WorldWideScience

Sample records for earth pyrochlore solid

  1. Exchange interactions in two-state systems: rare earth pyrochlores

    Science.gov (United States)

    Curnoe, S. H.

    2018-06-01

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  2. Investigation into the magnetic properties of pyrochlore-type rare-earth hafnates

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jung Hwan; Kremer, Reinhard K.; Lin, Chengtian [MPI for Solid State Research, Stuttgart (Germany)

    2015-07-01

    Cubic rare-earths transition metal pyrochlores with composition R{sub 2}TM{sub 2}O{sub 7} have attracted broad attention because of their unusual magnetic ground state properties related to geometrical frustration of the pyrochlores lattice. So far, the investigation focused mainly on 3d and 4d transition metal systems. The magnetic properties of rare-earths 5d TM pyrochlores are comparatively less well studied. Here we report on the single-crystal growth and the magnetic properties of some rare-earth hafnates (R =Nd, Gd, Dy; TM = Hf) of composition R{sub 2}Hf{sub 2}O{sub 7}. Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} crystallize with the cubic pyrochlores structure whereas diverging reports on the structure of Dy{sub 2}Hf{sub 2}O{sub 7} are available in literature. Crystals of R{sub 2}Hf{sub 2}O{sub 7} have been grown and their structural and magnetic properties have been investigated. Our investigations confirm Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} to crystallize in the cubic pyrochlores structure. Antiferromagnetic ordering below ∝0.5 K has been observed by magnetic susceptibility and heat capacity measurements for both compounds.

  3. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    Science.gov (United States)

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  4. Ion irradiation of rare-earth- and yttrium-titanate-pyrochlores

    International Nuclear Information System (INIS)

    Wang, S.X.; Wang, L.M.; Ewing, R.C.; Govindan Kutty, K.V.

    2000-01-01

    Pyrochlore, A 1-2 B 2 O 6 (O,OH,F) 0-1 , is an actinide-bearing phase in Synroc, a polyphase ceramic proposed for the immobilization of high level nuclear waste. Structural damage due to alpha-decay events can significantly affect the chemical and physical stability of the nuclear waste form. Pyrochlore can effectively incorporate a variety of actinides into its structure. Four titanate pyrochlores were synthesized with compositions of Gd 2 Ti 2 O 7 , Sm 2 Ti 2 O 7 , Eu 2 Ti 2 O 7 and Y 2 Ti 2 O 2 . These samples were irradiated with 1 MeV Kr + in order to simulate alpha-decay damage and were observed by in situ electron microscopy. Irradiations were conducted from 25 K to 1023 K. At room temperature, Gd-, Sm- and Eu-pyrochlores amorphized at a dose of ∼2x10 14 ions/cm 2 (∼0.5 dpa) and Y-pyrochlore amorphized at 4x10 14 ions/cm 2 (∼0.8 dpa). The amorphization dose became higher at elevated temperatures with different rates of increase for each composition. The critical temperatures for amorphization are ∼1100 K for Gd-, Sm-, Eu-pyrochlore and ∼780 K for Y-pyrochlore. The rare-earth-pyrochlores are more susceptible to amorphization and have higher critical temperatures than Y-pyrochlore. The difference in amorphization dose and critical temperature is attributed to the different cascade sizes caused by the different cation masses of the target. Based on a model of cascade quenching, the larger cascade is related to a lower amorphization dose and higher critical temperature. The irradiated materials were studied by electron diffraction and high-resolution electron microscopy. All the pyrochlores transformed to a fluorite substructure prior to the completion of amorphization of the observed regions. This transformation was caused by the disordering between cations and between oxygen and oxygen vacancies. The concurrence of cation disordering with amorphization suggests the partial recrystallization of the displacement cascades. Isolated cascade damage

  5. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

    NARCIS (Netherlands)

    Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R.

    2010-01-01

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R2Ti2O7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the

  6. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  7. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  8. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States); Anderson, Thomas J. [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Gout, Delphine [Oak Ridge National Lab, Neutron Scattering Science Division, Oak Ridge, TN (United States); Ubic, Rick [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States)

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which became weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.

  9. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    Science.gov (United States)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  10. Quantum Magnetism Applied to the Iron-Pnictides and Rare Earth Pyrochlores

    Science.gov (United States)

    Applegate, Ryan

    This dissertation presents computational studies of two families of magnetic materials of significant current interest. The iron pnictides are new high temperature superconductors with interesting parent compound antiferromagnetism. The rare earth pyrochlore material Yb2Ti2O7 is a candidate quantum spin ice. The magnetic and structural phases of individual iron pnictides have both many common features and material specific differences. In an attempt to unify these behaviors as instances of a larger theoretical picture, we use Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital degrees of freedom. We introduce spin-space and single-ion anisotropies and study the finite temperature transitions in our model. We develop a phase diagram and propose that the interplay of spin and orbital physics in the presence of anisotropy could explain how material details affect the transitions of the pnictide materials. Nuclear magnetic resonance (NMR) can study magnetic materials via the hyperfine interaction and the coupling between the nuclear moment and the field produced by the samples local moment environment. Recent measurements suggest that Zn doped BaFe2As2 may have quantum fluctuations about the striped phase that produce a distribution of fields at As nuclear sites. The non-magnetic ion Zn replaces Fe and can be treated as an impurity which can be studied by a zero-temperature Ising Series expansion method. We propose a Heisenberg-like J1a-J 1b-J2 model which has small ferromagnetic exchanges along the b axis and strong antiferromagnetic exchanges along the a axis. In our impurity model we find that the magnetic moments are everywhere reduced by quantum fluctuations, except on the nearest neighbor site in the AFM direction. We suggest that the presented impurity model may provide an explanation for the experimental measurements. Based on a recently proposed quantum spin ice model, we use numerical linked cluster (NLC

  11. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi2O3-ZnO-(Nb, Ta)2O5

    International Nuclear Information System (INIS)

    Tan, K.B.; Khaw, C.C.; Lee, C.K.; Zainal, Z.; Miles, G.C.

    2010-01-01

    Research highlights: → Combined XRD and ND Rietveld structural refinement of pyrochlores. → Structures and solid solution mechanisms of Bi-pyrochlores. → Bi and Zn displaced off-centre to different 96g A-site positions. → Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi 1.5 ZnTa 1.5 O 7 and non-stoichiometric Bi 1.56 Zn 0.92 Nb 1.44 O 6.86 . In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  12. The Solid Earth

    Science.gov (United States)

    Fowler, C. M. R.

    2005-02-01

    The second edition of this acclaimed textbook has been brought fully up-to-date to reflect the latest advances in geophysical research. It is designed for students in introductory geophysics courses who have a general background in the physical sciences, including introductory calculus. New to this edition are a section of color plates and separate sections on the earth's mantle and core. The book also contains an extensive glossary of terms, and includes numerous exercises for which solutions are available to instructors from solutions@cambridge.org. First Edition Hb (1990): 0-521-37025-6 First Edition Pb (1990): 0-521-38590-3

  13. Synthesis and electrical properties of the pyrochlore-type Gd2-yLayZr2O7 solid solution

    Directory of Open Access Journals (Sweden)

    León, C.

    2008-06-01

    Full Text Available Different compositions in the pyrochlore-type Gd2-yLayZr2O7 solid solution (0 ≤ y ≤ 1 were prepared at room-temperature by mechanically milling stoichiometric mixtures of the corresponding oxides. Irrespective of their lanthanum content, as-prepared powder samples consist of single-phase anion deficient fluorite materials, although long-range ordering of cations and anion vacancies characteristic of pyrochlores was observed in all cases after firing the samples at 1500°C. Interestingly, activation energy for oxygen migration in the series decreases as La-content increases, from 1.13 eV for Gd2Zr2O7 to 0.81 eV for GdLaZr2O7, whereas ionic conductivity was found to be almost La-content independent, at least for y ≤ 0.8 at T = 500°C and y ≤ 0.4 at T = 800°C. These results are explained in terms of weaker ion-ion interactions in better ordered structures (i.e., as La-content increases and highlight the importance of structural ordering/disordering in determining the dynamics of mobile oxygen ions.Partiendo de mezclas estequiométricas de los óxidos correspondientes, se prepararon por molienda mecánica y a temperatura ambiente diferentes composiciones en la solución sólida Gd2-yLayZr2O7 (0 ≤ y ≤ 1 con estructura de tipo pirocloro y conductora de iones oxígeno. Independientemente del contenido de lantano, los polvos extraídos del molino presentaron difractogramas similares al de una fluorita no estequiométrica aunque en todos los casos, el tratamiento térmico a 1500°C indujo la aparición del ordenamiento de largo alcance de cationes y vacancias aniónicas característico de pirocloros. La energía de activación para el proceso de migración de iones oxígeno en la serie disminuye a medida que se incrementa el contenido de lantano, desde 1.13 eV de Gd2Zr2O7 hasta 0.81 eV de GdLaZr2O7, mientras que la conductividad resultó ser prácticamente independiente del mismo hasta y ≤ 0.8 para T = 500°C e y ≤ 0.4 para T = 800

  14. Self-assembled, rare earth tantalate pyrochlore nanoparticles for superior flux pinning in YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Harrington, S A; Durrell, J H; Wimbush, S C; Kursumovic, A; MacManus-Driscoll, J L; Maiorov, B; Wang, H; Lee, J H

    2009-01-01

    Addition of pyrochlore rare earth tantalate phases, RE 3 TaO 7 (RTO, where RE = rare earth, Er, Gd and Yb) to YBa 2 Cu 3 O 7-δ (YBCO) is shown to vastly improve pinning, without being detrimental to the superconducting transition temperature. The closely lattice matched to RTO phase provides a lower interfacial energy with YBCO than BaZrO 3 (BZO) and produces very fine (∼5 nm) particles with high linearity in their self-assembly along c. Critical current densities of 0.86, 0.38 MA cm -2 at 1 and 3 T (for fields) parallel to the c axis were recorded at 77 K in 0.5-1.0 μm thick films and a transition temperature of 92 K was observed even in the highest level doped sample (8 mol%). (rapid communication)

  15. Geomagnetism solid Earth and upper atmosphere perspectives

    CERN Document Server

    Basavaiah, Nathani

    2011-01-01

    This volume elaborates several important aspects of solid Earth geomagnetism. It covers all the basics of the subject, including biomagnetism and instrumentation, and offers a number of practical applications with carefully selected examples and illustrations.

  16. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi{sub 2}O{sub 3}-ZnO-(Nb, Ta){sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.B., E-mail: tankb@science.upm.edu.m [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Engineering, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Lee, C.K. [Academic Science Malaysia, 902-4 Jalan Tun Ismail, 50480 Kuala Lumpur (Malaysia); Zainal, Z. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Miles, G.C. [Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-10-22

    Research highlights: {yields} Combined XRD and ND Rietveld structural refinement of pyrochlores. {yields} Structures and solid solution mechanisms of Bi-pyrochlores. {yields} Bi and Zn displaced off-centre to different 96g A-site positions. {yields} Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi{sub 1.5} ZnTa{sub 1.5}O{sub 7} and non-stoichiometric Bi{sub 1.56}Zn{sub 0.92}Nb{sub 1.44}O{sub 6.86}. In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  17. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  18. The International Solid Earth Research Virtual Observatory

    Science.gov (United States)

    Fox, G.; Pierce, M.; Rundle, J.; Donnellan, A.; Parker, J.; Granat, R.; Lyzenga, G.; McLeod, D.; Grant, L.

    2004-12-01

    We describe the architecture and initial implementation of the International Solid Earth Research Virtual Observatory (iSERVO). This has been prototyped within the USA as SERVOGrid and expansion is planned to Australia, China, Japan and other countries. We base our design on a globally scalable distributed "cyber-infrastructure" or Grid built around a Web Services-based approach consistent with the extended Web Service Interoperability approach. The Solid Earth Science Working Group of NASA has identified several challenges for Earth Science research. In order to investigate these, we need to couple numerical simulation codes and data mining tools to observational data sets. This observational data are now available on-line in internet-accessible forms, and the quantity of this data is expected to grow explosively over the next decade. We architect iSERVO as a loosely federated Grid of Grids with each country involved supporting a national Solid Earth Research Grid. The national Grid Operations, possibly with dedicated control centers, are linked together to support iSERVO where an International Grid control center may eventually be necessary. We address the difficult multi-administrative domain security and ownership issues by exposing capabilities as services for which the risk of abuse is minimized. We support large scale simulations within a single domain using service-hosted tools (mesh generation, data repository and sensor access, GIS, visualization). Simulations typically involve sequential or parallel machines in a single domain supported by cross-continent services. We use Web Services implement Service Oriented Architecture (SOA) using WSDL for service description and SOAP for message formats. These are augmented by UDDI, WS-Security, WS-Notification/Eventing and WS-ReliableMessaging in the WS-I+ approach. Support for the latter two capabilities will be available over the next 6 months from the NaradaBrokering messaging system. We augment these

  19. Study on the chemical treatment processes of the uranium pyrochlore of Araxa

    International Nuclear Information System (INIS)

    Batista, H.F.; Fernandes, M.D.

    Several processes are presented for the chemical treatment, in laboratory scale, of the uranium pyrochlore concentrates found in Araxa (Minas Gerais, Brazil), aiming to the extraction of uranium, thorium and rare earths, besides the recovery of niobium pentoxide [pt

  20. Analysis of coordination polyhedra symmetry in pyrochlore and zirconolite structures

    International Nuclear Information System (INIS)

    Troole, A.Y.; Stefanovsky, S.V.

    1999-01-01

    Zirconolite and pyrochlore are considered as promising host phases for high level waste (HLW). However, correct information on substitution mechanisms, forms of dopants incorporation in their structures and distortions in coordination polyhedra is presently unavailable. To clarify these points the authors use the electron paramagnetic resonance (EPR). Pyrochlore and three of zirconolite polytypes: zirconolite-2M, zirconolite-3T, and zirconolite-3O are considered. Pyrochlore is the parent structure for zirconolite since any zirconolite variety is produced by means of distortion of the initial pyrochlore structure. Space groups of pyrochlore and basic polymorphous zirconolite varieties found from XRD and TEM data, as well as interatomic distances and angles, were taken from reference data. This allows the determination of the most probable sites for impurities, substitution mechanisms, and local symmetry of coordination polyhedra (initial). Ions chosen for EPR were Gd(III) as an analog of trivalent rare earth and actinide elements which are also occurred in HLW and Fe(III) as a typical corrosion product which occurs in all HLW. For Gd(III) a strong ligand field approximation is suggested, theoretical computation using perturbation theory in this approximation has been carried out. All the non-diagonal members plus magnetic field were chosen as perturbation and formulate for transition frequencies, estimations of fine structure and g-factors parameters in the given approximation have been obtained

  1. Frustration under pressure: Exotic magnetism in new pyrochlore oxides

    Directory of Open Access Journals (Sweden)

    C. R. Wiebe

    2015-04-01

    Full Text Available Pyrochlore structures, of chemical formula A2B2O7 (A and B are typically trivalent and tetravalent ions, respectively, have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for new pyrochlore materials, it is the RA/RB cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ RA/RB ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure, metastable pyrochlores exist up to RA/RB = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.

  2. Processing glass-pyrochlore composites for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R.

    2005-01-01

    Glass matrix composites have been developed as alternative materials to immobilize nuclear solid waste, in particular actinides. These composites are made of soda borosilicate glass matrix, into which particles of lanthanum zirconate pyrochlore are encapsulated in concentrations of 30 vol.%. The fabrication process involves powder mixing followed by hot-pressing. At the relatively low processing temperature used (620 deg. C), the pyrochlore crystalline structure of the zirconate, which is relevant for containment of radioactive nuclei, remains unaltered. The microstructure of the composites exhibits a homogeneous distribution of isolated pyrochlore particles in the glass matrix and strong bonding at the matrix-particle interfaces. Hot-pressing was found to lead to high densification (95% th.d.) of the composite. The materials are characterized by relatively high elastic modulus, flexural strength, hardness and fracture toughness. A numerical approach using a microstructure-based finite element solver was used in order to investigate the mechanical properties of the composites

  3. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  4. The fluorite-pyrochlore transformation of Ho2-yNdyZr2O7

    International Nuclear Information System (INIS)

    Clements, Richard; Hester, James R.; Kennedy, Brendan J.; Ling, Chris D.; Stampfl, Anton P.J.

    2011-01-01

    Twelve members of the Ho 2-y Nd y Zr 2 O 7 series, prepared using conventional solid state methods, have been characterised by neutron powder diffraction. Ho 2 Zr 2 O 7 has a defect fluorite structure whereas Nd 2 Zr 2 O 7 is found to adopt the ordered pyrochlore structure with the composition induced fluorite-pyrochlore transformation occurring near y=1. Rietveld analysis on the neutron data for all the compositions reveals an increase in lattice parameter as a function of y across the entire series, with a small discontinuity associated with the transformation. The neutron profile results suggest that domains of pyrochlore-type initially begin to form before crystallising into a separate phase, and therefore that anion and cation ordering processes are distinct. There is a strong correlation between the extent of disorder in the anion sublattice and the x-parameter of 48f oxygen. These results point the way to a better understanding of the stability observed in pyrochlore structures. - Graphical abstract: Neutron diffraction profiles for Nd 2-y Ho y Zr 2 O 7 type oxides reveal details of the transformation from the ordered pyrochlore structure (y=0) to the disordered fluorite structure (y=2). Highlights: → Structures of twelve members of the Ho 2-y Nd y Zr 2 O 7 series studied using neutron powder diffraction. → Domains of pyrochlore-type materials form at low doping levels. → Higher doping stabilises the pyrochlore. → Anion and cation ordering processes are distinct.

  5. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  6. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Mihailova, Boriana [Hamburg Univ. (Germany). Dept. of Earth Sciences; Beirau, Tobias [Hamburg Univ. (Germany). Dept. of Earth Sciences; Stanford Univ., CA (United States). Dept. of Geological Sciences; and others

    2017-03-01

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1.10{sup 18} α-decay events per gram (dpg)], Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28%, Blue River 85% and Miass 100% according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (M. T. Vandenborre, E. Husson, Comparison of the force field in various pyrochlore families. I. The A{sub 2}B{sub 2}O{sub 7} oxides. J. Solid State Chem. 1983, 50, 362, S. Moll, G. Sattonnay, L. Thome, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W. J. Weber, Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes. Phys. Rev. 2011, 84, 64115.), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} divided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlore (Miass) shows an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K, while the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K

  7. Quantum Spin Ice under a [111] Magnetic Field: From Pyrochlore to Kagome.

    Science.gov (United States)

    Bojesen, Troels Arnfred; Onoda, Shigeki

    2017-12-01

    Quantum spin ice, modeled for magnetic rare-earth pyrochlores, has attracted great interest for hosting a U(1) quantum spin liquid, which involves spin-ice monopoles as gapped deconfined spinons, as well as gapless excitations analogous to photons. However, the global phase diagram under a [111] magnetic field remains open. Here we uncover by means of unbiased quantum Monte Carlo simulations that a supersolid of monopoles, showing both a superfluidity and a partial ionization, intervenes the kagome spin ice and a fully ionized monopole insulator, in contrast to classical spin ice where a direct discontinuous phase transition takes place. We also show that on cooling, kagome spin ice evolves towards a valence-bond solid similar to what appears in the associated kagome lattice model [S. V. Isakov et al., Phys. Rev. Lett. 97, 147202 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.147202]. Possible relevance to experiments is discussed.

  8. Estimation of solid earth tidal parameters and FCN with VLBI

    International Nuclear Information System (INIS)

    Krásná, H.

    2012-01-01

    Measurements of a space-geodetic technique VLBI (Very Long Baseline Interferometry) are influenced by a variety of processes which have to be modelled and put as a priori information into the analysis of the space-geodetic data. The increasing accuracy of the VLBI measurements allows access to these parameters and provides possibilities to validate them directly from the measured data. The gravitational attraction of the Moon and the Sun causes deformation of the Earth's surface which can reach several decimetres in radial direction during a day. The displacement is a function of the so-called Love and Shida numbers. Due to the present accuracy of the VLBI measurements the parameters have to be specified as complex numbers, where the imaginary parts describe the anelasticity of the Earth's mantle. Moreover, it is necessary to distinguish between the single tides within the various frequency bands. In this thesis, complex Love and Shida numbers of twelve diurnal and five long-period tides included in the solid Earth tidal displacement modelling are estimated directly from the 27 years of VLBI measurements (1984.0 - 2011.0). In this work, the period of the Free Core Nutation (FCN) is estimated which shows up in the frequency dependent solid Earth tidal displacement as well as in a nutation model describing the motion of the Earth's axis in space. The FCN period in both models is treated as a single parameter and it is estimated in a rigorous global adjustment of the VLBI data. The obtained value of -431.18 ± 0.10 sidereal days differs slightly from the conventional value -431.39 sidereal days given in IERS Conventions 2010. An empirical FCN model based on variable amplitude and phase is determined, whose parameters are estimated in yearly steps directly within VLBI global solutions. (author) [de

  9. Theoretical and experimental investigations of frustrated pyrochlore magnets

    International Nuclear Information System (INIS)

    Champion, John Dickon Mathison

    2001-01-01

    This thesis describes the investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Monte Carlo simulations and analytical calculations have been performed on a pyrochlore ferromagnet with local (111) easy-axis anisotropy related to the problem of 'spin ice'. The anisotropy-temperature-magnetic field phase diagram was determined. It contained a tricritical point as well as features related to some real ferroelectrics. A pyrochlore antiferromagnet with local (111) easy-plane anisotropy was studied by Monte Carlo simulation. A general expression for its degenerate ground states was discovered and normal- modes out of the ground states were calculated. Both systems are frustrated yet have a long-range ordered state at low temperature. The degeneracy lifting observed is discussed as well as the reasons for its presence. The rare-earth titanate series Ln 2 Ti 2 O 7 (Ln = rare earth), crystallizes in the Fd3-barm space group, with the magnetic ions situated on the 16c sites which constitute the pyrochlore lattice. Crystal-field effects are known to play a significant role in the frustration observed in these compounds. Powder neutron diffraction was performed on gadolinium and erbium titanate. Both systems are frustrated antiferromagnets yet show long-range magnetic order at ∼ 1 K and ∼ 1.2 K respectively. The magnetic structures of both these compounds have been determined by powder neutron diffraction techniques and related to other theoretical results as well as the theoretical results of the author. Further neutron scattering experiments on the 'spin ice' materials Ho 2 Ti 2 O 7 and Dy 2 Ti 2 O 7 are also described. (author)

  10. Intricate disorder in defect fluorite/pyrochlore: a concord of chemistry and crystallography

    Czech Academy of Sciences Publication Activity Database

    Simeone, D.; Thorogood, G.J.; Huo, D.; Luneville, L.; Baldinozzi, G.; Petříček, Václav; Porcher, F.; Ribis, J.; Mazerolles, L.; Largeau, L.; Berar, J.F.; Surble, S.

    2017-01-01

    Roč. 7, Jun (2017), 1-7, č. článku 3727. ISSN 2045-2322 Institutional support: RVO:68378271 Keywords : disorder * atomic scale * metallic allys * oxides * fluorite/pyrochlore Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.259, year: 2016

  11. Uncertainty analysis of atmospheric friction torque on the solid Earth

    Directory of Open Access Journals (Sweden)

    Haoming Yan

    2016-05-01

    Full Text Available The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF, National Centers for Environmental Prediction (NCEP climate models and QSCAT satellite observations are analyzed by using frequency-wavenumber spectrum method. The spectrum of two climate models, i.e., ECMWF and NCEP, is similar for both 10 m wind data and model output wind stress data, which indicates that both the climate models capture the key feature of wind stress. While the QSCAT wind stress data shows the similar characteristics with the two climate models in both spectrum domain and the spatial distribution, but with a factor of approximately 1.25 times larger than that of climate models in energy. These differences show the uncertainty in the different wind stress products, which inevitably cause the atmospheric friction torque uncertainties on solid Earth with a 60% departure in annual amplitude, and furtherly affect the precise estimation of the Earth's rotation.

  12. Application of TOPEX Altimetry for Solid Earth Deformation Studies

    Directory of Open Access Journals (Sweden)

    Hyongki Lee

    2008-01-01

    Full Text Available This study demonstrates the use of satellite radar altimetry to detect solid Earth deformation signals such as Glacial Isostatic Adjustment (GIA. Our study region covers moderately flat land surfaces seasonally covered by snow/ice/vegetation. The maximum solid Earth uplift of ~10 mm yr-1 is primarily due to the incomplete glacial isostatic rebound that occurs around Hudson Bay, North America. We use decadal (1992 - 2002 surface height measurements from TOPEX/POSEIDON radar altimetry to generate height changes time series for 12 selected locations in the study region. Due to the seasonally varying surface characteristics, we first perform radar waveform shape classification and have found that most of the waveforms are quasi-diffuse during winter/spring and specular during summer/fall. As a result, we used the NASA £]-retracker for the quasi-diffuse waveforms and the Offset Center of Gravity or the threshold retracker for the specular waveforms, to generate the surface height time series. The TOPEX height change time series exhibit coherent seasonal signals (higher amplitude during the winter and lower amplitude during the summer, and the estimated deformation rates agree qualitatively well with GPS vertical velocities, and with altimeter/tide gauge combined vertical velocities around the Great Lakes. The TOPEX observations also agree well with various GIA model predictions, especially with the ICE-5G (VM2 model with differences at 0.2 ¡_ 1.4 mm yr-1, indicating that TOPEX has indeed observed solid Earth deformation signals manifested as crustal uplift over the former Laurentide Ice Sheet region.

  13. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  14. ForM@Ter: a solid Earth thematic pole

    Science.gov (United States)

    Ostanciaux, Emilie; Jamet, Olivier; Mandea, Mioara; Diament, Michel

    2014-05-01

    Over the last years, several notable initiatives have been developed to provide Solid Earth sciences with an efficient research e-infrastructure. The EPOS project (European Plate Observing System) was included in the EFSRI roadmap in 2008. The 7th European frame program funded an e-science environment such as the Virtual Earthquake and Seismology Research Community in Europe (VERCE). GEO supports the development of the Geohazard SuperSites and Natural Laboratories portal, while the ESA SSEP project (SuperSites exploitation plateform) is developing as an Helix Nebula usecase. Meanwhile, operational use of space data for emergency management is in constant progress, within the Copernicus services. This rich activity is still leaving some gaps between the data availability and its scientific use, either for technical reasons (big data issues) or due to the need for a better support in term of expert knowledge on the data, of software availability, or of data cost. French infrastructures for data distribution are organized around National Observatory Services (in situ data), scientific services participating to the International association of geodesy data centres and wider research infrastructures such as the Réseau Sismologique et géodésique Français (RESIF) that is contributing to EPOS. The need for thematic cooperative platforms has been underlined over tha last years. In 2009, after a scientific prospective of the French national space agency (CNES) it becomes clear the urgent need to create thematic centres designed to federate the scientific community of Earth observation. Four thematic data centres are currently developing in France in the field of ocean , atmosphere, critical zone and solid Earth sciences. For Solid Earth research, the project - named ForM@Ter - was initiated at the beginning of 2012 to design, with the scientific community, the perimeter, structure and functions of such a thematic centre. It was launched by the CNES and the National

  15. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  16. Earthquake swarms and the semidiurnal solid earth tide

    Energy Technology Data Exchange (ETDEWEB)

    Klein, F W

    1976-01-01

    Several correlations between peak earthquake activity during swarms and the phase and stress orientation of the calculated solid earth tide are described. The events correlating with the tide are clusters of swarm earthquakes. Swarm clusters from many sequences recorded over several years are used. Significant tidal correlations (which have less than a 5% chance of being observed if earthquakes were random) are found in the Reykjanes Peninsula in Iceland, the central Mid-Atlantic Ridge, the Imperial Valley and northern Gulf of California, and larger (m/sub b/ greater than or equal to 5.0) aftershocks of the 1965 Rat Islands earthquake. In addition, sets of larger single earthquakes on Atlantic and north-east Pacific fracture zones are significantly correlated with the calculated solid tide. No tidal correlation, however, could be found for the Matsushiro Japan swarm of 1965 to 1967. The earthquake-tide correlations other than those of the Reykjanes Peninsula and Mid-Atlantic Ridge can be interpreted as triggering caused by enhancement of the tectonic stress by tidal stress, i.e. the alignment of fault and tidal principal stresses. All tidal correlations except in the Aleutians are associated with oceanic rifts or their landward extensions. If lithospheric plates are decoupled at active rifts, then tidal stresses channeled along the lithospheric stress guide may be concentrated at ridge-type plate boundaries. Tidal triggering of earthquakes at rifts may reflect this possible amplification of tidal strains in the weakened lithosphere at ridges. 25 figures, 2 tables.

  17. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    Science.gov (United States)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  18. Dielectric properties and microstructural characterization of cubic pyrochlored bismuth magnesium niobates

    KAUST Repository

    Zhang, Yuan

    2013-08-06

    Cubic bismuth pyrochlores in the Bi2O3 Bi 2O3-MgO-Nb2O5 Nb2O 5 system have been investigated as promising dielectric materials due to their high dielectric constant and low dielectric loss. Here, we report on the dielectric properties and microstructures of cubic pyrochlored Bi 1.5 MgNb 1.5 O 7 Bi1.5MgNb1.5O7 (BMN) ceramic samples synthesized via solid-state reactions. The dielectric constant (measured at 1 MHz) was measured to be ∼ 120 ∼120 at room temperature, and the dielectric loss was as low as 0.001. X-ray diffraction patterns demonstrated that the BMN samples had a cubic pyrochlored structure, which was also confirmed by selected area electron diffraction (SAED) patterns. Raman spectrum revealed more than six vibrational models predicted for the ideal pyrochlore structure, indicating additional atomic displacements of the A and O′ O\\' sites from the ideal atomic positions in the BMN samples. Structural modulations of the pyrochlore structure along the [110] and [121] directions were observed in SAED patterns and high-resolution transmission electron microscopy (HR-TEM) images. In addition, HR-TEM images also revealed that the grain boundaries (GBs) in the BMN samples were much clean, and no segregation or impure phase was observed forming at GBs. The high dielectric constants in the BMN samples were ascribed to the long-range ordered pyrochlore structures since the electric dipoles formed at the superstructural direction could be enhanced. The low dielectric loss was attributed to the existence of noncontaminated GBs in the BMN ceramics. © 2013 Springer-Verlag Berlin Heidelberg.

  19. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Science.gov (United States)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  20. George E. Valley, Jr. Prize Talk: Quantum Frustrated Magnetism and its Expression in the Ground State Selection of Pyrochlore Magnets

    Science.gov (United States)

    Ross, Kate

    In the search for novel quantum states of matter, such as highly entangled Quantum Spin Liquids, ``geometrically frustrated'' magnetic lattices are essential for suppressing conventional magnetic order. In three dimensions, the pyrochlore lattice is the canonical frustrated geometry. Magnetic materials with pyrochlore structures have the potential to realize unusual phases such as ``quantum spin ice'', which is predicted to host emergent magnetic monopoles, electrons, and photons as its fundamental excitations. Even in pyrochlores that form long range ordered phases, this often occurs through unusual routes such as ``order by disorder'', in which the fluctuation spectrum dictates the preferred ordered state. The rare earth-based pyrochlore series R2Ti2O7 provides a fascinating variety of magnetic ground states. I will introduce the general anisotropic interaction Hamiltonian that has been successfully used to describe several materials in this series. Using inelastic neutron scattering, the relevant anisotropic interaction strengths can be extracted quantitatively. I will discuss this approach, and its application to two rare earth pyrochlore materials, Er2Ti2O7 and Yb2Ti<2O7, whose ground state properties have long been enigmatic. From these studies, ErTi2O7 and Yb2Ti2O7 have been suggested to be realizations of "quantum order by disorder" and "quantum spin ice", respectively. This research was supported by NSERC of Canada and the National Science Foundation.

  1. Aspects of reduction clorination of pyrochlore concentrates

    International Nuclear Information System (INIS)

    Gameiro, D.H.; Brocchi, E.A.

    1985-01-01

    Reduction chlorination experiments were carried out with two different Brazilian pyrochlore concentrates in order to evaluate the effects of some variables on the extent of niobium pentoxide gaseification as well as to compare the behavior of concentrate under the same chlorination conditions. The pyrochlore concentrates from Araxa (MG) and Catalao (GO), Brazil, were submitted to X ray diffraction and X ray fluorescence analysis for determining their chemical compositions. Kinetic curves were obtained with the main variables being temperature and percentage of reducing agent. Analysis of the condensed material in terms of Nb 2 O 5 indicated that chlorination can be used to produce niobium pentoxide. (Author) [pt

  2. Plan for Living on a Restless Planet Sets NASA's Solid Earth Agenda

    Science.gov (United States)

    Solomon, Sean C.; Baker, Victor R.; Bloxham, Jeremy; Booth, Jeffrey; Donnellan, Andrea; Elachi, Charles; Evans, Diane; Rignot, Eric; Burbank, Douglas; Chao, Benjamin F.; Chave, Alan; Gillespie, Alan; Herring, Thomas; Jeanloz, Raymond; LaBrecque, John; Minster, Bernard; Pittman, Walter C., III; Simons, Mark; Turcotte, Donald L.; Zoback, Mary Lou C.

    What are the most important challenges facing solid Earth science today and over the next two decades? And what is the best approach for NASA, in partnership with other agencies, to address those challenges? A new report, Living on a Restless Planet, provides a blueprint for answering these questions. The top priority for a new spacecraft mission in the area of solid Earth science over the next 5 years, according to this report, is a satellite dedicated to Interferometric Synthetic Aperture Radar (InSAR). At the request of NASA, the Solid Earth Science Working Group (SESWG) developed a strategy for the highest priority objectives in solid Earth science for the space agency over the next 25 years. The strategy addresses six challenges that are of fundamental scientific importance, have strong implications for society, and are amenable to substantial progress through a concerted series of scientific observations from space.

  3. Zero drift and solid Earth tide extracted from relative gravimetric data with principal component analysis

    OpenAIRE

    Hongjuan Yu; Jinyun Guo; Jiulong Li; Dapeng Mu; Qiaoli Kong

    2015-01-01

    Zero drift and solid Earth tide corrections to static relative gravimetric data cannot be ignored. In this paper, a new principal component analysis (PCA) algorithm is presented to extract the zero drift and the solid Earth tide, as signals, from static relative gravimetric data assuming that the components contained in the relative gravimetric data are uncorrelated. Static relative gravity observations from Aug. 15 to Aug. 23, 2014 are used as statistical variables to separate the signal and...

  4. Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Park, Hwan Seo; Kim, Hwan Young; Lee, Han Soo; Kim, In Tae

    2010-01-01

    In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare earth oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix (ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilized with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

  5. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    Science.gov (United States)

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  6. Weyl magnons in breathing pyrochlore antiferromagnets

    Science.gov (United States)

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  7. Use of satellite gravimetry for estimating recent solid Earth changes

    Science.gov (United States)

    Ramillien, Guillaume

    2014-05-01

    Since its launch in March 2002, the Gravity Recovery & Climate Experiment (GRACE) satellite mission provides a global mapping of the time variations of the Earth's gravity field for the recent period. Official centers such as Center of Space Research (CSR) in Austin, TX, Jet Propulsion Laboratory (JPL) in Pasadena, CA and GeoForschungZentrum (GFZ) in Potsdam, Germany, provide 10-day and monthly solutions of Stokes coefficients (i.e., spherical harmonic coefficients of the geopotential) up to harmonic degree 50-60 (or, equivalently, a spatial resolution of 300-400 km) for the timespan 2002-2012. Tiny variations of the gravity measured by GRACE are mainly due to the total water storage change on continents. Therefore, these solutions of water mass can be used to correct other datasets, and then isolate the gravity signatures of large and sudden earthquakes, as well as of the continuous Post Glacial Rebound (PGR) rate. As these measured seasonal variations of continental hydrology represent the variations of water mass load, it is also possible to derive the deformation of the terrestrial surface associated to this varying load using Love numbers. These latter numbers are obtained by assuming an elastic Earth model. In the center of the Amazon basin, the seasonal displacements of the surface due to hydrology reach amplitudes of a few centimeters typically. Time-series of GRACE-based radial displacement of the surface can be analysed and compared with independent local GPS records for validation.

  8. Solid state chemistry of rare earth oxides. Final report, September 1, 1950--July 31, 1977

    International Nuclear Information System (INIS)

    Eyring, L.

    1977-07-01

    Work under Contract E(11-1)-1109 and its antecedents has been primarily for the purpose of obtaining detailed thermodynamic, kinetic and structural information on the complex rare earth oxides of praseodymium and terbium. These systems exhibit homologous series of ordered phases, order-disorder transformations, wide-range nonstoichiometric phases, chemical hysteresis in two-phase regions and many other solid state reaction phenomena. Fluorite-related materials of importance to ERDA occur as nuclear fuels, radiation power sources, insulators and solid electrolytes. The rare earth oxides serve directly as model systems for such similar materials and, in a more general sense, they serve as models of solids in general since they exhibit nearly the full range of solid state properties

  9. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  10. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores.

    Science.gov (United States)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-07

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ[over ¯] of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  11. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  12. High-pressure synthesis and characterizations of the R2Pt2O7 pyrochlores.

    Science.gov (United States)

    Cai, Yunqi; Cui, Qi; Cheng, Jinguang; Dun, Zhiling; Zhou, Haidong; Ma, Jie; Cruz, C. Dela; Yan, Jiaqiang; Li, Xiang; Zhou, Jianshi

    Pyrochlore R2B2O7 where R3 + stands for rear-earth ion and B4 + for a nonmagnetic cation such as Sn4 +or Ti4 +consist of an important family of geometrically frustrated magnets, which have been the focus of extensive investigations over last decades. To further enlarge the R2B2O7, we have chosen to stabilize the Pt-based cubic pyrochlores under HPHT conditions for two reasons: (1) Pt4 + is in a low-spin state which ionic radius is located in between Ti4 + (0.605\\x85) and Sn4 + (0.69\\x85), and (2) Pt4 + has a spatially much more extended 5d orbitals and thus enhanced Pt 5d-O 2p hybridizations that might modify the local anisotropic exchange interactions. Such an effect has never been taken into account in the previous studies. In this work, we will present the detailed characterizations on the pyrochlores R2Pt2O7 obtained under HPHT conditions. This work is supported by the National Science Foundation of China (Grant Nos.11304371, 11574377), part of the work was supported by the CEM, and NSF MRSEC, under Grant DMR-1420451, and Grant No. NSF-DMR-1350002.

  13. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    Science.gov (United States)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  14. Recycling of rare earths from Hg-containing fluorescent lamp scraps by solid state chlorination

    International Nuclear Information System (INIS)

    Lorenz, Tom; Froehlich, Peter; Bertau, Martin; Golon, Katja

    2015-01-01

    Solid state chlorination with NH 4 Cl comprises a method for rare earth recycling apart from pyro- or hydrometallurgical strategies. The examined partially Hg-containing fluorescent lamp scraps are rich in rare earths like La, Ce, Tb and Gd, but especially in Y and Eu. By mixing with NH 4 Cl and heating up to NH 4 Cl decomposition temperature in a sublimation reactor, Y and Eu could be transferred selectively into their respective metal chlorides with high yields. The yield and selectivity depend on temperature and the ratio of NH 4 Cl to fluorescent lamp scraps, which were varied systematically.

  15. Fluorescence line-narrowing studies of rare earths in disordered solids

    International Nuclear Information System (INIS)

    Hall, D.W.

    1982-01-01

    This dissertation is made up of two experimental studies dealing with apparently diverse topics within the subject of rare earths (RE) in solids. The first study, described in Part II, concerns the vibrations of a disordered host material about an optically active rare-earth ion as manifested by vibrationally-assisted-electronic, or vibronic transitions. Part III of the dissertation describes an investigation of the influence of site anisotropy on the purely electronic, laser transition of Nd 3+ in glass. These two studies are bound together by the common experimental technique of laser-induced fluorescence line narrowing (FLN). By exciting fluorescence with monochromatic light of well-characterized polarization, one may select and observe the response of a single subset of the optically active ions and obtain information that is usually masked by the inhomogeneous nature of disordered solids

  16. Technology and human purpose: the problem of solids transport on the Earth's surface

    Science.gov (United States)

    Haff, P. K.

    2012-11-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property

  17. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  18. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  19. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  20. The European Plate Observing System (EPOS) Services for Solid Earth Science

    Science.gov (United States)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  1. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Finkeldei, Sarah Charlotte

    2015-07-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO{sub 2} based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO{sub 2} based pyrochlores. ZrO{sub 2} - Nd{sub 2}O{sub 3} pellets

  2. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    International Nuclear Information System (INIS)

    Finkeldei, Sarah Charlotte

    2015-01-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO 2 based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO 2 based pyrochlores. ZrO 2 - Nd 2 O 3 pellets with pyrochlore and defect

  3. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  4. A new research project on the interaction of the solid Earth and the Antarctic Ice Sheet

    Science.gov (United States)

    Fukuda, Y.; Nishijima, J.; Kazama, T.; Nakamura, K.; Doi, K.; Suganuma, Y.; Okuno, J.; Araya, A.; Kaneda, H.; Aoyama, Y.

    2017-12-01

    A new research project of "Grant-in-Aid for Scientific Research on Innovative Areas" funded by JSPS (Japan Society for the Promotion of Science) has recently been launched. The title of the project is "Giant reservoirs of heat/water/material: Global environmental changes driven by Southern Ocean and Antarctic Ice Sheet", and as a five years project, is aiming to establish a new research area for Antarctic environmental system science. The project consists of 7 research topics, including Antarctic ice sheet and Southern ocean sciences, new observation methodology, modeling and other interdisciplinary topics, and we are involved in the topic A02-2, "Interaction of the solid Earth and the Antarctic Ice Sheet". The Antarctic ice sheet, which relates to the global climate changes through the sea level rise and ocean circulation, is an essential element of the Earth system for predicting the future environment changes. Thus many studies of the ice sheet changes have been conducted by means of geomorphological, geological, geodetic surveys, as well as satellite gravimetry and satellite altimetry. For these studies, one of the largest uncertainties is the effects of GIA. Therefore, GIA as a key to investigate the interaction between the solid Earth and the ice sheet changes, we plan to conduct geomorphological, geological and geodetic surveys in the inland mountain areas and the coastal areas including the surrounding areas of a Japanese station Syowa in East Antarctica, where the in-situ data for constraining GIA models are very few. Combining these new observations with other in-site data, various satellite data and numerical modeling, we aim to estimating a precise GIA model, constructing a reliable ice melting history after the last glacial maximum and obtaining the viscoelastic structure of the Earth's interior. In the presentation, we also show the five years research plans as well. This study was partially supported by JSPS KAKENHI Grant No. 17H06321.

  5. Making interdisciplinary solid Earth modeling and analysis tools accessible in a diverse undergraduate and graduate classroom

    Science.gov (United States)

    Becker, T. W.

    2011-12-01

    I present results from ongoing, NSF-CAREER funded educational and research efforts that center around making numerical tools in seismology and geodynamics more accessible to a broader audience. The goal is not only to train students in quantitative, interdisciplinary research, but also to make methods more easily accessible to practitioners across disciplines. I describe the two main efforts that were funded, the Solid Earth Research and Teaching Environment (SEATREE, geosys.usc.edu/projects/seatree/), and a new Numerical Methods class. SEATREE is a modular and user-friendly software framework to facilitate using solid Earth research tools in the undergraduate and graduate classroom and for interdisciplinary, scientific collaboration. We use only open-source software, and most programming is done in the Python computer language. We strive to make use of modern software design and development concepts while remaining compatible with traditional scientific coding and existing, legacy software. Our goals are to provide a fully contained, yet transparent package that lets users operate in an easy, graphically supported "black box" mode, while also allowing to look under the hood, for example to conduct numerous forward models to explore parameter space. SEATREE currently has several implemented modules, including on global mantle flow, 2D phase velocity tomography, and 2D mantle convection and was used at the University of Southern California, Los Angeles, and at a 2010 CIDER summer school tutorial. SEATREE was developed in collaboration with engineering and computer science undergraduate students, some of which have gone on to work in Earth Science projects. In the long run, we envision SEATREE to contribute to new ways of sharing scientific research, and making (numerical) experiments truly reproducible again. The other project is a set of lecture notes and Matlab exercises on Numerical Methods in solid Earth, focusing on finite difference and element methods. The

  6. ForM@Ter: a French Solid Earth Research Infrastructure Project

    Science.gov (United States)

    Mandea, M.; Diament, M.; Jamet, O.; Deschamps-Ostanciaux, E.

    2017-12-01

    Recently, some noteworthy initiatives to develop efficient research e-infrastructures for the study of the Earth's system have been set up. However, some gaps between the data availability and their scientific use still exists, either because technical reasons (big data issues) or because of the lack of a dedicated support in terms of expert knowledge of the data, software availability, or data cost. The need for thematic cooperative platforms has been underlined over the last years, as well as the need to create thematic centres designed to federate the scientific community of Earth's observation. Four thematic data centres have been developed in France, covering the domains of ocean, atmosphere, land, and solid Earth sciences. For the Solid Earth science community, a research infrastructure project named ForM@Ter was launched by the French Space Agency (CNES) and the National Centre for Scientific Research (CNRS), with the active participation of the National institute for geographical and forestry information (IGN). Currently, it relies on the contributions of scientists from more than 20 French Earth science laboratories.Preliminary analysis have showed that a focus on the determination of the shape and movements of the Earth surface (ForM@Ter: Formes et Mouvements de la Terre) can federate a wide variety of scientific areas (earthquake cycle, tectonics, morphogenesis, volcanism, erosion dynamics, mantle rheology, geodesy) and offers many interfaces with other geoscience domains, such as glaciology or snow evolution. This choice motivates the design of an ambitious data distribution scheme, including a wide variety of sources - optical imagery, SAR, GNSS, gravity, satellite altimetry data, in situ observations (inclinometers, seismometers, etc.) - as well as a wide variety of processing techniques. In the evolving context of the current and forthcoming national and international e-infrastructures, the challenge of the project is to design a non

  7. Incorporation of uranium in pyrochlore oxides and pressure-induced phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.X., E-mail: zhangfx@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Lang, M.; Tracy, C.; Ewing, R.C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Gregg, D.J.; Lumpkin, G.R. [Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC 2232, NSW (Australia)

    2014-11-15

    Uranium-doped gadolinium zirconates with pyrochlore structure were studied at ambient and high-pressure conditions up to 40 GPa. The bonding environment of uranium in the structure was determined by x-ray photoelectron and Raman spectroscopies and x-ray diffraction. The uranium valence for samples prepared in air is mainly U{sup 6+}, but U{sup 4+} is present in pyrochlores fabricated in an argon atmosphere. Rietveld refinement of the XRD pattern suggests that uranium ions in pyrochlores are on the 16d site in 6-fold coordination with oxygen. At pressures greater than 22 GPa, the pyrochlore structure transformed to a cotunnite-type phase. The cotunnite high-pressure phase transformed to a defect fluorite structure on the release of pressure. - Graphical abstract: In U-bearing pyrochlore, U ions mainly occupy the 16d site and replace the smaller Zr{sup 4+}, part of the oxygen will occupy the 8b site, which is empty to most pyrochlores. At pressure of 22 GPa, the pyrochlore lattice is not stable and transforms to a cotunnite-type structure. The high-pressure structure is not stable and transform to a fluorite or back to the pyrochlore structure when pressure is released. - Highlights: • We found that U ions mainly occupy the smaller cation site in U-bearing pyrochlore. • Pyrochlore structure is not stable at pressure of more than 20 GPa. • The quenched sample has a pyrochlore or a disordered fluorite structure.

  8. SESAR: Addressing the need for unique sample identification in the Solid Earth Sciences

    Science.gov (United States)

    Lehnert, K. A.; Goldstein, S. L.; Lenhardt, C.; Vinayagamoorthy, S.

    2004-12-01

    The study of solid earth samples is key to our knowledge of Earth's dynamical systems and evolution. The data generated provide the basis for models and hypotheses in all disciplines of the Geosciences from tectonics to magmatic processes to mantle dynamics to paleoclimate research. Sample-based data are diverse ranging from major and trace element abundances, radiogenic and stable isotope ratios of rocks, minerals, fluid or melt inclusions, to age determinations and descriptions of lithology, texture, mineral or fossil content, stratigraphic context, physical properties. The usefulness of these data is critically dependent on their integration as a coherent data set for each sample. If different data sets for the same sample cannot be combined because the sample cannot be unambiguously recognized, valuable information is lost. The ambiguous naming of samples has been a major problem in the geosciences. Different samples are often given identical names, and there is a tendency for different people analyzing the same sample to rename it in their publications according to local conventions. This situation has generated significant confusion, with samples often losing their "history", making it difficult or impossible to link available data. This has become most evident through the compilation of geochemical data in relational databases such as PetDB, NAVDAT, and GEOROC. While the relational data structure allows linking of disparate data for samples published in different references, linkages cannot be established due to ambiguous sample names. SESAR is a response to this problem of ambiguous naming of samples. SESAR will create a common clearinghouse that provides a centralized registry of sample identifiers, to avoid ambiguity, to systematize sample designation, and ensure that all information associated with a sample would in fact be unique. The project will build a web-based digital registry for solid earth samples that will provide for the first time a way to

  9. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Beirau, Tobias; Mihailova, Boriana; Groat, Lee A.; Chudy, Thomas; Shelyug, Anna; Navrotsky, Alexandra; Ewing, Rodney C.; Schlüter, Jochen; Škoda, Radek; Bismayer, Ulrich

    2017-01-01

    Abstract

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10

  10. Structural disorder and transport in ternary oxides with the pyrochlore structure. Final report; FINAL

    International Nuclear Information System (INIS)

    Tuller, Harry L.

    2001-01-01

    This research program has focused on the structure-electrical property relations in families of pyrochlore compounds which exhibit, on the one hand, controlled levels of structural disorder and on the other, controlled levels of ionic and electronic conductivities. Models have been developed to evaluate the often complex defect chemistry of these systems. Much progress has been made in extracting key thermodynamic and kinetic data. From a technological standpoint, novel solid electrolytes and compatible mixed conducting electrodes have been identified and the concept of the single phase monolithic fuel cell design has been demonstrated and patented. Related work on lanthanum gallate-based perovskites has shown even more promising results for use of such materials in the monolithic fuel cell structures. Recent work on the Bi(sub 3)Zn(sub 2)Sb(sub 3)O(sub 14) Pyrochlore, a phase found at grain boundaries in varistors, was also completed. This material was found to be a mixed ionic-electronic conductor with interesting implications for grain boundary equilibration kinetics in SnO-base varistor materials. Three of the most recent projects are summarized in this paper. The results of work on the perovskites are reported in recent publications

  11. Distribution of rare-earths in solid solution crandalita- goyazita of Sapucaia (Bonito-Para)

    International Nuclear Information System (INIS)

    Costa, M.L. da; Melo Costa, W.A. de

    1987-01-01

    The Crandallite are predominant in the lateritic phosphates of Sapucaia, in the form of the solid solution Crandallite (Cn)- Goyazite (Gz)-Florencite (Fl). The Crandallite-Goyazite is predominant, where the maximum proportion of Florencite is Cn 60 Cz 34.8 Fl 5.2 - This proportion of Florencite is relatively high for laterites, and for this case having up to 1,374% weight of TR 2 O 3 in the total sample. The light rare elements are predominant over the heavy ores, and are illustrated in the distribution curve normalized for the chondrites. This curve is partially comparable with the curve for Apatite presents slight negative anomaly for the element Europium, and slight positive anomaly for The elements Thulium. The geochemical caracteristics for the rare earths in this group allow the prediction for the original rock for the laterites. (author) [pt

  12. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Pollard, David; Klemann, Volker

    2016-04-01

    The West Antarctic Ice Sheet (WAIS) is assumed to be inherently unstable because it is grounded below sea level in a large part, where the bedrock deepens from today's grounding line towards the interior of the ice sheet. Idealized simulations have shown that bedrock uplift due to isostatic adjustment of the solid Earth and the associated sea-level fall may stop the retreat of such a marine-based ice sheet (Gomez et al., 2012). Here, we employ a coupled model for ice-sheet dynamics and solid-Earth dynamics, including a gravitationally consistent description of sea level, to investigate the influence of the viscoelastic Earth structure on the WAIS' future stability (Konrad et al. 2015). For this, we start from a steady-state condition for the Antarctic Ice Sheet close to present-day observations and apply atmospheric and oceanic forcing of different strength to initiate the retreat of the WAIS and investigate the effect of the viscoelastic deformation on the ice evolution for a range of solid-Earth rheologies. We find that the climate forcing is the primary control on the occurrence of the WAIS collapse. However, for moderate climate forcing and a weak solid-Earth rheology associated with the West Antarctic rift system (asthenosphere viscosities of 3x10^19 Pa s or less), we find that the combined effect of bedrock uplift and gravitational sea-level fall limits the retreat to the Amundsen Sea embayment on millennial time scales. In contrast, a stiffer Earth rheology yields a collapse under these conditions. Under a stronger climate forcing, weak Earth structures do not prevent the WAIS collapse; however, they produce a delay of up to 5000 years in comparison to a stiffer solid-Earth rheology. In an additional experiment, we test the impact of sea-level rise from an assumed fast deglaciation of the Greenland Ice Sheet. In cases when the climatic forcing is too weak to force WAIS collapse by itself, the additional rise in sea-level leads to disintegration of the WAIS

  13. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    Science.gov (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  14. The interaction of the cretaceous-tertiary extinction bolide with the atmosphere, ocean, and solid earth

    Science.gov (United States)

    Okeefe, J. D.; Ahrens, T. J.

    1981-01-01

    A number of investigations, including those reported by Orth et al. (1981), have provided physical evidence for the impact of an extraterrestrial object on earth 65 million years ago. This time corresponds to the end of the cretaceous period. This impact could, therefore, be responsible for the observed extinction of biological species at the end of the Mesozoic era. Among the species becoming extinct are found also flying and walking dinosaurs, which include all land animals that had masses greater than 25 kg. The present investigation is concerned with a study of the possibilities for the collision of earth with 10 km-size object, and the consequences produced by such a collision. It is found that the penetration of the atmosphere by the bolide creates a temporary hole in the atmosphere. The resulting flow fields can inject melt droplets and finely commuted solid particles into the atmosphere. Short-term effects of heating, followed by dust induced worldwide cooling, may provide several mechanisms for the observed extinction of the species.

  15. Elaboration of building materials from industrial waste from solid granular diatomaceous earth

    International Nuclear Information System (INIS)

    Del Angel S, A.

    2015-01-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  16. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    Science.gov (United States)

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-03-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  17. Conductivity and hydration trends in disordered fluorite and pyrochlore oxides: A study on lanthanum cerate–zirconate based compounds

    DEFF Research Database (Denmark)

    Besikiotis, Vasileios; Ricote, Sandrine; Jensen, Molly Hjorth

    2012-01-01

    In the present contribution we discuss the influence of order/disorder on the concentration and mobility of ionic charge carriers in undoped and acceptor (calcium) doped fluorite and pyrochlore structured lanthanum cerate–zirconate solid solutions: (La1−yCay)2(Ce1−xZrx)2O7−δ (y=0, 0.02, 0.10; x=0...... enthalpy becomes more exothermic with higher cerium content, i.e. with more disordered materials. The proton conductivity decreases upon acceptor substitution of La3+ with Ca2+ which is attributed to trapping of the charge carriers by the effectively negative acceptor....

  18. The Pilgram's Progress: Reflections on the journey building Australia's solid earth information infrastructure (Invited)

    Science.gov (United States)

    Woodcock, R.

    2013-12-01

    Australia's AuScope provides world class research infrastructure as a framework for understanding the structure and evolution of the Australian continent. Since it conception in 2005, Data Scientists have led the Grid and Interoperability component of AuScope. The AuScope Grid is responsible for the effective management, curation, preservation and analysis of earth science data across the many organisations collaborating in AuScope. During this journey much was learned about technology and architectures but even more about organisations and people, and the role of Data Scientists in the science ecosystem. With the AuScope Grid now in operation and resulting techniques and technologies now underpinning Australian Government initiatives in solid earth and environmental information, it is beneficial to reflect upon the journey and observe what has been learned in order to make data science routine. The role of the Data Scientist is a hybrid one, of not quite belonging and yet highly valued. With the skills to support domain scientists with data and computational needs and communicate across domains, yet not quite able to do the domain science itself. A bridge between two worlds, there is tremendous satisfaction from a job well done, but paradoxically it is also best when it is unnoticeable. In the years since AuScope started much has changed for the Data Scientist. Initially misunderstood, Data Scientists are now a recognisable part of the science landscape in Australia. Whilst the rewards and incentives are still catching up, there is wealth of knowledge on the technical and soft skills required and recognition of the need for Data Scientists. These will be shared from the AuScope journey so other pilgrims may progress well.

  19. Evolution of pyrochlore composition in a carbonatite complex of the Eastern European platform

    International Nuclear Information System (INIS)

    Nechelyastnov, G.N.; Pozharitskaya, L.K.

    1986-01-01

    X-ray microanalysis is used to study 29 pyrochlore group mineral samples of the East European platform carbonatite complex. Pyrochlore sequential evolution: frm high in tantalum and uranium, passing uranium poor in tantalum to low in tantalum and uranium and also an increased content of iron, manganese, magnesium and lead, is shown. Calcium, niobium, tantalum non-homogeneous distribution in pyrochlore grains is detected. Peculiarities of pyrochlore group mineral composition reflect the effect of specific geologic-structural position of the East European platform carbonatites high depth of formation and intensive development of deformations) on general evolution for pyrochlore of carbonatite complexes and related to it pyrochlore specific nature, in particular, high uranium and low niobium contents

  20. Inversion of Solid Earth's Varying Shape 2: Using Self-Consistency to Infer Static Ocean Topography

    Science.gov (United States)

    Blewitt, G.; Clarke, P. J.

    2002-12-01

    We have developed a spectral approach to invert for the redistribution of mass on the Earth's surface given precise global geodetic measurements of the solid Earth's geometrical shape. We used the elastic load Love number formalism to characterize the redistributed mass as a spherical harmonic expansion, truncated at some degree and order n. [Clarke and Blewitt, this meeting]. Here we incorporate the additional physical constraint that the sea surface in hydrostatic equilibrium corresponds to an equipotential surface, to infer the non-steric component of static ocean topography. Our model rigorously accounts for self-gravitation of the ocean, continental surface mass, and the deformed solid Earth, such that the sea surface adopts a new equipotential surface consistent with ocean-land mass exchange, deformation of the geoid, deformation of the sea floor, and the geographical configuration of the oceans and continents. We develop a self-consistent spectral inversion method to solve for the distribution of continental surface mass that would generate geographic variations in relative mean sea level such that the total (ocean plus continental) mass distribution agrees with the original geodetic estimates to degree and order n. We apply this theory to study the contribution of seasonal inter-hemispheric (degree-1) mass transfer to seasonal variation in static ocean topography, using a published empirical seasonal model for degree-1 surface loading derived using GPS coordinate time series from the global IGS network [Blewitt et al., Science 294, 2,342-2,345, 2001]. The resulting predictions of seasonal variations of relative sea level strongly depend on location, with peak variations ranging from 3 mm to 19 mm. The largest peak variations are predicted in mid-August around Antarctica and the southern hemisphere in general; the lowest variations are predicted in the northern hemisphere. Corresponding maximum continental loading occurs in Canada and Siberia at the water

  1. Process for treatment of pyrochlore concentrates

    International Nuclear Information System (INIS)

    Charlot, G.

    1976-01-01

    A continuous process is described for extraction of niobium, rare earths and thorium from niobium ore concentrates which includes digesting the ore with a hot solution containing 13 to 16 moles of sulphuric acid per liter, diluting the solution to a concentration of 10 to 13 moles of sulphuric acid per liter, separating the insolubles from the solution which includes alkaline earth sulphates and the sulphates of thorium and rare earths that are present, reducing titanium in solution to the trivalent state and diluting the solution to a concentration of 5 to 7 moles of sulphuric acid per liter, separating the precipitated niobium oxide and sulphates of thorium and rare earths, and then concentrating the resulting solution to the level desired for recycle to the digestion stage. 10 Claims, No Drawings

  2. A spin-frustrated cobalt(II) carbonate pyrochlore network.

    Science.gov (United States)

    Zheng, Yanzhen; Ellern, Arkady; Kögerler, Paul

    2011-11-01

    The crystal structure of the cobalt(II) carbonate-based compound cobalt(II) dicarbonate trisodium chloride, Co(CO(3))(2)Na(3)Cl, grown from a water-ethanol mixture, exhibits a three-dimensional network of corner-sharing {Co(4)(μ(3)-CO(3))(4)} tetrahedral building blocks, in which the Co(II) centres define a pyrochlore lattice and reside in a slightly distorted octahedral Co(O-CO(2))(6) environment. The space outside the hexagonal framework defined by these interlinked groups is occupied by Na(+) and Cl(-) ions. Antiferromagnetic coupling between adjacent Co(II) centres, mediated by carbonate bridges, results in geometric spin frustration which is typical for pyrochlore networks. The Co and Cl atoms reside on the special position 3, one Na atom on position 2 and a carbonate C atom on position 3.

  3. Soft modes in the easy plane pyrochlore antiferromagnet

    International Nuclear Information System (INIS)

    Champion, J D M; Holdsworth, P C W

    2004-01-01

    Thermal fluctuations lift the high ground state degeneracy of the classical nearest neighbour pyrochlore antiferromagnet, with easy plane anisotropy, giving a first-order phase transition to a long range ordered state. We show, from spin wave analysis and numerical simulation, that even below this transition a continuous manifold of states, of dimension N 2/3 , exist (N is the number of degrees of freedom). As the temperature goes to zero a further 'order by disorder' selection is made from this manifold. The pyrochlore antiferromagnet Er 2 Ti 2 O 7 is believed to have an easy plane anisotropy and is reported to have the same magnetic structure. This is perhaps surprising, given that the dipole interaction lifts the degeneracy of the classical model in favour of a different structure. We interpret our results in the light of these facts

  4. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  5. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  6. Multidisciplinary projects and investigations on the solid earth geophysics; Metodi e prospettive per una maggiore conoscenza della crosta terrestre

    Energy Technology Data Exchange (ETDEWEB)

    Slejko, D. [Consiglio Nazionale delle Ricerche, Gruppo Nazionale di Geofisica della Terra Solida, Trieste (Italy)

    2001-07-01

    Physical phenomena that occur in the solid part of the Earth are investigated by Solid Earth Geophysics together with problems related to the shape, location, and characteristics of the different parts that constitute the Earth. Repeated measurements lead the scientists to model the past evolution of the various processes as well as to forecast the future ones. Various disciplines refer to Solid Earth Geophysics, they are: Seismology, Gravimetry, Magnetometry, Geothermics, Geodesy, Geo electromagnetism, and Seismic Exploration. A special citation is due to Applied Geophysics, which are devoted to the identification of minerals, energetic and natural resources. The National Group of Solid Earth Geophysics was constituted in 1978 by CNR for promoting, developing, and coordinating researches related to Solid Earth Geophysics. The limited annual financial budget has conditioned the realisation of relevant multi-disciplinary projects. Nevertheless, important results were obtained in all different fields of Geophysics and were disseminated during the annual conference of the Group. A summary review of the main topics treated during the last conference is given here and some ideas for future research projects are presented. [Italian] La Geofisica della Terra Solida e' quella branca delle scienze e delle tecnologie che prende in considerazione dei fenomeni connessi con le caratteristiche fisiche della parte solida della Terra. La complessita' della costituzione della Terra e della sua evoluzione nel tempo implica che vengano prese in considerazione tutte le fenomenologie che si riescono a misurare e che costituiscono branche diverse della Geofisica: la Sismologia, la Gravimetria, la Magnetometria, la Geotermia, la Geodesia, il Geoelettromagnetismo, la Geofisica applicata. Ognuna di queste branche della Geofisica ha avuto in passato uno sviluppo quasi del tutto indipendente con collaborazioni o integrazioni dirtte ad obiettivi specifici, limitati anche nel tempo

  7. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  8. Synthesis and characterization of bismuth zinc niobate pyrochlore nanopowders

    Directory of Open Access Journals (Sweden)

    Sonia Maria Zanetti

    2007-09-01

    Full Text Available Bismuth zinc niobate pyrochlores Bi1.5ZnNb1.5O7 (alpha-BZN, and Bi2(Zn1/3Nb2/32O 7 (beta-BZN have been synthesized by chemical method based on the polymeric precursors. The pyrochlore phase was investigated by differential scanning calorimetry, infrared spectroscopy, and X ray diffraction. Powder and sintered pellets morphology was examined by scanning electron microscopy. The study of alpha-BZN phase formation reveals that, at 500 °C, the pyrochlore phase was already present while a single-phased nanopowder was obtained after calcination at 700 °C. The crystallization mechanism of the beta-BZN is quite different, occurring through the crystallization of alpha-BZN and BiNbO4 intermediary phases. Both compositions yielded soft agglomerated powders. alpha-BZN pellets, sintered at 800 °C for 2 hours, presented a relative density of 97.3% while those of beta-BZN, sintered at 900 °C for 2 hours, reached only 91.8%. Dielectric constant and dielectric loss, measured at 1 MHz, were 150 and 4 x/10-4 for a-BZN, and 97 and 8 x 10-4 for beta-BZN.

  9. Properties and recrystallization of radiation damaged pyrochlore and titanite

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter

    2016-11-02

    Radiation damage in minerals is caused by the alpha-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1400 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG) (Zietlow et al., in print). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia (6.4 wt% Th, 23.1.10{sup 18} a-decay events per gram (dpg)), Zlatoust/Russia (6.3 wt% Th, 23.1.10{sup 18} dpg), Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28 %, Blue River 85 %, Zlatoust and Miass 100 % according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (Vandenborre and Husson 1983, Moll et al. 2011), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} devided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlores (Miass and Zlatoust) show an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K. The volume decrease upon recrystallization in Zlatoust pyrochlore was large enough to crack the sample repeatedly. In contrast, the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K), extending over a temperature range of ca. 300 K, up to 800 K (Raman). The pyrochlore from Blue River shows in its

  10. Low temperature spin dynamics and high pressure effects in frustrated pyrochlores

    Science.gov (United States)

    Mirebeau, Isabelle

    2008-03-01

    Frustrated pyrochlores R2M2O7, where R^3+ is a rare earth and M^4+ a transition or sp metal ion, show a large variety of exotic magnetic states due to the geometrical frustration of the pyrochlore lattice, consisting of corner sharing tetrahedra for both R and M ions. Neutron scattering allows one to measure their magnetic ground state as well as the spin fluctuations, in a microscopic way. An applied pressure may change the subtle energy balance between magnetic interactions, inducing new magnetic states. In this talk, I will review recent neutron results on Terbium pyrochlores, investigated by high pressure neutron diffraction and inelastic neutron scattering. Tb2M2O7 pyrochlores show respectively a spin liquid state for M=Ti [1], an ordered spin ice state for M= Sn [2], and a spin glass state with chemical order for M=Mo [3]. In Tb2Ti2O7 spin liquid, where only Tb^3+ ions are magnetic, an applied pressure induces long range antiferromagnetic order due to a small distortion of the lattice and magneto elastic coupling [4]. In Tb2Sn2O7, the substitution of Ti^4+ by the bigger Sn^4+ ion expands the lattice, inducing a long range ordered ferromagnetic state, with the local structure of a spin ice [2] and unconventional spin fluctuations [2,5]. The local ground state and excited crystal field states of the Tb^3+ ion were recently investigated by inelastic neutron scattering in both compounds [6]. Tb2Mo2O7, where Mo^4+ ions are also magnetic, shows an even more rich behaviour, due to the complex interaction between frustrated Tb and Mo lattices, having respectively localized and itinerant magnetism. In Tb2Mo2O7 spin glass, the lattice expansion induced by Tb/La substitution yields an ordered ferromagnetic state, which transforms back to spin glass under applied pressure [7]. New data about the spin fluctuations in these compounds, as measured by inelastic neutron scattering, will be presented. The talk will be dedicated to the memory of Igor Goncharenko, a renowned

  11. Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7

    International Nuclear Information System (INIS)

    Alam, J.; Jana, Y.M.; Biswas, A. Ali

    2016-01-01

    The experimental results of temperature dependent dc magnetic susceptibility, field dependent isothermal magnetization, magnetic specific heat and entropy of the pyrochlore Pr 2 Zr 2 O 7 are simulated and analyzed using appropriate D 3d crystal-field (CF) and anisotropic molecular field tensors at Pr-sites in the self-consistent mean-field approach involving four magnetically non-equivalent rare-earth spins on the tetrahedral unit of the pyrochlore structure. CF level pattern and wave-functions of the ground 3 H 4 multiplet of the Pr 3+ ions are obtained considering intermediate coupling between different Russell-Saunders terms of the 4f 2 electronic configurations of Pr-ion and J-mixing effects. CF analysis shows that the CF ground-state of the Pr 3+ ion in Pr 2 Zr 2 O 7 is a well-isolated doublet, with significant admixtures of terms coming from |M J =±4〉 and |M J =±1〉, and the Pr-spins are effectively Ising-like along the local <111> axes. Magnetic specific heat in zero-field is simulated by considering a temperature dependence of the exchange splitting of the ground doublet. - Highlights: • Full CF diagonalization using intermediate coupling and J-mixing. • Pr-spins are Ising-like along local [111] axis. • Magnetic specific heat is due to temperature dependence exchange splitting of ground CF doublet.

  12. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2015-12-01

    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.

  13. Structural and photoluminescence properties of stannate based displaced pyrochlore-type red phosphors: Ca(3-x)Sn₃Nb₂O₁₄:xEu³⁺.

    Science.gov (United States)

    Sreena, T S; Prabhakar Rao, P; Francis, T Linda; Raj, Athira K V; Babu, Parvathi S

    2015-05-14

    New stannate based displaced pyrochlore-type red phosphors, Ca(3-x)Sn3Nb2O14:xEu(3+), were prepared via a conventional solid state method. The influence of partial occupancy of Sn in both A and B sites of the pyrochlore-type oxides on the photoluminescence properties was studied using powder X-ray diffraction, FT-Raman, transmission electron microscopy, scanning electron microscopy with energy dispersive spectrometry, UV-visible absorption spectroscopy, and photoluminescence excitation and emission spectra with lifetime measurements. The structural analysis establishes that these oxides belong to a cubic displaced pyrochlore type structure with a space group Fd3̄m. These phosphors exhibit strong absorptions at near UV and blue wavelength regions and emit intense multiband emissions due to Eu(3+ 5)D0-(7)F(0, 1, 2) transitions. The absence of characteristic MD transition splitting points out that local cation disorder exists in this type of displaced pyrochlores, reducing the D(3d) inversion symmetry, which is not evidenced by such disorder in the X-ray diffraction analysis. The unusual forbidden intense sharp (5)D0-(7)F0 transition indicates single site occupancy of Eu(3+) with a narrower range of bonding environment, preventing the cluster formation. This is supported by the stable (5)D0 lifetime with Eu(3+) concentration. The Judd-Ofelt intensity parameter assessment corroborates these results. The CIE color coordinates of these phosphors were found to be (0.60, 0.40), which are close to the NTSC standard values (0.67, 0.33) for a potential red phosphor.

  14. FIN-EPOS - Finnish national initiative of the European Plate Observing System: Bringing Finnish solid Earth infrastructures into EPOS

    Science.gov (United States)

    Vuorinen, Tommi; Korja, Annakaisa

    2017-04-01

    FIN-EPOS consortium is a joint community of Finnish national research institutes tasked with operating and maintaining solid-earth geophysical and geological observatories and laboratories in Finland. These national research infrastructures (NRIs) seek to join EPOS research infrastructure (EPOS RI) and further pursue Finland's participation as a founding member in EPOS ERIC (European Research Infrastructure Consortium). Current partners of FIN-EPOS are the University of Helsinki (UH), the University of and Oulu (UO), Finnish Geospatial Research Institute (FGI) of the National Land Survey (NLS), Finnish Meteorological Institute (FMI), Geological Survey of Finland (GTK), CSC - IT Center for Science and MIKES Metrology at VTT Technical Research Centre of Finland Ltd. The consortium is hosted by the Institute of Seismology, UH (ISUH). The primary purpose of the consortium is to act as a coordinating body between various NRIs and the EPOS RI. FIN-EPOS engages in planning and development of the national EPOS RI and will provide support in EPOS implementation phase (IP) for the partner NRIs. FIN-EPOS also promotes the awareness of EPOS in Finland and is open to new partner NRIs that would benefit from participating in EPOS. The consortium additionally seeks to advance solid Earth science education, technologies and innovations in Finland and is actively engaging in Nordic co-operation and collaboration of solid Earth RIs. The main short term objective of FIN-EPOS is to make Finnish geoscientific data provided by NRIs interoperable with the Thematic Core Services (TCS) in the EPOS IP. Consortium partners commit into applying and following metadata and data format standards provided by EPOS. FIN-EPOS will also provide a national Finnish language web portal where users are identified and their user rights for EPOS resources are defined.

  15. Structural response of titanate pyrochlores to swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Shamblin, Jacob; Tracy, Cameron L.; Ewing, Rodney C.; Zhang, Fuxiang; Li, Weixing; Trautmann, Christina; Lang, Maik

    2016-01-01

    The structure, size, and morphology of ion tracks resulting from irradiation of five different pyrochlore compositions (A 2 Ti 2 O 7 , A = Yb, Er, Y, Gd, Sm) with 2.2 GeV 197 Au ions were investigated by means of synchrotron X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Radiation-induced amorphization occurred in all five materials analyzed following an exponential rate as a function of ion fluence. XRD patterns showed a general trend of increasing susceptibility of amorphization with increasing ratio of A- to B-site cation ionic radii (r A /r B ) with the exception of Y 2 Ti 2 O 7 and Sm 2 Ti 2 O 7 . This indicates that the track size does not necessarily increase with r A /r B , in contrast with results from previous swift heavy ion studies on Gd 2 Zr 2-x Ti x O 7 pyrochlore materials. For Y 2 Ti 2 O 7 , this effect is attributed to the significantly lower electron density of this material relative to the lanthanide-bearing pyrochlores, thus lowering the electronic energy loss (dE/dx) of the high-energy ions in this composition. An energy loss normalization procedure was performed which reveals an initial increase of amorphous track size with r A /r B that saturates above a cation radius ratio larger than Gd 2 Ti 2 O 7 . This is in agreement with previous low-energy ion irradiation experiments and first principles calculations of the disordering energy of titanate pyrochlores indicating that the same trends in disordering energy apply to radiation damage induced in both the nuclear and electronic energy loss regimes. HRTEM images indicate that single ion tracks in Yb 2 Ti 2 O 7 and Er 2 Ti 2 O 7 , which have small A-site cations and low r A /r B , exhibit a core-shell structure with a small amorphous core surrounded by a larger disordered shell. In contrast, single tracks in Gd 2 Ti 2 O 7 and Sm 2 Ti 2 O 7 , have a larger amorphous core with minimal disordered shells.

  16. Geodesy by radio interferometry - Determinations of baseline vector, earth rotation, and solid earth tide parameters with the Mark I very long baseline radio interferometery system

    Science.gov (United States)

    Ryan, J. W.; Clark, T. A.; Coates, R. J.; Ma, C.; Wildes, W. T.

    1986-01-01

    Thirty-seven very long baseline radio interferometry experiments performed between 1972 and 1978 are analyzed and estimates of baseline vectors between six sites, five in the continental United States and one in Europe are derived. No evidence of significant changes in baseline length is found. For example, with a statistical level of confidence of approximately 85 percent, upper bounds on such changes within the United States ranged from a low of 10 mm/yr for the 850 km baseline between Westford, Massachusetts, and Green Bank, West Virginia, to a high of 90 mm/yr for the nearly 4000 km baseline between Westford and Goldstone, California. Estimates for universal time and for the x component of the position of the earth's pole are obtained. For the last 15 experiments, the only ones employing wideband receivers, the root-mean-square differences between the derived values and the corresponding ones published by the Bureau International de l'Heure are 0.0012 s and 0.018 arc sec respectively. The average value obtained for the radial Love number for the solid earth is 0.62 + or - 0.02 (estimated standard error).

  17. Using GPS and GRACE data to assess Solid Earth elastic parameters at regional scale

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Borghi, A.; Aoudia, A.

    2012-01-01

    We propose a way to combine GPS and GRACE data for regional scale cross check and validation especially of the most commonly used PREM (Preliminary Earth Reference Model). In form of h and k Love numbers, global PREM is very often used to simulate elastic rebound due to present-day ice mass loss......, to derive the mass distribution produced by the observed GRACE time series, and it is also used for atmospheric loading correction both in GPS and in GRACE dealiasing products. GRACE data provide load estimates, usually given as water equivalent mass distribution, from which one derives the Earth elastic...... response, by convolution with suitable elastic green functions, relying on selected Earth model and related layering and elastic parameters. We calculate at regional scale the time series of monthly uplift associated with the mass redistribution observed by GRACE implementing the high resolution technique...

  18. Large-scale calculation of ferromagnetic spin systems on the pyrochlore lattice

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, Konstantin, E-mail: soldatov_ks@students.dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Nefedev, Konstantin, E-mail: nefedev.kv@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Science, Vladivostok (Russian Federation); Komura, Yukihiro [CIJ-solutions, Chuo-ku, Tokyo 103-0023 (Japan); Okabe, Yutaka, E-mail: okabe@phys.se.tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan)

    2017-02-19

    We perform the high-performance computation of the ferromagnetic Ising model on the pyrochlore lattice. We determine the critical temperature accurately based on the finite-size scaling of the Binder ratio. Comparing with the data on the simple cubic lattice, we argue the universal finite-size scaling. We also calculate the classical XY model and the classical Heisenberg model on the pyrochlore lattice. - Highlights: • Calculations of the ferromagnetic models on the pyrochlore lattice were performed. • Precise critical temperatures were determined using Binder ratio finite-size scaling. • The universal finite-size scaling was argued.

  19. Experimental hydrothermal alteration of crystalline and radiation-damaged pyrochlore

    International Nuclear Information System (INIS)

    Geisler, T.; Seydoux-Guillaume, A.-M.; Poeml, P.; Golla-Schindler, U.; Berndt, J.; Wirth, R.; Pollok, K.; Janssen, A.; Putnis, A.

    2005-01-01

    We have performed hydrothermal experiments with a crystalline microlite and a heavily self-irradiation-damaged (i.e., X-ray amorphous) betafite in a solution containing 1 mol/l HCl and 1 mol/l CaCl 2 at 175 deg. C for 14 days. The well-crystalline microlite grains were partly (∼5-10 μm rim) replaced by a Ca and Na-poorer, defect pyrochlore phase with a larger unit-cell and a sharp chemical gradient at the interface (on a nm scale) to the unreacted core. The amorphous betafite grains (up to ∼2 mm in diameter), on the other hand, were completely transformed into an intergrowth of different crystalline phases (polycrystalline anatase and rutile, a yet unidentified Nb-Ta oxide, and a Y-REE phase), showing complex non-equilibrium structures. Our experimental observations bear a remarkable resemblance to those made on natural samples. They indicate that the processes of the fluid-pyrochlore interaction are influenced by self-irradiation structural damage and that thermodynamic equilibrium models can hardly be applied to adequately describe such systems

  20. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  1. New Type of Quantum Criticality in the Pyrochlore Iridates

    Directory of Open Access Journals (Sweden)

    Lucile Savary

    2014-11-01

    Full Text Available Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons and antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.

  2. Dielectric and magnetic properties, and electronic structure of multiferroic perovskite PbFe.sub.0.5./sub.Ta.sub.0.5./sub.O.sub.3./sub. and incipient ferroelectric pyrochlore Pb.sub.2./sub.Fe.sub.0.34./sub.Ta.sub.1.84./sub.O.sub.7.11./sub. single crystals and ceramics

    Czech Academy of Sciences Publication Activity Database

    Kania, A.; Miga, S.; Talik, E.; Gruszka, I.; Szubka, M.; Savinov, Maxim; Prokleška, J.; Kamba, Stanislav

    2016-01-01

    Roč. 36, č. 14 (2016), s. 3369-3381 ISSN 0955-2219 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : lead iron tantalate * perovskite multiferroic * pyrochlore * incipient ferroelectric * X-ray photoelectron spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.411, year: 2016

  3. A study on variation in position of an Indian station due to solid earth ...

    Indian Academy of Sciences (India)

    position of a station and its subsequent influence on the computation and interpretation of time series of coordinates ... signals (such as ocean tide loading and errors in .... moon or full moon. Neap tide is that when the Sun,. Earth, and Moon are aligned in perpendicular line, due to which they form destructive interface and.

  4. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  5. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang; Zhu, Xinhua; Al-Kassab, Talaat

    2014-01-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric constants of

  6. Atomic disorder in Gd{sub 2}Zr{sub 2}O{sub 7} pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F. X. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lang, M. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Ewing, R. C. [Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States)

    2015-05-11

    Gd{sub 2}Zr{sub 2}O{sub 7} pyrochlore with different degrees of cation disorder were synthesized by isothermal annealing at various temperatures (1100–1550 °C), and the related changes in the structure were investigated by ambient and high pressure x-ray diffraction (XRD) measurements. Unit cell parameters increase almost linearly with increasing treatment temperature. The degree of cation order in pyrochlore also increases with the increase of temperature, but saturates at ∼60%. The compressibility of the pyrochlore structures decreases when the degree of cation order increases. High pressure XRD measurements also indicate that the phase stability of Gd{sub 2}Zr{sub 2}O{sub 7} is not very sensitive to the degree of atomic disorder in the pyrochlore structure.

  7. Steam Reforming of CH4 Using Ni- Substituted Pyrochlore Catalysts

    Science.gov (United States)

    Haynes, Daniel J.

    The steam reforming of methane (SMR) continues to remain an important industrial reaction for large-scale production of H2 as well as synthesis gas mixtures which can be used for the production of useful chemicals (e.g. methanol). Although SMR is a rather mature technology, traditional nickel based catalysts used industrially are subjected to severe temperatures and reaction conditions, which lead to irreversible activity loss through sintering, support collapse, and carbon formation. Pyrochlore-based mixed oxide have been identified as refractory materials that can be modified through the substitution of catalytic metals and other promoting species into the structure to mitigate these issues causing deactivation. For this study, a lanthanum zirconate pyrochlore catalyst was substituted with Ni to determine whether the oxide structure could effectively stabilize the activity of the catalytic metal during the SMR. The effect of different variables including calcination temperature, a comparison of a substituted versus supported Ni pyrochlore catalyst, Ni weight loading, and Sr promotion have been evaluated to determine the location of the Ni in the structure, and their effect on catalytic behavior. It was revealed that the effect of calcination temperature on a 6wt% Ni substituted pyrochlore produced by the Pechini method demonstrated very little Ni was soluble in the pyrochlore lattice. It was further revealed that by XRD, TEM, and atom probe tomography that, despite the metal loading, Ni exsolves from the structure upon crystallization of the pyrochlore at 700°C, and forms NiO at the surface and grain boundaries. An additional separate La2ZrNiO6 perovskite phase also began to form at higher temperatures (>800°C). Increasing calcination temperature was found to lead to slight sintering of the NiO at the surface, which made the NiO more reducible. Meanwhile decreasing the Ni weight loading was found to produce a lower reduction temperature due to the presence of

  8. Professional Development for Researchers in Solid Earth Science Evolved to Include Scientific and Educational Content

    Science.gov (United States)

    Eriksson, S. C.; Arrowsmith, R.; Olds, S. E.

    2011-12-01

    Integrated measures of crustal deformation provide valuable insight about tectonic and human-induced processes for scientists and educators alike. UNAVCO in conjunction with EarthScope initiated a series of short courses for researchers to learn the processing and interpretation of data from new technologies such as high precision GPS, Strainmeter, InSar and LiDAR that provide deformation information relevant to many geoscience sub-disciplines. Intensive short courses of a few days and the widespread availability of processed data through large projects such as EarthScope and GEON enable more geoscientists to incorporate these data into diverse projects. Characteristics of the UNAVCO Short Course Series, reaching over 400 participants since 2005, include having short course faculty who have pioneered development of each technology; open web-access to course materials; processing software installed on class-ready computers; no course fees; scholarships for students, post-doctoral fellows, and emerging faculty when needed; formative evaluation of the courses; community-based decisions on topics; and recruitment of participants across relevant geoscience disciplines. In 2009, when EarthScope airborne LiDAR data became available to the public through OpenTopographhy, teaching materials were provided to these researchers to incorporate the latest technologies into teaching. Multiple data sets across technologies have been developed with instructions on how to access the various data sets and incorporate them into geological problem sets. Courses in GPS, airborne LiDAR, strainmeter, and InSAR concentrate on data processing with examples of various geoscience applications. Ground-based LiDAR courses also include data acquisition. Google Earth is used to integrate various forms of data in educational applications. Various types of EarthScope data can now be used by a variety of geoscientists, and the number of scientists who have the skills and tools to use these various

  9. Integrated Solid Earth Science: the right place and time to discover the unexpected? (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    Cloetingh, Sierd

    2013-04-01

    -level. Those cycles were detected as a result of the pioneering work on the stratigraphic record of sedimentary basins and continental margins from all over the world by Peter Vail, Bilal Haq and others from Exxon. It was at this time, that sedimentary basins became a frontier in the integration of quantitative geology and geophysics. Sedimentary basins do not only provide a powerful source of information on the evolution of the underlying lithosphere and climate fluctuations, but also contain mankind's main reservoirs of geo-energy and geo-resources. It was Peter Ziegler, head of global geology at Shell International, who was the prime mentor in my somewhat unexpected scientific journey in sedimentary basins. These became the main research target of the Tectonics research group I established in 1988 in Amsterdam. In these years it became increasingly evident that the rheology of the lithosphere exerts a crucial control on the evolution of basins, but also on continental topography. It is on this topic that the cooperation over more than two decades with Evgenii Burov, addressing issues like the rheological structure of Europe's lithosphere, rift shoulder uplift and the interplay of lithospheric folding and mantle-lithosphere interactions, has, been very fruitful. Another unexpected milestone has been the opportunity to build up, parallel to the research efforts in field studies and numerical modeling, an analogue tectonic laboratory in our group. This brings me to another issue, also completely unforeseen: the integration of earth science in Europe, particularly taking off after the disappearance of the Iron Curtain. For my group, the latter marked the beginning of a very fruitful cooperation in particular with the groups of Frank Horvath in Budapest and Cornel Dinu in Bucharest, addressing the fascinating solid Earth dynamics of the Carpathians and Pannonian basin. Over the last few years, it has been become evident that integration in the solid earth science is the way to

  10. Potassium Disorder in the Defect Pyrochlore KSbTeO6: A Neutron Diffraction Study

    Directory of Open Access Journals (Sweden)

    José Antonio Alonso

    2017-01-01

    Full Text Available KSbTeO6 defect pyrochlore has been prepared from K2C2O4, Sb2O3, and 15% excess TeO2 by solid-state reaction at 850 °C. Direct methods implemented in the software EXPO2013 allowed establishing the basic structural framework. This was followed by a combined Rietveld refinement from X-ray powder diffraction (XRD and neutron powder diffraction (NPD data, which unveiled additional structural features. KSbTeO6 is cubic, a = 10.1226(7 Å, space group F d 3 ¯ m , Z = 8 and it is made of a mainly covalent framework of corner-sharing (Sb,TeO6 octahedra, with weakly bonded K+ ions located within large cages. The large K-O distances, 3.05(3–3.07(3 Å, and quite large anisotropic atomic displacement parameters account for the easiness of K+ exchange for other cations of technological importance.

  11. The XPS study of pyrochlore matrixes for the radioactive waste disposal

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available Two pyrochlore ceramic samples were studied in this work. The X-ray diffraction and the scanning electron microscopy showed that the ceramics with the calculated composition CaThSn2O7 was formed by the dominating pyrochlore phase with the traces of thorianite and hematite, while the CaThZr2O7 ceramics - by the dominating pyrochlore phase with the minor admixtures of thorianite and perovskite. The real compositions of pyrochlore phases determined by the scaning electron microscopy are Ca0.88Th0.92Sn2O6.72 and Ca0.84Th0.80Zr2O6.44. On the basis of the X-ray photoelectron spectral parameters of the outer and core electrons in the binding energy range of 0-1250 eV it was found that tin, zirconium and thorium in pyrochlore are at least 93%-94% tetravalent. Sn-O and Zr-O interatomic distances in BO6-octahedrons in the pyrochlore were found to be 0.210 nm and 0.220 nm, respectively, and these octahedrons are possible to be tetragonaly distorted.

  12. Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments

    International Nuclear Information System (INIS)

    Wang, YIFENG; Xu, HUIFANG

    2000-01-01

    Crystalline phases of pyrochlore (e.g., CaPuTi 2 O 7 , CaUTi 2 O 7 ) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus weapons-usable plutonium. In this paper, the authors use a linear free energy relationship to predict the Gibbs free energies of formation of pyrochlore phases (CaMTi 2 O 7 ). The Pu-pyrochlore phase is predicted to be stable with respect to PuO 2 , CaTiO 3 , and TiO 2 at room temperatures. Pu-pyrochlore is expected to be stable in a geologic repository where silica and carbonate components are absent or limited. The authors suggest that a repository in a salt formation be an ideal environment for disposal of high level, pyrochlore-based ceramic wastes. In such environment, adding CaO as a backfill will make pyrochlore minerals thermodynamically stable and therefore effectively prevent actinide release from these mineral phases

  13. Weyl magnons in pyrochlore antiferromagnets with an all-in-all-out order

    Science.gov (United States)

    Jian, Shao-Kai; Nie, Wenxing

    2018-03-01

    We investigate topological magnon band crossings of pyrochlore antiferromagnets with all-in-all-out (AIAO) magnetic order. By general symmetry analysis and spin-wave theory, we show that pyrochlore materials with AIAO orders can host Weyl magnons under external magnetic fields or uniaxial strains. Under a small magnetic field, the magnon bands of the pyrochlore with AIAO background can feature two opposite-charged Weyl points, which is the minimal number of Weyl points realizable in quantum materials, and has not been experimentally observed so far. We further show that breathing pyrochlores with AIAO orders can exhibit Weyl magnons upon uniaxial strains. These findings apply to any pyrochlore material supporting AIAO orders, irrespective of the forms of interactions. Specifically, we show that the Weyl magnons are robust against direct (positive) Dzyaloshinskii-Moriya interactions. Because of the ubiquitous AIAO orders in pyrochlore magnets including R2Ir2O7 , and experimentally achievable external strain and magnetic field, our predictions provide a promising arena to witness the Weyl magnons in quantum magnets.

  14. Order-disorder phase transformations in quaternary pyrochlore oxide system: Investigated by X-ray diffraction, transmission electron microscopy and Raman spectroscopic techniques

    International Nuclear Information System (INIS)

    Radhakrishnan, A.N.; Prabhakar Rao, P.; Sibi, K.S.; Deepa, M.; Koshy, Peter

    2009-01-01

    Order-disorder transformations in a quaternary pyrochlore oxide system, Ca-Y-Zr-Ta-O, were studied by powder X-ray diffraction (XRD) method, transmission electron microscope (TEM) and FT-NIR Raman spectroscopic techniques. The solid solutions in different ratios, 4:1, 2:1, 1:1, 1:2, 1:4, 1:6, of CaTaO 3.5 and YZrO 3.5 were prepared by the conventional high temperature ceramic route. The XRD results and Rietveld analysis revealed that the crystal structure changed from an ordered pyrochlore structure to a disordered defect fluorite structure as the ratios of the solid solutions of CaTaO 3.5 and YZrO 3.5 were changed from 4:1 to 1:4. This structural transformation in the present system is attributed to the lowering of the average cation radius ratio, r A /r B as a result of progressive and simultaneous substitution of larger cation Ca 2+ for Y 3+ at A sites and smaller cation Ta 5+ for Zr 4+ at B sites. Raman spectroscopy and TEM analysis corroborated the XRD results. - Graphical abstract: Selected area electron diffraction (SAED) patterns showed highly ordered diffraction maxima with characteristic superlattice weak diffraction spots of the pyrochlore structure for (a) Ca 0.6 7Y 1.33 Zr 1.33 Ta 0.33 O 7 (C2YZT2) and bright diffraction maxima arranged in a ring pattern of the fluorite structure for (b) Ca 0.29 7Y 1.71 Zr 1.71 Ta 0.29 O 7 (CY6Z6T).

  15. iSERVO: Implementing the International Solid Earth Research Virtual Observatory by Integrating Computational Grid and Geographical Information Web Services

    Science.gov (United States)

    Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry

    2006-12-01

    We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.

  16. A fluid Foucault pendulum: the impossibility of achieving solid-body rotation on Earth

    Science.gov (United States)

    Blum, Robert; Zimmerman, Daniel; Triana, Santiago; Lathrop, Daniel

    2012-11-01

    Rotating fluid dynamics is key to our understanding of the Earth's atmosphere, oceans, and core, along with a plethora of astrophysical objects. Laboratory study of these natural systems often involves spinning experimental devices, which are assumed to tend to rigid rotation when unstirred. We present results showing that even at the tabletop scale, there is a measurable oscillatory flow driven by the precession of the experiment's axis as the earth rotates. We measure this flow in a rotating cylinder with an adjustable aspect ratio. The horizontal flow in the rotating frame is measured using particle tracking. The steady state is well-described by an inertial mode whose amplitude is maximum when the height to diameter ratio is 0.995, which matches theoretical predictions. We also quantify the resonant amplitude of the inertial mode in the cylinder and estimate the amplitude in other devices. We compare our results to similar studies done in spherical devices. [Triana et al., JGR, 117 (2012), B04103][Boisson et al., EPL, 98 (2012), 59002].

  17. Leachability of rare earth elements (REEs) from solid wastes generated during chemical processing of monazite

    International Nuclear Information System (INIS)

    Radhakrishnan, Sujata; Pillai, P.M.B.

    2001-01-01

    Studies have been carried out to assess the leachability of REEs from solid wastes generated in monazite processing. Leachability of REEs (La, Ce, Nd, Pr, Sm, Gd) and Y from PbS-Ba(Ra)SO 4 (Mixed cake) and Effluent Treatment Plant cake (calcium hydroxy apatite) has been studied using rain water as the leachant. Studies indicate that 23 -60 % of the REEs gets leached out from the mixed cake in the first 24 hours. From the ETP cake, the percentage of REEs leached out were negligible. The results provide inputs for hazards evaluation in accidental situations resulting in breach of integrity of the waste storages. (author)

  18. EPOS-WP16: A coherent and collaborative network of Solid Earth Multi-scale laboratories

    Science.gov (United States)

    Calignano, Elisa; Rosenau, Matthias; Lange, Otto; Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; van Kan-Parker, Mirjam; Elger, Kirsten; Ulbricht, Damian; Funiciello, Francesca; Trippanera, Daniele; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Winkler, Aldo

    2017-04-01

    Laboratory facilities are an integral part of Earth Science research. The diversity of methods employed in such infrastructures reflects the multi-scale nature of the Earth system and is essential for the understanding of its evolution, for the assessment of geo-hazards and for the sustainable exploitation of geo-resources. In the frame of EPOS (European Plate Observing System), the Working Package 16 represents a developing community of European Geoscience Multi-scale laboratories. The participant and collaborating institutions (Utrecht University, GFZ, RomaTre University, INGV, NERC, CSIC-ICTJA, CNRS, LMU, C4G-UBI, ETH, CNR*) embody several types of laboratory infrastructures, engaged in different fields of interest of Earth Science: from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue tectonic and geodynamic modelling and paleomagnetic laboratories. The length scales encompassed by these infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited "final form" in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting

  19. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    Science.gov (United States)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality

  20. Thermodynamics analysis of the rare earth metals and their alloys with indium in solid state

    International Nuclear Information System (INIS)

    Vassiliev, V.P.; Benaissa, Ablazeze; Taldrik, A.F.

    2013-01-01

    Graphical abstract: Gibbs energies of formation vs. RE atomic numbers in REIn 3 . Highlights: •Set of experimental values was collected for REIn 3 phases. •Thermodynamic functions of formation were calculated at 298 K and 775 K. •Experimental and calculated values were compared. -- Abstract: Nonlinear correlative analyses between thermodynamic and some physico-chemical properties of rare-earth metals (RE) and their alloys with indium are performed for the isostructural phases RE and REIn 3 . The thermodynamics values (Gibbs energies of formation, enthalpies of formation, and entropies of formation at 298 K and 775 K and standard entropies) of LnIn 3 phases are calculated on the basis of calorimetry and potentiometry results. The proposed correlation between physico-chemical and thermodynamic properties agrees for all the isostructural phases REX (X are others elements of the periodic table). The resulting thermodynamic data are recommended for metallurgical handbook

  1. Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln = Nd, Gd, Er) at high pressure.

    Science.gov (United States)

    Turner, Katlyn M; Tracy, Cameron L; Mao, Wendy L; Ewing, Rodney C

    2017-11-09

    Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln=Nd, Gd, and Er) were investigated in situ to 50 GPa in order to determine their structural response to compression and compare it to that of lanthanide titanate, zirconate, and hafnate pyrochlores. The cation radius ratio of A3+/B4+ in pyrochlore oxides (A2B2O7) is thought to be the dominant property that influences their compression response. The ionic radius of Sn4+ is intermediate to that of Ti4+, Zr4+, and Hf4+, but the bond in stannate pyrochlore is more covalent than the bonds in titanates, zirconate, and hafnates. In stannates, the pyrochlore cation and anion sublattices begin to disorder at 0.3 GPa. The extent of sublattice disorder vs. pressure is greater in stannates with a smaller Ln3+ cation. Stannate pyrochlores (Fd-3m) begin a sluggish transformation to a cotunnite-like structure (Pnma) at ~28 GPa; similar transitions have been observed in titanate, zirconate, and hafnate pyrochlore at varying pressures with cation radius ratio. The extent of the phase transition vs. pressure varies directly with the size of the Ln3+ cation. Post-decompression from ~50 GPa, Er2Sn2O7 and Gd2Sn2O7 adopt a pyrochlore structure, rather than the multiscale defect-fluorite + weberite structure adopted by Nd2Sn2O7 that is characteristic of titanate, zirconate, and hafnate pyrochlore treated to similar conditions. Like pyrochlore titanates, zirconates, and hafnates, the bulk modulus, B0, of stannates varies linearly and inversely with cation radius ratio. The trends of bulk moduli in stannates in this study are in excellent agreement with previous experimental studies on stannates, and suggest that the size of the Ln3+ cation is a primary determining factor of B0. Additionally, when normalized to rA/rB, the bulk moduli of stannates are comparable to those of zirconates and hafnates, which vary from titanates. Our results suggest that the cation radius ratio strongly influences the bulk moduli of stannates as well as

  2. Ternary and quaternary solid solutions in rare earth alloy phases with the CaCu5-type structure

    International Nuclear Information System (INIS)

    Malani, G.K.; Raman, A.; Mohanty, R.C.

    1992-01-01

    Crystal structural data were analyzed in seleced CaCu 5 -type ternary and quaternary solid solutions to assess the crystal chemical characteristics and stability features of the CaCu 5 -type structure in rare earth containing alloy phases. LaNi 5 was found to dissolve 100 mol% LaCu 5 , 100 mol% ErNi 5 , about 50 mol% LaIr 5 , 40 mol% 'LaMn 5 ', 20 mol% 'LaFe 5 ', and 25 mol% ErRh 5 . In contrast, LaCo 5 did not dissolve any Mn or any of the other elements other than Al - it dissolved about 20 mol% 'LaAl 5 '. LaCu 5 behaves similar to LaNi 5 in solid solutions. From the lack of solubility of any other element in LaFe 5 , LaCo 5 , LaRh 5 , and LaIr 5 and their great instability, these are inferred to be borderline cases in the realm of the CaCu 5 -type structure. In the CaCu 5 and related crystal structures, Ir is compatible with Ni, but not with Co or Rh, and Rh is not compatible with either Ni or Ir. (orig.) [de

  3. Variable valence of praseodymium in rare-earth oxide solid solutions

    International Nuclear Information System (INIS)

    Kravchinskaya, M.V.; Merezhinskii, K.Y.; Tikhonov, P.A.

    1986-01-01

    Solid solutions of elevated praseodymium oxide content have interesting electrical properties, making them the basis for the manufacture of high-temperature electrically conducting materials. Establishment of the composition-structure-valence state relationships enables control of the material properties. The authors performed investigations using a thermogravimetric apparatus with an electronic microbalance of type EM-5-3M, and using x-ray phase analysis of powders (DRON-1 diffractometer, CuK /SUB alpha/ -radiation). The authors also studied the kinetics of praseodymium oxidation with a thermogravimetric apparatus under isothermal conditions. Evaluation of the results with the equation of Kolmogorov, Erofeev, and Avraam indicates that the process is limited by the chemical oxidation of praseodymium and not by diffusion

  4. Synthesis, magnetic properties and Moessbauer spectroscopy for the pyrochlore family Bi{sub 2}BB Prime O{sub 7} with B=Cr and Fe and B Prime =Nb, Ta and Sb

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria C. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Franco, Diego G. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Centro Atomico Bariloche - CNEA, Av. E. Bustillo 9500, S.C. de Bariloche (8500), R.N. (Argentina); Jalit, Yamile; Pannunzio Miner, Elisa V. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Berndt, Graciele; Paesano, Andrea [Departamento de Fisica, Universidade Estadual de Maringa, Parana (Brazil); Nieva, Gladys [Centro Atomico Bariloche - CNEA, Av. E. Bustillo 9500, S.C. de Bariloche (8500), R.N. (Argentina); Carbonio, Raul E., E-mail: carbonio@mail.fcq.unc.edu.ar [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina)

    2012-08-15

    The samples Bi{sub 2}BB Prime O{sub 7}, with B=Cr and Fe and B Prime =Nb, Ta and Sb were prepared by solid state method. The crystallographic structure was investigated on the basis of X-ray powder diffraction data. Rietveld refinements show that the crystal structure is cubic, space group Fd-3m. The Bi{sup 3+} cation on the eight-coordinate pyrochlore A-site shows displacive disorder, as a consequence of its lone pair electron configuration. There is also a considerable A-site disorder shown by Rietveld Analysis and confirmed in the case of the iron containing samples with Moessbauer spectroscopy. The magnetic measurements show paramagnetic behavior at all temperatures for the Cr oxides. The Fe pyrochlores show antiferromagnetic order around 10 K.

  5. Women in EPOS: the role of women in a large pan-European Research Infrastructure for Solid Earth sciences

    Science.gov (United States)

    Calignano, Elisa; Freda, Carmela; Baracchi, Laura

    2017-04-01

    Women are outnumbered by men in geosciences senior research positions, but what is the situation if we consider large pan-European Research Infrastructures? With this contribution we want to show an analysis of the role of women in the implementation of the European Plate Observing System (EPOS): a planned research infrastructure for European Solid Earth sciences, integrating national and transnational research infrastructures to enable innovative multidisciplinary research. EPOS involves 256 national research infrastructures, 47 partners (universities and research institutes) from 25 European countries and 4 international organizations. The EPOS integrated platform demands significant coordination between diverse solid Earth disciplinary communities, national research infrastructures and the policies and initiatives they drive, geoscientists and information technologists. The EPOS architecture takes into account governance, legal, financial and technical issues and is designed so that the enterprise works as a single, but distributed, sustainable research infrastructure. A solid management structure is vital for the successful implementation and sustainability of EPOS. The internal organization relies on community-specific Working Packages (WPs), Transversal WPs in charge of the overall EPOS integration and implementation, several governing, executive and advisory bodies, a Project Management Office (PMO) and the Project Coordinator. Driven by the timely debate on gender balance and commitment of the European Commission to promote gender equality in research and innovation, we decided to conduct a mapping exercise on a project that crosses European national borders and that brings together diverse geoscience disciplines under one management structure. We present an analysis of women representation in decision-making positions in each EPOS Working Package (WP Leader, proxy, legal, financial and IT contact persons), in the Boards and Councils and in the PMO

  6. Seismic imaging at the cross-roads: Active, passive, exploration and solid Earth

    Science.gov (United States)

    Rawlinson, N.; Stephenson, R.; Carbonell, R.

    2017-10-01

    Science has grown from our need to understand the world around us. Seismology is no different, with earthquakes and their destructive effect on society providing the motivation to understand the Earth's seismic wavefield. The question of when seismology as a science really began is an interesting one, but it is unlikely that there will ever be a universally agreed-upon date, partly because of the incompleteness of the historical record, and partly because the definition of what constitutes science varies from person to person. For instance, one could regard 1889 as the true birth of seismology, because that is when the first distant earthquake was detected by an instrument; in this case Ernst von Rebeur-Paschwitz detected an earthquake in Japan using a pendulum in Potsdam, Germany (Ben-Menahem, 1995). However, even the birth of instrumental seismology could be contested; the so-called Zhang Heng directional ;seismoscope; (detects ground motion but not as a function of time) was invented in 132 CE (Rui and Yan-xiang, 2006), and is said to have detected a four-hundred mile distant earthquake which was not felt at the location of the instrument (Needham, 1959; Dewey and Byerly, 1969). Prior to instrumental seismology, observations of earthquakes were not uncommon; for instance, Aristotle provided a classification of earthquakes based on the nature of observed ground motion (Ben-Menahem, 1995).

  7. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  8. Aerobic biodegradation kinetics of solid organic wastes on earth and for applications in space

    Science.gov (United States)

    Ramirez Perez, Javier Christian

    Aerobic biodegradation plays an important role in recycling organic matter and nutrients on earth. It is also a candidate technology for waste processing and resource recovery in Advanced Life Support (ALS) systems, such as a proposed planetary base on Mars. Important questions are how long should wastes be treated, and what is the quality (stability/maturity) of the product. To address these questions two aerobic composting systems were evaluated. One treated (252 days) horse manure and cranberry fruit in duplicate open windrows (HCC) as a reference earth application. The other was a pilot-scale (330 L) enclosed, in-vessel system treating (162 days) inedible biomass collected from plant growth systems at NASA, amended with food and human wastes simulant for potential space application (ALSC). Samples were taken from both systems over time and product quality assessed with a range of physical, chemical, biological, toxicological, respirometry and plant growth analyses that were developed and standardized. Because plant growth analyses take so long, a hypothesis was that some parameters could be used to predict compost quality and suitability for growing plants. Maximum temperatures in the thermophilic range were maintained for both systems (HCC > 60°C for >129 days, ALSC > 55°C for >40 days. Fecal streptococci were reduced by 4.8 log-units for HCC and 7.8 for ALSC. Volume/mass reductions achieved were 63%/62% for HCC and 79%/67% for ALSC. Phytotoxicity tests performed on aqueous extracts to recover plant nutrients found decreasing sensitivity: arabidopsis > lettuce > tomato > wheat > cucumber, corresponding with seed size and food reserve capacity. The germination index (GI) of HCC increased over composting time indicating decreasing phytotoxicity. However, GIs for ALSC leachate decreased or fluctuated over composting time. Selected samples of HCC at 31, 157 and 252 days alone and combined with promix (1:1), and of ALSC at 7, 14, 21, 28, 40 and 84 days, or fresh

  9. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  10. Many-Body Theory of Pyrochlore Iridates and Related Materials

    Science.gov (United States)

    Wang, Runzhi

    In this thesis we focus on two problems. First we propose a numerical method for generating optimized Wannier functions with desired properties. Second we perform the state of the art density functional plus dynamical mean-field calculations in pyrochlore iridates, to investigate the physics induced by the cooperation of spin-orbit coupling and electron correlation. We begin with the introduction for maximally localized Wannier functions and other related extensions. Then we describe the current research in the field of spin-orbit coupling and its interplay with correlation effects, followed by a brief introduction of the `hot' materials of iridates. Before the end of the introduction, we discuss the numerical methods employed in our work, including the density functional theory; dynamical mean-field theory and its combination with the exact diagonalization impurity solver. Then we propose our approach for constructing an optimized set of Wannier functions, which is a generalization of the functionality of the classic maximal localization method put forward by Marzari and Vanderbilt. Our work is motivated by the requirement of the effective description of the local subspace of the Hamiltonian by the beyond density functional theory methods. In extensions of density functional theory such as dynamical mean-field theory, one may want highly accurate description of particular local orbitals, including correct centers and symmetries; while the basis for the remaining degrees of freedom is unimportant. Therefore, we develop the selectively localized Wannier function approach which allows for a greater localization in the selected subset of Wannier functions and at the same time allows us to fix the centers and ensure the point symmetries. Applications in real materials are presented to demonstrate the power of our approach. Next we move to the investigation of pyrochlore iridates, focussing on the metal-insulator transition and material dependence in these compounds. We

  11. High-Precision Global Geodetic Systems: Revolution And Revelation In Fluid And 'Solid' Earth Tracking (Invited)

    Science.gov (United States)

    Minster, J. H.; Altamimi, Z.; Blewitt, G.; Carter, W. E.; Cazenave, A. A.; Davis, J. L.; Dragert, H.; Feary, D. A.; Herring, T.; Larson, K. M.; Ries, J. C.; Sandwell, D. T.; Wahr, J. M.

    2009-12-01

    Over the past half-century, space geodetic technologies have changed profoundly the way we look at the planet, not only in the matter of details and accuracy, but also in the matter of how the entire planet changes with time, even on “human” time scales. The advent of space geodesy has provided exquisite images of the ever-changing land and ocean topography and global gravity field of the planet. We now enjoy an International Terrestrial Reference System with a time-dependent geocenter position accurate to a few millimeters. We can image small and large tectonic deformations of the surface before, during, and after earthquakes and volcanic eruptions. We measure both the past subtle changes as well as the recent dramatic changes in the ice sheets, and track global and regional sea-level change to a precision of a millimeter per year or better. The remarkable achievements of Earth observing missions over the past two decades, and the success of future international missions described in the Decadal Survey depend both implicitly and explicitly on the continued availability and enhancement of a reliable and resilient global infrastructure for precise geodesy, and on ongoing advances in geodetic science that are linked to it. This allows us to deal with global scientific, technological and social issues such as climate change and natural hazards, but the impact of the global precise geodetic infrastructure also permeates our everyday lives. Nowadays drivers, aviators, and sailors can determine their positions inexpensively to meter precision in real time, anywhere on the planet. In the foreseeable future, not only will we be able to know a vehicle’s position to centimeter accuracy in real time, but also to control that position, and thus introduce autonomous navigation systems for many tasks which are beyond the reach of “manual” navigation capabilities. This vision will only be realized with sustained international support of the precise global geodetic

  12. Effect of Ion Irradiation in Cadmium Niobate Pyrochlores

    International Nuclear Information System (INIS)

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai; Boatner, Lynn A.

    2003-01-01

    Irradiation experiments have been performed for cadmium niobate pyrochlore (CdNb2O) single crystals at both 150 and 300 K using 1.0 MeV Au ions over fluences ranging from 0.01 to 0.10 ions/nm. In-situ 3.0 MeV He Rutherford backscattering spectrometry along the -axial channeling direction (RBS/C) has been applied to study the damage states ranging from small defect concentrations to a fully amorphous state. Results show that the crystal can be readily amorphized under the irradiation conditions. Room-temperature recovery of the defects produced at 150 K has been observed, while the defects produced at 300 K are thermally stable at room temperature. Results also indicate that the RBS/C analysis used in this study induced negligible damage in the near-surface regime. In addition, irradiation at and below room temperature using He and C3 ions leads to surface exfoliation at the corresponding damage peaks

  13. Emergent Topological Phenomena in Thin Films of Pyrochlore Iridates

    Science.gov (United States)

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-06-01

    Because of the recent development of thin film and artificial superstructure growth techniques, it is possible to control the dimensionality of the system, smoothly between two and three dimensions. In this Letter we unveil the dimensional crossover of emergent topological phenomena in correlated topological materials. In particular, by focusing on the thin film of pyrochlore iridate antiferromagnets grown along the [111] direction, we demonstrate that the thin film can have a giant anomalous Hall conductance, proportional to the thickness of the film, even though there is no Hall effect in 3D bulk material. Moreover, in the case of ultrathin films, a quantized anomalous Hall conductance can be observed, despite the fact that the system is an antiferromagnet. In addition, we uncover the emergence of a new topological phase, the nontrivial topological properties of which are hidden in the bulk insulator and manifest only in thin films. This shows that the thin film of correlated topological materials is a new platform to search for unexplored novel topological phenomena.

  14. Density Functional Theory Study of Leaching Performance of Different Acids on Pyrochlore (100) Surface

    Science.gov (United States)

    Yang, Xiuli; Fang, Qing; Ouyang, Hui

    2018-06-01

    Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.

  15. Recycling of rare earths from Hg-containing fluorescent lamp scraps by solid state chlorination; Rueckgewinnung Seltener Erden aus quecksilberbelasteten Leuchtstoffen mittels Feststoffchlorierung

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Tom; Froehlich, Peter; Bertau, Martin [TU Bergakademie Freiberg (Germany); Golon, Katja [FNE Entsorgungsdienste GmbH, Freiberg (Germany)

    2015-10-15

    Solid state chlorination with NH{sub 4}Cl comprises a method for rare earth recycling apart from pyro- or hydrometallurgical strategies. The examined partially Hg-containing fluorescent lamp scraps are rich in rare earths like La, Ce, Tb and Gd, but especially in Y and Eu. By mixing with NH{sub 4}Cl and heating up to NH{sub 4}Cl decomposition temperature in a sublimation reactor, Y and Eu could be transferred selectively into their respective metal chlorides with high yields. The yield and selectivity depend on temperature and the ratio of NH{sub 4}Cl to fluorescent lamp scraps, which were varied systematically.

  16. Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania

    Science.gov (United States)

    Boniface, Nelson

    2017-02-01

    The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.

  17. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Morf, Leo S., E-mail: leo.morf@bd.zh.ch [Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zurich (Switzerland); Gloor, Rolf; Haag, Olaf [Bachema AG, Schlieren (Switzerland); Haupt, Melanie [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland); Skutan, Stefan [Bachema AG, Schlieren (Switzerland); Lorenzo, Fabian Di; Böni, Daniel [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland)

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  18. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    International Nuclear Information System (INIS)

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-01-01

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  19. Evidences of the expanding Earth from space-geodetic data over solid land and sea level rise in recent two decades

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2015-07-01

    Full Text Available According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008, our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades. In another aspect, the satellite altimetry observations spanning recent two decades demonstrate the sea level rise (SLR rate 3.2 ± 0.4 mm/a, of which 1.8 ± 0.5 mm/a is contributed by the ice melting over land. This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century, which coincides with the estimate provided by previous authors. The SLR observation by altimetry is not balanced by the ice melting and thermal expansion, which is an open problem before this study. However, in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a. Combining the expansion rates of land part and oceanic part, we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades. If the Earth expands at this rate, then the altimetry-observed SLR can be well explained.

  20. Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications

    DEFF Research Database (Denmark)

    Holtappels, P.; Poulsen, F.W.; Mogensen, Mogens Bjerg

    2000-01-01

    Pyrochlores with praseodymium as the A-site cation and zirconium, tin, cerium and manganese cations on the B-site were prepared in air and their electrical conductivities were investigated as a function of oxygen partial pressure and temperature. Pure Pr2Zr2O7+/-delta as well as samples modified...

  1. Investigation of annealed and metamict pyrochlore minerals by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Greegor, R.B.; Lytle, F.W.; Ewing, R.C.; Chakoumakos, B.C.; Lumpkin, G.R.

    1984-01-01

    Materials of the pyrochlore structure type exhibit a variety of interesting properties including phases capable of acting as hosts for actinides in radioactive wastes. Studies of curium doped gadolinium titanate phases (Gd 2 Ti 2 O 7 ) have been made which showed that the radiation damage ingrowth followed an exponential relationship. For the study reported here a series of synthetic pyrochlores were produced having the titanate phase with the general formula (RE) 2 Ti 2 O 7 , RE = Er, Y 2 , Gd 2 , Dy, La. Additionally a set of metamict (radiation damaged) pyrochlores was examined in both a natural and post temperature annealed state. Experiments were conducted on these samples using the Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES) techniques. In summary, these studies show that in pyrochlore structure types the Ti-O cage undergoes changes due to radiation damage. The individual Ti-O bonds become more disordered which leads to a loss of short and long range order and, ultimately, to expansion of the bulk material. 2 refs., 2 figs

  2. Experimental Insights into Ground-State Selection of Quantum XY Pyrochlores

    Science.gov (United States)

    Hallas, Alannah M.; Gaudet, Jonathan; Gaulin, Bruce D.

    2018-03-01

    Extensive experimental investigations of the magnetic structures and excitations in the XY pyrochlores have been carried out over the past decade. Three families of XY pyrochlores have emerged: Yb2B2O7, Er2B2O7, and, most recently, [Formula: see text]Co2F7. In each case, the magnetic cation (either Yb, Er, or Co) exhibits XY anisotropy within the local pyrochlore coordinates, a consequence of crystal field effects. Materials in these families display rich phase behavior and are candidates for exotic ground states, such as quantum spin ice, and exotic ground-state selection via order-by-disorder mechanisms. In this review, we present an experimental summary of the ground-state properties of the XY pyrochlores, including evidence that they are strongly influenced by phase competition. We empirically demonstrate the signatures for phase competition in a frustrated magnet: multiple heat capacity anomalies, suppressed TN or TC, sample- and pressure-dependent ground states, and unconventional spin dynamics.

  3. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    International Nuclear Information System (INIS)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-01-01

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb 2 Ti 2 O 7 . However, previous structural studies indicated that Tb 2 Ti 2 O 7 is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb 2 Ti 2 O 7 is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u 2 's) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L III and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb 2 Ti 2 O 7 has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures

  4. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal; Lardhi, Sheikha F.; Ziani, Ahmed; Harb, Moussab; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-01-01

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin

  6. Investigation and analysis to the content of natural radionuclides at rate-earth ore and solid waste in China through the first nationwide pollution source survey

    International Nuclear Information System (INIS)

    Lou Jianjun; Liu Guifang; Sun Qinghong

    2011-01-01

    China has launched the First Nationwide Pollution Source Survey (FNPSS) during 2006-2009. Ministry Environmental Protection (MEP) sponsored the campaign of measuring the natural radionuclide contents. And the Ministry Environmental Protection (MEP) organized the measurements of natural radionuclide contents of in the factories and mines associated with rare-earth, niobium/tantalum, zircon, tin, lead/zinc, copper, iron, phosphate, coal, aluminum and vanadium. This paper analyzes mainly the data on the contents of U, 232 Th and 226 Ra in the rare-earth ore and solid waste produced by the rare-earth industry in China, as one of a series of papers on naturally occurring radioactive materials (NORM) s investigation. It is concluded that the average of the U, 232 Th and 226 Ra for the monazite sand of rare-earth ore is 16911, 49683, and 20072 Bq/kg, respectively. The average of U, 232 Th and 226 Ra in bastnaesite is 42, 701 and 91 Bq/kg, respectively. The average of U, 232 Th and 226 Ra in the ionic type rare-earth ore is 3918.6, 2315 and 1221 Bq/kg, respectively. (authors)

  7. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    International Nuclear Information System (INIS)

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-01

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB 6 , SrB 6 , BaB 6 and the ternary hexaborides Ca x Sr 1−x B 6 , Ca x Ba 1−x B 6 , Sr x Ba 1−x B 6 (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB 6 (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials

  8. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide

    Directory of Open Access Journals (Sweden)

    Lijie Ai

    2018-04-01

    Full Text Available A novel active Ca-Co dually-doping pyrochlore oxide La2−xCaxSn2−yCoyO7 catalyst was synthesized by the sol-gel method for catalytic oxidation of soot particulates. The microstructure, atomic valence, reduction, and adsorption performance were investigated by X-ray powder diffraction (XRD, scanning electron microscope (SEM, Fourier-transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, H2-TPR (temperature-programmed reduction, and in situ diffuse reflection infrared Fourier transformed (DRIFTS techniques. Temperature programmed oxidation (TPO tests were performed with the mixture of soot-catalyst under tight contact conditions to evaluate the catalytic activity for soot combustion. Synergetic effect between Ca and Co improved the structure and redox properties of the solids, increased the surface oxygen vacancies, and provided a suitable electropositivity for oxide, directly resulting in the decreased ignition temperature for catalyzed soot oxidation as low as 317 °C. The presence of NO in O2 further promoted soot oxidation over the catalysts with the ignition temperature decreased to about 300 °C. The DRIFTS results reveal that decomposition of less stable surface nitrites may account for NO2 formation in the ignition period of soot combustion, which thus participate in the auxiliary combustion process.

  9. The application of micro-column solid phase extraction techniques for the determination of rare earth elements in actinide containing matrices

    International Nuclear Information System (INIS)

    Carney, K.P.; Cummings, D.G.

    1995-01-01

    The design and characterization of an argon segmented-solid phase extraction system is described. A 200 ul volume micro-column has been constructed for the preconcentration of rare earth elements (REEs) from salt matrices containing uranium. An inductively coupled plasma atomic emission spectrometer has been utilized for simultaneous detection of Sr, Y and the REEs (namely Ce, Eu, La, Nd, Pr, Sm) at levels ranging from 5- to 2000 ppm in LiCl/KCl samples containing U. Preconcentration factors of 100 fold have been demonstrated. The precision, linear dynamic range and column performance of the system will be presented. (author). 5 refs., 5 figs., 3 tabs

  10. The cosmic ray actinide charge spectrum derived from a 10 m2 array of solid state nuclear track detectors in Earth orbit

    International Nuclear Information System (INIS)

    Donnelly, J.; Thompson, A.; O'Sullivan, D.; Drury, L.O'C.; Wenzel, K.-P.

    2001-01-01

    The DIAS-ESTEC Ultra Heavy Cosmic Ray Experiment (UHCRE) on the Long Duration Exposure Facility, collected approximately 3000 cosmic ray nuclei with Z>65 in the energy region E>1.5 GeV nucleon -1 during a six year exposure in Earth orbit. The entire accessible collecting area of the solid state nuclear track detector (SSNTD) array has been scanned for actinides, yielding a sample of 30 from an exposure of ∼150 m 2 sr yr. The UHCRE experimental setup is described and the observed charge spectrum presented. The current best value for the cosmic ray actinide relative abundance, (Z>88)/(74≤Z≤87), is reported

  11. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  12. Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, Er) at high pressure

    Science.gov (United States)

    Turner, Katlyn M.; Tracy, Cameron L.; Mao, Wendy L.; Ewing, Rodney C.

    2017-12-01

    Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, and Er) were investigated in situ to 50 GPa in order to determine their structural response to compression and compare their response to that of lanthanide titanate, zirconate, and hafnate pyrochlores. The cation radius ratio of A3+/B4+ in pyrochlore oxides (A2B2O7) is thought to be the dominant feature that influences their response on compression. The ionic radius of Sn4+ is intermediate to that of Ti4+, Zr4+, and Hf4+, but the 〈Sn-O〉 bond in stannate pyrochlore is more covalent than the 〈B-O〉 bonds in titanates, zirconate, and hafnates. In stannates, based on in situ Raman spectroscopy, pyrochlore cation and anion sublattices begin to disorder with the onset of compression, first measured at 0.3 GPa. The extent of sublattice disorder versus pressure is greater in stannates with a smaller Ln3+ cation. Stannate pyrochlores (Fd-3m) begin a sluggish transformation to an orthorhombic, cotunnite-like structure at ~28 GPa similar transitions have been observed in titanate, zirconate, and hafnate pyrochlores at varying pressures (18-40 GPa) with cation radius ratio. The extent of the phase transition versus pressure varies directly with the size of the Ln3+ cation. Post-decompression from ~50 GPa, Er2Sn2O7 and Gd2Sn2O7 adopt a pyrochlore structure, rather than the multi-scale defect-fluorite  +  weberite-type structure adopted by Nd2Sn2O7 that is characteristic of titanate, zirconate, and hafnate pyrochlores under similar conditions. Like pyrochlore titanates, zirconates, and hafnates, the bulk modulus, B 0, of stannates varies linearly and inversely with cation radius ratio from 1 1 1 GPa (Nd2Sn2O7) to 251 GPa (Er2Sn2O7). The trends of bulk moduli in stannates in this study are in excellent agreement with previous experimental studies on stannates and suggest that the size of the Ln3+ cation is the primary determining factor of B 0. Additionally, when normalized to r A

  13. Stability of the Weyl-semimetal phase on the pyrochlore lattice

    Science.gov (United States)

    Berke, Christoph; Michetti, Paolo; Timm, Carsten

    2018-04-01

    Motivated by the proposal of a Weyl-semimetal phase in pyrochlore iridates, we consider a Hubbard-type model on the pyrochlore lattice. To shed light on the question as to why such a state has not been observed experimentally, its robustness is analyzed. On the one hand, we study the possible phases when the system is doped. Magnetic frustration favors several phases with magnetic and charge order that do not occur at half filling, including additional Weyl-semimetal states close to quarter filling. On the other hand, we search for density waves that break translational symmetry and destroy the Weyl-semimetal phase close to half filling. The uniform Weyl semimetal is found to be stable, which we attribute to the low density of states close to the Fermi energy.

  14. Compositional Evolution of Pyrochlore-Group Minerals in Carbonatites of the Belaya Zima Pluton, Eastern Sayan

    Science.gov (United States)

    Khromova, E. A.; Doroshkevich, A. G.; Sharygin, V. V.; Izbrodin, L. A.

    2017-12-01

    Pyrochlore-group minerals are the main concentrators of niobium in carbonatites of the Belaya Zima alkaline pluton. Fluorcalciopyrochlore, kenopyrochlore and hydropyrochlore were identified in chemical composition. Their main characteristics are given: compositional variation, morphology, and zoning. During evolution from early calcite to late ankerite carbonatites, the UO2, TiO2, REE, and Y contents gradually increased. All carbonatite types are suggested to contain initial fluorcalciopyrochlore. However, in calcite-dolomite and ankerite carbonatites, it is partially or completely hydrated due to hydrothermal processes at the late stage of the pluton. This hydration resulted in the appearance of kenopyrochlore and hydropyrochlore due to removal of Ca, Na and F, and input of Ba, H2O, K, Si, Fe, and probably U and REE. At the last stage of the pluton, this hydrated pyrochlore was replaced by Fe-bearing columbite.

  15. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-06-14

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb{sub 2}Ti{sub 2}O{sub 7}. However, previous structural studies indicated that Tb{sub 2}Ti{sub 2}O{sub 7} is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb{sub 2}Ti{sub 2}O{sub 7} is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u{sup 2}'s) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L{sub III} and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb{sub 2}Ti{sub 2}O{sub 7} has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures.

  16. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaemin [Department; Shih, Pei-Chieh [Department; Tsao, Kai-Chieh [Department; Pan, Yung-Tin [Department; Yin, Xi [Department; Sun, Cheng-Jun [X-ray; Yang, Hong [Department

    2017-08-17

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge for the production of hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance towards OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1-M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap between Ru 4d and O 2p orbitals and therefore more stable Ru-O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7-δ pyrochlore is also free of expensive iridium metal, thus a cost-effective candidate for practical applications.

  17. Emergence of magnetic order in ultra-thin pyrochlore iridate films

    Science.gov (United States)

    Cheema, Suraj; Serrao, Claudy; Mundy, Julia; Patankar, Shreyas; Birgeneau, Robert; Orenstein, Joseph; Salahuddin, Sayeef; Ramesh, Ramamoorthy

    We report on thickness-dependent magnetotransport in (111) - oriented Pb2Ir2O7-x (Pb227) epitaxial thin films. For thicknesses greater than 4 nm, the magnetoresistance (MR) of metallic Pb227 is positive, linear and non-saturated up to 14 T. Meanwhile at 4 nm, the conduction turns nonmetallic and the MR becomes negative and asymmetric upon field-cooling; such traits are reminiscent of all-in-all-out (AIAO) magnetic order in the insulating pyrochlore iridates. Hysteretic low-field MR dips and trained-untrained resistivity bifurcations suggest the presence of magnetic conducting domain walls within the chiral AIAO spin structure. Beyond just AIAO order, angular-dependent MR indicates a magnetic phase space hosting 2-in-2-out (2I2O) spin ice order. Such anomalous magnetotransport calls for re-evaluation of the pyrochlore iridate phase diagram, as epitaxially strained Pb227 exhibits traits reminiscent of both the insulating magnetic and metallic spin-liquid members. Furthermore, these results open avenues for realizing topological phase predictions in (111) - oriented pyrochlore slabs of kagome-triangular iridate heterostructures. This work is supported by the Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231.

  18. Observations on the reliability of COTS-device-based solid state data recorders operating in low-earth orbit

    International Nuclear Information System (INIS)

    Underwood, C.I.

    1999-01-01

    This paper presents the results of Surrey Space Centre's experience in using different coding schemes and hardware configurations to protect data and protect data and software stored in COTS-device (Commercial-Off-The-Shelf) based memories on-board operational spacecraft in low Earth orbit. (author)

  19. Synthesis by two methods and crystal structure determination of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martinez, Leticia M., E-mail: lettorresg@yahoo.com [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Ruiz-Gomez, Miguel A. [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); Figueroa-Torres, M.Z.; Juarez-Ramirez, Isaias [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Moctezuma, Edgar [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); and others

    2012-04-16

    Graphical abstract: The monoclinic (space group C2/c) structure of a new compound, Sm{sub 2}FeTaO{sub 7} shows an alternating Sm-O and Fe/Ta-O layers. In the Fe/Ta-O layer, Fe/Ta1 and Fe/Ta3 cations are coordinated by six oxygen atoms, forming irregular octahedral interconnected into a hexagonal tungsten bronze (HTB) type network. The HTB layer is a fundamental framework in the pyrohlore-related structure. Highlights: Black-Right-Pointing-Pointer Pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} prepared by solid state reaction and sol-gel. Black-Right-Pointing-Pointer Sm{sub 2}FeTaO{sub 7} crystallizes with a monoclinic crystal structure and space group C2/c. Black-Right-Pointing-Pointer The compound is synthesized by sol-gel at lower temperature and time than solid state. Black-Right-Pointing-Pointer Surface area of sol-gel Sm{sub 2}FeTaO{sub 7} is 10 times higher than that prepared by solid state. - Abstract: This paper reports on the synthesis of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} by both solid state reaction and sol-gel synthesis routes. Structural features were determined by X-ray powder diffraction and Rietveld refinement and were corroborated using Transmission Electron Microscopy (TEM). The results revealed that Sm{sub 2}FeTaO{sub 7} crystallized in the monoclinic system with space group C2/c and the following cell parameters: a = 13.1307(5) Angstrom-Sign , b = 7.5854(3) Angstrom-Sign , c = 11.6425(4) Angstrom-Sign and {beta} = 100.971(2) Degree-Sign . The monoclinic structure of Sm{sub 2}FeTaO{sub 7} showed an arrangement of alternating Sm-O and Fe/Ta-O layers and two types of irregular octahedra of Fe/Ta-O, which are interconnected into a hexagonal tungsten bronze (HTB)-type network. On the other hand, Sm{sub 2}FeTaO{sub 7} prepared by sol-gel was obtained with lower particle sizes than the solid state produced compound. The difference in particle size causes a difference of one order of magnitude in the specific surface area. In

  20. Recovery of Rare Earth Elements from Solid Residue of El-Sela Ore, South Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Salman, A.A.; Sharaby, C.M.; Elnagar, W.A.; Khawassek, Y.M.; Abdo, Sh.M.

    2015-01-01

    The study area of Gabal El Sela at Halaib environ is located at about 20 km west of Abu Ramad City, Egypt. An uraniferous ore material associated with REE was subjected to sulphuric acid leaching for extraction of uranium mainly followed by solid liquid separation through filtration then washing. Physical upgrading was performed upon the dry residue. Chemical treatment by 50% NaOH was carried out where about 250 g residue ground at - 200 mesh were agitated at solid / liquid ratio of 1/2 for one hour. The cake was filtered then dri ed at 100 º C . T he dried cake was subject ed to dissolution by conc. HCl at 80 º C at a solid / liquid ratio 1:1 for one hour . More than 98% of REE was leached out , and then the leach liquor was subjected to selective precipitation by HF and oxalic acid then calcination of REE oxalate

  1. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase.

    Science.gov (United States)

    De Los Santos, Desiré M; Navas, Javier; Aguilar, Teresa; Sánchez-Coronilla, Antonio; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Piñero, Jose Carlos; Blanco, Ginesa; Martín-Calleja, Joaquín

    2015-01-01

    Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm(3+). ICP-AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm(3+) was confirmed by X-ray photoelectron spectroscopy and UV-vis spectroscopy: the incorporation of Tm(3+) was confirmed by the generation of new absorption bands that could be assigned to Tm(3+) transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase.

  2. Rebuttal of the existence of solid rare earth bicarbonates and the crystal structure of holmium nitrate pentahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Rincke, Christine; Schmidt, Horst; Voigt, Wolfgang [Institute for Inorganic Chemistry, TU Bergakademie Freiberg (Germany)

    2017-03-16

    The synthesis routes of Gd(HCO{sub 3}){sub 3}.5H{sub 2}O and Ho(HCO{sub 3}){sub 3}.6H{sub 2}O, which are the only known bicarbonates of rare earth metals, were refuted and the published crystal structures were discussed. Because of the structural relationship of Ho(HCO{sub 3}){sub 3}.6H{sub 2}O to rare earth nitrate hexahydrates,[] the synthesis of holmium nitrate hydrate was considered and the crystal structure of Ho(NO{sub 3}){sub 3}.5H{sub 2}O was solved by single crystal X-ray diffraction measurements. Ho(NO{sub 3}){sub 3}.5H{sub 2}O was determined to crystallize in the triclinic space group P1 (no. 2) with a = 6.5680(14) Aa, b = 9.503(2) Aa, c = 10.462(2) Aa, α = 63.739(14) , β = 94.042(2) and γ = 76.000(16) . The crystal structure consists of isolated [Ho(H{sub 2}O){sub 4}(NO{sub 3}){sub 3}] polyhedra and non-coordinating water molecules. It is isotypic to other rare earth nitrate pentahydrates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Ion-Exchange Reaction Of A-Site In A2Ta2O6 Pyrochlore Crystal Structure

    Directory of Open Access Journals (Sweden)

    Matsunami M.

    2015-06-01

    Full Text Available Na+ or K+ ion rechargeable battery is started to garner attention recently in Place of Li+ ion cell. It is important that A+ site ion can move in and out the positive-electrode materials. When K2Ta2O6 powder had a pyrochlore structure was only dipped into NaOH aqueous solution at room temperature, Na2Ta2O6 was obtained. K2Ta2O6 was fabricated from a tantalum sheet by a hydrothermal synthesize with KOH aqueous solution. When Na2Ta2O6 was dipped into KOH aqueous solution, K2Ta2O6 was obtained again. If KTaO3 had a perovskite structure was dipped, Ion-exchange was not observed by XRD. Because a lattice constant of pyrochlore structure of K-Ta-O system is bigger than perovskite, K+ or Na+ ion could shinny through and exchange between Ta5+ and O2− ion site in a pyrochlore structure. K+ or Na+ ion exchange of A2Ta2O6 pyrochlore had reversibility. Therefore, A2Ta2O6 had a pyrochlore structure can be expected such as Na+ ion rechargeable battery element.

  4. Ellipsometry investigation of perovskite/pyrochlore PZT thin film stacks

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Glinchuk, M. D.; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    2001-01-01

    Roč. 258, - (2001), s. 271-276 ISSN 0015-0193 R&D Projects: GA MŠk LN00A015; GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferroelectric film * depth profile * interface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2001

  5. Impression creep properties of a semi-solid processed magnesium-aluminum alloy containing calcium and rare earth elements

    International Nuclear Information System (INIS)

    Nami, B.; Razavi, H.; Miresmaeili, S.M.; Mirdamadi, Sh.; Shabestari, S.G.

    2011-01-01

    The creep properties of a thixoformed magnesium-aluminum alloy containing calcium and rare earth elements were studied under shear modulus-normalized stresses ranging from 0.0225 to 0.035 at temperatures of 150-212 o C using the impression creep technique. Analysis of the creep mechanism based on a power-law equation indicated that pipe diffusion-controlled dislocation climb is the dominant mechanism during creep. The alloy has a better creep resistance than high-pressure die-cast magnesium-aluminum alloy.

  6. Speciation of uranium in La{sub 2}Zr{sub 2}O{sub 7} pyrochlore by TRPLS

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, M.; Rajeswari, B.; Hon, N. S.; Kadam, R. M., E-mail: rmkadam@barc.gov.in; Natarajan, V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2015-06-24

    We discuss the speciation of uranium in lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7} =LZO) pyrochlore ceramic prepared via a gel-combustion route. Uranium concentration in the pyrochlore was optimized to 2 mol%. XRD and SEM experiments were carried out to assess the phase and homogeneity of the prepared samples. Time resolved photoluminescence (TRPLS) investigations were carried out for understanding the species stabilized in the pyrochlore host. It was observed that, uranium exists as uranate ion (UO{sub 6}{sup 6−}) in the zirconate host where it replaces the ‘Zr’ ions at its regular site with surrounding defect centers created for charge compensation.

  7. The cosmic ray actinide charge spectrum derived from a 10 m{sup 2} array of solid state nuclear track detectors in Earth orbit

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J. E-mail: jd@cp.dias.ie; Thompson, A.; O' Sullivan, D.; Drury, L.O' C.; Wenzel, K.-P

    2001-06-01

    The DIAS-ESTEC Ultra Heavy Cosmic Ray Experiment (UHCRE) on the Long Duration Exposure Facility, collected approximately 3000 cosmic ray nuclei with Z>65 in the energy region E>1.5 GeV nucleon{sup -1} during a six year exposure in Earth orbit. The entire accessible collecting area of the solid state nuclear track detector (SSNTD) array has been scanned for actinides, yielding a sample of 30 from an exposure of {approx}150 m{sup 2} sr yr. The UHCRE experimental setup is described and the observed charge spectrum presented. The current best value for the cosmic ray actinide relative abundance, (Z>88)/(74{<=}Z{<=}87), is reported.

  8. MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene; Ormel, Chris W., E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu, E-mail: ormel@berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2014-12-20

    Close-in super-Earths having radii 1-4 R {sub ⊕} may possess hydrogen atmospheres comprising a few percent by mass of their rocky cores. We determine the conditions under which such atmospheres can be accreted by cores from their parent circumstellar disks. Accretion from the nebula is problematic because it is too efficient: we find that 10 M {sub ⊕} cores embedded in solar metallicity disks tend to undergo runaway gas accretion and explode into Jupiters, irrespective of orbital location. The threat of runaway is especially dire at ∼0.1 AU, where solids may coagulate on timescales orders of magnitude shorter than gas clearing times; thus nascent atmospheres on close-in orbits are unlikely to be supported against collapse by planetesimal accretion. The time to runaway accretion is well approximated by the cooling time of the atmosphere's innermost convective zone, whose extent is controlled by where H{sub 2} dissociates. Insofar as the temperatures characterizing H{sub 2} dissociation are universal, timescales for core instability tend not to vary with orbital distance—and to be alarmingly short for 10 M {sub ⊕} cores. Nevertheless, in the thicket of parameter space, we identify two scenarios, not mutually exclusive, that can reproduce the preponderance of percent-by-mass atmospheres for super-Earths at ∼0.1 AU, while still ensuring the formation of Jupiters at ≳ 1 AU. Scenario (a): planets form in disks with dust-to-gas ratios that range from ∼20× solar at 0.1 AU to ∼2× solar at 5 AU. Scenario (b): the final assembly of super-Earth cores from mergers of proto-cores—a process that completes quickly at ∼0.1 AU once begun—is delayed by gas dynamical friction until just before disk gas dissipates completely. Both scenarios predict that the occurrence rate for super-Earths versus orbital distance, and the corresponding rate for Jupiters, should trend in opposite directions, as the former population is transformed into the latter: as

  9. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    International Nuclear Information System (INIS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-01-01

    The location of extraframework cations in Sr 2+ and Ba 2+ ion-exchanged SAPO-34 was estimated by means of 1 H and 23 Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO 2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO 2 adsorption performance. Highlights: ► Location of extraframework Sr 2+ or Ba 2+ cations was estimated by means of 1 H and 23 Na MAS NMR. ► Level of Sr 2+ or Ba 2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr 2+ and Ba 2+ ion exchanged SAPOs are outstanding CO 2 adsorbents.

  10. Elaboration of building materials from industrial waste from solid granular diatomaceous earth; Elaboracion de material de construccion a partir de residuos industriales solidos granulares procedentes de tierras diatomaceas

    Energy Technology Data Exchange (ETDEWEB)

    Del Angel S, A.

    2015-07-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  11. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  12. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    Science.gov (United States)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  13. XPS studies of ceramics with pyrochlore structure for radioactive wastes disposal

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Vukchevich, L.; Ivanov, K.E.; Utkin, I.O; Teterin, A. Yu.; Maslakov, K.I.; Yudintseva, T.S.; Yudintsev, S.V.; Stefanovsky, S.V.; Lapina, M.I. . E-mail address of corresponding author: vukas@rc.pmf.cg.ac.yu; Vukchevich, L.)

    2005-01-01

    X-ray photoelectron spectroscopy (XPS) study of ceramics CaThSn 2 O 7 and CaThZr 2 O 7 with pyrochlore structure used as matrixes for the disposal of long lived high level radioactive wastes was done. On the basis of the XPS parameters of the core and outer electrons in the binding energy range 0 - 1000 eV the oxidation states of the included metals were determined, quantitative elemental and ionic analysis was carried out and a conclusion on the monophaseness of the studied samples was drawn. The obtained data agree with the X-ray diffraction and scanning electron microscopy results. (author)

  14. Isotope effect on superconductivity and Raman phonons of Pyrochlore Cd2Re2O7

    Science.gov (United States)

    Razavi, F. S.; Hajialamdari, M.; Reedyk, M.; Kremer, R. K.

    2018-06-01

    Cd2Re2O7 is the only α-Pyrochlore exhibiting superconductivity with a transition temperature (Tc) of ∼ 1 K. In this study, we present the effect of oxygen isotope (18O) as well as combined 18O and cadmium isotope (116Cd) substitution on the superconductivity and Raman scattering spectrum of Cd2Re2O7. The change of Tc and the energy gap Δ(T) are reported using various techniques including point contact spectroscopy. The shift in Raman phonon frequencies upon isotope substitution will be compared with measurement of the isotope effect on the superconducting transition temperature.

  15. Structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7

    Science.gov (United States)

    Kumar, Harish; Chaurasia, Rachna; Kumari, Pratibha; Paramanik, A. K.

    2018-04-01

    We have studied the structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7. Structural investigation has been done using x-ray powder diffraction and Rietveld analysis. Pr2Ir2O7 crystallize in cubic crystallographic phase with Fd-3m space group. Temperature dependent magnetization data does not show magnetic bifurcation down to 2 K. Electrical resistivity data of Pr2Ir2O7 exhibits metallic behavior throughout temperature range. Below 50 K, a small rise in resistivity data of Pr2Ir2O7 is observed down to 12 K.

  16. Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7

    DEFF Research Database (Denmark)

    Gaulin, B.D.; Reimers, J.N.; Mason, T.E.

    1992-01-01

    The magnetic metal ions in the cubic pyrochlore Tb2Mo2O7 form an infinite three-dimensional network of corner-sharing tetrahedra with a very high potential for frustration in the presence of antiferromagnetism. We have performed neutron scattering measurements which show short-range spatial...... correlations that develop continuously with decreasing temperature, while the characteristic time scale for the fluctuating moments decreases dramatically below T(f) is similar to 25 K. Therefore, this pure material, which possesses frustration that is purely geometrical in origin, displays a spin-glass state...

  17. Isomorphic Structural Transition in the β-Pyrochlore Oxide Superconductor KOs2O6

    Science.gov (United States)

    Yamaura, Jun-ichi; Takigawa, Masashi; Yamamuro, Osamu; Hiroi, Zenji

    2010-04-01

    A phase transition observed at Tp = 7.65 K in the β-pyrochlore oxide superconductor KOs2O6 is studied by means of heat capacity, 39K-NMR, and X-ray diffraction measurements using high-quality single crystals. We find evidence of an isomorphic structural transition at Tp without the off-center freezing of the K ion even below Tp. It is possibly related to the rattling motion of the K ion in an oversized atomic cage.

  18. High-pressure resistivity measurements on the β-pyrochlore oxide KOs2O6

    Science.gov (United States)

    Ogusu, Hiroki; Takeshita, Nao; Yamaura, Jun-Ichi; Okamoto, Yoshihiko; Hiroi, Zenji

    2010-12-01

    High-pressure resistivity measurements are performed on a high-quality single crystal of the β-pyrochlore oxide KOs2O6 in the pressure range of 1.0 to 5.0 GPa. The superconducting transition temperature T increases slightly from 9.6 K at ambient pressure to 9.8 K at 1.0 GPa, decreases gradually with increasing pressure, and suddenly drops from 6.5 K to 3.2 K across P=3.6GPa. The drop of T at P is likely to be related to a change in the rattling vibration associated with a symmetry-breaking structural transition.

  19. Low-temperature specific heat of the β-pyrochlore oxide superconductors under high pressure

    Science.gov (United States)

    Isono, T.; Iguchi, D.; Machida, Y.; Izawa, K.; Salce, B.; Flouquet, J.; Ogusu, H.; Yamaura, J.; Hiroi, Z.

    2011-01-01

    We report the results of the low-temperature specific heat measurements of the single crystalline β-pyrochlore oxide superconductors AOs 2O 6 (A=K, Rb, and Cs) under high pressure up to 13 GPa. We find that superconducting transition temperature ( Tc) monotonically increases for CsOs 2O 6 and RbOs 2O 6, while the one for KOs 2O 6 decreases by applying the pressure. With further increasing the pressure, Tc is suddenly suppressed at the same lattice volume for all compounds, concomitant with the first-order structural phase transition.

  20. Rattling motion in β-pyrochlore compounds explored by the millimeter-wave conductivity measurement

    International Nuclear Information System (INIS)

    Maeda, Atsutaka; Oba, Kentaro; Imai, Yoshinori; Yamaura, Jun-ichi; Hiroi, Zenji

    2010-01-01

    Complex conductivity is investigated at 19 GHz and 44 GHz in the normal state in β-pyrochlore materials, AOs 2 O 6 (A = Cs, Rb and K). In Cs material, large enhancement of the quasiparticle (QP) scattering time, τ, is observed at low temperatures, whereas there is no such enhancement in Rb and K materials. This indicates that rattling motion is absent in Cs material, whether in K and Rb materials it plays the role as a scatterer for QPs. In Rb materials, we find charge excitation possibly originated from the rattling motion.

  1. Thermal properties of rare earth cobalt oxides and of La1- x Gd x CoO3 solid solutions

    Science.gov (United States)

    Orlov, Yu. S.; Dudnikov, V. A.; Gorev, M. V.; Vereshchagin, S. N.; Solov'ev, L. A.; Ovchinnikov, S. G.

    2016-05-01

    Powder X-ray diffraction data for the crystal structure, phase composition, and molar specific heat for La1‒ x Gd x CoO3 cobaltites in the temperature range of 300-1000 K have been analyzed. The behavior of the volume thermal expansion coefficient in cobaltites with isovalent doping in the temperature range of 100-1000 K is studied. It is found that the β( T) curve exhibits two peaks at some doping levels. The rate of the change in the occupation number for the high-spin state of cobalt ions is calculated for the compounds under study taking into account the spin-orbit interaction. With the Birch-Murnaghan equation of state, it is demonstrated that the low-temperature peak in the thermal expansion shifts with the growth of the pressure toward higher temperatures and at pressure P ˜ 7 GPa coincides with the second peak. The similarity in the behavior of the thermal expansion coefficient in the La1- x Gd x CoO3 compounds with the isovalent substitution and the undoped LnCoO3 compound (Ln is a lanthanide) is considered. For the whole series of rare earth cobalt oxides, the nature of two specific features in the temperature dependence of the specific heat and thermal expansion is revealed and their relation to the occupation number for the high-spin state of cobalt ions and to the insulator-metal transition is established.

  2. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  3. Topological Magnon Bands and Unconventional Superconductivity in Pyrochlore Iridate Thin Films

    Science.gov (United States)

    Laurell, Pontus; Fiete, Gregory A.

    2017-04-01

    We theoretically study the magnetic properties of pyrochlore iridate bilayer and trilayer thin films grown along the [111] direction using a strong coupling approach. We find the ground state magnetic configurations on a mean field level and carry out a spin-wave analysis about them. In the trilayer case the ground state is found to be the all-in-all-out (AIAO) state, whereas the bilayer has a deformed AIAO state. For all parameters of the spin-orbit coupled Hamiltonian we study, the lowest magnon band in the trilayer case has a nonzero Chern number. In the bilayer case we also find a parameter range with nonzero Chern numbers. We calculate the magnon Hall response for both geometries, finding a striking sign change as a function of temperature. Using a slave-boson mean-field theory we study the doping of the trilayer system and discover an unconventional time-reversal symmetry broken d +i d superconducting state. Our study complements prior work in the weak coupling limit and suggests that the [111] grown thin film pyrochlore iridates are a promising candidate for topological properties and unconventional orders.

  4. Quantum phase transitions and anomalous Hall effect in a pyrochlore Kondo lattice

    Science.gov (United States)

    Grefe, Sarah; Ding, Wenxin; Si, Qimiao

    The metallic variant of the pyrochlore iridates Pr2Ir2O7 has shown characteristics of a possible chiral spin liquid state [PRL 96 087204 (2006), PRL 98, 057203 (2007), Nature 463, 210 (2010)] and quantum criticality [Nat. Mater. 13, 356 (2014)]. An important question surrounding the significant anomalous Hall response observed in Pr2Ir2O7 is the nature of the f-electron local moments, including their Kondo coupling with the conduction d-electrons. The heavy effective mass and related thermodynamic characteristics indicate the involvement of the Kondo effect in this system's electronic properties. In this work, we study the effects of Kondo coupling on candidate time-reversal-symmetry-breaking spin liquid states on the pyrochlore lattice. Representing the f-moments as slave fermions Kondo-coupled to conduction electrons, we study the competition between Kondo-singlet formation and chiral spin correlations and determine the zero-temperature phase diagram. We derive an effective chiral interaction between the local moments and the conduction electrons and calculate the anomalous Hall response across the quantum phase transition from the Kondo destroyed phase to the Kondo screened phase. We discuss our results' implications for Pr2Ir2O7 and related frustrated Kondo-lattice systems.

  5. Spin-1/2 Heisenberg antiferromagnet on the pyrochlore lattice: An exact diagonalization study

    Science.gov (United States)

    Chandra, V. Ravi; Sahoo, Jyotisman

    2018-04-01

    We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and investigate the evolution of the system from the limit of disconnected tetrahedra (J2=0 ) to a correlated state at J1=J2 . We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1=J2 to be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes significantly to the ground-state entanglement at J1=J2 .

  6. Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2017-01-01

    In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion, while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.

  7. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    Science.gov (United States)

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.

  8. High-pressure effects on the superconductivity of β-pyrochlore oxides AOs2O6

    International Nuclear Information System (INIS)

    Muramatsu, Takaki; Takeshita, Nao; Terakura, Chikeko; Takagi, Hidenori; Tokura, Yoshinori; Yonezawa, Shigeki; Muraoka, Yuji; Hiroi, Zenji

    2006-01-01

    High-pressure effects on the superconducting transitions of β-pyrochlore oxide superconductors AOs 2 O 6 (A=Cs, Rb, K) are studied by measuring resistivity under high pressures up to 16 GPa. The superconducting transition temperature T c first increases with increasing pressure in all the compounds and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa) and 10 K (0.6 GPa) for A=Cs, Rb and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 and 6 GPa for A=Rb and K and probably above 10 GPa for A=Cs. Characteristic changes in the temperature dependence of resistivity of RbOs 2 O 6 under high pressure. The residual resistivity largely increases with pressure above 4 GPa and, as a result, resistivity indicates small temperature dependence down to 4.2 K at 7 GPa and application of further pressure up to 10 GPa indicates that temperature dependence of resistivity decrease below 100 K. This characteristic behavior in the β-pyrochlore oxides may originate from the nesting of nearly octahedron shape of Fermi surface

  9. Topological Magnon Bands and Unconventional Superconductivity in Pyrochlore Iridate Thin Films.

    Science.gov (United States)

    Laurell, Pontus; Fiete, Gregory A

    2017-04-28

    We theoretically study the magnetic properties of pyrochlore iridate bilayer and trilayer thin films grown along the [111] direction using a strong coupling approach. We find the ground state magnetic configurations on a mean field level and carry out a spin-wave analysis about them. In the trilayer case the ground state is found to be the all-in-all-out (AIAO) state, whereas the bilayer has a deformed AIAO state. For all parameters of the spin-orbit coupled Hamiltonian we study, the lowest magnon band in the trilayer case has a nonzero Chern number. In the bilayer case we also find a parameter range with nonzero Chern numbers. We calculate the magnon Hall response for both geometries, finding a striking sign change as a function of temperature. Using a slave-boson mean-field theory we study the doping of the trilayer system and discover an unconventional time-reversal symmetry broken d+id superconducting state. Our study complements prior work in the weak coupling limit and suggests that the [111] grown thin film pyrochlore iridates are a promising candidate for topological properties and unconventional orders.

  10. Odd-parity magnetoresistance in pyrochlore iridate thin films with broken time-reversal symmetry

    Science.gov (United States)

    Fujita, T. C.; Kozuka, Y.; Uchida, M.; Tsukazaki, A.; Arima, T.; Kawasaki, M.

    2015-01-01

    A new class of materials termed topological insulators have been intensively investigated due to their unique Dirac surface state carrying dissipationless edge spin currents. Recently, it has been theoretically proposed that the three dimensional analogue of this type of band structure, the Weyl Semimetal phase, is materialized in pyrochlore oxides with strong spin-orbit coupling, accompanied by all-in-all-out spin ordering. Here, we report on the fabrication and magnetotransport of Eu2Ir2O7 single crystalline thin films. We reveal that one of the two degenerate all-in-all-out domain structures, which are connected by time-reversal operation, can be selectively formed by the polarity of the cooling magnetic field. Once formed, the domain is robust against an oppositely polarised magnetic field, as evidenced by an unusual odd field dependent term in the magnetoresistance and an anomalous term in the Hall resistance. Our findings pave the way for exploring the predicted novel quantum transport phenomenon at the surfaces/interfaces or magnetic domain walls of pyrochlore iridates. PMID:25959576

  11. Energetics of stepwise disordering transformation in pyrochlores, RE2Ti2O7 (RE = Y, Gd and Dy)

    International Nuclear Information System (INIS)

    Hayun, Shmuel; Tran, Tien B.; Lian, Jie; Fuentes, Antonio F.; Navrotsky, Alexandra

    2012-01-01

    Graphical abstract: The transformation from disordered to more order state in the pyrochlore system go through multiple energetics steps; the cation sublattice rearrangement is control by the diffusion of the cations while the anion sublattice display an irreversible transformation from a disordered to a higher-ordered state via diffusionless transformation. - Abstract: The capacity to incorporate actinide cations makes pyrochlore titanates first-choice phases in titanate-based waste form ceramics. Despite broad interest in the pyrochlore order–disorder transformation due to the cumulative effects of 238 U, 235 U and 232 Th radioactive decay and their daughter products, only limited thermodynamic data, mainly based on simulations of ion-beam irradiation experiments, have been reported. In this work, for the first time, heavily disordered pyrochlores, RE 2 Ti 2 O 7 (RE = Y, Gd and Dy), from mechanical milling of their constituent oxides, were thermochemically investigated. Two types of thermal events were identified using high-temperature differential scanning calorimetry and correlated to the structural disorder in the cation and anion sublattices. Moreover, the excess formation energy measured by oxide melt solution calorimetry shows that the smaller the ionic radius of the RE, the easier it is to remove damage domains.

  12. Disseminated Museum Displays and Participation of Students from Underrepresented Populations in Polar Research: Education and Outreach for Joint Projects in GPS and Seismology Solid Earth Science Community

    Science.gov (United States)

    Eriksson, S. C.; Wilson, T. J.; Anandakrishnan, S.; Aster, R. C.; Johns, B.; Anderson, K.; Taber, J.

    2006-12-01

    Two Antarctic projects developed by solid earth scientists in the GPS and seismology communities have rich education and outreach activities focused on disseminating information gleaned from this research and on including students from underrepresented groups. Members of the UNAVCO and IRIS research consortia along with international partners from Australia, Canada, Chile, Germany, Italy, New Zealand and the U.K. aim to deploy an ambitious GPS/seismic network to observe the Antarctic glaciological and geologic system using a multidisciplinary and internationally coordinated approach. The second project supports this network. UNAVCO and IRIS are designing and building a reliable power and communication system for autonomous polar station operation which use the latest power and communication technologies for ease of deployment and reliable multi-year operation in severe polar environments. This project will disseminate research results through an IPY/POLENET web-based museum style display based on the next-generation "Museum Lite" capability primarily supported by IRIS. "Museum Lite" uses a standard PC, touch-screen monitor, and standard Internet browsers to exploit the scalability and access of the Internet and to provide customizable content in an interactive setting. The unit is suitable for research departments, public schools, and an assortment of public venues, and can provide wide access to real-time geophysical data, ongoing research, and general information. The POLENET group will work with members of the two consortia to provide content about the project and polar science in general. One unit is to be installed at Barrow's Ilisagvit College through the Barrow Arctic Science Consortium, one at McMurdo Station in Antarctica, and two at other sites to be determined (likely in New Zealand/Australia and in the U.S.). In January, 2006, Museum Lite exhibit was installed at the Amundsen-Scott South Pole Station. Evaluation of this prototype is underway. These

  13. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  14. Commercial alkaline earth boroaluminosilicate glasses for sealing solid oxide cell stacks. Part I: Development of glass-ceramic microstructure and thermomechanical properties

    DEFF Research Database (Denmark)

    Agersted, Karsten; Balic-Zunic, Tonci

    2018-01-01

    Sealing performance in solid oxide cell (SOC) stacks and the devitrification process of commercially available alkaline earth boroaluminosilicate glasses containing 48‐61 mol% SiO2, 18‐28 mol% CaO, 1‐7 mol% MgO, 7‐10 mol% Al2O3, 1‐11 mol% B2O3 plus minor amounts of Na2O, K2O, FeO, and TiO2 were...... investigated and quantified through analysis of phase assemblages as function of heat treatments above the glass transition temperatures using the electron microprobe and powder X‐ray diffraction. For two of these glasses devitrification behavior was compared to the devitrification behavior of similar glasses...... produced in the laboratory. Glasses were characterized after annealing in air at 800°C and 850°C for up to 6 weeks. Even though the glasses lie within a relatively narrow compositional range, sealing performance and the resulting microstructures differed significantly. Best thermomechanical properties...

  15. Nanostructured KTaTeO6 and Ag-doped KTaTeO6 Defect Pyrochlores: Promising Photocatalysts for Dye Degradation and Water Splitting

    Science.gov (United States)

    Venkataswamy, Perala; Sudhakar Reddy, CH.; Gundeboina, Ravi; Sadanandam, Gullapelli; Veldurthi, Naveen Kumar; Vithal, M.

    2018-03-01

    In this study, the nanostructured parent KTaTeO6 (KTTO) and Ag-doped KTaTeO6 (ATTO) catalysts with defect pyrochlore structure were prepared by solid-state and ion-exchange methods, respectively. The synthesized materials were characterized by various techniques to determine their chemical composition, morphology and microstructural features. The XRD studies show that both KTTO and ATTO have cubic structure (space group Fd3m) with high crystallinity. The doping of Ag altered the BET surface area of parent KTTO. The nano nature of the samples was studied by TEM images. A considerable red-shift in the absorption edge is observed for ATTO compared to KTTO. Incorporation of Ag+ in the KTTO lattice is clearly identified from EDX, elemental mapping and XPS results. Degradation of methyl violet and solar water splitting reactions were used to access the photocatalytic activity of KTTO and ATTO. The results obtained suggest that compared to KTTO, the ATTO showed higher photocatalytic activity in both cases. The favourable properties such as high surface area, more surface hydroxyl groups, stronger light absorption in visible region and narrower band gap energy were supposed to be the reasons for the high activity observed in ATTO.

  16. X-ray diffraction study of the Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore disordering sequence under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Soulié, Aurélien, E-mail: aurelien.soulie@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif sur Yvette (France); CEA, DEN, Service de Recherches de Métallurgie Appliqué, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Menut, Denis [CEA, DEN, Service de Recherches de Métallurgie Appliqué, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Crocombette, Jean-Paul [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Chartier, Alain [CEA, DEN, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, Laboratoire de Modélisation, de Thermodynamique et de Thermochimie, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Sellami, Neila [Univ. Paris Sud, ICMMO-SP2M, Bât. 410, F-91405 Orsay (France); Sattonnay, Gaël [Univ. Paris-Sud, CSNSM, CNRS, IN2P3, Bât. 108, F-91405 Orsay (France); Monnet, Isabelle [CIMAP, CEA, CNRS, Université de Caen, BP 5133, F-14070 Caen Cedex 5 (France); and others

    2016-11-15

    The disordering sequence of Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore, a nano-oxide phase that strengthens ODS steels under irradiation is studied in the experimental and modeling framework. XRD analysis has been performed considering both swift heavy ion and low energy/low mass ion irradiations. The simulation within molecular dynamics of Frenkel pair accumulation proves able to reproduce the variation of the amorphization fluence with temperature. XRD patterns calculated from the simulations reproduce well the patterns observed experimentally in the literature. Both experiments and calculations point to a first transition from pyrochlore to fluorite before an eventual amorphization. For swift heavy ion irradiations with 93 MeV Xe ions, tracks of direct impact amorphization are visible by HRTEM. Advanced refinement shows that one third of the pyrochlore impacted by an ion transforms into fluorite, while two third are directly amorphized. - Highlights: • A comparison between swift heavy ion and low energy/low mass ion irradiation of Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore is performed. • Simulations of the irradiation with Molecular dynamics reproduce the amorphization dose at low energy/mass ion irradiation. • Advanced refinement of X-ray diffraction patterns gives the evolution of phase fractions in pyrochlore under irradiation. • The disordering sequence a transition from pyrochlore to defect fluorite before an eventual amorphization.

  17. Phase transition and water incorporation into Eu2Sn2O7 pyrochlore at high pressure

    Science.gov (United States)

    Zhang, F. X.; Lang, M.; Ewing, R. C.

    2016-04-01

    Structural changes of europium stannate pyrochlore, Eu2Sn2O7, have been investigated at high pressures with in situ Raman spectroscopy, photoluminescence (PL), and synchrotron X-ray diffraction (XRD) techniques. The XRD measurements suggest that a pressure-induced phase transition starts at 34.4 GPa. The PL spectrum from Eu3+ cations also suggests a phase transition above 36 GPa. XRD analysis shows that the unit cell of the cubic phase deviates from the equation of state at pressures above 23.8 GPa. This is due to the incorporation of water from the pressure medium in the structure at high pressures, which is confirmed by optical spectroscopy measurements.

  18. A spin-liquid with pinch-line singularities on the pyrochlore lattice.

    Science.gov (United States)

    Benton, Owen; Jaubert, L D C; Yan, Han; Shannon, Nic

    2016-05-26

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.

  19. Cluster-Glass Phase in Pyrochlore X Y Antiferromagnets with Quenched Disorder

    Science.gov (United States)

    Andrade, Eric C.; Hoyos, José A.; Rachel, Stephan; Vojta, Matthias

    2018-03-01

    We study the impact of quenched disorder (random exchange couplings or site dilution) on easy-plane pyrochlore antiferromagnets. In the clean system, order by disorder selects a magnetically ordered state from a classically degenerate manifold. In the presence of randomness, however, different orders can be chosen locally depending on details of the disorder configuration. Using a combination of analytical considerations and classical Monte Carlo simulations, we argue that any long-range-ordered magnetic state is destroyed beyond a critical level of randomness where the system breaks into magnetic domains due to random exchange anisotropies, becoming, therefore, a glass of spin clusters, in accordance with the available experimental data. These random anisotropies originate from off-diagonal exchange couplings in the microscopic Hamiltonian, establishing their relevance to other magnets with strong spin-orbit coupling.

  20. Structural order parameter in the pyrochlore superconductor Cd sub 2 Re sub 2 O sub 7

    CERN Document Server

    Sergienko, I A

    2003-01-01

    It is shown that both structural phase transitions in Cd sub 2 Re sub 2 O sub 7 , which occur at T sub s sub 1 = 200 K and T sub s sub 2 = 120 K, are due to an instability of the Re tetrahedral network with respect to the same doubly degenerate long-wavelength phonon mode. The primary structural order parameter transforms according to the irreducible representation E sub u of the point group O sub h. We argue that the transition at T sub s sub 1 may be of the second order, in accordance with experimental data. We obtain the phase diagram in the space of phenomenological parameters and propose a thermodynamic path that Cd sub 2 Re sub 2 O sub 7 follows upon cooling. Coupling of the itinerant electronic system and localized spin states in pyrochlores and spinels to atomic displacements are discussed. (author)

  1. Phonon Dynamics and Multipolar Isomorphic Transition in β-Pyrochlore KOs2O6

    Science.gov (United States)

    Hattori, Kazumasa

    2011-02-01

    We investigate with a microscopic model anharmonic K-cation oscillation observed by neutron experiments in β-pyrochlore superconductor KOs2O6, which also shows a mysterious first-order structural transition at Tp = 7.5 K. We have identified a set of microscopic model parameters that successfully reproduce the observed tem perature dependence and the superconducting transition temperature. Considering changes in the parameters at Tp, we can explain puzzling experimental results about electron--phonon coupling and neutron data. Our analysis demonstrates that the first-order transition is multipolar transition driven by the octupolar component of K-cation oscillations. The octupole moment does not change the symmetry and is characteristic to noncentrosymmetric K-cation potential.

  2. Anisotropic vortex pinning in the β-pyrochlore oxide superconductor KOs 2O 6

    Science.gov (United States)

    Ishii, Y.; Yamaura, J.; Okamoto, Y.; Maeda, A.; Hiroi, Z.

    2011-11-01

    Vortex pinning in the β-pyrochlore oxide superconductor KOs2O6 with Tc = 9.6 K is investigated by measuring magnetic torque. A large anisotropy of magnetic torque is observed in the superconducting state below Tp = 7.6 K, where a first-order structural transition takes place, in spite of the inherent isotropic nature of the structural and electronic properties. Magnetic torque is enhanced at external magnetic fields parallel to the [1 1 1] and [0 0 1] directions. Moreover, a pronounced peak effect is also observed in the magnetic field dependence of the torque in these two directions. We consider that the observed anisotropy is related to a microstructure associated with the structural transition.

  3. Electronic Structure of the Pyrochlore-Type Ru Oxides through the Metal--Insulator Transition

    International Nuclear Information System (INIS)

    Okamoto, J.; Fujimori, S.I.; Okane, T.; Fujimori, A.; Abbate, M.; Yoshii, S.; Sato, M.

    2003-01-01

    The electronic structures of the pyrochlore-type Ru oxides Sm 2-x Ca x Ru 2 O 7 and Sm 2-x Bi x Ru 2 O 7 , which show metal-insulator transition with increasing Ca or Bi concentration, have been studied by ultraviolet photoemission spectroscopy. Spectral changes near the Fermi level are different but reflect the tendency of their transport properties in both systems. The Sm 2-x Ca x Ru 2 O 7 system shows an energy shift, which is expected from the increase of hole in the Ru 4d t 2g band and the Sm 2 - x Bi x Ru 2 O 7 system shows spectral weight transfer within the Ru 4d t 2g band, which is expected to be observed in bandwidth-control Mott-Hubbard system. (author)

  4. Irradiation-induced amorphization of Cd2Nb2O7 pyrochlore

    International Nuclear Information System (INIS)

    Meldrum, A.; White, C. W.; Keppens, V.; Boatner, L. A.; Ewing, R. C.

    2001-01-01

    Several investigations have recently been undertaken in order to achieve a more complete understanding of the radiation-damage mechanisms in A 2 B 2 O 7 pyrochlore-structure compounds. The present work represents the first systematic study of the irradiation-induced amorphization of a pyrochlore with A- and B-site cation valences of +2 and +5, respectively. Relatively large single crystals of Cd 2 Nb 2 O 7 were grown for these experiments. In situ ion-irradiation experiments were carried out in a transmission electron microscope in conjunction with ex situ Rutherford backscattering measurements of ion-irradiated Cd 2 Nb 2 O 7 single crystals. Cd 2 Nb 2 O 7 can be amorphized in situ by Ne or Xe ions at temperatures up to 480 and 620 K, respectively. At room temperature, the amorphization fluence was 36 times higher for 280 keV Ne + than for 1200 keV Xe 2+ , corresponding to a displacement dose that was higher by a factor of 3. Disordering of Cd and Nb over the available cation sites occurs at intermediate ion doses prior to amorphization. The temperature dependence of the amorphization dose is modeled, and the results are compared to those of a previous model. The bulk-sample Rutherford backscattering spectroscopy (RBS) results were generally consistent with the in situ TEM measurements. Effects of crystallographic orientation and ion charge state had relatively little effect on the damage accumulation in bulk crystals. The RBS data are consistent with a defect-accumulation, cascade-overlap model of amorphization of Cd 2 Nb 2 O 7 , as are the in situ TEM observations

  5. Phase Competition in the Palmer-Chalker X Y Pyrochlore Er2Pt2O7

    Science.gov (United States)

    Hallas, A. M.; Gaudet, J.; Butch, N. P.; Xu, Guangyong; Tachibana, M.; Wiebe, C. R.; Luke, G. M.; Gaulin, B. D.

    2017-11-01

    We report neutron scattering measurements on Er2Pt2O7 , a new addition to the X Y family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er2Pt2O7 orders into the k =0 , Γ7 magnetic structure (the Palmer-Chalker state), at TN=0.38 K . This contrasts with its sister X Y pyrochlore antiferromagnets Er2Ti2O7 and Er2Ge2O7 , both of which order into Γ5 magnetic structures at much higher temperatures, TN=1.2 and 1.4 K, respectively. In this temperature range, the magnetic heat capacity of Er2Pt2O7 contains a broad anomaly centered at T*=1.5 K . Our inelastic neutron scattering measurements reveal that this broad heat capacity anomaly sets the temperature scale for strong short-range spin fluctuations. Below TN=0.38 K , Er2Pt2O7 displays a gapped spin-wave spectrum with an intense, flat band of excitations at lower energy and a weak, diffusive band of excitations at higher energy. The flat band is well described by classical spin-wave calculations, but these calculations also predict sharp dispersive branches at higher energy, a striking discrepancy with the experimental data. This, in concert with the strong suppression of TN, is attributable to enhanced quantum fluctuations due to phase competition between the Γ7 and Γ5 states that border each other within a classically predicted phase diagram.

  6. Novel rattling of K atoms in aluminium-doped defect pyrochlore tungstate

    International Nuclear Information System (INIS)

    Shoko, Elvis; Kearley, Gordon J; Peterson, Vanessa K; Thorogood, Gordon J; Mutka, Hannu; Koza, Michael M; Yamaura, Jun-ichi; Hiroi, Zenji

    2014-01-01

    Rattling dynamics have been identified as fundamental to superconductivity in defect pyrochlore osmates and aluminium vanadium intermetallics, as well as low thermal conductivity in clathrates and filled skutterudites. Combining inelastic neutron scattering (INS) measurements and ab initio molecular dynamics (MD) simulations, we use a new approach to investigate rattling in the Al-doped defect pyrochlore tungstates: AAl 0.33 W 1.67 O 6 (A = K, Rb, Cs). We find that although all the alkali metals rattle, the rattling of the K atoms is unique, not only among the tungstates but also among the analogous defect osmates, KOs 2 O 6 and RbOs 2 O 6 . Detailed analysis of the MD trajectories reveals that two unique features set the K dynamics apart from the rest, namely, (1) quasi one-dimensional local diffusion within a cage, and (2) vibration at a range of frequencies. The local diffusion is driven by strongly anharmonic local potentials around the K atoms exhibiting a double-well structure in the direction of maximum displacement, which is also the direction of local diffusion. On the other hand, vibration at a range of frequencies is a consequence of the strong anisotropy in the local potentials around the K atoms as revealed by directional magnitude spectra. We present evidence to show that it is the smaller size rather than the smaller mass of the K rattler which leads to the unusual dynamics. Finally, we suggest that the occurrence of local diffusion and vibration at a range of frequencies in the dynamics of a single rattler, as found here for the K atoms, may open new possibilities for phonon engineering in thermoelectric materials. (paper)

  7. Studies on the rare earth complexes with pyridine derivatives and their N-oxide(II) - Synthesis and properties of fluorescent solid complexes of samarium, europium, gadolium and terbium chlorides with 2,2'-bipyridine-N,N'-dioxide

    International Nuclear Information System (INIS)

    Minyu, T.; Ning, T.; Yingli, Z.; Jiyuan, B.

    1985-01-01

    The solid complexes of rare earth nitrates perchlorates and thiocyanates with 2,2'-bipyridine-N,N'-dioxide (bipyO/sub 2/) have been reported. However, the corresponding complexes of other rear earth chlorides have not been investigated except lanthanum, cerium and yttrium. As an extension of our previous work on the synthesis of complexes of praseodymium and neodymium chlorides wiht bipoyO/sub 2/, the authors have now prepared fluorescent solid complexes of samarium, europium, gadolium and terbium chlorides with biphyO/sub 2/, using methanol as a reaction medium. The new synthesized compounds have been identified by means of elemental analysis, infrared spectrometry, conductometry, differential thermal analysis (DTA), thermogravimetry (TG) and X-ray powder diffraction

  8. Multifunctional Sm2-xDyxZr2O7 pyrochlore system: potential ionic conductors and photocatalysts

    International Nuclear Information System (INIS)

    Grover, V.; Sayed, Farheen N.; Bhattacharyya, K.; Jain, D.; Pillai, C.G.S.; Tyagi, A.K.; Arya, A.

    2010-01-01

    Full text: Pyrochlores have garnered considerable interest over the years because of a range of potentially useful properties such as fast-ion (mainly anion) conductivity, electrical conductivity, catalysis, luminescence etc. In present work a series of Sm 2-x Dy x Zr 2 O 7 compounds (0.0 ≤ x ≤ 2.0) were synthesized by gel combustion and characterized by Powder XRD and Raman spectroscopic studies. XRD studies revealed the system to be single-phasic throughout with the retention of pyrochlore phase till 40 mol% of Dy 3+ beyond which, an order-disorder phase transition occurred resulting in a defect fluorite structure. Surprisingly, Raman studies showed the retention of pyrochlore type ordering till the other end member, i.e. Dy 2 Zr 2 O 7 . This is the first study, which reports the retention of a weak pyrochlore type superstructure in Dy 2 Zr 2 O 7 system. Ionic conductivity measurements were performed on these samples, which showed that the activation Energy (E a ) increases with increase in Dy 3+ mol% owing to the decreased mobility with increasing degree of disorder. The representative nquist Plots are given for Sm 2 Zr 2 O 7 . These materials have a definite band gap absorbing mainly in the UV region which makes them good candidates for photocatalysed dye degradation studies. Potential of some of these compositions as photocatalysts was also explored and they were found to efficiently catalyse the degradation of Xylenol Orange with t 1/2 decreasing from pure Sm 2 Zr 2 O 7 to pure Dy 2 Zr 2 O 7

  9. Radiation damage effects in pyrochlore and zirconolite ceramic matrices for the immobilization of actinide-rich wastes

    International Nuclear Information System (INIS)

    Lumpkin, G.R.; Begg, B.D.; Smith, K.L.

    2000-01-01

    Actinide-doping experiments using short-lived 238 Pu and 244 Cm have demonstrated that pyrochlore and zirconolite become fully amorphous at a dose of 0.2-0.5 x 10 16 α/mg at ambient temperature and exhibit bulk swelling of 5-7%. Detailed studies of natural samples have included determination of the critical amorphization dose, long-term annealing rate, microstructural changes as a function of dose, and the thermal histories of the host rocks. Together, the laboratory based work and studies of natural samples indicate that the critical amorphization dose will increase by about a factor of 2-4 for samples stored at temperatures of 100-200 deg. C for up to 10 million years. These studies of alpha-decay damage have been complemented by heavy ion irradiation studies over the last ten years. Most of the irradiation work has concerned the critical amorphization dose as a function of temperature in thin films; however, some work has been carried out on bulk samples. The irradiation work indicates that most pyrochlore and zirconolite compositions will have similar critical amorphization doses at low temperatures (e.g., below 300-400 deg. C). Pyrochlore with Zr as the major B-site cation transform to a defect fluorite structure with increasing ion irradiation dose, but do not become amorphous. (authors)

  10. Prospecting and exploration of rare earth bearing mineral resources in India: an overview

    International Nuclear Information System (INIS)

    Mohanty, R.

    2014-01-01

    Rare earth elements (REE) have a wide range of applications including nuclear and the REE bearing minerals occur in varied geological environments.The commercial rare earth bearing minerals are monazite ((Ce,La,Pr,Nd,Th,Y)PO 4 ), xenotime (YPO 4 ), bastnasite ((Ce,La,Y)CO 3 F) and pyrochlore ((Na,Ca) 2 Nb 2 O 6 (OH,F) which occur either as placer concentrations or in tracer quantities in rocks. While Monazite contains dominantly LREE, Xenotime and Bastnasite are richer in HREE. The exploration and evaluation of these two types of occurrences follow different methodologies

  11. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  12. Structural determination of new solid solutions [Y2-x Mx ][Sn2-x Mx ]O7-3x/2 (M = Mg or Zn by Rietveld method

    Directory of Open Access Journals (Sweden)

    Mohamed Douma

    2010-12-01

    Full Text Available New [Y2-x Mx][Sn2-x Mx]O7-3x/2 (0 ≤x≤ 0.30 for M = Mg and 0 ≤x≤ 0.36 for M = Zn solid solutions with the pyrochlore structure were synthesized via high-temperature solid-state reaction method. Powder X-ray diffraction (PXRD patterns and Fourier transform infrared (FT-IR spectra showed that these materials are new non-stoichiometric solid solutions with the pyrochlore type structure. The structural parameters for the solids obtained were successfully determined by Rietveld refinement based on the analysis of the PXRD diagrams. Lattice parameter (a of these solid solutions decreases when x increases in both series. All samples obtained have the pyrochlore structure Fd-3m, no. 227 (origin at center -3m with M2+ (M = Mg2+ or Zn2+ cations in Y3+ and Sn4+ sites, thus creating vacancies in the anionic sublattice.

  13. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal

    2015-10-27

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin-film material synthesis revealed that a non-stoichiometric Bi2−xTi2O7−1.5x structure with an x value of ∼0.25 is the primary product, consistent with the thermodynamic stability of the defect-containing structure computed using density functional theory (DFT). The approach of density functional perturbation theory (DFPT) was used along with the standard GGA PBE functional and the screened Coulomb hybrid HSE06 functional, including spin–orbit coupling, to investigate the electronic structure, the effective electron and hole masses, the dielectric constant, and the absorption coefficient. The calculated values for these properties are in excellent agreement with the measured values, corroborating the overall analysis. This study indicates potential applications of bismuth titanate as a wide-bandgap material, e.g., as a substitute for TiO2 in dye-sensitized solar cells and UV-light-driven photocatalysis.

  14. Superconductivity mediated by anharmonic phonons: application to β-pyrochlore oxides

    Science.gov (United States)

    Hattori, Kazumasa; Tsunetsugu, Hirokazu

    2010-03-01

    We investigate three dimensional anharmonic phonons under tetrahedral symmetry and superconductivity mediated by these phonons. Three dimensional anharmonic phonon spectra are calculated directly by solving Schr"odinger equation and the superconducting transition temperature is determined by using the theory of strong coupling superconductivity assuming an isotropic gap function. With increasing the third order anharmonicity b of the tetrahedral potential, we find a crossover in the energy spectrum to a quantum tunneling regime. We obtain strongly enhanced transition temperatures around the crossover point. The first order transition observed in KOs2O6 is discussed in terms of the first excited state energy δ, and the coupling constant λ in the strong coupling theory of superconductivity. Our results suggest that the decrease of λ and increase of δ below the first order transition temperature. We point out that the change in the oscillation amplitude and characterizes this isomorphic transition. The chemical trends of the superconducting transition temperature, λ, and δ in the β-pyrochlore compounds are also discussed.

  15. Observation of magnetic polarons in the magnetoresistive pyrochlore Lu2V2O7

    International Nuclear Information System (INIS)

    Storchak, Vyacheslav G; Brewer, Jess H; Eshchenko, Dmitry G; Mengyan, Patrick W; Zhou Haidong; Wiebe, Christopher R

    2013-01-01

    Materials that exhibit colossal magnetoresistance (CMR) have attracted much attention due to their potential technological applications. One particularly interesting model for the magnetoresistance of low-carrier-density ferromagnets involves mediation by magnetic polarons (MP)—electrons localized in nanoscale ferromagnetic ‘droplets’ by their exchange interaction. However, MP have not previously been directly detected and their size has been difficult to determine from macroscopic measurements. In order to provide this crucial information, we have carried out muon spin rotation measurements on the magnetoresistive semiconductor Lu 2 V 2 O 7 in the temperature range from 2 to 300 K and in magnetic fields up to 7 T. Magnetic polarons with characteristic radius R ≈ 0.4 nm are detected below about 100 K, where Lu 2 V 2 O 7 exhibits CMR; at higher temperature, where the magnetoresistance vanishes, these MP also disappear. This observation confirms the MP-mediated model of CMR and reveals the microscopic size of the MP in magnetoresistive pyrochlores. (paper)

  16. First-principles study of strong correlation effects in pyrochlore iridates

    Energy Technology Data Exchange (ETDEWEB)

    Shinaoka, Hiroshi [Department of Physics, Saitama University (Japan); Hoshino, Shintaro [Department of Basic Science, The University of Tokyo (Japan); Troyer, Matthias [Theoretische Physik, ETH Zuerich (Switzerland); Werner, Philipp [Department of Physics, University of Fribourg (Switzerland)

    2016-07-01

    The pyrochlore iridates A{sub 2}Ir{sub 2}O{sub 7} (A=Pr, Nd, Y, etc.) are an ideal system to study fascinating phenomena induced by strong electron correlations and spin-orbit coupling. In this talk, we study strong correlation effects in the prototype compound Y{sub 2}Ir{sub 2}O{sub 7} using the local density approximation and dynamical mean-field theory (LDA+DMFT). We map out the phase diagram in the space of temperature, onsite Coulomb repulsion U, and filling. Consistent with experiments, we find that an all-in/all-out ordered insulating phase is stable for realistic values of U. We reveal the importance of the hybridization between j{sub eff} = 1/2 and j{sub eff} = 3/2 states under the Coulomb interaction and trigonal crystal field. We demonstrate a substantial band narrowing in the paramagnetic metallic phase and non-Fermi liquid behavior in the electron/hole doped system originating from long-lived quasi-spin moments induced by nearly flat bands. We further compare our results with recent experimental results of Eu{sub 2}Ir{sub 2}O{sub 7} under hydrostatic pressure.

  17. Analyze satellite-tracking laser data in order to study satellite ephemerides, solid-Earth and ocean tides and laser system performance

    Science.gov (United States)

    Gaposchkin, E. M.

    1981-01-01

    The decrease in the semimajor axis of Lageos is considerably larger than expected. Gravitational effects, reference system effects, solar radiation pressure, Earth albedo pressure, neutral atmospheric drag, the Poynting Robertson Effect, and electrodynamic effects were used in explaining the observations. Quick look data provided are used to determine the Earth's polar motion and length of day. This process is routine, and provides these geophysical data every five days.

  18. Single crystal growth and structure refinements of CsMxTe2-xO6 (M = Al, Ga, Ge, In) pyrochlores

    International Nuclear Information System (INIS)

    Siritanon, Theeranun; Sleight, A.W.; Subramanian, M.A.

    2011-01-01

    Graphical abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown and structure refinements indicate deviations from ideal stoichiometry presumably related to mixed valency of tellurium. Highlights: → Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown. → Structure refinements from single crystal X-ray diffraction data confirm e structure. → Deviations from ideal stoichiometry suggest mixed valency of tellurium and hence conductivity. -- Abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown from a TeO 2 flux. Structure refinements from single crystal X-ray diffraction data are reported. These results are used to discuss deviations from ideal stoichiometry that result in electronic conductivity presumably related to mixed valency of tellurium.

  19. Diffraction and spectroscopic study of pyrochlores Bi{sub 2−x}Fe{sub 1+x}SbO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingdi; Blanchard, Peter E.R. [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Kennedy, Brendan J., E-mail: kennedyb@chem.usyd.edu.au [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Ling, Chris D.; Liu, Samuel [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Avdeev, Max [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Aitken, Jade B. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305-0801 (Japan); School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Tadich, Anton; Brand, Helen E.A. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2014-03-15

    Highlights: • Fe rich pyrochlores of the type Bi{sub 2−x}Fe{sub 1+x}SbO{sub 7} were prepared by solid state methods. • Structures determined using a combination of neutron and synchrotron X-ray diffraction. • Fe partially occupies the 8-coordinate site. • Dispacive disorder of the Bi cations observed as a consequence of the 6s{sup 2} electrons. • Non-Vegard behaviour seen at low Fe contents due to disorder. -- Abstract: The structural and electronic properties of the series Bi{sub 2−x}Fe{sub 1+x}SbO{sub 7} (0 ⩽ x ⩽ 0.6) were investigated using a combination of diffraction and spectroscopy. Synchrotron and neutron diffraction analysis show that Fe{sup 3+} cations substitute for Bi{sup 3+} onto the A site with increasing x, which was further confirmed by analysis of the Fe K/L-edge X-ray absorption near-edge spectra. The diffraction analysis indicated the presence of displacive disorder along the A{sub 2}O chains, likely the result of the Bi{sup 3+} 6s{sup 2} lone pair, as well as non-Vegard-like behaviour of the lattice parameters in the Fe-poor region. Fe K-edge extended X-ray absorption fine-structure analysis of Bi{sub 2}FeSbO{sub 7} confirmed the displacive disorder of the Bi{sup 3+} cations as well as Sb{sup 5+} and Fe{sup 3+} disorder on the B site.

  20. Cooper-pair formation by anharmonic rattling modes in the β-pyrochlore superconductor KOs2O6

    Science.gov (United States)

    Chang, Jun; Eremin, Ilya; Thalmeier, Peter

    2009-05-01

    We study the influence of anharmonic rattling phonons in the β-pyrochlore superconductor KOs2O6 using the strong-coupling Eliashberg approach. In particular, by analyzing the specific heat data, we find that the rattling phonon frequency changes discontinuously at the critical temperature of the first-order phase transition. Solving the strong-coupling Eliashberg equations with effective temperature-dependent α2F(ω), we investigate the consequence of this first-order phase transition for the anomalous temperature dependence of the superconducting gap. We discuss our results in the context of the recent experimental data.

  1. Structural vs. intrinsic carriers: contrasting effects of cation chemistry and disorder on ionic conductivity in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Uberuaga, Blas P.

    2015-01-01

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2 Zr 2 O 7 (GZO) and Gd 2 Ti 2 O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusion with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.

  2. Induced quadrupolar singlet ground state of praseodymium in a modulated pyrochlore

    Science.gov (United States)

    van Duijn, J.; Kim, K. H.; Hur, N.; Ruiz-Bustos, R.; Adroja, D. T.; Bridges, F.; Daoud-Aladine, A.; Fernandez-Alonso, F.; Wen, J. J.; Kearney, V.; Huang, Q. Z.; Cheong, S.-W.; Perring, T. G.; Broholm, C.

    2017-09-01

    The complex structure and magnetism of Pr2 -xBixRu2O7 was investigated by neutron scattering and extended x-ray absorption fine structure. Pr has an approximate doublet ground state and the first excited state is a singlet. While the B -site (Ru) is well ordered throughout, this is not the case for the A -site (Pr/Bi). A broadened distribution for the Pr-O2 bond length at low temperature indicates the Pr environment varies from site to site even for x =0 . The environment about the Bi site is highly disordered ostensibly due to the 6 s lone pairs on Bi3 +. Correspondingly, we find that the non-Kramers doublet ground-state degeneracy, otherwise anticipated for Pr in the pyrochlore structure, is lifted so as to produce a quadrupolar singlet ground state with a spatially varying energy gap. For x =0 , below TN, the Ru sublattice orders antiferromagnetically, with propagation vector k =(0 ,0 ,0 ) as for Y2Ru2O7 . No ordering associated with the Pr sublattice is observed down to 100 mK. The low-energy magnetic response of Pr2 -xBixRu2O7 features a broad spectrum of magnetic excitations associated with inhomogeneous splitting of the Pr quasidoublet ground state. For x =0 (x =0.97 ), the spectrum is temperature dependent (independent). It appears disorder associated with Bi alloying enhances the inhomogeneous Pr crystal-field level splitting so that intersite interactions become irrelevant for x =0.97 . The structural complexity for the A -site may be reflected in the hysteretic uniform magnetization of B -site ruthenium in the Néel phase.

  3. Synthesis and characterization of Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} pyrochlore sun-light-responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Naceur, Benhadria, E-mail: nacer1974@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Abdelkader, Elaziouti, E-mail: elaziouti_a@yahoo.com [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Dr Moulay Tahar University, Saida (Algeria); Nadjia, Laouedj, E-mail: nlaouedj@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Dr Moulay Tahar University, Saida (Algeria); Sellami, Mayouf, E-mail: Mourad7dz@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Noureddine, Bettahar, E-mail: nbettahar2001@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria)

    2016-02-15

    Graphical abstract: Heterogeneous photo Fenton process with dye sensitized mechanism of RhB by Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} compound. - Highlights: • Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} (BSCO) catalyst was synthesized by improved solid state reaction method. • BSCO/H{sub 2}O{sub 2}/UVA and BSCO/H{sub 2}O{sub 2}/SL catalyst systems exhibit excellent photocatalytic activities for rhodamine B. • The photocatalytic degradation was preceded via heterogeneous photo Fenton mechanism process. • ·OH radicals are the main reactive species for the degradation of RhB. - Abstract: Novel nanostructure pyrochlore Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} was successfully synthesized via solid state reaction method in air. The as-synthesized photocatalyst was characterized by X-ray diffraction, Scanning electron microscopy and UV–vis diffuse reflectance spectroscopy techniques. The results showed that the BSCO was crystallized with the pyrochlore-type structure, cubic crystal system and space group Fd3m. The average particle size and band gap for BSCO were D = 76.29 nm and E{sub g} = 1.50 eV respectively. Under the optimum conditions for discoloration of the dye: initial concentration of 20 mg L{sup −1} RhB, pH 7, 25 °C, 0.5 mL H{sub 2}O{sub 2} and BSCO/dye mass ration of 1 g L{sup −1}, 97.77 and 90.16% of RhB were removed with BSCO/H{sub 2}O{sub 2} photocatalytic system within 60 min of irradiation time under UVA- and SL irradiations respectively. Pseudo-second-order kinetic model gave the best fit, with highest correlation coefficients (R{sup 2} ≥ 0.99). On the base of these results, the mechanism of the enhancement of the discoloration efficiency was discussed. .

  4. How Inge Lehmann Discovered the Inner Core of the Earth

    Science.gov (United States)

    Rousseau, Christiane

    2013-01-01

    The mathematics behind Inge Lehmann's discovery that the inner core of the Earth is solid is explained using data collected around the Earth on seismic waves and their travel time through the Earth.

  5. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  6. Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd2Os2O7.

    Science.gov (United States)

    Nguyen, Thi Minh Hien; Sandilands, Luke J; Sohn, C H; Kim, C H; Wysocki, Aleksander L; Yang, In-Sang; Moon, S J; Ko, Jae-Hyeon; Yamaura, J; Hiroi, Z; Noh, Tae Won

    2017-08-15

    5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2 Os 2 O 7 . Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii-Moriya and exchange interactions play a significant role in the spin-wave dispersions. The Raman data also reveal complex spin-charge-lattice coupling and indicate that the metal-insulator transition in Cd 2 Os 2 O 7 is Lifshitz-type. Our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.Pyrochlore 5d transition metal oxides are expected to have interesting forms of magnetic order but are hard to study with conventional probes. Here the authors show that Raman scattering can be used to measure magnetic excitations in Cd 2 Os 2 O 7 and that it exhibits complex spin-charge-lattice coupling.

  7. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7

    DEFF Research Database (Denmark)

    Harris, M.J.; Bramwell, S.T.; McMorrow, D.F.

    1997-01-01

    We report a detailed study of the pyrochlore Ho2Ti2O7, in which the magnetic ions (Ho3+) are ferromagnetically coupled with J similar to 1 K. We show that the presence of local Ising anisotropy leads to a geometrically frustrated ground state, preventing long-range magnetic order down to at least 0...

  8. Electrochemical transformations of oxygen and the defect structure of solid solutions on the basis of alkaline earth metal ortho-vanadates

    International Nuclear Information System (INIS)

    Khodos, M.Ya.; Belysheva, G.M.; Brajnina, Kh.Z.

    1986-01-01

    Effect of iso- and heterovalent substitution in the structure of alkaline earth metal ortho-vanadates and synthesis conditions, simulating the definite type of their crystal lattice disordering, on the character of potentiodynamic anodic-cathodic curves has been investigated by the method of cyclic voltammetry. Correlation between signals observed and the defect structure of oxide compounds is refined. Oxygen chemisorption is shown to be determined by concentration of nonequilibrium oxygen vacancies, which formation is accompanied by appearance of quasi-free electrons

  9. Electrical transport properties of manganese containing pyrochlore type semiconducting oxides using impedance analyses

    International Nuclear Information System (INIS)

    Sumi, S.; Prabhakar Rao, P.; Mahesh, S.K.; Koshy, Peter

    2012-01-01

    Graphical abstract: DC conductivity variation of CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) with inverse of temperature. Variation of conductivity with Mn concentration at 600 °C is shown in the inset. Display Omitted Highlights: ► We have observed that the structural ordering as well as grain size increase with Mn substitution. ► Impedance analysis proved that a correlated barrier hopping type conduction mechanism is involved in the materials. ► Activation energy as well as electrical conductivity increases with increase in Mn substitution. ► Localization of electrons associated with Mn 2+ and structural ordering are the key factors for the increased activation energy with Mn substitution. ► All the materials showed good NTC thermistor properties. -- Abstract: A new series of manganese containing pyrochlore type semiconducting oxides CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) have been synthesized to study the effect of Mn substitution on the structure, microstructure and electrical properties of these samples. X-ray diffraction and scanning electron microscopy studies revealed an increase of structural ordering and grain size respectively with increase of Mn substitution. Rietveld analysis and Raman spectroscopy were also employed to corroborate the XRD results. The bulk resistance measurements with temperature exhibit negative temperature coefficient behavior. The impedance analysis of the samples revealed a non-Debye type relaxation existed in the materials. The ac conductivity variation with temperature and frequency indicates a correlated barrier hopping type conduction mechanism in these materials. The barrier height and the intersite separation for hopping influence the electrical conductivity of these samples and are found to be a function of localization of electrons associated with the Mn 2+ ions and the unit cell volume respectively. The Mn substitution increases both electrical conductivity and activation energy

  10. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  11. Fabrication and sealing performance of rare-earth containing glass–ceramic seals for intermediate temperature solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Abdoli, H.; Alizadeh, P.; Agersted, Karsten

    2014-01-01

    The opportunity of using two rare-earth metal oxides in an aluminosilicate glass for seal applications was investigated in this work. Substitution of La2O3 with Y2O3 in the system changed thermal and physical properties such as transition temperature, flowing behavior, and thermal expansion....... The strongly bound structural unit in the network affected glass healing capability with a slower healing response. Higher activation energy (≥20%) was required for Y2O3 containing glass, consistent with in-situ XRD results which revealed its amorphous nature is maintained ~75°C above the other glass. Despite...... containing strontium in the composition, well bonded interface was obtained in contact with 8YSZ and SS430 ferritic stainless steel. The hermeticity of the glass seals was maintained after 100h isothermal aging at 800°C. Also the OCV showed insignificant fluctuations with stable average values after 24...

  12. Effect of alkali-earth ions on local structure of the LaAlO3-La0.67A0.33MnO3 (A = Ca, Sr, Ba) diluted solid solutions: 27Al NMR studies

    International Nuclear Information System (INIS)

    Charnaya, E.V.; Cheng Tien; Lee, M.K.; Sun, S.Y.; Chejina, N.V.

    2007-01-01

    27 Al Magic Angle Spinning (MAS) NMR studies are carried out for diluted alkali-earth metal doped lanthanum manganite solid solutions in the lanthanum aluminate (1-y)LaAlO 3 -yLa 0.67 A 0.33 MnO 3 (A = Ca, Sr, Ba) with y = 0, 2, 3, and 5 mol %. The spectra depend on the dopant species and show higher substitutional ordering for the Ba containing mixed crystals. Magnetically shifted lines are observed in all solid solutions and attributed to Al in the octahedral oxygen environment near manganese trivalent ions. Nonlinear dependences of their intensity are referred to the manganese-rich cluster formation. An additional MAS NMR line corresponding to aluminium at sites different from the octahedral site in pure LaAlO 3 is observed only in solutions doped with Ba. 3Q MAS NMR revealed that the broadening of this line is governed mainly by quadrupole coupling and allowed calculating the isotropic chemical shift [ru

  13. Effect of excess Mg and Excess Nb incorporation into the B-site of pyrochlore in the Pb-Mg-Nb-O system

    Directory of Open Access Journals (Sweden)

    Mergen, A.

    2002-12-01

    Full Text Available In the Pb-Mg-Nb-O system, excess Mg and excess Nb incorporation into the B-site of PMN pyrochlore were investigated along the compositons of Pb1.83Mg0.29+xNb1.71-xO6.39-1.5x where x=0.1, 0.2, 0.3, 0.4, 0.522 and Pb1.83Mg0.29-xNb1.71+xO6.39+1.5x where x=0.1, 0.2, 0.29 respectively. Excess Mg incorporation led to the formation of perovskite and excess Nb resulted in formation of Pb2Nb2O7 monoclinic pyrochlore. The densities of the PMN pyrochlore-PMN perovskite mixtures decreased with an increase in Mg concentration. The relative permittivity of the mixtures increased with decreasing pyrochlore content. The effect of pyrochlore on the permittivity follows the Weiner’s mixture rule up to a pyrochlore content of 50 vol%.

    Se investigó la incorporación en lugares B de pirocloro PMN de un exceso de Mg y un exceso de Nb. En el sistema Pb-Mg-Nb-O2 las composiciones analizadas fueron Pb1.83Mg0.29+xNb1.71-xO6.39-1.5x donde x=0.1, 0.2, 0.3, 0.4, 0.522 y en Pb1.83Mg0.29-xNb1.71+xO6.39+1.5x donde x= 0.1, 0.2,0.29. El exceso de Mg condujo a la formación de perovskita y el exceso de Nb resultó en la formación del pirocloro monolínico, Pb2Nb2O7. La densidad de la mezcla de PMN pirocloro-perovskita dismunuye con el aumento de la concentración de Mg. La permitividad dieléctrica de las mezclas aumenta con la disminución del contenido de pirocloro. El efecto del pirocloro sobre la permitividad sigue la regla de mezclas de Weiner hasta conenidos de pirocloro del 50%.

  14. Investigations of the magnetic properties in the pyrochlore Ho{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Schoenemann, Rico; Herrmannsdoerfer, Thomas; Green, Elizabeth Lauren; Wang, Zhaosheng; Wosnitza, Joachim [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Skrotzki, Richard [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Department of Chemistry and Food Chemistry, TU Dresden, Dresden (Germany); Kaneko, Hiroshi; Suzuki, Haruhiko [Faculty of Mathematics and Physics, Kanazawa University, Kanazawa (Japan)

    2013-07-01

    Pyrochlore compounds such as R{sub 2}Ti{sub 2}O{sub 7} (where R is Ho or Dy) have an highly degenerate ground state where the R{sup 3+} moments obey the ''ice rules''. This provides access to study extraordinary physical phenomena, like the formation of magnetic monopoles. Recent publications evidence monopoles which can be probed using high frequency (adiabatic) susceptibility measurements. We performed ac susceptibility measurements on a single-crystal Ho{sub 2}Ti{sub 2}O{sub 7} sample at low temperatures down to 30 mK and magnetic fields up to 14 T. Based on isothermal frequency sweeps we were able to determine spin relaxation rates. Both the real and imaginary parts of the temperature-dependent magnetic susceptibility measurements show the spins freezing below 1 K and provide insight into the magnetic-monopole density.

  15. Sudden Disappearance of the First-Order Transition in β-Pyrochlore KOs2O6 under Low Pressure

    Science.gov (United States)

    Umeo, Kazunori; Kubo, Hirokazu; Yamaura, Jun-ichi; Hiroi, Zenji; Takabatake, Toshiro

    2009-12-01

    We report the first observation of the pressure effect on the first-order transition at Tp = 7.5 K in the β-pyrochlore oxide superconductor KOs2O6 by specific-heat measurement. The peak in the specific heat at Tp disappeared at a low pressure of 0.02 GPa. With increasing pressure up to 0.02 GPa, the coefficient of the T5 dependence of the specific heat increases by 30%. This finding implies that low-energy excitations of phonons are enhanced by the suppression of the first-order transition. However, the specific-heat jump at Tc is unchanged with pressure up to 1 GPa, indicating that the strong coupling superconductivity is rather robust under pressure.

  16. The earths innermost core

    International Nuclear Information System (INIS)

    Nanda, J.N.

    1989-01-01

    A new earth model is advanced with a solid innermost core at the centre of the Earth where elements heavier than iron, over and above what can be retained in solution in the iron core, are collected. The innermost core is separated from the solid iron-nickel core by a shell of liquid copper. The innermost core has a natural vibration measured on the earth's surface as the long period 26 seconds microseisms. The earth was formed initially as a liquid sphere with a relatively thin solid crust above the Byerly discontinuity. The trace elements that entered the innermost core amounted to only 0.925 ppm of the molten mass. Gravitational differentiation must have led to the separation of an explosive thickness of pure 235 U causing a fission explosion that could expel beyond the Roche limit a crustal scab which would form the centre piece of the moon. A reservoir of helium floats on the liquid copper. A small proportion of helium-3, a relic of the ancient fission explosion present there will spell the exciting magnetic field. The field is stable for thousands of years because of the presence of large quantity of helium-4 which accounts for most of the gaseous collisions that will not disturb the atomic spin of helium-3 atoms. This field is prone to sudden reversals after long periods of stability. (author). 14 refs

  17. Nuclear resonance scattering study of iridates, iridium and antimony based pyrochlores

    International Nuclear Information System (INIS)

    Alexeev, P.

    2017-04-01

    these compounds. In order to broaden the perspectives of NRS with the 73 keV resonance the first room temperature NRS on iridium metal is carried out. The results demonstrate NRS as a powerful research tool for the studies of iridium physics due to the high energy of the resonant photons and the high natural abundance of the "1"9"3Ir isotope under study, paving the way for studies of magnetism and electronic properties under extreme conditions. The second part of this work is dedicated to vibrational spectroscopy with Nuclear Inelastic Scattering (NIS). A sapphire backscattering monochromator was designed, installed and tested at the beamline. It provides high energy resolution due to the sub-mK temperature control, though the resolution is limited from theoretically proposed sub-meV to meV by the quality of currently available sapphire crystals. With this device the energy resolution of 1.3(1) meV at 23.88 keV and of 3.2(4) meV at 37.13 keV was achieved. Following this development, the vibrational spectra of antimony in defect pyrochlore Ag-Sb-O compounds have been measured by means of NIS at 37.13 keV. Density of phonon states for the Sb(III) and for the Sb(V) site has been unambiguously revealed. The difference in site-specific antimony modes illustrates the importance of lattice dynamics for the engineering of these compounds.

  18. Nuclear resonance scattering study of iridates, iridium and antimony based pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, P.

    2017-04-15

    on Ir nucleus have been determined for these compounds. In order to broaden the perspectives of NRS with the 73 keV resonance the first room temperature NRS on iridium metal is carried out. The results demonstrate NRS as a powerful research tool for the studies of iridium physics due to the high energy of the resonant photons and the high natural abundance of the {sup 193}Ir isotope under study, paving the way for studies of magnetism and electronic properties under extreme conditions. The second part of this work is dedicated to vibrational spectroscopy with Nuclear Inelastic Scattering (NIS). A sapphire backscattering monochromator was designed, installed and tested at the beamline. It provides high energy resolution due to the sub-mK temperature control, though the resolution is limited from theoretically proposed sub-meV to meV by the quality of currently available sapphire crystals. With this device the energy resolution of 1.3(1) meV at 23.88 keV and of 3.2(4) meV at 37.13 keV was achieved. Following this development, the vibrational spectra of antimony in defect pyrochlore Ag-Sb-O compounds have been measured by means of NIS at 37.13 keV. Density of phonon states for the Sb(III) and for the Sb(V) site has been unambiguously revealed. The difference in site-specific antimony modes illustrates the importance of lattice dynamics for the engineering of these compounds.

  19. Commercial alkaline earth boroaluminosilicate glasses for sealing solid oxide cell stacks Part II: Characterization of devitrification and glass-ceramic phase assemblages

    DEFF Research Database (Denmark)

    Agersted, Karsten; Balic-Zunic, T.

    2018-01-01

    The devitrification process and formation of crystalline phases from commercial alkaline earth boroaluminosilicate glasses containing 48-61 mol% SiO2, 18-28 mol% CaO, 1-7 mol% MgO, 7-10 mol% Al2O3, 1-11 mol% B2O3 plus minor amounts of Na2O, K2O, FeO and TiO2 were quantified through analysis...... of phase assemblages as function of heat treatments above the glass transition temperatures using the electron microprobe and powder X-ray diffraction. Treatments at 800 °C and 850 °C lasted up to 6 weeks. Results indicate that devitrification was strongly activated through presence of heterogeneous...... nucleation, and that the growth mechanism gradually changed from three-dimensional growth at the onset of devitrification towards one-dimensional growth in later stages, when heterogeneous nucleation was absent or less dominating. Most glasses developed entangled and fibrous microstructures with little...

  20. High-Precision In Situ 87Sr/86Sr Analyses through Microsampling on Solid Samples: Applications to Earth and Life Sciences

    Directory of Open Access Journals (Sweden)

    Sara Di Salvo

    2018-01-01

    Full Text Available An analytical protocol for high-precision, in situ microscale isotopic investigations is presented here, which combines the use of a high-performing mechanical microsampling device and high-precision TIMS measurements on micro-Sr samples, allowing for excellent results both in accuracy and precision. The present paper is a detailed methodological description of the whole analytical procedure from sampling to elemental purification and Sr-isotope measurements. The method offers the potential to attain isotope data at the microscale on a wide range of solid materials with the use of minimally invasive sampling. In addition, we present three significant case studies for geological and life sciences, as examples of the various applications of microscale 87Sr/86Sr isotope ratios, concerning (i the pre-eruptive mechanisms triggering recent eruptions at Nisyros volcano (Greece, (ii the dynamics involved with the initial magma ascent during Eyjafjallajökull volcano’s (Iceland 2010 eruption, which are usually related to the precursory signals of the eruption, and (iii the environmental context of a MIS 3 cave bear, Ursus spelaeus. The studied cases show the robustness of the methods, which can be also be applied in other areas, such as cultural heritage, archaeology, petrology, and forensic sciences.

  1. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Prabhakar Rao, P.; Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter

    2009-01-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce 3+ , which remains in the reduced state without being oxidized to Ce 4+ by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  2. A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics

    Science.gov (United States)

    He, Ying; Puckett, Elbridge Gerry; Billen, Magali I.

    2017-02-01

    Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly discontinuous. While there are different methods for tracking rock composition in numerical simulations of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of implementation when choosing an appropriate method. Existing methods can be computationally expensive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter (abbreviated as DG-BP) using a second order Runge-Kutta, strong stability-preserving time discretization method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adaptive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demonstrated using the falling box problem. We find that the DG-BP method maintains sharper compositional boundaries (3-5 elements) as compared to an artificial entropy-viscosity method (6-15 elements), although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discontinuity. However, using Taylor-Hood elements and a uniform mesh there is an over-/undershoot error on the order of 0.0001%, but this error increases to 0.01-0.10% when using AMR. Therefore, for research problems in which a continuous field method is desired the DG

  3. Effects of sintering temperature on the pyrochlore phase in PZT nanotubes and their transformation to the perovskite phase by coating with PbO multilayers.

    Science.gov (United States)

    Han, Jin Kyu; Choi, Yong Chan; Jeon, Do Hyen; Lee, Min Ku; Bu, Sang Don

    2014-11-01

    We report the phase evolution of Pb(Zr0.52Ti0.48)O3 nanotubes (PZT-NTs), from the pyrochlore to perovskite phase, with an outer diameter of about 420 nm and a wall thickness of about 10 nm. The PZT-NTs were fabricated in pores of porous anodic alumina membrane (PAM) using a spin coating of PZT sol-gel solution and subsequent annealing at 500-700 degrees C in oxygen gas. The pyrochlore phase was found to be formed at 500 degrees C, and also found not to be transformed into the perovskite phase, even though annealing was performed at higher temperatures to 700 degrees C. Elementary distribution analysis of PZT-NTs embedded in PAM reveal that Pb diffusion from nanotubes into pore walls of PAM is one of the main reasons. By employing firstly an additional PbO coating on the pyrochlore nanotubes and then subsequent annealing at 700 degrees C, we have successfully achieved an almost pure perovskite phase in nanotubes. These results suggest that PbO acts as a Pb-compensation agent in the Pb- deficient PZT-NTs. Moreover, our method can be used in the synthesis of all metal-oxide materials, including volatile elements.

  4. Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS): an investigation of rare earth element signatures in otolith microchemistry

    International Nuclear Information System (INIS)

    Arslan, Zikri; Paulson, Anthony J.

    2003-01-01

    Uptake of trace elements into fish otoliths is governed by several factors such as life histories and environment in addition to stock and species differences. In an attempt to elucidate the elemental signatures of rare earth elements (REEs) in otoliths, a solid phase extraction (SPE) protocol was used in combination with electrothermal vaporization (ETV) as a sample introduction procedure for the determinations by inductively coupled plasma quadrupole mass spectrometry (ICP-MS). Effects of various parameters, such as carrier gas flow rate, atomization temperature and chemical modification, were examined for optimization of the conditions by ETV-ICP-MS. Atomization was achieved at 2800 deg. C. Lower temperatures (i.e. 2600 deg. C) resulted in severe memory problems due to incomplete atomization. Palladium was used as a chemical modifier. It was found that an increase in Pd concentration up to 0.5 μg in the injection volume (70 μl) led up to four-fold enhancement in the integrated signals. This phenomenon is attributed to the carrier effect of Pd rather than the stabilization since no significant losses were observed for high temperature drying around 700 deg. C even in the absence of Pd. Preconcentration was performed on-line at pH 5 by using a mini-column of Toyopearl AF-Chelate 650M chelating resin, which also eliminated the calcium matrix of otolith solutions. After preconcentration of 6.4 ml of solution, the concentrate was collected in 0.65 ml of 0.5% (v/v) HNO 3 in autosampler cups, and then analyzed by ETV-ICP-MS. The method was validated with the analysis of a fish otolith certified reference material (CRM) of emperor snapper, and then applied to samples. Results obtained from otoliths of fish captured in the same habitat indicated that otolith rare earth element concentrations are more dependent on environmental conditions of the habitat than on species differences

  5. History of Solid Rockets

    Science.gov (United States)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  6. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  7. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  8. Atomic scale simulations of pyrochlore oxides with a tight-binding variable-charge model: implications for radiation tolerance

    International Nuclear Information System (INIS)

    Sattonnay, G; Tétot, R

    2014-01-01

    Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd 2 Ti 2 O 7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd 2 Zr 2 O 7 . Therefore, the defect stability in A 2 B 2 O 7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd 2 Ti 2 O 7 amorphization induced by irradiation. (paper)

  9. Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2 Ti2 O7 in a Magnetic Field

    Science.gov (United States)

    Thompson, J. D.; McClarty, P. A.; Prabhakaran, D.; Cabrera, I.; Guidi, T.; Coldea, R.

    2017-08-01

    The frustrated pyrochlore magnet Yb2 Ti2 O7 has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.

  10. All-in-all-out magnetic domain size in pyrochlore iridate thin films as probed by local magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T. C.; Uchida, M., E-mail: uchida@ap.t.u-tokyo.ac.jp; Kozuka, Y.; Ogawa, S. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Arima, T. [Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2016-01-11

    Pyrochlore iridates have attracted growing attention because of a theoretical prediction of a possible topological semimetal phase originating from all-in-all-out spin ordering. Related to the topological band structure, recent findings of the magnetic domain wall conduction have stimulated investigations of magnetic domain distribution in this system. Here, we investigate the size of magnetic domains in Eu{sub 2}Ir{sub 2}O{sub 7} single crystalline thin films by magnetoresistance (MR) using microscale Hall bars. Two distinct magnetic domains of the all-in-all-out spin structure are known to exhibit linear MR but with opposite signs, which enables us to estimate the ratio of the two domains in the patterned channel. The linear MR for 80 × 60 μm{sup 2} channel is nearly zero after zero-field cooling, suggesting random distribution of domains smaller than the channel size. In contrast, the wide distribution of the value of the linear MR is detected in 2 × 2 μm{sup 2} channel, reflecting the detectable domain size depending on each cooling-cycle. Compared to simulation results, we estimate the average size of a single all-in-all-out magnetic domain as 1–2 μm.

  11. Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb_{2}Ti_{2}O_{7} in a Magnetic Field.

    Science.gov (United States)

    Thompson, J D; McClarty, P A; Prabhakaran, D; Cabrera, I; Guidi, T; Coldea, R

    2017-08-04

    The frustrated pyrochlore magnet Yb_{2}Ti_{2}O_{7} has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.

  12. Superconducting and Structural Transitions in the β-Pyrochlore Oxide KOs2O6 under High Pressure

    Science.gov (United States)

    Ogusu, Hiroki; Takeshita, Nao; Izawa, Koichi; Yamaura, Jun-ichi; Ohishi, Yasuo; Tsutsui, Satoshi; Okamoto, Yoshihiko; Hiroi, Zenji

    2010-11-01

    Rattling-induced superconductivity in the β-pyrochlore oxide KOs2O6 is investigated under high pressure up to 5 GPa. Resistivity measurements in a high-quality single crystal reveal a gradual decrease in the superconducting transition temperature Tc from 9.7 K at 1.0 GPa to 6.5 K at 3.5 GPa, followed by a sudden drop to 3.3 K at 3.6 GPa. Powder X-ray diffraction experiments show a structural transition from cubic to monoclinic or triclinic at a similar pressure. The sudden drop in Tc is ascribed to this structural transition, by which an enhancement in Tc due to a strong electron-rattler interaction present in the low-pressure cubic phase is abrogated as the rattling of the K ion is completely suppressed or weakened in the high-pressure phase of reduced symmetry. In addition, we find two anomalies in the temperature dependence of resistivity in the low-pressure phase, which may be due to subtle changes in rattling vibration.

  13. Anomalous pressure dependence of the superconducting transition temperature in the β-Pyrochlore KOs2O6

    Science.gov (United States)

    Miyoshi, Kiyotaka; Takaichi, Yuta; Takeuchi, Jun

    2009-03-01

    DC magnetic measurements have been performed for β-pyrochlore superconductor KOs2O6 (Tc = 9.6 K) under pressure for the precise determination of the pressure dependence of Tc, using a miniature diamond anvil cell combined with a commercial SQUID magnetometer. It is found that the critical temperature Tc shows a maximum of ~10 K at P=0.5 GPa. The maximum of Tc is higher than that for CsOs2O6 and RbOs2O6, in both of which Tc is known to increase and saturate at Tcm = 8.8 K by the application of pressure, suggesting the enhanced superconductivity due to the rattling of K ions in an oversized cage of Os-O network. For the further application of pressure, Tc decreases linearly but the decreasing rate appears to be suddenly changed at P~2 GPa and Tc~8 K. The sharp bend of the Tc — P line probably corresponds to the transition concerning to the rattling motion which occurs at Tp=7.5 K at ambient pressure, suggesting the positive pressure dependence of Tp.

  14. Signatures of a gearwheel quantum spin liquid in a spin-1/2 pyrochlore molybdate Heisenberg antiferromagnet

    Science.gov (United States)

    Iqbal, Yasir; Müller, Tobias; Riedl, Kira; Reuther, Johannes; Rachel, Stephan; Valentí, Roser; Gingras, Michel J. P.; Thomale, Ronny; Jeschke, Harald O.

    2017-12-01

    We theoretically investigate the low-temperature phase of the recently synthesized Lu2Mo2O5N2 material, an extraordinarily rare realization of a S =1 /2 three-dimensional pyrochlore Heisenberg antiferromagnet in which Mo5 + are the S =1 /2 magnetic species. Despite a Curie-Weiss temperature (ΘCW) of -121 (1 ) K, experiments have found no signature of magnetic ordering or spin freezing down to T*≈0.5 K. Using density functional theory, we find that the compound is well described by a Heisenberg model with exchange parameters up to third nearest neighbors. The analysis of this model via the pseudofermion functional renormalization group method reveals paramagnetic behavior down to a temperature of at least T =| ΘCW|/100 , in agreement with the experimental findings hinting at a possible three-dimensional quantum spin liquid. The spin susceptibility profile in reciprocal space shows momentum-dependent features forming a "gearwheel" pattern, characterizing what may be viewed as a molten version of a chiral noncoplanar incommensurate spiral order under the action of quantum fluctuations. Our calculated reciprocal space susceptibility maps provide benchmarks for future neutron scattering experiments on single crystals of Lu2Mo2O5N2 .

  15. Recovery of rare earth minerals, with emphasis on flotation process

    International Nuclear Information System (INIS)

    Houot, R.; Cuif, J.P.; Mottot, Y.; Samama, J.C.

    1991-01-01

    Bastnasite and monazite are the two major minerals used commercially to supply most of the rare earths. Monazite is often a by-product of the concentration of heavy minerals of zirconium and titanium in beach sands. Thus, the methods of concentration are gravity (spirals, Reichert cones and shaking tables), ending with magnetism, electrostatic and in certain cases, flotation. The two main deposits of bastnasite are Mountain Pass (U.S.A.) and Bayan Obo (China). The rock bastnasite content is within 15% and the recovery of rare earth minerals is made through flotation. The flowsheets are complex enough because the existence of accompanying minerals such as quartz, iron components, barite, fluorite, calcite, etc. The conditioning is done by heating and the frequently employed collector is a fatty acid associated with selective agents, as sodium silicate or fluosilicate, lignin sulphonate, sodium carbonate, aluminium salts, etc. Recent studies tempt to introduce the use of phosphoric esters, dicarboxilic, sulphonic and/or sulphosuccinic acids. Concentrates with 60% REO are then treated with acidic solution to eliminate residual calcite. The possibility of obtaining products enriched with rare earths are also noted: these are ores of uranium (Elliot Lake), pyrochlore, apatite, and other complex ores with euxenite, fergusonite or loparite. (author) 10 figs., 6 tabs., 57 refs

  16. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  17. Immersive Visualization of the Solid Earth

    Science.gov (United States)

    Kreylos, O.; Kellogg, L. H.

    2017-12-01

    Immersive visualization using virtual reality (VR) display technology offers unique benefits for the visual analysis of complex three-dimensional data such as tomographic images of the mantle and higher-dimensional data such as computational geodynamics models of mantle convection or even planetary dynamos. Unlike "traditional" visualization, which has to project 3D scalar data or vectors onto a 2D screen for display, VR can display 3D data in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection and interfere with interpretation. As a result, researchers can apply their spatial reasoning skills to 3D data in the same way they can to real objects or environments, as well as to complex objects like vector fields. 3D Visualizer is an application to visualize 3D volumetric data, such as results from mantle convection simulations or seismic tomography reconstructions, using VR display technology and a strong focus on interactive exploration. Unlike other visualization software, 3D Visualizer does not present static visualizations, such as a set of cross-sections at pre-selected positions and orientations, but instead lets users ask questions of their data, for example by dragging a cross-section through the data's domain with their hands and seeing data mapped onto that cross-section in real time, or by touching a point inside the data domain, and immediately seeing an isosurface connecting all points having the same data value as the touched point. Combined with tools allowing 3D measurements of positions, distances, and angles, and with annotation tools that allow free-hand sketching directly in 3D data space, the outcome of using 3D Visualizer is not primarily a set of pictures, but derived data to be used for subsequent analysis. 3D Visualizer works best in virtual reality, either in high-end facility-scale environments such as CAVEs, or using commodity low-cost virtual reality headsets such as HTC's Vive. The recent emergence of high-quality commodity VR means that researchers can buy a complete VR system off the shelf, install it and the 3D Visualizer software themselves, and start using it for data analysis immediately.

  18. Use of linear free energy relationship to predict Gibbs free energies of formation of pyrochlore phases (CaMTi2O7)

    International Nuclear Information System (INIS)

    Xu, H.; Wang, Y.

    1999-01-01

    In this letter, a linear free energy relationship is used to predict the Gibbs free energies of formation of crystalline phases of pyrochlore and zirconolite families with stoichiometry of MCaTi 2 O 7 (or, CaMTi 2 O 7 ,) from the known thermodynamic properties of aqueous tetravalent cations (M 4+ ). The linear free energy relationship for tetravalent cations is expressed as ΔG f,M v X 0 =a M v X ΔG n,M 4+ 0 +b M v X +β M v X r M 4+ , where the coefficients a M v X , b M v X , and β M v X characterize a particular structural family of M v X, r M 4+ is the ionic radius of M 4+ cation, ΔG f,M v X 0 is the standard Gibbs free energy of formation of M v X, and ΔG n,M 4+ 0 is the standard non-solvation energy of cation M 4+ . The coefficients for the structural family of zirconolite with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4284.67 (kJ/mol), and β M v X =27.2 (kJ/mol nm). The coefficients for the structural family of pyrochlore with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4174.25 (kJ/mol), and β M v X =13.4 (kJ/mol nm). Using the linear free energy relationship, the Gibbs free energies of formation of various zirconolite and pyrochlore phases are calculated. (orig.)

  19. Origin of the earth and moon

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1981-01-01

    The composition of the Earth's interior and its bearing on the Earth's origin are discussed. It seems likely that the terrestrial planets formed by the accretion of solid planetisimals from the nebula of dust and gas left behind during the formation of the Sun. The scenario proposed is simpler than others. New evidence based upon a comparison of siderophile element abundances in the Earth's mantle and in the Moon imply that the Moon was derived from the Earth's mantle after the Earth's core had segregated

  20. C60 and U ion irradiation of Gd2TixZr2-xO7 pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaming; Toulemonde, Marcel; Lang, Maik; Costantini, Jean Marc; Della-Negra, Serge; Ewing, Rodney C.

    2015-08-01

    Gd2TixZr2-xO7 (x = 0 to 2) pyrochlore was irradiated by 30 MeV C60 clusters, which provide an extremely high ionizing energy density. Here, high-resolution transmission electron microscopy revealed a complex ion-track structure in Gd2Ti2O7 and Gd2TiZrO7, consisting of an amorphous core and a shell of a disordered, defect-fluorite structure.

  1. High-pressure synthesis and characterization of the effective pseudospin S =1 /2 XY pyrochlores R2P t2O7 (R =Er ,Yb )

    Science.gov (United States)

    Cai, Y. Q.; Cui, Q.; Li, X.; Dun, Z. L.; Ma, J.; dela Cruz, C.; Jiao, Y. Y.; Liao, J.; Sun, P. J.; Li, Y. Q.; Zhou, J. S.; Goodenough, J. B.; Zhou, H. D.; Cheng, J.-G.

    2016-01-01

    We report on the high-pressure syntheses and detailed characterizations of two effective pseudospin S =1 /2 XY pyrochlores E r2P t2O7 and Y b2P t2O7 via x-ray/neutron powder diffraction, dc and ac magnetic susceptibility, and specific-heat measurements down to 70 mK. We found that both compounds undergo long-range magnetic transitions at TN ,C≈0.3 K , which are ascribed to an antiferromagnetic- and ferromagnetic-type order for E r2P t2O7 and Y b2P t2O7 , respectively, based on the field dependence of their transition temperatures as well as the systematic comparisons with other similar pyrochlores R2B2O7 (R =Er ,Yb ;B =Sn ,Ti ,Ge ). The observed TN of E r2P t2O7 is much lower than that expected from the relationship of TN versus the ionic radius of B4 + derived from the series of E r2B2O7 , while the TC of Y b2P t2O7 is the highest among the series of ferromagnetic compounds Y b2B2O7 (B =Sn ,Pt ,Ti ). Given the monotonic variation of the lattice constant as a function of the B -cation size across these two series of R2B2O7 (R =Er ,Yb ), the observed anomalous values of TN ,C in the Pt-based XY pyrochlores imply that another important factor beyond the nearest-neighbor R -R distance is playing a role. In light of the anisotropic exchange interactions Jex={Jz z,J±,J±±,Jz ± } for the S =1 /2 XY pyrochlores, we have rationalized these observations by considering a weakened (enhanced) antiferromagnetic planar J± (ferromagnetic Ising-like Jz z) due to strong Pt 5 d -O 2 p hybridization within the plane perpendicular to the local [111] direction.

  2. The atomic structure of protons and hydrides in Sm1.92Ca0.08Sn2O7-δ pyrochlore from DFT calculations and FTIR spectroscopy

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Eurenius, K. E. J.; Rossmeisl, Jan

    2012-01-01

    A combined density functional theory and Fourier transform infrared spectroscopy study of the structure and specific site preference of protons and hydrides in the pyrochlore Sm1.92Ca0.08Sn2O7-δ is presented. Two protonic sites of particular high stability are identified, both located on O(1......) oxygen atoms closely associated with a Ca dopant. Further, the unexpected presence of Ho hydride defects in undoped, oxygen deficient Sm2Sn2O7 is reported. Finally, the stretching frequencies and relative intensities for these and other sites are calculated. The main features of the Fourier transform...

  3. Earth sciences

    International Nuclear Information System (INIS)

    Tamura, T.

    1978-01-01

    The following waste management studies were conducted: assessment of ORNL radioactive solid waste disposal practices and facilities; assessment of stream monitoring network in White Oak Creek watershed; discharge of 90 Sr from burial ground 4; evaluation of burial ground corrective measures; halocarbons as ground water tracers; 60 Co transport mechanisms; 60 Co adsorption kinetics; and soil chromatograph K/sub d/ values. Other studies were conducted on cycling and transport of fusion-activation products in the terrestrial environment; Clinch River inventory; biological denitrification; leachates from stored fossil-fuel solids; coal storage piles; and disposal of solid wastes

  4. Physics of the Earth

    Science.gov (United States)

    Stacey, Frank D.; Davis, Paul M.

    he fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.

  5. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  6. Absence of magnetic long-range order in Y2CrSbO7 : Bond-disorder-induced magnetic frustration in a ferromagnetic pyrochlore

    Science.gov (United States)

    Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.

    2017-09-01

    The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.

  7. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Deepa, M. [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Prabhakar Rao, P., E-mail: padala_rao@yahoo.com [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India)

    2009-07-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce{sup 3+}, which remains in the reduced state without being oxidized to Ce{sup 4+} by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  8. Synthesis, crystal structure, and magnetic properties of pyrochlore-type Eu{sub 2}Ta{sub 2}(O,N){sub 7+δ}

    Energy Technology Data Exchange (ETDEWEB)

    Anke, Bjoern; Hund, Sophie; Lorent, Christian; Lerch, Martin [Institut fuer Chemie, Technische Universitaet Berlin (Germany); Janka, Oliver; Block, Theresa; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany)

    2017-12-13

    Pyrochlore-type Eu{sub 2}Ta{sub 2}(O,N){sub 7+δ} phases were prepared by reaction of ammonia with an amorphous europium tantalum oxide precursor. {sup 151}Eu Moessbauer and EPR spectroscopy as well as magnetic susceptibility measurements point to the presence of exclusively Eu{sup 3+}. For phase-pure samples (X-ray powder diffraction), the nitrogen content varies between 1.0 and 1.8 wt %, leading to compositions in the range Eu{sub 2}Ta{sub 2}O{sub 7.1}N{sub 0.6} - Eu{sub 2}Ta{sub 2}O{sub 6.5}N{sub 1.0}. Pyrochlore-type phases are structurally derived from the fluorite type with 1/8 of the anions missing, resulting in an ideal composition A{sub 2}B{sub 2}X{sub 7}. In Eu{sub 2}Ta{sub 2}(O,N){sub 7+δ} the excess anions partly occupy these vacancies. The prepared phases are colorless with a direct optical bandgap of 4.3 eV and they show the typical Van Vleck paramagnetic behavior known for trivalent Eu atoms. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. An unusual hybrid fluoride featuring a [V7F27]6- chain motif based on a pyrochlore-like building unit

    International Nuclear Information System (INIS)

    Aldous, David W.; Slawin, Alexandra M.Z.; Lightfoot, Philip

    2008-01-01

    A new hybrid vanadium (III) fluoride [C 4 H 12 N 2 ] 3 [V 7 F 27 ] has been synthesised solvothermally. The crystal structure (trigonal, R3-bar c; a=17.367(2) A, c=19.604(2) A) reveals an unusual and novel chain motif consisting of pyrochlore-like heptameric units of corner-sharing octahedra, which are further linked into linear chains of alternating triple and single octahedral groups. The chains are separated by hydrogen-bonded piperazinium moieties. Magnetic susceptibility data show moderate antiferromagnetic interactions but no long-range order above 2 K, consistent with pronounced one-dimensional character, as well as frustration arising within the triangular units of magnetic ions in the chains. - Graphical abstract: A unique chain-structure vanadium(III) fluoride [C 4 H 12 N 2 ] 3 [V 7 F 27 ], based on a pyrochlore-like building unit, has been prepared solvothermally. Despite antiferromagnetic interactions, no long-range magnetic order occurs above 2 K, suggesting possible frustration

  10. A survey of the theory of the Earth's rotation

    Science.gov (United States)

    Cannon, W. H.

    1981-01-01

    The theory of the Earth's rotation and the geophysical phenomena affecting it is examined. First principles are reviewed and the problem of polar motion and UT1 variations is formulated in considerable generality and detail. The effects of Earth deformations and the solid Earth tides are analyzed.

  11. Long-Period Tidal Variations of the Earth's Rotation Rate

    Science.gov (United States)

    Desai, S.; Gross, R.; Wahr, J.

    1999-01-01

    Long-period tidal variations of the Earth's rotation rate are caused by the redistribution of mass associated with the respective elastic solid Earth tides, the ocean tide heights, and the anelasticity of the Earth's mantle, and by the relative angular momentum associated with the long-period ocean tide currents.

  12. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  13. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M

    1960-01-01

    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  14. Rare earth silicate (Ce, La, Nd, Ca, Th) SiO4 and cheralite (Th, Ca, Ce, La) (Psi)O4 are the responsible minerals for the anomalies of Morro de Ferro

    International Nuclear Information System (INIS)

    Fujimori, K.

    1982-01-01

    The Rare Earth silicate (La, Ce, Nd, Ca, Th)SiO 4 and cheralite (identified by Prof. Freeborn on a sample prepared from drilling core) were recognized as the most probable radioactive minerals that gave origin to high radioactive anomaly at Morro do Ferro hill together with coffinite, thorite, pyrochlore, apatite, etc., that are found in small quantity. The acids produced by decomposition of pyrite and fluorite have etched these radioactive minerals giving the high radioactive anomaly caracterized by high grade desiquilibrium of 232 Th serie. (Author) [pt

  15. Looking at the earth from space

    Science.gov (United States)

    Geller, Marvin A.

    1988-01-01

    Some of the scientific accomplishments attained in observing the earth from space are discussed. A brief overview of findings concerning the atmosphere, the oceans and sea ice, the solid earth, and the terrestrial hydrosphere and biosphere is presented, and six examples are examined in which space data have provided unique information enabling new knowledge concerning the workings of the earth to be derived. These examples concern stratospheric water vapor, hemispheric differences in surface and atmosphere parameters, Seasat altimeter mesoscale variability, variability of Antarctic sea ice, variations in the length of day, and spaceborne radar imaging of ancient rivers. Future space observations of the earth are briefly addressed.

  16. Fluorine-ion conductivity of different technological forms of solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (LaF{sub 3} Type ) (M = Ca, Sr, Ba; R Are Rare Earth Elements)

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-05-15

    We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which provides (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.

  17. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  18. Preparation, structural characterization, and enhanced electrical conductivity of pyrochlore-type (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xia, X.L. [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin (China); Institute of Oceanography Instruments, Shandong Academy of Science, Chinese National Engineering Research Center for Marine Monitoring Equipment, Qingdao (China); Liu, Z.G.; Ouyang, J.H. [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin (China); Zheng, Y. [Institute of Oceanography Instruments, Shandong Academy of Science, Chinese National Engineering Research Center for Marine Monitoring Equipment, Qingdao (China)

    2012-08-15

    (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} (0 {<=} x {<=} 1.0) samples are prepared by solid state reaction method using Sm{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, and ZrO{sub 2} as starting materials. The phase composition and microstructure of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics are investigated by X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM) coupled with selected area electron diffraction and Raman spectroscopy. XRD and TEM show that all the samples exhibit a single pyrochlore-type structure. HRTEM observation indicates that the whole grain interior of Sm{sub 2}Zr{sub 2}O{sub 7} ceramic is a perfect crystal free of any dislocation. Raman spectroscopy reveals that the degree of structural disorder of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics increases gradually with increasing Eu content. The electrical conductivity of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics is investigated by impedance spectroscopy in the air and hydrogen atmospheres, respectively. The electrical conductivity of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics increases with increasing Eu content at identical temperature levels. Both the activation energy E{sub g} and the pre-exponential factor {sigma}{sub 0g} for the grain conductivity gradually increase with increasing Eu content. As the ionic conductivity shows no obvious change in both air and hydrogen atmospheres, the conduction of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} is purely ionic with negligible electronic conduction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Spin correlations in the pyrochlore slab compounds Ba2Sn2Ga10-7pZnCr7pO22

    International Nuclear Information System (INIS)

    Bonnet, P; Payen, C; Mutka, H; Danot, M; Fabritchnyi, P; Stewart, J R; Mellergaard, A; Ritter, C

    2004-01-01

    The low-temperature properties of a diluted antiferromagnetic pyrochlore slab of S = 3/2 spins are investigated through a study of the frustrated oxides Ba 2 Sn 2 Ga 10-7p ZnCr 7p O 22 (p>0.85). Powder neutron diffraction and 119 Sn Moessbauer absorption show no evidence of long-range magnetic order above 1.5 K. As in SrCr 9q Ga 12-9q O 19 , diffuse magnetic scattering, indicative of short range spin-spin correlations, is observed at low temperature. The dependence of the low-temperature sub-Curie bulk susceptibility to weak site depletion is the inverse of that observed in SrCr 9q Ga 12-9q O 19

  20. Synthesis, crystal structure and luminescent properties of a new pyrochlore type tungstate CsGa0.333W1.667O6

    Science.gov (United States)

    Zhao, Dan; Zhao, Ji; Fan, Yun-Chang; Ma, Zhao; Zhang, Rui-Juan; Liu, Bao-Zhong

    2018-06-01

    High temperature solution reaction leads to a new tungstate compound CsGa0.333W1.667O6, whose structure was determined by single-crystal X-ray diffraction analysis. The results show that it crystallizes in pyrochlore structure with cubic space group Fd-3m and a = 10.2529 (13) Å. In this structure, Ga and W atoms are in a statistical disorder manner. The self-activated luminescent properties CsGa0.333W1.667O6 were studied. Under the excitation of 323 nm, the emission spectrum exhibits a blue emission centered at 466 nm with the chromaticity coordinates (0.1838, 0.1814).

  1. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Yan, Jinyuan; Ewing, Rodney C.; Mao, Wendy L.

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionic radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu2Zr2O7 as compared with the initially defect-fluorite structured Dy2Zr2O7.

  2. Photoluminescence properties of ‘red’ emitting La{sub 2}Zr{sub 2}O{sub 7}:Eu pyrochlore ceramics for potential phosphor application

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, M., E-mail: manojm@barc.gov.in; Rajeswari, B.; Hon, N.S.; Kadam, R.M.; Natarajan, V.

    2015-10-15

    Lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}=LZO) pyrochlores doped with varying concentrations of Eu were synthesized using a low temperature gel-combustion synthesis route and characterized using X-ray diffraction, scanning electron microscopic and photoluminescence techniques. The final annealing temperature of the system could be brought down to 700 °C to produce a single phase compound. In addition, the optimum activator ion concentration for maximum luminescence yield was evaluated for the system. The site occupancy for the Eu ions was also investigated which suggested that at 500 °C, the ions were on the surface of the LZO host and later diffused into the lattice and replaced the La{sup 3+} ions on annealing at 700 °C 5 h. However, due to difference in the ionic radii, the doped RE ions were of the inversion center forming a D{sub 2d} symmetry around them. For the first time the radiative properties and the commercial utility of the LZO system have been investigated. These parameters were used to get an idea about the M–L bond covalency in the system. The radiative properties suggested the system can be used as a potential ‘red’ emitting phosphor. - Highlights: • Synthesis of lanthanum zirconate pyrochlores doped with Eu using gel-combustion route. • Optimization of dopant ion concentration and annealing temperature and evaluation of its local site symmetry. • Evaluation of various photo-physical properties for the Eu-LZO system to investigate the M–L bond covalency. • Investigation of the commercial utility of the system by calculating the color coordinates. • Comparison of the emission properties with commercial sample.

  3. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  4. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  5. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  6. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  7. Re-examination of the crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 by X-ray and convergent-beam electron diffraction analyses

    Science.gov (United States)

    Yamaura, Jun-Ichi; Hiroi, Zenji; Tsuda, Kenji; Izawa, Koichi; Ohishi, Yasuo; Tsutsui, Satoshi

    2009-01-01

    The crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 is re-examined. A single-crystal X-ray diffraction (XRD) analysis at room temperature first revealed that the compound crystallizes in a cubic structure with the centrosymmetric space group Fd3¯m, as in conventional pyrochlore oxides. Later, however, Schuck et al. claimed a different non-centrosymmetric F4¯3m structure based on their single-crystal XRD analysis. To unambiguously determine the true crystal structure of KOs 2O 6, we carried out high-resolution synchrotron powder X-ray and convergent-beam electron diffraction measurements at room temperature. The space group was determined with high reliability to be centrosymmetric Fd3¯m, not F4¯3m. This confirms the importance of the K atom location in a high-symmetry site, which causes unusually large rattling of the K atom.

  8. Vocabulary related to earth sciences through etymology

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    to all aspects of earth sci- ences education for the benefit of students and educators. The author of the article is Nittala S. Sarma, Andhra University, Visak- hapatnam. In the article, Sarma has col- lected Greek, Latin, German and Celtic affixes... terms can be built solidly. My realization of the importance of etymology and the impressive effort put up by Sarma has prompted me to bring his recent publication to the attention of earth sciences students and teachers in the country...

  9. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  10. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  11. Investigation of structural and electrical properties of vanadium substituted disordered pyrochlore-type Ho{sub 2−x}V{sub x}Zr{sub 2}O{sub 7} nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, Nazia, E-mail: naziakaramatgoraya@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Najam-ul-Haq, Muhammad [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Ali, Irshad; Iqbal, M. Asif; Irfan, Muhammad [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan); Abbas, Yasir; Athar, Muhammad [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan)

    2014-04-01

    Graphical abstract: - Highlights: • Normal microemulsion method has been used for the synthesis of zirconates nanomaterials. • Structure shifted towards highly disordered pyrochlore state with substitution. • The electrical resistivity increase with the vanadium content. • The dielectric constant show resonance behavior. • The synthesized materials are suitable for microwave devices. - Abstract: Disordered pyrochlore system with composition Ho{sub 2−x}V{sub x}Zr{sub 2}O{sub 7} (where x = 0, 0.25, 0.50, 0.75 and 1) has been synthesized by the normal microemulsion route to examine the effect of vanadium substitution on structural and electrical properties. The prepared compounds are characterized by several techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray fluorescence (ED-XRF), energy dispersive spectra (EDS), scanning electron microscopy (SEM), temperature dependent electrical and frequency dependent dielectric measurements. The XRD analysis confirms the formation of disordered pyrochlore phase with crystallite size 7–30 nm while a second phase is also observed in the highly substituted materials. The increase in resistivity is attributed to the removal of low energy pathway due to cation disordering. The dielectric constant decreases due to lowering of dipole moment with substitution and its resonance behavior shifted toward higher frequencies. The electrical and dielectric measurements suggest that materials are suitable for high frequency electronic devices, such as oscillators, resonators and frequency filters.

  12. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  13. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan; Iwasa, Yukikazu, E-mail: iwasa@jokaku.mit.edu [Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139 (United States); Voccio, John [Wentworth Institute of Technology, 550 Huntington Ave, Boston, Massachusetts 02115 (United States); Hahn, Seungyong [National High Magnetic Field Laboratory, Florida State University, Tallahassee, 2031 Paul Dirac Drive, Florida 32310 (United States)

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  14. Origin of the Earth and planets

    International Nuclear Information System (INIS)

    Safronov, V.S.; Ruskol, E.L.

    1982-01-01

    The present state of the Schmidt hypothesis on planets formation by combining cold solid particles and bodies in the protoplanet dust cloud is briefly outlined in a popular form. The most debatable problems of the planet cosmogony: formation of and processes in a protoplanet cloud, results of analytical evaluations and numerical simulation of origin of the Earth and planets-giants are discussed [ru

  15. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  16. Analyzing Solutions High in Total Dissolved Solids for Rare Earth Elements (REEs) Using Cation Exchange and Online Pre-Concentration with the seaFAST2 Unit; NETL-TRS-7-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2017; p 32

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Torres, M. [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Verba, C. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Hakala, A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-08-01

    The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop the capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.

  17. Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores

    International Nuclear Information System (INIS)

    Feng, J.; Xiao, B.; Zhou, R.; Pan, W.

    2013-01-01

    Graphical abstract: Calculated cohesive energies and formation enthalpies of RE 2 Sn 2 O 7 compounds. The formation enthalpies at 298 K are more close to the experimental values. -- The calculated cohesive energies and formation enthalpies of Rare earth stannate (RE 2 Sn 2 O 7 ) compounds are in good agreement with the corresponding experimental values. The thermal expansion coefficients (TECs) of rare earth stannates are 7–9 × 10 −6 K −1 at high temperature. The results show that local spin density approximation predicts smaller TECs than the real values. The computed thermal conductivity of RE 2 Sn 2 O 7 is 1.8–2.5 W (m · K) −1 at 1273 K using the Slack–Clarke model, indicating that RE 2 Sn 2 O 7 compounds exhibit good thermal insulating properties at high temperature

  18. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  19. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  20. Impact on the earth, ocean and atmosphere

    International Nuclear Information System (INIS)

    Ahrens, T.J.; O'Keefe, J.D.

    1987-01-01

    Several hundred impact craters produced historically and at times as early as 1.9 x 10/sup 9/ years ago with diameters in the range 10/sup -2/ to 10/sup 2/ km are observed on the surface of the earth. Earth-based and spacecraft observations of the surfaces of all the terrestrial planets and their satellites, as well as many of the icy satellites of the outer planets, indicated that impact cratering was a dominant process on planetary surfaces during the early history of the solar system. Moreover, the recent observation of a circumstellar disk around the nearby star, β-Pictoris, appears to be similar to the authors' own hypothesized protosolar disk. A disk of material around our sun has been hypothesized to have been the source of the solid planetesimals from which the earth and the other planets accreted by infall and capture. Thus it appears that the earth and the other terrestrial planets formed as a result of infall and impact of planetesimals. Although the present planets grew rapidly via accretion to their present size (in --10/sup 7/ years), meteorite impacts continue to occur on the earth and other planets. Until recently meteorite impact has been considered to be a process that was important on the earth and the other planets only early in the history of the solar system. This is no longer true. The Alvarez hypothesis suggests that the extinction of some 90% of all species, including 17 classes of dinosaurs, is associated with the 1 to 150 cm thick layer of noble-element rich dust which is found all over the earth exactly at the Cretaceous-Tertiary boundary. The enrichment of noble elements in this dust is in meteorite-like proportions. This dust is thought to represent the fine impact ejecta from a --10 km diameter asteroid interacting with the solid earth. The Alvarez hypothesis associates the extinction with the physics of a giant impact on the earth

  1. Impacts on Explorer 46 from an Earth orbiting population

    Science.gov (United States)

    Kessler, D. J.

    1985-01-01

    Explorer 46 was launched into Earth orbit in August 1972 to evaluate the effectiveness of using double-wall structures to protect against meteoroids. The data from the Meteoroid Bumper Experiment on Explorer 46 is reexamined and it is concluded that most of the impacts originated from an Earth orbiting population. The probable source of this orbiting population is solid rocket motors fired in Earth orbit.

  2. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  3. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  4. School, Earth and Imagination

    Science.gov (United States)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina

    2015-04-01

    that uses most of the five senses to approach materials of the Earth. In this way children discover the different spheres of the Earth materials, like water, soils, minerals, rocks. In the second part of each module children discover that knowledge can be applied acting on the geological objects. So they learn how to clean water using different kinds of soils or how to separate garbage according to the materials of which objects are made and not to other more showy characteristics like shape, size or color. The reiteration in time of the same scheme through the different modules is fundamental to give children a solid method of approach to the problems that children have to face, giving the basics to start the scholastic experience in the best possible way. Indeed, following structured modules activity, children will become accustomed with various situations inside and outside school with this analytical and experimental approach, overcoming sensory preconceptions and building their own perception based on an empirical method.

  5. First-principles study on cubic pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7

    International Nuclear Information System (INIS)

    Ishii, Fumiyuki; Mizuta, Yo Pierre; Kato, Takehiro; Ozaki, Taisuke; Weng Hongming; Onoda, Shigeki

    2015-01-01

    Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 . The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion U > U c in the LSDA+U scheme, with U c ∼ 1.1 eV and 1.3 eV for Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 , respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing U. For U = 1.3 eV, Y 2 Ir 2 O 7 is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment ∼0.5μ B /Ir, while Pr 2 Ir 2 O 7 is barely a paramagnetic semimetal with electron and hole concentrations of 0.016/Ir, in overall agreements with experiments. With decreasing oxygen position parameter x describing the trigonal compression of IrO 6 octahedra, Pr 2 Ir 2 O 7 is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of Γ 8 + , showing a quadratic band touching, to a Z 2 topological insulator. (author)

  6. Pseudo-Goldstone Magnons in the Frustrated S=3/2 Heisenberg Helimagnet ZnCr_{2}Se_{4} with a Pyrochlore Magnetic Sublattice

    Directory of Open Access Journals (Sweden)

    Y. V. Tymoshenko

    2017-11-01

    Full Text Available Low-energy spin excitations in any long-range ordered magnetic system in the absence of magnetocrystalline anisotropy are gapless Goldstone modes emanating from the ordering wave vectors. In helimagnets, these modes hybridize into the so-called helimagnon excitations. Here we employ neutron spectroscopy supported by theoretical calculations to investigate the magnetic excitation spectrum of the isotropic Heisenberg helimagnet ZnCr_{2}Se_{4} with a cubic spinel structure, in which spin-3/2 magnetic Cr^{3+} ions are arranged in a geometrically frustrated pyrochlore sublattice. Apart from the conventional Goldstone mode emanating from the (0 0 q_{h} ordering vector, low-energy magnetic excitations in the single-domain proper-screw spiral phase show soft helimagnon modes with a small energy gap of ∼0.17  meV, emerging from two orthogonal wave vectors (q_{h} 0 0 and (0 q_{h} 0 where no magnetic Bragg peaks are present. We term them pseudo-Goldstone magnons, as they appear gapless within linear spin-wave theory and only acquire a finite gap due to higher-order quantum-fluctuation corrections. Our results are likely universal for a broad class of symmetric helimagnets, opening up a new way of studying weak magnon-magnon interactions with accessible spectroscopic methods.

  7. A novel isomorphic phase transition in β-pyrochlore oxide KOs2O6: a study using high resolution neutron powder diffraction

    Science.gov (United States)

    Sasai, Kenzo; Kofu, Maiko; Ibberson, Richard M.; Hirota, Kazuma; Yamaura, Jun-ichi; Hiroi, Zenji; Yamamuro, Osamu

    2010-01-01

    We have carried out adiabatic calorimetric and neutron powder diffraction experiments on the β-pyrochlore oxide KOs2O6, which has a superconducting transition at Tc = 9.6 K and another novel transition at Tp = 7.6 K. A characteristic feature of this compound is that the K ions exhibit rattling vibrations in the cages formed by O atoms even at very low temperatures. The temperature and entropy of the Tp transition is in good agreement with previous data measured using a heat relaxation method, indicating that the present sample is of high purity and the transition entropy, 0.296 J K-1 mol-1, does not depend on the calorimetric method used. The neutron powder diffraction data show no peak splitting nor extra peaks over the temperature range between 2 and 295 K, suggesting that the Tp transition is a rather unusual isomorphic transition. Rietveld analysis revealed an anomalous expansion of the lattice and a deformation of the O atom cage below 7.6 K. In the low-temperature phase, the distribution of scattering density corresponding to the K ions becomes broader whilst maintaining its maximum at the cage center. Based on these findings, we suggest that the Tp transition is due to the expansion of the cage volume and cooperative condensation of the K ions into the ground state of the rattling motion.

  8. Comparison of the Supercooled Spin Liquid States in the Pyrochlore Magnets Dy2Ti2O7 and Ho2Ti2O7

    Science.gov (United States)

    Eyal, Anna; Eyvazov, Azar B.; Dusad, Ritika; Munsie, Timothy J. S.; Luke, Graeme M.; Davis, J. C. Séamus

    Despite a well-ordered crystal structure and strong magnetic interactions between the Dy or Ho ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. The low temperature state in these materials is governed by spin-ice rules. These constrain the Ising like spins in the materials, yet does not result in a global broken symmetry state. To explore the actual magnetic phases, we simultaneously measure the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7 and Ho2Ti2O7 using toroidal, boundary-free magnetization transport techniques. We demonstrate a distinctive behavior of the magnetic susceptibility of both compounds, that is indistinguishable in form from the permittivity of supercooled dipolar liquids. Moreover, we show that the microscopic magnetic relaxation times for both materials increase along a super-Arrhenius trajectory also characteristic of supercooled glass-forming liquids. Both materials therefore exhibit characteristics of a supercooled spin liquid. Strongly-correlated dynamics of loops of spins is suggested as a possible mechanism which could account for these findings. Potential connections to many-body spin localization will also be discussed.

  9. Heat capacity and magnetic properties of fluoride CsFe{sup 2+}Fe{sup 3+}F{sub 6} with defect pyrochlore structure

    Energy Technology Data Exchange (ETDEWEB)

    Gorev, M.V., E-mail: gorev@iph.krasn.ru [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Flerov, I.N. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Tressaud, A. [Institut de Chimie de la Matière Condensée, ICMCB-CNRS, Université Bordeaux, 33608 Pessac Cedex (France); Bogdanov, E.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Astafijev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk (Russian Federation); Kartashev, A.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Krasnoyarsk State Agrarian University, 660049 Krasnoyarsk (Russian Federation); Bayukov, O.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Eremin, E.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Krylov, A.S. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation)

    2016-05-15

    Heat capacity, Mössbauer and Raman spectra as well as magnetic properties of fluoride CsFe{sub 2}F{sub 6} with defect pyrochlore structure were studied. In addition to recently found above room temperature three successive structural transformations Pnma-Imma-I4{sub 1}amd-Fd-3m, phase transition of antiferromagnetic nature with the 13.7 K Neel temperature and a broad heat capacity anomaly with a maximum at about 30 K were observed. The room temperature symmetry Pnma is unchanged at least down to 7 K. Simple model of indirect bond used to estimate the exchange interactions and to propose a magnetic structure model. - Graphical abstract: The ordered arrangement of Fe{sup 2+} and Fe{sup 3+} ions in high-spin states as well as antiferromagnetic phase transition followed by significant magnetic frustrations were found in pyrocholore-related CsFe{sup 2+}Fe{sup 3+}F{sub 6}. A magnetic structure was proposed using a simple model of indirect bonds. - Highlights: • The Pnma structure in pyrocholore CsFe{sub 2}F{sub 6} is stable down to helium temperature. • Mössbauer spectra confirmed the ordering of Fe{sup 2+} and Fe{sup 3+} ions. • Antiferromagnetic transformation and significant magnetic frustrations are found. • Experimental magnetic entropy agrees with entropy for Fe ions in high-spin state. • Superexchange interactions were calculated and a magnetic structure was proposed.

  10. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  11. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements...... will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect...

  12. Thermal structure of the accreting earth

    International Nuclear Information System (INIS)

    Turcotte, D.L.; Pflugrath, J.C.

    1985-01-01

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper we postulate the existence of a global magma ocean and carry out calculations of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. We find that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. We conclude that the core segregated and an atmosphere was formed during accretion

  13. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  14. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  15. Waterproofing improvement of radioactive waste asphalt solid

    International Nuclear Information System (INIS)

    Adachi, Katsuhiko; Yamaguchi, Takashi; Ikeoka, Akira.

    1981-01-01

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 60 0 C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  16. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    Science.gov (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  17. Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system.

    Science.gov (United States)

    Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo

    2017-12-15

    A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  19. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  20. Nuclear orientation on rare earth nickel alloys

    International Nuclear Information System (INIS)

    Nishimura, K.

    1998-01-01

    A hyperfine interaction study of the light rare earth elements, Ce, Pr, Nd and Pm, in the rare earth nickel and CeNi 2 Al 5 compounds by means of the low temperature nuclear orientation is summarised. The magnitudes and directions of the magnetic hyperfine fields obtained through measurements of γ-ray anisotropy and angular distributions reveal the magnetic structures of the ions. The experiments extracted peculiar results for the magnetic properties of the ions, and show certain novel features of the technique to the study of solid-state magnetism. Copyright (1998) Australian Journal of Physics

  1. Unusual spin frozen state in a frustrated pyrochlore system NaCaCo{sub 2}F{sub 7} as observed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R.; Brueckner, F.; Klauss, H.H. [IFP, TU Dresden (Germany); Krizan, J.W.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ (United States)

    2016-07-01

    We present {sup 23}Na -and {sup 19}F NMR results on the magnetically frustrated pyrochlore NaCaCo{sub 2}F{sub 7} with a frustration index of f = θ{sub CW}/T{sub f} ∝ 56. Recent neutron scattering experiments proposed XY like antiferromagnetic spin clusters at low energies in NaCaCo{sub 2}F{sub 7}. {sup 23}Na NMR -spectra reveal the presence of two magnetically non equivalent Na sites in conjunction with the local Co{sup 2+} spin structure. Below 3.6 K both the {sup 23}Na -and {sup 19}F spectra broaden due to the formation of static spin correlations. A huge reduction of the {sup 19}F -and {sup 23}Na NMR signal intensity hints at a quasi-static field distribution in NaCaCo{sub 2}F{sub 7} in this regime. The {sup 19}F spin-lattice relaxation rate {sup 19}(1/T{sub 1}) exhibits a peak at around 2.9 K, at the same temperature range where ac and dc susceptibility data show a broad maximum. The character of the spin fluctuation appears to be isotropic. The overall temperature dependence of {sup 19}(1/T{sub 1}) can be described by the BPP theory considering a fluctuating hyperfine field with an autocorrelation function. The correlation time of the autocorrelation function exhibits an activation behavior further indicating the spin-frozen state. While the present NMR studies suggest the spin frozen state at low temperatures, μSR investigations however reveal the presence of so called persistent spin dynamics down to 20 mK implying an exotic ground state in NaCaCo{sub 2}F{sub 7}.

  2. Lattice dynamical investigation of the Raman and infrared wave numbers and heat capacity properties of the pyrochlores R2Zr2O7 (R = La, Nd, Sm, Eu)

    Science.gov (United States)

    Nandi, S.; Jana, Y. M.; Gupta, H. C.

    2018-04-01

    A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.

  3. Recycling of Rare Earth Elements

    Science.gov (United States)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  4. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  5. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  6. Physics and Chemistry of Earth Materials

    Science.gov (United States)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  7. Order and disorder in the local and long-range structure of the spin-glass pyrochlore, Tb{sub 2}Mo{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu; Huq, Ashfia; Booth, Corwin H.; Ehlers, Georg; Greedan, John E.; Gardner, Jason S.

    2011-02-11

    To understand the origin of the spin-glass state in molybdate pyrochlores, the structure of Tb{sub 2}Mo{sub 2}O{sub 7} is investigated using two techniques: the long-range lattice structure was measured using neutron powder diffraction (NPD), and local structure information was obtained from the extended x-ray absorption fine structure (EXAFS) technique. While the long-range structure appears generally well ordered, enhanced mean-squared site displacements on the O(1) site and the lack of temperature dependence of the strongly anisotropic displacement parameters for both the Mo and O(1) sites indicate some disorder exists. Likewise, the local structure measurements indicate some Mo-Mo and Tb-O(1) nearest-neighbor disorder exists, similar to that found in the related spin-glass pyrochlore, Y{sub 2}Mo{sub 2}O{sub 7}. Although the freezing temperature in Tb{sub 2}Mo{sub 2}O{sub 7}, 25 K, is slightly higher than in Y{sub 2}Mo{sub 2}O{sub 7}, 22 K, the degree of local pair distance disorder is actually less in Tb{sub 2}Mo{sub 2}O{sub 7}. This apparent contradiction is considered in light of the interactions involved in the freezing process.

  8. Differential Rotation within the Earth's Outer Core

    Science.gov (United States)

    Hide, R.; Boggs, D. H.; Dickey, J. O.

    1998-01-01

    Non-steady differential rotation drive by bouyancy forces within the Earth's liquid outer core (OC) plays a key role not only in the generation of the main geomagnetic field by the magnetohydrodynamic (MHD) dynamo process but also in the excitation of irregular fluctuations in the angular speed of rotation of the overlying solid mantle, as evidenced by changes in the length of the day (LOD) on decadal and longer timescales (1-8).

  9. Solid residues

    International Nuclear Information System (INIS)

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  10. Rare earths: harvesting basic research for technology

    International Nuclear Information System (INIS)

    Jagatap, B.N.

    2014-01-01

    In recent years, rare earths are increasingly becoming a versatile platform for basic research that presents enormous technological potentials. A variety of nano-sized inorganic matrices varying from oxides, phosphates, gallates and aluminates, tungstates, stannates, vanadates to fluorides doped with different lanthanide ions have been synthesized and their optical properties have been investigated in the Chemistry Group, BARC. Another interesting application is laser cooling of solids using rare earth doped glasses with potential applications in remote cooling of electronic devices. Combining the luminescence properties of rare earths with photonic crystals is yet another potent area with wide ranging applications. In this presentation we provide an overview of these developments with examples from the R and D programs of the Chemistry Group, BARC

  11. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  12. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D.

    1999-12-01

    The major contributions of the isotopes 122 Sb and 124 Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300 o C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb 2 O 3 increases by about two orders of magnitude between 25 and 200 o C, and then levels out or decreases slightly. At 250 o C, in oxidizing solutions, Sb 2 O 5 ·xH 2 O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na 2α [H(H 2 O)] 2-2α Sb 2 O 6 , which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200 o C and decreases at temperatures above 250 o C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO 3 - or Sb(OH) 6 - ), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations ≥ 0.00005 mol·dm -3 in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be ruled out that hydrated Sb 2 O 5 (especially the pyrochlore form) might be less soluble in near-neutral, low

  13. Earth Science Literacy: Building Community Consensus

    Science.gov (United States)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  14. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  15. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  16. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  17. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  18. Chemical synthesis and characterization of nano-sized rare-earth ...

    Indian Academy of Sciences (India)

    2

    pyrochlore samples indicated a single phase crystalline material with a cubic ... vary with the size and the surface area of the particles.6 Thus, a method to ..... From qualitative band-model consideration of the type discussed by Goodenough.

  19. EARTH FROM SPACE

    Indian Academy of Sciences (India)

    Table of contents. EARTH FROM SPACE · Slide 2 · Earth System · Slide 4 · Global water cycle · Slide 6 · Slide 7 · Direct Observations of Recent Climate Change · Slide 9 · Slide 10 · Snow cover and Arctic sea ice are decreasing · Polar Melting & Global Heat Transport · Antarctica: Melting and Thickening · Slide 14 · Slide 15.

  20. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A

    1986-12-01

    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  1. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  2. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  3. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  4. Magnetic Fields Induced in the Solid Earth and Oceans

    DEFF Research Database (Denmark)

    Kuvshinov, Alexei; Olsen, Nils

    , utilizing realistic 3-D conductivity models of the oceans, crust and mantle. In addition to these improvements in the prediction of 3-D induction effects, much attention has been paid to identifying magnetic signals of oceanic origin in observatory and satellite data. During the talk we will present...

  5. Interactions between ice sheets, climate and the solid Earth

    NARCIS (Netherlands)

    Berg, J. van den

    2007-01-01

    The melting of ice sheets in response to increasing temperatures is an important contribution to present day sea level rise. To predict the amount of sea level rise and to assess its impact on populated coastal regions, an increased understanding of the physical processes governing ice sheets is

  6. Young Solid Earth Researchers of the World Unite!

    Science.gov (United States)

    Simons, Frederik J.; Becker, Thorsten W.; Kellogg, James B.; Billen, Magali; Hardebeck, Jeanne; Lee, Cin-Ty A.; Montési, Laurent G. J.; Panero, Wendy; Zhong, Shijie

    2004-04-01

    In early January 2004, one of us attended a workshop on ``science priorities and educational opportunities that can be addressed using ocean observatories.'' The attendees constituted a broad group-men and women, scientists, engineers, educators, representatives from the private and public sector-but lacked diversity in at least one important aspect: age. A well-known marine geophysicist (with a published record stretching over 30 years) came to me at the ice-breaker party and said (and I paraphrase): ``I'm glad you're here: you're young, you might actually see this project flourish before you retire. There're not enough young people here.`` At some point or another, every young scientist may have a similar experience.

  7. Statics of deformable solids

    CERN Document Server

    Bisplinghoff, Raymond L; Pian, Theodore HH

    2014-01-01

    Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.

  8. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  9. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  10. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  11. Solid state laser technology - A NASA perspective

    Science.gov (United States)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  12. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  13. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  14. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  15. Preparation and physical properties of rare earth, alkaline earth, and transition metal ternary chalcogenides

    International Nuclear Information System (INIS)

    Georgobiani, A.N.

    1997-01-01

    A study was made on current-voltage characteristics, temperature dependences of electric conductivity and currents of thermoinduced depolarization of monocrystals, including EuGa 2 S 4 and (Ga 2 S 3 ) 1-x (Eu 2 O 3 ) x solid solutions. It is shown that these compounds, activated by europium, cerium, neodymium and other rare earths, manifest effective luminescence under the effect of ultraviolet and X-radiation, as well as under the effect of electron beams and electric field

  16. Rare earth impact on glass structure and alteration kinetics

    International Nuclear Information System (INIS)

    Molieres, E.

    2012-01-01

    This work is related to the question of the geological deep repository of high-level waste glass. These wastes include fission products and minor actinides, elements which can be simulated by rare earths. As new glass compositions could enable increased rare earth concentrations, it is crucial to know and understand rare earth impact on glass structure on the one hand, and on glass alteration kinetics or their incorporation into an altered layer. This work studied simplified borosilicate glasses in order to limit synergetic effects between rare earths and other elements. Various complementary techniques were used to characterize pristine and altered glasses (solid-high resolution NMR, Raman spectroscopy, fluorescence, SIMS, SAXS). Firstly, the structural role of a rare earth is discussed and is compared to a calcium cation. The local environment of rare earths is also probed. Secondly, rare earth (nature and concentration) impact on several alteration regimes was studied (initial rate, rate drop). Then, after alteration, rare earth elements being retained within the altered layer, the structural impact of rare earth elements (and their local environment) in this alteration layer was also investigated. (author) [fr

  17. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol-gel method

    KAUST Repository

    Zhang, Yuan; Zhu, Xinhua; Zhou, Shunhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2013-01-01

    Here, we report the atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb 1.5O7 (BMN) nanoparticles with mean size of 70 nm, which were synthesized by sol-gel method. The crystallinity, phase formation, morphology, and surface microstructure of the BMN nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), respectively. The phase evolution of the BMN nanoparticles investigated by XRD patterns showed that uniform cubic pyrochlore BMN nanoparticles were obtained after calcination at temperature of 800 C, and their structural information was revealed by Raman spectrum. TEM images demonstrated that the BMN nanoparticles had a spherical morphology with an average particle size of 70 nm, and their crystalline nature was revealed by HRTEM images. In addition, HRTEM images also demonstrate a terrace-ledge-kink (TLK) surface structure at the edges of rough BMN nanoparticles, where the terrace was on the (100) plane, and the ledge on the (001) plane. The formation of such a TLK surface structure can be well explained by a theory of periodic bond chains. Due to the surface structural reconstruction in the BMN nanoparticles, the formation of a tetragonal structure in a rough BMN nanoparticle was also revealed by HRTEM image. The BMN nanoparticles exhibited dielectric constants of 50 at 100 kHz and 30 at 1 MHz, and the dielectric loss of 0.19 at 1 MHz. © 2013 Springer Science+Business Media Dordrecht.

  18. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol-gel method

    KAUST Repository

    Zhang, Yuan

    2013-12-24

    Here, we report the atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb 1.5O7 (BMN) nanoparticles with mean size of 70 nm, which were synthesized by sol-gel method. The crystallinity, phase formation, morphology, and surface microstructure of the BMN nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), respectively. The phase evolution of the BMN nanoparticles investigated by XRD patterns showed that uniform cubic pyrochlore BMN nanoparticles were obtained after calcination at temperature of 800 C, and their structural information was revealed by Raman spectrum. TEM images demonstrated that the BMN nanoparticles had a spherical morphology with an average particle size of 70 nm, and their crystalline nature was revealed by HRTEM images. In addition, HRTEM images also demonstrate a terrace-ledge-kink (TLK) surface structure at the edges of rough BMN nanoparticles, where the terrace was on the (100) plane, and the ledge on the (001) plane. The formation of such a TLK surface structure can be well explained by a theory of periodic bond chains. Due to the surface structural reconstruction in the BMN nanoparticles, the formation of a tetragonal structure in a rough BMN nanoparticle was also revealed by HRTEM image. The BMN nanoparticles exhibited dielectric constants of 50 at 100 kHz and 30 at 1 MHz, and the dielectric loss of 0.19 at 1 MHz. © 2013 Springer Science+Business Media Dordrecht.

  19. ???????????? SolidWorks/SolidWorks Flow Simulation/SolidWorks Simulation ??? ?????????? ???????? ?? ????????????? ???

    OpenAIRE

    ????????????, ?. ?.; ????????, ?. ?.; ?????, ?. ?.

    2012-01-01

    ? ?????? ???????? ??????? ??????? ???????? ?? ???????????? ??????????? ????????? SolidWorks/SolidWorks Flow Simulation (COSMOSFloWorks)/SolidWorks Simulation ??? ?????????? ???????? ?? ????????????? ???. ??? ???????? ????????? ???????? ?????????? ?? ?????? ???????? ??????? ? ????????????? ?????? ? ????????????? ????????????? ?????????? ???????????? SolidWorks Flow Simulation (COSMOSFloWorks). ??? ???????????? ??????????? ????????????? ?????? ?? ????????? ??????????? ??????? ?? ??????????? ...

  20. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  1. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  2. Earth study from space

    Science.gov (United States)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  3. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  4. Near Earth Asteroid Scout

    Data.gov (United States)

    National Aeronautics and Space Administration — Near-Earth Asteroid Scout, or NEA Scout, is a 6U CubeSat developed jointly between NASA’s Marshall Space Flight Center and the Jet Propulsion Laboratory. NASA...

  5. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  6. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  7. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  8. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  9. The Earth: A Changing Planet

    Science.gov (United States)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  10. Characterisation and dissolution studies on the uranium pyrochlore mineral betafite (Ca,U)_2(Nb,Ti,Ta)_2O_7

    International Nuclear Information System (INIS)

    McMaster, S.; Ram, R.; Tardio, J.; Bhargava, S.

    2014-01-01

    The pyrochlore group mineral, betafite (nominally (Ca,U)_2(Nb,Ti,Ta)_2O_7); is a refractory uranium mineral found in many ore deposits, including the currently mined deposit at Rössing, Namibia and the currently unmined deposit at Saima Massif, China. The decreasing abundance of “easy to leach” uranium minerals (i.e. uraninite), has led to interest in the extraction of uranium from refractory uranium minerals such as betafite. In the current study, three naturally occurring betafite mineral samples (obtained from Ambatofotsky and Miarinarivo, Madagascar (BAM and BMM respectively) and Silver Crater Mine, Canada (BSC)) were characterised using ex-situ high temperature X-Ray Diffraction (XRD), multi acid digestion / ICP-MS analysis (composition) and X-Ray Photoelectron Spectroscopy (XPS). Dissolution of the three samples was also investigated under conditions similar to those used in commercial tank based uranium leaching processes. XRD analysis showed that all three samples were highly metamict. Samples BMM and BSC showed no assignable diffraction lines before heat treating, whereas the XRD pattern obtained for sample BAM contained diffraction lines that confirmed the presence of crystalline anatase (TiO_2). Heat treatment studies on the samples showed that the betafite in the samples was converted into a crystalline form at 700°C in all 3 samples. Gangue minerals, rutile, Nb-rutile, UTiNb_2O_1_0, and studitite were also found to be present in the heat treated samples. Multi acid digestion ICP-MS analysis showed the natural samples contained between 16 and 26% w/w uranium as well as all the major elements present typically in betafite. XPS analysis was conducted on the unheated betafite samples. XPS analysis showed that the uranium in the samples was predominately in U"5"+ oxidation state. Some U"6"+ was also identified though this was most likely restricted to the outer surface of the samples. Dissolution studies (batch mode) were conducted under the following

  11. Solid lubricants and surfaces

    CERN Document Server

    Braithwaite, E R

    1964-01-01

    Solid Lubricants and Surfaces deals with the theory and use of solid lubricants, particularly in colloidal form. Portions of this book are devoted to graphite and molybdenum disulfides, which are widely used solid lubricants in colloidal form. An extensive literature on the laboratory examination of hundreds of solids as potential lubricants is also provided in this text. Other topics discussed include the metals and solid lubricants; techniques for examining surfaces; other solid lubricants; metal shaping; and industrial uses of solid-lubricant dispersions. This publication is beneficial to e

  12. Down to Earth with an electric hazard from space

    Science.gov (United States)

    Love, Jeffrey J.; Bedrosian, Paul A.; Schultz, Adam

    2017-01-01

    In reaching across traditional disciplinary boundaries, solid-Earth geophysicists and space physicists are forging new collaborations to map magnetic-storm hazards for electric-power grids. Future progress in evaluation storm time geoelectric hazards will come primarily through monitoring, surveys, and modeling of related data.

  13. Unifying the Universe the physics of heaven and earth

    CERN Document Server

    Padamsee, Hasan S

    2003-01-01

    Unifying the Universe: The Physics of Heaven and Earth provides a solid background in basic physics. With a humanistic perspective, it shows how science is significant for more than its technological consequences. The book includes clear and well-planned links to the arts and philosophies of relevant historical periods to bring science and the humanities together.

  14. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  15. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  16. Low energy trajectories for the Moon-to-Earth space flight

    Indian Academy of Sciences (India)

    The Moon-to-Earth low energy trajectories of 'detour' type are found and studied within the frame ... km from the Earth where the Sun gravitation decreases the particle orbit perigee distance to a small value .... The solid curve in fig- ... the Moon, respectively, as is the semimajor axis .... inclination i0 = 90 .... Then, according to.

  17. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D

    1999-12-01

    The major contributions of the isotopes {sup 122}Sb and {sup 124}Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300{sup o}C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb{sub 2}O{sub 3} increases by about two orders of magnitude between 25 and 200{sup o}C, and then levels out or decreases slightly. At 250{sup o}C, in oxidizing solutions, Sb{sub 2}O{sub 5}{center_dot}xH{sub 2}O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na{sub 2{alpha}}[H(H{sub 2}O)]{sub 2-2{alpha}}Sb{sub 2}O{sub 6}, which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200{sup o}C and decreases at temperatures above 250{sup o}C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO{sub 3}{sup -} or Sb(OH){sub 6}{sup -}), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations {>=} 0.00005 mol{center_dot}dm{sup -3} in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be

  18. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  19. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  20. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  1. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  2. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  3. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  4. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  5. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    Science.gov (United States)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  6. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  7. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  8. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  9. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  10. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  11. The Earth's Plasmasphere

    Science.gov (United States)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  12. Co-deposition of metallic actinides on a solid cathode

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode.

  13. Co-deposition of metallic actinides on a solid cathode

    International Nuclear Information System (INIS)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L.

    2008-01-01

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode

  14. Models of the earth's core

    International Nuclear Information System (INIS)

    Stevenson, D.J.

    1981-01-01

    The combination of seismology, high pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to strong constraints on core models. The synthesis presented here is devoted to the defense of the following properties: (1) core formation was contemporaneous with earth accretion; (2) the outer, liquid core is predominately iron but cannot be purely iron; (3) the inner core-outer core boundary represents a thermodynamic equilibrium between a liquid alloys and a predominanately iron solid; (4) thermodynamic and transport properties of outer core can be estimated from liquid-state theories; and (5) the outer core is probably adiabatic and uniform in composition. None of these propositions are universally accepted by geophysicists. But, the intent of this paper is to present a coherent picture which explains most of the data with the fewest ad hoc assumptions. Areas in which future progress is both essential and likely are geo- and cosmochronology, seismological determinations of core structure, fluid dynamics of the core and mantle, and condensed matter physics

  15. "Galileo Calling Earth..."

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  16. Bones of the Earth

    Science.gov (United States)

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  17. Our bubbling Earth

    NARCIS (Netherlands)

    Schuiling, R.D.

    2005-01-01

    In several places on earth large volumes of gas are seen to escape. These gases are usually dominated by CO2. The emissions are associated with volcanic activity, and are attributed to magma degassing. It will be shown that in the case of Milos this explanation is unacceptable for quantitative

  18. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  19. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  20. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  1. How life shaped Earth.

    Science.gov (United States)

    Gross, Michael

    2015-10-05

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  2. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  3. Understanding Earth's Albedo Effect

    Science.gov (United States)

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  4. Earth Science Misconceptions.

    Science.gov (United States)

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  5. Solid phase radioimmunoassays

    International Nuclear Information System (INIS)

    Wide, L.

    1977-01-01

    Solid phase coupled antibodies were introduced to facilitate the separation of bound and free labelled ligand in the competitive inhibition radioimmunoassay. Originally, the solid matrix used was in the form of small particles and since then a number of different matrices have been used such as very fine powder particles, gels, paper and plastic discs, magnetic particles and the inside surface of plastic tubes. The coupling of antibodies may be that of a covalent chemical binding, a strong physical adsorbtion, or an immunological binding to a solid phase coupled antigen. New principles of radioimmunoassay such as the solid phase sandwich techniques and the immunoradiometric assay were developped from the use of solid phase coupled antigens and antibodies. The solid phase sandwich techniques are reagent excess methods with a very wide applicability. Several of the different variants of solid phase techniques are suitable for automation. Advantages and disadvantages of solid phase radioimmunoassays when compared with those using soluble reagents are discussed. (orig.) [de

  6. The radioactive earth

    International Nuclear Information System (INIS)

    Plant, J.A.; Saunders, A.D.

    1996-01-01

    Uranium, thorium and potassium are the main elements contributing to natural terrestrial radioactivity. The isotopes 238 U, 235 U, 232 Th and 40 K decay with half-lives so long that significant amounts remain in the earth, providing a continuing source of heat. The slow decay of these isotopes also provides the basis for radiometric age dating and isotopic modelling of the evolution of the earth and its crust. There is a complex interplay between their heat production and the processes involved in crust formation. Phenomena such as volcanism, earthquakes, and large-scale hydrothermal activity associated with ore deposition reflect the dissipation of heat energy from the earth, much of which is derived from natural radioactivity. The higher levels of radioactive elements during the early history of the earth resulted in higher heat flow. All three of the radioactive elements are strongly partitioned into the continental crust, but within the crust their distribution is determined by their different chemical properties. The behaviour of U, which has two commonly occurring oxidation states, is more complex than that of Th and K. Uranium deposits are diverse, and are mostly associated with granites, acid volcanics, or detrital sedimentary rocks. The most important U deposits economically are unconformity-type ores of Proterozoic age, in which U is enriched by up to 5 x 10 6 with respect to bulk earth values. In some cases natural radioactivity can be of environmental concern. The most significant risk is posed by accumulations of radon, the gaseous daughter product of U. (author)

  7. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  8. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  9. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  10. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  11. GIS Analysis in the Siting of Incinerators as a Panacea for Solid Waste

    African Journals Online (AJOL)

    Sanda Dogara & Auwal Abdul

    which can reduce the cost of solid waste disposal as well as pollution and ... The fast tracking development in Kaduna metropolis is surpassing .... System (GPS) and images from Google Earth was used to depict ... vehicle to drive in and out.

  12. Bioleaching of rare earth elements from monazite sand.

    Science.gov (United States)

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.

  13. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  14. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  15. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  16. Combustibility of tetraphenylborate solids

    International Nuclear Information System (INIS)

    Walker, D.D.

    1989-01-01

    Liquid slurries expected under normal in-tank processing (ITP) operations are not ignitible because of their high water content. However, deposits of dry solids from the slurries are combustible and produce dense, black smoke when burned. The dry solids burn similarly to Styrofoam and more easily than sawdust. It is the opinion of fire hazard experts that a benzene vapor deflagration could ignite the dry solids. A tetraphenylborate solids fire will rapidly plug the waste tank HEPA ventilation filters due to the nature of the smoke produced. To prevent ignition and combustion of these solids, the waste tanks have been equipped with a nitrogen inerting system

  17. Development of reduction technology for oxide fuel. Behaviour of rare-earth in lithium reduction process

    International Nuclear Information System (INIS)

    Kato, Tetsuya; Usami, Tsuyoshi; Yuda, Ryoichi; Kurata, Masateru; Moriyama, Hirotake

    2000-01-01

    Solubility measurements of rare-earth oxides in molten LiCl-Li 2 O salt and reduction tests of UO 2 doped with rare-earth oxides were carried out to determine the behavior of rare-earths in lithium reduction process. The solubility of rare-earth oxides increases in the order of Gd 2 O concentration. In multi-element systems including 6 rare-earth oxides, the solubility of each element is smaller than that in the individual systems. In the reduction tests, more than 90% of UO 2 was reduced within 1 hour after starting reduction and about 7% of rare-earths eluded into the LiCl molten salt bath containing Li 2 O which is formed by the reduction of UO 2 . The rare-earth concentrations in the bath were evaluated using the solubility data, assuming that rare-earth oxides in multi-element systems form solid solution as the equilibrium solid phase and that the activity coefficients in the solid phase are independent of the compositions. The calculated concentrations are consistent with the experimental ones obtained in the reduction tests. (author)

  18. Organic chemistry in a CO2 rich early Earth atmosphere

    Science.gov (United States)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  19. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  20. Tidal Friction in the Earth and Ocean

    Science.gov (United States)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work

  1. Alkaline earth metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The beryllium ion has a relatively small ionic radius. As a consequence of this small size, its hydrolysis reactions begin to occur at a relatively low pH. To determine the stability and solubility constants, however, the Gibbs energy of the beryllium ion is required. In aqueous solution calcium, like the other alkaline earth metals, only exists as a divalent cation. The size of the alkaline earth cations increases with increasing atomic number, and the calcium ion is bigger than the magnesium ion. The hydrolysis of barium(II) is weaker than that of strontium(II) and also occurs in quite alkaline pH solutions, and similarly, only the species barium hydroxide has been detected. There is only a single experimental study on the hydrolysis of radium. As with the stability constant trend, it would be expected that the enthalpy of radium would be lower than that of barium due to the larger ionic radius.

  2. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  3. Earth before life

    OpenAIRE

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-01

    Background A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Results Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome i...

  4. Electromagnetic compatibility and earths

    International Nuclear Information System (INIS)

    Duque Henao, Alan; Casas Ospina, Favio

    2001-01-01

    It is such the increment of applications of electric and electronic equipment in the modern companies that the lack of control of the electromagnetic perturbations, brings, get big losses and difficulties in the normal operations. The paper contribute to ago with base in the challenges that day-by-day are confronting, where the settings to earth, to be the foundation of the electric building, are fundamental for a good coexistence among the different equipment s

  5. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  6. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  7. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  8. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  9. Spectrofluorimetric determination of rare earth elements using solidmatrix

    International Nuclear Information System (INIS)

    Suh, I.S.; Chi, K.Y.

    1982-01-01

    In this experiment, rare earth elements are separated from uranium by using the alumina column, anion exchange resin column, and 20% TOA in xylene and fluorescence characteristics were found in the solid matrix to analyze these elements without preseparation from each other. It becomes clear that the YVO 4 matrix is more sensitive than the Y 2 O 3 matrix when the red filter is used to minimized the second order peak intensity. And micro quantity of the rare earth elements in the yellow cake are analyzed by the using of the YVO 4 soid matrix. (Author)

  10. Change of sulfide inclusions in steel microalloying with rare earth and alkaline-earth elements

    International Nuclear Information System (INIS)

    Averin, V.V.; Polonskaya, S.M.; Chistyakov, V.F.

    1977-01-01

    The conditions for the formation of sulfides in molten and solid iron were determined by considering the thermodynamics of the interaction of sulfur and of oxygen with various components. It was shown in casting of low-carbon steel under a blanket of slag-forming briquettes, calcium of the silicocalcium partly passes to iron and to the sulfide phase. The sulfide inclusions with calcium in rolling become lens-shaped and acquire a greater strength, proportional to the content of calcium, thus ensuring a lesser anisotropy of steel. The change in the shape and the composition of sulfide inclusions effects the fracture of the metal which changes in type from separation along lamellar inclusions to a plastic fracture, i.e., enhances resilience. It is thus noted that rare-earth and alkali-earth elements, in particular, cerium and calcium are promising agents for desulfurating molten iron

  11. Zaccaria Lilio and the shape of the earth: A brief response to Allegro's "Flat earth science".

    Science.gov (United States)

    Nothaft, C Philipp E

    2017-12-01

    This is a response to James J. Allegro's article "The Bottom of the Universe: Flat Earth Science in the Age of Encounter," published in Volume 55, Number 1, of this journal. Against the solid consensus of modern scholars, Allegro contends that the decades around 1500 saw a resurgence of popular and learned doubts about the existence of a southern hemisphere and the concept of a spherical earth more generally. It can be shown that a substantial part of Allegro's argument rests on an erroneous reading of his main textual witness, Zaccaria Lilio's Contra Antipodes (1496), and on a failure adequately to place this source in the context of the cosmographical debate of the late fifteenth and early sixteenth centuries. Once this context is taken into account, the notion that Lilio was a flat-earther falls flat.

  12. Precipitation of the rare earth double sodium and rare earths from the sulfuric liquor and the conversion into rare earth hydroxides through meta ethic reaction

    International Nuclear Information System (INIS)

    Abreu, Renata D.; Oliveira, Ester F.; Brito, Walter de; Morais, Carlos A.

    2007-01-01

    This work presents the purification study of the rare earths through precipitation of rare earth and sodium (Na TR (SO 4 ) 2 . x H 2 O)) double sulfate and his conversion to rare earths hydroxide TR(OH) 3 by meta ethic reaction through the addition of sodium hydroxide solution to the solid double sulfate. The study used the sulfuric liquor as rare earth sample, generated in the chemical processing of the monazite with sulfuric acid by the Industrias Nucleares do Brasil - INB, Brazil, after the thorium and uranium extraction. The work investigated the influence of the main variables involved in the precipitation of Na TR(SO 4 ) 2 .xH 2 O and in the conversion for the TR(OH) 3 , as follows: type and excess of the precipitation agent, temperature and time reaction. The obtained solid composites were characterized by X-ray diffraction, infrared and chemical analysis. The double sulfate diffractogram indicated the Na TR(SO 4 ) 2 mono-hydrated. The characterization of the metatese products has shown that, for obtaining the complete conversion of NaTR(SO 4 ) 2 .H 2 O into TR(OH) 3 , the reaction must be hot processed (∼70 deg C) and with small excess of Na OH (≤ 5 percent). (author)

  13. Synthesis of BZN-(α) and BZN-(β) pyrochloric ceramics by the solid state relation; Sintese das ceramicas pirocloricas BZN-α e BZN-β pela relacao em estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Farias, F.C.; Alves, A.G.; Alves, Y.M.; Pereira, F.M.M.; Barroso, M.B., E-mail: werleyfarias@gmail.com [Universidade Federal do Cariri (UFCA), Juazeiro do Norte, CE (Brazil); Pereira, C.A.; Saraiva, I.R. [Faculdade DeVry Fanor (FANOR), Fortaleza, CE (Brazil); Conde, W.S.; Sombra, A.B. [Laboratorio de Telecomunicacoes e Ciencia e Engenharia de Materiais (LOCEM), CE (Brazil)

    2016-07-01

    The ceramics the base of Bi{sub 2}O{sub 3}-ZnO-Nb{sub 2}O{sub 5} (BZN) have two main phases, Bi{sub 1,5}ZnNb{sub 1,5}O{sub 7} (α) and Bi{sub 2}Zn{sub 2/3}Nb{sub 4/3}O{sub 7} (β) with cubic and monoclinic crystal structures, respectively. This study was aimed to summarize the BZN-α phase and BZN-β chemically homogeneous and observe the phase transformations that occur in the system, using the ceramic method. They were characterized by scanning electron microscopy (SEM), X-Ray Diffraction (XRD), and the Rietveld method in structural refinement and Infrared Spectroscopy. The BZN-α phase is presented in pure sintering temperatures used, although BZN-β phase has brought the remaining stages of its formation process, as Bi{sub 5}Nb{sub 3}O{sub 15} and BiNbO{sub 4}. For BZN-α were observed absorptions at 469 and 328 cm{sup -1}, attributed to the metal-oxygen stretch the BZN-β showed absorption bands at wavelengths of 601, 515, 447 and 328 cm{sup -1}, also being assigned metal-oxygen bond. (author)

  14. Study of the nearly constant dielectric loss regime in ionic conductors with pyrochlore-like structure; Estudio del regimen de perdidas dielectricas constantes en conductores ionicos con estructura de tipo pirocloro

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Guillen, M. r.; Fuentes, A. F.; Diaz-Guillen, J. a.; Santamaria, J.; Leon, C.

    2012-07-01

    We report on ac conductivity measurement of oxide ion conductors with composition Gd{sub 2}(ZryTi{sub 1}-y){sub 2}O{sub 7} and a pyrochlore type structure, at temperatures between -20 and 250 degree centigrade and in the frequency range from 1 Hz to 3 MHz by using impedance spectroscopy. Results show that a crossover from a power law dependence to a linear frequency dependence (or nearly constant loss behavior) in the ac conductivity can be clearly observed in a wide temperature range. This crossover is found to be thermally activated, and its activation energy ENCL to be much lower than the activation energy Edc for the dc conductivity. We also found that the values of ENCL are almost independent of composition, and therefore of the concentration of mobile oxygen vacancies, unlike those of Edc. Moreover, for each composition, the values of E{sub N}CL=0.67{+-}0.04 eV are very similar to those estimated for the energy barrier for the ions to leave their cages, E{sub {alpha}}=0.69{+-}0.05 eV. These results support that the nearly constant loss behavior, ubiquitous in ionic conductors, is originated from caged ion dynamics. (Author) 33 refs.

  15. Development of the AuScope Australian Earth Observing System

    Science.gov (United States)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  16. Lanthanide ions doped Y2Sn2O7 nano-particles: low temperature synthesis and photoluminescence study

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2008-01-01

    During the past decade, pyrochlore-type oxides (A 2 B 2 O 7 ) have emerged as important host matrices for lanthanide doped luminescent materials due to their higher thermal stability. Up to now, conventional solid-state reaction is the most commonly used synthetic method for preparation, of rare-earth pyrochlore oxides. This synthesis route employs a solid-state reaction of metal-oxide with appropriate rare-earth oxides at high temperature (>1200 deg C) for a long time (several days). However, in present work, Y 2 Sn 2 O 7 nanoparticles co-doped with lanthanide ions Tb 3+ and Ce 3+ were prepared based on the urea hydrolysis of Y 3+ , Sn 4+ , and Ln 3+ in ethylene glycol medium at 150 deg C followed by heating at 500, 700 and 900 deg C

  17. Rare Earth Polyoxometalates.

    Science.gov (United States)

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  18. JEOS. The JANUS earth observation satellite

    Science.gov (United States)

    Molette, P.; Jouan, J.

    The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground

  19. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  20. Stovetop Earth Pecan Pie

    Science.gov (United States)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  1. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  2. Bones of the Earth

    Directory of Open Access Journals (Sweden)

    Jose Miguel Correa

    2014-06-01

    Full Text Available The film Bones of the Earth (Riglin, Cunninham & Correa, 2014 is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective creation is built. A sense of community, on-going inquiry, connections and social commitment inform the creative process. As a result, the video’s nearly five intense minutes are a metaphor for the search for personal meaning, connection with nature and intersubjective positioning in a world that undergoes constant change.

  3. Between Earth and Sky

    DEFF Research Database (Denmark)

    Carter, Adrian

    2009-01-01

    to rescue architecture from the sterile impasse of late-modernism. In his works the basic elements of lived space become present: the earth, the sky and the `between` of human existence." Jørn Utzon's architecture ranges from the modest to the monumental; from the Kingo courtyard houses, the finest...... of form, material and function, motivated by social values. To this essentially regional response, Utzon combines a fascination for the architectural legacies of foreign cultures. These influences include the architecture of the ancient Mayan civilisation, as well as the Islamic world, China and Japan...

  4. Climate in Earth history

    Science.gov (United States)

    Berger, W. H.; Crowell, J. C.

    1982-01-01

    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  5. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  6. Nanoscale hydrodynamics near solids

    Science.gov (United States)

    Camargo, Diego; de la Torre, J. A.; Duque-Zumajo, D.; Español, Pep; Delgado-Buscalioni, Rafael; Chejne, Farid

    2018-02-01

    Density Functional Theory (DFT) is a successful and well-established theory for the study of the structure of simple and complex fluids at equilibrium. The theory has been generalized to dynamical situations when the underlying dynamics is diffusive as in, for example, colloidal systems. However, there is no such a clear foundation for Dynamic DFT (DDFT) for the case of simple fluids in contact with solid walls. In this work, we derive DDFT for simple fluids by including not only the mass density field but also the momentum density field of the fluid. The standard projection operator method based on the Kawasaki-Gunton operator is used for deriving the equations for the average value of these fields. The solid is described as featureless under the assumption that all the internal degrees of freedom of the solid relax much faster than those of the fluid (solid elasticity is irrelevant). The fluid moves according to a set of non-local hydrodynamic equations that include explicitly the forces due to the solid. These forces are of two types, reversible forces emerging from the free energy density functional, and accounting for impenetrability of the solid, and irreversible forces that involve the velocity of both the fluid and the solid. These forces are localized in the vicinity of the solid surface. The resulting hydrodynamic equations should allow one to study dynamical regimes of simple fluids in contact with solid objects in isothermal situations.

  7. Utilisation of solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Balu, K

    1978-07-01

    The prime solution to the present energy crisis is the recovery of latent energy from waste materials, for solid waste contains recoverable energy and it merely needs to be released. The paper is concerned with classification of solid waste, energy content of waste, methods of solid waste disposal, and chemical processing of solid waste. Waste disposal must be performed in situ with energy recovery. Scarcity of available land, pollution problem, and unrecovered latent energy restrict the use of the land-filling method. Pyrolysis is an effective method for the energy recovery and disposal problems. Chemical processing is suitable for the separated cellulosic fraction of the waste material.

  8. Multivalent ion conducting solids

    Energy Technology Data Exchange (ETDEWEB)

    Imanaka, N. [Osaka Univ., Suita, Osaka (Japan). Dept. of Applied Chemistry

    2008-07-01

    Solid electrolytes possess important characteristics for industrial applications. Only a single ionic species can macroscopically migrate in these solids. This paper described a the new NASICON (M-Zr-Nb-P-O) type system, exhibiting an exceptionally high level of trivalent M3+ ion conductivity on polycrystalline solids. The partial substitution of the smaller higher valent Nb5+ ion for Zr4+ stabilized the NASICON phase and realized the M3+ ion conduction in the NASICON structure. It was concluded that the conductivities of the series are comparable to those of the practically applied solid electrolytes of oxide anion conductors of YSZ and CSZ. 3 refs., 2 figs.

  9. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  10. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  11. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  12. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  13. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  14. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)

  15. Extraction studies on rare earths using dinonyl phenyl phosphoric acid

    International Nuclear Information System (INIS)

    Anitha, M.; Singh, D.K.; Kotekar, M.K.; Vijayalakshmi, R.; Singh, H.

    2011-01-01

    Rare earths are widely used in phosphor materials, magnetic substances, alloys, catalyst, lasers, superconductors, solid oxide fuel cells and in nuclear applications. The high value of these elements depends on their effective separation into high purity compounds. The separation into individual rare earths is very difficult to achieve, due to the very low separation factors between two adjacent rare earths arising due to similar chemical properties. Taking the advantage of variation in basicity, the separation is generally accomplished by solvent extraction or ion exchange. There are several references on the separation of rare earth in different media employing various types of extractants such as 2-ethylhexyl 2-ethyhexylphosphonic acid (EHEHPA) and di-2-ethyl hexyl phosphoric acid (D2EHPA) which have been widely used for the separation and purification of rare earths. Dinonyl phenyl phosphoric acid (DNPPA) is an organo phosphorus extractant (pKa = 2.54) and is an aromatic analogue of D2EHPA, which extracts metal ion by cation exchange mechanism. DNPPA was explored to recover rare earths from phosphate media such as wet process phosphoric acid and merchant grade acid. However, there is no information available in literature on DNPPA for RE extraction from chloride medium. Therefore, an attempt has been made in the present study to investigate the feasibility of using DNPPA for extraction of La(III), Dy(III) and Y(III) from chloride medium

  16. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  17. Synthesis and study of rare earth complexonates with ethylenediaminedisuccinic acid

    International Nuclear Information System (INIS)

    Mitrofanova, N.D.; Martynenko, L.I.; Kolleganov, M.Yu.

    1986-01-01

    Solid complexonates with ethylenediaminedisuccinic acid of HMZxnH 2 O and KMLxnH 2 O composition are synthesized for the Y, Sc and rare earths. The compounds were studied by different physicochemical methods. According to data on IR and electron spectroscopy the conclusion is made on-COOH-group coordination in protonated HML complexes. The complexes are X-ray amorphous, they have polymeric structure

  18. Rare earth elements and oxides in liquid phase epitaxy

    Czech Academy of Sciences Publication Activity Database

    Procházková, Olga; Grym, Jan; Zavadil, Jiří; Kopecká, M.

    2006-01-01

    Roč. 100, č. 8 (2006), s. 640-- ISSN 0009-2770. [Sjezd chemických společností /58./. Ústí nad Labem, 04.09.2006-08.09.2006] R&D Projects: GA ČR(CZ) GA102/06/0153 Institutional research plan: CEZ:AV0Z20670512 Keywords : semiconductor technology * rare earth metals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.431, year: 2006

  19. Earth Construction and Landfill Disposal Options for Slaker Grits

    OpenAIRE

    Risto Pöykiö; G. Watkins; H. Nurmesniemi and O. Dahl

    2010-01-01

    Slaker grits, an industrial residue originating from the chemical recovery process at sulfate (kraft) pulp mills, are typically disposed of to landfill in Finland. However, due to the relatively low total heavy metal and low leachable heavy metal, chloride, fluoride, sulfate, Dissolved O rganic Carbon (DOC) and Total Dissolved Solids (TDS) concentrations, the residue is a potential earth construction material. This paper gives an overview of the relevant Finnish legislation on the use of indu...

  20. Destiny's Earth Observation Window

    Science.gov (United States)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  1. Mapping Earth's electromagnetic dimensionality

    Science.gov (United States)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  2. Is dying the earth?

    International Nuclear Information System (INIS)

    Morales Garzon, Gustavo

    1994-01-01

    December 21 of 1968, on board the capsule Apollo 8, three astronauts, James A. Lovell, Frank Borman and William Anders, went toward what would be the first orbital flight around the moon. That experience like Lovell said, it makes us realize the insignificant that we are in comparison with the vastness of the universe. With the revolution lovelockiane, the life doesn't already consist on a group of organisms only adapted to its atmosphere by a certain action for external laws. The terrestrial environment, instead of being a physical world regulated by own autonomous laws, is part of an evolutionary system that contains the life and that it should to the phenomena vital part of its rules, its mechanisms and components. The alive beings connected to each other and to the atmosphere they manufacture and they maintain of continuous their atmosphere forming an everything at planetary level, according to Ricard Guerrero (1988). The theory of the earth then, he says, it has found their owner Darwin in James lovelock. The document treats topics like the science concept that it is the life, the earth and the contemporary environment

  3. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  4. A magma ocean and the Earth's internal water budget

    Science.gov (United States)

    Ahrens, Thomas J.

    1992-01-01

    There are lines of evidence which relate bounds on the primordial water content of the Earth's mantle to a magma ocean and the accompanying Earth accretion process. We assume initially (before a magma ocean could form) that as the Earth accreted, it grew from volatile- (H2O, CO2, NH3, CH4, SO2, plus noble) gas-rich planetesimals, which accreted to form an initial 'primitive accretion core' (PAC). The PAC retained the initial complement of planetesimal gaseous components. Shock wave experiments in which both solid, and more recently, the gaseous components of materials such as serpentine and the Murchison meteorite have demonstrated that planetesimal infall velocities of less than 0.5 km/sec, induce shock pressures of less than 0.5 GPa and result in virtually complete retention of planetary gases.

  5. Universal decoherence in solids.

    Science.gov (United States)

    Chudnovsky, Eugene M

    2004-03-26

    Symmetry implications for the decoherence of quantum oscillations of a two-state system in a solid are studied. When the oscillation frequency is small compared to the Debye frequency, the universal lower bound on the decoherence due to the atomic environment is derived in terms of the macroscopic parameters of the solid, with no unknown interaction constants.

  6. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  7. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Science.gov (United States)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  8. Uncovering the end uses of the rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiaoyue, E-mail: xiaoyue.du@empa.ch [Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Yale University, 195 Prospect Street, New Haven CT 06511 (United States); Graedel, T.E. [Yale University, 195 Prospect Street, New Haven CT 06511 (United States)

    2013-09-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging and conventional established technologies. However, quantitative knowledge of REE remains sparse, despite the current heightened interest in future availability of the resources. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supply vulnerable to short term disruption. We have drawn upon the published literature and unpublished materials in different languages to derive the first quantitative annual domestic production by end use of individual rare earth elements from 1995 to 2007. The information is illustrated in Sankey diagrams for the years 1995 and 2007. Other years are available in the supporting information. Comparing 1995 and 2007, the production of the rare earth elements in China, Japan, and the US changed dramatically in quantities and structure. The information can provide a solid foundation for industries, academic institutions and governments to make decisions and develop strategies. - Highlights: • We have derived the first quantitative end use information of the rare earths (REE). • The results are for individual REE from 1995 to 2007. • The end uses of REE in China, Japan, and the US changed dramatically in quantities and structure. • This information can provide solid foundation for decision and strategy making.

  9. Applied mechanics of solids

    CERN Document Server

    Bower, Allan F

    2009-01-01

    Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based. Develop Intuitive Ability to Identify and Avoid Physically Meaningless Predictions Applied Mechanics of Solids is a powerful tool for understanding how to take advantage of these revolutionary computer advances in the field of solid mechanics. Beginning with a description of the physical and mathematical laws that govern deformation in solids, the text presents modern constitutive equations, as well as analytical and computational methods of stress analysis and fracture mechanics. It also addresses the nonlinear theory of deformable rods, membranes, plates, and shells, and solutions to important boundary and initial value problems in solid mechanics. The author uses the step-by-step manner of a blackboard lecture to explain problem solving methods, often providing...

  10. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  11. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  12. Ethylenediaminetetraacetates of neodymium and alkaline earth metals

    International Nuclear Information System (INIS)

    Barinov, A.V.; Pechurova, L.I.; Martynenko, K.I.; Popov, K.I.; Spitsyn, V.I.

    1977-01-01

    The possibilities have been studied of the formation of polynuclear complexonates of alkaline-earth metals (Ca, Sr, and Ba) based on neodymium derivatives EDTA of the composition NdA - . By pH-metry, electron spectroscopy, and derivatography it has been shown that the structure of complexes M 2 (NdA) 2 (where M- Ca, Sr, or Ba; A- EDTA) in the solution is not polynuclear. Hydroxopolynuclear complexes do not form under conditions studied. The data obtained agree with an assumption about polynuclear structure of the solid complex Ca(NdA) 2 x17 H 2 O and gradual weakening of the polynuclear nature upon substitution of Ca 2+ with Sr 2+ and Ba 2+

  13. Analysis of constituents of earth formations

    International Nuclear Information System (INIS)

    Hertzog, R.C.; Grau, J.A.

    1981-01-01

    The composition of an earth formation is investigated by repetitively irradiating the formation with bursts of neutrons from a source and measuring an energy spectrum of the scattering gamma rays resulting from such irradiation e.g. by photomultiplier or solid state detector. The measured spectrum is thereafter analyzed by comparing it with a composite spectrum, made up of standard spectra, measured in a controlled environment, of constituents postulated to comprise the formation. As a result of such analysis, the proportions of the postulated constituents in the formation are determined. Since the measured spectrum is subject to degradation due to changes in the resolution of the detector, a filtering arrangement effects modification of the standard spectra in a manner which compensates for the changes in the detector and thereby provides for a more accurate determination of the constituents of the formation. Temperature is measured by sensor to compensate for temperature dependence of detector resolution. (author)

  14. Rare earth superlattices

    International Nuclear Information System (INIS)

    McMorrow, D.F.

    1997-01-01

    A review is given of recent experiments on the magnetism of rare earth superlattices. Early experiments in this field were concerned mainly with systems formed by combining a magnetic and a non-magnetic element in a superlattice structure. From results gathered on a variety of systems it has been established that the propagation of magnetic order through the non-magnetic spacer can be understood mostly on the basis of an RKKY-like model, where the strength and range of the coupling depends on the details of the conduction electron susceptibility of the spacer. Recent experiments on more complex systems indicate that this model does not provide a complete description. Examples include superlattices where the constituents can either be both magnetic, adopt different crystal structures (Fermi surfaces), or where one of the constituents has a non-magnetic singlet ground state. The results from such systems are presented and discussed in the context of the currently accepted model. (au)

  15. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...... research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and space observations, and on state-of-the-art empirical models and physics-based simulations. Thus, it provides an in-depth overview over recent achievements, current limitations and challenges, and future opportunities in the field of geomagnetism and space sciences....

  16. Rare earth (3) pivalates

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.; Zoan An' Tu; Ch'eu Tkhi Nguet; Troyanov, S.I.; Rykov, A.N.; Korenev, Yu.M.

    1994-01-01

    Depending on synthesis conditions rare earth pivalates can be obtained in the form of either adducts NPiv·HPiv or hydrates MPiv 3 ·mH 2 O. Adducts are the most stable form of pivalates. Heating of adducts result in formation of corresponding MPiv 3 . MPiv 3 ·nHPiv compounds are characterized by IR-spectroscopy and thermal analysis data. Behaviour of MPiv 3 was studied in the regime of vacuum sublemation. Using mass spectroscopy of NdPiv 3 it was shown that gaseous phase above MPiv 3 had complex composition and contained ligomer fragments. X-ray structure analysis of [NdPiv 3 ·3HPiv] was conducted

  17. One Day on Earth

    CERN Multimedia

    2011-01-01

    In collaboration with the CineGlobe Film Festival, the One Day on Earth global film project invites you to share your story of scientific inspiration, scientific endeavors and technological advancement on 11 November 2011 (11.11.11).   Technology in the 21st century continuously inspires us to re-imagine the world. From outer-space to cyberspace, new ideas that we hope will improve the lives of future generations keep us in a state of change. However, these new technologies may alter the nature of our shared existence in ways not yet known. On 11.11.11, we invite you to record the exciting ways that science is a part of your life, together with people around the world who will be documenting their lives on this day of global creation. See www.onedayonearth.org for details on how to participate.

  18. Earth's radiation belts

    International Nuclear Information System (INIS)

    Moslehi Fard, M.

    1984-01-01

    The theory of trapped particles in a magnetic field of approximated dipole is described completely in the first part. Second part contains experimental results. The mechanism of radiation belt source ''albedo neutrons'' and also types of dissipation mechanism about radiation belt is explained. The trapped protons and electrons by radiation belt is discussed and the life-time of trapped particles are presented. Finally the magnetic fields of Moon, Venus, Mars, and Saturn, measured by passengers Mariner 4,10 and pioneer 10,11 are indicated. The experimental and theoretical results for the explanation of trapped plasma around the earth which is looked like two internal and external belt have almost good correspondence

  19. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  20. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  1. Theory of Earth

    Science.gov (United States)

    Anderson, D. L.

    2014-12-01

    Earth is an isolated, cooling planet that obeys the 2nd law. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy has confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad passive, and cool, ridge feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes' principle, and kinetics (rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the TZ where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration). Canonical chemical geodynamic models are the exact opposite of physics and thermodynamic based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base, and a thin mobile D" layer that is an unlikely plume generation zone. Accounting for the physics that is overlooked, or violated (2nd law), in canonical models, plus modern seismology, undermines the assumptions and conclusions of these

  2. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  3. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  4. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  5. Three Types of Earth's Inner Core Boundary

    Science.gov (United States)

    Tian, D.; Wen, L.

    2017-12-01

    The Earth's inner core boundary (ICB) is the site where the liquid outer core solidifies and the solid inner core grows. Thus, the fine-scale structure of the ICB is important for our understanding of the thermo-compositional state of the Earth's core. In this study, we collect a large set of seismic records with high-quality pre-critical PKiKP and PcP phase pairs, recorded by two dense seismic arrays, Hi-net in Japan and USArray in US. This dataset samples the ICB regions beneath East Asia, Mexico and the Bering Sea. We use differential travel times, amplitude ratios and waveform differences between PKiKP and PcP phases to constrain fine-scale structure of the ICB. The sampled ICB can be grouped into three types based on their seismic characteristics: (1) a simple ICB with a flat and sharp boundary, (2) a bumpy ICB with topographic height changes of 10 km, and (3) a localized mushy ICB with laterally varying thicknesses of 4-8 km. The laterally varying fine-scale structure of the ICB indicates existence of complex small-scale forces at the surface and a laterally varying solidification process of the inner core due to lateral variation of thermo-compositional condition near the ICB.

  6. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Primary energy production from solid biomass (wood, wood waste and other solid vegetal and animal materials) reached 62,4 million tons oil equivalent (Mtoe) in 2006, i-e 3,1 more than in 2005. The primary energy coming from the direct combustion of renewable origin solid urban waste in incineration unit scan also be added to this figure. In 2006 this represented a production of 5,3 Mtoe, i-e 0,1 Mtoe more than in 2005. (author)

  7. Applications in solid mechanics

    DEFF Research Database (Denmark)

    Ølgaard, Kristian Breum; Wells, Garth N.

    2012-01-01

    Problems in solid mechanics constitute perhaps the largest field of application of finite element methods. The vast majority of solid mechanics problems involve the standard momentum balance equation, posed in a Lagrangian setting, with different models distinguished by the choice of nonlinear...... or linearized kinematics, and the constitutive model for determining the stress. For some common models, the constitutive relationships are rather complex. This chapter addresses a number of canonical solid mechanics models in the context of automated modeling, and focuses on some pertinent issues that arise...

  8. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  9. Next-generation digital earth

    NARCIS (Netherlands)

    Goodchild, M.F.; Guo, H.; Annoni, A.; Bian, L.; Bie, de K.; Campbell, F.; Craglia, M.; Ehlers, M.; Genderen, van J.; Skidmore, A.K.; Wang, C.; Woodgate, P.

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google

  10. LIMNOLOGICAL OPTOMETRY: EXAMINING EARTH'S EYE

    Science.gov (United States)

    In Thoreau's Walden, a lake is described as the landscape's most expressive feature and the earth's eye. Collectively, scientists are charged by society to assess, monitor, and remedy maladies of earth's eye in the same way optometrists maintain the health of the human eye. This ...

  11. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  12. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  13. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  14. Teaching Waves with Google Earth

    Science.gov (United States)

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  15. Rare Earth Element Phases in Bauxite Residue

    Directory of Open Access Journals (Sweden)

    Johannes Vind

    2018-02-01

    Full Text Available The purpose of present work was to provide mineralogical insight into the rare earth element (REE phases in bauxite residue to improve REE recovering technologies. Experimental work was performed by electron probe microanalysis with energy dispersive as well as wavelength dispersive spectroscopy and transmission electron microscopy. REEs are found as discrete mineral particles in bauxite residue. Their sizes range from <1 μm to about 40 μm. In bauxite residue, the most abundant REE bearing phases are light REE (LREE ferrotitanates that form a solid solution between the phases with major compositions (REE,Ca,Na(Ti,FeO3 and (Ca,Na(Ti,FeO3. These are secondary phases formed during the Bayer process by an in-situ transformation of the precursor bauxite LREE phases. Compared to natural systems, the indicated solid solution resembles loparite-perovskite series. LREE particles often have a calcium ferrotitanate shell surrounding them that probably hinders their solubility. Minor amount of LREE carbonate and phosphate minerals as well as manganese-associated LREE phases are also present in bauxite residue. Heavy REEs occur in the same form as in bauxites, namely as yttrium phosphates. These results show that the Bayer process has an impact on the initial REE mineralogy contained in bauxite. Bauxite residue as well as selected bauxites are potentially good sources of REEs.

  16. Crystal structure and Mössbauer effect in multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5O3 solid solution

    Directory of Open Access Journals (Sweden)

    Stoch Agata

    2017-06-01

    Full Text Available Multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5O3 solid solution is a material that exhibits ferroelectric and antiferromagnetic orderings in ambient temperature. The solid solution was obtained as a result of a conventional reaction in a solid state. The obtained material is a dense, fine-grained sinter whose surface was observed by scanning electron microscopy (SEM and stoichiometry was confirmed by energy dispersive X-ray spectroscopic (EDS analysis. According to the X-ray powder diffraction (XRD measurements, the main phase is R3c space group with admixture of Pm-3m regular phase. Small contribution of pyrochlore-like phase was also observed. Mössbauer spectroscopy suggested random distribution of Fe3+/Ta5+ cations in the B sites of ABO3 compound. Reduction of the magnetic hyperfine field with an increase in the substitution of Ta5+ in Fe3+ neighbourhood was also observed.

  17. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  18. Layered inorganic solids

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Morris, R. E.; Nachtigall, P.; Roth, Wieslaw Jerzy

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10274-10275 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : layered inorganic solids * physical chemistry * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  19. Sheared solid materials

    Indian Academy of Sciences (India)

    ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic ... We expect that m is a key order parameter for amorphous solids or glasses. .... It satisfies the mechanical equilibrium condition and can be calculated ...

  20. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...