WorldWideScience

Sample records for earth sciences division

  1. Earth Sciences Division, collected abstracts-1977

    International Nuclear Information System (INIS)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-01-01

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division

  2. Earth Sciences Division collected abstracts: 1979

    International Nuclear Information System (INIS)

    Henry, A.L.; Schwartz, L.L.

    1980-01-01

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  3. Earth Sciences Division annual report 1981

    International Nuclear Information System (INIS)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences

  4. Earth Sciences Division, collected abstracts, 1978

    International Nuclear Information System (INIS)

    Taasevigen, D.K.; Henry, A.L.; Madsen, S.K.

    1979-01-01

    Abstracts of papers, internal reports, and talks presented during 1978 at national and international meetings by members of the Earth Sciences Division of the Lawrence Livermore Laboratory are compiled. The arrangement is alphabetical (by author). For any given report, a bibliographic reference appears under the name of each coauthor. A topical index at the end provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  5. Earth Sciences Division collected abstracts: 1980

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Hornady, B.F. (eds.)

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  6. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  7. Earth Sciences Division collected abstracts: 1980

    International Nuclear Information System (INIS)

    Henry, A.L.; Hornady, B.F.

    1981-01-01

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author

  8. Earth Sciences Division annual report, 1976

    International Nuclear Information System (INIS)

    Hornady, B.; Duba, A.

    1977-01-01

    This compilation lists abstracts of papers, internal reports, and talks presented during 1976 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. Subjects include: coal gasification, gas stimulation, geothermal fields, oil shale retorting, radioactive waste management, geochemistry, geophysics, seismology, explosive phenomenology, and miscellaneous studies

  9. Earth Sciences Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  10. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  11. Earth Sciences Division annual report 1990

    International Nuclear Information System (INIS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required

  12. Earth Sciences Division, collected abstracts-1977. [Research programs

    Energy Technology Data Exchange (ETDEWEB)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-05-24

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division.

  13. Earth Sciences Division annual report 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  14. Geosciences program annual report 1978. [LBL Earth Sciences Division

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.

    1978-01-01

    This report is a reprint of the Geosciences section of the LBL Earth Sciences Division Annual Report 1978 (LBL-8648). It contains summary papers that describe fundamental studies addressing a variety of earth science problems of interest to the DOE. They have applications in such diverse areas as geothermal energy, oil recovery, in situ coal gasification, uranium resource evaluation and recovery, and earthquake prediction. Completed work has been reported or likely will be in the usual channels. (RWR)

  15. Earth Sciences Division. Annual report 1979

    International Nuclear Information System (INIS)

    1980-07-01

    This annual report contains articles describing the research programs conducted during the year. Major areas of interest include geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, geothermal environmental research, basic geosciences studies, applied geosciences studies, nuclear waste isolation, and marine sciences

  16. Earth Sciences Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This annual report contains articles describing the research programs conducted during the year. Major areas of interest include geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, geothermal environmental research, basic geosciences studies, applied geosciences studies, nuclear waste isolation, and marine sciences. (ACR)

  17. Earth Sciences Division Research Summaries 2002-2003

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4

  18. Earth Sciences Division Research Summaries 2002-2003

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.

    2003-01-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental

  19. Earth Sciences Division Research Summaries 2006-2007

    International Nuclear Information System (INIS)

    DePaolo, Donald; DePaolo, Donald

    2008-01-01

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  20. Earth Sciences Division Research Summaries 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  1. Research results reported by OEO summer (1981) student employees of LLNL working with Earth Sciences (K) Division personnel

    International Nuclear Information System (INIS)

    Doyle, M.C.; Griffith, P.J.; Kreevoy, E.P.; Turner, H.J. III; Tatman, D.A.

    1982-01-01

    Significant experimental results were achieved in a number of research programs that were carried out during the summer of 1981 by students sponsored by the Office of Equal Opportunity at the Lawrence Livermore National Laboratory. These students were working with Earth Sciences (K) Division personnel. Accomplishments include the following: (1) preparation of post-burn stratigraphic sections for the Hoe Creek III experiment, Underground Coal Gasification project; (2) preparation of miscellaneous stratigraphic sections in the Climax granite near the Spent Fuel Test, Nevada Test Site, for the Waste Isolation Project; (3) confirmation of the applicability of a new theory relating to subsidence (solid matrix movement); (4) experimental confirmation that organic groundwater contaminants produced during an underground coal gasification experiment can be removed by appropriate bacterial treatment; (5) development of data supporting the extension of the Greenville Fault Zone into the Northern Diablo Range (Alameda and Santa Clara Counties, California); (6) completion of a literature review on hazardous waste (current disposal technology, regulations, research needs); (7) preparation of a map showing levels of background seismic noise in the USSR; (8) demonstration of a correlation of explosion size with the P-wave magnitude of the seismic signal produced by the explosion; and (9) reduction of data showing the extent of ground motion resulting from subsidence in the vicinity of the Hoe Creek III experiment, Underground Coal Gasification Project

  2. Research results reported by OEO summer (1981) student employees of LLNL working with Earth Sciences (K) Division personnel

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, M. C.; Griffith, P. J.; Kreevoy, E. P.; Turner, III, H. J.; Tatman, D. A.

    1982-01-01

    Significant experimental results were achieved in a number of research programs that were carried out during the summer of 1981 by students sponsored by the Office of Equal Opportunity at the Lawrence Livermore National Laboratory. These students were working with Earth Sciences (K) Division personnel. Accomplishments include the following: (1) preparation of post-burn stratigraphic sections for the Hoe Creek III experiment, Underground Coal Gasification project; (2) preparation of miscellaneous stratigraphic sections in the Climax granite near the Spent Fuel Test, Nevada Test Site, for the Waste Isolation Project; (3) confirmation of the applicability of a new theory relating to subsidence (solid matrix movement); (4) experimental confirmation that organic groundwater contaminants produced during an underground coal gasification experiment can be removed by appropriate bacterial treatment; (5) development of data supporting the extension of the Greenville Fault Zone into the Northern Diablo Range (Alameda and Santa Clara Counties, California); (6) completion of a literature review on hazardous waste (current disposal technology, regulations, research needs); (7) preparation of a map showing levels of background seismic noise in the USSR; (8) demonstration of a correlation of explosion size with the P-wave magnitude of the seismic signal produced by the explosion; and (9) reduction of data showing the extent of ground motion resulting from subsidence in the vicinity of the Hoe Creek III experiment, Underground Coal Gasification Project.

  3. Near-Earth space hazards and their detection (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 March 2013)

    Science.gov (United States)

    2013-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), titled "Near-Earth space hazards and their detection", was held on 27 March 2013 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Emel'yanenko V V, Shustov B M (Institute of Astronomy, RAS, Moscow) "The Chelyabinsk event and the asteroid-comet hazard"; (2) Chugai N N (Institute of Astronomy, RAS, Moscow) "A physical model of the Chelyabinsk event"; (3) Lipunov V M (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "MASTER global network of optical monitoring"; (4) Beskin G M (Special Astrophysical Observatory, RAS, Arkhyz, Karachai-Cirkassian Republic) "Wide-field optical monitoring systems with subsecond time resolution for the detection and study of cosmic threats". The expanded papers written on the base of oral reports 1 and 4 are given below. • The Chelyabinsk event and the asteroid-comet hazard, V V Emel'yanenko, B M Shustov Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 833-836 • Wide-field subsecond temporal resolution optical monitoring systems for the detection and study of cosmic hazards, G M Beskin, S V Karpov, V L Plokhotnichenko, S F Bondar, A V Perkov, E A Ivanov, E V Katkova, V V Sasyuk, A Shearer Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 836-842

  4. Functional requirements document for NASA/MSFC Earth Science and Applications Division: Data and information system (ESAD-DIS). Interoperability, 1992

    Science.gov (United States)

    Stephens, J. Briscoe; Grider, Gary W.

    1992-01-01

    These Earth Science and Applications Division-Data and Information System (ESAD-DIS) interoperability requirements are designed to quantify the Earth Science and Application Division's hardware and software requirements in terms of communications between personal and visualization workstation, and mainframe computers. The electronic mail requirements and local area network (LAN) requirements are addressed. These interoperability requirements are top-level requirements framed around defining the existing ESAD-DIS interoperability and projecting known near-term requirements for both operational support and for management planning. Detailed requirements will be submitted on a case-by-case basis. This document is also intended as an overview of ESAD-DIs interoperability for new-comers and management not familiar with these activities. It is intended as background documentation to support requests for resources and support requirements.

  5. Near-Earth space hazards and their detection (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 March 2013)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), titled N ear-Earth space hazards and their detection , was held on 27 March 2013 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Emel'yanenko V V, Shustov B M (Institute of Astronomy, RAS, Moscow) T he Chelyabinsk event and the asteroid-comet hazard ; (2) Chugai N N (Institute of Astronomy, RAS, Moscow) A physical model of the Chelyabinsk event ; (3) Lipunov V M (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) M ASTER global network of optical monitoring ; (4) Beskin G M (Special Astrophysical Observatory, RAS, Arkhyz, Karachai-Cirkassian Republic) W ide-field optical monitoring systems with subsecond time resolution for the detection and study of cosmic threats . The expanded papers written on the base of oral reports 1 and 4 are given below. • The Chelyabinsk event and the asteroid-comet hazard, V V Emel'yanenko, B M Shustov Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 833–836 • Wide-field subsecond temporal resolution optical monitoring systems for the detection and study of cosmic hazards, G M Beskin, S V Karpov, V L Plokhotnichenko, S F Bondar, A V Perkov, E A Ivanov, E V Katkova, V V Sasyuk, A Shearer Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 836–842 (conferences and symposia)

  6. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2012-02-28

    ... Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science... following topics: --Earth Science Division Update --Committee on Earth Observations Satellites and Other...

  7. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  8. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2010-10-26

    ... Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science... following topics: --Earth Science Division Update. --Deformation, Ecosystem Structure and Dynamics of Ice...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. ... Geosciences Division, Marine, Geo and Planetary Sciences Group, Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area, Space Applications Centre ...

  10. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  11. 75 FR 81315 - Earth Sciences Proposal Review Panel; Notice of Meeting

    Science.gov (United States)

    2010-12-27

    ... NATIONAL SCIENCE FOUNDATION Earth Sciences Proposal Review Panel; Notice of Meeting In accordance... announces the following meeting. Name: Proposal Review Panel in Earth Sciences (1569). Date and Time... Kelz, Program Director, Instrumentation & Facilities Program, Division of Earth Sciences, Room 785...

  12. Technical activities, 1990: Surface Science Division

    International Nuclear Information System (INIS)

    Powell, C.J.

    1991-05-01

    The report summarizes technical activities and accomplishments of the NIST Surface Science Division during Fiscal Year 1990. Overviews are presented of the Division and of its three constituent groups: Surface Dynamical Processes, Thin Films and Interfaces, and Surface Spectroscopies and Standards. These overviews are followed by reports of selected technical accomplishments during the year. A summary is given of Division outputs and interactions that includes lists of publications, talks, committee assignments, seminars (including both Division seminars and Interface Science seminars arranged through the Division), conferences organized, and a standard reference material certified. Finally, lists are given of Division staff and of guest scientists who have worked in the Division during the past year

  13. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  14. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  15. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  16. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  17. Medical Sciences Division report for 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This year's Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE's core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE)

  18. Earth Science Misconceptions.

    Science.gov (United States)

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  19. Environmental Sciences Division. Annual progress report for period ending September 30, 1979

    International Nuclear Information System (INIS)

    1980-03-01

    Progress for the period ending September 30, 1979 by the Environmental Sciences Division is reported. Sections reporting include terrestrial ecoloy; earth sciences; environmental resources; aquatic ecology; synthetic fuels; nuclear program; environmental impacts program; ecosystem studies; and burial ground technology

  20. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  1. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2011-04-14

    ... Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science... the room. The agenda for the meeting includes the following topics: --Earth Science Division Update...

  2. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  3. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  4. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  5. Medical Sciences Division report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This year`s Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE`s core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE).

  6. Chemical Sciences Division: Annual report 1992

    International Nuclear Information System (INIS)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences)

  7. Nuclear Science Division: 1993 Annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations

  8. Nuclear Science Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  9. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  10. Life Sciences Division annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, B.L.; Cram, L.S. (comps.)

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  11. Life Sciences Division annual report, 1988

    International Nuclear Information System (INIS)

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information

  12. Environmental Sciences Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  13. Environmental Sciences Division annual progress report for period ending September 30, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations

  14. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  15. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  16. Chemical and Laser Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions

  17. Processing of monazite at the rare earth division,Udyogamandal

    International Nuclear Information System (INIS)

    Narayanan, N.S.; Thulasidoss, S.; Ramachandran, T.V.; Swaminathan, T.V.; Prasad, K.R.

    1988-01-01

    The processing techniques adopted at the Rare Earth Division of the Indian Rare Earths Limited at Udyogamandal, for the production of rare earth compounds of various compositions and purity grades are reviewed. Over 100 different compounds are produced and marketed, and these include mixed rare earths chloride, crude thorium concentrate, cerium oxide, cerium hydrate, rare earths carbonate, didymium salts and individual rare earth oxides and salts. Also, the trisodium phosphate obtained as byproduct in the processing of monazite, is recovered and marketed. The process scheme for monazite essentially involves alkaline digestion of ground monazite, removal of the by-product trisodium phosphate, separation of thorium through preferential dissolution of rare earths hydroxide in hydrochloric acid under controlled pH and temperature conditions followed by purification, and evaporation of the chloride solution to yield pure rare earths chloride. Part of the chloride is utilised for the production of individual rare earth compounds after separation by solvent extraction and ion exchange processes. Individual rare earth compounds of 99.99 %+ purity are regularly produced to cater to the demand within the country. (author) 8 figs., 1 tab

  18. Encyclopedia of earth system science

    National Research Council Canada - National Science Library

    Nierenberg, William Aaron

    1992-01-01

    .... The very diversity of the articles attests to the complexity of earth system science as a unique interdisciplinary venture to place humanity in a position to move wisely to protect the global habitat...

  19. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  20. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  1. CAS Panel Proposes Priorities for Earth Science in Next Two Decades

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ CAS member Zhao Zhongxian, director of Working Committee on Consultation and Evaluation of the CAS Academic Divisions (CASAD),has announced that the Academic Division of Earth Sciences has drafted a consultative report on planning and strategic studies of the mid- and long-term development for earth sciences in China.

  2. Division of information and quantum sciences

    International Nuclear Information System (INIS)

    2016-01-01

    The advent of the digital society where tremendous amount of information is electronically accessible has brought the intelligent information processing technologies indispensable. This division consists of seven departments; Information Science Departments (Knowledge Science, Intelligent Media, Architecture for Intelligence, Reasoning for Intelligence), Quantum Science Departments (Photonic and Electronic Materials, Semiconductor Electronics, and Advanced Electron Devices. The former four and the latter three departments aim to establish fundamental techniques to support the advanced digital society in terms of software and hardware technologies respectively. The departments on the former software technologies work on the task of computerizing the intelligent human information processing capability to help solving difficult engineering problems and assist intellectual activities. The departments on the latter hardware technologies pursue various approaches in the fields of electronic materials design and tailoring, surface physics, nanometer scale materials fabrication and characterization, semiconductor nanostructures for quantum devices, semiconductor-based new bio/chemical sensors, organic materials and biomolecules. We challenge to output world-widely significant achievements under our systematic cooperation, and further collaborate with researchers of domestic and overseas universities, research institutes and private companies. Moreover, we educate many graduate students belonging to Graduate School of Science (Department of Physics), Graduate School of Engineering (Department of Electrical, Electronic and Information Engineering, Department of Applied Physics), Graduate School of Engineering Science (Department of Materials Engineering Science), and Graduate School of Information Science and Technology (Department of Computer Science, Department of Information and Physical Sciences) under the aim to grow young researchers having both advanced knowledge and

  3. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  4. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  5. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  6. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  7. NASA's Earth Science Flight Program overview

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  8. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  9. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  10. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  11. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  12. Smarter Earth Science Data System

    Science.gov (United States)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  13. Refresher Course on Earth Sciences

    Indian Academy of Sciences (India)

    Information and Announcements ... Introduction: Geoscience education in India is in the throes of a serious crisis and any paradigm ... considerations: geology needs to be taught as an earth system science, linked with cognate ... viable and employment-generating management of natural resources: the global trend of.

  14. Nuclear Science Division 1994 annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The open-quotes early implementationclose quotes phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large γ-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive 21 Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium

  15. Nuclear Science Division 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  16. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  17. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Science.gov (United States)

    2012-09-11

    ... Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee... following topics: --Applied Sciences Program Update --Earth Science Data Latency Study Preliminary Update...

  18. Earth Science Capability Demonstration Project

    Science.gov (United States)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  19. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  20. Environment and Medical Sciences Division Progress Report

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1980-06-01

    The 1979 annual progress report of the UKAEA Environmental and Medical Sciences Division covers both radiological and non-nuclear research programmes in the environmental and toxicological fields. The specific topics were 1) 'atmospheric pollution' which included the analysis of atmospheric trace gases by gas chromatography/mass spectrometry, the life cycle of atmospheric sulphur compounds, photochemical pollution, studies on stratospheric reactions, stratospheric ozone and the effects of pollutants, upper air sampling and monitoring gaseous atmospheric pollutants with passive samplers; 2) miscellaneous 'environmental safety projects'; 3) 'radiation physics' projects concerning a) radioactive fallout, b) studies of stable trace elements in the atmospheric environment and studies of radioactivity in the environment, c) various aspects of dosimetry research including radiation biophysics, d) personnel dosimetry, e) applied radiation spectrometry and f) data systems; 5) 'aerosol and metabolic studies' including whole body counting studies; 6) 'inhalation toxicology and radionuclide analysis' studies including actinide inhalation, cytotoxicity and fibrogenicity of non-radioactive dusts, asbestos and glass fibre research, a Qauntimet 720 image analysis service and radionuclide analysis in biological materials; and 7) 'analytical services' used in relation to 'environmental safety and chemical analysis' projects. (U.K.)

  1. Resource Management in the Microgravity Science Division

    Science.gov (United States)

    Casselle, Justine

    2004-01-01

    In the Microgravity Science Division, the primary responsibilities of the Business Management Office are resource management and data collection. Resource management involves working with a budget to do a number of specific projects, while data collection involves collecting information such as the status of projects and workforce hours. This summer in the Business Management Office I assisted Margie Allen with resource planning and the implementation of specific microgravity projects. One of the main duties of a Project Control Specialists, such as my mentor, is to monitor and analyze project manager s financial plans. Project managers work from the bottom up to determine how much money their project will cost. They then set up a twelve month operating plan which shows when money will be spent. I assisted my mentor in checking for variances in her data against those of the project managers. In order to successfully check for those variances, we had to understand: where the project is including plans vs. actual performance, why it is in its present condition, and what the future impact will be based on known budgetary parameters. Our objective was to make sure that the plan, or estimated resources input, are a valid reflection of the actual cost. To help with my understanding of the process, over the course of my tenure I had to obtain skills in Microsoft Excel and Microsoft Access.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7 ... to good protective capacity rating as can be seen from the high longitudinal conductance ... School of Environment and Earth Sciences, North Maharashtra University, ...

  3. Earth Sciences annual report, 1987

    International Nuclear Information System (INIS)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications

  4. Earth Systems Science: An Analytic Framework

    Science.gov (United States)

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  5. Environmental Sciences Division Groundwater Program Office

    International Nuclear Information System (INIS)

    1993-01-01

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO's staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater)

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Journal of Earth System Science was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed 'Journal of Earth System ...

  7. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  8. Environmental Sciences Division. Annual progress report for period ending September 30, 1980

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report

  9. Environmental Sciences Division. Annual progress report for period ending September 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report.

  10. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    Science.gov (United States)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  11. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  12. Nuclear Science Division, 1995--1996 annual report

    International Nuclear Information System (INIS)

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document

  13. Nuclear Science Division, 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Poskanzer, A.M. [ed.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  14. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    International Nuclear Information System (INIS)

    1988-05-01

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs

  15. Nutritional Science Staff | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grid for Earth Science Applications

    Science.gov (United States)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to

  17. Earth and space science information systems

    Energy Technology Data Exchange (ETDEWEB)

    Zygielbaum, A. (ed.) (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States))

    1993-01-01

    These proceedings represent papers presented at the Earth and Space Science Information Systems (ESSIS) Conference. The attendees included scientists and engineers across many disciplines. New trends in information organizations were reviewed. One hundred and twenty eight papers are included in this volume, out of these two have been abstracted for the Energy Science and Technology database. The topics covered in the papers range from Earth science and technology to astronomy and space, planetary science and education. (AIP)

  18. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    1984-12-01

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  19. Ivestigating Earth Science in Urban Schoolyards

    Science.gov (United States)

    Endreny, Anna; Siegel, Donald I.

    2009-01-01

    The Urban Schoolyards project is a two year partnership with a university Earth Science Department and the surrounding urban elementary schools. The goal of the project was to develop the capacity of elementary teachers to teach earth science lessons using their schoolyards and local parks as field sites. The university personnel developed lessons…

  20. Elementary Children's Retrodictive Reasoning about Earth Science

    Science.gov (United States)

    Libarkin, Julie C.; Schneps, Matthew H.

    2012-01-01

    We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…

  1. Senior High School Earth Sciences and Marine Sciences.

    Science.gov (United States)

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  2. Earth Science Mining Web Services

    Science.gov (United States)

    Pham, Long; Lynnes, Christopher; Hegde, Mahabaleshwa; Graves, Sara; Ramachandran, Rahul; Maskey, Manil; Keiser, Ken

    2008-01-01

    To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at he GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADam components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestras the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to the infusion is the loosely coupled, Web-Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.

  3. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e + e - annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of πN scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies

  4. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  5. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 1 ... Crustal evolution; granites; Phanerozoic; Sr-Nd isotopes; east-central Asia. ... Department of Geology, Changchun University of Science and Technology, Changchun ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 3 ... proposed to reconstruct the ionospheric images with high resolution and high efficiency. ... Graduate School of Chinese Academy of Sciences, Beijing 100 039, China.

  8. Testing Reproducibility in Earth Sciences

    Science.gov (United States)

    Church, M. A.; Dudill, A. R.; Frey, P.; Venditti, J. G.

    2017-12-01

    Reproducibility represents how closely the results of independent tests agree when undertaken using the same materials but different conditions of measurement, such as operator, equipment or laboratory. The concept of reproducibility is fundamental to the scientific method as it prevents the persistence of incorrect or biased results. Yet currently the production of scientific knowledge emphasizes rapid publication of previously unreported findings, a culture that has emerged from pressures related to hiring, publication criteria and funding requirements. Awareness and critique of the disconnect between how scientific research should be undertaken, and how it actually is conducted, has been prominent in biomedicine for over a decade, with the fields of economics and psychology more recently joining the conversation. The purpose of this presentation is to stimulate the conversation in earth sciences where, despite implicit evidence in widely accepted classifications, formal testing of reproducibility is rare.As a formal test of reproducibility, two sets of experiments were undertaken with the same experimental procedure, at the same scale, but in different laboratories. Using narrow, steep flumes and spherical glass beads, grain size sorting was examined by introducing fine sediment of varying size and quantity into a mobile coarse bed. The general setup was identical, including flume width and slope; however, there were some variations in the materials, construction and lab environment. Comparison of the results includes examination of the infiltration profiles, sediment mobility and transport characteristics. The physical phenomena were qualitatively reproduced but not quantitatively replicated. Reproduction of results encourages more robust research and reporting, and facilitates exploration of possible variations in data in various specific contexts. Following the lead of other fields, testing of reproducibility can be incentivized through changes to journal

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Raghavendra Ashrit. Articles written in Journal of Earth System Science. Volume 115 Issue 3 June 2006 pp 299-313. Simulation of a Himalayan cloudburst event · Someshwar Das Raghavendra Ashrit M W Moncrieff · More Details Abstract Fulltext PDF. Intense rainfall often ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Denizhan Vardar. Articles written in Journal of Earth System Science. Volume 127 Issue 1 February 2018 pp 13. Seismic stratigraphy and depositional history of the BüyükÇekmece Bay since Latest Pleistocene, Marmara Sea, Turkey · Denizhan Vardar Hakan Alp Bedri ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Alper Şengül. Articles written in Journal of Earth System Science. Volume 124 Issue 7 October 2015 pp 1429-1443. Determining the site effects of 23 October 2011 earthquake (Van province, Turkey) on the rural areas using HVSR microtremor method · İsmail Akkaya Ali ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Barin Kumar De. Articles written in Journal of Earth System Science. Volume 122 Issue 4 August 2013 pp 1013-1021. Characteristics of severe thunderstorms studied with the aid of VLF atmospherics over North–East India · A Guha Trisanu Banik Barin Kumar De Rakesh ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V K Gaur. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 1-3. Editorial · V K Gaur · More Details Fulltext PDF. Volume 109 Issue 4 December 2000 pp 393-394. Editorial · V K Gaur · More Details Fulltext PDF. Volume 112 Issue 3 ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V D Mishra. Articles written in Journal of Earth System Science. Volume 118 Issue 1 February 2009 pp 11-26. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain · V D Mishra J K Sharma K K Singh N K Thakur M Kumar.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Naveen Kumar. Articles written in Journal of Earth System Science. Volume 118 Issue 5 October 2009 pp 539-549. Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain · Atul Kumar Dilip Kumar Jaiswal Naveen ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Sajani. Articles written in Journal of Earth System Science. Volume 116 Issue 2 April 2007 pp 149-157. The role of low-frequency intraseasonal oscillations in the anomalous Indian summer monsoon rainfall of 2002 · S Sajani S Naseema Beegum K Krishna Moorthy.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Sikdar. Articles written in Journal of Earth System Science. Volume 126 Issue 2 March 2017 pp 29. Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain · P K Sikdar Surajit Chakraborty.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Suman Sinha. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 725-735. Developing synergy regression models with space-borne ALOS PALSAR and Landsat TM sensors for retrieving tropical forest biomass · Suman Sinha C ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Banerjee. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 87-96. Facies, dissolution seams and stable isotope compositions of the Rohtas Limestone (Vindhyan Supergroup) in the Son valley area, central India · S Banerjee S K ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abhijit Chakraborty. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 275-286. Significance of transition between Talchir Formation and Karharbari Formation in Lower Gondwana basin evolution — A study in West Bokaro Coal basin, ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Shalini. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Pant. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 303-313. Characteristics of spectral aerosol optical depths over India during ICARB · S Naseema Beegum K Krishna Moorthy Vijayakumar S Nair S Suresh Babu S K Satheesh V ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Gh Jeelani. Articles written in Journal of Earth System Science. Volume 120 Issue 3 June 2011 pp 399-411. Assessing variability of water quality in a groundwater-fed perennial lake of Kashmir Himalayas using linear geostatics · S Sarah Gh Jeelani Shakeel Ahmed.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Sarkar. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 157-169. Palaeomonsoon and palaeoproductivity records of O, C and CaCO3 variations in the northern Indian Ocean sediments · A Sarkar R Ramesh S K Bhattacharya ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V V S S Sarma. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 279-283. Controls of dimethyl sulphide in the Bay of Bengal during BOBMEX-Pilot cruise 1998 · D M Shenoy M Dileep Kumar V V S S Sarma · More Details Abstract ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Dharanirajan. Articles written in Journal of Earth System Science. Volume 123 Issue 8 December 2014 pp 1819-1830. Geomorphic settings of mangrove ecosystem in South Andaman Island: A geospatial approach · E Yuvaraj K Dharanirajan S Jayakumar Saravanan.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C Gnanaseelan. Articles written in Journal of Earth System Science. Volume 114 Issue 5 October 2005 pp 475-491. Hydrography and water masses in the southeastern Arabian Sea during March-June 2003 · S S C Shenoi D Shankar G S Michael J Kurian K K Varma M R ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Gupta. Articles written in Journal of Earth System Science. Volume 114 Issue 5 October 2005 pp 523-531. Normalized impedance function and the straightforward inversion scheme for magnetotelluric data · Sri Niwas P K Gupta V K Gaur · More Details Abstract Fulltext ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C B S Dutt. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 243-262. Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): An overview · K Krishna Moorthy S K Satheesh S Suresh Babu C B S Dutt · More Details ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Sasibhushana Rao. Articles written in Journal of Earth System Science. Volume 116 Issue 5 October 2007 pp 407-411. GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling · G Sasibhushana Rao.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Venkat Ratnam. Articles written in Journal of Earth System Science. Volume 120 Issue 5 October 2011 pp 807-823. Long-term variations in outgoing long-wave radiation (OLR), convective available potential energy (CAPE) and temperature in the tropopause region over ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Madhupratap. Articles written in Journal of Earth System Science. Volume 109 Issue 4 December 2000 pp 433-441. Physical control of primary productivity on a seasonal scale in the central and eastern Arabian Sea · S Prasanna kumar M Madhupratap M Dileep kumar M ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bhushan R Lamsoge. Articles written in Journal of Earth System Science. Volume 123 Issue 7 October 2014 pp 1541-1566. Impact of over-exploitation on groundwater quality: A case study from WR-2Watershed, India · Anil M Pophare Bhushan R Lamsoge Yashwant B ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Dhruba Mukhopadhyay. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 22-38. Anasagar gneiss: A folded granitoid pluton in the Phanerozoic South Delhi Fold Belt, central Rajasthan · Dhruba Mukhopadhyay Tapas Bhattacharyya ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Israil. Articles written in Journal of Earth System Science. Volume 117 Issue 3 June 2008 pp 189-200. Magnetotelluric investigations for imaging electrical structure of Garhwal Himalayan corridor, Uttarakhand, India · M Israil D K Tyagi P K Gupta Sri Niwas · More Details ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Keqing Zong. Articles written in Journal of Earth System Science. Volume 127 Issue 3 April 2018 pp 43. Early Neoarchaean A-type granitic magmatism by crustal reworking in Singhbhum craton: Evidence from Pala Lahara area, Orissa · Abhishek Topno Sukanta Dey ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Arka Rudra. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 935-941. Molecular composition and paleobotanical origin of Eocene resin from northeast India · Arka Rudra Suryendu Dutta Srinivasan V Raju · More Details Abstract Fulltext ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Vijaya. Articles written in Journal of Earth System Science. Volume 120 Issue 3 June 2011 pp 545-556. Fine-scale responses of phytoplankton to freshwater influx in a tropical monsoonal estuary following the onset of southwest monsoon · Suraksha M Pednekar S G Prabhu ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Anup Saha. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 885-895. Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half- ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Santimoy Kundu. Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 161-170. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer · Shishir Gupta Rehena Sultana Santimoy Kundu.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rehena Sultana. Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 161-170. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer · Shishir Gupta Rehena Sultana Santimoy Kundu.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. N K Thakur. Articles written in Journal of Earth System Science. Volume 118 Issue 1 February 2009 pp 11-26. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain · V D Mishra J K Sharma K K Singh N K Thakur M Kumar.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sharmistha De Sarkar. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 715-727. Arc parallel extension in Higher and Lesser Himalayas, evidence from western Arunachal Himalaya, India · Sharmistha De Sarkar George Mathew ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Ganju. Articles written in Journal of Earth System Science. Volume 117 Issue 5 October 2008 pp 575-587. Mountain range specific analog weather forecast model for northwest Himalaya in India · D Singh A Ganju · More Details Abstract Fulltext PDF. Mountain range ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J C Joshi. Articles written in Journal of Earth System Science. Volume 126 Issue 1 February 2017 pp 3. Optimisation of Hidden Markov Model using Baum–Welch algorithm for prediction of maximum and minimum temperature over Indian Himalaya · J C Joshi Tankeshwar ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Sikdar. Articles written in Journal of Earth System Science. Volume 120 Issue 3 June 2011 pp 435-446. Threat of land subsidence in and around Kolkata City and East Kolkata Wetlands, West Bengal, India · P Sahu P K Sikdar · More Details Abstract Fulltext PDF.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Saji Mohandas. Articles written in Journal of Earth System Science. Volume 117 Issue 5 October 2008 pp 603-620. Skills of different mesoscale models over Indian region during monsoon season: Forecast errors · Someshwar Das Raghavendra Ashrit Gopal Raman ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B P Rawat. Articles written in Journal of Earth System Science. Volume 110 Issue 1 March 2001 pp 63-76. Are Majhgawan-Hinota pipe rocks truly group-I kimberlite? Ravi Shanker S Nag A Ganguly A Absar B P Rawat G S Singh · More Details Abstract Fulltext PDF.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajdeep Roy. Articles written in Journal of Earth System Science. Volume 120 Issue 6 December 2011 pp 1145-1154. Identification of non-indigenous phytoplankton species dominated bloom off Goa using inverted microscopy and pigment (HPLC) analysis · P V Bhaskar ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Evangelin Ramani Sujatha. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1337-1350. Landslide susceptibility analysis using Probabilistic Certainty Factor Approach: A case study on Tevankarai stream watershed, India.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Parmanand Sharma. Articles written in Journal of Earth System Science. Volume 121 Issue 3 June 2012 pp 625-636. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India · Virendra Bahadur Singh A L Ramanathan Jose George ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Umesh S Balpande. Articles written in Journal of Earth System Science. Volume 123 Issue 7 October 2014 pp 1501-1515. Morphometric analysis of Suketi river basin, Himachal Himalaya, India · Anil M Pophare Umesh S Balpande · More Details Abstract Fulltext PDF.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Tarun Solanki. Articles written in Journal of Earth System Science. Volume 127 Issue 1 February 2018 pp 9. Geomorphic investigation of the Late-Quaternary landforms in the southern Zanskar Valley, NW Himalaya · Shubhra Sharma Aadil Hussain Amit K Mishra Aasif Lone ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V S Dubey. Articles written in Journal of Earth System Science. Volume 114 Issue 5 October 2005 pp 515-522. Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R Srinivasan. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 57-65. Sm-Nd Ages of Two Meta-Anorthosite Complexes Around Holenarsipur: Constraints on the Antiquity of Archean Supracrustal Rocks of the Dharwar Craton.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Geetha Selvarani. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 311-328. Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing · G Maheswaran A Geetha Selvarani K Elangovan.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ashwini Kulkarni. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 203-210. Impact of global warming on cyclonic disturbances over south Asian region · Savita Patwardhan Ashwini Kulkarni K Krishna Kumar · More Details Abstract ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Kunhikrishnan. Articles written in Journal of Earth System Science. Volume 113 Issue 3 September 2004 pp 353-363. Observations of the atmospheric surface layer parameters over a semi arid region during the solar eclipse of August 11th, 1999 · Praveena Krishnan ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. David R Bridgland. Articles written in Journal of Earth System Science. Volume 120 Issue 3 June 2011 pp 503-530. Methods for determination of the age of Pleistocene tephra, derived from eruption of Toba, in central India · Rob Westaway Sheila Mishra Sushama Deo ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S D Kotal. Articles written in Journal of Earth System Science. Volume 117 Issue 2 April 2008 pp 157-168. A Statistical Cyclone Intensity Prediction (SCIP) model for the Bay of Bengal · S D Kotal S K Roy Bhowmik P K Kundu Ananda Kumar Das · More Details Abstract ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ali Asgari. Articles written in Journal of Earth System Science. Volume 123 Issue 2 March 2014 pp 365-379. Numerical evaluation of seismic response of shallow foundation on loose silt and silty sand · Ali Asgari Aliakbar Golshani Mohsen Bagheri · More Details Abstract ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J D Patil. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 301-310. Structural mapping of Chikotra River basin in the Deccan Volcanic Province of Maharashtra, India from ground magnetic data · S P Anand Vinit C Erram J D Patil N J ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A S Laxmi Prasad. Articles written in Journal of Earth System Science. Volume 114 Issue 6 December 2005 pp 725-731. Lunar ranging instrument for Chandrayaan-1 · J A Kamalakar K V S Bhaskar A S Laxmi Prasad R Ranjith K A Lohar R Venketeswaran T K Alex.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ananda K Das. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 165-184. Circulation characteristics of a monsoon depression during BOBMEX-99 using high-resolution analysis · Ananda K Das U C Mohanty Someshwar Das M Mandal ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Archana Tripathi. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 537-557. Stratigraphic status of coal horizon in Tatapani–Ramkola Coalfield, Chhattisgarh, India · Archana Tripathi Vijaya Srikanta Murthy B Chakarborty D K Das.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V B Sumithranand. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 507-517. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S P Anand. Articles written in Journal of Earth System Science. Volume 124 Issue 3 April 2015 pp 613-630. A relook into the crustal architecture of Laxmi Ridge, northeastern Arabian Sea from geopotential data · Nisha Nair S P Anand Mita Rajaram P Rama Rao.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Shantamoy Guha. Articles written in Journal of Earth System Science. Volume 126 Issue 2 March 2017 pp 21. Identification of drought in Dhalai river watershed using MCDM and ANN models · Sainath Aher Sambhaji Shinde Shantamoy Guha Mrinmoy Majumder.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C K Unnikrishnan. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 677-689. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model · C K Unnikrishnan M Rajeevan S ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Naseema Beegum. Articles written in Journal of Earth System Science. Volume 116 Issue 2 April 2007 pp 149-157. The role of low-frequency intraseasonal oscillations in the anomalous Indian summer monsoon rainfall of 2002 · S Sajani S Naseema Beegum K Krishna ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abdul Matin. Articles written in Journal of Earth System Science. Volume 118 Issue 4 August 2009 pp 379-390. Deformation mechanisms in the frontal Lesser Himalayan Duplex in Sikkim Himalaya, India · Abdul Matin Sweety Mazumdar · More Details Abstract Fulltext PDF.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Vishwas S Kale. Articles written in Journal of Earth System Science. Volume 117 Issue 6 December 2008 pp 959-971. Uplift along the western margin of the Deccan Basalt Province: Is there any geomorphometric evidence? Vishwas S Kale Nikhil Shejwalkar · More Details ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Panigrahy. Articles written in Journal of Earth System Science. Volume 120 Issue 1 February 2011 pp 19-25. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model · M R Pandya ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ratheesh Ramakrishnan. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1201-1213. Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations · Ratheesh Ramakrishnan A S ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Barnes. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G S Meena. Articles written in Journal of Earth System Science. Volume 115 Issue 3 June 2006 pp 333-347. Retrieval of stratospheric O3 and NO2 vertical profiles using zenith scattered light observations · G S Meena C S Bhosale D B Jadhav · More Details Abstract Fulltext ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C J Johny. Articles written in Journal of Earth System Science. Volume 125 Issue 3 April 2016 pp 521-538. Impact of hybrid GSI analysis using ETR ensembles · V S Prasad C J Johny · More Details Abstract Fulltext PDF. Performance of a hybrid assimilation system ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. T N Krishnamurti. Articles written in Journal of Earth System Science. Volume 115 Issue 2 April 2006 pp 185-201. Transitions in the surface energy balance during the life cycle of a monsoon season · T N Krishnamurti Mrinal K Biswas · More Details Abstract Fulltext PDF.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sukanta Dey. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 20. An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Krishnamoorthy. Articles written in Journal of Earth System Science. Volume 111 Issue 4 December 2002 pp 425-435. Detection of marine aerosols with IRS P4-Ocean Colour Monitor · Indrani Das M Mohan K Krishnamoorthy · More Details Abstract Fulltext PDF.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P C S Devara. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 205-221. Study of total column atmospheric aerosol optical depth, ozone and precipitable water content over Bay of Bengal during BOBMEX-99 · K K Dani R S ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sudhir Jain. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 345-353. Ionospheric irregularities at Antarctic using GPS measurements · Sunita Tiwari Amit Jain Shivalika Sarkar Sudhir Jain A K Gwal · More Details Abstract Fulltext PDF.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D Twinkle. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 329-342. Crustal structure and rift tectonics across the Cauvery–Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling · D Twinkle G ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R A Scrutton. Articles written in Journal of Earth System Science. Volume 123 Issue 1 February 2014 pp 33-47. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean · K S Krishna J M Bull O Ishizuka R A Scrutton S ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajeev Ranjan Kumar. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1177-1184. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Younes Jedoui. Articles written in Journal of Earth System Science. Volume 122 Issue 1 February 2013 pp 15-28. Investigation of sulphate origins in the Jeffara aquifer, southeastern Tunisia: A geochemical approach · Samir Kamel Mohamed Ben Chelbi Younes Jedoui.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rambhatla G Sastry. Articles written in Journal of Earth System Science. Volume 112 Issue 1 March 2003 pp 37-49. 2D Stabilised analytic signal method in DC pole-pole potential data interpretation · Paras R Pujari Rambhatla G Sastry · More Details Abstract Fulltext PDF.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Aavudai Anandhi. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 447-460. Assessing impact of climate change on season length in Karnataka for IPCC SRES scenarios · Aavudai Anandhi · More Details Abstract Fulltext PDF.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Y Sadhuram. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 37-49. Seasonal variability of physico-chemical characteristics of the Haldia channel of Hooghly estuary, India · Y Sadhuram V V Sarma T V Ramana Murty B ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Verma. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 21. Late Glacial–Holocene record of benthic foraminiferal morphogroups from the eastern Arabian Sea OMZ: Paleoenvironmental implications · K Verma S K Bharti A D Singh.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. T K Gundu Rao. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao C P ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K D Singh. Articles written in Journal of Earth System Science. Volume 122 Issue 1 February 2013 pp 93-106. A field technique for rapid lithological discrimination and ore mineral identification: Results from Mamandur Polymetal Deposit, India · D Ramakrishnan M Nithya ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A K Verma. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 75-86. A comparative study of ANN and Neuro-fuzzy for the prediction of dynamic constant of rockmass · T N Singh R Kanchan A K Verma K Saigal · More Details Abstract ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bhawanisingh G Desai. Articles written in Journal of Earth System Science. Volume 120 Issue 4 August 2011 pp 723-734. Discontinuity surfaces and event stratigraphy of Okha Shell Limestone Member: Implications for Holocene sea level changes, western India.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Monica Sharma. Articles written in Journal of Earth System Science. Volume 124 Issue 4 June 2015 pp 861-874. Evaluation of official tropical cyclone landfall forecast issued by India Meteorological Department · M Mohapatra D P Nayak Monica Sharma R P Sharma B K ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R S Rana. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 289-307. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India · M R Rao Ashok Sahni R S Rana Poonam Verma.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Suresh Chandra Kandpal. Articles written in Journal of Earth System Science. Volume 120 Issue 5 October 2011 pp 873-883. Subsurface signatures and timing of extreme wave events along the southeast Indian coast · Rajesh R Nair Madhav K Murari C S Vijaya Lakshmi ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abbas Goli Jirandeh. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 349-369. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran · Hamid Reza Pourghasemi Abbas Goli Jirandeh ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rahul Choudhury. Articles written in Journal of Earth System Science. Volume 125 Issue 7 October 2016 pp 1365-1377. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals · Tonkeswar Das Ananya Saikia ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sahadev Kumar. Articles written in Journal of Earth System Science. Volume 125 Issue 1 February 2016 pp 165-178. Coal fire mapping of East Basuria Colliery, Jharia coalfield using vertical derivative technique of magnetic data · S K Pal Jitendra Vaish Sahadev Kumar ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Senthil Kumar. Articles written in Journal of Earth System Science. Volume 119 Issue 5 October 2010 pp 745-751. Soil-gas helium and surface-waves detection of fault zones in granitic bedrock · G K Reddy T Seshunarayana Rajeev Menon P Senthil Kumar · More Details ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. George Mathew. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Pravin K Gupta. Articles written in Journal of Earth System Science. Volume 115 Issue 3 June 2006 pp 267-276. Fast computation of Hankel Transform using orthonormal exponential approximation of complex kernel function · Pravin K Gupta Sri Niwas Neeta Chaudhary.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Partha Pratim Chakraborty. Articles written in Journal of Earth System Science. Volume 115 Issue 1 February 2006 pp 23-36. Outcrop signatures of relative sea level fall on a siliciclastic shelf: Examples from Rewa Group of Proterozoic Vindhyan basin · Partha Pratim ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Manideepa Roy Choudhury. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 1033-1040. Deformation of footwall rock of Phulad Shear Zone, Rajasthan: Evidence of transpressional shear zone · Manideepa Roy Choudhury Subhrajyoti ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Christian Koeberl. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 91-108. Mineral chemistry of lava flows from Linga area of the Eastern Deccan Volcanic Province, India · Sohini Ganguly Jyotisankar Ray Christian Koeberl ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A P Dimri. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 329-344. Wintertime land surface characteristics in climatic simulations over the western Himalayas · A P Dimri · More Details Abstract Fulltext PDF. Wintertime regional climate ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C S Jha. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 271-281. Landscape level assessment of critically endangered vegetation of Lakshadweep islands using geo-spatial techniques · C Sudhakar Reddy Bijan Debnath P Hari ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sankar Kumar Nath. Articles written in Journal of Earth System Science. Volume 117 Issue S2 November 2008 pp 649-670. Seismic hazard scenario and attenuation model of the Garhwal Himalaya using near-field synthesis from weak motion seismometry · Sankar Kumar ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ranjit Das. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 19-28. Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India · Ranjit Das H R Wason M L ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Anurag Tripathi. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 17. Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics · Pramod Kumar Yadav P K Adhikari Shalivahan Srivastava Ved P ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bibhuti Gogoi. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 959-987. Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcanic and volcano-sedimentary sequence of Chotanagpur Granite Gneiss ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C Selvaraj. Articles written in Journal of Earth System Science. Volume 116 Issue 3 June 2007 pp 179-186. Fairweather atmospheric electricity at Antarctica during local summer as observed from Indian station, Maitri · C Panneerselvam C Selvaraj K Jeeva K U Nair C P ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Aditi Singh. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 26. Prediction of fog/visibility over India using NWP Model · Aditi Singh John P George Gopal Raman Iyengar · More Details Abstract Fulltext PDF. Frequent occurrence of fog ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Dajkumar Sahayam. Articles written in Journal of Earth System Science. Volume 119 Issue 1 February 2010 pp 129-135. Distribution of arsenic and mercury in subtropical coastal beachrock, Gulf of Mannar, India · J Dajkumar Sahayam N Chandrasekar S Krishna Kumar ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Senthilnath. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 559-572. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction · J Senthilnath H Vikram Shenoy Ritwik ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Mohankumar. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 30. On the dynamics of an extreme rainfall event in northern India in 2013 · Anu Xavier M G Manoj K Mohankumar · More Details Abstract Fulltext PDF. India experienced ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Soumen Sarkar. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 303-323. Evidence of lacustrine sedimentation in the Upper Permian Bijori Formation, Satpura Gondwana basin: Palaeogeographic and tectonic implications.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K K Osuri. Articles written in Journal of Earth System Science. Volume 125 Issue 3 April 2016 pp 475-498. Role of land state in a high resolution mesoscale model for simulating the Uttarakhand heavy rainfall event over India · P V Rajesh S Pattnaik D Rai K K Osuri U C ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P V Rajesh. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 691-708. Sensitivity of tropical cyclone characteristics to the radial distribution of sea surface temperature · Deepika Rai S Pattnaik P V Rajesh · More Details Abstract Fulltext ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Manish M John. Articles written in Journal of Earth System Science. Volume 114 Issue 2 April 2005 pp 143-158. Contrasting metamorphism across Cauvery Shear Zone, south India · Manish M John S Balakrishnan B K Bhadra · More Details Abstract Fulltext PDF.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Jeeva. Articles written in Journal of Earth System Science. Volume 111 Issue 1 March 2002 pp 51-62. Velocity of small-scale auroral ionospheric current systems over Indian Antarctic station Maitri · Girija Rajaram A N Hanchinal R Kalra K Unnikrishnan K Jeeva M ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Marian Marschalko. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 371-388. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ · Işık Yilmaz Marian Marschalko ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P N Preenu. Articles written in Journal of Earth System Science. Volume 126 Issue 5 July 2017 pp 76. Variability of the date of monsoon onset over Kerala (India) of the period 1870–2014 and its relation to sea surface temperature · P N Preenu P V Joseph P K Dineshkumar.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Samir M Zaid. Articles written in Journal of Earth System Science. Volume 126 Issue 4 June 2017 pp 50. Provenance of coastal dune sands along Red Sea, Egypt · Samir M Zaid · More Details Abstract Fulltext PDF. Texture, mineralogy, and major and trace element ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sulochana Gadgil. Articles written in Journal of Earth System Science. Volume 112 Issue 4 December 2003 pp 529-558. On breaks of the Indian monsoon · Sulochana Gadgil P V Joseph · More Details Abstract Fulltext PDF. For over a century, the term break has been used ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Harinder K Thakur. Articles written in Journal of Earth System Science. Volume 118 Issue 1 February 2009 pp 41-48. Aerosol optical depths at Mohal-Kullu in the northwestern Indian Himalayan high altitude station during ICARB · Jagdish C Kuniyal Alpana Thakur Harinder ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Gurubaran. Articles written in Journal of Earth System Science. Volume 116 Issue 3 June 2007 pp 179-186. Fairweather atmospheric electricity at Antarctica during local summer as observed from Indian station, Maitri · C Panneerselvam C Selvaraj K Jeeva K U Nair C P ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K S Krishna. Articles written in Journal of Earth System Science. Volume 111 Issue 1 March 2002 pp 17-28. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data · K S Krishna D Gopala Rao Yu P ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Radhakrishna. Articles written in Journal of Earth System Science. Volume 120 Issue 4 August 2011 pp 605-615. Development of the negative gravity anomaly of the 85°E Ridge, northeastern Indian Ocean – A process oriented modelling approach · K M Sreejith M ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Y Jaya Rao. Articles written in Journal of Earth System Science. Volume 113 Issue 1 March 2004 pp 103-116. Remote sensing of spectral signatures of tropospheric aerosols · M B Potdar S A Sharma V Y Parikh P C S Devara P E Raj Y K Tiwari R S Maheskumar K K Dani ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Samadrita Mukherjee. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 869-886. Evaluation of topographic index in relation to terrain roughness and DEM grid spacing · Samadrita Mukherjee Sandip Mukherjee R D Garg A Bhardwaj ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Shamsuddin Shahid. Articles written in Journal of Earth System Science. Volume 124 Issue 6 August 2015 pp 1325-1341. Multilayer perceptron neural network for downscaling rainfall in arid region: A case study of Baluchistan, Pakistan · Kamal Ahmed Shamsuddin Shahid ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Journal of Earth System Science. Volumes & Issues. Volume 127. Issue 1. Feb 2018; Issue 2. Mar 2018; Issue 3. Apr 2018. Volume 126. Issue 1. Feb 2017; Issue 2. Mar 2017; Issue 3. Apr 2017; Issue 4. Jun 2017; Issue 5. Jul 2017; Issue 6. Aug 2017; Issue 7. Oct 2017 ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Seetaramayya. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 283-293. Ocean-atmosphere interaction and synoptic weather conditions in association with the two contrasting phases of monsoon during BOBMEX-1999.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B O Adebesin. Articles written in Journal of Earth System Science. Volume 123 Issue 4 June 2014 pp 751-765. Ionospheric foF2 morphology and response of F2 layer height over Jicamarca during different solar epochs and comparison with IRI-2012 model · B O Adebesin ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Shyam Prasad. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 531-539. Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin · J N Pattan M Shyam Prasad E V S S K Babu · More Details Abstract ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B Spandana. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 421-427. Temporal characteristics of aerosol physical properties at Visakhapatnam on the east coast of India during ICARB – Signatures of transport onto Bay of Bengal.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B S Marh. Articles written in Journal of Earth System Science. Volume 125 Issue 3 April 2016 pp 539-558. Post-glacial landform evolution in the middle Satluj River valley, India: Implications towards understanding the climate tectonic interactions · Shubhra Sharma S K ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Santosh Kumar. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 303-313. Characteristics of spectral aerosol optical depths over India during ICARB · S Naseema Beegum K Krishna Moorthy Vijayakumar S Nair S Suresh Babu S K ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D B Shah. Articles written in Journal of Earth System Science. Volume 120 Issue 1 February 2011 pp 19-25. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model · M R Pandya D B ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Nitesh Patidar. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 19. Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005 using variable infiltration capacity ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Kanishk Gohil. Articles written in Journal of Earth System Science. Volume 126 Issue 7 October 2017 pp 94. The role of mid-level vortex in the intensification and weakening of tropical cyclones · Govindan Kutty Kanishk Gohil · More Details Abstract Fulltext PDF. The present ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Mandal. Articles written in Journal of Earth System Science. Volume 112 Issue 1 March 2003 pp 79-93. Impact of horizontal resolution on prediction of tropical cyclones over Bay of Bengal using a regional weather prediction model · M Mandal U C Mohanty K V J Potty A ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Sarkar. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 87-96. Facies, dissolution seams and stable isotope compositions of the Rohtas Limestone (Vindhyan Supergroup) in the Son valley area, central India · S Banerjee S K ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Mahabir Singh. Articles written in Journal of Earth System Science. Volume 113 Issue 2 June 2004 pp 235-246. Deformation of a layered half-space due to a very long tensile fault · Sarva Jit Singh Mahabir Singh · More Details Abstract Fulltext PDF. The problem of the ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Soumyajit Mukherjee. Articles written in Journal of Earth System Science. Volume 126 Issue 1 February 2017 pp 2. Shear heating by translational brittle reverse faulting along a single, sharp and straight fault plane · Soumyajit Mukherjee · More Details Abstract Fulltext PDF.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Prabir Dasgupta. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 287-302. Facies pattern of the middle Permian Barren Measures Formation, Jharia basin, India: The sedimentary response to basin tectonics · Prabir Dasgupta.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ferid Dhahri. Articles written in Journal of Earth System Science. Volume 126 Issue 7 October 2017 pp 104. The role of E–W basement faults in the Mesozoic geodynamic evolution of the Gafsa and Chotts basins, south-central Tunisia · Dorra Tanfous Amri Ferid Dhahri ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Pandithurai. Articles written in Journal of Earth System Science. Volume 113 Issue 1 March 2004 pp 103-116. Remote sensing of spectral signatures of tropospheric aerosols · M B Potdar S A Sharma V Y Parikh P C S Devara P E Raj Y K Tiwari R S Maheskumar K K Dani ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Bigyapati Devi. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 405-438. Lower Oligocene bivalves of Ramanian Stage from Kachchh, Gujarat, India · R P Kachhara R L Jodhawat K Bigyapati Devi · More Details Abstract Fulltext PDF.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Charuta V Prabhu. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 267-277. Diurnal variability of upper ocean temperature and heat budget in the southern Bay of Bengal during October — November, 1998 (BOBMEX-Pilot).

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V Fernando. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 1045-1074. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope · P Amol D Shankar V Fernando A Mukherjee S G ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S W A Naqvi. Articles written in Journal of Earth System Science. Volume 121 Issue 3 June 2012 pp 769-779. Lime muds and their genesis off-Northwestern India during the late Quaternary · V Purnachandra Rao A Anil Kumar S W A Naqvi Allan R Chivas B Sekar Pratima M ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J U Chukudebelu. Articles written in Journal of Earth System Science. Volume 123 Issue 3 April 2014 pp 491-502. Evaluation of soil corrosivity and aquifer protective capacity using geoelectrical investigation in Bwari basement complex area, Abuja · A E Adeniji O V ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Prasanna kumar. Articles written in Journal of Earth System Science. Volume 109 Issue 4 December 2000 pp 433-441. Physical control of primary productivity on a seasonal scale in the central and eastern Arabian Sea · S Prasanna kumar M Madhupratap M Dileep ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Rajagopalan. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 153-156. Glacial-interglacial changes in the surface water characteristics of the Andaman Sea: Evidence from stable ratios of planktonic foraminifera · S M Ahmad D J ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B N Nath. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 153-156. Glacial-interglacial changes in the surface water characteristics of the Andaman Sea: Evidence from stable ratios of planktonic foraminifera · S M Ahmad D J Patil P S ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S C Arunchandra. Articles written in Journal of Earth System Science. Volume 117 Issue 6 December 2008 pp 911-923. On the measurement of the surface energy budget over a land surface during the summer monsoon · G S Bhat S C Arunchandra · More Details Abstract ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Chandra Shekhar Jha. Articles written in Journal of Earth System Science. Volume 122 Issue 5 October 2013 pp 1259-1268. Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G V Ravi Prasad. Articles written in Journal of Earth System Science. Volume 119 Issue 3 June 2010 pp 285-295. Shift in detrital sedimentation in the eastern Bay of Bengal during the late Quaternary · C Prakash Babu J N Pattan K Dutta N Basavaiah G V Ravi Prasad D K ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sohini Ganguly. Articles written in Journal of Earth System Science. Volume 119 Issue 5 October 2010 pp 675-699. Evaluation of phase chemistry and petrochemical aspects of Samchampi–Samteran differentiated alkaline complex of Mikir Hills, northeastern India.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ju Wei. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 1021-1031. Tectonic stress accumulation in Bohai–Zhangjiakou Seismotectonic Zone based on 3D visco-elastic modelling · Ju Wei Sun Weifeng Ma Xiaojing Jiang Hui.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V S N Murty. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 255-265. Thermohaline structure and circulation in the upper layers of the southern Bay of Bengal during BOBMEX-Pilot (October — November 1998) · V Ramesh Babu ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A K Singh. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 899-908. A study on precursors leading to geomagnetic storms using artificial neural network · Gaurav Singh A K Singh · More Details Abstract Fulltext PDF. Space weather ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajneesh Kumar. Articles written in Journal of Earth System Science. Volume 109 Issue 3 September 2000 pp 371-380. Plain strain problem of poroelasticity using eigenvalue approach · Rajneesh Kumar Aseem Miglani N R Garg · More Details Abstract Fulltext PDF.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Devesh Kumar Maurya. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 935-944. Validation of two gridded soil moisture products over India with in-situ observations · C K Unnikrishnan John P George Abhishek Lodh Devesh Kumar ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Tapas Acharya. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 453-462. Analysis of lineament swarms in a Precambrian metamorphic rocks in India · Tapas Acharya Sukumar Basu Mallik · More Details Abstract Fulltext PDF.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D K Das. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 537-557. Stratigraphic status of coal horizon in Tatapani–Ramkola Coalfield, Chhattisgarh, India · Archana Tripathi Vijaya Srikanta Murthy B Chakarborty D K Das · More Details ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Izrar Ahmed. Articles written in Journal of Earth System Science. Volume 117 Issue 1 February 2008 pp 69-78. Implications of Kali–Hindon inter-stream aquifer water balance for groundwater management in western Uttar Pradesh · Rashid Umar M Muqtada A Khan Izrar ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V V S Gurunadha Rao. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 855-867. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India · G Tamma Rao V V S Gurunadha Rao K ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China. Earth Sciences Department, Faculty of Science, University of Kufa, Najaf 34003, Iraq. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.

  13. ArXives of Earth science

    Science.gov (United States)

    2018-03-01

    Preprint servers afford a platform for sharing research before peer review. We are pleased that two dedicated preprint servers have opened for the Earth sciences and welcome submissions that have been posted there first.

  14. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  15. Cognitive and Neural Sciences Division 1991 Programs

    Science.gov (United States)

    1991-08-01

    interventions , for performance aiding, for certification and for performance evaluation. As the Navy modernizes those systems to take advantage of potential...2223-2237. Livingstone, M., Drislane, F. and Galaburda, A. (1991, in press) Physiological evidence for a magnocellular defect in dyslexia . Science. 201...develop training interventions to counter the effects of stress on performance. Progress: This grant is new in FY91. Outside Funding: Funds for this

  16. Multiple Modes of Inquiry in Earth Science

    Science.gov (United States)

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  17. Progress report, Health Sciences Division, 1 October - 31 December, 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The work of the Health Sciences Division during the quarter included development of improved radiation counters and dosimeters, studies of radionuclide migration through the environment, investigations of the effects of radiation upon a variety of living organisms, and calculation of improved dosimetry factors

  18. Materials Science Division activity report 1991-1993

    International Nuclear Information System (INIS)

    Amarendra, G.; Tiwari, A.M.; Subramanian, N.; Venugopal Rao, G.

    1995-01-01

    This progress report gives an account of the various research and developmental activities carried out at the Materials Science Division of the Indira Gandhi Centre for Atomic Research, Kalpakkam during 1991-93. It also gives a summary of the results of the research activities, describes the experimental facilities and also list the publications

  19. Environmental and Medical Sciences Division progress report January - December 1975

    International Nuclear Information System (INIS)

    Johnston, J.E.

    1976-07-01

    The activities of the AERE Environmental and Medical Sciences Division for January to December 1975 are reported under sections entitled: introduction; inhalation toxicology and radionuclide analysis; whole body counting; radiation physics; environmental analysis, atmospheric pollution; medical; chemical analysis group; publications. (U.K.)

  20. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  1. Utah's Mobile Earth Science Outreach Vehicle

    Science.gov (United States)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  2. Earth Sciences report, 1989--1990

    International Nuclear Information System (INIS)

    Younker, L.W.; Peterson, S.J.; Price, M.E.

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period

  3. Earth Sciences report, 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Peterson, S.J.; Price, M.E. (eds.)

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

  4. Space and Earth Science Data Compression Workshop

    Science.gov (United States)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  5. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  6. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090

    International Nuclear Information System (INIS)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology

  7. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  8. First International Earth Science Olympiad South Korea

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. First International Earth Science Olympiad - South Korea. Information and Announcements Volume 12 Issue 12 December 2007 pp 76-76. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Earth Science Literacy: Building Community Consensus

    Science.gov (United States)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  10. Analyzing Earth Science Research Networking through Visualizations

    Science.gov (United States)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  11. Embracing Open Source for NASA's Earth Science Data Systems

    Science.gov (United States)

    Baynes, Katie; Pilone, Dan; Boller, Ryan; Meyer, David; Murphy, Kevin

    2017-01-01

    The overarching purpose of NASAs Earth Science program is to develop a scientific understanding of Earth as a system. Scientific knowledge is most robust and actionable when resulting from transparent, traceable, and reproducible methods. Reproducibility includes open access to the data as well as the software used to arrive at results. Additionally, software that is custom-developed for NASA should be open to the greatest degree possible, to enable re-use across Federal agencies, reduce overall costs to the government, remove barriers to innovation, and promote consistency through the use of uniform standards. Finally, Open Source Software (OSS) practices facilitate collaboration between agencies and the private sector. To best meet these ends, NASAs Earth Science Division promotes the full and open sharing of not only all data, metadata, products, information, documentation, models, images, and research results but also the source code used to generate, manipulate and analyze them. This talk focuses on the challenges to open sourcing NASA developed software within ESD and the growing pains associated with establishing policies running the gamut of tracking issues, properly documenting build processes, engaging the open source community, maintaining internal compliance, and accepting contributions from external sources. This talk also covers the adoption of existing open source technologies and standards to enhance our custom solutions and our contributions back to the community. Finally, we will be introducing the most recent OSS contributions from NASA Earth Science program and promoting these projects for wider community review and adoption.

  12. Chemical and Laser Sciences Division: Annual report, 1987

    International Nuclear Information System (INIS)

    1988-01-01

    As the Chemical and Laser Sciences Division concludes its first year, the Division personnel can be proud of their many scientific and technical accomplishments. Among the important milestones which the Division achieved were significant demonstrations of the process performance in the Special Isotope Separation program, of beam sensing techniques for the NPB program, and of optical angular multiplexing and energy extraction from the ICF KrF laser. In addition, the Los Alamos FTS was brought to operational status and the Bright Source attained intensities on the order of 10 17 W/cm 2 . A few highlights of these and other research and development activities are presented in the following sections of this report

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 5 ... affects the shallow groundwaterproductivity in terms of quantity and quality. ... a sustainable groundwater management strategy toreduce long-terms drought risks.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5 ... was conducted through seasonal water quality monitoring in the year 2011. ... National Centre for Sustainable Coastal Management, MOEF, Chennai 600 025, India.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 3 ... demand and also to formulate future development and management strategies. ... gives an early signal of deterioration in groundwater quality in the peripheral parts of ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 3 ... Withregard to the lack of quality information and data in watersheds, it is of high ... Department of Watershed Management Engineering, Faculty of Agriculture, Lorestan ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 6 ... Is the outcrop topology of dolerite dikes of the Precambrian Singhbhum Craton fractal? ... Plane strain deformation of a multi-layered poroelastic half-space by surface ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 4 ... DEM; cell size; sink; fractal dimension; entropy; semivariogram. ... These methods were applied to determine the level artifacts (interpolation error) in DEM surface as ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7. Volume 124 ... 1377-1387. Regional biomass burning trends in India: Analysis of satellite fire data .... Spatio-temporal variations of b-value in and around north Pakistan.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 6 ... oxidation of methane in coastal sediment from Guishan Island (Pearl River Estuary), South China Sea ... National Institute of Health, Bethesda, Maryland 20892, USA.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 8 ... Isotope fingerprinting of precipitation associated with western disturbances and .... of desert margin in western India using improved luminescence dating protocols.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Enrichment characteristics of radioelements in various types of rock from Sambalpur district, Orissa, ... Radiometric analysis; uranium; ternary diagram; rock type; quartzofeldspathic breccia; granite. ... Journal of Earth System Science | News.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions ... Forest fire; forest type; Protected Area; conservation; remote sensing; AWiFS; India. ... Journal of Earth System Science | News.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 1 ... formed by various processes, in the present area the association of these structures, ... scale) are thought to have been responsible for the soft-sediment deformations.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 3 ... The failure of atmospheric general circulation models (AGCMs) forced by ... Centre for Mathematical Modelling and Computer Simulation, Bangalore 560 037, India.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 4 ... no matter how the upper channel adjusts, the main stream shows little change, providing ... drastic bank collapse and sandbar shrinking should be urgently controlled to ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 2 ... (SVM); geographical information systems (GIS); remote sensing; Golestan province; Iran. ... Department of Watershed Management Engineering, College of Natural ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7 ... mining; sediment dynamic; suspended sediment; watershed management. ... from a hillslope or channel, mirrors the watershed health, which needs to be quantified.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 5 ... Miocene; western India; sesquiterpenoids; geochemistry; geology; biogeosciences. ... These sesquiterpenoids which are commonly detected in many SE Asian crude ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 3. The vorticity and angular momentum budgets of Asian summer monsoon ... School of Geography and Geology, McMaster University, Hamilton, ON, Canada L8S 4K1.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 127; Issue 2 ... GMPEs; PGA; uniform hazard spectra; spectrum-compatible natural accelerograms. ... from National Disaster Management Authority (NDMA 2010), in terms of PGA and ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The performance of different cumulus parameterization schemes in simulating the 2006/2007 southern peninsular Malaysia heavy rainfall episodes. Wan Ahmad Ardie Khai ... Malaysia. Earth Observation Centre, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 4 ... in urban rivers using multivariate analysis: Implications for river management ... in the post-monsoon and pre-monsoon seasons during the time period 2008–2010.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 1 ... Results from time course experiments with both 15N and 13C tracers suggest ... Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 1 ... are essential for qualitative and quantitative analysis of snow cover applications. ... This study also suggests that the suitability of topographic models can not be ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 3 ... in an area presently devoid of drainage bespeaks of occasional high-energy fluvial regime, ... The present studies indicate that aeolian dust or rainwater are minor ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 8 ... (SF) receivers has the advantages of stand-alone, absolute positioning and cost efficiency. ... College of Informatics, South China Agricultural University, Guangzhou, ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 4 ... a human adjustment scenario, which assumes future improvements in water conservation ... Similarly, a severe drought would lead to a total streamflow loss of < 80%.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... belt typically occurs in elastico-frictional (EF) or quasi-plastic (QP) regimes at ... In contrast, the hanging wall schists and quartzites of the Ramgarh thrust exhibit quasi-plastic deformation structures. ... Journal of Earth System Science | News.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The main crystal plastic deformation and fluid enhanced reaction softening was concentrated along the margin ... Low-T crystal plastic deformation of quartz was effected at a late stage of cooling and ... Journal of Earth System Science | News.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    . Articles written in Journal of Earth System Science. Volume 126 Issue 8 December 2017 pp 109. GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran) · Ali Haghizadeh Davoud Davoudi ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3 ... support the well-known fact that oceanic eddies are distributed worldwide in the ocean. ... The classification of typical vortical features in the ocean detected in remote ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 5 ... ozone concentrations in the east of Croatia using nonparametric Neural Network Models ... to develop, for the first time, accurate ozone prediction models, onefor urban ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Implication of surface modified NZVI particle retention in the porous media: Assessment with the help ... to evaluate the effect of particle retention on the porous media properties and its implication on ... Journal of Earth System Science | News.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... have a great influence on the accuracy of the migrated image in anisotropic media, and ignoring any one ... can obtain more accurate seismic images of subsurface structures in anisotropic media. ... Journal of Earth System Science | News.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5 ... pairs of benthic foraminifera from the Krishna–Godavari basin and Peru offshore to ... Department of Applied Geology, Indian Institute of Technology (Indian School of ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 5 ... owing to rugged terrain at high altitude, high frequency of intense rainfall and rapidly ... School of Civil Engineering, SASTRA University, Thanjavur, Tamilnadu, India.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 5 ... In the upper layer, themaximum shear stress is high in the Zhangjiakou area, whereas in the ... School of Resources and Geoscience, China University of Mining and ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Pravin K Gupta1 Sri Niwas1 Neeta Chaudhary2. Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247 667, India. Oil and Natural Gas Corporation, Priyadarshini Building, Sion, Mumbai, India.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 5 ... a Geographical Information System (GIS)based hydrogeomorphic approach in the ... The integrated study helps design a suitable groundwater management plan for a ...

  11. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 5 .... Atmospheric correction of Earth-observation remote sensing images by Monte Carlo method ... Decision tree approach for classification of remotely sensed satellite data ... Analysis of carbon dioxide, water vapour and energy fluxes over an Indian ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 6. Volume 122, Issue 6. December 2013, pages 1435-1637. pp 1435-1453. The South India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX) · S S Rai Kajaljyoti Borah Ritima Das ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 4. Volume 110, Issue 4. December 2001, pages 267-463. Recent Researchers in Petrology and Geochemistry. pp 267-267. Preface · S Bhattacharya J Ganguly · More Details Fulltext PDF. pp 269-285. Earth support systems: Threatened? Why? What can ...

  15. Overview of NASA's Earth Science Data Systems

    Science.gov (United States)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  16. Environmental Sciences Division: Summaries of research in FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  17. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  18. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D S V V D Prasad. Articles written in Journal of Earth System Science. Volume 114 Issue 4 August 2005 pp 437-441. Geomagnetic activity control on VHF scintillations over an Indian low latitude station, Waltair (17.7°N, 83.3°E, 20°N dip) · D S V V D Prasad P V S Rama Rao ...

  20. Vocabulary related to earth sciences through etymology

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    to all aspects of earth sci- ences education for the benefit of students and educators. The author of the article is Nittala S. Sarma, Andhra University, Visak- hapatnam. In the article, Sarma has col- lected Greek, Latin, German and Celtic affixes... terms can be built solidly. My realization of the importance of etymology and the impressive effort put up by Sarma has prompted me to bring his recent publication to the attention of earth sciences students and teachers in the country...

  1. Atmospheric sciences division. Annual report, fiscal year 1981

    International Nuclear Information System (INIS)

    Raynor, G.S.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included

  2. Progress report - Health Sciences Division - 1985 July 01 -December 31

    International Nuclear Information System (INIS)

    1986-02-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for each of the following branches: Dosimetric Research, Environmental Research, Radiation Biology, and Medical. Some of the aspects discussed include measurement and application of environmental isotopes, dosimetry and employee monitoring, environmental processes of radioisotope transport, the effects of ionizing radiation on living cells (cancer, hyperthermia, DNA, etc.), and statistics of hospital procedures

  3. Environmental and Medical Sciences Division progress report January - December, 1980

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1982-02-01

    A progress report on the work performed during 1980 by the Environmental and Medical Sciences Division at UKAEA Harwell is given. The programmes considered were atmospheric pollution; landfill research; monitoring of radioactive fallout and other radionuclides and trace elements in the environment; radioactive and non-radioactive aerosol metabolic studies; inhalation toxicology of radioactive aerosols and other hazardous materials; chemical analytical services; and radiation physics in dosimetry research, applied radiation spectrometry and data systems. (U.K.)

  4. Earth Summit Science, policy discussed

    Science.gov (United States)

    Leath, Audrey T.

    The United Nations Conference on Environment and Development, the “Earth Summit,” convenes in Rio de Janeiro on June 3. President Bush has pledged to attend part of the 2-week conference. The highlight of the summit will be the signing of an international framework convention to reduce emissions of greenhouse gases. The final elements of the agreement were negotiated in New York last week by representative of 143 countries. In anticipation of the Rio conference, the Senate Committee on Energy and Natural Resources held two standing-roomonly hearings, reviewing the scientific basis for global warming due to greenhouse gases and discussing the details of the proposed convention.

  5. Deriving Earth Science Data Analytics Requirements

    Science.gov (United States)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  6. Isotopes in the earth sciences

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, Robert

    1988-01-01

    This book examines significant aspects of isotope applications in geology and geochemistry commencing with basic matters, such as atomic structure, stable nuclides and their fractionation, as well as the various decay modes of unstable nuclides. Modern mass spectrometry techniques including electrostatic tandem accelerators are followed by a review of radioisotope dating technology. The relatively new method using the rare earth elements samarium and neodymium are covered. Other geochronometers, applicable to both rocks and minerals not dateable otherwise, are included. A review is given of isotopes in the atmosphere, hydrosphere and lithosphere of the Earth. Those of oxygen and hydrogen together with the cosmogenic radionuclides tritium and radiocarbon are discussed in relation to the biosphere. The role of isotopes of carbon, nitrogen and sulphur is described and extended to fossil fuels and rocks as well as meteorites. Related themes such as Phanerozoic oceans, oceanic palaeothermometry, snow and ice stratigraphy and geothermal waters are covered. The field of isotopic palaeoecology is discussed. Radioactive wastes, their accumulation, dangers and disposal are investigated with especial reference to their environmental impacts.

  7. Journal of Earth System Science

    Indian Academy of Sciences (India)

    YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on the teaching of the theory of evolution more... ACADEMY PUBLIC LECTURE: Animal Sex Determination by Genes, Chromosomes and Environment.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this study we observe wave heights by an array of four wave gauges at the Hiratsuka Tower of (Independent Administrative Institution) National Research Institute for Earth Science and ... Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Meshesha1 3 Ryuichi Shinjo1. Department of Physics and Earth Sciences, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan. Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh. EL MINING PLC, Addis Ababa, Ethiopia.

  10. Connecting NASA science and engineering with earth science applications

    Science.gov (United States)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 5. Glacier fluctuation using Satellite Data in Beas basin, 1972–2006, Himachal Pradesh, India. Shruti Dutta A L Ramanathan ... Anurag Linda1. Glacier Research Group, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.

  12. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  13. Quasi-perpendicular/quasi-parallel divisions of Earth's bow shock

    International Nuclear Information System (INIS)

    Greenstadt, E.W.

    1991-01-01

    Computer-drawn diagrams of the boundaries between quasi-perpendicular and quasi-parallel areas of Earth's bow shock are displayed for a few selected cone angles of static interplanetary magnetic field (IMF). The effect on the boundary of variable IMF in the foreshock is also discussed and shown for one nominal case. The boundaries demand caution in applying them to the realistic, dynamic conditions of the solar wind and in interpreting the effects of small cone angles on the distributions of structures at the shock. However, the calculated, first-order boundaries are helpful in defining areas of the shock where contributions from active structures inherent in quasi-parallel geometry may be distinguishable from those derived secondarily from upstream reflected ion dynamics. The boundaries are also compatible with known behavior of daytime ULF geomagnetic waves and pulsations according to models postulating that cone angle-controlled, time-dependent ULF activity around the subsolar point of the bow shock provides the source of geomagnetic excitation

  14. JPRS Report, Science & Technology, USSR: Earth Sciences

    Science.gov (United States)

    1988-02-26

    Shirshov, USSR Academy of Sciences, Moscow] lflllrtll-Inf0rTtJ;0n ^ fr" °n the morPhol°gy> ecology and propagation of aggregations of algae...42nd cruise of the research vessel "Akademik Kurchatov» between Ampere and Josephine Seamounts some 670 km to the west of the Strait of Gibraltar in...railroad roadbeds. Lithomonitoring must be carried out in many regions for ensuring the ecological purity of economic activity and protection of

  15. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  16. Music Education and the Earth Sciences

    Science.gov (United States)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  17. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian

    2017-01-01

    Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.

  18. International Earth Science Constellation (ESC) Introduction

    Science.gov (United States)

    Guit, William J.; Machado, Michael J.

    2016-01-01

    This is the Welcome and Introduction presentation for the International Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) meeting held in Albuquerque NM from September 27-29. It contains an org chart, charter, history, significant topics to be discussed, AquaAura 2017 inclination adjust maneuver calendar, a-train long range plans, upcoming events, and action items.

  19. Materials Science Division progress report 1986-1988

    International Nuclear Information System (INIS)

    Kumar, Vijay; Vasumathi, D.; Chandra Sekhar, N.V.

    1990-01-01

    This is a report on the various Research and Developmental (R and D) activities carried out in the Materials Science Division during the period 1986-88. Most contributions have been presented in the form of abstracts and wherever possible results of several contributions on a related problem have been consolidated into one. The R and D activities covered the following areas: (1) quasicrystalline phase, (2) high temperature superconducting behaviour in metal oxides, (3) physics of colloidal suspensions, (4) behaviour of materials under high pressure, (5) radiation effects in complex alloy systems, (6) inert gas behaviour in metals, and production of crystals, particularly of volatile semiconducting compounds. The lists of publications by the members of the Division and seminars held during 1986-88 are given at the end of the report. (a uthor)

  20. Earth System Science Education Interdisciplinary Partnerships

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  1. Public Access to NASA's Earth Science Data

    Science.gov (United States)

    Behnke, J.; James, N.

    2013-12-01

    Many steps have been taken over the past 20 years to make NASA's Earth Science data more accessible to the public. The data collected by NASA represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. Consequently, NASA developed a free, open and non-discriminatory policy consistent with existing international policies to maximize access to data and to keep user costs as low as possible. These policies apply to all data archived, maintained, distributed or produced by NASA data systems. The Earth Observing System Data and Information System (EOSDIS) is a major core capability within NASA Earth Science Data System Program. EOSDIS is designed to ingest, process, archive, and distribute data from approximately 90 instruments. Today over 6800 data products are available to the public through the EOSDIS. Last year, EOSDIS distributed over 636 million science data products to the user community, serving over 1.5 million distinct users. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. A core philosophy of EOSDIS is that the general user is best served by providing discipline specific support for the data. To this end, EOSDIS has collocated NASA Earth science data with centers of science discipline expertise, called Distributed Active Archive Centers (DAACs). DAACs are responsible for data management, archive and distribution of data products. There are currently twelve DAACs in the EOSDIS system. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. Over the years, we have developed several methods for determining needs of the user community including use of the American Customer Satisfaction Index survey and a broad metrics program. Annually, we work with an independent organization (CFI Group) to send this

  2. Technology thrusts for future Earth science applications

    Science.gov (United States)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  3. Technology Thrust for Future Earth Science Applications

    Science.gov (United States)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  4. Progress report 1979 July 01 to September 30, Health Sciences Division

    International Nuclear Information System (INIS)

    1979-12-01

    In September 1979, the Biology and Health Physics Division and the Medical Division were amalgamated to form the Health Sciences Division. This is the first progress report of the new division. A new TLD reader for semi-automatic handling of individual TLD chips has been commissioned. As high range radiation detectors for spent fuel monitoring, optical photo-diodes show performance similar to that of silicon rectifiers. Studies continue on the use of water-permeable plastic membranes in tritium monitoring, particularly where it is important to distinguish between 3 H in elemental form and combined as water. The first of a series of radionuclide injection experiments was made in the sand aquifer near Perch Lake. These experiments are to develop methods for studying radionuclide transport in fractured rock. Investigations of soil and groundwater in the vicinity of waste management areas have shown that tritium is the only radionuclide present in significant quantities. Radiation damage to DNA and subsequent repair is being studied by observing both somatic and genetic effcts. Rare hereditary human diseases that present clinical or laboratory features indicative of defects in the DNA repair mechanism are being studied. Work on various metabolic models that describe retention and distribution of radionuclides in humans has continued with emphasis on tritium as HT, carbon as CO2, and compounds of the alkaline earth and actinide elements. Committed effective dose equivalent conversion factors for infants and adults have been calculated for 380 classes of compounds of radionuclide and intake routes, for 65 elements. (OT)

  5. Progress report - Health Sciences Division - 1985 January 01 - June 30

    International Nuclear Information System (INIS)

    1985-09-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for each of the following branches: Dosimetric Research, Environmental Research, Radiation Biology, and Medical. Some of the main areas of interest discussed are the impact of studies on cultured human fibroblasts with abnormal carcinogen sensitivity. This includes mechanisms of DNA repair and for the initiation of cancer, contribution of such genes to overall societal cancer burden, impact on risk assessment, distribution of risk, and radiation protection, application to improved treatment of cancer, screening for abnormal carcinogen sensitivity and Roberts syndrome

  6. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  7. Exploiting Untapped Information Resources in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  8. Communicating Ocean Science at the Lower-Division Level

    Science.gov (United States)

    Coopersmith, A.

    2011-12-01

    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their

  9. An experience of science theatre: Earth Science for children

    Science.gov (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  10. NASA's Earth Science Enterprise: Future Science Missions, Objectives and Challenges

    Science.gov (United States)

    Habib, Shahid

    1998-01-01

    NASA has been actively involved in studying the planet Earth and its changing environment for well over thirty years. Within the last decade, NASA's Earth Science Enterprise has become a major observational and scientific element of the U.S. Global Change Research Program. NASA's Earth Science Enterprise management has developed a comprehensive observation-based research program addressing all the critical science questions that will take us into the next century. Furthermore, the entire program is being mapped to answer five Science Themes (1) land-cover and land-use change research (2) seasonal-to-interannual climate variability and prediction (3) natural hazards research and applications (4) long-term climate-natural variability and change research and (5) atmospheric ozone research. Now the emergence of newer technologies on the horizon and at the same time continuously declining budget environment has lead to an effort to refocus the Earth Science Enterprise activities. The intent is not to compromise the overall scientific goals, but rather strengthen them by enabling challenging detection, computational and space flight technologies those have not been practically feasible to date. NASA is planning faster, cost effective and relatively smaller missions to continue the science observations from space for the next decade. At the same time, there is a growing interest in the world in the remote sensing area which will allow NASA to take advantage of this by building strong coalitions with a number of international partners. The focus of this presentation is to provide a comprehensive look at the NASA's Earth Science Enterprise in terms of its brief history, scientific objectives, organization, activities and future direction.

  11. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  12. Provenance Challenges for Earth Science Dataset Publication

    Science.gov (United States)

    Tilmes, Curt

    2011-01-01

    Modern science is increasingly dependent on computational analysis of very large data sets. Organizing, referencing, publishing those data has become a complex problem. Published research that depends on such data often fails to cite the data in sufficient detail to allow an independent scientist to reproduce the original experiments and analyses. This paper explores some of the challenges related to data identification, equivalence and reproducibility in the domain of data intensive scientific processing. It will use the example of Earth Science satellite data, but the challenges also apply to other domains.

  13. Earth Sciences Department Annual Report, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Donohue, M.L. (eds.)

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  14. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Zhang, J.; Duan, X.; Bugbee, K.; Christopher, S. A.; Miller, J. J.

    2017-12-01

    Estimates indicate that the world's information will grow by 800% in the next five years. In any given field, a single researcher or a team of researchers cannot keep up with this rate of knowledge expansion without the help of cognitive systems. Cognitive computing, defined as the use of information technology to augment human cognition, can help tackle large systemic problems. Knowledge graphs, one of the foundational components of cognitive systems, link key entities in a specific domain with other entities via relationships. Researchers could mine these graphs to make probabilistic recommendations and to infer new knowledge. At this point, however, there is a dearth of tools to generate scalable Knowledge graphs using existing corpus of scientific literature for Earth science research. Our project is currently developing an end-to-end automated methodology for incrementally constructing Knowledge graphs for Earth Science. Semantic Entity Recognition (SER) is one of the key steps in this methodology. SER for Earth Science uses external resources (including metadata catalogs and controlled vocabulary) as references to guide entity extraction and recognition (i.e., labeling) from unstructured text, in order to build a large training set to seed the subsequent auto-learning component in our algorithm. Results from several SER experiments will be presented as well as lessons learned.

  15. Evolving NASA's Earth Science Data Systems

    Science.gov (United States)

    Walter, J.; Behnke, J.; Murphy, K. J.; Lowe, D. R.

    2013-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth science data. The system supports a multitude of missions and serves diverse science research and other user communities. Keeping up with ever-changing information technology and figuring out how to leverage those changes across such a large system in order to continuously improve and meet the needs of a diverse user community is a significant challenge. Maintaining and evolving the system architecture and infrastructure is a continuous and multi-layered effort. It requires a balance between a "top down" management paradigm that provides a coherent system view and maintaining the managerial, technological, and functional independence of the individual system elements. This presentation will describe some of the key elements of the current system architecture, some of the strategies and processes we employ to meet these challenges, current and future challenges, and some ideas for meeting those challenges.

  16. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  17. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    Science.gov (United States)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  18. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Favourable uranium–phosphate exploration trends guided by the application of statistical factor analysis technique on the aerial gamma spectrometric data in Syrian desert (Area-1), Syria. J Asfahani R Al-Hent M Aissa. Volume 125 Issue 1 February ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 5. Volume 115, Issue 5. October 2006, pages 485-613. pp 485-528. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log–ratio transformation of major-element data · Surendra P Verma ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 7 ... Net short wave and long wave radiative fluxes substantially varied with cloud dynamics, season, .... Impact of over-exploitation on groundwater quality: A case study from .... using large scale climate variables and downscaling models – A case study.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 1 .... Liquefaction-induced settlement, site effects and damage in the vicinity of Yalova ... Climatic control on extreme sediment transfer from Dokriani Glacier during monsoon, ... India that has been noticed in several global and regional climate models.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2 ... Variable influence on the equatorial troposphere associated with SSW using ERA- ... Identification of drought in Dhalai river watershed using MCDM and ANN models ..... Study of the global and regional climatic impacts of ENSO magnitude using ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 5 ... Impact of vegetation on the simulation of seasonal monsoon rainfall over the Indian .... On the diurnal ranges of Sea Surface Temperature (SST) in the north Indian Ocean ... Groundwater flow modelling of Yamuna–Krishni interstream, a part of central ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science ... Cloud Motion Wind (CMW) data of METEOSAT satellite and SSM/I surface wind data ... Skills of different mesoscale models over Indian region during monsoon season: Forecast errors ... Impact of vegetation on the simulation of seasonal monsoon rainfall over the Indian ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 5 ... Use of objective analysis to estimate winter temperature and precipitation at ... Numerical study for production of space charge within the stratiform cloud .... Estimates of source parameters of 4.9 Kharsali earthquake using waveform modelling.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5 ... water cycles and predict the effect of climate change on terrestrial ecosystems, it is ... Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri .... Influence of nutrient input on the trophic state of a tropical brackish water lagoon.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 3 ... Modeling of groundwater flow for Mujib aquifer, Jordan ... a cloudburst event with attention to horizontal resolution and the cloud microphysics parameterization. ... Global surface temperature in relation to northeast monsoon rainfall over Tamil Nadu.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 5 .... Current products based on Ocean General Circulation Models like ECCO2 ... An assessment of wind forcing impact on a spectral wave model for the Indian Ocean .... variability over India and its subregions using a regional climate model (RegCM3).

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 1 ... with a parametric study of the effect of four hydrometeors (cloud liquid water, cloud ice, ... Impact of additional surface observation network on short range weather forecast ... Doppler SODAR observations of the temperature structure parameter during ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 4 ... Monsoon sensitivity to aerosol direct radiative forcing in the community atmosphere model .... Influences of the boundary layer evolution on surface ozone variations at a .... and its comparison with global geopotential models and GPS-levelling data.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 2 ... Impact of continental meteorology and atmospheric circulation in the ... Rainfall and temperature scenarios for Bangladesh for the middle of 21st century using RegCM ..... Statistical models of interoccurrence times of Iranian earthquakes on the basis ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 8. Formation and evolution of yardangs activated by Late Pleistocene tectonic movement in Dunhuang, Gansu Province of China. Yanjie Wang Fadong Wu Xujiao Zhang Peng Zeng Pengfei Ma Yuping Song Hao Chu. Volume 125 Issue 8 December ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 5. Variational method for objective analysis of scalar variable and its derivative. S G Narkhedkar S K Sinha ... It is found that the new scheme (variational)is able to extract the better parts of both triangle and standard methods.The results of this study will ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 4. Volume 109, Issue 4. December 2000, pages 393-551. pp 393-394. Editorial · V K Gaur · More Details Fulltext PDF. pp 395-405. Analysis of pathfinder SST algorithm for global and regional conditions · Ajoy Kumar P Minnett G Podesta R Evans K ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 3. Volume 109, Issue 3. September 2000, pages 315-391. pp 315-328. Ocean circulation in the tropical Indo-Pacific during early Pliocene (5.6 - 4.2 Ma): Paleobiogeographic and isotopic evidence · M S Srinivasan D K Sinha · More Details Abstract ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 2. Volume 118, Issue 2. April 2009, pages 115-180. pp 115-121. Energetics of lower tropospheric ultra-long waves: A key to intra-seasonal variability of Indian monsoon · S M Bawiskar M D Chipade P V Puranik · More Details Abstract Fulltext PDF.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 3. Volume 119, Issue 3. June 2010, pages 229-396. pp 229-247. Active and break spells of the Indian summer monsoon · M Rajeevan Sulochana Gadgil Jyoti Bhate · More Details Abstract Fulltext PDF. In this paper, we suggest criteria for the ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 3. Significance of transition between Talchir Formation and Karharbari Formation in Lower Gondwana basin evolution — A study in West Bokaro Coal basin, Jharkhand, India. H N Bhattacharya Abhijit Chakraborty Biplab Bhattacharya. Volume 114 Issue ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 7 ... less than 5000 mg/l is recommended in this area, at flow rate less than 10m3/hr/well. In other words, one can expect that the brackish water is probably found where the ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Journal of Earth System Science. Current Issue : Vol. 127, Issue 2. Current Issue Volume 127 | Issue 2. March 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 8. Gravitational attraction of a vertical pyramid model of flat top-and-bottom with depth-wise parabolic density variation. Anand P Gokula Rambhatla G Sastry. Volume 124 Issue 8 December 2015 pp 1735-1744 ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5. Issue front cover thumbnail. Volume 126, Issue 5. July 2017. Article ID 62. Meteorological features associated with unprecedented precipitation over India during 1st week of March 2015 · Naresh Kumar M Mohapatra A K Jaswal · More Details Abstract ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science. Volume 116 Issue 1 February 2007 pp 73-79. Long range prediction of Indian summer monsoon ... Volume 121 Issue 1 February 2012 pp 203-210. Impact of global warming on cyclonic disturbances over south Asian region · Savita Patwardhan Ashwini Kulkarni K Krishna ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    . Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 269-281. Climate change and its role in forecasting energy demand in buildings: A case study of Douala City, Cameroon · Modeste Kameni ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 4. Deep learning for predicting the monsoon over the homogeneous regions of India. Moumita Saha Pabitra Mitra ... Keywords. Feature learning; stacked autoencoder; monsoon predictor; ensemble of regression trees; regional Indian summer monsoon.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 3 .... Assessment of the regional water balance of the limestone subaquifers of Cyprus ... characterized by its small watersheds and the lack of ephemeral surface water resources. .... Optimization method for quantitative calculation of clay minerals in soil.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 4. Volume 111, Issue 4. December 2002, pages 379-510. pp 379-390. Isotopic and sedimentological clues to productivity change in Late Riphean Sea: A case study from two intracratonic basins of India · P P Chakraborty A Sarkar S K Bhattacharya P ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 3. Scattering of a spherical pulse from a small inhomogeneity: Dilation and rotation. M D Sharma. Volume 110 Issue 3 September 2001 pp 205-213 ... Keywords. Scattering; inhomogeneity; spherical pulse; perturbations; dilatation; rotation ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 3. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India. Virendra Bahadur Singh A L Ramanathan Jose George Pottakkal Parmanand Sharma Anurag Linda Mohd Farooq Azam C Chatterjee. Volume 121 Issue ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 2 ... Bay of Bengal Monsoon Experiment (BOBMEX) — A component of the Indian .... Diurnal variability of upper ocean temperature and heat budget in the ... While the former facilitates the trapping of radiation (greenhouse effect) the latter works in the ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 1 .... Middle Siwalik sediments in Tista valley, Darjiling District, Eastern Himalaya, India ... Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer .... Impact of global warming on cyclonic disturbances over south Asian region.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Information for Authors ... A manuscript must present results of original, unpublished work. ... At this stage, JESS does not accept separate BibTeX files and does not provi de a bst file for ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 6. Volume 116, Issue 6. December 2007, pages 465-597. pp 465-467. Editorial · T N Narasimhan · More Details Fulltext PDF. pp 469-495. Late Devonian and Triassic basalts from the southern continental margin of the East European Platform, tracers of ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 1. Issue front cover thumbnail. Volume 115, Issue 1. February 2006, pages 1-183. Vindhyan Geology: Status and Perspectives. pp 1-2. Preface · J S Ray C Chakraborty · More Details Fulltext PDF. pp 3-22. Proterozoic intracontinental basin: The Vindhyan ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 2. Impact of continental meteorology and atmospheric circulation in the modulation of Aerosol Optical Depth over the Arabian Sea. Sandhya K Nair S Sijikumar S S Prijith. Volume 121 Issue 2 April 2012 pp 263-272 ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 5. Volume 116, Issue 5. October 2007, pages 369-463. pp 369-384. Current status of multimodel superensemble and operational NWP forecast of the Indian summer monsoon · Akhilesh Kumar Mishra T N Krishnamurti · More Details Abstract Fulltext PDF.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Journal of Earth System Science. Current Issue : Vol. 127, Issue 3 · Current Issue Volume 127 | Issue 3. April 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 4. Spatial distribution of atmospheric carbon monoxide over Bay of Bengal and Arabian Sea: Measurements during pre-monsoon period of 2006. V R Aneesh G Mohankumar S Sampath. Volume 117 Issue 4 August 2008 pp 449-455 ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Contribution of some ozone depleting substances (ODS) and greenhouse gases (GHGs) on total column zone growth at Srinagar (34°N, 74.8°), India. P K Jana D K Saha D Sarkar. Volume 122 Issue 1 February 2013 pp 239-252 ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Earth System Science; Volume 115; Issue 4. Section Title Page. Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks Volume 115 Issue 4 August 2006 pp 429- ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 6 ... and ongoing seismicity of northeastern Kumaun Himalaya, Uttarakhand, India ... areas of hazard prone and also planning and designing of the socio-economic projects. ... from Darjeeling, eastern Himalaya: Textural relationship and P–T conditions.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 1. Issue front cover thumbnail. Volume 116, Issue 1. February 2007, pages 1-79. pp 1-1. Editorial · More Details Fulltext PDF. pp 3-13. Platinum group elements and gold in ferromanganese crusts from Afanasiy–Nikitin seamount, equatorial Indian Ocean: ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 1. Identification of a surface layer structure and analysis of humidity data in two weather situations at Jodhpur (26° 18′N, 73° 04′E), India, during MONTBLEX 1990. N Das M Bose U K De. Volume 113 Issue 1 March 2004 pp 73-87 ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 5. Impact of Ganges–Brahmaputra interannual discharge variations on Bay of Bengal salinity and temperature during 1992–1999 period. Fabien Durand Fabrice Papa Atiqur Rahman Sujit Kumar Bala. Volume 120 Issue 5 October 2011 pp 859-872 ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Snow & Avalanche Study Establishment, Research & Development Centre, Him Parisar, Sector 37A, Chandigarh 160 036, India. School of Earth, Ocean and Climate Sciences, Indian Institute of Technology, Bhubaneswar, Toshali Bhavan, Satya Nagar, Bhubaneswar 751 007, India. Meteorological Office, Sector-39, ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 3. Evaluation of regional fracture properties for groundwater development using hydrolithostructural domain approach in variably fractured hard rocks of Purulia district, West Bengal, India. Tapas Acharya Rajesh Prasad S Chakrabarti. Volume 123 Issue ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 6. Multilayer perceptron neural network for downscaling rainfall in arid region: A case study of Baluchistan, Pakistan. Kamal Ahmed Shamsuddin Shahid Sobri Bin Haroon Wang Xiao-Jun. Volume 124 Issue 6 August 2015 pp 1325-1341 ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 2. Volume 119, Issue 2. April 2010, pages 137-228. pp 137-145. Effect of co-operative fuzzy c-means clustering on estimates of three parameters AVA inversion · Rajesh R Nair Suresh Ch Kandpal · More Details Abstract Fulltext PDF. We determine the ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This laboratory at the Department of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral particulates (> 65 m), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 1. A fruit wing of Shorea Roxb. from the Early Miocene ... A new fossil fruit wing of Shorea Roxb. belonging to the family Dipterocarpaceae is described from the Early Miocene sediments of Kachchh, Gujarat. It resembles best the extant species Shorea ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5. First discovery of fossil winged seeds of Pinus L. (family Pinaceae) from the Indian Cenozoic and its palaeobiogeographic significance. Mahasin Ali Khan Subir Bera. Volume 126 Issue 5 July 2017 Article ID 63 ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science. Volume 119 Issue 2 April 2010 pp 137-145. Effect of co-operative fuzzy .... The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan · Ramakrushna Reddy Rajesh R Nair · More Details Abstract Fulltext ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Reconstruction of the paleo-coastline of Santorini island (Greece), after the 1613 BC volcanic eruption: A GIS-based quantitative methodology. Dimitrios Oikonomidis Konstantinos Albanakis Spyridon Pavlides Michael Fytikas. Volume 125 Issue 1 ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science. Volume 118 Issue 4 August 2009 pp 405-412. Magnetic anomalies of offshore Krishna-Godavari Basin, eastern continental margin of India · K V Swamy I V Radhakrishna Murthy K S Krishna K S R Murthy A S Subrahmanyam M M Malleswara Rao · More Details Abstract ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 2 ... Predictors for Bangladesh summer monsoon (June–September) rainfall were identified ... After carrying out a detailed analysis of various global climate datasets; three ... Department of Physics, Bangladesh University of Engineering & Technology ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad. Volume 122 Issue 1 February 2013 pp 187-199 ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in EarthSciences without an estimation of their accuracy and reliability even though large outliers exist in them.The global 1 arc-sec, 30 m resolution, SRTM C-Band (C-30) data collected in February 2000 has beenrecently released ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 1. Volume 112, Issue 1 ... Effects of galvanic distortions on magnetotelluric data: Interpretation and its correction using deep electrical data · Jimmy Stephen S G ... pp 37-49. 2D Stabilised analytic signal method in DC pole-pole potential data interpretation.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 5. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log–ratio transformation of major-element data. Surendra P Verma Mirna Guevara Salil Agrawal. Volume 115 Issue 5 October 2006 ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7. Spectroscopy of olivine basalts using FieldSpec and ASTER data: A case study from Wadi Natash volcanic field, south Eastern Desert, Egypt. Ahmed Madani. Volume 124 Issue 7 October 2015 pp 1475-1486 ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 1. Mesoproterozoic diamondiferous ultramafic pipes at Majhgawan and Hinota, Panna area, central India: Key to the nature of sub-continental lithospheric mantle beneath the Vindhyan basin. N V Chalapathi Rao. Volume 115 Issue 1 February 2006 pp ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 6 ... using an X-ray fluorescence spectrometer (LEX),sensitive in the energy range of 1 –10 ... (SIR-2),similar to that used on the Smart-1 mission,in collaboration with ESA.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science. Volume 122 Issue 4 August 2013 pp 899-933. Tidal variations in the Sundarbans Estuarine System, India · Meenakshi Chatterjee D ... 5 July 2014 pp 1045-1074. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 5. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR). Nishant Gupta Tajdarul H Syed Ashiihrii Athiphro. Volume 122 Issue 5 October 2013 pp 1249- ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Amir Hossein Souri1 Sanaz Vajedian2. Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA. Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, North Kargar Ave., P.O. Box 11365-4563, Tehran, Iran.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 4 .... Hydrologic modelling of the effect of snowmelt and temperature on a ... Spatial control of groundwater contamination, using principal component analysis ..... Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 8 ... in conformity with their relation to (earthquake induced) shear system evolution in this terrain. ... Sanjoy Mahato1 Arka Ranjan Jana1 P B Maithani3 P V Ramesh Babu3.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Journal of Earth System Science; Volume 127; Issue 3. Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India. Priyabrata Santra Mahesh Kumar R N Kumawat D K Painuli K M Hati G B M Heuvelink N H Batjes. Volume 127 Issue 3 April 2018 Article ID 35 ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 1. The effects of attenuation and site on the spectra of microearthquakes in the Jubilee Hills region of Hyderabad, India. Saurabh Baruah Devajit Hazarika Naba K Gogoi P Solomon Raju. Volume 116 Issue 1 February 2007 pp 37-47 ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 3. Volume 113, Issue 3. September 2004, pages 259-515. pp 259-267. Delineation of structures favourable to groundwater occurrence employing seismic refraction method — A case study from Tiruvuru, Krishna district, Andhra Pradesh · N Sundararajan ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 8 ... On a model simulating lack of hydraulic connection between a man-made reservoir and the ... Depth of water in the reservoir varies as H'+h cos(ωt). ..... exchanges via riverbank filtration by hydrochemical and biological indicators, Assiut, Egypt.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 4. Simultaneous transport of water and solutes under transient unsaturated flow conditions – A case study ... Keywords. Hydraulic conductivity; infiltration; leaching; Malaprabha; modeling; permeability; salinity; solute transport; SWIM model; water flow.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 2. Volume 113, Issue 2. June 2004, pages 129-257. pp 129-138. The evaporation of the charged and uncharged water drops suspended in a wind tunnel · Rohini V Bhalwankar A B Sathe A K Kamra · More Details Abstract Fulltext PDF. A laboratory ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 5. Polyphase deformation and garnet growth in politic schists of Sausar Group in Ramtek area, Maharashtra, India: A study of porphyroblast–matrix relationship. A Chattopadhyay N Ghosh. Volume 116 Issue 5 October 2007 pp 423-432 ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 3. Volume 112 ... pp 315-329. Flexure of the Indian plate and intraplate earthquakes .... Four major NW-SE trending active faults are mapped in the Kutch region. They define .... Behaviour of masonry structures during the Bhuj earthquake of January 2001.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    T M Balakrishnan Nair. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 461-472 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Monsoon control on trace metal fluxes in the deep Arabian Sea · T M Balakrishnan ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5 ... They are mainly of high-K calc-alkaline series with indistinct Eu anomalies, enriched in ... School of Geosciences and Info-Physics, Central South University, Changsha ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Simulation of CO2 concentrations at Tsukuba tall tower using WRF-CO2 tracer transport model. Srabanti Ballav Prabir K Patra Yousuke Sawa Hidekazu Matsueda Ahoro Adachi Shigeru Onogi Masayuki Takigawa Utpal K De. Volume 125 Issue 1 ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 3. An experimental set-up for carbon isotopic analysis of atmospheric CO2 and an example of ecosystem response during solar eclipse 2010. Tania Guha Prosenjit Ghosh. Volume 122 Issue 3 June 2013 pp 623-638 ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 8. Application of environmental isotopes and hydrochemistry in the identification of source of seepage and likely connection with lake water in Lesser Himalaya, Uttarakhand, India. Shive Prakash Rai Dharmaveer Singh Ashwani Kumar Rai Bhishm ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5. Assessment of large aperture scintillometry for large-area surface energy fluxes over an irrigated cropland in north India. Abhishek Danodia V K Sehgal N R Patel R Dhakar J Mukherjee S K Saha A Senthil Kumar. Volume 126 Issue 5 July 2017 Article ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 3. Characterization of weathering profile in granites and volcanosedimentary rocks in West Africa under humid tropical climate conditions. Case of the Dimbokro Catchment (Ivory Coast). M Koita H Jourde K J P Koffi K S Da Silveira A Biaou. Volume 122 ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 3. Volume 110, Issue 3. September 2001, pages 185-265. pp 185-190. Ar-Ar age of carbonatite-alkaline magmatism in Sung Valley, Maghalaya, India · Jyotiranjan S Ray Kanchan Pande · More Details Abstract Fulltext PDF. 40Ar-39Ar analyses of one ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 2 ... Trend analysis and change point detection of annual and seasonal .... Numerical evaluation of seismic response of shallow foundation on loose silt and silty sand ... complex interactions can be a valuable tool to gain new insights for improved seismic ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 3 ... Decomposition of wind speed fluctuations at different time scales .... Bayesian inversion of synthetic AVO data to assess fluid and shale content in sand-shale media ... Geochemical characteristics of sandstones from Cretaceous Garudamangalam ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 4. Evolution of the Bhandara-Balaghat granulite belt along the southern margin of the Sausar Mobile Belt of central India. H M Ramachandra Abhinaba Roy. Volume 110 Issue 4 December 2001 pp 351-368 ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3 ... () based optical classification of IRS-P3 MOS-B satellite ocean colour data ... water leaving radiances in blue and green channels of 412, 443, 490 and 550 nm.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 1. Records of climatic changes and volcanic events in an ice core from Central Dronning Maud Land (East Antarctica) during the past century. V N Nijampurkar D K Rao H B Clausen M K Kaul A Chaturvedi. Volume 111 Issue 1 March 2002 pp 39-49 ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 4. Volume ... Tidal variations in the Sundarbans Estuarine System, India ... The tidal asymmetry and stand have implications for human activity in the Sundarbans. ..... zonation in urban rivers using multivariate analysis: Implications for river management.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 1. Geochemistry of sericite deposits at the base of the Paleoproterozoic Aravalli Supergroup, Rajasthan, India: Evidence for metamorphosed and metasomatised Precambrian Paleosol. B Sreenivas A B Roy R Srinivasan. Volume 110 Issue 1 March 2001 ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 5. Impact of vegetation on the simulation of seasonal monsoon rainfall over the Indian subcontinent using a regional model. Surya K Dutta Someshwar Das S C Kar U C Mohanty P C Joshi. Volume 118 Issue 5 October 2009 pp 413-440 ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 1. Laser microprobe for the study of noble gases and nitrogen in single grains: A case study of individual chondrules from the Dhajala meteorite. R R Mahajan S V S Murty. Volume 112 Issue 1 March 2003 pp 113-127 ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Prediction and error growth in the daily forecast of precipitation from the NCEP CFSv2 over the subdivisions of Indian subcontinent. Dhruva Kumar Pandey Shailendra Rai A K Sahai S Abhilash N K Shahi. Volume 125 Issue 1 February 2016 pp 29-45 ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure. Hrishikesh Samant Ashwin Pundalik Joseph D'souza Hetu Sheth Keegan Carmo Lobo Kyle D'souza Vanit Patel. Volume ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. AIRS observations of seasonal variability in meridional temperature gradient over Indian region at 100 hPa. A Gupta S K Dhaka V Panwar R Bhatnagar V Kumar Savita M Datta S K Dash. Volume 122 Issue 1 February 2013 pp 201-213 ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 6. Anthropogenic and impact spherules: Morphological similarity and chemical distinction – A case study from India and its implications. Ambalika Niyogi Jayanta K Pati Suresh C Patel Dipak Panda Shiv K Patil. Volume 120 Issue 6 December 2011 pp ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 4. SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. D Ramakrishnan A Bandyopadhyay K N Kusuma. Volume 118 Issue 4 August 2009 pp 355-368 ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 5. Volume 117, Issue 5. October 2008, pages 537-645. pp 537-551. The High Deccan duricrusts of India and their significance for the 'laterite' issue · Cliff D Ollier Hetu C Sheth · More Details Abstract Fulltext PDF. In the Deccan region of western India ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In contrast, eastern province values dominated in the Pd-Au-Cu region at the 'Cu' end of the profiles. A strong dominance of Pd in the eastern Deccan was also of interest. ... School of Geography and Earth Sciences, McMaster University, Hamilton, Canada. Department of Geology, Presidency University, Kolkata 700 073, ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 2 ... It follows that concentrations of these particle-active elements must have varied in the past with ... REE geochemistry of ore zones in the Archean auriferous schist belts of the eastern ... Estimation of source parameters of Chamoli Earthquake, India.

  3. Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences

    Science.gov (United States)

    Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.

    2017-12-01

    Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.

  4. Software Reuse Within the Earth Science Community

    Science.gov (United States)

    Marshall, James J.; Olding, Steve; Wolfe, Robert E.; Delnore, Victor E.

    2006-01-01

    Scientific missions in the Earth sciences frequently require cost-effective, highly reliable, and easy-to-use software, which can be a challenge for software developers to provide. The NASA Earth Science Enterprise (ESE) spends a significant amount of resources developing software components and other software development artifacts that may also be of value if reused in other projects requiring similar functionality. In general, software reuse is often defined as utilizing existing software artifacts. Software reuse can improve productivity and quality while decreasing the cost of software development, as documented by case studies in the literature. Since large software systems are often the results of the integration of many smaller and sometimes reusable components, ensuring reusability of such software components becomes a necessity. Indeed, designing software components with reusability as a requirement can increase the software reuse potential within a community such as the NASA ESE community. The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group is chartered to oversee the development of a process that will maximize the reuse potential of existing software components while recommending strategies for maximizing the reusability potential of yet-to-be-designed components. As part of this work, two surveys of the Earth science community were conducted. The first was performed in 2004 and distributed among government employees and contractors. A follow-up survey was performed in 2005 and distributed among a wider community, to include members of industry and academia. The surveys were designed to collect information on subjects such as the current software reuse practices of Earth science software developers, why they choose to reuse software, and what perceived barriers prevent them from reusing software. In this paper, we compare the results of these surveys, summarize the observed trends, and discuss the findings. The results are very

  5. The Earth Science for Tomorrows Classroom

    Science.gov (United States)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  6. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  7. STREAMS - Supporting Underrepresented Groups in Earth Sciences

    Science.gov (United States)

    Carvalho-Knighton, K.; Johnson, A.

    2009-12-01

    In Fall 2008, STREAMS (Supporting Talented and Remarkable Environmental And Marine Science students) Scholarship initiative began at the University of South Florida St. Petersburg, the only public university in Pinellas County. STREAMS is a partnership between the University of South Florida St. Petersburg’s (USFSP) Environmental Science and Policy Program and University of South Florida’s (USF) College of Marine Science. The STREAMS Student Scholarship Program has facilitated increased recruitment, retention, and graduation of USFSP environmental science and USF marine science majors. The STREAMS program has increased opportunities for minorities and women to obtain undergraduate and graduate degrees, gain valuable research experience and engage in professional development activities. STREAMS scholars have benefited from being mentored by USFSP and USF faculty and as well as MSPhDs students and NSF Florida-Georgia LSAMP Bridge to Doctorate graduate fellows. In addition, STREAMS has facilitated activities designed to prepare student participants for successful Earth system science-related careers. We will elucidate the need for this initiative and vision for the collaboration.

  8. Terra Incognita: Explanation and Reductionism in Earth Science

    NARCIS (Netherlands)

    Kleinhans, M.G.

    2005-01-01

    The present paper presents a philosophical analysis of earth science, a discipline that has received relatively little attention from philosophers of science. We focus on the question of whether earth science can be reduced to allegedly more fundamental sciences, such as chemistry or physics. In

  9. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    Science.gov (United States)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  10. Mt. Kilimanjaro expedition in earth science education

    Science.gov (United States)

    Sparrow, Elena; Yoshikawa, Kenji; Narita, Kenji; Brettenny, Mark; Yule, Sheila; O'Toole, Michael; Brettenny, Rogeline

    2010-05-01

    Mt. Kilimanjaro, Africa's highest mountain is 5,895 meters above sea level and is located 330 km south of the equator in Tanzania. In 1976 glaciers covered most of Mt. Kilimanjaro's summit; however in 2000, an estimated eighty percent of the ice cap has disappeared since the last thorough survey done in 1912. There is increased scientific interest in Mt. Kilimanjaro with the increase in global and African average temperatures. A team of college and pre-college school students from Tanzania, South Africa and Kenya, teachers from South Africa and the United States, and scientists from the University of Alaska Fairbanks in the United States and Akita University in Japan, climbed to the summit of Mt Kilimanjaro in October 2009. They were accompanied by guides, porters, two expedition guests, and a videographer. This expedition was part of the GLOBE Seasons and Biomes Earth System Science Project and the GLOBE Africa science education initiative, exploring and contributing to climate change studies. Students learned about earth science experientially by observing their physical and biological surroundings, making soil and air temperature measurements, participating in discussions, journaling their experience, and posing research questions. The international trekkers noted the change in the biomes as the altitude, temperature and conditions changed, from cultivated lands, to rain forest, heath zone, moorland, alpine desert, and summit. They also discovered permafrost, but not at the summit as expected. Rather, it was where the mountain was not covered by a glacier and thus more exposed to low extreme temperatures. This was the first report of permafrost on Mt. Kilimanjaro. Classrooms from all over the world participated in the expedition virtually. They followed the trek through the expedition website (http://www.xpeditiononline.com/) where pictures and journals were posted, and posed their own questions which were answered by the expedition and base camp team members

  11. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M [ed.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author).

  12. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author)

  13. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  14. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  15. Edible Earth and Space Science Activities

    Science.gov (United States)

    Lubowich, D.; Shupla, C.

    2014-07-01

    In this workshop we describe using Earth and Space Science demonstrations with edible ingredients to increase student interest. We show how to use chocolate, candy, cookies, popcorn, bagels, pastries, Pringles, marshmallows, whipped cream, and Starburst candy for activities such as: plate tectonics, the interior structure of the Earth and Mars, radioactivity/radioactive dating of rocks and stars, formation of the planets, lunar phases, convection, comets, black holes, curvature of space, dark energy, and the expansion of the Universe. In addition to creating an experience that will help students remember specific concepts, edible activities can be used as a formative assessment, providing students with the opportunity to create something that demonstrates their understanding of the model. The students often eat the demonstrations. These demonstrations are an effective teaching tool for all ages, and can be adapted for cultural, culinary, and ethnic differences among the students.

  16. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  17. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  18. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    Science.gov (United States)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  19. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    McHargue, C.J.

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects

  20. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.