local to EXtreme Environments (FLEXE). As a new project of the international NSF and NASA sponsored GLOBE earth science education program, FLEXE involves middle and high school students in structured, guided analyses and comparisons of real environmental data. The science and education partnership model employed by FLEXE relies on experienced education coordinators within the R2K and international InterRidge and ChEss science research programs, who directly solicit and facilitate the involvement of an interdisciplinary community of scientists in the project based on their needs and interests. Concurrently, the model also relies on the GLOBE program to facilitate awareness and access to a large, established network of international educators who are interested in the process of science and interacting with the scientific community. The predominantly web-based interfaces that serve to effectively link together the FLEXE science and education communities have been developed by the Center for Science and the Schools at Penn State University, and are based on researched educational pedagogy, tools and techniques. The FLEXE partnership model will be discussed in the context of both broad and specific considerations of audience needs, scientist and educator recruitment, and the costs and benefits for those involved in the project.

  17. J. W. Goethe - poet engaged in Earth sciences

    Science.gov (United States)

    Nemec, Vaclav

    2014-05-01

    The famous German poet Johann Wolfgang Goethe (1749 - 1832) was a man of an outstanding interest for the Earth sciences. In the Czech geological dictionary his own biography remembers his frequent visits to the famous West Bohemian health resorts. In this region he was focusing his attention to the geological history, petrography and mineralogy, genesis of mineral water springs etc. Some of his studies were published. His geological points of view were not always correct (as seen from a recent knowledge) but his efforts to deepen studies of this territory cannot be forgotten. - In his rich correspondence with the count Kaspar Maria Sternberg (1761 - 1838) - founder of the (nowadays) National Museum in Prague - the author of this article has recently discovered in the Prague archives a letter written just one week before the death of the poet. It is a confession of his deep relation especially to the region if West Bohemia where he found lot of enjoyment and new knowledge in the course of numerous visits and stays. - Goethe had the largest private collection of minerals in all of Europe (17800 rock samples). A mineral goethite has been named after him. - The Czech composer Václav Jan Tomášek (1774 - 1850) describing his visit paid to Goethe in Cheb (Eger) in 1822 remembers also mineralogical interest of the poet and his excursions to the region for collecting local minerals. The main reason for personal contact in this case was the art (Tomášek composed songs using Goethe's poems). But Tomášek described also his frequent talks on science with the famous Swedish chemist Jöns Jacob Berzelius (1779 - 1848) in Karlsbad (1822). From other sources a common stay of Berzelius, Goethe and Sternberg in Marienbad (also 1822) is reported.

  18. Undergraduate Research in Earth Science Classes: Engaging Students in the First Two Years

    Science.gov (United States)

    Mogk, D. W.; Wysession, M. E.; Beauregard, A.; Reinen, L. A.; Surpless, K.; O'Connell, K.; McDaris, J. R.

    2014-12-01

    The recent PCAST report (2012), Engage to Excel, calls for a major shift in instructional modes in introductory (geo)science courses by "replacing standard laboratory courses with discovery-based research courses". An increased emphasis is recommended to engage students in experiments with the possibility of true discovery and expanded use of scientific research courses in the first two years. To address this challenge, the On the Cutting Edge program convened a workshop of geoscience faculty to explore the many ways that true research experiences can be built into introductory geoscience courses. The workshop goals included: consideration of the opportunities, strategies and methods used to provide research experiences for students in lower division geoscience courses; examination of ways to develop students' "geoscience habits of mind" through participation in authentic research activities; exploration of ways that student research projects can be designed to contribute to public science literacy with applications to a range of issues facing humanity; and development of strategies to obtain funding for these research projects, to make these programs sustainable in departments and institutions, and to scale-up these programs so that all students may participate. Access to Earth data, information technology, lab and field-based instrumentation, and field experiences provide unprecedented opportunities for students to engage in authentic research at early stages in their careers. Early exposure to research experiences has proven to be effective in the recruitment of students to the geoscience disciplines, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Workshop outcomes include an online collection of tested research projects currently being used in geoscience classes, resources related to effective design

  19. Science Teacher Orientations and PCK across Science Topics in Grade 9 Earth Science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-01-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade…

  20. Scalable models of data sharing in Earth sciences

    Science.gov (United States)

    Helly, John; Staudigel, Hubert; Koppers, Anthony

    2003-01-01

    Many Earth science disciplines are currently experiencing the emergence of new ways of data publication and the establishment of an information technology infrastructure for data archiving and exchange. Building on efforts to standardize data and metadata publication in geochemistry [Staudigel et al., 2002], here we discuss options for data publication, archiving and exchange. All of these options have to be structured to meet some minimum requirements of scholarly publication, in particular reliability of archival, reproducibility and falsifiability. All data publication and archival methods should strive to produce databases that are fully interoperable and this requires an appropriate data and metadata interchange protocol. To accomplish the latter we propose a new Metadata Interchange Format (.mif) that can be used for more effective sharing of data and metadata across digital libraries, data archives, and research projects. This is not a proposal for a particular set of metadata parameters but rather of a methodology that will enable metadata parameter sets to be easily developed and interchanged between research organizations. Examples are provided for geochemical data as well as map images to illustrate the flexibility of the approach.

  1. Scalable Models of Data Sharing in the Earth Sciences

    Science.gov (United States)

    Helly, J. J.; Staudigel, H.; Koppers, A.

    2002-12-01

    Many earth science disciplines are currently experiencing the emergence of new ways of data publication and the establishment of an information technology infrastructure for data archiving and exchange. Building on efforts to standardize data and metadata publication in geochemistry, we discuss options for data publication, archiving and exchange. All of these options have to be structured to meet some minimum requirements of scholarly publication, in particular reliability of archival, reproducibility and falsifiability. All data publication and archival methods should strive to produce data bases that are fully interoperable which requires an appropriate data and metadata interchange protocol. To accomplish the latter we propose a new Metadata Interchange Format (.mif) that can be used for more effective sharing of data and metadata across digital libraries, data archives and research projects. This is not a proposal for a particular set of metadata parameters but rather of a methodology that will enable them to be easily developed and interchanged between research organizations. Examples are provided for geochemical and oceanographic data as well as map images to illustrate the flexibility of the approach.

  2. Using Cloud-based Storage Technologies for Earth Science Data

    Science.gov (United States)

    Michaelis, A.; Readey, J.; Votava, P.

    2016-12-01

    Cloud based infrastructure may offer several key benefits of scalability, built in redundancy and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and software systems developed for NASA data repositories were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Object storage services are provided through all the leading public (Amazon Web Service, Microsoft Azure, Google Cloud, etc.) and private (Open Stack) clouds, and may provide a more cost-effective means of storing large data collections online. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows superior performance for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.

  3. Prototyping Dynamic Earth Science Data Visualization on the Web

    Science.gov (United States)

    Roberts, J. T.; Zhou, A. Y.; Rodriguez, J.; Hall, J. R.; Thompson, C. K.

    2016-12-01

    Current solutions for rapid map-based visualization of Earth Science data products on the web typically provide static image representations of the data that have been transformed or abstracted away from the actual source data values. The color pixels within these images are generally confined to 256 bins, which represent a limited precision of values. The accuracy of these values may be sufficient for introductory analysis, but inadequate for scientific analysis.New technologies are emerging that enable visualizations based on the underlying source data values of the imagery within a web browser. By having interactive access to source data values, high quality analysis within a web application can be achieved by leveraging server-side data access instead of downloading entire data files and processing them locally. This enables on-the-fly tasks ranging from hovering over a point to see its raw value, dynamically applying a color palette, modifying the color scale (e.g., from linear to logarithmic) to highlight variations in the data, or performing statistical analysis of data values within a selected region. This presentation highlights findings from an ongoing effort by NASA's Global Imagery Browse Services to investigate various technologies and file formats that make these types of dynamic data visualizations possible.

  4. The Synthetic Aperture Radar Science Data Processing Foundry Concept for Earth Science

    Science.gov (United States)

    Rosen, P. A.; Hua, H.; Norton, C. D.; Little, M. M.

    2015-12-01

    Since 2008, NASA's Earth Science Technology Office and the Advanced Information Systems Technology Program have invested in two technology evolutions to meet the needs of the community of scientists exploiting the rapidly growing database of international synthetic aperture radar (SAR) data. JPL, working with the science community, has developed the InSAR Scientific Computing Environment (ISCE), a next-generation interferometric SAR processing system that is designed to be flexible and extensible. ISCE currently supports many international space borne data sets but has been primarily focused on geodetic science and applications. A second evolutionary path, the Advanced Rapid Imaging and Analysis (ARIA) science data system, uses ISCE as its core science data processing engine and produces automated science and response products, quality assessments and metadata. The success of this two-front effort has been demonstrated in NASA's ability to respond to recent events with useful disaster support. JPL has enabled high-volume and low latency data production by the re-use of the hybrid cloud computing science data system (HySDS) that runs ARIA, leveraging on-premise cloud computing assets that are able to burst onto the Amazon Web Services (AWS) services as needed. Beyond geodetic applications, needs have emerged to process large volumes of time-series SAR data collected for estimation of biomass and its change, in such campaigns as the upcoming AfriSAR field campaign. ESTO is funding JPL to extend the ISCE-ARIA model to a "SAR Science Data Processing Foundry" to on-ramp new data sources and to produce new science data products to meet the needs of science teams and, in general, science community members. An extension of the ISCE-ARIA model to support on-demand processing will permit PIs to leverage this Foundry to produce data products from accepted data sources when they need them. This paper will describe each of the elements of the SAR SDP Foundry and describe their

  5. The Influence of Science Process Skills, Logical Thinking Abilities, Attitudes towards Science, and Locus of Control on Science Achievement among Form 4 Students in the Interior Division of Sabah, Malaysia

    Science.gov (United States)

    Fah, Lay Yoon

    2008-01-01

    The purpose of this study was to examine the direct and indirect effects of science process skills, logical thinking abilities, attitudes towards science, and locus of control on science achievement among Form 4 students in the Interior Division of Sabah, Malaysia. Research findings showed that there were low to moderate, positive but significant…

  6. The Influence of Science Process Skills, Logical Thinking Abilities, Attitudes towards Science, and Locus of Control on Science Achievement among Form 4 Students in the Interior Division of Sabah, Malaysia

    Science.gov (United States)

    Fah, Lay Yoon

    2008-01-01

    The purpose of this study was to examine the direct and indirect effects of science process skills, logical thinking abilities, attitudes towards science, and locus of control on science achievement among Form 4 students in the Interior Division of Sabah, Malaysia. Research findings showed that there were low to moderate, positive but significant…

  7. Small format digital photogrammetry for applications in the earth sciences

    Science.gov (United States)

    Rieke-Zapp, Dirk

    2010-05-01

    Small format digital photogrammetry for applications in the earth sciences Photogrammetry is often considered one of the most precise and versatile surveying techniques. The same camera and analysis software can be used for measurements from sub-millimetre to kilometre scale. Such a measurement device is well suited for application by earth scientists working in the field. In this case a small toolset and a straight forward setup best fit the needs of the operator. While a digital camera is typically already part of the field equipment of an earth scientist the main focus of the field work is often not surveying. Lack in photogrammetric training at the same time requires an easy to learn, straight forward surveying technique. A photogrammetric method was developed aimed primarily at earth scientists for taking accurate measurements in the field minimizing extra bulk and weight of the required equipment. The work included several challenges. A) Definition of an upright coordinate system without heavy and bulky tools like a total station or GNS-Sensor. B) Optimization of image acquisition and geometric stability of the image block. C) Identification of a small camera suitable for precise measurements in the field. D) Optimization of the workflow from image acquisition to preparation of images for stereo measurements. E) Introduction of students and non-photogrammetrists to the workflow. Wooden spheres were used as target points in the field. They were more rugged and available in different sizes than ping pong balls used in a previous setup. Distances between three spheres were introduced as scale information in a photogrammetric adjustment. The distances were measured with a laser distance meter accurate to 1 mm (1 sigma). The vertical angle between the spheres was measured with the same laser distance meter. The precision of the measurement was 0.3° (1 sigma) which is sufficient, i.e. better than inclination measurements with a geological compass. The upright

  8. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  9. APPENDIX AND BIBLIOGRAPHY TO BE USED WITH LIFE AND EARTH SCIENCE GUIDES.

    Science.gov (United States)

    MAHLER, FRED

    CONTAINED IN THIS TEACHER'S GUIDE FOR LIFE AND EARTH SCIENCES ARE BIBLIOGRAPHIES, DEMONSTRATIONS, AND EXPERIMENTS. BOOKS ARE LISTED FOR JUNIOR HIGH SCHOOL SCIENCE WHICH COVER A WIDE RANGE OF SUBJECTS, INCLUDING NATURE STUDY, BIOLOGY, CHEMISTRY, AND PHYSICS AS WELL AS MORE HIGHLY SPECIALIZED FIELDS OF THE PHYSICAL SCIENCES. TEXTBOOKS LISTED INCLUDE…

  10. Northern Eurasia Earth Science Partnership Initiative in 2012: An Update

    Science.gov (United States)

    Groisman, P. Y.; Lawford, R. G.; Kattsov, V.

    2012-12-01

    Seven years ago NEESPI was launched with the release of its Science Plan (http://neespi.org). Gradually, the Initiative was joined by numerous international projects launched in EU, Russia, the United States, Canada, Japan, and China. Throughout its duration, NEESPI served and is serving as an umbrella for more than 150 individual international research projects. Currently, the Initiative is in full swing. The total number of the ongoing NEESPI projects (as on July 2012) is 50 and has changed but slightly compared to its peak (87 in 2008). The past one and half years (2011 through mid-2012) were extremely productive in the NEESPI outreach. We organized five Open Science Sessions at the three major Geoscience Unions/Assembly Meetings (AGU, EGU, and JpGU) and four International NEESPI Workshops. The programs of two of these Workshops (in Tomsk and Irkutsk, Russia) included Summer Schools for early career scientists. More than 230 peer-reviewed papers, books, and/or book chapters were published or are in press (this list was still incomplete at the time of preparation of this abstract). In particular, a suite of 24 peer-reviewed NEESPI articles was published in the Forth Special NEESPI Issue of "Environmental Research Letters" (http://iopscience.iop.org/1748-9326/focus/NEESPI3). Northern Eurasia is a large study domain. Therefore, it was decided to describe the latest findings related to its environmental changes in several regional monographs in English. Three books on Environmental Changes in the NEESPI domain were published by Springer Publishing. House (Gutman and Reissell, eds., 2011; Groisman and Gutman eds. 2013) and "Naukova Dumka" of Ukraine (Groisman and Lyalko, eds. 2012) being devoted to the high latitudes of Eurasia, to Siberia, and to Eastern Europe respectively. One more book by J. Chen et al. (eds.) Dryland East Asia: Land Dynamics amid Social and Climate Change has been prepared by the members of the NEESPI team for Springer and will be published in

  11. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    Science.gov (United States)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  12. Spatiotemporal stochastic models for earth science and engineering applications

    Science.gov (United States)

    Luo, Xiaochun

    1998-12-01

    Spatiotemporal processes occur in many areas of earth sciences and engineering. However, most of the available theoretical tools and techniques of space-time daft processing have been designed to operate exclusively in time or in space, and the importance of spatiotemporal variability was not fully appreciated until recently. To address this problem, a systematic framework of spatiotemporal random field (S/TRF) models for geoscience/engineering applications is presented and developed in this thesis. The space-tune continuity characterization is one of the most important aspects in S/TRF modelling, where the space-time continuity is displayed with experimental spatiotemporal variograms, summarized in terms of space-time continuity hypotheses, and modelled using spatiotemporal variogram functions. Permissible spatiotemporal covariance/variogram models are addressed through permissibility criteria appropriate to spatiotemporal processes. The estimation of spatiotemporal processes is developed in terms of spatiotemporal kriging techniques. Particular emphasis is given to the singularity analysis of spatiotemporal kriging systems. The impacts of covariance, functions, trend forms, and data configurations on the singularity of spatiotemporal kriging systems are discussed. In addition, the tensorial invariance of universal spatiotemporal kriging systems is investigated in terms of the space-time trend. The conditional simulation of spatiotemporal processes is proposed with the development of the sequential group Gaussian simulation techniques (SGGS), which is actually a series of sequential simulation algorithms associated with different group sizes. The simulation error is analyzed with different covariance models and simulation grids. The simulated annealing technique honoring experimental variograms, is also proposed, providing a way of conditional simulation without the covariance model fitting which is prerequisite for most simulation algorithms. The proposed

  13. France 2017 welcomes the 11th International Earth Science Olympiad

    Science.gov (United States)

    Berenguer, Jean Luc

    2017-04-01

    The International Earth Science Olympiad (IESO) is the latest of the great scientific olympics. It offers high-school students from all around the world the possibility of participating in a competition in a different country every year. About 30 countries took part in the last edition of IESO in Japan. France has participated in this event for the past four years with a certain amount of success, with many students winning medals. In 2017, the IESO will take place in France for the first time in the technopole of Sophia- Antipolis, under the watchful eyes and responsibility of the " Université Côte d'Azur ". The IESO typically lasts for about a week. Each country sends a maximum of four student participants, accompanied by two mentors. Guest students and observers may also form part of the national team. Outer space, atmosphere, hydrosphere, geosphere… The Olympiad programme highlights the cross-curricular dimensions of geoscience, mainly in English. The candidates participate in a written test in every focus area of the programme as well as in several practical tests. A last activity brings candidates of different nationalities together for team fieldwork, followed by an oral presentation of their findings. The IESO is the perfect opportunity for young people to discover the culture of the host country. With this in mind, the agenda includes trips to cultural or natural sites of interest, and festive events. The participants would also get a flavour of their peers' cultures. The spirit of this competition is to promote discussion and exchange to find collective solutions to the planet's problems.

  14. Teachers' Perspectives of the New Western Australian Earth and Environmental Science Course: Lessons for the Australian Curriculum

    Science.gov (United States)

    Dawson, Vaille; Moore, Leah

    2011-01-01

    In 2007, a new upper secondary course, Earth and Environmental Science (EES) was introduced in Western Australia. The development and implementation of the course was supported by Earth Science Western Australia (ESWA), a consortium of universities, the CSIRO and other organisations. The role of ESWA is to support the teaching of earth science in…

  15. Teachers' Perspectives of the New Western Australian Earth and Environmental Science Course: Lessons for the Australian Curriculum

    Science.gov (United States)

    Dawson, Vaille; Moore, Leah

    2011-01-01

    In 2007, a new upper secondary course, Earth and Environmental Science (EES) was introduced in Western Australia. The development and implementation of the course was supported by Earth Science Western Australia (ESWA), a consortium of universities, the CSIRO and other organisations. The role of ESWA is to support the teaching of earth science in…

  16. College Science Students' Perception Gaps in Preferred-Actual Learning Environment in a Reformed Introductory Earth Science Course in Taiwan

    Science.gov (United States)

    Chang, Chun-Yeh; Chang, Yueh-Hsia

    2010-01-01

    This study used an instrument to examine undergraduate students' preferred and actual learning environment perceptions in an introductory earth science course. The results show that science students expect to learn in a learning environment combining teacher-centred and student-centred approaches. However, an expectation incongruence was found in…

  17. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    Science.gov (United States)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  18. Exploring Best Practices for Research Data Management in Earth Science through Collaborating with University Libraries

    Science.gov (United States)

    Wang, T.; Branch, B. D.

    2013-12-01

    Earth Science research data, its data management, informatics processing and its data curation are valuable in allowing earth scientists to make new discoveries. But how to actively manage these research assets to ensure them safe and secure, accessible and reusable for long term is a big challenge. Nowadays, the data deluge makes this challenge become even more difficult. To address the growing demand for managing earth science data, the Council on Library and Information Resources (CLIR) partners with the Library and Technology Services (LTS) of Lehigh University and Purdue University Libraries (PUL) on hosting postdoctoral fellows in data curation activity. This inter-disciplinary fellowship program funded by the SLOAN Foundation innovatively connects university libraries and earth science departments and provides earth science Ph.D.'s opportunities to use their research experiences in earth science and data curation trainings received during their fellowship to explore best practices for research data management in earth science. In the process of exploring best practices for data curation in earth science, the CLIR Data Curation Fellows have accumulated rich experiences and insights on the data management behaviors and needs of earth scientists. Specifically, Ting Wang, the postdoctoral fellow at Lehigh University has worked together with the LTS support team for the College of Arts and Sciences, Web Specialists and the High Performance Computing Team, to assess and meet the data management needs of researchers at the Department of Earth and Environmental Sciences (EES). By interviewing the faculty members and graduate students at EES, the fellow has identified a variety of data-related challenges at different research fields of earth science, such as climate, ecology, geochemistry, geomorphology, etc. The investigation findings of the fellow also support the LTS for developing campus infrastructure for long-term data management in the sciences. Likewise

  19. Dr Hiroshi Ikukawa Director Planning and Evaluation Division Science and Technology Policy Bureau Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and Mr Robert Aymar signed an accord for the CERN.

    CERN Document Server

    Claudia Marcelloni

    2007-01-01

    Dr Hiroshi Ikukawa Director Planning and Evaluation Division Science and Technology Policy Bureau Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and Mr Robert Aymar signed an accord for the CERN.

  20. The influence of the slowing of Earth's rotation: A hypothesis to explain cell division synchrony under different day duration in earlier and later evolved unicellular algae

    Science.gov (United States)

    Costas, E.; González-Gil, S.; López-Rodas, V.; Aguilera, A.

    1996-03-01

    Every year the Earth's rotation period is reduced, mainly due to the tidal drag of the moon. The length of day increases continuously by about 1 h every 200 million years. The period of rotation around the Sun remains constant; hence, the length of the year remains constant, so years acquire progressively fewer days. Many unicellular algae show rhythmicity in their cell division cycle. If primitive algae evolved under a shorter day duration, then it is possible that the early-evolved algae had to synchronize their cell division cycle to shorter lengths of day than did later-evolved algae. We tested this hypothesis by growing Cyanobacteria, Dinophyceae, Prasinophyceae, Bacillariophyceae and Conjugatophyceae (evolutionary appearance probably in this order) at 8∶8 h light-dark cycles (LD), 10∶10 LD, and 12∶12 LD, at 20 or 27°C. Cyanobacteria synchronized their cell division cycles optimally at 8∶8 h LD, Dinophyceae and Prasinophyceae at 10∶10 h LD, and Conjugatophyceae and Bacillariophyceae at 12∶12 h LD. The synchrony of cell division was scarcely affected by temperature. Results suggested that the early evolved unicellular autotrophic organisms such as the Cyanobacteria synchronized their cell division cycle under a shorter day duration than later-evolved unicellular algae, and these traits may have been conserved by quiescent genes up to the present day.

  1. Nuclear Science Division annual report, October 1, 1986--September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J. (ed.)

    1988-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report.

  2. Issue-centered Earth Science undergraduate instruction in U.S. colleges and universities

    Science.gov (United States)

    Liddicoat, J. C.

    2011-12-01

    Semester-long introductory courses in Earth Science at U.S. colleges and universities often contain astronomy, meteorology, oceanography, and geology taught as single entities. My experience teaching Earth Science that way and using a trade Earth Science textbook results in cursory knowledge and poor retention of each topic area. This seems to be especially true for liberal arts students who take Earth Science to satisfy a distribution requirement in the sciences. Instead, my method of teaching Earth Science at the State University of New York is to use two books that together explore consequences of global warming caused by the combustion of fossil fuels by humans. In this way, students who do not intend to major in science are given in-depth information about how and why this challenge to the well-being of life on Earth in the present century and beyond must be addressed in a thoughtful way. The books, Tyler Volk's CO2 Rising - The World's Greatest Environmental Challenge and James Edinger's Watching for the Wind, are inexpensive paperbacks that the students read in their entirety. Besides supplemental information I provide in the lectures, students have weekly examinations that are narrative in form, and there are written assignments for exhibits at science and other museums in NYC that complement some of the topics. The benefit of teaching Earth Science in this non-traditional way is that students seem more interested in the subject because it is relevant to everyday experience and news accounts about a serious global science problem for which an informed public must take a positive role to solve.

  3. Communicating uncertainties in earth sciences in view of user needs

    Science.gov (United States)

    de Vries, Wim; Kros, Hans; Heuvelink, Gerard

    2014-05-01

    Uncertainties are inevitable in all results obtained in the earth sciences, regardless whether these are based on field observations, experimental research or predictive modelling. When informing decision and policy makers or stakeholders, it is important that these uncertainties are also communicated. In communicating results, it important to apply a "Progressive Disclosure of Information (PDI)" from non-technical information through more specialised information, according to the user needs. Generalized information is generally directed towards non-scientific audiences and intended for policy advice. Decision makers have to be aware of the implications of the uncertainty associated with results, so that they can account for it in their decisions. Detailed information on the uncertainties is generally intended for scientific audiences to give insight in underlying approaches and results. When communicating uncertainties, it is important to distinguish between scientific results that allow presentation in terms of probabilistic measures of uncertainty and more intrinsic uncertainties and errors that cannot be expressed in mathematical terms. Examples of earth science research that allow probabilistic measures of uncertainty, involving sophisticated statistical methods, are uncertainties in spatial and/or temporal variations in results of: • Observations, such as soil properties measured at sampling locations. In this case, the interpolation uncertainty, caused by a lack of data collected in space, can be quantified by e.g. kriging standard deviation maps or animations of conditional simulations. • Experimental measurements, comparing impacts of treatments at different sites and/or under different conditions. In this case, an indication of the average and range in measured responses to treatments can be obtained from a meta-analysis, summarizing experimental findings between replicates and across studies, sites, ecosystems, etc. • Model predictions due to

  4. Earth Resources Observation and Science (EROS) Center's Landsat State Mosaics Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages the this gallery of images of the 50 U.S. states plus Puerto Rico as derived by Landsat data.

  5. Earth Resources Observation and Science (EROS) Center's Journey of Lewis and Clark Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages the this gallery of Landsat-derived images of one of the most remarkable and productive scientific...

  6. A Stream Processing Engine Approach to Earth Science Data Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Timely processing of raw Earth science data for calibration and validation in a highly distributed and networked environment, and its storage at Distributed Active...

  7. Explore! Materials for Sharing Earth and Space Science in Libraries and After-School Programs

    Science.gov (United States)

    Nelson, B.; Shipp, S.

    2008-03-01

    The Lunar and Planetary Institute's Explore! team trains library and after-school program staff through workshops and Web casts, to engage families and children in their communities in Earth and space science through hands-on actvities.

  8. A strategy to teach Earth Science to Erasmus students

    Science.gov (United States)

    Cerda, A.; Bodí, M. B.

    2009-04-01

    landscape were they are living. And moreover, they have the chance to find colleagues to share the year abroad. Key Words: Erasmus, Earth science, Landscape, Environment, Valencia, Spain

  9. User-based Resource Design in Earth Science Education

    Science.gov (United States)

    Luby, M.; Haber, J.; Wittenberg, K.

    2001-12-01

    Reform in the classroom, and certainly in academic publishing, is greatly influenced not only by educational research, but also by direct surveys of students and instructors. This presentation looks at changes to Columbia Earthscape, www.earthscape.org, based on an ongoing series of evaluation and testing measures. Two years ago, the Earthscape project was introduced as a central online resource. It aimed to select and make available authoritative materials from all the disciplines that constitute Earth-system science. Its design harnessed the dynamics of the Web and the interrelatedness of research, education, and public policy. In response to substantial class tests, involving five universities in the United States and abroad, three focus groups of geoscience faculty and librarians, user feedback, internal editorial-board review, and extensive consultation with colleagues in commercial and nonprofit educational publishing, Earthscape is implementing broad changes in design and content. These include arranging the site into sections that correspond to user profiles (scientist, policy-maker, teacher, and student), providing easier search or browsing (by research area, policy content, or lesson concept), and streamlining the presentation of links among our resources. These changes are implemented through more advanced searching capabilities, greater specificity of content metatags, and an overall increase in content from journals, books, and original material. The metatags now include all core geoscience disciplines or a range of pertinent issues (such as climate change, geologic hazards, and pollution). Reflecting the evaluation by librarians, Earthscape's revised interface will permit users to begin with a primary area of interest based on who they are, their "profile." They can then either browse the site's entire holdings in that area, perform searches within each area, or follow the extensive hyperlinks to explore connections to other areas and user needs

  10. Expanding Earth and Space Science through the Initiating New Science Partnerships In Rural Education (INSPIRE)

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2010-12-01

    The INSPIRE program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on Earth and Space science education and has partnered ten graduate students from MSU with five teachers from local, rural school districts. For the next five years the project will serve to increase inquiry and technology experiences in science and math while enhancing graduate student’s communication skills. Graduate students, from the disciplines of Geosciences, Physics, and Engineering are partnered with Chemistry, Physical Science, Physics, Geometry and Middle school science classrooms and will create engaging inquiry activities that incorporate elements of their research, and integrate various forms of technology. The generated lesson plans that are implemented in the classroom are published on the INSPIRE home page (www.gk12.msstate.edu) so that other classroom instructors can utilize this free resource. Local 7th -12th grade students will attend GIS day later this fall at MSU to increase their understanding and interest in Earth and Space sciences. Selected graduate students and teachers will visit one of four international university partners located in Poland, Australia, England, or The Bahamas to engage research abroad. Upon return they will incorporate their global experiences into their local classrooms. Planning for the project included many factors important to the success of the partnerships. The need for the program was evident in Mississippi K-12 schools based on low performance on high stakes assessments and lack of curriculum in the Earth and Space sciences. Meeting with administrators to determine what needs they would like addressed by the project and recognizing the individual differences among the schools were integral components to tailoring project goals and to meet the unique needs of each school partner. Time for training and team building of INSPIRE teachers and graduate students before the

  11. Computational Fluid Dynamics in Solid Earth Sciences-a HPC challenge

    OpenAIRE

    Vlad Constantin Manea; Marina Manea; Mihai Pomeran; Lucian Besutiu; Luminita Zlagnean

    2012-01-01

    Presently, the Solid Earth Sciences started to move towards implementing High Performance Computational (HPC) research facilities. One of the key tenants of HPC is performance, which strongly depends on the interaction between software and hardware. In this paper, they are presented benchmark results from two HPC systems. Testing a Computational Fluid Dynamics (CFD) code specific for Solid Earth Sciences, the HPC system Horus, based on Gigabit Ethernet, performed reasonably well compared with...

  12. Federated Space-Time Query for Earth Science Data Using OpenSearch Conventions

    Science.gov (United States)

    Lynnes, Chris; Beaumont, Bruce; Duerr, Ruth; Hua, Hook

    2009-01-01

    This slide presentation reviews a Space-time query system that has been developed to assist the user in finding Earth science data that fulfills the researchers needs. It reviews the reasons why finding Earth science data can be so difficult, and explains the workings of the Space-Time Query with OpenSearch and how this system can assist researchers in finding the required data, It also reviews the developments with client server systems.

  13. Responding to complex societal challenges: A decade of Earth System Science Partnership (ESSP) interdisciplinary research

    NARCIS (Netherlands)

    Ignaciuk, A.; Rice, M.; Bogardi, J.; Canadell, J.G.; Dhakal, S.; Ingram, J.; Leemans, R.; Rosenberg, M.

    2012-01-01

    The Earth system is an integrated, self-regulating system under increasing pressure from anthropogenic transformation. The Earth System Science Partnership (ESSP), which was established by the international global environmental change research programs (i.e., DIVERSITAS, IGBP, IHDP and WCRP) facilit

  14. Welcome to NASA's Earth Science Enterprise: Educational CD-ROM Activity Supplement

    Science.gov (United States)

    1999-01-01

    Since its inception in 1958, NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow, and their influence on weather and climate. We now understand that the key to gaining a better understanding of the global environment is exploring how the Earth's systems of air, land, water, and life interact with each other. This approach-called Earth Systems Science-blends together fields like meteorology, oceanography, geology, and biology. In 1991, NASA launched a more comprehensive program to study the Earth as an integrated environmental system. They call it NASA's Earth Science Enterprise. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). EOS is series of satellites to be launched over the next two decades that will be used to intensively study the Earth, with the hopes of expanding our under- standing of how natural processes affect us, and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, the ability to predict how the climate will change in the future. Today's program is laying the foundation for long-term environmental and climate monitoring and prediction. Potentially, this will provide the understanding needed in the future to support difficult decisions regarding the Earth's environment.

  15. EarthCube: Advancing Partnerships, Collaborative Platforms and Knowledge Networks in the Ocean Sciences

    Science.gov (United States)

    Stephen, Diggs; Lee, Allison

    2014-05-01

    The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.

  16. Re-Examining the Way We Teach: The Earth System Science Education Alliance Online Courses

    Science.gov (United States)

    Botti, J. A.; Myers, R. J.

    2003-12-01

    Science education reform has skyrocketed over the last decade thanks in large part to the technology of the Internet, opening up dynamic new online communities of learners. It has allowed educators worldwide to share thoughts about Earth system science and reexamine the way science is taught. The Earth System Science Education Alliance (ESSEA) is one positive offshoot of this reform effort. This developing partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA semester-long courses are open to elementary, middle school, and high school educators. After three weeks of introductory content, teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. The middle school course stresses the effects of real-world events-volcanic eruptions, hurricanes, rainforest destruction-on Earth's lithosphere, atmosphere, biosphere, and hydrosphere, using "jigsaw" to study the interactions between events, spheres, and positive and negative feedback loops. The high school course uses problem-based learning to examine critical areas of global change, such as coral reef degradation, ozone depletion, and climate change. This ESSEA presentation provides examples of learning environments from each of the three courses.

  17. Science 101: What Are the Earth's Heating and Cooling Mechanisms?

    Science.gov (United States)

    Robertson, Bill

    2015-01-01

    In this article, author Bill Robertson attempts to help readers understand some of the Earth's heating and cooling mechanisms and how they relate to global warming. Figures are provided to help facilitate learning.

  18. Visions of the Future: Astronomy and Earth Science

    Science.gov (United States)

    Thompson, J. M. T.

    2001-07-01

    Preface J. M. T. Thompson; Part I. Creation and History of the Universe: 1. Big Bang riddles and their revelations Joao Magueijo and Kim Baskerville; 2. The origin of structure in the universe Jaun Garcia-Bellido; 3. The dark side of the universe Ben Moore; Part II. Exploring the Stars and Planets: 4. The hottest spots in space? Malcolm Gray; 5. Our solar system and beyond in the new millennium Andrew J. Coates; 6. Unveiling the face of the Moon Sarah K. Dunkin and David J. Heather; Part III. Understanding Planet Earth: 7. The Earth's deep interior Lidunka Vocadlo and David Dobson; 8. Three-dimensional imaging of a dynamic Earth Lidia Lonergan and Nicky White; Part IV. Global Warming and Climate Change: 9. Geophysical and astrophysical vortices N. Robb McDonald; 10. Earth's future climate Mark A. Saunders.

  19. Policy for Robust Space-based Earth Science, Technology and Applications

    Science.gov (United States)

    Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence

    2013-01-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.

  20. DCP's Early Detection Research Guides Future Science | Division of Cancer Prevention

    Science.gov (United States)

    Early detection research funded by the NCI's Division of Cancer Prevention has positively steered both public health and clinical outcomes, and set the stage for findings in the next generation of research. |

  1. Semantic Network Analysis on Terms related Mantle in Earth Science 2 Textbooks of Korea

    Science.gov (United States)

    Chung, Duk Ho; reum Cho, Ah; Park, Seon Ok

    2016-04-01

    The purpose of this study is to demonstrate if freshmen's cognitive frame about 'Crisis of the Earth' upon taking the Earth science 1 in high school reflects the school curriculum. The data was collected from 67 freshmen who'd graduated high school in formal education. They expressed 'Crisis of the Earth' as a painting with explanation and then we extracted units of meaning from paintings, respectively. We analyzed the words and frame using the Semantic Network Analysis. The result is as follows; First, as every participant forms the cognitive frame for the crisis of the Earth, it is shown that they connect each part which that composes the global environment and realize it as the changing relation with interaction. Secondly, forming a cognitive frame regarding crisis of the Earth, both groups connect it with human endeavor. Especially, it seems that the group of participants who finished Earth Science I fully reflects the course of the formal education. It is necessary to make the students recognize it from a universal point of view, not only from the Earth. Also, much effort is required in order to enlighten about the appropriateness regarding problem-solving of the Earth and expand their mind as time changes. Keywords : Earth ScienceⅠ, cognitive frame, crisis of the earth, semantic network analysis

  2. Interactive web-based Earth visualization telling the earth science story.

    Science.gov (United States)

    Stein, C.

    2006-12-01

    Interactive earth visualization applications provide a new level of understanding of complex spatial and time based environmental information. GeoFusion's earth visualization tools provide a web-based platform for sharing results of scientific research. One hundred years of predicted sea ice coverage is animated on an interactive globe in a web page. Watershed visualization comes alive with interactive control of terrain, map, satellite, and digital raster graph layers. Animating NASA's Blue Marble Next Generation half kilometer monthly datasets becomes a background for discussing yearly earth cycles. GeoFusion's tools are used for creating custom museum and web-based applications that engage users in an interactive exploration of environmental phenomena.

  3. Characteristics of Abductive Inquiry in Earth and Space Science: An Undergraduate Teacher Prospective Case Study

    Science.gov (United States)

    Ramalis, T. R.; Liliasari; Herdiwidjaya, D.

    2016-08-01

    The purpose this case study was to describe characteristic features learning activities in the domain of earth and space science. Context of this study is earth and space learning activities on three groups of student teachers prospective, respectively on the subject of the shape and size of Earth, land and sea breeze, and moon's orbit. The analysis is conducted qualitatively from activity data and analyze students doing project work, student worksheets, group project report documents, note and audio recordings of discussion. Research findings identified the type of abduction: theoretical models abduction, factual abduction, and law abduction during the learning process. Implications for science inquiry learning as well as relevant research were suggested.

  4. Creating State-based Alliances to Support Earth and Space Science Education Reform

    Science.gov (United States)

    Geary, E. E.; Manduca, C. A.; Barstow, D.

    2002-05-01

    Seven years after the publication of the National Science Education Standards and adoption of new state science education standards, Earth and space science remains outside the mainstream K-12 curriculum. Currently, less than ten percent of high school students in the United States of America take an Earth or space science course before graduation. This state of affairs is simply unacceptable. "All of us who live on this planet have the right and the obligation to understand Earth's unique history, its dynamic processes, its abundant resources, and its intriguing mysteries. As citizens of Earth, with the power to modify our climate and ecosystems, we also have a personal and collective responsibility to understand Earth so that we can make wise decisions about its and our future". As one step toward addressing this situation, we support the establishment of state-based alliances to promote Earth and space science education reform. "In many ways, states are the most vital locus of change in our nation's schools. State departments of education define curriculum frameworks, establish testing policies, support professional development and, in some cases, approve textbooks and materials for adoption". State alliance partners should include a broad spectrum of K-16 educators, scientists, policy makers, parents, and community leaders from academic institutions, businesses, museums, technology centers, and not-for profit organizations. The focus of these alliances should be on systemic and sustainable reform of K-16 Earth and space science education. Each state-based alliance should focus on specific educational needs within their state, but work together to share ideas, resources, and models for success. As we build these alliances we need to take a truly collaborative approach working with the other sciences, geography, and mathematics so that collectively we can improve the caliber and scope of science and mathematics education for all students.

  5. Earth Science knowledge and Geodiversity awareness in the Langhe area

    Science.gov (United States)

    Calorio, Matteo; Giardino, Marco; Lozar, Francesca; Perotti, Luigi; Vigna, Rossella

    2017-04-01

    Hills of Central Piemonte Region (Langhe, Monferrato) have a range of geological and geomorphological features that make them very attractive for both viticulture and tourism activities. Particularly, the Langhe area, located at the inner margin of the SW-Alps, is part of the Piedmont Basin (PB) a Late Eocene-Miocene succession composed by continental, shallow and deep marine deposits. Its monocline structure caused the present-day characteristic "cuestas" morphology of the Langhe hills. Quaternary evolution of river network is here characterized by the effects of the Tanaro piracy. Despite of its rich geodiversity and even if on 2014 the area has been included within the UNESCO WH, its recognition is limited to cultural heritage. In fact, a comprehensive use of Earth science knowledge in the assessment of natural heritage of this area is still lacking. As a consequence, geoheritage is under-recognized as well as endangered by both natural hazards and increased human "pressure". The geodiversity loss in the Langhe area is thus due either to human activities, i.e. high mechanization of viticulture activities in the last 30 years, particularly for new vineyards installation, or to active geomorphological processes, such as planar slide, flow, soil slips and floods. The Langhe area is in fact highly sensitive to climate change and prone to these processes. In term of "human sensitivity", several sociological surveys have shown that "perceived risk", not "real risk", influences people's behavior towards natural hazards. The same approach can be applied to geodiversity and geoheritage. Based on these assumptions, we considered the possible strategic roles played by dissemination of scientific research and application of new technologies: 1) to enhance awareness, either of geodiversity or environmental dynamics and 2) to improve knowledge, both on geoheritage management and natural risk reduction. Within the activities of the "PROGEO-Piemonte Project" we performed a

  6. Using the Lens of Social Capital to Understand Diversity in the Earth System Sciences Workforce

    Science.gov (United States)

    Callahan, Caitlin N.; Libarkin, Julie C.; McCallum, Carmen M.; Atchison, Christopher L.

    2015-01-01

    In this commentary, we argue that social capital theory, the idea that membership in a group creates opportunities to acquire valuable information and resources from other group members, is a useful framework in which to consider ways to increase diversity in the Earth System Sciences (ESS) and in the science, technology, engineering, and…

  7. Using the Lens of Social Capital to Understand Diversity in the Earth System Sciences Workforce

    Science.gov (United States)

    Callahan, Caitlin N.; Libarkin, Julie C.; McCallum, Carmen M.; Atchison, Christopher L.

    2015-01-01

    In this commentary, we argue that social capital theory, the idea that membership in a group creates opportunities to acquire valuable information and resources from other group members, is a useful framework in which to consider ways to increase diversity in the Earth System Sciences (ESS) and in the science, technology, engineering, and…

  8. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    Science.gov (United States)

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  9. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    Science.gov (United States)

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  10. Are Modern Concepts of Complex Systems Science Useful for Earth Sciences? (Lewis Fry Richardson Medal Lecture)

    Science.gov (United States)

    Kurths, Jürgen

    2013-04-01

    The application of methods of complex systems science has a rich tradition in Earth sciences and has enabled substantially new insights into various complex processes there. However, some approaches and findings have been controversially discussed over the last decades. One reason is that they are often basing on strong restrictions and their violation may lead to pitfalls and misinterpretations. Here, we discuss three general concepts of complex systems science: synchronization, recurrence and complex networks and explain that they are indeed useful for better understanding phenomena as recent and past monsoon or El Nino, to detect paleoclimate-variability transitions which are related to human evolution and to identify teleconnections. References Marwan, N., Romano, M., Thiel, M., Kurths, J., Physics Reports 438, 237-329 (2007). Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C., Physics Reports 469, 93-153 (2008). Marwan, N., Donges, J.F., Zou, Y., Donner, R. and Kurths, J., Phys. Lett. A 373, 4246 (2009). Donges, J.F., Zou, Y., Marwan, N. and Kurths, J. Europhys. Lett. 87, 48007 (2009). Donner, R., Zou, Y., Donges, J.F., Marwan, N. and Kurths, J., Phys. Rev. E 81, 015101(R) (2010). Mokhov, I. I., D. A. Smirnov, P. I. Nakonechny, S. S. Kozlenko, E. P. Seleznev, and J. Kurths, Geophys. Res. Lett. 38, L00F04 (2011). Donges, J., H. Schultz, N. Marwan, Y. Zou, J. Kurths, Eur. J. Phys. B 84, 635-651 (2011). Donges, J., R. Donner, M. Trauth, N. Marwan, H.J. Schellnhuber, and J. Kurths, PNAS 108, 20422-20427 (2011). Malik, N., B. Bookhagen, N. Marwan, and J. Kurths, Climate Dynamics 39, 971 (2012). Runge, J. , J. Heitzig, V. Petoukhov, J. Kurths, Phys. Rev. Lett. 108, 258701 (2012). Menck, P., J. Heitzig, N. Marwan, J. Kurths, Nature Physics (2013).

  11. Nebraska Earth Science Education Network: Enhancing the NASA, University, and Pre-College Science Teacher Connection with Electronic Communication

    Science.gov (United States)

    Gosselin, David C.

    1997-01-01

    The primary goals of this project were to: 1. Promote and enhance K-12 earth science education; and enhance the access to and exchange of information through the use of digital networks in K-12 institutions. We have achieved these two goals. Through the efforts of many individuals at the University of Nebraska-Lincoln (UNL), Nebraska Earth Science Education Network (NESEN) has become a viable and beneficial interdisciplinary outreach program for K-12 educators in Nebraska. Over the last three years, the NASA grant has provided personnel and equipment to maintain, expand and develop NESEN into a program that is recognized by its membership as a valuable source of information and expertise in earth systems science. Because NASA funding provided a framework upon which to build, other external sources of funding have become available to support NESEN programs.

  12. Using Google Earth to Teach Plate Tectonics and Science Explanations

    Science.gov (United States)

    Blank, Lisa M.; Plautz, Mike; Almquist, Heather; Crews, Jeff; Estrada, Jen

    2012-01-01

    "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" emphasizes that the practice of science is inherently a model-building activity focused on constructing explanations using evidence and reasoning (NRC 2012). Because building and refining is an iterative process, middle school students may view this practice…

  13. Student Engagement and Empowerment Through Earth System Science

    Science.gov (United States)

    Low, R.; Schnurrenberger, D.

    2001-12-01

    Through ESSEA's curricula, we promote empowerment of our diverse student body through access to excellence in science education and technology. Global change, by virtue of its economic relevance and environmental urgency, engages students in science inquiry. Global change is emerging as a political issue as countries with fewer resources are less able to buffer their economic systems from hardships resulting from climatic change. The ESS and global change emphasis facilitates in-depth classroom examination of the social ramifications of science and technology as required by Minnesota's state science standards. Access to ESSEA courses for in-service teachers is promoted by several programmatic initiatives of the University of Minnesota. High school and undergraduate versions of the on-line course are now in development. Summer research experiences for teachers, research projects by secondary classrooms tracking local environmental change, and involvement of graduate student scientists as on-line mentors of the ESSEA courses are components of a broader program that is building a multidisciplinary science-based learning community in Minnesota. ESSEA is the flagship program of Science CentrUM, a consortium of science and education colleges at the University of Minnesota promoting excellence in science education through content-based professional development for K-12 educators.

  14. Using Google Earth to Teach Plate Tectonics and Science Explanations

    Science.gov (United States)

    Blank, Lisa M.; Plautz, Mike; Almquist, Heather; Crews, Jeff; Estrada, Jen

    2012-01-01

    "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" emphasizes that the practice of science is inherently a model-building activity focused on constructing explanations using evidence and reasoning (NRC 2012). Because building and refining is an iterative process, middle school students may view this practice…

  15. Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs

    Science.gov (United States)

    Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.

    2005-05-01

    Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA

  16. The State of Building a Consistent Framework for Curation and Presentation of Earth Science Data Quality

    Science.gov (United States)

    Ramapriyan, H.; Peng, G.; Moroni, D. F.

    2016-12-01

    Improving collection, description, discovery, and usability of information about data quality in Earth science data products is critical in ensuring data use but requires coordinated efforts of people from multiple disciplines. Under the auspices of the Federation of Earth Science Information Partners (ESIP), the Information Quality Cluster (IQC) brings together national and international data quality management researchers and practitioners from various disciplines to evaluate and establish best practices and standards for data quality for the Earth science community. The IQC evaluates community data quality best practices and standards; makes recommendations for improvement in various aspects of managing data quality in Earth science data products; ensures that producers of data products are aware of standards and best practices for conveying data quality, and data providers/distributors/ intermediaries establish, improve and evolve mechanisms to assist users in discovering and understanding data quality information; and provides guidance to data managers and stewards on how best to implement data quality standards and best practices to ensure and improve maturity of their data products. This presentation will provide an overview on the current state of building a consistent framework for curating and presenting Earth science data quality in terms of science, product, stewardship, and service maturity of individual data products.

  17. Jules Verne Network: Extending and federating efforts to promote Earth sciences

    Science.gov (United States)

    Rosmorduc, V.; Bonnefond, P.; Stewart, R.

    2003-04-01

    Earth sciences are a key element of the many issues concerning the environment, natural resource management and the place of humankind on Earth today. Earth science disciplines have taken a giant leap with the emergence of space-based observation techniques, but the benefits of advances achieved have not always been felt outside specialist circles. Our aim is to develop, encourage and raise awareness of these achievements, through outreach actions and educational programs, by informing persons likely to use and exploit results, as well as decision-makers and elected representatives, and by communicating to scientists working in related disciplines. We propose, within an international framework, to bring together scientists, engineers, teachers and science communicators to raise awareness among a broad spectrum of audiences of the current state of Earth science knowledge, especially what we have learned through space-based observations. By Earth sciences we mean all sciences studying the lithosphere, oceans, atmosphere, cryosphere, biosphere and other components of our planet and the way they interact.

  18. ASDC Tools and Techniques for Creating GIS Services for Earth Science Data Discovery and Analysis

    Science.gov (United States)

    Herbert, A.; Baskin, W. E.; Mazaika, A.; Kusterer, J.

    2016-12-01

    The Atmospheric Science Data Center (ASDC) staff at the NASA Langley Research Center works closely with earth science data providers to create and maintain metadata and GIS services tailored to the data discovery needs of the Earth Science community. NetCDF Markup Language (NcML) is one of the tools the ASDC leverages to deploy data collections in a Web Map Service (WMS) to generate full resolution geo-referenced browse imagery. This presentation will highlight the tools and techniques used by the ASDC software development team to process and deploy archived earth science datasets in standard GIS services that are common in the community and have well defined API's (WMS/WMTS).

  19. Our Mission to Planet Earth: A guide to teaching Earth system science

    Science.gov (United States)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  20. Anthropogenic biomes: a key contribution to earth-system science.

    Science.gov (United States)

    Alessa, Lilian; Chapin, F Stuart

    2008-10-01

    Human activities now dominate most of the ice-free terrestrial surface. A recent article presents a classification and global map of human-influenced biomes of the world that provides a novel and potentially appropriate framework for projecting changes in earth-system dynamics.

  1. A Thematic Approach to Physical and Earth Science for Prospective Elementary School Teachers

    Science.gov (United States)

    Haan, Stanley; Jadrich, James

    1997-04-01

    We have designed a new hands-on science course for prospective elementary school teachers who are not science minors or majors. The course uses a thematic approach to integrate topics from physics, chemistry, and earth science. Specific themes studied are Scientific Models, The Particulate Model of Matter, Energy, Energy and Interactions, and Interactions and Change. Student response to the course has been extraordinarily positive.

  2. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Palanisamy, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, Thomas A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Voyles, Jimmy W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  3. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  4. Land system science and sustainable development of the earth system

    DEFF Research Database (Denmark)

    Verburg, Peter H.; Crossman, Neville; Ellis, Erle C.

    2015-01-01

    distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can...... be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action....

  5. THE EOS ART Projects: Six Art Projects Inspired by Earth Science

    Science.gov (United States)

    Kerlow, I.

    2015-12-01

    The six projects produced under the artists' residencies at the Earth Observatory of Singapore (EOS) were inspired by Earth science and by the human experience in naturally hazardous regions. These contemporary artworks were created within an interdisciplinary framework that fostered collaborations between artists and scientists. The EOS ART 2010-2013 was a pilot program that also facilitated the active engagement of regional artists with issues related to Earth science, sustainable societies, and innovative methods for science outreach. An interdisciplinary jury of art critics, curators and Earth scientists selected art projects proposed by regional artists, and funds were awarded to develop and realize the projects.The artworks-including installations, photographs, and video art-were showcased in the "Unearthed" public exhibit at the Singapore Art Museum from March to July of 2014. A 92-page catalog accompanied the show and public seminars about interdisciplinary connections complemented the event. This was a unique example of collaboration between scientific and artistic institutions in Southeast Asia.The presentation provides an overview of the motivations, process and accomplished results. The art projects include "Coastline" by Zhang Xiao (China), "Lupang" by Clara Balaguer and Carlos Casas (Philippines and Spain), "Sound of the Earth" by Chen Sai Hua Kuan (Singapore), "Sudden Nature" by Isaac Kerlow (Mexico/USA), "The Possibility of Knowing" by Robert Zhao Renhui (Singapore), and "When Need Moves the Earth" by Sutthirat Supaparinya (Thailand). http://art-science-media.com/the-eos-art-projects/

  6. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    Science.gov (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  7. The Internet of Samples in the Earth Sciences (iSamples)

    Science.gov (United States)

    Carter, M. R.; Lehnert, K. A.

    2015-12-01

    Across most Earth Science disciplines, research depends on the availability of samples collected above, at, and beneath Earth's surface, on the moon and in space, or generated in experiments. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). The Internet of Samples in the Earth Sciences (iSamples) is an initiative funded as a Research Coordination Network (RCN) within the EarthCube program to address this need. iSamples aims to advance the use of innovative cyberinfrastructure to connect physical samples and sample collections across the Earth Sciences with digital data infrastructures to revolutionize their utility for science. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture of a shared cyberinfrastructure for collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical

  8. Medical geology:new relevance in the earth sciences

    Institute of Scientific and Technical Information of China (English)

    CharlotteA.Bowman; PeterT.Bobrowsky; OlleSelinus

    2003-01-01

    The interdisciplinary fieldresponds to the need to betterof "Medical Geology" understand the relationships between human health and our surrounding environment. The influence of earth resources, natural environmental factors and land-use on human health has long been recognized, dating back to ancient Rome and Peru's Inca civilization. Today links between the natural environment and health can be found throughout the world. This review introduces the historical context of this particular type of research, contrasts the direct geological and indirect natural hazard influences on healthas a framework of study, elaborates on pathways of elemental accumulation in the body and provides examples of specific geochemical behaviours and diseases that are often associated with either too much or not enough of certain elements which comprise the Earth.

  9. Undergraduate Experiences of Division I Athlete Science, Technology, Engineering, and Mathematics (STEM) Graduates

    Science.gov (United States)

    Comeaux, Eddie; Bachman, Tina; Burton, Rena M.; Aliyeva, Aida

    2017-01-01

    Employing the conceptual model developed by Comeaux and Harrison ("Coll Stud Aff J" 30(1):75-87, 2011), this study explored the undergraduate experience of Division I athlete STEM graduates. Data collection involved 17 in-depth interviews with former athletes at two research-intensive, public institutions. Results revealed that…

  10. Mobile laser scanning applied to the earth sciences

    Science.gov (United States)

    Brooks, Benjamin A.; Glennie, Craig; Hudnut, Kenneth W.; Ericksen, Todd; Hauser, Darren

    2013-01-01

    Lidar (light detection and ranging), a method by which the precise time of flight of emitted pulses of laser energy is measured and converted to distance for reflective targets, has helped scientists make topographic maps of Earth's surface at scales as fine as centimeters. These maps have allowed the discovery and analysis of myriad otherwise unstudied features, such as fault scarps, river channels, and even ancient ruins [Glennie et al., 2013b].

  11. Topological grid structure - A data structure for earth science modeling

    Science.gov (United States)

    Goldberg, M.; Hallada, W. A.; Marcell, R. F.; Lindboe, W.

    1984-01-01

    The automated analysis of land surface features is increasingly important to earth scientists. User-friendly algorithms for studying these features can be integrated into geographic information systems through the use of topological grid structure, which maintains the simplicity and transportability of standard grid structure while providing the essential capability to treat groups of contiguous, identically-classified pixels (corresponding to lakes, forests, fields, etc.) as distinct spatial entities.

  12. Learning about Earth Science: Tables and Tabulations. Superific Science Book X. A Good Apple Science Activity Book for Grades 5-8+.

    Science.gov (United States)

    Conway, Lorraine

    In an effort to provide science teachers with the tables and scales most often used in teaching earth science, this document was designed to coordinate each table with meaningful activities, projects and experiments. The major areas covered by the booklet are: (1) electromagnetic waves (with activities about light waves and sound waves); (2) the…

  13. The role of Facilities in Engaging and Informing the Public of EarthScope Science

    Science.gov (United States)

    Charlevoix, D. J.; Taber, J. J.; Berg, M.; Dorr, P. M.; McQuillan, P.; Olds, S. E.

    2013-12-01

    The IRIS and UNAVCO facilities play an important role in support of EarthScope through joint and independent education and outreach activities. These activities are focused on providing data and data products to a wide range of audiences, disseminating EarthScope science results through formal and informal venues, and informing the public of the broader impacts of EarthScope. The facilities are particularly well-suited for sustained engagement of multiple audiences over the decade-long course of EarthScope. One such example of a long-term effort was the Transportable Array student siting program, where over an 8 year period, students from about 55 institutions across the US and Canada conducted site reconnaissance and talked to landowners about EarthScope. Another activity focused on students was the development of a student intern program to support field engineering efforts during the construction of the Plate Boundary Observatory. Other ongoing activities include developing and maintaining relationships with media representatives and annual training of National Parks staff throughout the western U.S. The UNAVCO-IRIS partnership has been particularly valuable for EarthScope-related activities, where UNAVCO and IRIS work closely with the EarthScope National Office (ESNO) to bring EarthScope science to national, regional and local audiences within the EarthScope footprint. Collaborations have ranged across each group's products and services, including: EarthScope-focused teacher workshops, participation in EarthScope interpretive workshops for informal educators (led by ESNO), development of content for the IRIS Active Earth Monitor, preparing PBO-, USArray- and EarthScope-focused materials on topics such as Episodic Tremor and Slip for wider distribution through print, web, and mobile information technologies, and organizing research experiences for undergraduates on EarthScope-related topics. Other collaborations have focused on social media, and the development

  14. Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Truhan, J.J.; Hopper, R.W.; Gordon, K.M. (eds.)

    1980-10-28

    Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research.

  15. Increasing Diversity in the K-16 Pipeline in Earth and Space Science

    Science.gov (United States)

    Walter, D.; Payne, L.

    2006-05-01

    We discuss the successes and challenges of a comprehensive program implemented at South Carolina State University (SCSU) that is intended to increase diversity in earth and space science. SCSU is a Historically Black College/University that has partnered with NASA and others over the past decade to develop activities that have largely concentrated on space science. We have effectively brought together scientists and educators to implement teacher training, K-12 student activities, public outreach and an undergraduate research program. Based on our space science experience we are applying the "lessons learned" to a new earth science program. Support has been provided by NASA MUCERPI (NNG04GD62G), NASA MU-SPIN (NNG04GC40A), NASA SERCH (NCC 5-607) and NASA's Science Mission Directorate (NRA NN-H-04-Z-YO-006-N).

  16. Earth Systems Science and Elementary Teacher Preparation: The UNO Model for Improving Science and Mathematics Content and Pedagogy Skills

    Science.gov (United States)

    Hall, F. R.; Buxton, C.

    2002-05-01

    The University of New Orleans is located on the south-shore of Lake Pontchartrain. At UNO, we have established a unique collaboration between the Colleges of Science and Education in the preparation of preservice elementary school teachers. Earth Systems Science themes, based on the local environment, provide the framework for understanding science and mathematics content. In both the content and teaching methods courses, student learning revolves around hands-on, minds-on activies. In both classes, the age-appropriate technology is used as the students perform research projects on Lake Pontchartrain and the Mississippi River. The students are also required to practice their craft in both courses. In the science content courses, the students are required to research a topic that parallels the content learned during the semester, create lesson plans, and teach the subject to the class using inquiry-based methodology. In the teaching methods course, students are required to develop curricula and field test them in a local elementary school. Surveying students at the end of the semester suggests that using Earth Systems Science themes on the local environment as the framework for teaching science content and pedagogy not only improves the students content skills but