WorldWideScience

Sample records for earth science information

  1. Earth and space science information systems

    Energy Technology Data Exchange (ETDEWEB)

    Zygielbaum, A. (ed.) (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States))

    1993-01-01

    These proceedings represent papers presented at the Earth and Space Science Information Systems (ESSIS) Conference. The attendees included scientists and engineers across many disciplines. New trends in information organizations were reviewed. One hundred and twenty eight papers are included in this volume, out of these two have been abstracted for the Energy Science and Technology database. The topics covered in the papers range from Earth science and technology to astronomy and space, planetary science and education. (AIP)

  2. Exploiting Untapped Information Resources in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  3. Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and...

  4. Goddard Earth Science Data and Information Center (GES DISC)

    Science.gov (United States)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  5. International earth science information network for global change decision making

    Energy Technology Data Exchange (ETDEWEB)

    Autrey-Hunley, C.; Kuhn, W.R.; Kasischke, E.; Trichel, M.T.; Coppola, R.

    1991-01-01

    Effective environmental decision making depends upon the ability to predict physical changes in the environment, societal responses to these changes, and how both the physical changes and societal responses will be affected by changes in government regulations, public perceptions and the environment. Technological advances in remote sensing have provided a wealth of earth science data necessary to study global change problems; the Earth Observatory System will provide an unprecedented data source in the late 1990's. The Consortium for an International Earth Science Information Network (CIESIN) will combine earth science data (both satellite and ground-based) with data on the social sciences (e.g., economics, demographics, public health) to support informed policy decisions and to transfer knowledge on global change and its causes to the public.

  6. The Federation of Earth Science Information Partners ESIP

    Science.gov (United States)

    Tilmes, Curt

    2013-01-01

    A broad-based, distributed community of science, data and information technology practitioners. With over 150 member organizations, the ESIP Federation brings together public, academic, commercial, and nongovernmental organizations to share knowledge, expertise, technology and best practices to improve opportunities for increasing access, discovery, integration and usability of Earth science data.

  7. The Path from Large Earth Science Datasets to Information

    Science.gov (United States)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  8. Earth Science Data Analytics: Preparing for Extracting Knowledge from Information

    Science.gov (United States)

    Kempler, Steven; Barbieri, Lindsay

    2016-01-01

    Data analytics is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. Data analytics is a broad term that includes data analysis, as well as an understanding of the cognitive processes an analyst uses to understand problems and explore data in meaningful ways. Analytics also include data extraction, transformation, and reduction, utilizing specific tools, techniques, and methods. Turning to data science, definitions of data science sound very similar to those of data analytics (which leads to a lot of the confusion between the two). But the skills needed for both, co-analyzing large amounts of heterogeneous data, understanding and utilizing relevant tools and techniques, and subject matter expertise, although similar, serve different purposes. Data Analytics takes on a practitioners approach to applying expertise and skills to solve issues and gain subject knowledge. Data Science, is more theoretical (research in itself) in nature, providing strategic actionable insights and new innovative methodologies. Earth Science Data Analytics (ESDA) is the process of examining, preparing, reducing, and analyzing large amounts of spatial (multi-dimensional), temporal, or spectral data using a variety of data types to uncover patterns, correlations and other information, to better understand our Earth. The large variety of datasets (temporal spatial differences, data types, formats, etc.) invite the need for data analytics skills that understand the science domain, and data preparation, reduction, and analysis techniques, from a practitioners point of view. The application of these skills to ESDA is the focus of this presentation. The Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster was created in recognition of the practical need to facilitate the co-analysis of large amounts of data and information for Earth science. Thus, from a to

  9. New Center Links Earth, Space, and Information Sciences

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  10. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    Science.gov (United States)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  11. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  12. Illuminating the Darkness: Exploiting untapped data and information resources in Earth Science

    Data.gov (United States)

    National Aeronautics and Space Administration — We contend that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or...

  13. Earth science information: Planning for the integration and use of global change information

    Science.gov (United States)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  14. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    Science.gov (United States)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  15. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  16. Incorporating Informal Learning Environments and Local Fossil Specimens in Earth Science Classrooms: A Recipe for Success

    Science.gov (United States)

    Clary, Renee M.; Wandersee, James H.

    2009-01-01

    In an online graduate paleontology course taken by practicing Earth Science teachers, we designed an investigation using teachers' local informal educational environments. Teachers (N = 28) were responsible for photographing, describing, and integrating fossil specimens from two informal sites into a paleoenvironmental analysis of the landscape in…

  17. Ensuring and Improving Information Quality for Earth Science Data and Products: Role of the ESIP Information Quality Cluster

    Science.gov (United States)

    Ramapriyan, Hampapuram; Peng, Ge; Moroni, David; Shie, Chung-Lin

    2016-01-01

    Quality of products is always of concern to users regardless of the type of products. The focus of this paper is on the quality of Earth science data products. There are four different aspects of quality - scientific, product, stewardship and service. All these aspects taken together constitute Information Quality. With increasing requirement on ensuring and improving information quality, there has been considerable work related to information quality during the last several years. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) has been active with membership from multiple organizations. Its objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are discussed briefly.

  18. Ensuring and Improving Information Quality for Earth Science Data and Products Role of the ESIP Information Quality Cluster

    Science.gov (United States)

    Ramapriyan, H. K. (Rama); Peng, Ge; Moroni, David; Shie, Chung-Lin

    2016-01-01

    Quality of products is always of concern to users regardless of the type of products. The focus of this paper is on the quality of Earth science data products. There are four different aspects of quality scientific, product, stewardship and service. All these aspects taken together constitute Information Quality. With increasing requirement on ensuring and improving information quality, there has been considerable work related to information quality during the last several years. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) has been active with membership from multiple organizations. Its objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are discussed briefly.

  19. The role of Facilities in Engaging and Informing the Public of EarthScope Science

    Science.gov (United States)

    Charlevoix, D. J.; Taber, J. J.; Berg, M.; Dorr, P. M.; McQuillan, P.; Olds, S. E.

    2013-12-01

    The IRIS and UNAVCO facilities play an important role in support of EarthScope through joint and independent education and outreach activities. These activities are focused on providing data and data products to a wide range of audiences, disseminating EarthScope science results through formal and informal venues, and informing the public of the broader impacts of EarthScope. The facilities are particularly well-suited for sustained engagement of multiple audiences over the decade-long course of EarthScope. One such example of a long-term effort was the Transportable Array student siting program, where over an 8 year period, students from about 55 institutions across the US and Canada conducted site reconnaissance and talked to landowners about EarthScope. Another activity focused on students was the development of a student intern program to support field engineering efforts during the construction of the Plate Boundary Observatory. Other ongoing activities include developing and maintaining relationships with media representatives and annual training of National Parks staff throughout the western U.S. The UNAVCO-IRIS partnership has been particularly valuable for EarthScope-related activities, where UNAVCO and IRIS work closely with the EarthScope National Office (ESNO) to bring EarthScope science to national, regional and local audiences within the EarthScope footprint. Collaborations have ranged across each group's products and services, including: EarthScope-focused teacher workshops, participation in EarthScope interpretive workshops for informal educators (led by ESNO), development of content for the IRIS Active Earth Monitor, preparing PBO-, USArray- and EarthScope-focused materials on topics such as Episodic Tremor and Slip for wider distribution through print, web, and mobile information technologies, and organizing research experiences for undergraduates on EarthScope-related topics. Other collaborations have focused on social media, and the development

  20. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    Science.gov (United States)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  1. Use of MCIDAS as an earth science information systems tool

    Science.gov (United States)

    Goodman, H. Michael; Karitani, Shogo; Parker, Karen G.; Stooksbury, Laura M.; Wilson, Gregory S.

    1988-01-01

    The application of the man computer interactive data access system (MCIDAS) to information processing is examined. The computer systems that interface with the MCIDAS are discussed. Consideration is given to the computer networking of MCIDAS, data base archival, and the collection and distribution of real-time special sensor microwave/imager data.

  2. Information Quality as a Foundation for User Trustworthiness of Earth Science Data.

    Science.gov (United States)

    Wei, Y.; Moroni, D. F.; Ramapriyan, H.; Peng, G.

    2017-12-01

    Information quality is multidimensional. Four different aspects of information quality can be defined based on the lifecycle stages of Earth Science data products: science, product, stewardship and services. With increasing requirements on ensuring and improving information quality coming from multiple government agencies and throughout industry, there have been considerable efforts toward improving information quality during the last decade, much of which has not been well vetted in a collective sense until recently. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) in 2011, and reactivated in the summer of 2014, has been active with membership from multiple organizations. The IQC's objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are also considered vital toward improving the trustworthiness of Earth science data to a vast and interdisciplinary community of data users. During 2016, several members of the IQC have led the development and assessment of four use cases. This was followed up in 2017 with multiple panel sessions at the 2017 Winter and Summer ESIP Meetings to survey the challenges posed in the various aspects of information quality. What was discovered to be most lacking is the transparency of data lineage (i.e., provenance and maturity), uniform methods for uncertainty characterization, and uniform quality assurance data and metadata. While solutions to these types of issues exist, most data producers have little time to investigate and collaborate to arrive at and conform to a consensus approach. The IQC has positioned itself as a community platform to bring together all relevant stakeholders from data producers, repositories, program managers, and the end users. A combination of both well-vetted and "trailblazing" solutions are presented to address how data trustworthiness can

  3. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  4. Evolution of Information Management at the GSFC Earth Sciences (GES) Data and Information Services Center (DISC): 2006-2007

    Science.gov (United States)

    Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen

    2009-01-01

    Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007

  5. Text Mining to inform construction of Earth and Environmental Science Ontologies

    Science.gov (United States)

    Schildhauer, M.; Adams, B.; Rebich Hespanha, S.

    2013-12-01

    There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their

  6. Earth Sciences Data and Information System (ESDIS) program planning and evaluation methodology development

    Science.gov (United States)

    Dickinson, William B.

    1995-01-01

    An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.

  7. Bringing cutting-edge Earth and ocean sciences to under-served and rural audiences through informal science education

    Science.gov (United States)

    Cooper, S. K.; Petronotis, K. E.; Ferraro, C.; Johnson, K. T. M.; Yarincik, K.

    2017-12-01

    The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. The JOIDES Resolution is the flagship vessel of IODP and is operated by the National Science Foundation. It is an inspirational hook for STEM Earth and ocean topics for children and the general public of all ages, but is not easily accessible due to its international travels and infrequent U.S. port calls. In response, a consortium of partners has created the Pop-Up/Drill Down Science project. The multi-year project, funded by NSF's Advancing Informal Science Learning program, aims to bring the JR and its science to under-served and rural populations throughout the country. Consisting of an inflatable walk-through ship, a multi-media experience, a giant interactive seafloor map and a series of interactive exhibit kiosks, the exhibit, entitled, In Search of Earth's Secrets: A Pop-Up Science Encounter, will travel to 12 communities throughout the next four years. In each community, the project will partner with local institutions like public libraries and small museums as hosts and to train local Girl Scouts to serve as exhibit facilitators. By working with local communities to select events and venues for pop-up events, the project hopes to bring cutting edge Earth and ocean science in creative new ways to underserved populations and inspire diverse audiences to explore further. This presentation will provide details of the project's goals, objectives and development and provide avenues to become involved.

  8. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  9. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment

    Science.gov (United States)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.

    2010-12-01

    Social science research on the effective communication of climate science suggests that today's audiences may be effectively engaged by presenting information about Earth's climate in the context of individual and community actions that can be taken to increase energy efficiency and to reduce carbon emissions. "EARTH-The Operators' Manual" (ETOM) is an informal science education and outreach project supported by NSF, comprising three related components: a 3-part broadcast television mini-series; on-site outreach at 5 major science centers and natural history museums strategically located across the USA; and a website with innovative social networking tools. A companion tradebook, written by series presenter and Penn State glaciologist Richard Alley, is to be published by W. W. Norton in spring 2011. Program 1, THE BURNING QUESTION, shows how throughout human history our need for energy has been met by burning wood, whale oil and fossil fuels, but notes that fossil fuels produce carbon dioxide which inevitably change the composition of Earth's atmosphere. The program uses little known stories (such as US Air Force atmospheric research immediately after WW2, looking at the effect of CO2 levels on heat-seeking missiles, and Abraham Lincoln's role in the founding of the National Academy of Sciences and the Academy's role in solving navigation problems during the Civil War) to offer fresh perspectives on essential but sometimes disputed aspects of climate science: that today's levels of CO2 are unprecedented in the last 400,000 and more years; that human burning of fossil fuel is the scientifically-proven source, and that multiple lines of evidence show Earth is warming. Program 2, TEN WAYS TO KEEP TEN BILLION SMILING, offers a list of appealing strategies (such as "Get Rich and Save the World": Texas & wind energy, and "Do More with Less": how glow worms make cool light without waste heat, suggesting a role for organic LEDs) to motivate positive responses to the

  10. The Media as an Invaluable Tool for Informal Earth System Science Education

    Science.gov (United States)

    James, E.; Gautier, C.

    2001-12-01

    One of the most widely utilized avenues for educating the general public about the Earth's environment is the media, be it print, radio or broadcast. Accurate and effective communication of issues in Earth System Science (ESS), however, is significantly hindered by the public's relative scientific illiteracy. Discussion of ESS concepts requires the laying down of a foundation of complex scientific information, which must first be conveyed to an incognizant audience before any strata of sophisticated social context can be appropriately considered. Despite such a substantial obstacle to be negotiated, the environmental journalist is afforded the unique opportunity of providing a broad-reaching informal scientific education to a largely scientifically uninformed population base. This paper will review the tools used by various environmental journalists to address ESS issues and consider how successful each of these approaches has been at conveying complex scientific messages to a general audience lacking sufficient scientific sophistication. Different kinds of media materials used to this effect will be analyzed for their ideas and concepts conveyed, as well as their effectiveness in reaching the public at large.

  11. Value-added Data Services at the Goddard Earth Sciences Data and Information Services Center

    Science.gov (United States)

    Leptoukh, G. G.; Alcott, G. T.; Kempler, S. J.; Lynnes, C. S.; Vollmer, B. E.

    2004-05-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in addition to serving the Earth Science community as one of the major Distributed Active Archive Centers (DAACs), provides much more than just data. Among the value-added services available to general users are subsetting data spatially and/or by parameter, online analysis (to avoid downloading unnecessary all the data), and assistance in obtaining data from other centers. Services available to data producers and high-volume users include consulting on building new products with standard formats and metadata and construction of data management systems. A particularly useful service is data processing at the DISC (i.e., close to the input data) with the users' algorithms. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools. Partnerships between the GES DISC and scientists, both producers and users, allow the scientists concentrate on science, while the GES DISC handles the of data management, e.g., formats, integration and data processing. The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from simple data support to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. At the same time, such partnerships allow the GES DISC to serve the user community more efficiently and to better prioritize on-line holdings. Several examples of successful partnerships are described in the presentation.

  12. Report to the Chairman, Committee on Science, House of Representatives. Earth Science Information Network: Relationship of consortium to federal agencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The activities of the Consortium for International Earth Science Information Network (CIESIN) are reviewed, identifying (1) the nature of CIESIN`s mission, (2) CIESIN`s past and prospective funding, (3) the way NASA will oversee CIESIN`s work on the human dimensions of global change (HDGC), (4) the similarity of activities between CIESIN and the National Science Foundation`s (NSF`s) Centers for HDGC, and (5) CIESIN`s building requirements. The mission of CIESIN, a consortium of university and nongovernmental research organizations established in 1989, is to provide access to, and to enhance the use of, information related to human interactions in the environment by scientists and policy decision-makers. CIESIN has received almost all of its funding from the federal government, mostly from NASA, the Department of Agriculture, the Department of Defense, and the Environmental Protection Agency. Because of pending loss of some of these funds, CIESIN has instituted a strategy for competing for grants and contracts from federal, state, and local government agencies; private companies; foreign governments; and international organizations. NASA will continue to provide funds for CIESIN to incorporate socioeconomic data as an essential part of its Earth Observing System Data and Information System and to develop and operate a Socioeconomic Data and Applications Center (SEDAC). To help CIESEN focus on the human interactions of global change, NASA has established a SEDAC users` working group, consisting of social scientists and other experts from universities, state and federal agencies, and environmental groups and other private institutions. CIESEN would not duplicate functions performed by the NSF`s HDGC centers since CIESEN provides researchers with access to data and information; it does not do or sponsor basic research.

  13. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    Science.gov (United States)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  14. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  15. Auscope: Australian Earth Science Information Infrastructure using Free and Open Source Software

    Science.gov (United States)

    Woodcock, R.; Cox, S. J.; Fraser, R.; Wyborn, L. A.

    2013-12-01

    Since 2005 the Australian Government has supported a series of initiatives providing researchers with access to major research facilities and information networks necessary for world-class research. Starting with the National Collaborative Research Infrastructure Strategy (NCRIS) the Australian earth science community established an integrated national geoscience infrastructure system called AuScope. AuScope is now in operation, providing a number of components to assist in understanding the structure and evolution of the Australian continent. These include the acquisition of subsurface imaging , earth composition and age analysis, a virtual drill core library, geological process simulation, and a high resolution geospatial reference framework. To draw together information from across the earth science community in academia, industry and government, AuScope includes a nationally distributed information infrastructure. Free and Open Source Software (FOSS) has been a significant enabler in building the AuScope community and providing a range of interoperable services for accessing data and scientific software. A number of FOSS components have been created, adopted or upgraded to create a coherent, OGC compliant Spatial Information Services Stack (SISS). SISS is now deployed at all Australian Geological Surveys, many Universities and the CSIRO. Comprising a set of OGC catalogue and data services, and augmented with new vocabulary and identifier services, the SISS provides a comprehensive package for organisations to contribute their data to the AuScope network. This packaging and a variety of software testing and documentation activities enabled greater trust and notably reduced barriers to adoption. FOSS selection was important, not only for technical capability and robustness, but also for appropriate licensing and community models to ensure sustainability of the infrastructure in the long term. Government agencies were sensitive to these issues and Au

  16. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  17. A service for the application of data quality information to NASA earth science satellite records

    Science.gov (United States)

    Armstrong, E. M.; Xing, Z.; Fry, C.; Khalsa, S. J. S.; Huang, T.; Chen, G.; Chin, T. M.; Alarcon, C.

    2016-12-01

    A recurring demand in working with satellite-based earth science data records is the need to apply data quality information. Such quality information is often contained within the data files as an array of "flags", but can also be represented by more complex quality descriptions such as combinations of bit flags, or even other ancillary variables that can be applied as thresholds to the geophysical variable of interest. For example, with Level 2 granules from the Group for High Resolution Sea Surface Temperature (GHRSST) project up to 6 independent variables could be used to screen the sea surface temperature measurements on a pixel-by-pixel basis. Quality screening of Level 3 data from the Soil Moisture Active Passive (SMAP) instrument can be become even more complex, involving 161 unique bit states or conditions a user can screen for. The application of quality information is often a laborious process for the user until they understand the implications of all the flags and bit conditions, and requires iterative approaches using custom software. The Virtual Quality Screening Service, a NASA ACCESS project, is addressing these issues and concerns. The project has developed an infrastructure to expose, apply, and extract quality screening information building off known and proven NASA components for data extraction and subset-by-value, data discovery, and exposure to the user of granule-based quality information. Further sharing of results through well-defined URLs and web service specifications has also been implemented. The presentation will focus on overall description of the technologies and informatics principals employed by the project. Examples of implementations of the end-to-end web service for quality screening with GHRSST and SMAP granules will be demonstrated.

  18. Personal, Informal and Relatable: Engaging Wide Audiences in Climate Science with Nasa's Earth Right Now Blog

    Science.gov (United States)

    Tenenbaum, L. F.; Shaftel, H.; Jackson, R.

    2014-12-01

    There is no such thing as a non-scientist, but there are some who have yet to acknowledge their inner science spark. Aiming to ignite and fan the flame of curiosity, promote dialogue and attempt to make climate science personal and relevant to everyday life, NASA's Global Climate Change website http://climate.nasa.gov/ and Earth Right Now campaign http://www.nasa.gov/content/earth-right-now/ partnered together this year to launch the Earth Right Now blog http://climate.nasa.gov/blog. It quickly became one of the most popular blogs in all of NASA social media, receiving thousands of likes per week, and frequent comments as well as thoughtful and respectful discussions about climate change. Social media platforms such as blogs have become popular vehicles for engaging large swaths of the public in new exciting ways. NASA's Earth Right Now blog has become a powerful platform for engaging both scientists and the science-curious in constructive, fruitful conversations about the complex topic of climate science. We continue to interact and have ongoing dialogue with our readers by making the scientific content both accessible and engaging for diverse populations.

  19. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  20. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  1. Refresher Course on Earth Sciences

    Indian Academy of Sciences (India)

    Information and Announcements ... Introduction: Geoscience education in India is in the throes of a serious crisis and any paradigm ... considerations: geology needs to be taught as an earth system science, linked with cognate ... viable and employment-generating management of natural resources: the global trend of.

  2. Earth Science Misconceptions.

    Science.gov (United States)

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  3. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  4. NASA Earth Observing System Data and Information System (EOSDIS): A U.S. Network of Data Centers Serving Earth Science Data: A Network Member of ICSU WDS

    Science.gov (United States)

    Behnke, Jeanne; Ramapriyan, H. K. " Rama"

    2016-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, and serving a diverse user community around the world with Earth science data from satellites, aircraft, field campaigns and research investigations. The ESDIS Project, responsible for EOSDIS is a Network Member of the International Council for Sciences (ICSU) World Data System (WDS). Nine of the 12 Distributed Active Archive Centers (DAACs), which are part of EOSDIS, are Regular Members of the ICSUWDS. This poster presents the EOSDIS mission objectives, key characteristics of the DAACs that make them world class Earth science data centers, successes, challenges and best practices of EOSDIS focusing on the years 2014-2016, and illustrates some highlights of accomplishments of EOSDIS. The highlights include: high customer satisfaction, growing archive and distribution volumes, exponential growth in number of products distributed to users around the world, unified metadata model and common metadata repository, flexibility provided to uses by supporting data transformations to suit their applications, near-real-time capabilities to support various operational and research applications, and full resolution image browse capabilities to help users select data of interest. The poster also illustrates how the ESDIS Project is actively involved in several US and international data system organizations.

  5. Strategies Which Foster Broad Use and Deployment of Earth and Space Science Informal and Formal Education Resources

    Science.gov (United States)

    Meeson, Blanche W.; Gabrys, Robert; Ireton, M. Frank; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Education projects supported by federal agencies and carried out by a wide range of organizations foster learning about Earth and Space systems science in a wide array of venues. Across these agencies a range of strategies are employed to ensure that effective materials are created for these diverse venues. And that these materials are deployed broadly so that a large spectrum of the American Public, both adults and children alike, can learn and become excited by the Earth and space system science. This session will highlight some of those strategies and will cover representative examples to illustrate the effectiveness of the strategies. Invited speakers from selected formal and informal educational efforts will anchor this session. Speakers with representative examples are encouraged to submit abstracts for the session to showcase the strategies which they use.

  6. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  7. CO2 Data Distribution and Support from the Goddard Earth Science Data and Information Services Center (GES-DISC)

    Science.gov (United States)

    Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer

    2015-01-01

    This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.

  8. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  9. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    Science.gov (United States)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  10. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    Science.gov (United States)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  11. NASA Information And Data System for Earth Science Data Fusion and Analytics

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the key elements of advancing our understanding of Earth system via remote sensing is integration of diverse measurements into the observing system. As remote...

  12. Archive of Geosample Data and Information from the University of Southern California (USC) Department of Earth Sciences

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Metadata describing geological samples curated by Earth Sciences Department of the University of Southern California (USC) collected during the period from 1922 to...

  13. The new space and earth science information systems at NASA's archive

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.L. (NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1990-01-01

    The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, ozone TOMS data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered. 8 refs.

  14. Space and Earth Science Data Compression Workshop

    Science.gov (United States)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 3 ... Withregard to the lack of quality information and data in watersheds, it is of high ... Department of Watershed Management Engineering, Faculty of Agriculture, Lorestan ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 2 ... (SVM); geographical information systems (GIS); remote sensing; Golestan province; Iran. ... Department of Watershed Management Engineering, College of Natural ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 5 ... a Geographical Information System (GIS)based hydrogeomorphic approach in the ... The integrated study helps design a suitable groundwater management plan for a ...

  18. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    Science.gov (United States)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  19. Earth's Climate: Informing and Invoking Change Through Three Streams of Art and Science

    Science.gov (United States)

    Brey, J. A.; Waller, J. L.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When art and science exhibitions "Layers: Places in Peril" and `small problems, BIG TROUBLE" premiered, gallery visitors were drawn into the show through a series of features including the size, color and dramatic narrative of the paintings and by their own sentiments for the depicted cities, places and topics of each show. Inside the gallery, people read accompanying essays based on the geoscience, physics, biology and chemistry related to each of the depicted subjects. The result: hearts and minds engaged. Since the art and text dialogues were consciously and carefully crafted to have broad appeal to those without formal backgrounds in art and science, and to people of a range of ages, visitors did not feel they were preached to but rather, that they were a part of a conversation. This approach of producing art and science exhibitions for a wide diversity of gallery visitors and students, reaches a different audience than in discipline-specific classrooms or professional conferences and can inspire people to know and take action on a number of issues, including those related to climate change. As long-time educators of Art and Science, we are fully aware of the importance of those emotional connections in learning and we embraced that approach in our first two shows. Working on a third exhibition, we wish to expand on those deep connections for long-reaching reactions from gallery visitors. Entitled "River Bookends: Headwaters, Delta and the Volume of Stories In Between", our focus is on the multi-disciplinary stories of selected world rivers of the past, present and future. Presented concurrently in a gallery and a planetarium and weaving elements of art, science, music, dance, poetry, technology and interactive opportunities that engage memory and initiate problem solving through the exhibition experience, we stress both the art and science of rivers, their complexity, power and vulnerability to factors including climate change. Through these multisensory

  20. First International Earth Science Olympiad South Korea

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. First International Earth Science Olympiad - South Korea. Information and Announcements Volume 12 Issue 12 December 2007 pp 76-76. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Encyclopedia of earth system science

    National Research Council Canada - National Science Library

    Nierenberg, William Aaron

    1992-01-01

    .... The very diversity of the articles attests to the complexity of earth system science as a unique interdisciplinary venture to place humanity in a position to move wisely to protect the global habitat...

  2. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  3. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  4. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  5. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  6. Earth Sciences report, 1989--1990

    International Nuclear Information System (INIS)

    Younker, L.W.; Peterson, S.J.; Price, M.E.

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period

  7. Earth Sciences report, 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Peterson, S.J.; Price, M.E. (eds.)

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

  8. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  9. Analyzing Earth Science Research Networking through Visualizations

    Science.gov (United States)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  10. Lessons learned in deploying a cloud-based knowledge platform for the Earth Science Information Partners Federation (ESIP)

    Science.gov (United States)

    Pouchard, L. C.; Depriest, A.; Huhns, M.

    2012-12-01

    Ontologies and semantic technologies are an essential infrastructure component of systems supporting knowledge integration in the Earth Sciences. Numerous earth science ontologies exist, but are hard to discover because they tend to be hosted with the projects that develop them. There are often few quality measures and sparse metadata associated with these ontologies, such as modification dates, versioning, purpose, number of classes, and properties. Projects often develop ontologies for their own needs without considering existing ontology entities or derivations from formal and more basic ontologies. The result is mostly orthogonal ontologies, and ontologies that are not modular enough to reuse in part or adapt for new purposes, in spite of existing, standards for ontology representation. Additional obstacles to sharing and reuse include a lack of maintenance once a project is completed. The obstacles prevent the full exploitation of semantic technologies in a context where they could become needed enablers for service discovery and for matching data with services. To start addressing this gap, we have deployed BioPortal, a mature, domain-independent ontology and semantic service system developed by the National Center for Biomedical Ontologies (NCBO), on the ESIP Testbed under the governance of the ESIP Semantic Web cluster. ESIP provides a forum for a broad-based, distributed community of data and information technology practitioners and stakeholders to coordinate their efforts and develop new ideas for interoperability solutions. The Testbed provides an environment where innovations and best practices can be explored and evaluated. One objective of this deployment is to provide a community platform that would harness the organizational and cyber infrastructure provided by ESIP at minimal costs. Another objective is to host ontology services on a scalable, public cloud and investigate the business case for crowd sourcing of ontology maintenance. We deployed the

  11. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  12. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    Science.gov (United States)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  13. Overview of NASA's Earth Science Data Systems

    Science.gov (United States)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  14. Earth Science Literacy: Building Community Consensus

    Science.gov (United States)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  15. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  16. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  17. Smarter Earth Science Data System

    Science.gov (United States)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  18. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  19. Deriving Earth Science Data Analytics Requirements

    Science.gov (United States)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  20. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Science.gov (United States)

    2012-09-11

    ... Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee... following topics: --Applied Sciences Program Update --Earth Science Data Latency Study Preliminary Update...

  1. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2010-07-19

    ... Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science... . SUPPLEMENTARY INFORMATION: The agenda for the meeting includes the following topic: Earth Science Program's...

  2. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2013-08-22

    ... Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science... . SUPPLEMENTARY INFORMATION: The primary topic on the agenda for the meeting is:- Earth Science program annual...

  3. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2013-03-26

    ... Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science... . SUPPLEMENTARY INFORMATION: The agenda for the meeting includes the following topics: --Review of Earth Science...

  4. Earth Science Mining Web Services

    Science.gov (United States)

    Pham, Long; Lynnes, Christopher; Hegde, Mahabaleshwa; Graves, Sara; Ramachandran, Rahul; Maskey, Manil; Keiser, Ken

    2008-01-01

    To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at he GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADam components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestras the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to the infusion is the loosely coupled, Web-Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.

  5. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  6. Earth Science Capability Demonstration Project

    Science.gov (United States)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Journal of Earth System Science. Current Issue : Vol. 127, Issue 2. Current Issue Volume 127 | Issue 2. March 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Information for Authors ... A manuscript must present results of original, unpublished work. ... At this stage, JESS does not accept separate BibTeX files and does not provi de a bst file for ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Journal of Earth System Science. Current Issue : Vol. 127, Issue 3 · Current Issue Volume 127 | Issue 3. April 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 4 .... Hydrologic modelling of the effect of snowmelt and temperature on a ... Spatial control of groundwater contamination, using principal component analysis ..... Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  11. Functional requirements document for NASA/MSFC Earth Science and Applications Division: Data and information system (ESAD-DIS). Interoperability, 1992

    Science.gov (United States)

    Stephens, J. Briscoe; Grider, Gary W.

    1992-01-01

    These Earth Science and Applications Division-Data and Information System (ESAD-DIS) interoperability requirements are designed to quantify the Earth Science and Application Division's hardware and software requirements in terms of communications between personal and visualization workstation, and mainframe computers. The electronic mail requirements and local area network (LAN) requirements are addressed. These interoperability requirements are top-level requirements framed around defining the existing ESAD-DIS interoperability and projecting known near-term requirements for both operational support and for management planning. Detailed requirements will be submitted on a case-by-case basis. This document is also intended as an overview of ESAD-DIs interoperability for new-comers and management not familiar with these activities. It is intended as background documentation to support requests for resources and support requirements.

  12. Earth System Science Education Interdisciplinary Partnerships

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  13. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7 ... to good protective capacity rating as can be seen from the high longitudinal conductance ... School of Environment and Earth Sciences, North Maharashtra University, ...

  15. Evolving NASA's Earth Science Data Systems

    Science.gov (United States)

    Walter, J.; Behnke, J.; Murphy, K. J.; Lowe, D. R.

    2013-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth science data. The system supports a multitude of missions and serves diverse science research and other user communities. Keeping up with ever-changing information technology and figuring out how to leverage those changes across such a large system in order to continuously improve and meet the needs of a diverse user community is a significant challenge. Maintaining and evolving the system architecture and infrastructure is a continuous and multi-layered effort. It requires a balance between a "top down" management paradigm that provides a coherent system view and maintaining the managerial, technological, and functional independence of the individual system elements. This presentation will describe some of the key elements of the current system architecture, some of the strategies and processes we employ to meet these challenges, current and future challenges, and some ideas for meeting those challenges.

  16. Earth Sciences annual report, 1987

    International Nuclear Information System (INIS)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications

  17. Public Access to NASA's Earth Science Data

    Science.gov (United States)

    Behnke, J.; James, N.

    2013-12-01

    Many steps have been taken over the past 20 years to make NASA's Earth Science data more accessible to the public. The data collected by NASA represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. Consequently, NASA developed a free, open and non-discriminatory policy consistent with existing international policies to maximize access to data and to keep user costs as low as possible. These policies apply to all data archived, maintained, distributed or produced by NASA data systems. The Earth Observing System Data and Information System (EOSDIS) is a major core capability within NASA Earth Science Data System Program. EOSDIS is designed to ingest, process, archive, and distribute data from approximately 90 instruments. Today over 6800 data products are available to the public through the EOSDIS. Last year, EOSDIS distributed over 636 million science data products to the user community, serving over 1.5 million distinct users. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. A core philosophy of EOSDIS is that the general user is best served by providing discipline specific support for the data. To this end, EOSDIS has collocated NASA Earth science data with centers of science discipline expertise, called Distributed Active Archive Centers (DAACs). DAACs are responsible for data management, archive and distribution of data products. There are currently twelve DAACs in the EOSDIS system. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. Over the years, we have developed several methods for determining needs of the user community including use of the American Customer Satisfaction Index survey and a broad metrics program. Annually, we work with an independent organization (CFI Group) to send this

  18. Earth Systems Science: An Analytic Framework

    Science.gov (United States)

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Journal of Earth System Science was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed 'Journal of Earth System ...

  20. NASA's Earth Science Flight Program overview

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  1. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Zhang, J.; Duan, X.; Bugbee, K.; Christopher, S. A.; Miller, J. J.

    2017-12-01

    Estimates indicate that the world's information will grow by 800% in the next five years. In any given field, a single researcher or a team of researchers cannot keep up with this rate of knowledge expansion without the help of cognitive systems. Cognitive computing, defined as the use of information technology to augment human cognition, can help tackle large systemic problems. Knowledge graphs, one of the foundational components of cognitive systems, link key entities in a specific domain with other entities via relationships. Researchers could mine these graphs to make probabilistic recommendations and to infer new knowledge. At this point, however, there is a dearth of tools to generate scalable Knowledge graphs using existing corpus of scientific literature for Earth science research. Our project is currently developing an end-to-end automated methodology for incrementally constructing Knowledge graphs for Earth Science. Semantic Entity Recognition (SER) is one of the key steps in this methodology. SER for Earth Science uses external resources (including metadata catalogs and controlled vocabulary) as references to guide entity extraction and recognition (i.e., labeling) from unstructured text, in order to build a large training set to seed the subsequent auto-learning component in our algorithm. Results from several SER experiments will be presented as well as lessons learned.

  2. An Analysis of Earth Science Data Analytics Use Cases

    Science.gov (United States)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  3. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    Science.gov (United States)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  4. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access

  5. Grid for Earth Science Applications

    Science.gov (United States)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to

  6. The ongoing educational anomaly of earth science placement

    Science.gov (United States)

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  7. Earth Observing Data System Data and Information System (EOSDIS) Overview

    Science.gov (United States)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  8. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.

    2009-12-01

    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  9. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    Science.gov (United States)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during

  10. Ivestigating Earth Science in Urban Schoolyards

    Science.gov (United States)

    Endreny, Anna; Siegel, Donald I.

    2009-01-01

    The Urban Schoolyards project is a two year partnership with a university Earth Science Department and the surrounding urban elementary schools. The goal of the project was to develop the capacity of elementary teachers to teach earth science lessons using their schoolyards and local parks as field sites. The university personnel developed lessons…

  11. Elementary Children's Retrodictive Reasoning about Earth Science

    Science.gov (United States)

    Libarkin, Julie C.; Schneps, Matthew H.

    2012-01-01

    We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…

  12. Earth Sciences Division, collected abstracts-1977

    International Nuclear Information System (INIS)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-01-01

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division

  13. Archive of Geosample Data and Information from the University of Hawaii at Manoa School of Ocean and Earth Science and Technology (SOEST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii at Manoa, School of Ocean and Earth Science and Technology (SOEST) is a partner in the Index to Marine and Lacustrine Geological Samples...

  14. Senior High School Earth Sciences and Marine Sciences.

    Science.gov (United States)

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  15. Software Reuse Within the Earth Science Community

    Science.gov (United States)

    Marshall, James J.; Olding, Steve; Wolfe, Robert E.; Delnore, Victor E.

    2006-01-01

    Scientific missions in the Earth sciences frequently require cost-effective, highly reliable, and easy-to-use software, which can be a challenge for software developers to provide. The NASA Earth Science Enterprise (ESE) spends a significant amount of resources developing software components and other software development artifacts that may also be of value if reused in other projects requiring similar functionality. In general, software reuse is often defined as utilizing existing software artifacts. Software reuse can improve productivity and quality while decreasing the cost of software development, as documented by case studies in the literature. Since large software systems are often the results of the integration of many smaller and sometimes reusable components, ensuring reusability of such software components becomes a necessity. Indeed, designing software components with reusability as a requirement can increase the software reuse potential within a community such as the NASA ESE community. The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group is chartered to oversee the development of a process that will maximize the reuse potential of existing software components while recommending strategies for maximizing the reusability potential of yet-to-be-designed components. As part of this work, two surveys of the Earth science community were conducted. The first was performed in 2004 and distributed among government employees and contractors. A follow-up survey was performed in 2005 and distributed among a wider community, to include members of industry and academia. The surveys were designed to collect information on subjects such as the current software reuse practices of Earth science software developers, why they choose to reuse software, and what perceived barriers prevent them from reusing software. In this paper, we compare the results of these surveys, summarize the observed trends, and discuss the findings. The results are very

  16. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  17. Information science in transition

    CERN Document Server

    Gilchrist, Alan

    2013-01-01

    Are we at a turning point in digital information? The expansion of the internet is unprecedented. Will information science become part of computer science and does rise of the term informatics demonstrate convergence of information science and information technology - a convergence that must surely develop? This work reflects on such issues.

  18. Explore the virtual side of earth science

    Science.gov (United States)

    ,

    1998-01-01

    Scientists have always struggled to find an appropriate technology that could represent three-dimensional (3-D) data, facilitate dynamic analysis, and encourage on-the-fly interactivity. In the recent past, scientific visualization has increased the scientist's ability to visualize information, but it has not provided the interactive environment necessary for rapidly changing the model or for viewing the model in ways not predetermined by the visualization specialist. Virtual Reality Modeling Language (VRML 2.0) is a new environment for visualizing 3-D information spaces and is accessible through the Internet with current browser technologies. Researchers from the U.S. Geological Survey (USGS) are using VRML as a scientific visualization tool to help convey complex scientific concepts to various audiences. Kevin W. Laurent, computer scientist, and Maura J. Hogan, technical information specialist, have created a collection of VRML models available through the Internet at Virtual Earth Science (virtual.er.usgs.gov).

  19. Repositioning Information Science.

    OpenAIRE

    Ibekwe-Sanjuan , Fidelia; Buckland , Michael; Latham , Kiersten

    2010-01-01

    International audience; During the twentieth century there was a strong desire for information studies to become scientific, to move from librarianship, bibliography, and documentation to an information science. In 1968 the American Documentation Institute was renamed American Society for Information Science. By the twenty-first century, however, departments of (library and) information science had turned instead towards the social sciences, but have not been successful in providing a coheren...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. ... Geosciences Division, Marine, Geo and Planetary Sciences Group, Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area, Space Applications Centre ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 1 ... Crustal evolution; granites; Phanerozoic; Sr-Nd isotopes; east-central Asia. ... Department of Geology, Changchun University of Science and Technology, Changchun ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 3 ... proposed to reconstruct the ionospheric images with high resolution and high efficiency. ... Graduate School of Chinese Academy of Sciences, Beijing 100 039, China.

  3. History of information science

    OpenAIRE

    Buckland, MK; Liu, Z

    1998-01-01

    This informative volume concentrates on the following areas: Historiography of Information Science; Paul Otlet and His Successors; Techniques, Tools, and Systems; People and Organizations; Theoretical Topics; and Literature.

  4. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Science.gov (United States)

    2010-09-30

    ... Update. --Performance Measures Discussion. --Report from Earth Science Subcommittee Meeting. It is... to providing the following information no less than 10 working days prior to the meeting: full name; gender; date/ place of birth; citizenship; visa/green card information (number, type, expiration date...

  5. Testing Reproducibility in Earth Sciences

    Science.gov (United States)

    Church, M. A.; Dudill, A. R.; Frey, P.; Venditti, J. G.

    2017-12-01

    Reproducibility represents how closely the results of independent tests agree when undertaken using the same materials but different conditions of measurement, such as operator, equipment or laboratory. The concept of reproducibility is fundamental to the scientific method as it prevents the persistence of incorrect or biased results. Yet currently the production of scientific knowledge emphasizes rapid publication of previously unreported findings, a culture that has emerged from pressures related to hiring, publication criteria and funding requirements. Awareness and critique of the disconnect between how scientific research should be undertaken, and how it actually is conducted, has been prominent in biomedicine for over a decade, with the fields of economics and psychology more recently joining the conversation. The purpose of this presentation is to stimulate the conversation in earth sciences where, despite implicit evidence in widely accepted classifications, formal testing of reproducibility is rare.As a formal test of reproducibility, two sets of experiments were undertaken with the same experimental procedure, at the same scale, but in different laboratories. Using narrow, steep flumes and spherical glass beads, grain size sorting was examined by introducing fine sediment of varying size and quantity into a mobile coarse bed. The general setup was identical, including flume width and slope; however, there were some variations in the materials, construction and lab environment. Comparison of the results includes examination of the infiltration profiles, sediment mobility and transport characteristics. The physical phenomena were qualitatively reproduced but not quantitatively replicated. Reproduction of results encourages more robust research and reporting, and facilitates exploration of possible variations in data in various specific contexts. Following the lead of other fields, testing of reproducibility can be incentivized through changes to journal

  6. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    anniversary in 2007 over the launch of Sputnik (from the former Soviet Union). The ensuing Apollo (US) and Luna (USSR) programs initiated serious exploration of the Moon. The samples returned from those (now historic!) early missions changed our understanding of our place in the universe forever. They were the first well documented samples from an extraterrestrial body and attracted some of the top scientists in the world to extract the first remarkable pieces of information about Earth's nearest neighbour. And so they did - filling bookcases with profound new discoveries about this airless, waterless, and beautifully mysterious ancient world. The Moon was found to represent pure geology for a silicate planetary body - without all the complicating factors of plate tectonics, climate, and weather that recycle or transform Earth materials repeatedly. And then nothing happened. After the flush of reconnaissance, there was no further exploration of the Moon. For several decades scientists had nothing except the returned samples and a few telescopes with which to further study Earth's neighbour. Lack of new information breeds ignorance and can be stifling. Even though the space age was expanding its horizons to the furthest reaches of the solar system and the universe, lunar science moved slowly if at all and was kept in the doldrums. The drought ended with two small missions to the Moon in the 1990's, Clementine and Lunar Prospector. As summarized in the SSB/NRC report (and more completely in Jolliff et al. Eds. 2006, New Views of the Moon, Rev. Min. & Geochem.), the limited data returned from these small spacecraft set in motion several fundamental paradigm shifts in our understanding of the Moon and re-invigorated an aging science community. We learned that the largest basin in the solar system and oldest on the Moon dominates the southern half of the lunar farside (only seen by spacecraft). The age of this huge basin, if known, would constrain the period of heavy bombardment

  7. Earth Sciences Division collected abstracts: 1979

    International Nuclear Information System (INIS)

    Henry, A.L.; Schwartz, L.L.

    1980-01-01

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  8. Handbook of information science

    CERN Document Server

    Stock, Wolfgang G

    2013-01-01

    Dealing with information is one of the vital skills in thetwenty-first century. It takes a fair degree of information savvy to create, represent and supply information as well as to search for and retrieve relevant knowledge. This Handbook is a basic work of information science, providing a comprehensive overview of the current state of information retrieval and knowledge representation. It addresses readers from all professions and scientific disciplines, but particularly scholars, practitioners and students of Information Science, Library Science, Computer Science, Information Management, an

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Raghavendra Ashrit. Articles written in Journal of Earth System Science. Volume 115 Issue 3 June 2006 pp 299-313. Simulation of a Himalayan cloudburst event · Someshwar Das Raghavendra Ashrit M W Moncrieff · More Details Abstract Fulltext PDF. Intense rainfall often ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Denizhan Vardar. Articles written in Journal of Earth System Science. Volume 127 Issue 1 February 2018 pp 13. Seismic stratigraphy and depositional history of the BüyükÇekmece Bay since Latest Pleistocene, Marmara Sea, Turkey · Denizhan Vardar Hakan Alp Bedri ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Alper Şengül. Articles written in Journal of Earth System Science. Volume 124 Issue 7 October 2015 pp 1429-1443. Determining the site effects of 23 October 2011 earthquake (Van province, Turkey) on the rural areas using HVSR microtremor method · İsmail Akkaya Ali ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Barin Kumar De. Articles written in Journal of Earth System Science. Volume 122 Issue 4 August 2013 pp 1013-1021. Characteristics of severe thunderstorms studied with the aid of VLF atmospherics over North–East India · A Guha Trisanu Banik Barin Kumar De Rakesh ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V K Gaur. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 1-3. Editorial · V K Gaur · More Details Fulltext PDF. Volume 109 Issue 4 December 2000 pp 393-394. Editorial · V K Gaur · More Details Fulltext PDF. Volume 112 Issue 3 ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V D Mishra. Articles written in Journal of Earth System Science. Volume 118 Issue 1 February 2009 pp 11-26. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain · V D Mishra J K Sharma K K Singh N K Thakur M Kumar.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Naveen Kumar. Articles written in Journal of Earth System Science. Volume 118 Issue 5 October 2009 pp 539-549. Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain · Atul Kumar Dilip Kumar Jaiswal Naveen ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Sajani. Articles written in Journal of Earth System Science. Volume 116 Issue 2 April 2007 pp 149-157. The role of low-frequency intraseasonal oscillations in the anomalous Indian summer monsoon rainfall of 2002 · S Sajani S Naseema Beegum K Krishna Moorthy.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Sikdar. Articles written in Journal of Earth System Science. Volume 126 Issue 2 March 2017 pp 29. Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain · P K Sikdar Surajit Chakraborty.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Suman Sinha. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 725-735. Developing synergy regression models with space-borne ALOS PALSAR and Landsat TM sensors for retrieving tropical forest biomass · Suman Sinha C ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Banerjee. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 87-96. Facies, dissolution seams and stable isotope compositions of the Rohtas Limestone (Vindhyan Supergroup) in the Son valley area, central India · S Banerjee S K ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abhijit Chakraborty. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 275-286. Significance of transition between Talchir Formation and Karharbari Formation in Lower Gondwana basin evolution — A study in West Bokaro Coal basin, ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Shalini. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Pant. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 303-313. Characteristics of spectral aerosol optical depths over India during ICARB · S Naseema Beegum K Krishna Moorthy Vijayakumar S Nair S Suresh Babu S K Satheesh V ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Gh Jeelani. Articles written in Journal of Earth System Science. Volume 120 Issue 3 June 2011 pp 399-411. Assessing variability of water quality in a groundwater-fed perennial lake of Kashmir Himalayas using linear geostatics · S Sarah Gh Jeelani Shakeel Ahmed.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Sarkar. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 157-169. Palaeomonsoon and palaeoproductivity records of O, C and CaCO3 variations in the northern Indian Ocean sediments · A Sarkar R Ramesh S K Bhattacharya ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V V S S Sarma. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 279-283. Controls of dimethyl sulphide in the Bay of Bengal during BOBMEX-Pilot cruise 1998 · D M Shenoy M Dileep Kumar V V S S Sarma · More Details Abstract ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Dharanirajan. Articles written in Journal of Earth System Science. Volume 123 Issue 8 December 2014 pp 1819-1830. Geomorphic settings of mangrove ecosystem in South Andaman Island: A geospatial approach · E Yuvaraj K Dharanirajan S Jayakumar Saravanan.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C Gnanaseelan. Articles written in Journal of Earth System Science. Volume 114 Issue 5 October 2005 pp 475-491. Hydrography and water masses in the southeastern Arabian Sea during March-June 2003 · S S C Shenoi D Shankar G S Michael J Kurian K K Varma M R ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Gupta. Articles written in Journal of Earth System Science. Volume 114 Issue 5 October 2005 pp 523-531. Normalized impedance function and the straightforward inversion scheme for magnetotelluric data · Sri Niwas P K Gupta V K Gaur · More Details Abstract Fulltext ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C B S Dutt. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 243-262. Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): An overview · K Krishna Moorthy S K Satheesh S Suresh Babu C B S Dutt · More Details ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Sasibhushana Rao. Articles written in Journal of Earth System Science. Volume 116 Issue 5 October 2007 pp 407-411. GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling · G Sasibhushana Rao.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Venkat Ratnam. Articles written in Journal of Earth System Science. Volume 120 Issue 5 October 2011 pp 807-823. Long-term variations in outgoing long-wave radiation (OLR), convective available potential energy (CAPE) and temperature in the tropopause region over ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Madhupratap. Articles written in Journal of Earth System Science. Volume 109 Issue 4 December 2000 pp 433-441. Physical control of primary productivity on a seasonal scale in the central and eastern Arabian Sea · S Prasanna kumar M Madhupratap M Dileep kumar M ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bhushan R Lamsoge. Articles written in Journal of Earth System Science. Volume 123 Issue 7 October 2014 pp 1541-1566. Impact of over-exploitation on groundwater quality: A case study from WR-2Watershed, India · Anil M Pophare Bhushan R Lamsoge Yashwant B ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Dhruba Mukhopadhyay. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 22-38. Anasagar gneiss: A folded granitoid pluton in the Phanerozoic South Delhi Fold Belt, central Rajasthan · Dhruba Mukhopadhyay Tapas Bhattacharyya ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Israil. Articles written in Journal of Earth System Science. Volume 117 Issue 3 June 2008 pp 189-200. Magnetotelluric investigations for imaging electrical structure of Garhwal Himalayan corridor, Uttarakhand, India · M Israil D K Tyagi P K Gupta Sri Niwas · More Details ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Keqing Zong. Articles written in Journal of Earth System Science. Volume 127 Issue 3 April 2018 pp 43. Early Neoarchaean A-type granitic magmatism by crustal reworking in Singhbhum craton: Evidence from Pala Lahara area, Orissa · Abhishek Topno Sukanta Dey ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Arka Rudra. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 935-941. Molecular composition and paleobotanical origin of Eocene resin from northeast India · Arka Rudra Suryendu Dutta Srinivasan V Raju · More Details Abstract Fulltext ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Vijaya. Articles written in Journal of Earth System Science. Volume 120 Issue 3 June 2011 pp 545-556. Fine-scale responses of phytoplankton to freshwater influx in a tropical monsoonal estuary following the onset of southwest monsoon · Suraksha M Pednekar S G Prabhu ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Anup Saha. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 885-895. Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half- ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Santimoy Kundu. Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 161-170. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer · Shishir Gupta Rehena Sultana Santimoy Kundu.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rehena Sultana. Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 161-170. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer · Shishir Gupta Rehena Sultana Santimoy Kundu.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. N K Thakur. Articles written in Journal of Earth System Science. Volume 118 Issue 1 February 2009 pp 11-26. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain · V D Mishra J K Sharma K K Singh N K Thakur M Kumar.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sharmistha De Sarkar. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 715-727. Arc parallel extension in Higher and Lesser Himalayas, evidence from western Arunachal Himalaya, India · Sharmistha De Sarkar George Mathew ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Ganju. Articles written in Journal of Earth System Science. Volume 117 Issue 5 October 2008 pp 575-587. Mountain range specific analog weather forecast model for northwest Himalaya in India · D Singh A Ganju · More Details Abstract Fulltext PDF. Mountain range ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J C Joshi. Articles written in Journal of Earth System Science. Volume 126 Issue 1 February 2017 pp 3. Optimisation of Hidden Markov Model using Baum–Welch algorithm for prediction of maximum and minimum temperature over Indian Himalaya · J C Joshi Tankeshwar ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Sikdar. Articles written in Journal of Earth System Science. Volume 120 Issue 3 June 2011 pp 435-446. Threat of land subsidence in and around Kolkata City and East Kolkata Wetlands, West Bengal, India · P Sahu P K Sikdar · More Details Abstract Fulltext PDF.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Saji Mohandas. Articles written in Journal of Earth System Science. Volume 117 Issue 5 October 2008 pp 603-620. Skills of different mesoscale models over Indian region during monsoon season: Forecast errors · Someshwar Das Raghavendra Ashrit Gopal Raman ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B P Rawat. Articles written in Journal of Earth System Science. Volume 110 Issue 1 March 2001 pp 63-76. Are Majhgawan-Hinota pipe rocks truly group-I kimberlite? Ravi Shanker S Nag A Ganguly A Absar B P Rawat G S Singh · More Details Abstract Fulltext PDF.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajdeep Roy. Articles written in Journal of Earth System Science. Volume 120 Issue 6 December 2011 pp 1145-1154. Identification of non-indigenous phytoplankton species dominated bloom off Goa using inverted microscopy and pigment (HPLC) analysis · P V Bhaskar ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Evangelin Ramani Sujatha. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1337-1350. Landslide susceptibility analysis using Probabilistic Certainty Factor Approach: A case study on Tevankarai stream watershed, India.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Parmanand Sharma. Articles written in Journal of Earth System Science. Volume 121 Issue 3 June 2012 pp 625-636. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India · Virendra Bahadur Singh A L Ramanathan Jose George ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Umesh S Balpande. Articles written in Journal of Earth System Science. Volume 123 Issue 7 October 2014 pp 1501-1515. Morphometric analysis of Suketi river basin, Himachal Himalaya, India · Anil M Pophare Umesh S Balpande · More Details Abstract Fulltext PDF.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Tarun Solanki. Articles written in Journal of Earth System Science. Volume 127 Issue 1 February 2018 pp 9. Geomorphic investigation of the Late-Quaternary landforms in the southern Zanskar Valley, NW Himalaya · Shubhra Sharma Aadil Hussain Amit K Mishra Aasif Lone ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V S Dubey. Articles written in Journal of Earth System Science. Volume 114 Issue 5 October 2005 pp 515-522. Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R Srinivasan. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 57-65. Sm-Nd Ages of Two Meta-Anorthosite Complexes Around Holenarsipur: Constraints on the Antiquity of Archean Supracrustal Rocks of the Dharwar Craton.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Geetha Selvarani. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 311-328. Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing · G Maheswaran A Geetha Selvarani K Elangovan.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ashwini Kulkarni. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 203-210. Impact of global warming on cyclonic disturbances over south Asian region · Savita Patwardhan Ashwini Kulkarni K Krishna Kumar · More Details Abstract ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Kunhikrishnan. Articles written in Journal of Earth System Science. Volume 113 Issue 3 September 2004 pp 353-363. Observations of the atmospheric surface layer parameters over a semi arid region during the solar eclipse of August 11th, 1999 · Praveena Krishnan ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. David R Bridgland. Articles written in Journal of Earth System Science. Volume 120 Issue 3 June 2011 pp 503-530. Methods for determination of the age of Pleistocene tephra, derived from eruption of Toba, in central India · Rob Westaway Sheila Mishra Sushama Deo ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S D Kotal. Articles written in Journal of Earth System Science. Volume 117 Issue 2 April 2008 pp 157-168. A Statistical Cyclone Intensity Prediction (SCIP) model for the Bay of Bengal · S D Kotal S K Roy Bhowmik P K Kundu Ananda Kumar Das · More Details Abstract ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ali Asgari. Articles written in Journal of Earth System Science. Volume 123 Issue 2 March 2014 pp 365-379. Numerical evaluation of seismic response of shallow foundation on loose silt and silty sand · Ali Asgari Aliakbar Golshani Mohsen Bagheri · More Details Abstract ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J D Patil. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 301-310. Structural mapping of Chikotra River basin in the Deccan Volcanic Province of Maharashtra, India from ground magnetic data · S P Anand Vinit C Erram J D Patil N J ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A S Laxmi Prasad. Articles written in Journal of Earth System Science. Volume 114 Issue 6 December 2005 pp 725-731. Lunar ranging instrument for Chandrayaan-1 · J A Kamalakar K V S Bhaskar A S Laxmi Prasad R Ranjith K A Lohar R Venketeswaran T K Alex.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ananda K Das. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 165-184. Circulation characteristics of a monsoon depression during BOBMEX-99 using high-resolution analysis · Ananda K Das U C Mohanty Someshwar Das M Mandal ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Archana Tripathi. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 537-557. Stratigraphic status of coal horizon in Tatapani–Ramkola Coalfield, Chhattisgarh, India · Archana Tripathi Vijaya Srikanta Murthy B Chakarborty D K Das.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V B Sumithranand. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 507-517. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S P Anand. Articles written in Journal of Earth System Science. Volume 124 Issue 3 April 2015 pp 613-630. A relook into the crustal architecture of Laxmi Ridge, northeastern Arabian Sea from geopotential data · Nisha Nair S P Anand Mita Rajaram P Rama Rao.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Shantamoy Guha. Articles written in Journal of Earth System Science. Volume 126 Issue 2 March 2017 pp 21. Identification of drought in Dhalai river watershed using MCDM and ANN models · Sainath Aher Sambhaji Shinde Shantamoy Guha Mrinmoy Majumder.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C K Unnikrishnan. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 677-689. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model · C K Unnikrishnan M Rajeevan S ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Naseema Beegum. Articles written in Journal of Earth System Science. Volume 116 Issue 2 April 2007 pp 149-157. The role of low-frequency intraseasonal oscillations in the anomalous Indian summer monsoon rainfall of 2002 · S Sajani S Naseema Beegum K Krishna ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abdul Matin. Articles written in Journal of Earth System Science. Volume 118 Issue 4 August 2009 pp 379-390. Deformation mechanisms in the frontal Lesser Himalayan Duplex in Sikkim Himalaya, India · Abdul Matin Sweety Mazumdar · More Details Abstract Fulltext PDF.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Vishwas S Kale. Articles written in Journal of Earth System Science. Volume 117 Issue 6 December 2008 pp 959-971. Uplift along the western margin of the Deccan Basalt Province: Is there any geomorphometric evidence? Vishwas S Kale Nikhil Shejwalkar · More Details ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Panigrahy. Articles written in Journal of Earth System Science. Volume 120 Issue 1 February 2011 pp 19-25. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model · M R Pandya ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ratheesh Ramakrishnan. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1201-1213. Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations · Ratheesh Ramakrishnan A S ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Barnes. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G S Meena. Articles written in Journal of Earth System Science. Volume 115 Issue 3 June 2006 pp 333-347. Retrieval of stratospheric O3 and NO2 vertical profiles using zenith scattered light observations · G S Meena C S Bhosale D B Jadhav · More Details Abstract Fulltext ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C J Johny. Articles written in Journal of Earth System Science. Volume 125 Issue 3 April 2016 pp 521-538. Impact of hybrid GSI analysis using ETR ensembles · V S Prasad C J Johny · More Details Abstract Fulltext PDF. Performance of a hybrid assimilation system ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. T N Krishnamurti. Articles written in Journal of Earth System Science. Volume 115 Issue 2 April 2006 pp 185-201. Transitions in the surface energy balance during the life cycle of a monsoon season · T N Krishnamurti Mrinal K Biswas · More Details Abstract Fulltext PDF.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sukanta Dey. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 20. An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Krishnamoorthy. Articles written in Journal of Earth System Science. Volume 111 Issue 4 December 2002 pp 425-435. Detection of marine aerosols with IRS P4-Ocean Colour Monitor · Indrani Das M Mohan K Krishnamoorthy · More Details Abstract Fulltext PDF.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P C S Devara. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 205-221. Study of total column atmospheric aerosol optical depth, ozone and precipitable water content over Bay of Bengal during BOBMEX-99 · K K Dani R S ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sudhir Jain. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 345-353. Ionospheric irregularities at Antarctic using GPS measurements · Sunita Tiwari Amit Jain Shivalika Sarkar Sudhir Jain A K Gwal · More Details Abstract Fulltext PDF.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D Twinkle. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 329-342. Crustal structure and rift tectonics across the Cauvery–Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling · D Twinkle G ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R A Scrutton. Articles written in Journal of Earth System Science. Volume 123 Issue 1 February 2014 pp 33-47. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean · K S Krishna J M Bull O Ishizuka R A Scrutton S ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajeev Ranjan Kumar. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1177-1184. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Younes Jedoui. Articles written in Journal of Earth System Science. Volume 122 Issue 1 February 2013 pp 15-28. Investigation of sulphate origins in the Jeffara aquifer, southeastern Tunisia: A geochemical approach · Samir Kamel Mohamed Ben Chelbi Younes Jedoui.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rambhatla G Sastry. Articles written in Journal of Earth System Science. Volume 112 Issue 1 March 2003 pp 37-49. 2D Stabilised analytic signal method in DC pole-pole potential data interpretation · Paras R Pujari Rambhatla G Sastry · More Details Abstract Fulltext PDF.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Aavudai Anandhi. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 447-460. Assessing impact of climate change on season length in Karnataka for IPCC SRES scenarios · Aavudai Anandhi · More Details Abstract Fulltext PDF.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Y Sadhuram. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 37-49. Seasonal variability of physico-chemical characteristics of the Haldia channel of Hooghly estuary, India · Y Sadhuram V V Sarma T V Ramana Murty B ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Verma. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 21. Late Glacial–Holocene record of benthic foraminiferal morphogroups from the eastern Arabian Sea OMZ: Paleoenvironmental implications · K Verma S K Bharti A D Singh.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. T K Gundu Rao. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao C P ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K D Singh. Articles written in Journal of Earth System Science. Volume 122 Issue 1 February 2013 pp 93-106. A field technique for rapid lithological discrimination and ore mineral identification: Results from Mamandur Polymetal Deposit, India · D Ramakrishnan M Nithya ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A K Verma. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 75-86. A comparative study of ANN and Neuro-fuzzy for the prediction of dynamic constant of rockmass · T N Singh R Kanchan A K Verma K Saigal · More Details Abstract ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bhawanisingh G Desai. Articles written in Journal of Earth System Science. Volume 120 Issue 4 August 2011 pp 723-734. Discontinuity surfaces and event stratigraphy of Okha Shell Limestone Member: Implications for Holocene sea level changes, western India.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Monica Sharma. Articles written in Journal of Earth System Science. Volume 124 Issue 4 June 2015 pp 861-874. Evaluation of official tropical cyclone landfall forecast issued by India Meteorological Department · M Mohapatra D P Nayak Monica Sharma R P Sharma B K ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R S Rana. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 289-307. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India · M R Rao Ashok Sahni R S Rana Poonam Verma.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Suresh Chandra Kandpal. Articles written in Journal of Earth System Science. Volume 120 Issue 5 October 2011 pp 873-883. Subsurface signatures and timing of extreme wave events along the southeast Indian coast · Rajesh R Nair Madhav K Murari C S Vijaya Lakshmi ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abbas Goli Jirandeh. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 349-369. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran · Hamid Reza Pourghasemi Abbas Goli Jirandeh ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rahul Choudhury. Articles written in Journal of Earth System Science. Volume 125 Issue 7 October 2016 pp 1365-1377. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals · Tonkeswar Das Ananya Saikia ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sahadev Kumar. Articles written in Journal of Earth System Science. Volume 125 Issue 1 February 2016 pp 165-178. Coal fire mapping of East Basuria Colliery, Jharia coalfield using vertical derivative technique of magnetic data · S K Pal Jitendra Vaish Sahadev Kumar ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Senthil Kumar. Articles written in Journal of Earth System Science. Volume 119 Issue 5 October 2010 pp 745-751. Soil-gas helium and surface-waves detection of fault zones in granitic bedrock · G K Reddy T Seshunarayana Rajeev Menon P Senthil Kumar · More Details ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. George Mathew. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Pravin K Gupta. Articles written in Journal of Earth System Science. Volume 115 Issue 3 June 2006 pp 267-276. Fast computation of Hankel Transform using orthonormal exponential approximation of complex kernel function · Pravin K Gupta Sri Niwas Neeta Chaudhary.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Partha Pratim Chakraborty. Articles written in Journal of Earth System Science. Volume 115 Issue 1 February 2006 pp 23-36. Outcrop signatures of relative sea level fall on a siliciclastic shelf: Examples from Rewa Group of Proterozoic Vindhyan basin · Partha Pratim ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Manideepa Roy Choudhury. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 1033-1040. Deformation of footwall rock of Phulad Shear Zone, Rajasthan: Evidence of transpressional shear zone · Manideepa Roy Choudhury Subhrajyoti ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Christian Koeberl. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 91-108. Mineral chemistry of lava flows from Linga area of the Eastern Deccan Volcanic Province, India · Sohini Ganguly Jyotisankar Ray Christian Koeberl ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A P Dimri. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 329-344. Wintertime land surface characteristics in climatic simulations over the western Himalayas · A P Dimri · More Details Abstract Fulltext PDF. Wintertime regional climate ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C S Jha. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 271-281. Landscape level assessment of critically endangered vegetation of Lakshadweep islands using geo-spatial techniques · C Sudhakar Reddy Bijan Debnath P Hari ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sankar Kumar Nath. Articles written in Journal of Earth System Science. Volume 117 Issue S2 November 2008 pp 649-670. Seismic hazard scenario and attenuation model of the Garhwal Himalaya using near-field synthesis from weak motion seismometry · Sankar Kumar ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ranjit Das. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 19-28. Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India · Ranjit Das H R Wason M L ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Anurag Tripathi. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 17. Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics · Pramod Kumar Yadav P K Adhikari Shalivahan Srivastava Ved P ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bibhuti Gogoi. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 959-987. Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcanic and volcano-sedimentary sequence of Chotanagpur Granite Gneiss ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C Selvaraj. Articles written in Journal of Earth System Science. Volume 116 Issue 3 June 2007 pp 179-186. Fairweather atmospheric electricity at Antarctica during local summer as observed from Indian station, Maitri · C Panneerselvam C Selvaraj K Jeeva K U Nair C P ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Aditi Singh. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 26. Prediction of fog/visibility over India using NWP Model · Aditi Singh John P George Gopal Raman Iyengar · More Details Abstract Fulltext PDF. Frequent occurrence of fog ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Dajkumar Sahayam. Articles written in Journal of Earth System Science. Volume 119 Issue 1 February 2010 pp 129-135. Distribution of arsenic and mercury in subtropical coastal beachrock, Gulf of Mannar, India · J Dajkumar Sahayam N Chandrasekar S Krishna Kumar ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Senthilnath. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 559-572. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction · J Senthilnath H Vikram Shenoy Ritwik ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Mohankumar. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 30. On the dynamics of an extreme rainfall event in northern India in 2013 · Anu Xavier M G Manoj K Mohankumar · More Details Abstract Fulltext PDF. India experienced ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Soumen Sarkar. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 303-323. Evidence of lacustrine sedimentation in the Upper Permian Bijori Formation, Satpura Gondwana basin: Palaeogeographic and tectonic implications.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K K Osuri. Articles written in Journal of Earth System Science. Volume 125 Issue 3 April 2016 pp 475-498. Role of land state in a high resolution mesoscale model for simulating the Uttarakhand heavy rainfall event over India · P V Rajesh S Pattnaik D Rai K K Osuri U C ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P V Rajesh. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 691-708. Sensitivity of tropical cyclone characteristics to the radial distribution of sea surface temperature · Deepika Rai S Pattnaik P V Rajesh · More Details Abstract Fulltext ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Manish M John. Articles written in Journal of Earth System Science. Volume 114 Issue 2 April 2005 pp 143-158. Contrasting metamorphism across Cauvery Shear Zone, south India · Manish M John S Balakrishnan B K Bhadra · More Details Abstract Fulltext PDF.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Jeeva. Articles written in Journal of Earth System Science. Volume 111 Issue 1 March 2002 pp 51-62. Velocity of small-scale auroral ionospheric current systems over Indian Antarctic station Maitri · Girija Rajaram A N Hanchinal R Kalra K Unnikrishnan K Jeeva M ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Marian Marschalko. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 371-388. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ · Işık Yilmaz Marian Marschalko ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P N Preenu. Articles written in Journal of Earth System Science. Volume 126 Issue 5 July 2017 pp 76. Variability of the date of monsoon onset over Kerala (India) of the period 1870–2014 and its relation to sea surface temperature · P N Preenu P V Joseph P K Dineshkumar.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Samir M Zaid. Articles written in Journal of Earth System Science. Volume 126 Issue 4 June 2017 pp 50. Provenance of coastal dune sands along Red Sea, Egypt · Samir M Zaid · More Details Abstract Fulltext PDF. Texture, mineralogy, and major and trace element ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sulochana Gadgil. Articles written in Journal of Earth System Science. Volume 112 Issue 4 December 2003 pp 529-558. On breaks of the Indian monsoon · Sulochana Gadgil P V Joseph · More Details Abstract Fulltext PDF. For over a century, the term break has been used ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Harinder K Thakur. Articles written in Journal of Earth System Science. Volume 118 Issue 1 February 2009 pp 41-48. Aerosol optical depths at Mohal-Kullu in the northwestern Indian Himalayan high altitude station during ICARB · Jagdish C Kuniyal Alpana Thakur Harinder ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Gurubaran. Articles written in Journal of Earth System Science. Volume 116 Issue 3 June 2007 pp 179-186. Fairweather atmospheric electricity at Antarctica during local summer as observed from Indian station, Maitri · C Panneerselvam C Selvaraj K Jeeva K U Nair C P ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K S Krishna. Articles written in Journal of Earth System Science. Volume 111 Issue 1 March 2002 pp 17-28. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data · K S Krishna D Gopala Rao Yu P ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Radhakrishna. Articles written in Journal of Earth System Science. Volume 120 Issue 4 August 2011 pp 605-615. Development of the negative gravity anomaly of the 85°E Ridge, northeastern Indian Ocean – A process oriented modelling approach · K M Sreejith M ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Y Jaya Rao. Articles written in Journal of Earth System Science. Volume 113 Issue 1 March 2004 pp 103-116. Remote sensing of spectral signatures of tropospheric aerosols · M B Potdar S A Sharma V Y Parikh P C S Devara P E Raj Y K Tiwari R S Maheskumar K K Dani ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Samadrita Mukherjee. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 869-886. Evaluation of topographic index in relation to terrain roughness and DEM grid spacing · Samadrita Mukherjee Sandip Mukherjee R D Garg A Bhardwaj ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Shamsuddin Shahid. Articles written in Journal of Earth System Science. Volume 124 Issue 6 August 2015 pp 1325-1341. Multilayer perceptron neural network for downscaling rainfall in arid region: A case study of Baluchistan, Pakistan · Kamal Ahmed Shamsuddin Shahid ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Journal of Earth System Science. Volumes & Issues. Volume 127. Issue 1. Feb 2018; Issue 2. Mar 2018; Issue 3. Apr 2018. Volume 126. Issue 1. Feb 2017; Issue 2. Mar 2017; Issue 3. Apr 2017; Issue 4. Jun 2017; Issue 5. Jul 2017; Issue 6. Aug 2017; Issue 7. Oct 2017 ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Seetaramayya. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 283-293. Ocean-atmosphere interaction and synoptic weather conditions in association with the two contrasting phases of monsoon during BOBMEX-1999.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B O Adebesin. Articles written in Journal of Earth System Science. Volume 123 Issue 4 June 2014 pp 751-765. Ionospheric foF2 morphology and response of F2 layer height over Jicamarca during different solar epochs and comparison with IRI-2012 model · B O Adebesin ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Shyam Prasad. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 531-539. Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin · J N Pattan M Shyam Prasad E V S S K Babu · More Details Abstract ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B Spandana. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 421-427. Temporal characteristics of aerosol physical properties at Visakhapatnam on the east coast of India during ICARB – Signatures of transport onto Bay of Bengal.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B S Marh. Articles written in Journal of Earth System Science. Volume 125 Issue 3 April 2016 pp 539-558. Post-glacial landform evolution in the middle Satluj River valley, India: Implications towards understanding the climate tectonic interactions · Shubhra Sharma S K ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Santosh Kumar. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 303-313. Characteristics of spectral aerosol optical depths over India during ICARB · S Naseema Beegum K Krishna Moorthy Vijayakumar S Nair S Suresh Babu S K ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D B Shah. Articles written in Journal of Earth System Science. Volume 120 Issue 1 February 2011 pp 19-25. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model · M R Pandya D B ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Nitesh Patidar. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 19. Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005 using variable infiltration capacity ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Kanishk Gohil. Articles written in Journal of Earth System Science. Volume 126 Issue 7 October 2017 pp 94. The role of mid-level vortex in the intensification and weakening of tropical cyclones · Govindan Kutty Kanishk Gohil · More Details Abstract Fulltext PDF. The present ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Mandal. Articles written in Journal of Earth System Science. Volume 112 Issue 1 March 2003 pp 79-93. Impact of horizontal resolution on prediction of tropical cyclones over Bay of Bengal using a regional weather prediction model · M Mandal U C Mohanty K V J Potty A ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Sarkar. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 87-96. Facies, dissolution seams and stable isotope compositions of the Rohtas Limestone (Vindhyan Supergroup) in the Son valley area, central India · S Banerjee S K ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Mahabir Singh. Articles written in Journal of Earth System Science. Volume 113 Issue 2 June 2004 pp 235-246. Deformation of a layered half-space due to a very long tensile fault · Sarva Jit Singh Mahabir Singh · More Details Abstract Fulltext PDF. The problem of the ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Soumyajit Mukherjee. Articles written in Journal of Earth System Science. Volume 126 Issue 1 February 2017 pp 2. Shear heating by translational brittle reverse faulting along a single, sharp and straight fault plane · Soumyajit Mukherjee · More Details Abstract Fulltext PDF.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Prabir Dasgupta. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 287-302. Facies pattern of the middle Permian Barren Measures Formation, Jharia basin, India: The sedimentary response to basin tectonics · Prabir Dasgupta.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ferid Dhahri. Articles written in Journal of Earth System Science. Volume 126 Issue 7 October 2017 pp 104. The role of E–W basement faults in the Mesozoic geodynamic evolution of the Gafsa and Chotts basins, south-central Tunisia · Dorra Tanfous Amri Ferid Dhahri ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Pandithurai. Articles written in Journal of Earth System Science. Volume 113 Issue 1 March 2004 pp 103-116. Remote sensing of spectral signatures of tropospheric aerosols · M B Potdar S A Sharma V Y Parikh P C S Devara P E Raj Y K Tiwari R S Maheskumar K K Dani ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Bigyapati Devi. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 405-438. Lower Oligocene bivalves of Ramanian Stage from Kachchh, Gujarat, India · R P Kachhara R L Jodhawat K Bigyapati Devi · More Details Abstract Fulltext PDF.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Charuta V Prabhu. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 267-277. Diurnal variability of upper ocean temperature and heat budget in the southern Bay of Bengal during October — November, 1998 (BOBMEX-Pilot).

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V Fernando. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 1045-1074. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope · P Amol D Shankar V Fernando A Mukherjee S G ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S W A Naqvi. Articles written in Journal of Earth System Science. Volume 121 Issue 3 June 2012 pp 769-779. Lime muds and their genesis off-Northwestern India during the late Quaternary · V Purnachandra Rao A Anil Kumar S W A Naqvi Allan R Chivas B Sekar Pratima M ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J U Chukudebelu. Articles written in Journal of Earth System Science. Volume 123 Issue 3 April 2014 pp 491-502. Evaluation of soil corrosivity and aquifer protective capacity using geoelectrical investigation in Bwari basement complex area, Abuja · A E Adeniji O V ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Prasanna kumar. Articles written in Journal of Earth System Science. Volume 109 Issue 4 December 2000 pp 433-441. Physical control of primary productivity on a seasonal scale in the central and eastern Arabian Sea · S Prasanna kumar M Madhupratap M Dileep ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Rajagopalan. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 153-156. Glacial-interglacial changes in the surface water characteristics of the Andaman Sea: Evidence from stable ratios of planktonic foraminifera · S M Ahmad D J ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B N Nath. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 153-156. Glacial-interglacial changes in the surface water characteristics of the Andaman Sea: Evidence from stable ratios of planktonic foraminifera · S M Ahmad D J Patil P S ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S C Arunchandra. Articles written in Journal of Earth System Science. Volume 117 Issue 6 December 2008 pp 911-923. On the measurement of the surface energy budget over a land surface during the summer monsoon · G S Bhat S C Arunchandra · More Details Abstract ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Chandra Shekhar Jha. Articles written in Journal of Earth System Science. Volume 122 Issue 5 October 2013 pp 1259-1268. Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G V Ravi Prasad. Articles written in Journal of Earth System Science. Volume 119 Issue 3 June 2010 pp 285-295. Shift in detrital sedimentation in the eastern Bay of Bengal during the late Quaternary · C Prakash Babu J N Pattan K Dutta N Basavaiah G V Ravi Prasad D K ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sohini Ganguly. Articles written in Journal of Earth System Science. Volume 119 Issue 5 October 2010 pp 675-699. Evaluation of phase chemistry and petrochemical aspects of Samchampi–Samteran differentiated alkaline complex of Mikir Hills, northeastern India.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ju Wei. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 1021-1031. Tectonic stress accumulation in Bohai–Zhangjiakou Seismotectonic Zone based on 3D visco-elastic modelling · Ju Wei Sun Weifeng Ma Xiaojing Jiang Hui.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V S N Murty. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 255-265. Thermohaline structure and circulation in the upper layers of the southern Bay of Bengal during BOBMEX-Pilot (October — November 1998) · V Ramesh Babu ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A K Singh. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 899-908. A study on precursors leading to geomagnetic storms using artificial neural network · Gaurav Singh A K Singh · More Details Abstract Fulltext PDF. Space weather ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajneesh Kumar. Articles written in Journal of Earth System Science. Volume 109 Issue 3 September 2000 pp 371-380. Plain strain problem of poroelasticity using eigenvalue approach · Rajneesh Kumar Aseem Miglani N R Garg · More Details Abstract Fulltext PDF.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Devesh Kumar Maurya. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 935-944. Validation of two gridded soil moisture products over India with in-situ observations · C K Unnikrishnan John P George Abhishek Lodh Devesh Kumar ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Tapas Acharya. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 453-462. Analysis of lineament swarms in a Precambrian metamorphic rocks in India · Tapas Acharya Sukumar Basu Mallik · More Details Abstract Fulltext PDF.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D K Das. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 537-557. Stratigraphic status of coal horizon in Tatapani–Ramkola Coalfield, Chhattisgarh, India · Archana Tripathi Vijaya Srikanta Murthy B Chakarborty D K Das · More Details ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Izrar Ahmed. Articles written in Journal of Earth System Science. Volume 117 Issue 1 February 2008 pp 69-78. Implications of Kali–Hindon inter-stream aquifer water balance for groundwater management in western Uttar Pradesh · Rashid Umar M Muqtada A Khan Izrar ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V V S Gurunadha Rao. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 855-867. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India · G Tamma Rao V V S Gurunadha Rao K ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China. Earth Sciences Department, Faculty of Science, University of Kufa, Najaf 34003, Iraq. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.

  13. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  14. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  15. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  16. ArXives of Earth science

    Science.gov (United States)

    2018-03-01

    Preprint servers afford a platform for sharing research before peer review. We are pleased that two dedicated preprint servers have opened for the Earth sciences and welcome submissions that have been posted there first.

  17. Earth Sciences Division annual report 1981

    International Nuclear Information System (INIS)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences

  18. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  19. Multiple Modes of Inquiry in Earth Science

    Science.gov (United States)

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  20. Earth Sciences Division, collected abstracts, 1978

    International Nuclear Information System (INIS)

    Taasevigen, D.K.; Henry, A.L.; Madsen, S.K.

    1979-01-01

    Abstracts of papers, internal reports, and talks presented during 1978 at national and international meetings by members of the Earth Sciences Division of the Lawrence Livermore Laboratory are compiled. The arrangement is alphabetical (by author). For any given report, a bibliographic reference appears under the name of each coauthor. A topical index at the end provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  1. Earth Sciences Division collected abstracts: 1980

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Hornady, B.F. (eds.)

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  2. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  3. Earth Sciences Division collected abstracts: 1980

    International Nuclear Information System (INIS)

    Henry, A.L.; Hornady, B.F.

    1981-01-01

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author

  4. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  5. Utah's Mobile Earth Science Outreach Vehicle

    Science.gov (United States)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  6. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2012-02-28

    ... Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science... following topics: --Earth Science Division Update --Committee on Earth Observations Satellites and Other...

  7. Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Science.gov (United States)

    Botts, Michael E.; Phillips, Ron J.; Parker, John V.; Wright, Patrick D.

    1992-01-01

    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.

  8. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  9. Art with Science: Connecting to Earth

    Science.gov (United States)

    Bendel, W. B.; Kirn, M.; Gupta, S.

    2013-12-01

    Why are so many people aware of climate change and sustainable solutions, but so few are actually doing anything about them? Social science research now suggests that to foster effective decision-making and action, good communication must include both cognition (e.g., intellect, facts, analysis) and affect (e.g., emotions, values, beliefs) working together. The arts have been used since prehistoric times not only to document and entertain, but to inspire, communicate, educate and motivate people to do things they might not otherwise have the interest or courage to do. Two projects, both funded by the National Oceanic and Atmospheric Administration (NOAA), are presented that explore art and science collaborations, designed to engage both the analytical and experiential information processing systems of the brain while fostering transformative thinking and behavior shifts for Earth-sustainability. The first project, Raindrop, is a smartphone application created at Butler University through a collaboration with artist Mary Miss and EcoArts Connections in the project FLOW: Can You See the River? Raindrop uses geographic information systems and GPS technology to map a raindrop's path from a user's location in Marion County to the White River as it flows through Indianapolis. Raindrop allows users to identify various flow paths and pollutant constituents transported by this water from farms, buildings, lawns, and streets along the way. Miss, with the help of scientists and others, created public art installations along the river engaging viewers in its infrastructure, history, ecology, and uses, and allowed for virtual features of the Raindrop app to be grounded in physical space. By combining art, science and technology, the project helped people not only to connect more personally to watershed and climate information, but also to understand viscerally that 'all property is river front property' connecting their own behavior with the health of the river. The second

  10. Experiential learning for education on Earth Sciences

    Science.gov (United States)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  11. The Role and Evolution of NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  12. Earth Science Futuristic Trends and Implementing Strategies

    Science.gov (United States)

    Habib, Shahid

    2003-01-01

    For the last several years, there is a strong trend among the science community to increase the number of space-based observations to get a much higher temporal and spatial resolution. Such information will eventually be useful in higher resolution models that can provide predictability with higher precision. Such desirability puts a tremendous burden on any single implementing entity in terms of budget, technology readiness and compute power. The health of planet Earth is not governed by a single country, but in reality, is everyone's business living on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to undertake. So far, each country per their means has proceeded along satisfactorily in implementing or benefiting directly or indirectly from the Earth observation data and scientific products. However, time has come that this is becoming a humongous problem to be undertaken by a single country. Therefore, this paper gives some serious thoughts in what options are there in undertaking this tremendous challenge. The problem is multi-dimensional in terms of budget, technology availability, environmental legislations, public awareness, and communication limitations. Some of these issues are introduced, discussed and possible implementation strategies are provided in this paper to move out of this predicament. A strong emphasis is placed on international cooperation and collaboration to see a collective benefit for this effort.

  13. WCS Challenges for NASA's Earth Science Data

    Science.gov (United States)

    Cantrell, S.; Swentek, L.; Khan, A.

    2017-12-01

    In an effort to ensure that data in NASA's Earth Observing System Data and Information System (EOSDIS) is available to a wide variety of users through the tools of their choice, NASA continues to focus on exposing data and services using standards based protocols. Specifically, this work has focused recently on the Web Coverage Service (WCS). Experience has been gained in data delivery via GetCoverage requests, starting out with WCS v1.1.1. The pros and cons of both the version itself and different implementation approaches will be shared during this session. Additionally, due to limitations with WCS v1.1.1's ability to work with NASA's Earth science data, this session will also discuss the benefit of migrating to WCS 2.0.1 with EO-x to enrich this capability to meet a wide range of anticipated user needs This will enable subsetting and various types of data transformations to be performed on a variety of EOS data sets.

  14. PLANETarium - Visualizing Earth Sciences in the Planetarium

    Science.gov (United States)

    Ballmer, M. D.; Wiethoff, T.; Kraupe, T. W.

    2013-12-01

    informative as revealing the complexity and beauty of our planet. In addition to e.g. climate change and natural hazards, themes of interest may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the generation and sustainment of the magnetic field as well as of habitable conditions in the atmosphere and oceans. We believe that high-quality tax-funded science visualizations should not exclusively be used to facilitate communication amoung scientists, but also be directly recycled to raise the public's awareness and appreciation of geosciences.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 5 ... affects the shallow groundwaterproductivity in terms of quantity and quality. ... a sustainable groundwater management strategy toreduce long-terms drought risks.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5 ... was conducted through seasonal water quality monitoring in the year 2011. ... National Centre for Sustainable Coastal Management, MOEF, Chennai 600 025, India.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 3 ... demand and also to formulate future development and management strategies. ... gives an early signal of deterioration in groundwater quality in the peripheral parts of ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 6 ... Is the outcrop topology of dolerite dikes of the Precambrian Singhbhum Craton fractal? ... Plane strain deformation of a multi-layered poroelastic half-space by surface ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 4 ... DEM; cell size; sink; fractal dimension; entropy; semivariogram. ... These methods were applied to determine the level artifacts (interpolation error) in DEM surface as ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7. Volume 124 ... 1377-1387. Regional biomass burning trends in India: Analysis of satellite fire data .... Spatio-temporal variations of b-value in and around north Pakistan.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 6 ... oxidation of methane in coastal sediment from Guishan Island (Pearl River Estuary), South China Sea ... National Institute of Health, Bethesda, Maryland 20892, USA.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 8 ... Isotope fingerprinting of precipitation associated with western disturbances and .... of desert margin in western India using improved luminescence dating protocols.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Enrichment characteristics of radioelements in various types of rock from Sambalpur district, Orissa, ... Radiometric analysis; uranium; ternary diagram; rock type; quartzofeldspathic breccia; granite. ... Journal of Earth System Science | News.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions ... Forest fire; forest type; Protected Area; conservation; remote sensing; AWiFS; India. ... Journal of Earth System Science | News.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 1 ... formed by various processes, in the present area the association of these structures, ... scale) are thought to have been responsible for the soft-sediment deformations.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 3 ... The failure of atmospheric general circulation models (AGCMs) forced by ... Centre for Mathematical Modelling and Computer Simulation, Bangalore 560 037, India.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 4 ... no matter how the upper channel adjusts, the main stream shows little change, providing ... drastic bank collapse and sandbar shrinking should be urgently controlled to ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7 ... mining; sediment dynamic; suspended sediment; watershed management. ... from a hillslope or channel, mirrors the watershed health, which needs to be quantified.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 5 ... Miocene; western India; sesquiterpenoids; geochemistry; geology; biogeosciences. ... These sesquiterpenoids which are commonly detected in many SE Asian crude ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 3. The vorticity and angular momentum budgets of Asian summer monsoon ... School of Geography and Geology, McMaster University, Hamilton, ON, Canada L8S 4K1.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 127; Issue 2 ... GMPEs; PGA; uniform hazard spectra; spectrum-compatible natural accelerograms. ... from National Disaster Management Authority (NDMA 2010), in terms of PGA and ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The performance of different cumulus parameterization schemes in simulating the 2006/2007 southern peninsular Malaysia heavy rainfall episodes. Wan Ahmad Ardie Khai ... Malaysia. Earth Observation Centre, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 4 ... in urban rivers using multivariate analysis: Implications for river management ... in the post-monsoon and pre-monsoon seasons during the time period 2008–2010.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 1 ... Results from time course experiments with both 15N and 13C tracers suggest ... Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 1 ... are essential for qualitative and quantitative analysis of snow cover applications. ... This study also suggests that the suitability of topographic models can not be ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 3 ... in an area presently devoid of drainage bespeaks of occasional high-energy fluvial regime, ... The present studies indicate that aeolian dust or rainwater are minor ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 8 ... (SF) receivers has the advantages of stand-alone, absolute positioning and cost efficiency. ... College of Informatics, South China Agricultural University, Guangzhou, ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 4 ... a human adjustment scenario, which assumes future improvements in water conservation ... Similarly, a severe drought would lead to a total streamflow loss of < 80%.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... belt typically occurs in elastico-frictional (EF) or quasi-plastic (QP) regimes at ... In contrast, the hanging wall schists and quartzites of the Ramgarh thrust exhibit quasi-plastic deformation structures. ... Journal of Earth System Science | News.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The main crystal plastic deformation and fluid enhanced reaction softening was concentrated along the margin ... Low-T crystal plastic deformation of quartz was effected at a late stage of cooling and ... Journal of Earth System Science | News.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    . Articles written in Journal of Earth System Science. Volume 126 Issue 8 December 2017 pp 109. GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran) · Ali Haghizadeh Davoud Davoudi ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3 ... support the well-known fact that oceanic eddies are distributed worldwide in the ocean. ... The classification of typical vortical features in the ocean detected in remote ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 5 ... ozone concentrations in the east of Croatia using nonparametric Neural Network Models ... to develop, for the first time, accurate ozone prediction models, onefor urban ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Implication of surface modified NZVI particle retention in the porous media: Assessment with the help ... to evaluate the effect of particle retention on the porous media properties and its implication on ... Journal of Earth System Science | News.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... have a great influence on the accuracy of the migrated image in anisotropic media, and ignoring any one ... can obtain more accurate seismic images of subsurface structures in anisotropic media. ... Journal of Earth System Science | News.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5 ... pairs of benthic foraminifera from the Krishna–Godavari basin and Peru offshore to ... Department of Applied Geology, Indian Institute of Technology (Indian School of ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 5 ... owing to rugged terrain at high altitude, high frequency of intense rainfall and rapidly ... School of Civil Engineering, SASTRA University, Thanjavur, Tamilnadu, India.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 5 ... In the upper layer, themaximum shear stress is high in the Zhangjiakou area, whereas in the ... School of Resources and Geoscience, China University of Mining and ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Pravin K Gupta1 Sri Niwas1 Neeta Chaudhary2. Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247 667, India. Oil and Natural Gas Corporation, Priyadarshini Building, Sion, Mumbai, India.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 5 .... Atmospheric correction of Earth-observation remote sensing images by Monte Carlo method ... Decision tree approach for classification of remotely sensed satellite data ... Analysis of carbon dioxide, water vapour and energy fluxes over an Indian ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 6. Volume 122, Issue 6. December 2013, pages 1435-1637. pp 1435-1453. The South India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX) · S S Rai Kajaljyoti Borah Ritima Das ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 4. Volume 110, Issue 4. December 2001, pages 267-463. Recent Researchers in Petrology and Geochemistry. pp 267-267. Preface · S Bhattacharya J Ganguly · More Details Fulltext PDF. pp 269-285. Earth support systems: Threatened? Why? What can ...

  13. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D S V V D Prasad. Articles written in Journal of Earth System Science. Volume 114 Issue 4 August 2005 pp 437-441. Geomagnetic activity control on VHF scintillations over an Indian low latitude station, Waltair (17.7°N, 83.3°E, 20°N dip) · D S V V D Prasad P V S Rama Rao ...

  15. Vocabulary related to earth sciences through etymology

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    to all aspects of earth sci- ences education for the benefit of students and educators. The author of the article is Nittala S. Sarma, Andhra University, Visak- hapatnam. In the article, Sarma has col- lected Greek, Latin, German and Celtic affixes... terms can be built solidly. My realization of the importance of etymology and the impressive effort put up by Sarma has prompted me to bring his recent publication to the attention of earth sciences students and teachers in the country...

  16. Earth Summit Science, policy discussed

    Science.gov (United States)

    Leath, Audrey T.

    The United Nations Conference on Environment and Development, the “Earth Summit,” convenes in Rio de Janeiro on June 3. President Bush has pledged to attend part of the 2-week conference. The highlight of the summit will be the signing of an international framework convention to reduce emissions of greenhouse gases. The final elements of the agreement were negotiated in New York last week by representative of 143 countries. In anticipation of the Rio conference, the Senate Committee on Energy and Natural Resources held two standing-roomonly hearings, reviewing the scientific basis for global warming due to greenhouse gases and discussing the details of the proposed convention.

  17. Isotopes in the earth sciences

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, Robert

    1988-01-01

    This book examines significant aspects of isotope applications in geology and geochemistry commencing with basic matters, such as atomic structure, stable nuclides and their fractionation, as well as the various decay modes of unstable nuclides. Modern mass spectrometry techniques including electrostatic tandem accelerators are followed by a review of radioisotope dating technology. The relatively new method using the rare earth elements samarium and neodymium are covered. Other geochronometers, applicable to both rocks and minerals not dateable otherwise, are included. A review is given of isotopes in the atmosphere, hydrosphere and lithosphere of the Earth. Those of oxygen and hydrogen together with the cosmogenic radionuclides tritium and radiocarbon are discussed in relation to the biosphere. The role of isotopes of carbon, nitrogen and sulphur is described and extended to fossil fuels and rocks as well as meteorites. Related themes such as Phanerozoic oceans, oceanic palaeothermometry, snow and ice stratigraphy and geothermal waters are covered. The field of isotopic palaeoecology is discussed. Radioactive wastes, their accumulation, dangers and disposal are investigated with especial reference to their environmental impacts.

  18. Journal of Earth System Science

    Indian Academy of Sciences (India)

    YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on the teaching of the theory of evolution more... ACADEMY PUBLIC LECTURE: Animal Sex Determination by Genes, Chromosomes and Environment.

  19. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    Science.gov (United States)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  20. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  1. Earth System Science: An Integrated Approach.

    Science.gov (United States)

    Environment, 2001

    2001-01-01

    Details how an understanding of the role played by human activities in global environmental change has emerged. Presents information about the earth system provided by research programs. Speculates about the direction of future research. (DDR)

  2. Evolution of NASA's Earth Science Digital Object Identifier Registration System

    Science.gov (United States)

    Wanchoo, Lalit; James, Nathan

    2017-01-01

    NASA's Earth Science Data and Information System (ESDIS) Project has implemented a fully automated system for assigning Digital Object Identifiers (DOIs) to Earth Science data products being managed by its network of 12 distributed active archive centers (DAACs). A key factor in the successful evolution of the DOI registration system over last 7 years has been the incorporation of community input from three focus groups under the NASA's Earth Science Data System Working Group (ESDSWG). These groups were largely composed of DOI submitters and data curators from the 12 data centers serving the user communities of various science disciplines. The suggestions from these groups were formulated into recommendations for ESDIS consideration and implementation. The ESDIS DOI registration system has evolved to be fully functional with over 5,000 publicly accessible DOIs and over 200 DOIs being held in reserve status until the information required for registration is obtained. The goal is to assign DOIs to the entire 8000+ data collections under ESDIS management via its network of discipline-oriented data centers. DOIs make it easier for researchers to discover and use earth science data and they enable users to provide valid citations for the data they use in research. Also for the researcher wishing to reproduce the results presented in science publications, the DOI can be used to locate the exact data or data products being cited.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this study we observe wave heights by an array of four wave gauges at the Hiratsuka Tower of (Independent Administrative Institution) National Research Institute for Earth Science and ... Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Meshesha1 3 Ryuichi Shinjo1. Department of Physics and Earth Sciences, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan. Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh. EL MINING PLC, Addis Ababa, Ethiopia.

  5. Connecting NASA science and engineering with earth science applications

    Science.gov (United States)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 5. Glacier fluctuation using Satellite Data in Beas basin, 1972–2006, Himachal Pradesh, India. Shruti Dutta A L Ramanathan ... Anurag Linda1. Glacier Research Group, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.

  7. Earth Sciences Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  8. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  9. JPRS Report, Science & Technology, USSR: Earth Sciences

    Science.gov (United States)

    1988-02-26

    Shirshov, USSR Academy of Sciences, Moscow] lflllrtll-Inf0rTtJ;0n ^ fr" °n the morPhol°gy> ecology and propagation of aggregations of algae...42nd cruise of the research vessel "Akademik Kurchatov» between Ampere and Josephine Seamounts some 670 km to the west of the Strait of Gibraltar in...railroad roadbeds. Lithomonitoring must be carried out in many regions for ensuring the ecological purity of economic activity and protection of

  10. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  11. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  12. Music Education and the Earth Sciences

    Science.gov (United States)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  13. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Science.gov (United States)

    2010-10-26

    ... Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science... following topics: --Earth Science Division Update. --Deformation, Ecosystem Structure and Dynamics of Ice...

  14. Making Connections: Where STEM Learning and Earth Science Data Services Meet

    Science.gov (United States)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda

    2016-01-01

    STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.

  15. Data Mining in Earth System Science (DMESS 2011)

    Science.gov (United States)

    Forrest M. Hoffman; J. Walter Larson; Richard Tran Mills; Bhorn-Gustaf Brooks; Auroop R. Ganguly; William Hargrove; et al

    2011-01-01

    From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniques—such as cluster analysis, singular value decomposition, block entropy, Fourier and...

  16. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian

    2017-01-01

    Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.

  17. International Earth Science Constellation (ESC) Introduction

    Science.gov (United States)

    Guit, William J.; Machado, Michael J.

    2016-01-01

    This is the Welcome and Introduction presentation for the International Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) meeting held in Albuquerque NM from September 27-29. It contains an org chart, charter, history, significant topics to be discussed, AquaAura 2017 inclination adjust maneuver calendar, a-train long range plans, upcoming events, and action items.

  18. Earth Sciences Division annual report, 1976

    International Nuclear Information System (INIS)

    Hornady, B.; Duba, A.

    1977-01-01

    This compilation lists abstracts of papers, internal reports, and talks presented during 1976 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. Subjects include: coal gasification, gas stimulation, geothermal fields, oil shale retorting, radioactive waste management, geochemistry, geophysics, seismology, explosive phenomenology, and miscellaneous studies

  19. Introduction to modern Fortran for the Earth system sciences

    CERN Document Server

    Chirila, Dragos B

    2014-01-01

    This work provides a short "getting started" guide to Fortran 90/95. The main target audience consists of newcomers to the field of numerical computation within Earth system sciences (students, researchers or scientific programmers). Furthermore, readers accustomed to other programming languages may also benefit from this work, by discovering how some programming techniques they are familiar with map to Fortran 95. The main goal is to enable readers to quickly start using Fortran 95 for writing useful programs. It also introduces a gradual discussion of Input/Output facilities relevant for Earth system sciences, from the simplest ones to the more advanced netCDF library (which has become a de facto standard for handling the massive datasets used within Earth system sciences). While related works already treat these disciplines separately (each often providing much more information than needed by the beginning practitioner), the reader finds in this book a shorter guide which links them. Compared to other book...

  20. Introduction to information science

    CERN Document Server

    Bawden, David

    2012-01-01

    This landmark textbook takes a whole subject approach to Information Science as a discipline. Introduced by leading international scholars and offering a global perspective on the discipline, this is designed to be the standard text for students worldwide. The authors' expert narrative guides you through each of the essential building blocks of information science offering a concise introduction and expertly chosen further reading and resources.Critical topics covered include:foundations: concepts, theories and historical perspectivesorganising and retrieving Information information behaviour,

  1. NASA's Earth Observing System Data and Information System - EOSDIS

    Science.gov (United States)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  2. Broadening the Participation of Native Americans in Earth Science

    Science.gov (United States)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  3. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    Science.gov (United States)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  4. ECHO Responds to NASA's Earth Science User Community

    Science.gov (United States)

    Pfister, Robin; Ullman, Richard; Wichmann, Keith; Perkins, Dorothy C. (Technical Monitor)

    2001-01-01

    Over the past decade NASA has designed, built, evolved, and operated the Earth Observing System Data and Information System (EOSDIS) Information Management System (IMS) in order to provide user access to NASA's Earth Science data holdings. During this time revolutionary advances in technology have driven changes in NASA's approach to providing an IMS service. This paper will describe NASA's strategic planning and approach to build and evolve the EOSDIS IMS and to serve the evolving needs of NASA's Earth Science community. It discusses the original strategic plan and how lessons learned help to form a new plan, a new approach and a new system. It discusses the original technologies and how they have evolved to today.

  5. Technology thrusts for future Earth science applications

    Science.gov (United States)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  6. Technology Thrust for Future Earth Science Applications

    Science.gov (United States)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  7. Enhancing Access to and Use of NASA Earth Sciences Data via CUAHSI-HIS (Hydrologic Information System) and Other Hydrologic Community Tools

    Science.gov (United States)

    Rui, H.; Strub, R.; Teng, W. L.; Vollmer, B.; Mocko, D. M.; Maidment, D. R.; Whiteaker, T. L.

    2013-12-01

    The way NASA earth sciences data are typically archived (by time steps, one step per file, often containing multiple variables) is not optimal for their access by the hydrologic community, particularly if the data volume and/or number of data files are large. To enhance the access to and use of these NASA data, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) adopted two approaches, in a project supported by the NASA ACCESS Program. The first is to optimally reorganize two large hydrological data sets for more efficient access, as time series, and to integrate the time series data (aka 'data rods') into hydrologic community tools, such as CUAHSI-HIS, EPA-BASINS, and Esri-ArcGIS. This effort has thus far resulted in the reorganization and archive (as data rods) of the following variables from the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively): precipitation, soil moisture, evapotranspiration, runoff, near-surface specific humidity, potential evaporation, soil temperature, near surface air temperature, and near-surface wind. The second approach is to leverage the NASA Simple Subset Wizard (SSW), which was developed to unite data search and subsetters at various NASA EOSDIS data centers into a single, simple, seamless process. Data accessed via SSW are converted to time series before being made available via Web service. Leveraging SSW makes all data accessible via SSW potentially available to HIS users, which increases the number of data sets available as time series beyond those available as data rods. Thus far, a set of selected variables from the NASA Modern Era-Retrospective Analysis for Research and Applications Land Surface (MERRA-Land) data set has been integrated into CUAHSI-HIS, including evaporation, land surface temperature, runoff, soil moisture, soil temperature, precipitation, and transpiration. All data integration into these tools has been conducted in collaboration with their

  8. Virtual Collections: An Earth Science Data Curation Service

    Science.gov (United States)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2016-01-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility, and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of the time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  9. Virtual Collections: An Earth Science Data Curation Service

    Science.gov (United States)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.

    2016-12-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  10. An experience of science theatre: Earth Science for children

    Science.gov (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  11. NASA's Earth Science Enterprise: Future Science Missions, Objectives and Challenges

    Science.gov (United States)

    Habib, Shahid

    1998-01-01

    NASA has been actively involved in studying the planet Earth and its changing environment for well over thirty years. Within the last decade, NASA's Earth Science Enterprise has become a major observational and scientific element of the U.S. Global Change Research Program. NASA's Earth Science Enterprise management has developed a comprehensive observation-based research program addressing all the critical science questions that will take us into the next century. Furthermore, the entire program is being mapped to answer five Science Themes (1) land-cover and land-use change research (2) seasonal-to-interannual climate variability and prediction (3) natural hazards research and applications (4) long-term climate-natural variability and change research and (5) atmospheric ozone research. Now the emergence of newer technologies on the horizon and at the same time continuously declining budget environment has lead to an effort to refocus the Earth Science Enterprise activities. The intent is not to compromise the overall scientific goals, but rather strengthen them by enabling challenging detection, computational and space flight technologies those have not been practically feasible to date. NASA is planning faster, cost effective and relatively smaller missions to continue the science observations from space for the next decade. At the same time, there is a growing interest in the world in the remote sensing area which will allow NASA to take advantage of this by building strong coalitions with a number of international partners. The focus of this presentation is to provide a comprehensive look at the NASA's Earth Science Enterprise in terms of its brief history, scientific objectives, organization, activities and future direction.

  12. Delivery of information from earth observation satellites

    International Nuclear Information System (INIS)

    MacDonald, J.S.

    1992-01-01

    Satellite-based systems for measuring the surface of the earth and its atmosphere from space have evolved rapidly in the past decade. The amount of data available in the future promises to be truly staggering. This paper addresses the requirements for handling data from earth observation systems. It begins with the premise that our objective is to acquire an understanding of the state and evolution of our planet, and proceeds from there to argue that earth observation satellite systems are, in reality, systems for delivering information. This view has implications on how we approach the design of such systems, and how we handle the data they produce in order to derive maximum benefit from them. The paper examines these issues and puts forth some of the technical requirements for future satellite-based earth observation systems, based on the concept that earth observation is a quantitative measurement discipline that is driven by requirements for information. (Author). 8 refs., 3 figs

  13. Computer and information science

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2016) which was held on June 26– 29 in Okayama, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication captures 12 of the conference’s most promising...

  14. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  15. Provenance Challenges for Earth Science Dataset Publication

    Science.gov (United States)

    Tilmes, Curt

    2011-01-01

    Modern science is increasingly dependent on computational analysis of very large data sets. Organizing, referencing, publishing those data has become a complex problem. Published research that depends on such data often fails to cite the data in sufficient detail to allow an independent scientist to reproduce the original experiments and analyses. This paper explores some of the challenges related to data identification, equivalence and reproducibility in the domain of data intensive scientific processing. It will use the example of Earth Science satellite data, but the challenges also apply to other domains.

  16. Earth Sciences Department Annual Report, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Donohue, M.L. (eds.)

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  17. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  18. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Favourable uranium–phosphate exploration trends guided by the application of statistical factor analysis technique on the aerial gamma spectrometric data in Syrian desert (Area-1), Syria. J Asfahani R Al-Hent M Aissa. Volume 125 Issue 1 February ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 5. Volume 115, Issue 5. October 2006, pages 485-613. pp 485-528. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log–ratio transformation of major-element data · Surendra P Verma ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 7 ... Net short wave and long wave radiative fluxes substantially varied with cloud dynamics, season, .... Impact of over-exploitation on groundwater quality: A case study from .... using large scale climate variables and downscaling models – A case study.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 1 .... Liquefaction-induced settlement, site effects and damage in the vicinity of Yalova ... Climatic control on extreme sediment transfer from Dokriani Glacier during monsoon, ... India that has been noticed in several global and regional climate models.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2 ... Variable influence on the equatorial troposphere associated with SSW using ERA- ... Identification of drought in Dhalai river watershed using MCDM and ANN models ..... Study of the global and regional climatic impacts of ENSO magnitude using ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 5 ... Impact of vegetation on the simulation of seasonal monsoon rainfall over the Indian .... On the diurnal ranges of Sea Surface Temperature (SST) in the north Indian Ocean ... Groundwater flow modelling of Yamuna–Krishni interstream, a part of central ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science ... Cloud Motion Wind (CMW) data of METEOSAT satellite and SSM/I surface wind data ... Skills of different mesoscale models over Indian region during monsoon season: Forecast errors ... Impact of vegetation on the simulation of seasonal monsoon rainfall over the Indian ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 5 ... Use of objective analysis to estimate winter temperature and precipitation at ... Numerical study for production of space charge within the stratiform cloud .... Estimates of source parameters of 4.9 Kharsali earthquake using waveform modelling.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5 ... water cycles and predict the effect of climate change on terrestrial ecosystems, it is ... Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri .... Influence of nutrient input on the trophic state of a tropical brackish water lagoon.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 3 ... Modeling of groundwater flow for Mujib aquifer, Jordan ... a cloudburst event with attention to horizontal resolution and the cloud microphysics parameterization. ... Global surface temperature in relation to northeast monsoon rainfall over Tamil Nadu.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 5 .... Current products based on Ocean General Circulation Models like ECCO2 ... An assessment of wind forcing impact on a spectral wave model for the Indian Ocean .... variability over India and its subregions using a regional climate model (RegCM3).

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 1 ... with a parametric study of the effect of four hydrometeors (cloud liquid water, cloud ice, ... Impact of additional surface observation network on short range weather forecast ... Doppler SODAR observations of the temperature structure parameter during ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 4 ... Monsoon sensitivity to aerosol direct radiative forcing in the community atmosphere model .... Influences of the boundary layer evolution on surface ozone variations at a .... and its comparison with global geopotential models and GPS-levelling data.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 2 ... Impact of continental meteorology and atmospheric circulation in the ... Rainfall and temperature scenarios for Bangladesh for the middle of 21st century using RegCM ..... Statistical models of interoccurrence times of Iranian earthquakes on the basis ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 8. Formation and evolution of yardangs activated by Late Pleistocene tectonic movement in Dunhuang, Gansu Province of China. Yanjie Wang Fadong Wu Xujiao Zhang Peng Zeng Pengfei Ma Yuping Song Hao Chu. Volume 125 Issue 8 December ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 5. Variational method for objective analysis of scalar variable and its derivative. S G Narkhedkar S K Sinha ... It is found that the new scheme (variational)is able to extract the better parts of both triangle and standard methods.The results of this study will ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 4. Volume 109, Issue 4. December 2000, pages 393-551. pp 393-394. Editorial · V K Gaur · More Details Fulltext PDF. pp 395-405. Analysis of pathfinder SST algorithm for global and regional conditions · Ajoy Kumar P Minnett G Podesta R Evans K ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 3. Volume 109, Issue 3. September 2000, pages 315-391. pp 315-328. Ocean circulation in the tropical Indo-Pacific during early Pliocene (5.6 - 4.2 Ma): Paleobiogeographic and isotopic evidence · M S Srinivasan D K Sinha · More Details Abstract ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 2. Volume 118, Issue 2. April 2009, pages 115-180. pp 115-121. Energetics of lower tropospheric ultra-long waves: A key to intra-seasonal variability of Indian monsoon · S M Bawiskar M D Chipade P V Puranik · More Details Abstract Fulltext PDF.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 3. Volume 119, Issue 3. June 2010, pages 229-396. pp 229-247. Active and break spells of the Indian summer monsoon · M Rajeevan Sulochana Gadgil Jyoti Bhate · More Details Abstract Fulltext PDF. In this paper, we suggest criteria for the ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 3. Significance of transition between Talchir Formation and Karharbari Formation in Lower Gondwana basin evolution — A study in West Bokaro Coal basin, Jharkhand, India. H N Bhattacharya Abhijit Chakraborty Biplab Bhattacharya. Volume 114 Issue ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 7 ... less than 5000 mg/l is recommended in this area, at flow rate less than 10m3/hr/well. In other words, one can expect that the brackish water is probably found where the ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 8. Gravitational attraction of a vertical pyramid model of flat top-and-bottom with depth-wise parabolic density variation. Anand P Gokula Rambhatla G Sastry. Volume 124 Issue 8 December 2015 pp 1735-1744 ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5. Issue front cover thumbnail. Volume 126, Issue 5. July 2017. Article ID 62. Meteorological features associated with unprecedented precipitation over India during 1st week of March 2015 · Naresh Kumar M Mohapatra A K Jaswal · More Details Abstract ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science. Volume 116 Issue 1 February 2007 pp 73-79. Long range prediction of Indian summer monsoon ... Volume 121 Issue 1 February 2012 pp 203-210. Impact of global warming on cyclonic disturbances over south Asian region · Savita Patwardhan Ashwini Kulkarni K Krishna ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    . Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 269-281. Climate change and its role in forecasting energy demand in buildings: A case study of Douala City, Cameroon · Modeste Kameni ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 4. Deep learning for predicting the monsoon over the homogeneous regions of India. Moumita Saha Pabitra Mitra ... Keywords. Feature learning; stacked autoencoder; monsoon predictor; ensemble of regression trees; regional Indian summer monsoon.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 3 .... Assessment of the regional water balance of the limestone subaquifers of Cyprus ... characterized by its small watersheds and the lack of ephemeral surface water resources. .... Optimization method for quantitative calculation of clay minerals in soil.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 4. Volume 111, Issue 4. December 2002, pages 379-510. pp 379-390. Isotopic and sedimentological clues to productivity change in Late Riphean Sea: A case study from two intracratonic basins of India · P P Chakraborty A Sarkar S K Bhattacharya P ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 3. Scattering of a spherical pulse from a small inhomogeneity: Dilation and rotation. M D Sharma. Volume 110 Issue 3 September 2001 pp 205-213 ... Keywords. Scattering; inhomogeneity; spherical pulse; perturbations; dilatation; rotation ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 3. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India. Virendra Bahadur Singh A L Ramanathan Jose George Pottakkal Parmanand Sharma Anurag Linda Mohd Farooq Azam C Chatterjee. Volume 121 Issue ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 2 ... Bay of Bengal Monsoon Experiment (BOBMEX) — A component of the Indian .... Diurnal variability of upper ocean temperature and heat budget in the ... While the former facilitates the trapping of radiation (greenhouse effect) the latter works in the ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 1 .... Middle Siwalik sediments in Tista valley, Darjiling District, Eastern Himalaya, India ... Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer .... Impact of global warming on cyclonic disturbances over south Asian region.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 6. Volume 116, Issue 6. December 2007, pages 465-597. pp 465-467. Editorial · T N Narasimhan · More Details Fulltext PDF. pp 469-495. Late Devonian and Triassic basalts from the southern continental margin of the East European Platform, tracers of ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 1. Issue front cover thumbnail. Volume 115, Issue 1. February 2006, pages 1-183. Vindhyan Geology: Status and Perspectives. pp 1-2. Preface · J S Ray C Chakraborty · More Details Fulltext PDF. pp 3-22. Proterozoic intracontinental basin: The Vindhyan ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 2. Impact of continental meteorology and atmospheric circulation in the modulation of Aerosol Optical Depth over the Arabian Sea. Sandhya K Nair S Sijikumar S S Prijith. Volume 121 Issue 2 April 2012 pp 263-272 ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 5. Volume 116, Issue 5. October 2007, pages 369-463. pp 369-384. Current status of multimodel superensemble and operational NWP forecast of the Indian summer monsoon · Akhilesh Kumar Mishra T N Krishnamurti · More Details Abstract Fulltext PDF.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 4. Spatial distribution of atmospheric carbon monoxide over Bay of Bengal and Arabian Sea: Measurements during pre-monsoon period of 2006. V R Aneesh G Mohankumar S Sampath. Volume 117 Issue 4 August 2008 pp 449-455 ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Contribution of some ozone depleting substances (ODS) and greenhouse gases (GHGs) on total column zone growth at Srinagar (34°N, 74.8°), India. P K Jana D K Saha D Sarkar. Volume 122 Issue 1 February 2013 pp 239-252 ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Earth System Science; Volume 115; Issue 4. Section Title Page. Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks Volume 115 Issue 4 August 2006 pp 429- ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 6 ... and ongoing seismicity of northeastern Kumaun Himalaya, Uttarakhand, India ... areas of hazard prone and also planning and designing of the socio-economic projects. ... from Darjeeling, eastern Himalaya: Textural relationship and P–T conditions.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 1. Issue front cover thumbnail. Volume 116, Issue 1. February 2007, pages 1-79. pp 1-1. Editorial · More Details Fulltext PDF. pp 3-13. Platinum group elements and gold in ferromanganese crusts from Afanasiy–Nikitin seamount, equatorial Indian Ocean: ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 1. Identification of a surface layer structure and analysis of humidity data in two weather situations at Jodhpur (26° 18′N, 73° 04′E), India, during MONTBLEX 1990. N Das M Bose U K De. Volume 113 Issue 1 March 2004 pp 73-87 ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 5. Impact of Ganges–Brahmaputra interannual discharge variations on Bay of Bengal salinity and temperature during 1992–1999 period. Fabien Durand Fabrice Papa Atiqur Rahman Sujit Kumar Bala. Volume 120 Issue 5 October 2011 pp 859-872 ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Snow & Avalanche Study Establishment, Research & Development Centre, Him Parisar, Sector 37A, Chandigarh 160 036, India. School of Earth, Ocean and Climate Sciences, Indian Institute of Technology, Bhubaneswar, Toshali Bhavan, Satya Nagar, Bhubaneswar 751 007, India. Meteorological Office, Sector-39, ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 3. Evaluation of regional fracture properties for groundwater development using hydrolithostructural domain approach in variably fractured hard rocks of Purulia district, West Bengal, India. Tapas Acharya Rajesh Prasad S Chakrabarti. Volume 123 Issue ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 6. Multilayer perceptron neural network for downscaling rainfall in arid region: A case study of Baluchistan, Pakistan. Kamal Ahmed Shamsuddin Shahid Sobri Bin Haroon Wang Xiao-Jun. Volume 124 Issue 6 August 2015 pp 1325-1341 ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 2. Volume 119, Issue 2. April 2010, pages 137-228. pp 137-145. Effect of co-operative fuzzy c-means clustering on estimates of three parameters AVA inversion · Rajesh R Nair Suresh Ch Kandpal · More Details Abstract Fulltext PDF. We determine the ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This laboratory at the Department of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral particulates (> 65 m), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 1. A fruit wing of Shorea Roxb. from the Early Miocene ... A new fossil fruit wing of Shorea Roxb. belonging to the family Dipterocarpaceae is described from the Early Miocene sediments of Kachchh, Gujarat. It resembles best the extant species Shorea ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5. First discovery of fossil winged seeds of Pinus L. (family Pinaceae) from the Indian Cenozoic and its palaeobiogeographic significance. Mahasin Ali Khan Subir Bera. Volume 126 Issue 5 July 2017 Article ID 63 ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science. Volume 119 Issue 2 April 2010 pp 137-145. Effect of co-operative fuzzy .... The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan · Ramakrushna Reddy Rajesh R Nair · More Details Abstract Fulltext ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Reconstruction of the paleo-coastline of Santorini island (Greece), after the 1613 BC volcanic eruption: A GIS-based quantitative methodology. Dimitrios Oikonomidis Konstantinos Albanakis Spyridon Pavlides Michael Fytikas. Volume 125 Issue 1 ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science. Volume 118 Issue 4 August 2009 pp 405-412. Magnetic anomalies of offshore Krishna-Godavari Basin, eastern continental margin of India · K V Swamy I V Radhakrishna Murthy K S Krishna K S R Murthy A S Subrahmanyam M M Malleswara Rao · More Details Abstract ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 2 ... Predictors for Bangladesh summer monsoon (June–September) rainfall were identified ... After carrying out a detailed analysis of various global climate datasets; three ... Department of Physics, Bangladesh University of Engineering & Technology ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad. Volume 122 Issue 1 February 2013 pp 187-199 ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in EarthSciences without an estimation of their accuracy and reliability even though large outliers exist in them.The global 1 arc-sec, 30 m resolution, SRTM C-Band (C-30) data collected in February 2000 has beenrecently released ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 1. Volume 112, Issue 1 ... Effects of galvanic distortions on magnetotelluric data: Interpretation and its correction using deep electrical data · Jimmy Stephen S G ... pp 37-49. 2D Stabilised analytic signal method in DC pole-pole potential data interpretation.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 5. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log–ratio transformation of major-element data. Surendra P Verma Mirna Guevara Salil Agrawal. Volume 115 Issue 5 October 2006 ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7. Spectroscopy of olivine basalts using FieldSpec and ASTER data: A case study from Wadi Natash volcanic field, south Eastern Desert, Egypt. Ahmed Madani. Volume 124 Issue 7 October 2015 pp 1475-1486 ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 1. Mesoproterozoic diamondiferous ultramafic pipes at Majhgawan and Hinota, Panna area, central India: Key to the nature of sub-continental lithospheric mantle beneath the Vindhyan basin. N V Chalapathi Rao. Volume 115 Issue 1 February 2006 pp ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 6 ... using an X-ray fluorescence spectrometer (LEX),sensitive in the energy range of 1 –10 ... (SIR-2),similar to that used on the Smart-1 mission,in collaboration with ESA.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science. Volume 122 Issue 4 August 2013 pp 899-933. Tidal variations in the Sundarbans Estuarine System, India · Meenakshi Chatterjee D ... 5 July 2014 pp 1045-1074. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 5. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR). Nishant Gupta Tajdarul H Syed Ashiihrii Athiphro. Volume 122 Issue 5 October 2013 pp 1249- ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Amir Hossein Souri1 Sanaz Vajedian2. Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA. Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, North Kargar Ave., P.O. Box 11365-4563, Tehran, Iran.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 8 ... in conformity with their relation to (earthquake induced) shear system evolution in this terrain. ... Sanjoy Mahato1 Arka Ranjan Jana1 P B Maithani3 P V Ramesh Babu3.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Journal of Earth System Science; Volume 127; Issue 3. Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India. Priyabrata Santra Mahesh Kumar R N Kumawat D K Painuli K M Hati G B M Heuvelink N H Batjes. Volume 127 Issue 3 April 2018 Article ID 35 ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 1. The effects of attenuation and site on the spectra of microearthquakes in the Jubilee Hills region of Hyderabad, India. Saurabh Baruah Devajit Hazarika Naba K Gogoi P Solomon Raju. Volume 116 Issue 1 February 2007 pp 37-47 ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 3. Volume 113, Issue 3. September 2004, pages 259-515. pp 259-267. Delineation of structures favourable to groundwater occurrence employing seismic refraction method — A case study from Tiruvuru, Krishna district, Andhra Pradesh · N Sundararajan ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 8 ... On a model simulating lack of hydraulic connection between a man-made reservoir and the ... Depth of water in the reservoir varies as H'+h cos(ωt). ..... exchanges via riverbank filtration by hydrochemical and biological indicators, Assiut, Egypt.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 4. Simultaneous transport of water and solutes under transient unsaturated flow conditions – A case study ... Keywords. Hydraulic conductivity; infiltration; leaching; Malaprabha; modeling; permeability; salinity; solute transport; SWIM model; water flow.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 2. Volume 113, Issue 2. June 2004, pages 129-257. pp 129-138. The evaporation of the charged and uncharged water drops suspended in a wind tunnel · Rohini V Bhalwankar A B Sathe A K Kamra · More Details Abstract Fulltext PDF. A laboratory ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 5. Polyphase deformation and garnet growth in politic schists of Sausar Group in Ramtek area, Maharashtra, India: A study of porphyroblast–matrix relationship. A Chattopadhyay N Ghosh. Volume 116 Issue 5 October 2007 pp 423-432 ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 3. Volume 112 ... pp 315-329. Flexure of the Indian plate and intraplate earthquakes .... Four major NW-SE trending active faults are mapped in the Kutch region. They define .... Behaviour of masonry structures during the Bhuj earthquake of January 2001.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    T M Balakrishnan Nair. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 461-472 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Monsoon control on trace metal fluxes in the deep Arabian Sea · T M Balakrishnan ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5 ... They are mainly of high-K calc-alkaline series with indistinct Eu anomalies, enriched in ... School of Geosciences and Info-Physics, Central South University, Changsha ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Simulation of CO2 concentrations at Tsukuba tall tower using WRF-CO2 tracer transport model. Srabanti Ballav Prabir K Patra Yousuke Sawa Hidekazu Matsueda Ahoro Adachi Shigeru Onogi Masayuki Takigawa Utpal K De. Volume 125 Issue 1 ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 3. An experimental set-up for carbon isotopic analysis of atmospheric CO2 and an example of ecosystem response during solar eclipse 2010. Tania Guha Prosenjit Ghosh. Volume 122 Issue 3 June 2013 pp 623-638 ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 8. Application of environmental isotopes and hydrochemistry in the identification of source of seepage and likely connection with lake water in Lesser Himalaya, Uttarakhand, India. Shive Prakash Rai Dharmaveer Singh Ashwani Kumar Rai Bhishm ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 5. Assessment of large aperture scintillometry for large-area surface energy fluxes over an irrigated cropland in north India. Abhishek Danodia V K Sehgal N R Patel R Dhakar J Mukherjee S K Saha A Senthil Kumar. Volume 126 Issue 5 July 2017 Article ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 3. Characterization of weathering profile in granites and volcanosedimentary rocks in West Africa under humid tropical climate conditions. Case of the Dimbokro Catchment (Ivory Coast). M Koita H Jourde K J P Koffi K S Da Silveira A Biaou. Volume 122 ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 3. Volume 110, Issue 3. September 2001, pages 185-265. pp 185-190. Ar-Ar age of carbonatite-alkaline magmatism in Sung Valley, Maghalaya, India · Jyotiranjan S Ray Kanchan Pande · More Details Abstract Fulltext PDF. 40Ar-39Ar analyses of one ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 2 ... Trend analysis and change point detection of annual and seasonal .... Numerical evaluation of seismic response of shallow foundation on loose silt and silty sand ... complex interactions can be a valuable tool to gain new insights for improved seismic ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 3 ... Decomposition of wind speed fluctuations at different time scales .... Bayesian inversion of synthetic AVO data to assess fluid and shale content in sand-shale media ... Geochemical characteristics of sandstones from Cretaceous Garudamangalam ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 4. Evolution of the Bhandara-Balaghat granulite belt along the southern margin of the Sausar Mobile Belt of central India. H M Ramachandra Abhinaba Roy. Volume 110 Issue 4 December 2001 pp 351-368 ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3 ... () based optical classification of IRS-P3 MOS-B satellite ocean colour data ... water leaving radiances in blue and green channels of 412, 443, 490 and 550 nm.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 1. Records of climatic changes and volcanic events in an ice core from Central Dronning Maud Land (East Antarctica) during the past century. V N Nijampurkar D K Rao H B Clausen M K Kaul A Chaturvedi. Volume 111 Issue 1 March 2002 pp 39-49 ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 4. Volume ... Tidal variations in the Sundarbans Estuarine System, India ... The tidal asymmetry and stand have implications for human activity in the Sundarbans. ..... zonation in urban rivers using multivariate analysis: Implications for river management.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 1. Geochemistry of sericite deposits at the base of the Paleoproterozoic Aravalli Supergroup, Rajasthan, India: Evidence for metamorphosed and metasomatised Precambrian Paleosol. B Sreenivas A B Roy R Srinivasan. Volume 110 Issue 1 March 2001 ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 5. Impact of vegetation on the simulation of seasonal monsoon rainfall over the Indian subcontinent using a regional model. Surya K Dutta Someshwar Das S C Kar U C Mohanty P C Joshi. Volume 118 Issue 5 October 2009 pp 413-440 ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 1. Laser microprobe for the study of noble gases and nitrogen in single grains: A case study of individual chondrules from the Dhajala meteorite. R R Mahajan S V S Murty. Volume 112 Issue 1 March 2003 pp 113-127 ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Prediction and error growth in the daily forecast of precipitation from the NCEP CFSv2 over the subdivisions of Indian subcontinent. Dhruva Kumar Pandey Shailendra Rai A K Sahai S Abhilash N K Shahi. Volume 125 Issue 1 February 2016 pp 29-45 ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure. Hrishikesh Samant Ashwin Pundalik Joseph D'souza Hetu Sheth Keegan Carmo Lobo Kyle D'souza Vanit Patel. Volume ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. AIRS observations of seasonal variability in meridional temperature gradient over Indian region at 100 hPa. A Gupta S K Dhaka V Panwar R Bhatnagar V Kumar Savita M Datta S K Dash. Volume 122 Issue 1 February 2013 pp 201-213 ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 6. Anthropogenic and impact spherules: Morphological similarity and chemical distinction – A case study from India and its implications. Ambalika Niyogi Jayanta K Pati Suresh C Patel Dipak Panda Shiv K Patil. Volume 120 Issue 6 December 2011 pp ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 4. SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. D Ramakrishnan A Bandyopadhyay K N Kusuma. Volume 118 Issue 4 August 2009 pp 355-368 ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 5. Volume 117, Issue 5. October 2008, pages 537-645. pp 537-551. The High Deccan duricrusts of India and their significance for the 'laterite' issue · Cliff D Ollier Hetu C Sheth · More Details Abstract Fulltext PDF. In the Deccan region of western India ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In contrast, eastern province values dominated in the Pd-Au-Cu region at the 'Cu' end of the profiles. A strong dominance of Pd in the eastern Deccan was also of interest. ... School of Geography and Earth Sciences, McMaster University, Hamilton, Canada. Department of Geology, Presidency University, Kolkata 700 073, ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 2 ... It follows that concentrations of these particle-active elements must have varied in the past with ... REE geochemistry of ore zones in the Archean auriferous schist belts of the eastern ... Estimation of source parameters of Chamoli Earthquake, India.

  19. Computer/Information Science

    Science.gov (United States)

    Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton

    2013-01-01

    Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…

  20. Evolving Metadata in NASA Earth Science Data Systems

    Science.gov (United States)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of