WorldWideScience

Sample records for earth pressure balance

  1. Pressure balance between lobe and plasma sheet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Paschmann, G.; Luehr, H.

    1990-01-01

    Using eight months of AMPTE/IRM plasma and magnetic field data, the authors have done a statistical survey on the balance of total (thermal and magnetic) pressure in the Earth's plasma sheet and tail lobe. About 300,000 measurements obtained in the plasma sheet and the lobe were compared for different levels of magnetic activity as well as different distances from the Earth. The data show that lobe and plasma sheet pressure balance very well. Even in the worst case they do not deviate by more than half of the variance in the data itself. Approximately constant total pressure was also seen during a quiet time pass when IRM traversed nearly the whole magnetotail in the vertical direction, from the southern hemisphere lobe through the neutral sheet and into the northern plasma sheet boundary layer

  2. Clouds and the earth's radiation balance

    Energy Technology Data Exchange (ETDEWEB)

    Schmetz, J; Raschke, E

    1986-01-01

    Cloud formation mechanisms and cloud effects must be known for all regions of the earth for two important purposes of weather and climate research: First, the circulation characteristics of the atmosphere can be defined and understood only if the energy transfer between the atmosphere and the earth's surface is known; secondly, the energy transfer calculations should be as realistic as possible. The article discusses the influence of clouds on the radiation balance of the earth/atmosphere radiation balance, and the effects on weather and climate.

  3. RAM analysis of earth pressure balance tunnel boring machines: A case study

    Directory of Open Access Journals (Sweden)

    Hasel Amini Khoshalan

    2015-12-01

    Full Text Available Earth pressure balance tunnel boring machines (EPB-TBMs are favorably applied in urban tunneling projects. Despite their numerous advantages, considerable delays and high maintenance cost are the main disadvantages these machines suffer from. Reliability, availability, and maintainability (RAM analysis is a practical technique that uses failure and repair dataset obtained over a reasonable time for dealing with proper machine operation, maintenance scheduling, cost control, and improving the availability and performance of such machines. In the present study, a database of failures and repairs of an EBP-TBM was collected in line 1 of Tabriz subway project over a 26-month interval of machine operation. In order to model the reliability of the TBM, this machine was divided into five distinct subsystems including mechanical, electrical, hydraulic, pneumatic, and water systems in a series configuration. According to trend and serial correlation tests, the renewal processes were applied, for analysis of all subsystems. After calculating the reliability and maintainability functions for all subsystems, it was revealed that the mechanical subsystem with the highest failure frequency has the lowest reliability and maintainability. Similarly, estimating the availability of all subsystems indicated that the mechanical subsystem has a relatively low availability level of 52.6%, while other subsystems have acceptable availability level of 97%. Finally, the overall availability of studied machine was calculated as 48.3%.

  4. Physical Limitations of Empirical Field Models: Force Balance and Plasma Pressure

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2002-01-01

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation (gradient) 2 P = (gradient) · (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating (gradient)P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot be in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models

  5. Balanced pressure gerotor fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Raney, Michael Raymond; Maier, Eugen

    2004-08-03

    A gerotor pump for pressurizing gasoline fuel is capable of developing pressures up to 2.0 MPa with good mechanical and volumetric efficiency and satisfying the durability requirements for an automotive fuel pump. The pump has been designed with optimized clearances and by including features that promote the formation of lubricating films of pressurized fuel. Features of the improved pump include the use of a shadow port in the side plate opposite the outlet port to promote balancing of high fuel pressures on the opposite sides of the rotors. Inner and outer rotors have predetermined side clearances with the clearances of the outer rotor being greater than those of the inner rotor in order to promote fuel pressure balance on the sides of the outer rotor. Support of the inner rotor and a drive shaft on a single bushing with bearing sleeves maintains concentricity. Additional features are disclosed.

  6. Pressure balance inconsistency exhibited in a statistical model of magnetospheric plasma

    Science.gov (United States)

    Garner, T. W.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; Korth, H.

    2003-08-01

    While quantitative theories of plasma flow from the magnetotail to the inner magnetosphere typically assume adiabatic convection, it has long been understood that these convection models tend to overestimate the plasma pressure in the inner magnetosphere. This phenomenon is called the pressure crisis or the pressure balance inconsistency. In order to analyze it in a new and more detailed manner we utilize an empirical model of the proton and electron distribution functions in the near-Earth plasma sheet (-50 RE attributed to gradient/curvature drift for large isotropic energy invariants but not for small invariants. The tailward gradient of the distribution function indicates a violation of the adiabatic drift condition in the plasma sheet. It also confirms the existence of a "number crisis" in addition to the pressure crisis. In addition, plasma sheet pressure gradients, when crossed with the gradient of flux tube volume computed from the [1989] magnetic field model, indicate Region 1 currents on the dawn and dusk sides of the outer plasma sheet.

  7. Blood pressure associates with standing balance in elderly outpatients.

    Directory of Open Access Journals (Sweden)

    Jantsje H Pasma

    Full Text Available OBJECTIVES: Assessment of the association of blood pressure measurements in supine and standing position after a postural change, as a proxy for blood pressure regulation, with standing balance in a clinically relevant cohort of elderly, is of special interest as blood pressure may be important to identify patients at risk of having impaired standing balance in routine geriatric assessment. MATERIALS AND METHODS: In a cross-sectional cohort study, 197 community-dwelling elderly referred to a geriatric outpatient clinic of a middle-sized teaching hospital were included. Blood pressure was measured intermittently (n = 197 and continuously (subsample, n = 58 before and after a controlled postural change from supine to standing position. The ability to maintain standing balance was assessed during ten seconds of side-by-side, semi-tandem and tandem stance, with both eyes open and eyes closed. Self-reported impaired standing balance and history of falls were recorded by questionnaires. Logistic regression analyses were used to examine the association between blood pressure and 1 the ability to maintain standing balance; 2 self-reported impaired standing balance; and 3 history of falls, adjusted for age and sex. RESULTS: Blood pressure decrease after postural change, measured continuously, was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed and with increased self-reported impaired standing balance and falls. Presence of orthostatic hypotension was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed for both intermittent and continuous measurements and with increased self-reported impaired standing balance for continuous measurements. CONCLUSION: Continuous blood pressure measurements are of additional value to identify patients at risk of having impaired standing balance and may therefore be useful in routine geriatric care.

  8. Fundamental characteristics and simplified evaluation method of dynamic earth pressure

    International Nuclear Information System (INIS)

    Nukui, Y.; Inagaki, Y.; Ohmiya, Y.

    1989-01-01

    In Japan, a method is commonly used in the evaluation of dynamic earth pressure acting on the underground walls of a deeply embedded nuclear reactor building. However, since this method was developed on the basis of the limit state of soil supported by retaining walls, the behavior of dynamic earth pressure acting on the embedded part of a nuclear reactor building may differ from the estimated by this method. This paper examines the fundamental characteristics of dynamic earth pressure through dynamic soil-structure interaction analysis. A simplified method to evaluate dynamic earth pressure for the design of underground walls of a nuclear reactor building is described. The dynamic earth pressure is fluctuating earth pressure during earthquake

  9. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    Science.gov (United States)

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  10. Earth Pressure on Tunnel Crown

    DEFF Research Database (Denmark)

    Andersen, Lars

    Two different analyses have been carried out in order to find the vertical earth pressure, or overburden pressure, at the crown of a tunnel going through a dike. Firstly, a hand calculation is performed using a simple dispersion of the stresses over depth. Secondly, the finite‐element program...

  11. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  12. The last stage of Earth's formation: Increasing the pressure

    Science.gov (United States)

    Lock, S. J.; Stewart, S. T.; Mukhopadhyay, S.

    2017-12-01

    A range of high-energy, high-angular momentum (AM) giant impacts have been proposed as a potential trigger for lunar origin. High-energy, high-AM collisions create a previously unrecognized planetary object, called a synestia. Terrestrial synestias exceed the corotation limit for a rocky planet, forming an extended structure with a corotating inner region and disk-like outer region. We demonstrate that the internal pressures of Earth-like planets do not increase monotonically during the giant impact stage, but can vary substantially in response to changes in rotation and thermal state. The internal pressures in an impact-generated synestia are much lower than in condensed, slowly rotating planets of the same mass. For example, the core-mantle boundary (CMB) pressure can be as low as 60 GPa for a synestia with Earth mass and composition, compared to 136 GPa in the present-day Earth. The lower pressures are due to the low density and rapid rotation of the post-impact structure. After a high-AM Moon-forming impact, the internal pressures in the interior of the synestia would have increased to present-day Earth values in two stages: first by vapor condensation and second by removal of AM from the Earth during the tidal evolution of the Moon. The pressure evolution of the Earth has several implications. Metal-silicate equilibration after the impact would have occurred at much lower pressures than has previously been assumed. The observed moderately siderophile element abundances in the mantle may be consistent with equilibration at the bottom of a deep, lower-pressure magma ocean. In addition, the pressure at the CMB during cooling is coincident with, or lower than, the proposed intersection of liquid adiabats with the mantle liquidus. The mantle would hence freeze from the bottom up and there would be no basal magma ocean. The subsequent pressure increase and tidal heating due to the Moon's orbital evolution likely induces melting in the lowermost mantle. Increasing

  13. Application of precise MPD & pressure balance cementing technology

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2018-03-01

    Full Text Available The precise managed pressure drilling (MPD technology is mainly used to deal with the difficulties encountered when oil and gas open hole sections with multiple pressure systems and the strata with narrow safety density window are drilled through. If its liner cementing is carried out according to the conventional method, lost circulation is inevitable in the process of cementing while the displacement efficiency of small-clearance liner cementing is satisfied. If the positive and inverse injection technology is adopted, the cementing quality cannot meet the requirements of later well test engineering of ultradeep wells. In this paper, the cementing operation of Ø114.3 mm liner in Well Longgang 70 which was drilled in the Jiange structure of the Sichuan Basin was taken as an example to explore the application of the cementing technology based on the precise MPD and pressure balancing method to the cementing of long open-hole sections (as long as 859 m with both high and low pressures running through multiple reservoirs. On the one hand, the technical measures were taken specifically to ensure the annulus filling efficiency of slurry and the pressure balance in the whole process of cementing. And on the other hand, the annulus pressure balance was precisely controlled by virtue of precise MPD devices and by injecting heavy weight drilling fluids through central pipes, and thus the wellbore pressure was kept steady in the whole process of cementing in the strata with narrow safety density window. It is indicated that Ø114.3 mm liner cementing in this well is good with qualified pressure tests and no channeling emerges at a funnel during the staged density reduction. It is concluded that this method can enhance the liner cementing quality of complex ultradeep gas wells and improve the wellbore conditions for the later safe well tests of high-pressure gas wells. Keywords: Ultradeep well, Liner cementing, Narrow safety density window, Precise

  14. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  15. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    Science.gov (United States)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth

  16. Rankine earth pressure theory considering microstructure of porous materials

    Science.gov (United States)

    Li, Junhu; Xue, Wei; Zhang, Chao; Zhang, Wenchao; Xu, Riqing

    2017-11-01

    Soil as an engineering material has very complex properties, such as non-continuous, non-uniformity and nonlinear mechanical. In a certain extent, macroscopic properties of soil are affected by the changes of the microstructure. And microscopic porosity of soft clay and its influencing factors, the relationship between macro and micro porosity, the average contact area rate and its influencing factors are studied. Some mechanics problems were analyzed by using the relationship between macro-porosity and the average contact area rate. Combining soil lateral stress transfer principle, a calculation theory of earth pressure considering soil contact area was got. The possible reason of the differences between earth pressure and the actual monitoring earth pressure was analyzed by the case.

  17. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    Science.gov (United States)

    Wahr, John

    1993-01-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  18. Study on the Seismic Active Earth Pressure by Variational Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Jiangong Chen

    2016-01-01

    Full Text Available In the framework of limit equilibrium theory, the isoperimetric model of functional extremum regarding the seismic active earth pressure is deduced according to the variational method. On this basis, Lagrange multipliers are introduced to convert the problem of seismic active earth pressure into the problem on the functional extremum of two undetermined function arguments. Based on the necessary conditions required for the existence of functional extremum, the function of the slip surface and the normal stress distribution on the slip surface is obtained, and the functional extremum problem is further converted into a function optimization problem with two undetermined Lagrange multipliers. The calculated results show that the slip surface is a plane and the seismic active earth pressure is minimal when the action point is at the lower limit position. As the action point moves upward, the slip surface becomes a logarithmic spiral and the corresponding value of seismic active earth pressure increases in a nonlinear manner. And the seismic active earth pressure is maximal at the upper limit position. The interval estimation constructed by the minimum and maximum values of seismic active earth pressure can provide a reference for the aseismic design of gravity retaining walls.

  19. Lateral Earth Pressure behind Walls Rotating about Base considering Arching Effects

    Directory of Open Access Journals (Sweden)

    Dong Li

    2014-01-01

    Full Text Available In field, the earth pressure on a retaining wall is the common effect of kinds of factors. To figure out how key factors act, it has taken into account the arching effects together with the contribution from the mode of displacement of a wall to calculate earth pressure in the proposed method. Based on Mohr circle, a conversion factor is introduced to determine the shear stresses between artificial slices in soil mass. In the light of this basis, a modified differential slices solution is presented for calculation of active earth pressure on a retaining wall. Comparisons show that the result of proposed method is identical to observations from model tests in prediction of lateral pressures for walls rotating about the base.

  20. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  1. Discussion on management of earth and rock balancing during the construction of Fuqing nuclear power plant

    International Nuclear Information System (INIS)

    Yan Yingdi; Gu Jian

    2013-01-01

    The main purpose of earth and stone work for Fuqing nuclear power plant is to solve problems of the main plant and the temporary accommodation site and also providing aggregate, marine stone and backfill as well. For a reasonable arrangement of stacking, using and spoiling, a dynamic balance management is performed in the project based on the initial design by the plant design institute. The design result would be used to conduct the construction arrangement, for avoiding the risk of earth and stone shortage, and enhancing the economic benefits. By discussing on problems existed in the balanced management of earth and stone, some suggestions are raised in this paper for optimizing earth and stone medium-and long-term management. (authors)

  2. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura [INAF-Trieste Astronomical Observatory, Trieste (Italy); Provenzale, Antonello [Institute of Atmospheric Sciences and Climate-CNR, Torino (Italy); Ferri, Gaia; Ragazzini, Gregorio, E-mail: vladilo@oats.inaf.it [Department of Physics, University of Trieste, Trieste (Italy)

    2013-04-10

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  3. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    International Nuclear Information System (INIS)

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-01-01

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  4. Seismic induced earth pressures in buried vaults

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.

    1994-01-01

    The magnitude and distribution of earth pressures acting on buried structures and induced by a seismic event are considered in this paper. A soil-structure-interaction analysis is performed for typical Department of Energy high level waste storage tanks using a lumped parameter model. The resulting soil pressure distributions are determined and compared with the static soil pressure to assess the design significance of the seismic induced soil pressures. It is found that seismic pressures do not control design unless the peak ground acceleration exceeds about 0.3 G. The effect of soil non linearities (resulting from local soil failure) are also found to have little effect on the predictions of the seismic response of the buried structure. The seismic induced pressures are found to be very similar to those predicted using the elastic model in ASCE 4-86

  5. Dynamic active earth pressure on retaining structures

    Indian Academy of Sciences (India)

    This theory is based on a pseudo- static forced-based approach ... large enough to induce a limit or failure state in the soil, and hence full mobilization of earth pressure is ... The base of the soil layer is excited by a harmonic excitation to simu-.

  6. Effect of chemical pressure, misfit strain and hydrostatic pressure on structural and magnetic behaviors of rare-earth orthochromates

    International Nuclear Information System (INIS)

    Zhao, Hong Jian; Chen, Xiang Ming; Ren, Wei; Bellaiche, L

    2013-01-01

    First-principles calculations are performed to investigate structural and magnetic behaviors of rare-earth orthochromates as a function of ‘chemical’ pressure (that is, the rare-earth ionic radius), epitaxial misfit strain and hydrostatic pressure. From a structural point of view, (i) ‘chemical’ pressure significantly modifies antipolar displacements, Cr–O–Cr bond angles and the resulting oxygen octahedral tiltings; (ii) hydrostatic pressure mostly changes Cr–O bond lengths; and (iii) misfit strain affects all these quantities. The correlations between magnetic properties (Néel temperature and weak ferromagnetic moments) and unit cell volume are similar when varying the misfit strain or hydrostatic pressure, but differ from those associated with the ‘chemical’ pressure. Origins of such effects are also discussed. (paper)

  7. Pressure anisotropy and radial stress balance in the Jovian neutral sheet

    Science.gov (United States)

    Paranicas, C. P.; Mauk, B. H.; Krimigis, S. M.

    1991-01-01

    By examining particle and magnetic field data from the Voyager 1 and 2 spacecraft, signatures were found indicating that the (greater than about 28 keV) particle pressure parallel to the magnetic field is greater than the pressure perpendicular to the field within the nightside neutral sheet (three nightside neutral sheet crossings, with favorable experimental conditions, were used). By incorporating the pressure anisotropy into the calculation of radial forces within the hightside neutral sheet, it is found that (1) force balance is approximately achieved and (2) the anisotropy force term provides the largest contribution of the other particle forces considered (pressure gradients and the corotation centrifugal force). With regard to the problem of understanding the balance of radial forces within the dayside neutral sheet (McNutt, 1984; Mauk and Krimigis, 1987), the nightside pressure anisotropy force is larger than the dayside pressure gradient forces at equivalent radial distances; however, a full accounting of the dayside regions remains to be achieved.

  8. Hemispheric symmetry of the Earth's Energy Balance as a fundamental constraint on the Earth's climate

    Science.gov (United States)

    Stephens, G. L.; Webster, P. J.; OBrien, D. M.

    2013-12-01

    We currently lack a quantitative understanding of how the Earth's energy balance and the poleward energy transport adjust to different forcings that determine climate change. Currently, there are no constraints that guide this understanding. We will demonstrate that the Earth's energy balance exhibits a remarkable symmetry about the equator, and that this symmetry is a necessary condition of a steady state climate. Our analysis points to clouds as the principal agent that highly regulates this symmetry and sets the steady state. The existence of this thermodynamic steady-state constraint on climate and the symmetry required to sustain it leads to important inferences about the synchronous nature of climate changes between hemispheres, offering for example insights on mechanisms that can sustain global ice ages forced by asymmetric hemispheric solar radiation variations or how climate may respond to increases in greenhouse gas concentration. Further inferences regarding cloud effects on climate can also be deduced without resorting to the complex and intricate processes of cloud formation, whose representation continues to challenge the climate modeling community. The constraint suggests cloud feedbacks must be negative buffering the system against change. We will show that this constraint doesn't exist in the current CMIP5 model experiments and the lack of such a constraint suggests there is insufficient buffering in models in response to external forcings

  9. Calculation of passive earth pressure of cohesive soil based on Culmann's method

    Directory of Open Access Journals (Sweden)

    Hai-feng Lu

    2011-03-01

    Full Text Available Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influences of the cohesive force, adhesive force, and the fill surface form were considered in this method. In order to obtain the passive earth pressure and sliding plane angle, a program based on the sliding surface assumption was developed with the VB.NET programming language. The calculated results from this method were basically the same as those from the Rankine theory and Coulumb theory formulas. This method is conceptually clear, and the corresponding formulas given in this paper are simple and convenient for application when the fill surface form is complex.

  10. Pressure balanced type membrane covered polarographic oxygen detectors for use in high temperature-high pressure water, (1)

    International Nuclear Information System (INIS)

    Nakayama, Norio; Uchida, Shunsuke

    1984-01-01

    A pressure balanced type membrane covered polarographic oxygen detector was developed to determine directly oxygen concentrations in high temperature, high pressure water without cooling and pressure reducing procedures. The detector is characterized by the following features: (1) The detector body and the membrane for oxygen penetration are made of heat resistant resin. (2) The whole detector body is contained in a pressure chamber where interior and exterior pressures of the detector are balanced. (3) Thermal expansion of the electrolyte is absorbed by deformation of a diaphragm attached to the detector bottom. (4) The effect of dissolved Ag + on the signal current is eliminated by applying a guard electrode. As a result of performance tests at elevated temperature, it was demonstrated that a linear relationship between oxygen concentration and signal current was obtained up to 285 0 C, which was stabilized by the guard electrode. The minimum O 2 concentration detectable was 0.03ppm (9.4 x 10 -7 mol/kg). (author)

  11. High pressure {mu}SR studies: rare earths and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M., E-mail: kalvius@ph.tum.de; Schreier, E. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ekstroem, M.; Hartmann, O. [Uppsala University, Physics Department (Sweden); Henneberger, S., E-mail: kalvius@ph.tum.de; Kratzer, A. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Waeppling, R. [Uppsala University, Physics Department (Sweden); Martin, E., E-mail: kalvius@ph.tum.de; Burghart, F.J. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ballou, R.; Deportes, J. [CNRS, Laboratoire Louis Neel (France); Niedermayer, Ch. [University of Constance, Faculty of Physics (Germany)

    2000-11-15

    After a short introduction to {mu}SR with respect to the study of magnetic properties, followed by a brief outline of the principle of the high pressure-low temperature {mu}SR spectrometer installed at the Paul Scherrer Institute, we discuss some measurements on rare earth materials employing this instrument. They are concerned with: (1) The pressure dependence of the spin turning process in ferromagnetic Gd. (2) The volume dependence of the internal magnetic field in the heavy rare earth metals Gd, Dy, and Ho in their ordered magnetic states. (3) The response of the (first order) magnetic transition in the frustrated antiferromagnets of type RMn{sub 2} (R = Y,Gd) to pressure. (4) The variation of magnetic parameters with pressure in La{sub 2}CuO{sub 4} (powder sample), the antiferromagnetic parent compound of the high T{sub C} superconductors of type La{sub 2-x}(Sr, Ba){sub x}CuO{sub 4}. In conclusion a short outlook on further developments is given.

  12. The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity

    Science.gov (United States)

    Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn

    2018-04-01

    Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.

  13. Rare-earth-metal nitridophosphates through high-pressure metathesis

    International Nuclear Information System (INIS)

    Kloss, Simon David; Schnick, Wolfgang

    2015-01-01

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP_4N_8 is reported. High-pressure solid-state metathesis between LiPN_2 and NdF_3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd"3"+ ions were measured by SQUID magnetometry. LiNdP_4N_8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. 3-D Force-balanced Magnetospheric Configurations

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.; Maezawa, K.

    2003-01-01

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions

  15. Acid pressure leaching of a concentrate containing uranium, thorium and rare earth elements

    International Nuclear Information System (INIS)

    Lan Xinghua; Peng Ruqing.

    1987-01-01

    The acid pressure leaching of a concentrate containing rinkolite for recovering uranium, thorium and rare earth elements is described. The laboratory and the pilot plant test results are given. Under the optimum leaching conditions, the recovery of uranium, thorium and rare earth elements are 82.9%, 86.0% and 88.3% respectively. These results show that the acid pressure leaching process is a effective process for treating the concentrate

  16. The Effect of Displacement Mode of Rigid Retaining Walls on Shearing Bands by Active Earth Pressure

    Directory of Open Access Journals (Sweden)

    A. Sekkel

    2013-10-01

    Full Text Available This work treats the physical modeling of failure mechanisms by active earth pressure. This last is developed by retaining wall movement. A lot of research showed that wall displacement has a significant effect on active earth pressure. A good comprehension of active earth pressure phenomenon and its failure mechanisms help us to better conceive retaining walls. The conception of a small-scale model allowed the realization of active earth pressure tests, while displacing the mobile wall toward the outside of the massif. The studied material is that of Schneebeli; light two-dimensional material made of cylindrical plastic rollers, simulating granular non-cohesive soil. The evolution of shearing zones under continuous and discontinuous displacement modes of mobile walls by correlation pictures allows the investigation of the localization of deformations and failure mechanisms.

  17. Water balance of an earth fill built of organic clay

    Directory of Open Access Journals (Sweden)

    Birle Emanuel

    2016-01-01

    Full Text Available The paper presents investigations on the water balance of an earth fill built of organic clay in humid climate. As the organic soil used for the fill contains geogenetically elevated concentrations of arsenic, particular attention is paid on the seepage flow through the fill. The test fill is 5 m high, 30 m long and 25 m wide. The fill consists of the organic clay compacted at water contents wet and dry of Proctor Optimum covered by a drainage mat and a 60 cm thick top layer. For the determination of the water balance extensive measuring systems were installed. The seepage at the bottom measured so far was less than 2 % of the precipitation. The interflow in the drainage mat above the compacted organic clay was of similar magnitude. The estimated evapotranspiration reached approx. 84 % of the precipitation. According to these measurements the percolation is much lower than the percolation of many landfill covers in humid climates.

  18. High-pressure metallization of FeO and implications for the earth's core

    Science.gov (United States)

    Knittle, Elise; Jeanloz, Raymond

    1986-01-01

    The phase diagram of FeO has been experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock-wave and diamond-cell techniques. A metallic phase of FeO is observed at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the earth's outer core, in accord with the geochemical predictions of Ringwood (1977 and 1979). The high pressures necessary for this metallization suggest that the core has acquired its composition well after the initial stages of the earth's accretion. Direct experimental observations at elevated pressures and temperatures indicate that core-forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.

  19. The energy and pressure balance in the corona

    International Nuclear Information System (INIS)

    McWhirter, R.W.P.; Wilson, R.

    1976-01-01

    This paper reviews theoretical models for the solar corona based on energy and pressure calculations. Processes included in these calculations are: (a) heating of the outer corona by mechanical waves; (b) convective out-flow of gas giving rise to the solar wind; (c) thermal conductions; (d) radiated power loss. Possible observations to help answer some of the outstanding questions about the energy balance are suggested. (author)

  20. Fabrication of self-enclosed nanochannels based on capillary-pressure balance mechanism

    Science.gov (United States)

    Kou, Yu; Sang, Aixia; Li, Xin; Wang, Xudi

    2017-10-01

    Polymer-based micro/nano fluidic devices are becoming increasingly important to biological applications and fluidic control. In this paper, we propose a self-enclosure method for the fabrication of large-area nanochannels without external force by using a capillary-pressure balance mechanism. The melt polymer coated on the nanogrooves fills into the trenches inevitably and the air in the trenches is not excluded but compressed, which leads to an equilibrium state between pressure of the trapped air and capillary force of melt polymer eventually, resulting in the channels’ formation. A pressure balance model was proposed to elucidate the unique self-sealing phenomenon and the criteria for the design and construction of sealed channels was discussed. According to the bonding mechanism investigated using the volume of fluid (VOF) simulation and experiments, we can control the dimension of sealed channels by varying the baking condition. This fabrication technique has great potential for low-cost and mass production of polymeric-based micro/nano fluidic devices.

  1. On the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Smolyakov, A.I.; Garbet, X.; Bourdelle, C.

    2009-01-01

    This paper describes the structure of the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic field. The parallel momentum balance equation is derived from magnetohydrodynamic equations by an expansion in the inverse magnetic field 1/B as a small parameter. Contributions of the gyroviscosity and inertia terms are clarified. It is shown that magnetic field curvature leads to important coupling of parallel flow with fluctuations of the electric field and plasma pressure.

  2. Does elevating image receptor increase breast receptor footprint and improve pressure balance?

    International Nuclear Information System (INIS)

    Smith, H.; Szczepura, K.; Mercer, C.; Maxwell, A.; Hogg, P.

    2015-01-01

    There is no consensus in the literature regarding the image receptor (IR) position for the cradio-caudal projection in mammography. Some literature indicates the IR should be positioned to the infra mammary fold (IMF); other literature suggests the IR be raised 2 cm relative to the IMF. Using 16 female volunteers (32 breasts) and a pressure sensitive mat we investigated breast footprint and pressure balance with IR at IMF and IR 2 cm above the IMF. Breast area on IR and paddle and interface pressure between IR/breast and paddle/breast were recorded. A uniformity index (UI) gave a measure of pressure balance between IR/breast and paddle/breast. IR breast footprint increases significantly by 13.81 cm 2 (p < 0.02) when IR is raised by 2 cm. UI reduces from 0.4 to 0.00 (p = 0.04) when positioned at IMF +2 cm demonstrating an improved pressure balance. Practitioners should consider raising the IR by 2 cm relative to the IMF in clinical practice. Further work is suggested to investigate the effects of practitioner variability and breast asymmetry. - Highlights: • Experimental study. • 16 female volunteers/32 breasts. • Compares two methods of conducting the cranio-caudal project. • Provides sufficient evidence to indicate which method is likely to be superior. • Has value to clinical mammography.

  3. Effects of electron pressure anisotropy on current sheet configuration

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095 (United States); Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2016-09-15

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  4. Effects of electron pressure anisotropy on current sheet configuration

    International Nuclear Information System (INIS)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Vasko, I. Y.

    2016-01-01

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  5. Study on passive earth pressure acting on the embedment of an earth retaining wall for braced excavation work in cohesive soil; Nenseido jiban ni okeru kussaku dodomeheki neirebu no judo doatsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H. [Pacific Consultants K.K., Tokyo (Japan); Hirashima, K. [Yamanashi University, Yamanashi (Japan). Faculty of Engineering

    1995-12-15

    Passive earth pressure exerts a great influence on the stress and deformation of earth retaining walls in braced excavation. To calculate this pressure, conventional ultimate earth pressure equation, or Rankine-Resals and Coulomb`s equation, are currently applied respectively to cohesive and sandy soil. However, these intentional equation to determine passive earth pressure do not adequately take into account the excavation width during work and the shearing resistance on the earth retaining wall surface. This paper deals with cohesive soil only, deriving a calculation equation for passive earth pressure, which takes into account excavation width and the shearing resistance of the earth retaining wall surface. Then, constants in this equation are determined using the calculation results obtained from the finite element method with blasts-plastic elements. The calculation results are also compared with measured values in the model test in order to check the applicability of the calculation equation for passive earth pressure thus obtained. Finally, this paper proposes a practicable calculation equation for passive earth pressure. 13 refs., 10 figs., 10 tabs.

  6. Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Zhang, Lei; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, 100190, Beijing (China); He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Li, Shengtai [Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Wang, Xin, E-mail: jshept@gmail.com [School of Space and Environment, Beihang University, 100191 Beijing (China)

    2017-02-10

    Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of the magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.

  7. A Loudness Function for Maintaining Spectral Balance at Changing Sound Pressure Levels

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal

    Our perception of loudness is a function of frequency as well as sound pressure level as described in ISO226:2003: Normal Equal Loudness Level Contours, which describes the needed sound pressure level for pure tones to be perceived equally loud. At a music performance, this is taking care...... of by the sound engineer by listening to the individual sound sources and adjust and equalize them to the wanted spectral balance including the whole chain of audio equipment and surroundings. At a live venue the sound pressure level will normally change during a concert, and typically increase over time......B is doubling of the effect to the loudspeakers). A level depending digital loudness function has been made based on ISO226:2003, and will be demonstrated. It can maintain the spectral balance at alternating levels and is based on fractional order digital filters. Tutorial. Abstract T3.3 (30th August 16:00 - 17...

  8. Earth in the balance. Ecology and the human spirit

    International Nuclear Information System (INIS)

    Al Gore

    2007-01-01

    This book is the translation of the original American edition ''earth in the balance''. When Earth in the Balance first came out, it caused quite a stir and for good reason. It convincingly makes the case that a crisis of epidemic proportions is nearly upon us and that if the world does not get its act together soon and agree to some kind of 'Global Marshall Plan' to protect the environment, we're all up a polluted creek without a paddle. Myriad plagues are upon us, but the worst include the loss of biodiversity, the depletion of the ozone layer, the slash-and-burn destruction of rain forests, and the onset of global warming. None of this is new, of course, nor was it new in 1992. But most environmentalists will still get a giddy feeling reading such a call to action as written by a prominent politician. The book is arranged into three sections: the first describes the plagues; the second looks at how we got ourselves into this mess; and the final chapters present ways out. Gore gets his points across in a serviceable way, though he could have benefited from a firmer editor's hand; at times the analogies are arcane and the pacing is odd kind of like a Gore speech that climaxes at weird points and then sinks just as the audience is about to clap. Still, at the end you understand what's been said. Gore believes that if we apply some American ingenuity, the twin engines of democracy and capitalism can be rigged to help us stabilize world population growth, spread social justice, boost education levels, create environmentally appropriate technologies, and negotiate international agreements to bring us back from the brink. For example, a worldwide shift to clean, renewable energy sources would create huge economic opportunities for companies large and small to design, build, and maintain solar panels, wind turbines, fuel cells, and other eco friendly innovations

  9. Stress in highly demanding IT jobs: transformational leadership moderates the impact of time pressure on exhaustion and work-life balance.

    Science.gov (United States)

    Syrek, Christine J; Apostel, Ella; Antoni, Conny H

    2013-07-01

    The objective of this article is to investigate transformational leadership as a potential moderator of the negative relationship of time pressure to work-life balance and of the positive relationship between time pressure and exhaustion. Recent research regards time pressure as a challenge stressor; while being positively related to motivation and performance, time pressure also increases employee strain and decreases well-being. Building on the Job Demand-Resources model, we hypothesize that transformational leadership moderates the relationships between time pressure and both employees' exhaustion and work-life balance such that both relationships will be weaker when transformational leadership is higher. Of seven information technology organizations in Germany, 262 employees participated in the study. Established scales for time pressure, transformational leadership, work-life balance, and exhaustion were used, all showing good internal consistencies. The results support our assumptions. Specifically, we find that under high transformational leadership the impact of time pressure on exhaustion and work-life balance was less strong. The results of this study suggest that, particularly under high time pressure, transformational leadership is an important factor for both employees' work-life balance and exhaustion. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. High pressure behaviour of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Soni, Pooja; Srivastava, Vipul; Sanyal, S.P.

    2008-01-01

    We have investigated theoretically the high-pressure structural phase transition and cohesive properties of two heavy rare earth mono anyimonides (LnSb; Ln = Dy and Lu) by using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 4f electrons of the RE ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves and the values of high-pressure behaviour have been discussed and compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 23.6 GPa and 25.4 GPa respectively. At phase transition the % volume collapse for both the compounds are little higher than the measured ones. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. The bulk moduli of LnSb compounds are obtained from the P-V curve fitted by the Birch equation of state. We also calculated the Ln-Ln distance as a function of pressure. (author)

  11. Inversion of the Earth spherical albedo from radiation-pressure

    Science.gov (United States)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  12. A Newly Designed Fiber-Optic Based Earth Pressure Transducer with Adjustable Measurement Range

    Directory of Open Access Journals (Sweden)

    Hou-Zhen Wei

    2018-03-01

    Full Text Available A novel fiber-optic based earth pressure sensor (FPS with an adjustable measurement range and high sensitivity is developed to measure earth pressures for civil infrastructures. The new FPS combines a cantilever beam with fiber Bragg grating (FBG sensors and a flexible membrane. Compared with a traditional pressure transducer with a dual diaphragm design, the proposed FPS has a larger measurement range and shows high accuracy. The working principles, parameter design, fabrication methods, and laboratory calibration tests are explained in this paper. A theoretical solution is derived to obtain the relationship between the applied pressure and strain of the FBG sensors. In addition, a finite element model is established to analyze the mechanical behavior of the membrane and the cantilever beam and thereby obtain optimal parameters. The cantilever beam is 40 mm long, 15 mm wide, and 1 mm thick. The whole FPS has a diameter of 100 mm and a thickness of 30 mm. The sensitivity of the FPS is 0.104 kPa/με. In addition, automatic temperature compensation can be achieved. The FPS’s sensitivity, physical properties, and response to applied pressure are extensively examined through modeling and experiments. The results show that the proposed FPS has numerous potential applications in soil pressure measurement.

  13. Instance Analysis for the Error of Three-pivot Pressure Transducer Static Balancing Method for Hydraulic Turbine Runner

    Science.gov (United States)

    Weng, Hanli; Li, Youping

    2017-04-01

    The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.

  14. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman [Institute of Planetology, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany); Breuer, Doris, E-mail: Vlada.Stamenkovic@dlr.de, E-mail: Lena.Noack@dlr.de, E-mail: Doris.Breuer@dlr.de, E-mail: Tilman.Spohn@dlr.de [Institute of Planetary Research, German Aerospace Center DLR, Rutherfordstrasse 2, 12489 Berlin (Germany)

    2012-03-20

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  15. Interstitial pressure dependence of the thermal conductivity of some rare earth oxide powders

    International Nuclear Information System (INIS)

    Pradeep, P.

    1997-01-01

    Thermal transport properties of powdered materials depend upon interstitial gas pressure. The present study reports the experimental results for the effective thermal conductivity of three rare earth oxide powders viz. yttrium oxide, samarium oxide, and gadolinium oxide, at various interstitial pressures by using transient plane source (TPS) method. A theoretical model is also proposed for the interpretation of the variation of the effective thermal conductivity with interstitial gas pressure. Its validity is found to be good in low pressure range of 45 mm Hg to normal pressure when compared with the experimental results. Also an attempt has been made to calculate the variation of thermal conductivity with interstitial pressure in the high pressure range up to 2 kbar using the proposed model. (author)

  16. Correlation between center of pressure and functional balance in non-faller elderly practitioners of Tai Chi Chuan

    OpenAIRE

    Gatica-Rojas, Valeska; Cartes-Vel?squez, Ricardo; Salgado-M?ndez, Rodrigo; Castro-Ram?rez, Rodolfo

    2016-01-01

    [Purpose] This study aimed to determine the correlation between center of pressure and functional balance in non-faller elderly practitioners of Tai Chi. [Subjects and Methods] For the study, nine non-faller elderly practitioners of Tai Chi who were able to maintain a standing posture and walk independently were recruited. Timed one-leg standing and timed up-and-go tests were used as functional balance tests and force platform to measure the center of pressure. The Pearson correlation coeffic...

  17. Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part II: Twenty-First-Century Changes

    NARCIS (Netherlands)

    Vizcaino, M.; Lipscomb, W.H.; Sacks, W.J.; van den Broeke, M.R.

    2014-01-01

    This study presents the first twenty-first-century projections of surface mass balance (SMB) changes for the Greenland Ice Sheet (GIS) with the Community Earth System Model (CESM), which includes a new ice sheet component. For glaciated surfaces, CESM includes a sophisticated calculation of energy

  18. Stability and anisotropy of (FexNi1-x)2O under high pressure and implications in Earth's and super-Earths' core.

    Science.gov (United States)

    Huang, Shengxuan; Wu, Xiang; Qin, Shan

    2018-01-10

    Oxygen is thought to be an important light element in Earth's core but the amount of oxygen in Earth's core remains elusive. In addition, iron-rich iron oxides are of great interest and significance in the field of geoscience and condensed matter physics. Here, static calculations based on density functional theory demonstrate that I4/mmm-Fe 2 O is dynamically and mechanically stable and becomes energetically favorable with respect to the assemblage of hcp-Fe and [Formula: see text]-FeO above 270 GPa, which indicates that I4/mmm-Fe 2 O can be a strong candidate phase for stable iron-rich iron oxides at high pressure, perhaps even at high temperature. The elasticity and anisotropy of I4/mmm-(Fe x Ni 1-x ) 2 O at high pressures are also determined. Based on these results, we have derived the upper limit of oxygen to be 4.3 wt% in Earth's lower outer core. On the other hand, I4/mmm-(Fe x Ni 1-x ) 2 O with high AV S is likely to exist in a super-Earth's or an ocean planet's solid core causing the locally seismic heterogeneity. Our results not only give some clues to explore and synthesize novel iron-rich iron oxides but also shed light on the fundamental information of oxygen in the planetary core.

  19. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    Science.gov (United States)

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  20. Elastic, thermal and high pressure structural properties of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Soni, P.; Pagare, G.; Sanyal, S.P.

    2009-01-01

    Pressure induced structural phase transition of two heavy rare earth antimonides (RESb; RE=Ho, Er) have been studied theoretically by using an inter-ionic potential theory. This method has been found quite satisfactory in the case of pnictides of rare earth and describes the crystal properties in the framework of rigid-ion modal. The long-range Coulomb interaction, short-range repulsive interaction and van der Waals (vdW) interactions are properly incorporated in this theory. These compounds exhibit first order crystallographic phase transition from their NaCl-type structure to CsCl-type structure at 27 GPa and 33.2 GPa, respectively. The bulk moduli of RESb compounds are compared with the experimental values of elastic constants. We have also calculated the Debye temperature by incorporating the elastic constants for both the rare earth antimonides. (author)

  1. Solar radiation pressure resonances in Low Earth Orbits

    Science.gov (United States)

    Alessi, Elisa Maria; Schettino, Giulia; Rossi, Alessandro; Valsecchi, Giovanni B.

    2018-01-01

    The aim of this work is to highlight the crucial role that orbital resonances associated with solar radiation pressure can have in Low Earth Orbit. We review the corresponding literature, and provide an analytical tool to estimate the maximum eccentricity which can be achieved for well-defined initial conditions. We then compare the results obtained with the simplified model with the results obtained with a more comprehensive dynamical model. The analysis has important implications both from a theoretical point of view, because it shows that the role of some resonances was underestimated in the past, and also from a practical point of view in the perspective of passive deorbiting solutions for satellites at the end-of-life.

  2. Dual shell pressure balanced reactor vessel. Final project report

    International Nuclear Information System (INIS)

    Robertus, R.J.; Fassbender, A.G.

    1994-10-01

    The Department of Energy's Office of Energy Research (OER) has previously provided support for the development of several chemical processes, including supercritical water oxidation, liquefaction, and aqueous hazardous waste destruction, where chemical and phase transformations are conducted at high pressure and temperature. These and many other commercial processes require a pressure vessel capable of operating in a corrosive environment where safety and economy are important requirements. Pacific Northwest Laboratory (PNL) engineers have recently developed and patented (U.S. patent 5,167,930 December 1, 1992) a concept for a novel Dual Shell Pressure Balanced Vessel (DSPBV) which could solve a number of these problems. The technology could be immediately useful in continuing commercialization of an R ampersand D 100 award-winning technology, Sludge-to-oil Reactor System (STORS), originally developed through funding by OER. Innotek Corporation is a small business that would be one logical end-user of the DSPBV reactor technology. Innotek is working with several major U.S. engineering firms to evaluate the potential of this technology in the disposal of wastes from sewage treatment plants. PNL entered into a CRADA with Innotek to build a bench-scale demonstration reactor and test the system to advance the economic feasibility of a variety of high pressure chemical processes. Hydrothermal processing of corrosive substances on a large scale can now be made significantly safer and more economical through use of the DSPBV. Hydrothermal chemical reactions such as wet-air oxidation and supercritical water oxidation occur in a highly corrosive environment inside a pressure vessel. Average corrosion rates from 23 to 80 miles per year have been reported by Rice (1994) and Latanision (1993)

  3. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    International Nuclear Information System (INIS)

    Mineev, Vladimir N; Funtikov, Aleksandr I

    2004-01-01

    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  4. The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium.

    Directory of Open Access Journals (Sweden)

    Xi Cheng

    Full Text Available The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea.

  5. The effect of different skin-ankle brace application pressures on quiet single-limb balance and electromyographic activation onset of lower limb muscles

    Directory of Open Access Journals (Sweden)

    Papadakis Stamatios A

    2007-09-01

    Full Text Available Abstract Background Several studies have been carried out in order to investigate the effect of ankle bracing on ankle joint function and performance. However, no study so far has examined the role of skin-brace interface pressure in neuromuscular control. The aim of this study was to investigate the effect of different skin-ankle brace interface pressures on quiet single limb balance and the electromyographic (EMG activation sequence of four lower limb muscles. Methods Thirty three male physical education students who volunteered to take part in the study were measured under three ankle brace conditions: i without brace, ii with brace and 30 kPa application pressure and iii with brace and 60 kPa application pressure. Single limb balance (anteroposterior and mediolateral parameter was assessed on the dominant lower limb, with open and closed eyes, on a force platform, simultaneously with the EMG recording of four lower lower limb muscles' (gastrocnemius, peroneus longus, rectus femoris and biceps femoris activation onset. Results The results showed that overall balance (total stability parameter was not significantly affected in any of the three ankle brace conditions. However, the anteroposterior centre of pressure excursion and centre of pressure excursion velocity were significantly increased with the application of ankle brace, both with 30 and 60 kPa application pressures. Furthermore, it was found that single limb balance was significantly worse with closed eyes compared to open eyes. EMG measurements showed that the sequence of lower limb activation onset was not affected in any of the three ankle brace application conditions. The results of this study showed that the application of an ankle brace with two different skin-brace interface pressures had no effect on overall single limb balance and the sequence of lower limb muscle activation. Conclusion These findings suggest that peripheral joint receptors are either not adequately

  6. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    International Nuclear Information System (INIS)

    Stamenković, Vlada; Noack, Lena; Spohn, Tilman; Breuer, Doris

    2012-01-01

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths—resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution—the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  7. Mass, Energy, Space And Time System Theory---MEST A way to help our earth

    Science.gov (United States)

    Cao, Dayong

    2009-03-01

    There are two danger to our earth. The first, the sun will expand to devour our earth, for example, the ozonosphere of our earth is be broken; The second, the asteroid will impact near our earth. According to MEST, there is a interaction between Black hole (and Dark matter-energy) and Solar system. The orbit of Jupiter is a boundary of the interaction between Black hole (and Dark matter-energy) and Solar system. Because there are four terrestrial planets which is mass-energy center as solar system, and there are four or five Jovian planets which is gas (space-time) center as black hole system. According to MEST, dark matter-energy take the velocity of Jupiter gose up. So there are a lot of asteroids and dark matter-energy near the orbit of Jupiter-the boundary. Dark matter-energy can change the orbit of asteroid, and take it impacted near our earth. Because the Dark matter-energy will pressure the Solar system. It is a inverse process with sun's expandedness. So the ``two danger'' is from a new process of the balance system between Black hole (and Dark matter-energy) and Solar system. According to MEST, We need to find the right point for our earth in the ``new process of the balance system.''

  8. Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core

    International Nuclear Information System (INIS)

    Brazhkin, Vadim V; Lyapin, A G

    2000-01-01

    Experimental data on and theoretical models for the viscosity of various types of liquids and melts under pressure are reviewed. Experimentally, the least studied melts are those of metals, whose viscosity is considered to be virtually constant along the melting curve. The authors' new approach to the viscosity of melts involves the measurement of the grain size in solidified samples. Measurements on liquid metals at pressures up to 10 GPa using this method show, contrary to the empirical approach, that the melt viscosity grows considerably along the melting curves. Based on the experimental data and on the critical analysis of current theories, a hypothesis of a universal viscosity behavior is introduced for liquids under pressure. Extrapolating the liquid iron results to the pressures and temperatures at the Earth's core reveals that the Earth's outer core is a very viscous melt with viscosity values ranging from 10 2 Pa s to 10 11 Pa s depending on the depth. The Earth's inner core is presumably an ultraviscous (>10 11 Pa s) glass-like liquid - in disagreement with the current idea of a crystalline inner core. The notion of the highly viscous interior of celestial bodies sheds light on many mysteries of planetary geophysics and astronomy. From the analysis of the pressure variation of the melting and glass-transition temperatures, an entirely new concept of a stable metallic vitreous state arises, calling for further experimental and theoretical study. (reviews of topical problems)

  9. Pressure dependence of magnetic ordering temperatures of rare earth-Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    Foner, S [Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE = rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  10. Pressure dependence of magnetic ordering temperatures of rare earth - Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, L E [Virginia Univ., Charlottesville (USA). Dept. of Physics; Guertin, R P; Foner, S

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE=rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  11. Study of the earth's deep interior and crystallography. X-ray and neutron diffraction experiments under high pressures

    International Nuclear Information System (INIS)

    Yagi, Takehiko

    2014-01-01

    History of the study of the Earth's deep interior was reviewed. In order to understand Earth's deep interior from the view point of materials science, X-ray diffraction under high pressure and high temperature played very important role. Use of synchrotron radiation dramatically advanced this experimental technique and it is now possible to make precise X-ray study under the P-T conditions corresponding even to the center of the Earth. In order to clarify the behavior of light elements such as hydrogen, however, studies using neutron diffraction are also required. A new neutron beam line dedicated for high-pressure science is constructed at J-PARC and is now ready for use. (author)

  12. Earth Pressure at rest of Søvind Marl – a highly overconsolidated Eocene clay

    DEFF Research Database (Denmark)

    Grønbech, Gitte Lyng; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2016-01-01

    The present study evaluated earth pressure at rest, K0, in highly overconsolidated Eocene clay called Søvind Marl, which exhibits extremely high plasticity indices of up to 300%, a highly fissured structure, and preconsolidation stresses up to 6,800 kPa. Continuous Loading Oedometer (CLO) tests...

  13. The Effect of Varying Atmospheric Pressure upon Habitability and Biosignatures of Earth-like Planets.

    Science.gov (United States)

    Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike

    2018-02-01

    Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.

  14. Unusual pressure dependence of the crystallographic structure in RNiO{sub 3} perovskites (R = rare earth)

    Energy Technology Data Exchange (ETDEWEB)

    Medarde, M.; Mesot, J.; Rosenkranz, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Lacorre, P. [Lab. Fluorures, Le Mans (France); Marshall, W.; Loveday, J.S. [Edinburgh Univ. (United Kingdom); Klotz, S.; Hamel, G. [Paris-6 Univ., 75 (France)

    1997-09-01

    We report the first experimental observation of a pressure-induced structural phase transition in the RNiO{sub 3} series (R = rare earth). At {approx_equal} 40 kbar, the space group of NdNiO{sub 3} changes from Pbnm(orthorhombic) to the PrNiO{sub 3} indicating that the symmetry of the structure increases with pressure. (author) 1 fig., 7 refs.

  15. A Balancing Act: A Quantitative Analysis of the Influence of Work/Life Balance and Work Atmosphere on Personal and Professional Success of Women Scientists

    Science.gov (United States)

    Archie, T.; Laursen, S. L.; Kogan, M.

    2012-12-01

    Despite an increase in advanced degrees awarded to women in the geosciences, scientific leaders in academia remain dominantly male. Women are underrepresented in tenure-track positions in Earth science departments at research universities and are less likely to have more senior positions within their academic institutions. Our empirical study analyzes factors that influence personal and professional success for women scientists. Prior research has shown that women are subjected to unintended and unrecognized biases that can have an ultimate impact on their productivity, advancement, and success. We used an electronic survey to collect data from 662 early-career geoscientists who are members of the Earth Science Women's Network and/or the network's Earth Science Jobs list. We asked respondents to self-report their perceptions of work/life balance, professional atmosphere and other variables indicative and/or predictive of personal and professional success. In a previous analysis (Kogan & Laursen, 2011) we found that women consistently rated the professional atmosphere in their departments and their interactions with colleagues less favorably than men. Women indicated lower rates of collaboration with colleagues in their unit compared to their male peers. We also found work/life balance is of particular concern to early-career scientists, especially since tenure clock and the biological clock function on similar timetables. Women reported more caregiving responsibilities than men, further complicating the balance between work and personal life. We hypothesize that the work life balance and professional atmosphere influences productivity, advancement, and career/job satisfaction. We now investigate how work/life balance, atmosphere within the work unit, and mentoring influence productivity, job and career satisfaction, and career advancement. We introduce a structural equation model that seeks to explain how these relationships vary dependent upon gender, career level

  16. Atomic scale study of vacancies in Earth's inner core: effect of pressure and chemistry

    Science.gov (United States)

    Ritterbex, S.; Tsuchiya, T.

    2017-12-01

    Seismic observations of the Earth's inner core [1] remain ambiguously related to mineral physics studies of the inner core stable crystalline iron phase [2,3,4,5]. This makes it difficult to clarify the role of plastic deformation as one of the primary candidates responsible for the observed seismic anisotropy of Earth's inner core. Nonetheless, atomic self-diffusion mechanisms provide a direct link between plastic deformation and the mechanical properties of Earth's inner core stable iron phase(s). Using first-principles density functional based calculation techniques, we have studied the conjugate effect of pressure and chemistry on vacancy diffusion in HCP-, BCC- and FCC-iron by taking into account potential light alloying elements as hydrogen, silicon and sulfur. Our results show that inner core pressure highly inhibits the rate of intrinsic self-diffusion by suppressing defect concentration rather than by effecting the mobility of the defects. Moreover, we found light elements to be able to affect metallic bonding which allows for extrinsic diffusion mechanisms in iron under inner core conditions. The latter clearly enables to enhance defect concentration and hence to enhance the rate of plastic deformation. This suggests that inner core chemistry affects the rheological properties (e.g.viscosity) of iron alloys which finally should match with seismic observations. references: [1] Deuss, A., 2014. Heterogeneity and Anisotropy of Earth's inner core. An. Rev. Earth Planet. Sci. 42, 103-126. [2] Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., Morard, G., 2013. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Science 340, 464-466. [3] Godwal, B.K., Gonzales-Cataldo, F., Verma, A.K., Stixrude, L., Jeanloz, R., 2015. Stability of iron crystal structures at 0.3-1.5 TPa. [4] Vocadlo, L., 2007. Ab initio calculations of the elasticity of iron and iron alloys at inner core conditions: evidence for a partially molten inner core

  17. Physical and numerical modelling of earth pressure on anchored sheet pile walls in sand

    DEFF Research Database (Denmark)

    Krogsbøll, Anette Susanne; Fuglsang, Leif D

    2006-01-01

    The influence of wall flexibility on earth pressure, bending moments and failure modes is studied. Numerical models are compared to results from model tests carried out in a geotechnical centrifuge. The back-fill is dry sand and failure is introduced by allowing the wall to rotate around the anchor...

  18. Pressure-induced structural phase transition and elastic properties in rare earth CeBi and LaBi

    International Nuclear Information System (INIS)

    Mankad, Venu; Gupta, Sanjay D.; Gupta, Sanjeev K.; Jha, Prafulla

    2011-01-01

    Pressure is one of the external parameters by which the interplay of the f-electrons with the normal conduction electrons may be varied. At ambient conditions the rare-earth compounds are characterized by a fixed f n configuration of atomic-like f-electrons, but the decreased lattice spacing resulting from the application of pressure eventually leads to the destabilization of the f-shell. The theoretical description of this electronic transition remains a challenge. The present study reports a comprehensive study on structural, electronic band structures, elastic and lattice dynamical properties of rare earth monopnictides CeBi and LaBi using first principles density functional calculations within the pseudopotential approximation. Both compounds possess NaCI (B1) structure at ambient pressure and transform either to CsCI or body centered tetragonal (BCT) structure. Our results concerning equilibrium lattice parameter and bulk modulus agree well with the available experimental and previous theoretical data. The volume change at the crystallographic transition is attributed to a decrease of the cerium valence or a lowering of the p-f hybridization due to the larger interatomic distances in both high pressure phases. The equation of state for rare earth bismuth compounds are calculated and compared with available experimental results. From the total energy and relative volume one can clearly see the relative stabilities of the high pressure phases of both compounds. As the primitive tetragonal phase of both compounds. As the primitive tetragonal phase can be viewed as a CsCl structure, one may think of a transition from B1 to B2. We have also calculated band structure for both phase and here we have presented for B1 case. The narrow bands originating above the Fermi level are mainly due to Ce 'f'-like states, and the major contribution to the density of states is mainly from Ce 'd'-like states. Furthermore, in high-pressure CsCI phase, there is an appreciable

  19. Pressure-induced structural change in MgSiO3 glass at pressures near the Earth's core-mantle boundary.

    Science.gov (United States)

    Kono, Yoshio; Shibazaki, Yuki; Kenney-Benson, Curtis; Wang, Yanbin; Shen, Guoyin

    2018-02-20

    Knowledge of the structure and properties of silicate magma under extreme pressure plays an important role in understanding the nature and evolution of Earth's deep interior. Here we report the structure of MgSiO 3 glass, considered an analog of silicate melts, up to 111 GPa. The first (r1) and second (r2) neighbor distances in the pair distribution function change rapidly, with r1 increasing and r2 decreasing with pressure. At 53-62 GPa, the observed r1 and r2 distances are similar to the Si-O and Si-Si distances, respectively, of crystalline MgSiO 3 akimotoite with edge-sharing SiO 6 structural motifs. Above 62 GPa, r1 decreases, and r2 remains constant, with increasing pressure until 88 GPa. Above this pressure, r1 remains more or less constant, and r2 begins decreasing again. These observations suggest an ultrahigh-pressure structural change around 88 GPa. The structure above 88 GPa is interpreted as having the closest edge-shared SiO 6 structural motifs similar to those of the crystalline postperovskite, with densely packed oxygen atoms. The pressure of the structural change is broadly consistent with or slightly lower than that of the bridgmanite-to-postperovskite transition in crystalline MgSiO 3 These results suggest that a structural change may occur in MgSiO 3 melt under pressure conditions corresponding to the deep lower mantle.

  20. Active earth pressure model tests versus finite element analysis

    Science.gov (United States)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  1. Biological modulation of planetary atmospheres: The early Earth scenario

    Science.gov (United States)

    Schidlowski, M.

    1985-01-01

    The establishment and subsequent evolution of life on Earth had a profound impact on the chemical regime at the planet's surface and its atmosphere. A thermodynamic gradient was imposed on near-surface environments that served as the driving force for a number on important geochemical transformations. An example is the redox imbalance between the modern atmosphere and the material of the Earth's crust. Current photochemical models predict extremely low partial pressures of oxygen in the Earth's prebiological atmosphere. There is widespread consensus that any large-scale oxygenation of the primitive atmosphere was contingent on the advent of biological (autotrophic) carbon fixation. It is suggested that photoautotrophy existed both as a biochemical process and as a geochemical agent since at least 3.8 Ga ago. Combining the stoichiometry of the photosynthesis reaction with a carbon isotope mass balance and current concepts for the evolution of the stationary sedimentary mass as a funion of time, it is possible to quantify, the accumulation of oxygen and its photosynthetic oxidation equivalents through Earth history.

  2. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  3. PuBr3-type as high pressure modification of rare earth trihalides LnX3 (X = Cl, Br, I)

    International Nuclear Information System (INIS)

    Beck, H.P.; Gladrow, E.

    1983-01-01

    High pressure experiments in a belt-type apparatus were performed on rare earth trichlorides, -bromides and -iodides. The results underline the importance of the PuBr 3 -type arrangement. The range of existence of this structure type is considerably increased under pressure. X-ray high temperature investigations at ambient pressure on the quenched high pressure phases show a marked correlation between the transformation pressures, which rise with smaller cations, and the temperatures at which the high pressure phases are reconverted to the thermodynamically stable ones. (author)

  4. Selective weighting of cutaneous receptor feedback and associated balance impairments following short duration space flight.

    Science.gov (United States)

    Strzalkowski, Nicholas D J; Lowrey, Catherine R; Perry, Stephen D; Williams, David R; Wood, Scott J; Bent, Leah R

    2015-04-10

    The present study investigated the perception of low frequency (3 Hz) vibration on the foot sole and its relationship to standing balance following short duration space flight in nine astronauts. Both 3 Hz vibration perception threshold (VPT) and standing balance measures increased on landing day compared to pre-flight. Contrary to our hypothesis, a positive linear relationship between these measures was not observed; however astronauts with the most sensitive skin (lowest 3 Hz VPT) were found to have the largest sway on landing day. While the change in foot sole sensitivity does not appear to directly relate to standing balance control, an exploratory strategy may be employed by astronauts whose threshold to pressure information is lower. Understanding sensory adaptations and balance control has implications to improve balance control strategies following space flight and in sensory impaired populations on earth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance

    International Nuclear Information System (INIS)

    André, Mats

    2015-01-01

    This is a review of the mass balance of planet Earth, intended also for scientists not usually working with space physics or geophysics. The discussion includes both outflow of ions and neutrals from the ionosphere and upper atmosphere, and the inflow of meteoroids and larger objects. The focus is on ions with energies less than tens of eV originating from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We have invented a technique to observe low-energy ions based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the ion density and the outward flux in large volumes in the magnetosphere. The global outflow is of the order of 10 26 ions s –1 . This is a significant fraction of the total number outflow of particles from Earth, and changes plasma processes in near-Earth space. We compare order of magnitude estimates of the mass outflow and inflow for planet Earth and find that they are similar, at around 1 kg s −1 (30 000 ton yr −1 ). We briefly discuss atmospheric and ionospheric outflow from other planets and the connection to evolution of extraterrestrial life. (invited comment)

  6. in vivo EFFECTS OF RARE-EARTH BASED NANOPARTICLES ON OXIDATIVE BALANCE IN RATS

    Directory of Open Access Journals (Sweden)

    V. K. Klochkov

    2016-12-01

    Full Text Available The purpose of the research was to find the influence of rare-earth based nanoparticles (CeO2, GdVO2: Eu3+ on the oxidative balance in rats. We analyzed biochemical markers of oxidative stress (lipid peroxidation level, nitric oxide metabolites, sulfhydryl groups content and enzyme activities (superoxide dismutase, catalase in tissues of rats. It has been found that administration of both types of the nanoparticles increased nitric oxide metabolites and products of lipid peroxidation in liver and spleen within 5 days. At injections of GdVO2: Eu3+ lipid peroxidation products, nitric oxide metabolites in serum at 5, 10 and 15 days of the experiment was also increased whereas the level of sulfhydryl groups decreased compared to the intact state and the control. In contrast, under the influence of nanoparticle CeO2 level diene conjugates were not significantly changed and the level of nitric oxide metabolites within 15 day even decreased. During this period, under the influence of both types of nanoparticles the activity of superoxide dismutase was increased, catalase activity was not changed. Oxidative stress coefficient showed the less pronounced CeO2 prooxidant effect (2.04 in comparison to GdVO2: Eu3+ (6.89. However, after-effect of both types of nanoparticles showed complete restoration of oxidative balance values.

  7. Measuring the initial earth pressure of granite using hydraulic fracturing test; Goseong and Yuseong areas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Won, Kyung Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    This report provides the initial earth pressure of granitic rocks obtained from Deep Core Drilling Program which is carried out as part of the assessment of deep geological environmental condition. These data are obtained by hydraulic fracturing test in three boreholes drilled up to 350{approx}500 m depth at the Yuseong and Goseong sites. These sites were selected based on the result of preliminary site evaluation study. The boreholes are NX-size (76 mm) and vertical. The procedure of hydraulic fracturing test is as follows: - Selecting the testing positions by preliminary investigation using BHTV logging. - Performing the hydraulic fracturing test at each selected position with depth.- Estimating the shut-in pressure by the bilinear pressure-decay-rate method. - Estimating the fracture reopening pressure from the pressure-time curves.- Estimating the horizontal principal stresses and the direction of principal stresses. 65 refs., 39 figs., 12 tabs. (Author)

  8. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    Science.gov (United States)

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  9. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    Science.gov (United States)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  10. Keeping Earth at work: Using thermodynamics to develop a holistic theory of the Earth system

    Science.gov (United States)

    Kleidon, Axel

    2010-05-01

    The Earth system is unique among terrestrial planets in that it is maintained in a state far from thermodynamic equilibrium. Practically all processes are irreversible in their nature, thereby producing entropy, and these would act to destroy this state of disequilibrium. In order to maintain disequilibrium in steady state, driving forces are required that perform the work to maintain the Earth system in a state far from equilibrium. To characterize the functioning of the Earth system and the interactions among its subsystems we need to consider all terms of the first and second law of thermodynamics. While the global energy balance is well established in climatology, the global entropy and work balances receive little, if any, attention. Here I will present first steps in developing a holistic theory of the Earth system including quantifications of the relevant terms that is based on the first and second laws of thermodynamics. This theory allows us to compare the significance of different processes in driving and maintaining disequilibrium, allows us to explore interactions by investigating the role of power transfer among processes, and specifically illustrate the significance of life in driving planetary disequilibrium. Furthermore, the global work balance demonstrates the significant impact of human activity and it provides an estimate for the availability of renewable sources of free energy within the Earth system. Hence, I conclude that a holistic thermodynamic theory of the Earth system is not just some academic exercise of marginal use, but essential for a profound understanding of the Earth system and its response to change.

  11. X-ray absorption experiments on rare earth and uranium compounds under high pressure

    International Nuclear Information System (INIS)

    Schmiester, G.

    1987-01-01

    After an introduction into the phenomenon of the mixed valency and the method of measuring the microstructures by X-ray absorption spectroscopy in the area of the L edges under pressure, the results of investigations at selected substitutes of the chalcogenides and puictides of the rare earths and the uranium were given. Thus, pressure-induced valency transitions in YbS and YbTe, instabilities in valency and structural phase transitions in EUS and SmTe as well as the change in the electron structure in USb under pressure were investigated in order to answer questions of solid state physics (e.g. semiconductor-metal transitions, correlation between valency and structural phase transitions). Hybridization effects in L III spectra of formally tetravalent Ca are analyzed at CeF 4 and CeO 2 (insulators) and the role of final state effects in the L III spectra are analyzed at EuP 2 P 2 and TmSe-TmTe (semiconductor systems). (RB) [de

  12. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    Science.gov (United States)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  13. Author Correction: Reliability and feasibility of gait initiation centre-of-pressure excursions using a Wii® Balance Board in older adults at risk of falling.

    Science.gov (United States)

    Lee, James; Webb, Graham; Shortland, Adam P; Edwards, Rebecca; Wilce, Charlotte; Jones, Gareth D

    2018-05-12

    In the original publication, the article title was incorrectly published as 'Reliability and feasibility of gait initiation centre-of-pressure excursions using a Wii® Balance Board in older adults at risk of failing'. The correct title should read as 'Reliability and feasibility of gait initiation centre-of-pressure excursions using a Wii® Balance Board in older adults at risk of falling'.

  14. Balanced Flow Meters without Moving Parts

    Science.gov (United States)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  15. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  16. Spatiotemporal Variability of Earth's Radiation Balance Components from Russian Radiometer IKOR-M

    Science.gov (United States)

    Cherviakov, M.

    2016-12-01

    The radiometer IKOR-M was created in National Research Saratov State University for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such information can be used in different models of long-term weather forecasts, in researches of climate change trends and in calculation of absorbed solar radiation values and albedo of the Earth-atmosphere system. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October 2009 to August 2014 and second - from August 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurement in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2. The scale relationship of the IKOR-M radiometers on "Meteor - M" No 1 and No 2 satellites found by comparing of the global distribution maps for monthly averaged albedo values. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and the absorbed solar radiation over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean. The reported study was funded by

  17. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet

    Science.gov (United States)

    Coroniti, F. V.; Pritchett, P. L.

    2014-03-01

    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  18. Integral linear momentum balance in combining flows for calculating the pressure drop coefficients

    International Nuclear Information System (INIS)

    Bollmann, A.

    1983-01-01

    Equations for calculating the loss coefficient in combining flows in tee functions are obtained by an integral linear momentum balance. It is a practice, when solving this type of problem, to neglect the pressure difference in the upstream location as well as the wall-fluid interaction in the lateral branch of the junction. In this work it is demonstrated the influence of the above parameters on the loss coefficient based on experimental values and by apropriate algebraic manipulation of the loss coefficient values published by previous investigators. (Author) [pt

  19. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    Science.gov (United States)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  20. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.; Bauman, Nathan N.; Guzman, Anthony D.; Arduino, P.; Keller, P. J.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  1. X-ray Raman scattering study of MgSiO₃ glass at high pressure: Implication for triclustered MgSiO₃ melt in Earth's mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik [SNU; (LLNL); (NSRRC); (Okayama); (UC); (CIW); (Wash State U); (Nagoya); (SBU)

    2015-02-09

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

  2. Water and sodium balance in space

    DEFF Research Database (Denmark)

    Drummer, C; Norsk, P; Heer, M

    2001-01-01

    , cumulative water balance and total body water content are stable during flight if hydration, nutritional energy supply, and protection of muscle mass are at an acceptable level. Recent water balance data disclose that the phenomenon of an absolute water loss during space flight, which has often been reported...... and an exaggerated extravasation very early in-flight. The mechanisms for the increased vascular permeability are not known. Evaporation, oral hydration, and urinary fluid excretion, the major components of water balance, are generally diminished during space flight compared with conditions on Earth. Nevertheless...... in the past, is not a consequence of the variable microG. The handling of sodium, however, is considerably affected by microG. Sodium-retaining endocrine systems, such as renin-aldosterone and catecholamines, are much more activated during microG than on Earth. Despite a comparable oral sodium supply, urinary...

  3. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    Science.gov (United States)

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  4. Balance equations for a relativistic plasma. Pt. 1

    International Nuclear Information System (INIS)

    Hebenstreit, H.

    1983-01-01

    Relativistic power moments of the four-momentum are decomposed according to a macroscopic four-velocity. The thus obtained quantities are identified as relativistic generalization of the nonrelativistic orthogonal moments, e.g. diffusion flow, heat flow, pressure, etc. From the relativistic Boltzmann equation we then derive balance equations for these quantities. Explicit expressions for the relativistic mass conservation, energy balance, pressure balance, heat flow balance are presented. The weak relativistic limit is discussed. The derivation of higher order balance equations is sketched. (orig.)

  5. Satellite Earth observation data to identify anthropogenic pressures in selected protected areas

    Science.gov (United States)

    Nagendra, Harini; Mairota, Paola; Marangi, Carmela; Lucas, Richard; Dimopoulos, Panayotis; Honrado, João Pradinho; Niphadkar, Madhura; Mücher, Caspar A.; Tomaselli, Valeria; Panitsa, Maria; Tarantino, Cristina; Manakos, Ioannis; Blonda, Palma

    2015-05-01

    Protected areas are experiencing increased levels of human pressure. To enable appropriate conservation action, it is critical to map and monitor changes in the type and extent of land cover/use and habitat classes, which can be related to human pressures over time. Satellite Earth observation (EO) data and techniques offer the opportunity to detect such changes. Yet association with field information and expert interpretation by ecologists is required to interpret, qualify and link these changes to human pressure. There is thus an urgent need to harmonize the technical background of experts in the field of EO data analysis with the terminology of ecologists, protected area management authorities and policy makers in order to provide meaningful, context-specific value-added EO products. This paper builds on the DPSIR framework, providing a terminology to relate the concepts of state, pressures, and drivers with the application of EO analysis. The type of pressure can be inferred through the detection of changes in state (i.e. changes in land cover and/or habitat type and/or condition). Four broad categories of changes in state are identified, i.e. land cover/habitat conversion, land cover/habitat modification, habitat fragmentation and changes in landscape connectivity, and changes in plant community structure. These categories of change in state can be mapped through EO analyses, with the goal of using expert judgement to relate changes in state to causal direct anthropogenic pressures. Drawing on expert knowledge, a set of protected areas located in diverse socio-ecological contexts and subject to a variety of pressures are analysed to (a) link the four categories of changes in state of land cover/habitats to the drivers (anthropogenic pressure), as relevant to specific target land cover and habitat classes; (b) identify (for pressure mapping) the most appropriate spatial and temporal EO data sources as well as interpretations from ecologists and field data

  6. MEMS Technology Sensors as a More Advantageous Technique for Measuring Foot Plantar Pressure and Balance in Humans

    Directory of Open Access Journals (Sweden)

    Clara Sanz Morère

    2016-01-01

    Full Text Available Locomotor activities are part and parcel of daily human life. During walking or running, feet are subjected to high plantar pressure, leading sometimes to limb problems, pain, or foot ulceration. A current objective in foot plantar pressure measurements is developing sensors that are small in size, lightweight, and energy efficient, while enabling high mobility, particularly for wearable applications. Moreover, improvements in spatial resolution, accuracy, and sensitivity are of interest. Sensors with improved sensing techniques can be applied to a variety of research problems: diagnosing limb problems, footwear design, or injury prevention. This paper reviews commercially available sensors used in foot plantar pressure measurements and proposes the utilization of pressure sensors based on the MEMS (microelectromechanical systems technique. Pressure sensors based on this technique have the capacity to measure pressure with high accuracy and linearity up to high pressure levels. Moreover, being small in size, they are highly suitable for this type of measurement. We present two MEMS sensor models and study their suitability for the intended purpose by performing several experiments. Preliminary results indicate that the sensors are indeed suitable for measuring foot plantar pressure. Importantly, by measuring pressure continuously, they can also be utilized for body balance measurements.

  7. Health benefits of Tai Chi exercise: improved balance and blood pressure in middle-aged women.

    Science.gov (United States)

    Thornton, Everard W; Sykes, Kevin S; Tang, Wai K

    2004-03-01

    Tai Chi has been widely practiced as a Chinese martial art that focuses on slow sequential movements, providing a smooth, continuous and low intensity activity. It has been promoted to improve balance and strength and to reduce falls in the elderly, especially those 'at risk'. The potential benefits in healthy younger age cohorts and for wider aspects of health have received less attention. The present study documented prospective changes in balance and vascular responses for a community sample of middle-aged women. Seventeen relatively sedentary but healthy normotensive women aged 33-55 years were recruited into a three times per week, 12-week Tai Chi exercise programme. A further 17 sedentary subjects matched for age and body size were recruited as a control group. Dynamic balance measured by the Functional Reach Test was significantly improved following Tai Chi, with significant decreases in both mean systolic (9.71 mmHg) and diastolic (7.53 mmHg) blood pressure. The data confirm that Tai Chi exercise can be a good choice of exercise for middle-aged adults, with potential benefits for ageing as well as the aged.

  8. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  9. Method for achieving hydraulic balance in typical Chinese building heating systems by managing differential pressure and flow

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric

    2017-01-01

    to a lack of pressure and flow control. This study investigated using pre-set radiator valves combined with differential pressure (DP) controllers to achieve hydraulic balance in building distribution systems, and consequently save energy and reduce the emissions. We considered a multi-storey building......Hydraulic unbalance is a common problem in Chinese district heating (DH) systems. Hydraulic unbalance has resulted in poor flow distribution among heating branches and overheating of apartments. Studies show that nearly 30% of the total heat supply is being wasted in Chinese DH systems due...... modelled in the IDA-ICE software, along with a self-developed mathematical hydraulic model to simulate its heat performance and hydraulic performance with various control scenarios. In contrast to the situation with no pressure or flow control, this solution achieves the required flow distribution...

  10. Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: Application to the Earth's deep interior

    Science.gov (United States)

    Murakami, Motohiko; Asahara, Yuki; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei

    2009-05-01

    Seismic wave velocity profiles in the Earth provide one of the strongest constraints on structure, mineralogy and elastic properties of the Earth's deep interior. Accurate sound velocity data of deep Earth materials under relevant high-pressure and high-temperature conditions, therefore, are essential for interpretation of seismic data. Such information can be directly obtained from Brillouin scattering measurement. Here we describe an in situ Brillouin scattering system for measurements at high pressure and high temperature using a laser heated diamond anvil cell and synchrotron radiation for sample characterization. The system has been used with single-crystal and polycrystalline materials, and with glass and fluid phase. It provided high quality sound velocity and elastic data with X-ray diffraction data at high pressure and/or high temperature. Those combined techniques can potentially offer the essential information for resolving many remaining issues in mineral physics.

  11. Application of quantile functions for the analysis and comparison of gas pressure balance uncertainties

    Directory of Open Access Journals (Sweden)

    Ramnath Vishal

    2017-01-01

    Full Text Available Traditionally in the field of pressure metrology uncertainty quantification was performed with the use of the Guide to the Uncertainty in Measurement (GUM; however, with the introduction of the GUM Supplement 1 (GS1 the use of Monte Carlo simulations has become an accepted practice for uncertainty analysis in metrology for mathematical models in which the underlying assumptions of the GUM are not valid. Consequently the use of quantile functions was developed as a means to easily summarize and report on uncertainty numerical results that were based on Monte Carlo simulations. In this paper, we considered the case of a piston–cylinder operated pressure balance where the effective area is modelled in terms of a combination of explicit/implicit and linear/non-linear models, and how quantile functions may be applied to analyse results and compare uncertainties from a mixture of GUM and GS1 methodologies.

  12. Balancing Model Performance and Simplicity to Predict Postoperative Primary Care Blood Pressure Elevation.

    Science.gov (United States)

    Schonberger, Robert B; Dai, Feng; Brandt, Cynthia A; Burg, Matthew M

    2015-09-01

    Because of uncertainty regarding the reliability of perioperative blood pressures and traditional notions downplaying the role of anesthesiologists in longitudinal patient care, there is no consensus for anesthesiologists to recommend postoperative primary care blood pressure follow-up for patients presenting for surgery with an increased blood pressure. The decision of whom to refer should ideally be based on a predictive model that balances performance with ease-of-use. If an acceptable decision rule was developed, a new practice paradigm integrating the surgical encounter into broader public health efforts could be tested, with the goal of reducing long-term morbidity from hypertension among surgical patients. Using national data from US veterans receiving surgical care, we determined the prevalence of poorly controlled outpatient clinic blood pressures ≥140/90 mm Hg, based on the mean of up to 4 readings in the year after surgery. Four increasingly complex logistic regression models were assessed to predict this outcome. The first included the mean of 2 preoperative blood pressure readings; other models progressively added a broad array of demographic and clinical data. After internal validation, the C-statistics and the Net Reclassification Index between the simplest and most complex models were assessed. The performance characteristics of several simple blood pressure referral thresholds were then calculated. Among 215,621 patients, poorly controlled outpatient clinic blood pressure was present postoperatively in 25.7% (95% confidence interval [CI], 25.5%-25.9%) including 14.2% (95% CI, 13.9%-14.6%) of patients lacking a hypertension history. The most complex prediction model demonstrated statistically significant, but clinically marginal, improvement in discrimination over a model based on preoperative blood pressure alone (C-statistic, 0.736 [95% CI, 0.734-0.739] vs 0.721 [95% CI, 0.718-0.723]; P for difference 1 of 4 patients (95% CI, 25

  13. Watermelon extract reduces blood pressure but does not change sympathovagal balance in prehypertensive and hypertensive subjects.

    Science.gov (United States)

    Massa, Nayara Moreira Lacerda; Silva, Alexandre Sérgio; Toscano, Luciana Tavares; Silva, Joanna D'arc Gomes Rodrigues; Persuhn, Darlene Camati; Gonçalves, Maria Da Conceição Rodrigues

    2016-08-01

    Previous studies have shown that watermelon extract reduces blood pressure through vasodilation. However, those studies have not verified whether sympathetic nervous activity is influenced by watermelon extract. This study aimed to evaluate the effect of supplementation with watermelon extract for 6 weeks on blood pressure and sympathovagal balance of prehypertensive and hypertensive individuals. Forty volunteers participated in a randomized, double-blind, experimental and placebo-controlled study. They consumed 6 g of watermelon extract daily (n = 20; age 48.7 ± 1.9 years, 10 men) or a placebo (n = 20; age 47.4 ± 1.2 years, 11 men) for 6 weeks. Blood pressure and cardiac autonomic modulation were measured. Watermelon extract promoted a significant reduction in systolic (137.8 ± 3.9 to 126.0 ± 4.0 mmHg, p watermelon extract reduces systolic and diastolic blood pressure in prehypertensive and hypertensive individuals, but does not alter the cardiac autonomic modulation of these individuals.

  14. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population.

    Science.gov (United States)

    Ozheredov, V A; Chibisov, S M; Blagonravov, M L; Khodorovich, N A; Demurov, E A; Goryachev, V A; Kharlitskaya, E V; Eremina, I S; Meladze, Z A

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  15. A reconciled estimate of ice-sheet mass balance

    DEFF Research Database (Denmark)

    Shepherd, Andrew; Ivins, Erik R; A, Geruo

    2012-01-01

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agre...

  16. Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.

    2012-01-01

    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.

  17. Are we simplifying balance evaluation in adolescent idiopathic scoliosis?

    Science.gov (United States)

    Pasha, Saba; Baldwin, Keith

    2018-01-01

    Clinical evaluation of the postural balance in adolescent idiopathic scoliosis has been measured by sagittal vertical axis and frontal balance. The impact of the scoliotic deformity in three planes on balance has not been fully investigated. 47 right thoracic and left lumbar curves adolescent idiopathic scoliosis and 10 non-scoliotic controls were registered prospectively. 13 spinopelvic postural parameters were calculated from the 3-dimantional reconstructions of X-rays. 7 balance variables describing the position and sway of the center of pressure were recorded using a pressure mat. A regression analysis was used to predict sagittal vertical axis and frontal balance from the 7 balance variables. A canonical correlation analysis was performed between all the postural parameters and balance variables and the significant associations between the postural and balance variables were determined. sagittal vertical axis and frontal balance were not significantly associated with the position or sway of the center of pressure (p>0.05). Canonical correlation analysis showed significant associations between the postural variables in the 3 planes and center of pressure position (R 2 =0.81) and sway (R 2 =0.62), pbalance contributed to the postural balance in the cohort. The compensatory role of the pelvis and distal kyphosis in sagittal plane was underlined. Multidimensional analyses between the postural and balance variables showed the alignment of the thoracic, lumbar, and pelvis in the 3 planes, in addition to the global head-pelvic position impact on adolescent idiopathic scoliosis balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Stability of the high pressure phase Fe3S2 up to Earth's core pressures in the Fe-S-O and the Fe-S-Si systems

    Science.gov (United States)

    Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.

  19. Pressure plate analysis of toe-heel and medio-lateral hoof balance at the walk and trot in sound sport horses.

    Science.gov (United States)

    Oosterlinck, M; Hardeman, L C; van der Meij, B R; Veraa, S; van der Kolk, J H; Wijnberg, I D; Pille, F; Back, W

    2013-12-01

    Empirically, equine distal limb lameness is often linked to hoof imbalance. To objectively quantify dynamic toe-heel and medio-lateral hoof balance of the vertical ground reaction force in sound sport horses, seven Royal Dutch Sport Horses were led at the walk and trot over a dynamically calibrated pressure plate. Forelimb hoof prints were divided into a toe and heel region and a medial and lateral zone. Toe-heel and medio-lateral hoof balance of the vertical ground reaction force were calculated throughout the stance. Toe-heel balance was highly symmetrical between contralateral limbs at both gaits. At the walk, medio-lateral balance of both forelimbs presented higher loading in the lateral part of the hoof throughout the stance. However, at the trot, left medio-lateral balance presented higher loading of the medial part of the hoof at impact, whereas the right limb showed higher loading of the lateral part of the hoof in all horses, and both limbs presented increased lateral loading at the end of the stance. This study provides objective data for toe-heel and medio-lateral hoof balance in sound sport horses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Spin crossover and Mott—Hubbard transition under high pressure and high temperature in the low mantle of the Earth

    Science.gov (United States)

    Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.

    2015-11-01

    Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km insulator transition and compare them with the experimental seismic and geomagnetic field data.

  1. Russia - Nato. The military balance

    OpenAIRE

    Daugaard, Søren Bech; Jacobsen, Karen Vestergård; Aigro, Signe; Skarequist, Anne

    2010-01-01

    This project aims to explain how the military balancing of Russia against NATO can be explained from a neoclassical realist framework. The project consists in three analytical parts of respectively, 1: The military capabilities balance between NATO and Russia; 2: How the international system puts pressure on Russia; and 3: How the strategic culture of Russia can explain its balancing. This project aims to explain how the military balancing of Russia against NATO can be explained from a neo...

  2. Procedure for Balancing an Air Distribution System with Decentralised Fans

    DEFF Research Database (Denmark)

    Gunner, Amalie; Hultmark, Göran; Vorre, Anders

    2015-01-01

    flawed. This paper presents a new procedure for balancing of CAV systems in combination with decentralised fans. The new system was based on replacing the balancing dampers with decentralised fans. By replacing the balancing dampers with decentralised fans, airflows can be balanced by adjusting the speed...... of the fans. In conventional air distribution systems the fan provides the necessary pressure to overcome the resistance in the branch with the highest pressure resistance. This gives an unnecessary overpressure in the remaining branches that does not provide any useful purpose. In order to decrease the fan...... pressure requirements the fan was dimensioned for the branch with the least pressure resistance. The decentralised fans then provided sufficient pressure to overcome the exact resistance in the corresponding branch. The results show that by using decentralised fans in duct systems instead of dampers...

  3. Physical understanding of the tropical cyclone wind-pressure relationship.

    Science.gov (United States)

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  4. Electron Heat Flux in Pressure Balance Structures at Ulysses

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  5. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    Science.gov (United States)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  6. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  7. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  8. The Whole Earth Happens As You Do. The Balance of Lifekind.

    Science.gov (United States)

    Archbald, David; McInnis, Noel

    This booklet presents a unified perspective of natural and human systems. The problems of contemporary civilization are analyzed in terms of the interrelationships among energy, food, evolution, population, community, interactions, and balance. The authors' philosophy emphasizes that all life depends on the balance between natural systems and…

  9. The high-pressure phase diagram of Fe(0.94)O - A possible constituent of the earth's core

    Science.gov (United States)

    Knittle, Elise; Jeanloz, Raymond

    1991-01-01

    Electrical resistivity measurements to pressures of 83 GPa and temperatures ranging from 300 K to 4300 K confirm the presence of both crystalline and liquid metallic phases of FeO at pressures above 60-70 GPa and temperatures above 1000 K. By experimentally determinig the melting temperature of FeO to 100 GPa and of a model-core composition at 83 GPa, it is found that the solid-melt equilibria can be described by complete solid solution across the Fe-FeO system at pressures above 70 GPa. The results indicate that oxygen is a viable and likely candidate for the major light alloying element of the earth's liquid outer core. The data suggest that the temperature at the core-mantle boundary is close to 4800 K and that heat lost out of the core accounts for more than 20 percent of the heat flux observed at the surface.

  10. Reassessing the effect of cloud type on Earth's energy balance

    Science.gov (United States)

    Hang, A.; L'Ecuyer, T.

    2017-12-01

    Cloud feedbacks depend critically on the characteristics of the clouds that change, their location and their environment. As a result, accurately predicting the impact of clouds on future climate requires a better understanding of individual cloud types and their spatial and temporal variability. This work revisits the problem of documenting the effects of distinct cloud regimes on Earth's radiation budget distinguishing cloud types according to their signatures in spaceborne active observations. Using CloudSat's multi-sensor radiative fluxes product that leverages high-resolution vertical cloud information from CloudSat, CALIPSO, and MODIS observations to provide the most accurate estimates of vertically-resolved radiative fluxes available to date, we estimate the global annual mean net cloud radiative effect at the top of the atmosphere to be -17.1 W m-2 (-44.2 W m-2 in the shortwave and 27.1 W m-2 in the longwave), slightly weaker than previous estimates from passive sensor observations. Multi-layered cloud systems, that are often misclassified using passive techniques but are ubiquitous in both hemispheres, contribute about -6.2 W m-2 of the net cooling effect, particularly at ITCZ and higher latitudes. Another unique aspect of this work is the ability of CloudSat and CALIPSO to detect cloud boundary information providing an improved capability to accurately discern the impact of cloud-type variations on surface radiation balance, a critical factor in modulating the disposition of excess energy in the climate system. The global annual net cloud radiative effect at the surface is estimated to be -24.8 W m-2 (-51.1 W m-2 in the shortwave and 26.3 W m-2 in the longwave), dominated by shortwave heating in multi-layered and stratocumulus clouds. Corresponding estimates of the effects of clouds on atmospheric heating suggest that clouds redistribute heat from poles to equator enhancing the general circulation.

  11. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2017-08-01

    Full Text Available The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by taking a constant value for areas with thick perennial snow cover. This is an important reason why the surface mass balance (SMB of the Greenland ice sheet (GrIS is poorly resolved in the model. The purpose of this study is to improve the SMB forcing of the GrIS by evaluating different parameter settings within a snow albedo scheme. By allowing ice-sheet albedo to vary as a function of wet and dry conditions, the spatial distribution of albedo and melt rate improves. Nevertheless, the spatial distribution of SMB in EC-Earth is not significantly improved. As a reason for this, we identify omissions in the current snow albedo scheme, such as separate treatment of snow and ice and the effect of refreezing. The resulting SMB is downscaled from the lower-resolution global climate model topography to the higher-resolution ice-sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice-sheet model simulations. From these ice-sheet simulations we conclude that an albedo scheme with a short response time of decaying albedo during wet conditions performs best with respect to long-term simulated ice-sheet volume. This results in an optimized albedo parameterization that can be used in future EC-Earth simulations with an interactive ice-sheet component.

  12. The Greatest Show on Earth

    Indian Academy of Sciences (India)

    Darwin and Alfred Russel Wallace: life on earth had evolved ... over long epochs, the pace of change was infinitesimal. ... Thanks to the work of the Japanese theoreti- cian Motoo ... pleasure-minus-expenditure balance is posi- tive. This way of ...

  13. High pressure studies of magnetic, electronic, and local structure properties in the rare-earth orthoferrites RFeO3 (R = Nd, Lu)

    International Nuclear Information System (INIS)

    Gavriliuk, A.G.; Stepanov, G.N.; Lyubutin, I.S.; Stepin, A.S.; Trojan, I.A.; Sidorov, V.A.

    2000-01-01

    The high pressure modification of the electronic structure, magnetic properties, and local crystal structure have been studied in the rare-earth RFeO 3 (R=Nd, Lu) orthoferrites in both pure single crystals and polycrystalline samples doped with Sn. The pressure dependences of the unit cell parameters, Neel temperatures, supertransferred hyperfine magnetic fields at tin nuclei H Sn , and the optical absorption edge have been obtained. The relations of the obtained values with the geometry of exchange interactions were analyzed

  14. Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)

    Science.gov (United States)

    Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven

    2002-01-01

    Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that

  15. EDITORIAL: The Earth radiation balance as driver of the global hydrological cycle

    Science.gov (United States)

    Wild, Martin; Liepert, Beate

    2010-06-01

    Variations in the intensity of the global hydrological cycle can have far-reaching effects on living conditions on our planet. While climate change discussions often revolve around possible consequences of future temperature changes, the adaptation to changes in the hydrological cycle may pose a bigger challenge to societies and ecosystems. Floods and droughts are already today amongst the most damaging natural hazards, with floods being globally the most significant disaster type in terms of loss of human life (Jonkman 2005). From an economic perspective, changes in the hydrological cycle can impose great pressures and damages on a variety of industrial sectors, such as water management, urban planning, agricultural production and tourism. Despite their obvious environmental and societal importance, our understanding of the causes and magnitude of the variations of the hydrological cycle is still unsatisfactory (e.g., Ramanathan et al 2001, Ohmura and Wild 2002, Allen and Ingram 2002, Allan 2007, Wild et al 2008, Liepert and Previdi 2009). The link between radiation balance and hydrological cycle Globally, precipitation can be approximated by surface evaporation, since the variability of the atmospheric moisture storage is negligible. This is the case because the fluxes are an order of magnitude larger than the atmospheric storage (423 x 1012 m3 year-1 versus 13 x 1012 m3 according to Baumgartner and Reichel (1975)), the latter being determined by temperature (Clausius-Clapeyron). Hence the residence time of evaporated water in the atmosphere is not more than a few days, before it condenses and falls back to Earth in the form of precipitation. Any change in the globally averaged surface evaporation therefore implies an equivalent change in precipitation, and thus in the intensity of the global hydrological cycle. The process of evaporation requires energy, which it obtains from the surface radiation balance (also known as surface net radiation), composed of the

  16. Sex, ageing and resting blood pressure: gaining insights from the integrated balance of neural and haemodynamic factors.

    Science.gov (United States)

    Hart, Emma C; Joyner, Michael J; Wallin, B Gunnar; Charkoudian, Nisha

    2012-05-01

    Young women tend to have lower blood pressure, and less risk of hypertension, compared to young men. As people age, both blood pressure and the risk of hypertension increase in both sexes; this occurs most strikingly in women after menopause. However, the mechanisms for these influences of sex and age remain incompletely understood. In this review we are specifically interested in the interaction between neural (sympathetic nerve activity; SNA) and haemodynamic factors (cardiac output, blood pressure and vascular resistance) and how these change with sex and age. While peripheral vascular SNA can vary 7- to 10-fold among normotensive young men and women, it is reproducible in a given individual. Surprisingly, higher levels of SNA are not associated with higher blood pressures in these groups. In young men, high SNA is associated with higher total peripheral vascular resistance (TPR), and appears to be balanced by lower cardiac output and less peripheral vascular responsiveness to adrenergic stimulation. Young women do not exhibit the SNA-TPR relationship. Recent evidence suggests that β-adrenergic vasodilatation offsets the vasoconstrictor effects of α-adrenergic vasoconstriction in young women, which may contribute to the generally lower blood pressures in this group. Sympathetic nerve activity increases with age, and in groups over 40, levels of SNA are more tightly linked to levels of blood pressure. The potentially protective β-adrenergic effect seen in young women appears to be lost after menopause and probably contributes to the increased blood pressure and increased risk of hypertension seen in older women.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Earth system model; Greenland; Antarctica; ice sheet; climate dynamics; surface mass balance. Abstract. Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and ...

  18. Balancing Osmotic Pressure of Electrolytes for Nanoporous Membrane Vanadium Redox Flow Battery with a Draw Solute.

    Science.gov (United States)

    Yan, Ligen; Li, Dan; Li, Shuaiqiang; Xu, Zhi; Dong, Junhang; Jing, Wenheng; Xing, Weihong

    2016-12-28

    Vanadium redox flow batteries with nanoporous membranes (VRFBNM) have been demonstrated to be good energy storage devices. Yet the capacity decay due to permeation of vanadium and water makes their commercialization very difficult. Inspired by the forward osmosis (FO) mechanism, the VRFBNM battery capacity decrease was alleviated by adding a soluble draw solute (e.g., 2-methylimidazole) into the catholyte, which can counterbalance the osmotic pressure between the positive and negative half-cell. No change of the electrolyte volume has been observed after VRFBNM being operated for 55 h, revealing that the permeation of water and vanadium ions was effectively limited. Consequently, the Coulombic efficiency (CE) of nanoporous TiO 2 vanadium redox flow battery (VRFB) was enhanced from 93.5% to 95.3%, meanwhile, its capacity decay was significantly suppressed from 60.7% to 27.5% upon the addition of soluble draw solute. Moreover, the energy capacity of the VRFBNM was noticeably improved from 297.0 to 406.4 mAh remarkably. These results indicate balancing the osmotic pressure via the addition of draw solute can restrict pressure-dependent vanadium permeation and it can be established as a promising method for up-scaling VRFBNM application.

  19. Thermal History of Planetary Objects: From Asteroids to super-Earths, from plate-tectonics to life (Runcorn-Florensky Medal Lecture)

    Science.gov (United States)

    Spohn, Tilman

    2013-04-01

    Convection in the interiors of planetesimals (asteroids), planets, and satellites is driving the thermal and chemical evolution of these bodies including the generation of possible magnetic fields. The wide size range induces a wide of range of time scales from hundreds of thousands of years for small planetesimals to a few tens of Gigayears for massive super-Earths. Evolution calculations are often based on energy (and entropy) balances parameterizing the transport properties of the interior in suitable ways. These thereby allow incorporating (in parameterized forms) interesting physical processes that depend in one way or another on the transport properties of the interior. The interior will usually be chemically layered in mantles and cores and include ice layers if icy satellites are considered. In addition to magnetic field generation calculated via energy balances of the core and using semi-empirical dynamo strength relations, processes that can be considered include sintering and compaction for small bodies and mantle (or ice) melting, differentiation and even continental growth for full-scaled terrestrial planets. The rheology of the interior is considered temperature and pressure dependent and the concentration of volatiles can be important. For super-Earths, probably the most critical consideration is how the mantle rheology would vary with pressure and thus with depth. It is possible that the increasing pressure will frustrate deep mantle convection thereby reducing the vigor of mantle convection. Possibly, the generation of a magnetic field in a putative iron-rich core will be impossible, if super-Earths at all have earth-like cores. On a much smaller scale, the decay of short-lived radioactives suffices to heat and melt planetesimals, the melting being helped by the low thermal conductivity of the initially porous body. This allows planets to form from pre-differentiated planetesimals thus helping to differentiate and form cores rapidly. On active

  20. Medical Devices Assess, Treat Balance Disorders

    Science.gov (United States)

    2009-01-01

    You may have heard the phrase as difficult as walking and chewing gum as a joking way of referring to something that is not difficult at all. Just walking, however, is not all that simple physiologically speaking. Even standing upright is an undertaking requiring the complex cooperation of multiple motor and sensory systems including vision, the inner ear, somatosensation (sensation from the skin), and proprioception (the sense of the body s parts in relation to each other). The compromised performance of any of these elements can lead to a balance disorder, which in some form affects nearly half of Americans at least once in their lifetimes, from the elderly, to those with neurological or vestibular (inner ear) dysfunction, to athletes with musculoskeletal injuries, to astronauts returning from space. Readjusting to Earth s gravity has a significant impact on an astronaut s ability to balance, a result of the brain switching to a different "model" for interpreting sensory input in normal gravity versus weightlessness. While acclimating, astronauts can experience headaches, motion sickness, and problems with perception. To help ease the transition and study the effects of weightlessness on the body, NASA has conducted many investigations into post-flight balance control, realizing this research can help treat patients with balance disorders on Earth as well. In the 1960s, the NASA-sponsored Man Vehicle Laboratory at the Massachusetts Institute of Technology (MIT) studied the effects of prolonged space flight on astronauts. The lab s work intrigued MIT doctoral candidate Lewis Nashner, who began conducting NASA-funded research on human movement and balance under the supervision of Dr. Larry Young in the MIT Department of Aeronautics and Astronautics. In 1982, Nashner s work resulted in a noninvasive clinical technique for assessing the cooperative systems that allow the body to balance, commonly referred to as computerized dynamic posturography (CDP). CDP employs a

  1. Behaviour of Rare Earth Elements during the Earth's core formation

    Science.gov (United States)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  2. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  3. Improved determination of dynamic balance using the centre of mass and centre of pressure inclination variables in a complete golf swing cycle.

    Science.gov (United States)

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2016-01-01

    Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)-centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM-COP inclination angle, COM-COP inclination angular velocity and normalised COM-COP inclination angular jerk were used. Professional golfer group revealed a smaller COM-COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P golf injuries.

  4. Economics as if the earth really mattered. Putting balance back on the balance sheet.

    Science.gov (United States)

    Sherman, D

    1991-09-01

    Some of the thinking in the economic realm which affects the relationship between the economy and the environment is discussed. The standard economic model inherently conflicts with the environment. Humans as consumers have their needs met by maximizing production and efficiency in a free market economy, where an invisible hand guides to profit. The question is raised as to what the environmental impact is for economic growth. The need for clean air, water, and preservation of other living things is not met. It is argued that pollution is a necessary byproduct of production. Economic progress as measured by gross national product (GNP) cannot account for the degradation of nature, e.g., the Alaskan oil spill actually increased GNP. Traditional economics also tell little about the maldistribution of wealth. It is pointed out that Americans spend $5 billion a year on special diets while 400 million around the world are undernourished. Limits to natural resources are also not accounted for by economic theorists, or the value of the seemingly free life-sustaining services performed by a forest in purifying air, preventing erosion and flooding, regulating climate, and supporting biological diversity. It is pointed out that restructuring must occur if the capacity of the Earth to support life is classed in economic terms as an externality. Steady state economic models consider the cycles of production and consumption in the context of the surrounding ecosystem of waste and raw materials and try to achieve a state of equilibrium. Despite the 1972 President's Commission on Population Growth and the American Future's statement that population growth is not necessary for a vital economy, the mythology exists that the economy will collapse, personal income will drop, and business will decline without an ever-growing population. A summary on positive outcomes of zero population growth is given. The economist Julian Simon promotes the view that there is no environmental

  5. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2003-01-01

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| ∼ 9 R E ) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J φ ∼ 10 nA/m 2 ) and very high plasma β (β ∼ 40) between 7 and 10 R E . The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J parallel max ∼ 3 (micro)A/m 2 ) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Izrar Ahmed. Articles written in Journal of Earth System Science. Volume 117 Issue 1 February 2008 pp 69-78. Implications of Kali–Hindon inter-stream aquifer water balance for groundwater management in western Uttar Pradesh · Rashid Umar M Muqtada A Khan Izrar ...

  7. Energy balance and stability

    International Nuclear Information System (INIS)

    Hammer, R.

    1982-01-01

    The energy balance of the outer atmospheres of solarlike stars is discussed. The energy balance of open coronal regions is considered, discussing the construction and characteristics of models of such regions in some detail. In particular, the temperature as a function of height is considered, as are the damping length dependence of the global energy balance in the region between the base of the transition region and the critical point, and the effects of changing the amount of coronal heating, the stellar mass, and the stellar radius. Models of coronal loops are more briefly discussed. The chromosphere is then included in the discussion of the energy balance, and the connection between global energy balance and global thermal stability is addressed. The observed positive correlations between the chromospheric and coronal energy losses and the pressure of the transition region is qualitatively explained

  8. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment.

    Science.gov (United States)

    Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2015-08-27

    Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Ethical Committee of the Erasme Hospital (CCB B406201215142

  9. Volatile accretion history of the Earth.

    Science.gov (United States)

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.

  10. Measuring center of pressure signals to quantify human balance using multivariate multiscale entropy by designing a force platform.

    Science.gov (United States)

    Huang, Cheng-Wei; Sue, Pei-Der; Abbod, Maysam F; Jiang, Bernard C; Shieh, Jiann-Shing

    2013-08-08

    To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.

  11. Measuring Center of Pressure Signals to Quantify Human Balance Using Multivariate Multiscale Entropy by Designing a Force Platform

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Huang

    2013-08-01

    Full Text Available To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP, known as center of pressure and complexity monitoring system (CPCMS, has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD and enhanced multivariate multiscale entropy (MMSE analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test and 60% to 70% (eyes closed test with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test and 65% to 75% (closed eyes test. The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.

  12. Blood pressure change does not associate with Center of Pressure movement after postural transition in geriatric outpatients

    NARCIS (Netherlands)

    Timmermans, Sjoerd T.; Reijnierse, Esmee M.; Pasma, J.H.; Trappenburg, Marijke C.; Blauw, Gerard J.; Maier, Andrea B.; Meskers, Carel G M

    2018-01-01

    Background: Orthostatic hypotension (OH), a blood pressure drop after postural change, is associated with impaired standing balance and falls in older adults. This study aimed to assess the association between blood pressure (BP) and a measure of quality of standing balance, i.e. Center of

  13. Intercomparison of Primary Manometers in the Range 30 kPa to 110 kPa: Pressure Balance at the LNE and Mercury Manometer at the VNIIFTRI

    Science.gov (United States)

    Astrov, D. N.; Guillemot, J.; Legras, J. C.; Zakharov, A. A.

    1994-01-01

    An intercomparison between the primary pressure balance of the LNE and a mercury manometer developed at the All-Russian Research Institute for Physical, Technical and Radio-Technical Measurements (VNIIFTRI) for purposes of temperature measurement was undertaken in 1990. A short description of the two standards is given. The transfer standard was a pressure balance equipped with a piston-cylinder assembly that has the same characteristics as the standard of the Laboratoire National d'Essais (LNE). The results obtained from 30 kPa to 110 kPa showed a systematic relative difference of 12 parts in 106 between the two standards. This difference is significant, as the combined relative uncertainty at 1 σ level is estimated to be 4,2 parts in 106. These results are analysed in this paper.

  14. Estudio experimental del empuje sobre estructuras de contención en suelos reforzados con geomallas Experimental study of the lateral earth pressure on retaining structures in soils reinforced with geogrids

    Directory of Open Access Journals (Sweden)

    Lissette Ruiz-Tagle

    2011-12-01

    Full Text Available Este artículo presenta un estudio experimental de la variación de las tensiones de empuje sobre una pared que soporta un suelo reforzado con geomallas. Para ello se utilizó un equipo diseñado y construido especialmente para ejecutar ensayos de empuje bajo condiciones de deformación plana. Se describe el equipo de ensayo y los instrumentos de medición, así como el suelo y la preparación de las muestras de arena y la geomalla utilizada. En la primera etapa de la investigación se ensayan muestras sin reforzar y se comparan los resultados con aquellos provenientes de las teorías clásicas de empuje. Posteriormente se presentan los resultados de ensayos de empuje en suelo reforzado con una, dos, tres y cuatro geomallas. Se concluye que la incorporación de geomallas como refuerzo en el suelo disminuye el empuje ejercido por el suelo sobre la estructura de contención. Esta disminución del empuje es de aproximadamente un 25% cuando se usa una geomalla, un 50% con dos o tres geomallas y de un 75% con cuatro geomallas para los espaciamientos, sobrecargas e incremento de desplazamientos usados. Resultó posible identificar que la distribución de la tensión de empuje con la profundidad no sólo no sigue la variación triangular sino que se desarrollan arcos de tensiones en el suelo entre las geomallas.This article presents an experimental study on the variation with depth of the stresses due to lateral earth pressure on a wall retaining a soil reinforced with geogrids. To this end, an apparatus was designed and constructed especially tailored for performing lateral earth pressure tests under plain strain conditions. The experimental apparatus and the measurement instruments as well as the soil and the sample preparation and the geogrids used, are described. In a first stage of research, samples without reinforcing are tested and the results are compared with those from classic earth pressure theories. Subsequently, results from lateral earth

  15. Contributions to lateral balance control in ambulatory older adults.

    Science.gov (United States)

    Sparto, Patrick J; Newman, A B; Simonsick, E M; Caserotti, P; Strotmeyer, E S; Kritchevsky, S B; Yaffe, K; Rosano, C

    2018-06-01

    In older adults, impaired control of standing balance in the lateral direction is associated with the increased risk of falling. Assessing the factors that contribute to impaired standing balance control may identify areas to address to reduce falls risk. To investigate the contributions of physiological factors to standing lateral balance control. Two hundred twenty-two participants from the Pittsburgh site of the Health, Aging and Body Composition Study had lateral balance control assessed using a clinical sensory integration balance test (standing on level and foam surface with eyes open and closed) and a lateral center of pressure tracking test using visual feedback. The center of pressure was recorded from a force platform. Multiple linear regression models examined contributors of lateral control of balance performance, including concurrently measured tests of lower extremity sensation, knee extensor strength, executive function, and clinical balance tests. Models were adjusted for age, body mass index, and sex. Larger lateral sway during the sensory integration test performed on foam was associated with longer repeated chair stands time. During the lateral center of pressure tracking task, the error in tracking increased at higher frequencies; greater error was associated with worse executive function. The relationship between sway performance and physical and cognitive function differed between women and men. Contributors to control of lateral balance were task-dependent. Lateral standing performance on an unstable surface may be more dependent upon general lower extremity strength, whereas visual tracking performance may be more dependent upon cognitive factors. Lateral balance control in ambulatory older adults is associated with deficits in strength and executive function.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. T N Krishnamurti. Articles written in Journal of Earth System Science. Volume 115 Issue 2 April 2006 pp 185-201. Transitions in the surface energy balance during the life cycle of a monsoon season · T N Krishnamurti Mrinal K Biswas · More Details Abstract Fulltext PDF.

  17. Digitalis-like activity in human plasma: Relation to blood pressure and sodium balance

    Energy Technology Data Exchange (ETDEWEB)

    Goto, A.; Yamada, K.; Ishii, M.; Sugimoto, T. (Univ. of Tokyo (Japan))

    1990-10-01

    PURPOSE: On the assumption that renal tubular cells are more important as the target cells for a natriuretic factor than blood cells, we used a well-characterized cultured renal tubular cell line, Madin-Darby canine kidney (MDCK), cells to monitor the circulating digitalis-like factor in human plasma and examine its role in the regulation of blood pressure and sodium balance. SUBJECTS AND METHODS: We investigated the effects of plasma on binding of radioactive ouabain to monolayered MDCK cells in order to determine the level of a circulating digitalis-like factor. First, we measured specific 3H-ouabain binding to MDCK cells in the presence of plasma from 71 outpatients (34 normotensive subjects and 37 hypertensive patients) after incubation for 4 hours. Second, we measured specific 3H-ouabain binding after incubation of cells with plasma from 16 hospitalized subjects (eight normotensive subjects and eight hypertensive patients) receiving low and high sodium diets. RESULTS: In Study 1, ouabain binding was lower by 30% with plasma from hypertensive patients than with plasma from normotensive subjects (p less than 0.01). There was a significant negative correlation between individual subject's systolic or mean blood pressure and ouabain binding (r = -0.34, p less than 0.01 or r = -0.29, p less than 0.01). In Study 2, ouabain binding was also significantly reduced by 25% in the presence of plasma from hypertensive subjects as compared with plasma from normotensive subjects irrespective of sodium intake (p less than 0.01). A significant negative correlation was also found for all subjects between either systolic, diastolic, or mean blood pressure and ouabain binding (r = -0.58, p less than 0.01, r = -0.51, p less than 0.01, or r = -0.55, p less than 0.01, respectively).

  18. Lesson "Balance in Nature

    Science.gov (United States)

    Chapanova, V.

    2012-04-01

    Lesson "Balance in Nature" This simulation game-lesson (Balance in Nature) gives an opportunity for the students to show creativity, work independently, and to create models and ideas. It creates future-oriented thought connected to their experience, allowing them to propose solutions for global problems and personal responsibility for their activities. The class is divided in two teams. Each team chooses questions. 1. Question: Pollution in the environment. 2. Question: Care for nature and climate. The teams work on the chosen tasks. They make drafts, notes and formulate their solutions on small pieces of paper, explaining the impact on nature and society. They express their points of view using many different opinions. This generates alternative thoughts and results in creative solutions. With the new knowledge and positive behaviour defined, everybody realizes that they can do something positive towards nature and climate problems and the importance of individuals for solving global problems is evident. Our main goal is to recover the ecological balance, and everybody explains his or her own well-grounded opinions. In this work process the students obtain knowledge, skills and more responsible behaviour. This process, based on his or her own experience, dialogue and teamwork, helps the participant's self-development. Making the model "human↔ nature" expresses how human activities impact the natural Earth and how these impacts in turn affect society. Taking personal responsibility, we can reduce global warming and help the Earth. By helping nature we help ourselves. Teacher: Veselina Boycheva-Chapanova " Saint Patriarch Evtimii" Scholl Str. "Ivan Vazov"-19 Plovdiv Bulgaria

  19. Electron Pitch-Angle Distribution in Pressure Balance Structures Measured by Ulysses/SWOOPS

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Six, N. Frank (Technical Monitor)

    2002-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. From previous studies, PBSs are believed to be remnants of coronal plumes. Yamauchi et al [2002] investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. They found that PBSs contain structures like current sheets or plasmoids, and suggested that PBSs are associated with network activity such as magnetic reconnection in the photosphere at the base of polar plumes. We have investigated energetic electron data from Ulysses/SWOOPS to see whether bi-directional electron flow exists and we have found evidence supporting the earlier conclusions. We find that 45 ot of 53 PBSs show local bi-directional or isotopic electron flux or flux associated with current-sheet structure. Only five events show the pitch-angle distribution expected for Alfvenic fluctuations. We conclude that PBSs do contain magnetic structures such as current sheets or plasmoids that are expected as a result of network activity at the base of polar plumes.

  20. Solar radiation pressure application for orbital motion stabilization near the Sun-Earth collinear libration point

    Science.gov (United States)

    Polyakhova, Elena; Shmyrov, Alexander; Shmyrov, Vasily

    2018-05-01

    Orbital maneuvering in a neighborhood of the collinear libration point L1 of Sun-Earth system has specific properties, primarily associated with the instability L1. For a long stay in this area of space the stabilization problem of orbital motion requires a solution. Numerical experiments have shown that for stabilization of motion it is requires very small control influence in comparison with the gravitational forces. On the other hand, the stabilization time is quite long - months, and possibly years. This makes it highly desirable to use solar pressure forces. In this paper we illustrate the solar sail possibilities for solving of stabilization problem in a neighborhood L1 with use of the model example.

  1. Gait and Balance Measures Can Identify Change From a Cerebrospinal Fluid Tap Test in Idiopathic Normal Pressure Hydrocephalus.

    Science.gov (United States)

    Gallagher, Ryan; Marquez, Jodie; Osmotherly, Peter

    2018-04-25

    To identify in patients with idiopathic normal pressure hydrocephalus (iNPH) undergoing a cerebrospinal fluid (CSF) tap test (TT) for consideration of a ventricular peritoneal (VP) shunt: (1) gait and balance measures, which identify symptom change; (2) differences present between pre- and post-CSF TT scores between patients classified as responders and nonresponder; (3) ability of patients with iNPH to accurately quantify change in their gait and balance symptoms from a CSF TT. Prospective observational study. Post-CSF TT assessment was completed 2-4 hours post. Tertiary referral neurological and neurosurgical hospital. Patients (N=74) with iNPH receiving a 30 mL CSF TT for consideration of a VP shunt. Patients underwent a battery of gait and balance measures pre- and post-CSF TT and indicated their perceived change on a global rating of change (GRC). Patients deemed to improve and offered VP shunt insertion by a neurologist or neurosurgeon were labeled responders. Performance oriented mobility assessment (Tinetti), Berg Balance Scale (BBS), timed Up and Go (TUG), 10-meter walk test (10MWT), GRC. Forty patients were classified responders, 34 nonresponders. Significant differences were identified for responders: Tinetti (3.88 points), TUG (3.98 seconds), 10MWT (0.08 m/sec), and BBS (5.29 points). Significant differences were found for nonresponders for the Tinetti (0.91 points) and BBS (2.06 points). Change scores for responders and nonresponders were significantly different for all tests between responders and nonresponders. GRC scores for gait (+2 for responders, 0 for nonresponders) and balance (+2.5 for responders, 0 for nonresponders) were both significantly different. The Tinetti, BBS, and TUG can identify change in patients undergoing a CSF TT for iNPH. Patients appear to be able to accurately identify if change has occurred. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Teacher Resource Book for Population Pressure in Indonesia, Problems of Industrialization in Eurasia, Power Blocs in Eurasia. Man on the Earth Series.

    Science.gov (United States)

    Gunn, Angus

    This teacher's resource book is a guide to three intermediate texts about Eurasia entitled Population Pressure in Indonesia, Problems of Industrialization in Eurasia, and Power Blocs in Eurasia. The texts are part of the series, Man on the Earth, which probes broad-based issues confronting mankind. The resource book distinguishes 18 major concepts…

  3. The effect of a self-balancing through wall residual stress distribution on the extension of a through-wall crack in a pressure vessel

    International Nuclear Information System (INIS)

    Smith, E.

    1993-01-01

    Leak-before-break arguments for pressurized components involve a comparison of the critical size of crack that will grow unstably under accident loadings and the critical leakage crack size for normal operation loadings. The paper is concerned with the former crack size and particularly with regard to the effect of residual stresses on the critical unstable crack size. Results from an analysis of a simple simulation model are used to provide underpinning for the view, expressed by Green and Knowles at the 1992 American Society of Mechanical Engineers Pressure Vessel and Piping Conference, that self-balancing through-wall residual stresses have little overall effect on the extension of a through-wall crack in a pressure vessel

  4. Establishment of a force balanced piston gauge for very low gauge and absolute pressure measurements at NPL, India

    International Nuclear Information System (INIS)

    Vijayakumar, D Arun; Prakash, Om; Sharma, R K

    2012-01-01

    National Physical Laboratory, the National Metrology Institute (NMI) of India is maintaining Primary standards of pressure that cover several decades of pressure, starting from 3.0E-06 Pa to 1.0 GPa. Among which a recent addition is a Force Balanced Piston Gauge, the non-rotating piston type, having better resolution and zero stability compared to any other primary pressure standards commercially available in the range 1.0 Pa to 15.0 kPa (abs and gauge). The characterization of this FPG is done against Ultrasonic Interferometer Manometer (UIM), the National Primary pressure standard, working in the range 1.0 Pa to 130.0 kPa (abs and diff) and Air Piston Gauge (APG), a Transfer Pressure Standard, working in the range 6.5 kPa to 360 kPa (abs and gauge), in their overlapping pressure regions covering both absolute and gauge pressures. As NPL being one of the signatories to the CIPM MRA, the Calibration and Measurement Capabilities (CMC) of both the reference standards (UIM and APG), are Peer reviewed and notified in the Key Comparison Data Base (KCDB) of BIPM. The estimated mean effective area of the Piston Cylinder assembly of this FPG against UIM (980.457 mm 2 ) and APG (980.463 mm 2 ) are well within 4 ppm and 10 ppm agreement respectively, with the manufacturer's reported value (980.453 mm 2 ). The expanded uncertainty of this FPG, Q(0.012 Pa, 0.0025% of reading), evaluated against UIM as reference standard, is well within the reported value of the manufacturer, Q(0.008 Pa, 0.003% of reading) at k = 2. The results of the characterization along with experimental setup and measurement conditions (for gauge and absolute pressure measurements), uncertainty budget preparation and evaluation of measurement uncertainty are discussed in detail in this paper.

  5. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    Science.gov (United States)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with

  6. Plasma pressure and anisotropy inferred from the Tsyganenkomagnetic field model

    Directory of Open Access Journals (Sweden)

    F. Cao

    Full Text Available A numerical procedure has been developed to deduce the plasma pressure and anisotropy from the Tsyganenko magnetic field model. The Tsyganenko empirical field model, which is based on vast satellite field data, provides a realistic description of magnetic field configuration in the magnetosphere. When the force balance under the static condition is assumed, the electromagnetic J×B force from the Tsyganenko field model can be used to infer the plasma pressure and anisotropy distributions consistent with the field model. It is found that the J×B force obtained from the Tsyganenko field model is not curl-free. The curl-free part of the J×B force in an empirical field model can be balanced by the gradient of the isotropic pressure, while the nonzero curl of the J×B force can only be associated with the pressure anisotropy. The plasma pressure and anisotropy in the near-Earth plasma sheet are numerically calculated to obtain a static equilibrium consistent with the Tsyganenko field model both in the noon-midnight meridian and in the equatorial plane. The plasma pressure distribution deduced from the Tsyganenko 1989 field model is highly anisotropic and shows this feature early in the substorm growth phase. The pressure anisotropy parameter αP, defined as αP=1-PVertP, is typically ~0.3 at x ≈ -4.5RE and gradually decreases to a small negative value with an increasing tailward distance. The pressure anisotropy from the Tsyganenko 1989 model accounts for 50% of the cross-tail current at maximum and only in a highly localized region near xsim-10RE. In comparison, the plasma pressure anisotropy inferred from the Tsyganenko 1987 model is much smaller. We also find that the boundary

  7. High-pressure phase transitions of deep earth materials

    International Nuclear Information System (INIS)

    Hirose, Kei

    2009-01-01

    Recent developments in synchrotron XRD measurements combined with laser-heated diamond-anvil cell (LHDAC) techniques have enabled us to search for a novel phase transition at extremely high pressure and temperature. A phase transition from MgSiO 3 perovskite to post-perovskite was discovered through a drastic change in XRD patterns above 120 GPa and 2500 K, corresponding to the condition in the lowermost mantle (Murakami et al., 2004; Oganov and Ono, 2004). A pressure-induced phase transformation from ABO 3 -type perovskite to any denser structures was not known at that time. This new MgSiO 3 polymorph called post-perovskite has an orthorhombic symmetry (space group: Cmcm) with a sheet-stacking structure. The Mg site in post-perovskite is smaller than that in perovskite, which results in a volume reduction by 1.0-1.5% from perovskite structure. The electrical conductivity of post-perovskite is higher by three orders of magnitude than that of perovskite at similar pressure range (Ohta et al., 2008). This is likely due to a shorter Fe-Fe distance in post-perovskite structure, while conduction mechanism is yet to be further examined. Phase transition boundary between perovskite and post-perovskite has been determined in a wide temperature range up to 4400 K at 170 GPa (Tateno et al., 2008). Phase relations of Fe alloys have been also studied at core pressures (>135 GPa), although the generation of high temperature is more difficult at higher pressures. A new high-pressure B2 phase of B2 phase of FeS was recently discovered above 180 GPa (Sata et al., 2008). The Fe-Ni alloys have a wide pressure-temperature stability field of fcc phase at the core pressure range, depending on the Ni content (Kuwayama et al., 2008). (author)

  8. Innovation Balanced with Community Collaboration, ESIP

    Science.gov (United States)

    White, C. E.

    2016-12-01

    Representing the Federation of Earth Science Information Partners (ESIP), I'll speak to how the organization supports a diverse community of science, data and information technology practitioners to foster innovation balanced with community collaboration on the why and how. ESIP builds connections among organizations, sectors, disciplines, systems and data so participants can leverage their collective expertise and technical capacity to address common challenges. This work improves Earth science data management practices and makes Earth science data more discoverable, accessible and useful to researchers, policy makers and the public. Greater than ever is the desire for guidelines in software/code development, evaluation of technology and its artifacts, and community validation of products and practices. ESIP's mechanisms for evaluation and assessment range from informal to formal, with opportunities for all.

  9. Performance of balanced bellows safety relief valves

    International Nuclear Information System (INIS)

    Lai, Y.S.

    1992-01-01

    By the nature of its design, the set point and lift of a conventional spring loaded safety relief valve are sensitive to back pressure. One way to reduce the adverse effects of the back pressure on the safety relief valve function is to install a balanced bellows in a safety relief valve. The metallic bellows has a rather wide range of manufacturing tolerance which makes the design of the bellows safety relief valve very complicated. The state-of-the-art balanced bellows safety relief valve can only substantially minimize, but cannot totally eliminate the back pressure effects on its set point and relieving capacity. Set point change is a linear function of the back pressure to the set pressure ratio. Depending on the valve design, the set point correction factor can be either greater or smaller than unity. There exists an allowable back pressure and critical back pressure for each safety relief valve. When total back pressure exceeds the R a , the relieving capacity will be reduced mainly resulting from the valve lift being reduced by the back pressure and the capacity reduction factor should be applied in valve sizing. Once the R c is exceeded, the safety relief valve becomes unstable and loses its over pressure protection capability. The capacity reduction factor is a function of system overpressure, but their relationship is non-linear in nature. (orig.)

  10. Balance confidence is related to features of balance and gait in individuals with chronic stroke

    Science.gov (United States)

    Schinkel-Ivy, Alison; Wong, Jennifer S.; Mansfield, Avril

    2016-01-01

    Reduced balance confidence is associated with impairments in features of balance and gait in individuals with sub-acute stroke. However, an understanding of these relationships in individuals at the chronic stage of stroke recovery is lacking. This study aimed to quantify relationships between balance confidence and specific features of balance and gait in individuals with chronic stroke. Participants completed a balance confidence questionnaire and clinical balance assessment (quiet standing, walking, and reactive stepping) at 6 months post-discharge from inpatient stroke rehabilitation. Regression analyses were performed using balance confidence as a predictor variable and quiet standing, walking, and reactive stepping outcome measures as the dependent variables. Walking velocity was positively correlated with balance confidence, while medio-lateral centre of pressure excursion (quiet standing) and double support time, step width variability, and step time variability (walking) were negatively correlated with balance confidence. This study provides insight into the relationships between balance confidence and balance and gait measures in individuals with chronic stroke, suggesting that individuals with low balance confidence exhibited impaired control of quiet standing as well as walking characteristics associated with cautious gait strategies. Future work should identify the direction of these relationships to inform community-based stroke rehabilitation programs for individuals with chronic stroke, and determine the potential utility of incorporating interventions to improve balance confidence into these programs. PMID:27955809

  11. Modern rotor balancing - Emerging technologies

    Science.gov (United States)

    Zorzi, E. S.; Von Pragenau, G. L.

    1985-01-01

    Modern balancing methods for flexible and rigid rotors are explored. Rigid rotor balancing is performed at several hundred rpm, well below the first bending mode of the shaft. High speed balancing is necessary when the nominal rotational speed is higher than the first bending mode. Both methods introduce weights which will produce rotor responses at given speeds that will be exactly out of phase with the responses of an unbalanced rotor. Modal balancing seeks to add weights which will leave other rotor modes unaffected. Also, influence coefficients can be determined by trial and error addition of weights and recording of their effects on vibration at speeds of interest. The latter method is useful for balancing rotors at other than critical speeds and for performing unified balancing beginning with the first critical speed. Finally, low-speed flexible balancing permits low-speed tests and adjustments of rotor assemblies which will not be accessible when operating in their high-speed functional configuration. The method was developed for the high pressure liquid oxygen turbopumps for the Shuttle.

  12. Statistical study of phase relationships between magnetic and plasma thermal pressures in the near-earth magnetosphere using the THEMIS satellites

    Science.gov (United States)

    Nishi, K.; Kazuo, S.

    2017-12-01

    The auroral finger-like structures appear in the equatorward part of the auroral oval in the diffuse auroral region, and contribute to the auroral fragmentation into patches during substorm recovery phase. In our previous presentations, we reported the first conjugate observation of auroral finger-like structures using the THEMIS GBO cameras and the THEMIS satellites, which was located at a radial distance of 9 Re in the dawnside plasma sheet. In this conjugate event, we found anti-phase fluctuation of plasma pressure and magnetic pressure with a time scale of 5-20 min in the plasma sheet. This observational fact is consistent with the idea that the finger-like structures are caused by a pressure-driven instability in the balance of plasma and magnetic pressures in the magnetosphere. Then we also searched simultaneous observation events of auroral finger-like structures with the RBSP satellites which have an apogee of 5.8 Re in the inner magnetosphere. Contrary to the first result, the observed variation of plasma and magnetic pressures do not show systematic phase relationship. In order to investigate these phase relationships between plasma and magnetic pressures in the magnetosphere, we statistically analyzed these pressure data using the THEMIS-E satellite for one year in 2011. In the preliminary analysis of pressure variation spectra, we found that out of phase relationship between magnetic and plasma pressures occupied 40 % of the entire period of study. In the presentation, we will discuss these results in the context of relationships between the pressure fluctuations and the magnetospheric instabilities that can cause auroral finger-like structures.

  13. A Comparison between the Effects of Aerobic Dance Training on Mini-Trampoline and Hard Wooden Surface on Bone Resorption, Health-Related Physical Fitness, Balance, and Foot Plantar Pressure in Thai Working Women.

    Science.gov (United States)

    Sukkeaw, Wittawat; Kritpet, Thanomwong; Bunyaratavej, Narong

    2015-09-01

    To compare the effects of aerobic dance training on mini-trampoline and hard wooden surface on bone resorption, health-related physical fitness, balance, and foot plantar pressure in Thai working women. Sixty-three volunteered females aged 35-45 years old participated in the study and were divided into 3 groups: A) aerobic dance on mini-trampoline (21 females), B) aerobic dance on hard wooden surface (21 females), and C) control group (21 females). All subjects in the aerobic dance groups wore heart rate monitors during exercise. Aerobic dance worked out 3 times a week, 40 minutes a day for 12 weeks. The intensity was set at 60-80% of the maximum heart rate. The control group engaged in routine physical activity. The collected data were bone formation (N-terminal propeptine of procollagen type I: P1NP) bone resorption (Telopeptide cross linked: β-CrossLaps) health-related physical fitness, balance, and foot plantar pressure. The obtained data from pre- and post trainings were compared and analyzed by paired samples t-test and one way analysis of covariance. The significant difference was at 0.05 level. After the 12-week training, the biochemical bone markers of both mini-trampoline and hard wooden surface aerobic dance training subjects decreased in bone resorption (β-CrossLaps) but increased in boneformation (P1NP). Health-related physical fitness, balance, and foot plantar pressure were not only better when comparing to the pre-test result but also significantly different when comparing to the control group (p trampoline showed that leg muscular strength, balance and foot plantar pressure were significantly better than the aerobic dance on hard wooden surface (p trampoline and hard wooden surface had positive effects on biochemical bone markers. However, the aerobic dance on mini-trampoline had more leg muscular strength and balance including less foot plantar pressure. It is considered to be an appropriate exercise programs in working women.

  14. Stress State of Elastic Thick-Walled Ring With Self-Balanced Pressures Distributed on Its Internal and External Borders

    Directory of Open Access Journals (Sweden)

    Kravchuk Aleksandr Stepanovich

    2015-10-01

    Full Text Available For the first time with the help of the theory of analytic functions and Kolosov-Muskhelishvili formulas the problem of the two-dimensional theory of elasticity for a thickwalled ring with the uneven pressures, acting on its borders, was solved. The pressure on the inner and outer boundaries is represented by Fourier series. The authors represent the two complex functions which solve boundary problem in the form of Laurent series. The logarithmic terms in these series are absent because the boundary problem has the self-balancing loads on each boundary of ring. The coefficients in the Laurent series are calculated by the boundary conditions. Firstly, the equations were obtained in the general form. But the hypothesis about even distributions of pressures at borders of ring was used for constructing an example. It leads to the fact that all coefficients of analytic functions represented in Laurent series have to be only real. As a solving example, the representation of pressures in equivalent hypotrochoids was used. The application of the computer algebra system Mathematica greatly simplifies the calculation of the distribution of stresses and displacements in ring. It does not require manual formal separation of real and imaginary parts in terms of Kolosov-Muskhelishvili to display the distribution of the physical parameters. It separates them only for calculated numbers with the help of built-in functions.

  15. Pressure-Driven Poiseuille Flow: A Major Component of the Torque-Balance Governing Pacific Plate Motion

    Science.gov (United States)

    Stotz, I. L.; Iaffaldano, G.; Davies, D. R.

    2018-01-01

    The Pacific Plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians-Japan, Marianas-Izu-Bonin, and Tonga-Kermadec trenches. This implies that viscous flow within the sub-Pacific asthenosphere is mainly generated by overlying plate motion (i.e., Couette flow) and that the associated shear stresses at the lithosphere's base are resisting such motion. Recent studies on glacial isostatic adjustment and lithosphere dynamics provide tighter constraints on the viscosity and thickness of Earth's asthenosphere and, therefore, on the amount of shear stress that asthenosphere and lithosphere mutually exchange, by virtue of Newton's third law of motion. In light of these constraints, the notion that subduction is the main driver of present-day Pacific Plate motion becomes somewhat unviable, as the pulling force that would be required by slabs exceeds the maximum available from their negative buoyancy. Here we use coupled global models of mantle and lithosphere dynamics to show that the sub-Pacific asthenosphere features a significant component of pressure-driven (i.e., Poiseuille) flow and that this has driven at least 50% of the Pacific Plate motion since, at least, 15 Ma. A corollary of our models is that a sublithospheric pressure difference as high as ±50 MPa is required across the Pacific domain.

  16. The Rare Earth Magnet Industry and Rare Earth Price in China

    Directory of Open Access Journals (Sweden)

    Ding Kaihong

    2014-07-01

    Full Text Available In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  17. The Rare Earth Magnet Industry and Rare Earth Price in China

    Science.gov (United States)

    Ding, Kaihong

    2014-07-01

    In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  18. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  19. Age-Related Differences in Quality of Standing Balance Using a Composite Score

    NARCIS (Netherlands)

    Pasma, J.H.; Bijlsma, A.Y.; van der Bij, M.D.W.; Arendzen, J.H.; Meskers, C.G.M.; Maier, A.B.

    2014-01-01

    Background: Age-related differences in standing balance are not detected by testing the ability to maintain balance. Quality of standing balance might be more sensitive to detect age-related differences. Objective: To study age-related differences in quality of standing balance, center of pressure

  20. Alongshore Momentum Balance Over Shoreface-Connected Ridges, Fire Island, NY

    Science.gov (United States)

    Ofsthun, C.; Wu, X.; Voulgaris, G.; Warner, J. C.

    2016-12-01

    he momentum balance of alongshore flows over straight, uniform shelfs has been analyzed extensively over the last few decades. More recently, the effect of coastline curvature and how this might alter the relative significance of the momentum terms has received additional attention. In this contribution, the alongshore momentum over shelves with straight coastline, but non-uniform bathymetry is examined. Hydrodynamic and hydrographic data collected by the US Geological Survey (Fire Island Coastal Change project) on the inner shelf of Fire Island, NY over a region of shore-face connected ridges (SFCRs) are used to describe wind-induced circulation and the terms of the alongshore momentum balance equation. Analysis of the data revealed a predominantly alongshore circulation, under westward wind forcing, with localized offshore (onshore) current veering over the ridge crests (troughs). Momentum balance analysis hinted that local acceleration, advective acceleration, and bottom stress are balanced by wind stress and regional (>100 km) pressure gradient force. In addition, a numerical model using an idealized SFCR bathymetry, forced by our observed winds, was employed to compare the momentum balance relationships identified by the data and those under steady-state conditions published earlier (Warner et al., 2014). A synthesis of the numerical and experimental data revealed that the true pressure gradient force results from the sum of local pressure gradient force, which maintains a Bernoulli-like relationship with alongshore advective acceleration, and regional pressure gradient force, which maintains a strong, negative relationship with wind stress. The differences between steady-state and realistic conditions is mainly on the contributions of regional scale pressure gradients that develop under realistic conditions, and the reduced contribution of local scale pressure gradients which develop best under steady-state conditions. Our analysis indicates that current

  1. Earth in the balance. Ecology and the human spirit; Urgence Planete Terre. L'esprit humain face a la crise ecologique

    Energy Technology Data Exchange (ETDEWEB)

    Al Gore

    2007-07-01

    This book is the translation of the original American edition 'earth in the balance'. When Earth in the Balance first came out, it caused quite a stir and for good reason. It convincingly makes the case that a crisis of epidemic proportions is nearly upon us and that if the world does not get its act together soon and agree to some kind of 'Global Marshall Plan' to protect the environment, we're all up a polluted creek without a paddle. Myriad plagues are upon us, but the worst include the loss of biodiversity, the depletion of the ozone layer, the slash-and-burn destruction of rain forests, and the onset of global warming. None of this is new, of course, nor was it new in 1992. But most environmentalists will still get a giddy feeling reading such a call to action as written by a prominent politician. The book is arranged into three sections: the first describes the plagues; the second looks at how we got ourselves into this mess; and the final chapters present ways out. Gore gets his points across in a serviceable way, though he could have benefited from a firmer editor's hand; at times the analogies are arcane and the pacing is odd kind of like a Gore speech that climaxes at weird points and then sinks just as the audience is about to clap. Still, at the end you understand what's been said. Gore believes that if we apply some American ingenuity, the twin engines of democracy and capitalism can be rigged to help us stabilize world population growth, spread social justice, boost education levels, create environmentally appropriate technologies, and negotiate international agreements to bring us back from the brink. For example, a worldwide shift to clean, renewable energy sources would create huge economic opportunities for companies large and small to design, build, and maintain solar panels, wind turbines, fuel cells, and other eco friendly innovations.

  2. Structure and Stability of High-Pressure Dolomite with Implications for the Earth's Deep Carbon Cycle

    Science.gov (United States)

    Solomatova, N. V.; Asimow, P. D.

    2014-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth's deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A

  3. Sc, Y, La-Lu. Rare earth elements. Vol. A6b. Y, La, and the lanthanoids. Geochemistry: Hydrosphere, atmosphere. Cosmo- and geochemical cycles. Balance

    Energy Technology Data Exchange (ETDEWEB)

    Sarbas, B; Toepper, W

    1988-01-01

    The present volume 'Rare earth elements' A6b describes in its first part the origin, mode of occurrence, and behavior of Y and/or RE elements in the hydrosphere and atmosphere. Separately for marine and non-marine environments (surface, subsurface, mineral, and thermal waters), the behavior of RE (including Y) in the hydrosphere comprises especially the relationship between content/composition and the chemistry of water, and the processes acting during migration, removal, and precipitation are outlined; the influence of biological material is mentioned. Behavior of RE in the atmosphere involves mainly transport, regional differences, and temporal variations as well as removal by precipitation; the anthropogenic influence is only outlined. The second part of this volume treats, partly in a more summary manner, the cosmo- and geochemical cycles and the balance of Y and/or RE elements. The relationship between geodynamic position and type of magmatism, as well as the geochemical variations in the geospheres, especially mantle and crust of the earth, are described in greater detail. With 2 figs..

  4. Greenland ice sheet mass balance: a review

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Aschwanden, Andy; Bjørk, Anders A.

    2015-01-01

    Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance...

  5. Wii Balance Board: Reliability and Clinical Use in Assessment of Balance in Healthy Elderly Women.

    Science.gov (United States)

    Monteiro-Junior, Renato Sobral; Ferreira, Arthur Sá; Puell, Vivian Neiva; Lattari, Eduardo; Machado, Sérgio; Otero Vaghetti, César Augusto; da Silva, Elirez Bezerra

    2015-01-01

    Force plate is considered gold standard tool to assess body balance. However the Wii Balance Board (WBB) platform is a trustworthy equipment to assess stabilometric components in young people. Thus, we aim to examine the reliability of measures of center of pressure with WBB in healthy elderly women. Twenty one healthy and physically active women were enrolled in the study (age: 64 ± 7 years; body mass index: 29 ± 5 kg/m2. The WBB was used to assess the center of pressure measures in the individuals. Pressure was linearly applied to different points to test the platform precision. Three assessments were performed, with two of them being held on the same day at a 5- to 10-minute interval, and the third one was performed 48 h later. A linear regression analysis was used to find out linearity, while the intraclass correlation coefficient was used to assess reliability. The platform precision was adequate (R2 = 0.997, P = 0.01). Center of pressure measures showed an excellent reliability (all intraclass correlation coefficient values were > 0.90; p < 0.01). The WBB is a precise and reliable tool of body stability quantitative measure in healthy active elderly women and its use should be encouraged in clinical settings.

  6. Twelve weeks of BodyBalance® training improved balance and functional task performance in middle-aged and older adults

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2014-11-01

    Full Text Available Vaughan P Nicholson, Mark R McKean, Brendan J Burkett School of Health and Sport Sciences, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: The purpose of the study was to evaluate the effect of BodyBalance® training on balance, functional task performance, fear of falling, and health-related quality of life in adults aged over 55 years.Participants and methods: A total of 28 healthy, active adults aged 66±5 years completed the randomized controlled trial. Balance, functional task performance, fear of falling, and self-reported quality of life were assessed at baseline and after 12 weeks. Participants either undertook two sessions of BodyBalance per week for 12 weeks (n=15 or continued with their normal activities (n=13.Results: Significant group-by-time interactions were found for the timed up and go (P=0.038, 30-second chair stand (P=0.037, and mediolateral center-of-pressure range in narrow stance with eyes closed (P=0.017. There were no significant effects on fear of falling or self-reported quality of life.Conclusion: Twelve weeks of BodyBalance training is effective at improving certain balance and functional based tasks in healthy older adults. Keywords: postural control, yoga, tai chi, center of pressure, exercise

  7. An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing.

    Science.gov (United States)

    Chang, Jasper O; Levy, Susan S; Seay, Seth W; Goble, Daniel J

    2014-05-01

    Recent guidelines advocate sports medicine professionals to use balance tests to assess sensorimotor status in the management of concussions. The present study sought to determine whether a low-cost balance board could provide a valid, reliable, and objective means of performing this balance testing. Criterion validity testing relative to a gold standard and 7 day test-retest reliability. University biomechanics laboratory. Thirty healthy young adults. Balance ability was assessed on 2 days separated by 1 week using (1) a gold standard measure (ie, scientific grade force plate), (2) a low-cost Nintendo Wii Balance Board (WBB), and (3) the Balance Error Scoring System (BESS). Validity of the WBB center of pressure path length and BESS scores were determined relative to the force plate data. Test-retest reliability was established based on intraclass correlation coefficients. Composite scores for the WBB had excellent validity (r = 0.99) and test-retest reliability (R = 0.88). Both the validity (r = 0.10-0.52) and test-retest reliability (r = 0.61-0.78) were lower for the BESS. These findings demonstrate that a low-cost balance board can provide improved balance testing accuracy/reliability compared with the BESS. This approach provides a potentially more valid/reliable, yet affordable, means of assessing sports-related concussion compared with current methods.

  8. Isostructural crystal hydrates of rare-earth metal oxalates at high pressure. From strain anisotropy to dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Boris A.; Matvienko, Alexander A. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry; Novosibirsk State Univ. (Russian Federation); Gribov, Pavel A.; Boldyreva, Elena V. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry

    2017-07-01

    The crystal structures of a series of isostructural rare-earth metal oxalates, (REE){sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O (REE=Sm, Y) and a 1:1 YSm(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O solid solution, have been studied in situ by single-crystal X-ray diffraction and optical microscopy. The structures were followed from ambient pressure to 6 GPa in a DAC with paraffin as the hydrostatic fluid. Bulk compressibilities, anisotropic lattice strain on hydrostatic compression and the corresponding changes in the atomic coordinates were followed. Discontinuities/sharp changes in the slopes of the pressure dependences of volume and selected cell parameters have been observed for yttrium-containing salts at ∝3.5 GPa. This may be related to the re-distribution of water molecules within the crystal structure. Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O undergoes a partial dehydration at 1 GPa, forming monoclinic Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.6H{sub 2}O as single-crystalline inclusions in the original phase.

  9. Balancing the books - a statistical theory of prospective budgets in Earth System science

    Science.gov (United States)

    O'Kane, J. Philip

    An honest declaration of the error in a mass, momentum or energy balance, ɛ, simply raises the question of its acceptability: "At what value of ɛ is the attempted balance to be rejected?" Answering this question requires a reference quantity against which to compare ɛ. This quantity must be a mathematical function of all the data used in making the balance. To deliver this function, a theory grounded in a workable definition of acceptability is essential. A distinction must be drawn between a retrospective balance and a prospective budget in relation to any natural space-filling body. Balances look to the past; budgets look to the future. The theory is built on the application of classical sampling theory to the measurement and closure of a prospective budget. It satisfies R.A. Fisher's "vital requirement that the actual and physical conduct of experiments should govern the statistical procedure of their interpretation". It provides a test, which rejects, or fails to reject, the hypothesis that the closing error on the budget, when realised, was due to sampling error only. By increasing the number of measurements, the discrimination of the test can be improved, controlling both the precision and accuracy of the budget and its components. The cost-effective design of such measurement campaigns is discussed briefly. This analysis may also show when campaigns to close a budget on a particular space-filling body are not worth the effort for either scientific or economic reasons. Other approaches, such as those based on stochastic processes, lack this finality, because they fail to distinguish between different types of error in the mismatch between a set of realisations of the process and the measured data.

  10. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    Science.gov (United States)

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  11. Comparison of a laboratory grade force platform with a Nintendo Wii balance board in measurement of postural control in single-legged stance balance tasks

    NARCIS (Netherlands)

    Huurnink, A.; Fransz, D.P.; Kingma, I.; van Dieen, J.H.

    2013-01-01

    Training and testing of balance have potential applications in sports and medicine. Laboratory grade force plates (FP) are considered the gold standard for the measurement of balance performance. Measurements in these systems are based on the parameterization of center of pressure (CoP)

  12. Radiogenic heat production and the earth's heat balance. A source of arguments in geoscience

    International Nuclear Information System (INIS)

    Kuczera, B.

    2008-01-01

    The terrestrial heat flow into interstellar space amounts to approx. 32 TW on the basis of an average heat flow density of 63 mW per sq.m. of earth surface. The loss flow derives part of the energy from the residual heat of the nascent phase of the earth (approx. 40%) and the other part from the natural disintegration of longlived radionuclides, i.e. radiogenic heat production (roughly 60%). This concept met with broad consensus in the geosciences until the 1980s. In 1993, Pollack et al. concluded from the evaluation of recent measured data that heat loss via the oceanic crust of the earth was clearly higher, which raises the loss flow to a total of 44 TW. This is contradicted by Hoffmeister and Criss, who conclude from a modified geochemical model that the total heat loss of 31 TW is fully compensated by radiogenic heat production. In 2001, C. Herndon introduced a new idea into the discussion. According to his thesis, planetary differentiation caused a nuclear georeactor to be created in the center of the earth, whose continuous thermal power of approx. 3 TW contributes to compensating heat losses. Physicists and geoscientists hope to be able to derive new findings on this thesis and on the distribution of radiogenic heat production in the interior of the earth from the planned geo-neutrino experiment in Homestake, USA. (orig.)

  13. Orbital Noise in the Earth System and Climate Fluctuations

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  14. Earth Tidal Controls on Basal Dynamics and Hydrology

    Science.gov (United States)

    Kulessa, B.; Hubbard, B. P.; Brown, G. H.; Becker, J.

    2001-12-01

    We appraise earth tidal forcing of coupled mechanical and hydrological processes beneath warm-based ice masses, which have to date been poorly documented but represent exciting phenomena that have important implications for future studies of glacier dynamics. Regular cycles in winter and early spring electrical self-potential (SP), water pressure (PW) and electrical conductivity (EC) were recorded at the bases of several boreholes drilled through Haut Glacier d'Arolla, Switzerland. Fourier power spectra of these data reflect the presence of diurnal and semi-diurnal cycles, and comparison with the earth tidal spectrum indicates that at least four components of the latter are visible in the borehole spectra: the luni-solar diurnal, the principal lunar diurnal, the principal solar semi-diurnal, and the principal lunar semi-diurnal. This correspondence suggests that earth tides exert a strong control over water flow at the bed of the glacier, at least during winter and early spring. We envisage a mechanism that involves earth-tide induced deformation of the bedrock and the unconsolidated sediments beneath the glacier, and to a certain extent probably also the overlying ice body. Basal water pockets, including those containing our sensors, located within these media are in turn also likely to be deformed periodically. We believe that PW gradients induced by such deformation may result in transient water flow and SPs in the pockets. Since PW and EC are typically out-of-phase, injection of waters of lower EC into the pockets during times of peak water flow is likely. Several lines of evidence suggest that such injection was caused by melting of the ice wall due to frictional heating, balancing creep closure which sustained some pockets through the winter. Further, the first annually-repeated post-winter reorganization event, termed the May event, may well be triggered by tidally-induced releases of waters from storage. This implies that the May event marks the opening of

  15. Space exercise and Earth benefits.

    Science.gov (United States)

    Macias, Brandon R; Groppo, Eli R; Eastlack, Robert K; Watenpaugh, Donald E; Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Smith, Scott M; Cutuk, Adnan; Pedowitz, Robert A; Meyer, R Scott; Hargens, Alan R

    2005-08-01

    The detrimental impact of long duration space flight on physiological systems necessitates the development of exercise countermeasures to protect work capabilities in gravity fields of Earth, Moon and Mars. The respective rates of physiological deconditioning for different organ systems during space flight has been described as a result of data collected during and after missions on the Space Shuttle, International Space Station, Mir, and bed rest studies on Earth. An integrated countermeasure that simulates the body's hydrostatic pressure gradient, provides mechanical stress to the bones and muscles, and stimulates the neurovestibular system may be critical for maintaining health and well being of crew during long-duration space travel, such as a mission to Mars. Here we review the results of our studies to date of an integrated exercise countermeasure for space flight, lower body negative pressure (LBNP) treadmill exercise, and potential benefits of its application to athletic training on Earth. Additionally, we review the benefits of Lower Body Positive Pressure (LBPP) exercise for rehabilitation of postoperative patients. Presented first are preliminary data from a 30-day bed rest study evaluating the efficacy of LBNP exercise as an integrated exercise countermeasure for the deconditioning effects of microgravity. Next, we review upright LBNP exercise as a training modality for athletes by evaluating effects on the cardiovascular system and gait mechanics. Finally, LBPP exercise as a rehabilitation device is examined with reference to gait mechanics and safety in two groups of postoperative patients.

  16. On the balance of stresses in the plasma sheet.

    Science.gov (United States)

    Rich, F. J.; Wolf, R. A.; Vasyliunas, V. M.

    1972-01-01

    The stress resulting from magnetic tension on the neutral sheet must, in a steady state, be balanced by any one or a combination of (1) a pressure gradient in the direction along the axis of the tail, (2) a similar gradient of plasma flow kinetic energy, and (3) the tension resulting from a pressure anisotropy within the plasma sheet. Stress balance in the first two cases requires that the ratios h/LX and BZ/BX be of the same order of magnitude, where h is the half-thickness of the neutral sheet, LX is the length scale for variations along the axis of the tail, and BZ and BX are the magnetic field components in the plasma sheet just outside the neutral sheet. The second case requires, in addition, that the plasma flow speed within the neutral sheet be of the order of or larger than the Alfven speed outside the neutral sheet. Stress balance in the third case requires that just outside the neutral sheet the plasma pressure obey the marginal firehose stability condition.

  17. The balanced development of basic education in the context of globalization

    Institute of Scientific and Technical Information of China (English)

    Sun Qi-lin; Kong Kai

    2006-01-01

    Basic education is not only an essential means for eliminating stratification and differences in society but also one of the main reasons for the enlargement of the gap between the rich and the poor.Because it faces pressure in the context of globalization,a balanced development of basic education would be a good way to relieve this pressure.This paper summarizes the international experience of balanced development of basic education in five aspects:policies and laws,educational funds,teacher resources,disadvantaged groups and conditions for running a school.On the basis of these,the authors put forward relevant suggestions concerning the balanced development of basic education in China.

  18. Independent effects of adding weight and inertia on balance during quiet standing.

    Science.gov (United States)

    Costello, Kerry Elizabeth; Matrangola, Sara Louise; Madigan, Michael Lawrence

    2012-04-16

    Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.

  19. Device for achieving pressure balance in the steam generator of a power plant in case of a main-steam pipe or a feedwater pipe break

    International Nuclear Information System (INIS)

    Wietelmann, F.

    1978-01-01

    In order to increase the safety in the steam generator of a power plant in case of a pipe break, the possibility of a pressure balance between the feedwater inlet and the initial steam outlet chambers is allowed for. According to the invention, the partition wall separating these two chambers will exhibit several overflow openings, each of which will be provided with a closure and half of which may be opened to one side only, care having been taken that in case of an accident on occurrence of a certain differential pressure they will always be opened to the low-pressure side. As closures caps, which may be swing out of the way, or rupture diaphragms are mentioned. (UWI) 891 HP [de

  20. The role of cosmic rays in the Earth's atmospheric processes

    Indian Academy of Sciences (India)

    Cosmic rays; global electric circuit; ion-aerosol; cloud variation; weather and ... layers have also significant effect on the Earth's atmosphere heat balance .... Numerical modelling and satellite observations suggested that a 1% change in the.

  1. Some observations on the greenhouse effect at the Earth's surface

    Science.gov (United States)

    Akitt, J. W.

    2018-01-01

    It is shown that the greenhouse gases carbon dioxide and water vapour reflect back to the surface, all IR radiation originating at the surface within their respective spectral bands. This reflection occurs in a very thin layer at the surface, not much over 12 cm in thickness. Heat is lost from the surface by heat exchange with the atmosphere and by loss of radiation. About 52% of radiation leaves the surface in two principal window regions but this is not enough to account for the earth's equilibrium temperature. This window radiation seems to disappear quite quickly and is replaced by black body radiation. It is this which eventually contributes to the earth's radiation balance, and has to originate approximately between 40 and 50 km altitude where the temperature is about correct, near 255 K. Doubling the CO2 concentration increases the surface temperature by about 0.9 °C and this need not have any influence higher up in the atmosphere. The surface temperature seems indeed to have no direct influence on the earth's external radiation balance.

  2. Cardiovascular regulation during body unweighting by lower body positive pressure.

    Science.gov (United States)

    Evans, Joyce M; Mohney, Lindsay; Wang, Siqi; Moore, Rachel K; Elayi, Samy-Claude; Stenger, Michael B; Moore, Fritz B; Knapp, Charles F

    2013-11-01

    We hypothesized that human cardiovascular responses to standing in reduced gravity environments, as on the Moon or Mars, could be modeled using a lower body positive pressure (LBPP) chamber. Heart rate, blood pressure, body segment fluid shifts, ECG, indexes of sympathetic, parasympathetic balance, and baroreflex control of the heart and periphery plus echocardiographic measures of cardiac function were recorded from seven men and seven women supine and standing at 100% (Earth), 40% (-Mars), and 20% (-Moon) bodyweights (BW). The fluid shifted from the chest was greater when standing at 100% BW than at 20% and 40% BW, while fluid pooled in the abdomen was similar at all BWs. Compared to moving from supine to standing at 100% BW, moving to 20% and 40% BW resulted in smaller decreases in stroke volume and pulse pressure, smaller increases in heart rate and smaller decreases in parasympathetic control of heart rate, baroreflex slope, numbers of blood pressure ramps, and much reduced indexes of sympathetic drive to the heart and periphery. However, peripheral vascular resistance, systolic pressure, and baroreflex effectiveness were elevated during 20% and 40% BW, compared to supine and standing at 100% BW. Standing at reduced bodyweight suppressed indexes of sympathetic control of heart rate and peripheral vasomotion. Regulatory responses indicated a combination of arterial and cardiopulmonary baroreflex control: mean heart rate, vasomotion, and baroreflex sensitivity appeared to be more under cardiopulmonary control while baroreflex effectiveness appeared to be driven more by the arterial baroreflex.

  3. A new program in earth system science education

    Science.gov (United States)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  4. Effects of DanceSport on walking balance and standing balance among the elderly.

    Science.gov (United States)

    Sohn, Jeehoon; Park, Sung-Ha; Kim, Sukwon

    2018-05-04

    Dancesport is a popular activity among older adults who look for fun and fitness in Korea. Studies reported positive sociological and psychological effects of dancesport. But, little studies were performed to evaluate the effects of dancesport on balance performances. The objective of the present study was to evaluate the effects of dancesport for 15 weeks on walking balance and standing balance of older adults. Older adults regularly participated in the dancesport program 3 times a week for 15 weeks. The program included Rumba, Cha-cha-cha, and Jive. They exercised the prescribed dancesport at intermediate level for 50-60 mins for each time. A total 22 reflective markers were placed on the anatomical landmarks and 8 cameras were used to measure 3-D positions of participants. Also, center of pressure (COP) data were measured to analyze standing balance using a ground reaction board at 1200 Hz for 30 seconds. One-way analysis of variance (ANOVA) was performed to test the effects of 15 weeks of dancesport on walking balance and standing balance. The results suggested that, after 15 weeks of dancesport participation, older adults' walking balance (48.3 ± 20.3 cm2 vs 38.2 ± 18.2 cm2) and standing balance (COP area: 189.4 ± 85.4 mm2 vs 103.5 ± 55.4mm2, COP distance: 84.2 ± 34.4 cm vs 76.5 ± 21.4 cm) were significantly improved. Performing dancesport would require moving center of mass rapidly and frequently while maintaining posture. This may result in improving walking balance and standing balance in the present study. The study concluded that dancesport would be an effective exercise method in enhancing postural stability of older adults.

  5. Validation of the Balance Board for Clinical Evaluation of Balance During Serious Gaming Rehabilitation Exercises.

    Science.gov (United States)

    Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Sholukha, Victor; Van Sint Jan, Serge

    2016-09-01

    Balance and posture can be affected in various conditions or become decreased with aging. A diminution of balance control induces an increase of fall's risk. The Nintendo Wii Balance Board™ (WBB) is used in rehabilitation to perform balance exercises (using commercial video games). The WBB has also been validated to assess balance and posture in static conditions. However, there is currently no study investigating the use of WBB to assess balance during the realization of balance exercises using this device. The aim of this study was to validate the use of WBB, coupled with specially developed serious games, to assess dynamic balance during rehabilitation exercises. Thirty five subjects participated in this study. Subjects were asked to play two specially developed serious games. Center of pressure (CP) displacements were simultaneously recorded with a WBB and a gold standard force plate (FP). Nine parameters were derived from CP displacement. Bland and Altman plots, paired-sample t tests, intraclass correlation coefficient's, and Pearson's coefficient correlations were computed. Excellent correlation between both devices was found for each parameter for the two games (R = 0.95 and 0.96). Unlike previous work on the WBB, these excellent results were obtained without using any calibration procedure. Despite this, results were highly correlated between the WBB and the FP. The WBB could be used in clinics to assess balance during rehabilitation exercises and, thus, allows a more regular patient follow-up.

  6. Monitoring and Analysis of Ground Settlement Induced by Tunnelling with Slurry Pressure-Balanced Tunnel Boring Machine

    Directory of Open Access Journals (Sweden)

    Hyunku Park

    2018-01-01

    Full Text Available A case study of monitoring and analysis of ground settlement caused by tunnelling of stacked twin tunnels for underground metro line construction through the densely populated area using the slurry pressure-balanced TBM is presented. Detailed ground settlement monitoring was carried out for the initial stage of down-track tunnelling in order to estimate trough width factor and volume losses including face, shield, and tail losses. In addition, using the gap model, prediction of volume loss and ground settlement was carried out with consideration of the ground condition, TBM configurations, and actual operation data. The predictions of the gap model were compared with the observed results, and adjustment factors were determined for volume loss estimation. The adjusted factors were applied to predict ground settlement of the up-track tunnel, and its results were compared with the field measurements.

  7. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are ∼1-5 x 10 4 km and ∼5-50 nA/m 2 . Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of ∼1.2 x 10 5 K and ∼40 in the center of the current sheet to ∼1 x 10 6 K and ∼3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (∼1 at ICE), and that a region of strongly enhanced mass loading (ion source rate ∼24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is ∼2.6 x 10 26 H 2 O+/sec, which is only ∼1% of the independently determined total cometary efflux. 79 refs., 37 figs

  8. From Science Reserves to Sustainable Multiple Uses beyond Earth orbit: Evaluating Issues on the Path towards Balanced Environmental Management on Planetary Bodies

    Science.gov (United States)

    Race, Margaret

    Over the past five decades, our understanding of space beyond Earth orbit has been shaped by a succession of mainly robotic missions whose technologies have enabled scientists to answer diverse science questions about celestial bodies across the solar system. For all that time, exploration has been guided by planetary protection policies and principles promulgated by COSPAR and based on provisions in Article IX of the Outer Space Treaty of 1967. Over time, implementation of the various COSPAR planetary protection policies have sought to avoid harmful forward and backward contamination in order to ensure the integrity of science findings, guide activities on different celestial bodies, and appropriately protect Earth whenever extraterrestrial materials have been returned. The recent increased interest in extending both human missions and commercial activities beyond Earth orbit have prompted discussions in various quarters about the need for updating policies and guidelines to ensure responsible, balanced space exploration and use by all parties, regardless whether activities are undertaken by governmental or non-governmental entities. Already, numerous researchers and workgroups have suggested a range of different ways to manage activities on celestial environments (e.g, wilderness parks, exclusion zones, special regions, claims, national research bases, environmental impact assessments, etc.). While the suggestions are useful in thinking about how to manage future space activities, they are not based on any systematically applied or commonly accepted criteria (scientific or otherwise). In addition, they are borrowed from terrestrial approaches for environmental protection, which may or may not have direct applications to space environments. As noted in a recent COSPAR-PEX workshop (GWU 2012), there are no clear definitions of issues such as harmful contamination, the environment to be protected, or what are considered reasonable activity or impacts for particular

  9. On the existence of another source of heat production for the earth and planets, and its connection with gravitomagnetism.

    Science.gov (United States)

    Elbeze, Alexandre Chaloum

    2013-01-01

    Recent revised estimates of the Earth's surface heat flux are in the order of 47 TW. Given that its internal radiogenic (mantle and crust) heat production is estimated to be around 20 TW, the Earth has a thermal deficit of around 27 TW. This article will try to show that the action of the gravitational field of the Sun on the rotating masses of the Earth is probably the source of another heat production in order of 54TW, which would satisfy the thermal balance of our celestial body and probably explain the reduced heat flow Qo. We reach this conclusion within the framework of gravitation implied by Einstein's special and general relativity theory (SR, GR). Our results show that it might possible, in principle, to calculate the heat generated by the action of the gravitational field of celestial bodies on the Earth and planets of the Solar System (a phenomenon that is different to that of the gravitational tidal effect from the Sun and the Moon). This result should help physicists to improve and develop new models of the Earth's heat balance, and suggests that contrary to cooling, the Earth is in a phase of thermal balance, or even reheating.

  10. Validity of the Nintendo Wii® balance board for the assessment of standing balance in Parkinson's disease.

    Science.gov (United States)

    Holmes, Jeffrey D; Jenkins, Mary E; Johnson, Andrew M; Hunt, Michael A; Clark, Ross A

    2013-04-01

    Impaired postural stability places individuals with Parkinson's at an increased risk for falls. Given the high incidence of fall-related injuries within this population, ongoing assessment of postural stability is important. To evaluate the validity of the Nintendo Wii(®) balance board as a measurement tool for the assessment of postural stability in individuals with Parkinson's. Twenty individuals with Parkinson's participated. Subjects completed testing on two balance tasks with eyes open and closed on a Wii(®) balance board and biomechanical force platform. Bland-Altman plots and a two-way, random-effects, single measure intraclass correlation coefficient model were used to assess concurrent validity of centre-of-pressure data. Concurrent validity was demonstrated to be excellent across balance tasks (intraclass correlation coefficients = 0.96, 0.98, 0.92, 0.94). This study suggests that the Wii(®) balance board is a valid tool for the quantification of postural stability among individuals with Parkinson's.

  11. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    Science.gov (United States)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  12. Unsteady response of flow system around balance piston in a rocket pump

    Science.gov (United States)

    Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.

    2013-03-01

    In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.

  13. Relationship between functional assessments and exercise-related changes during static balance.

    Science.gov (United States)

    Clifton, Daniel R; Harrison, Blain C; Hertel, Jay; Hart, Joseph M

    2013-04-01

    The Functional Movement Screen (FMS) is currently used for injury risk prediction, although researchers have not studied its relationships to injury risk factors. The purpose of this study was to compare FMS scores at rest to changes in static balance after exercise. Second, we examined FMS scores pre and post exercise. Twenty-five participants performed center of pressure (COP) measures and FMS testing. An acclimatization session for the FMS occurred on day 1, whereas day 2 involved COP measures for static balance and FMS testing before and after a 36-minute exercise protocol. Center of pressure standard deviations in the frontal (COPML-SD) and sagittal (COPAP-SD) planes, center of pressure velocity (COP-Velocity), center of pressure area (COP-Area), and FMS scores were recorded. No significant correlations occurred between preexercise FMS scores and change in COP measures. Preexercise hurdle step scores related to preexercise COPML-SD (p = -0.46), COPAP-SD (p = -0.43), and COP-Area (p = -0.50). Preexercise in-line lunge scores related to postexercise COPAP-SD (p = -0.44) and COP-Velocity (p = -0.39), whereas preexercise active straight leg raise (ASLR) scores related to postexercise COPML-SD (p = -0.46). Functional Movement Screen scores were not related to changes in static balance after exercise and may therefore not be useful to predict who will experience greater static balance deficits after exercise. Additionally, FMS scores did not differ before and after exercise. Clinicians aiming to identify injury risk from a general static balance standpoint may find the hurdle step, in-line lunge, and ASLR useful. Clinicians aiming to identify injury risk from a change in static balance standpoint may need to explore other screening tools.

  14. Martian Atmospheric Pressure Static Charge Elimination Tool

    Science.gov (United States)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  15. Medial shoe-ground pressure and specific running injuries

    DEFF Research Database (Denmark)

    Brund, René B K; Rasmussen, Sten; Nielsen, Rasmus O

    2017-01-01

    pressure. Foot balance was categorized into those which presented a higher lateral shod pressure (LP) than medial pressure, and those which presented a higher medial shod pressure (MP) than lateral pressure during the stance phase. A time-to-event model was used to compare differences in incidence between...

  16. The Earth's core: its composition, formation and bearing upon the origin of the Earth

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1984-01-01

    The density of the outer core is about 3% smaller than pure iron, which implies that the core contains a substantial amount of one or more low atomic mass elements. New experimental data on the solubility of FeO in molten iron are compatible with oxygen being the other element. At atmospheric pressure FeO is extensively soluble in iron at 2500 0 C, completely miscible above 2800 0 C. Also the solubility of FeO in molten iron is considerably increased at higher pressures. The density measurements can be explained if the core contains about 35% FeO; the new data show this to be possible. A model for the formation of the core based on a high FeO content in the Bulk Earth can be explained if the Earth accreted from a mixture of two components: A, a highly reduced, metal-rich devolatilized assemblage and B, a highly oxidized, volatile-rich assemblage similar to Cl chondrites. The formation of these components in the solar nebula is discussed. The large amount of FeO now inferred to be present in the Earth was mainly produced during accretion by oxidation of metallic iron from component A by water from component B. (U.K.)

  17. Self-reported balance status is not a reliable indicator of balance performance in adolescents at one-month post-concussion.

    Science.gov (United States)

    Rochefort, Coralie; Walters-Stewart, Coren; Aglipay, Mary; Barrowman, Nick; Zemek, Roger; Sveistrup, Heidi

    2017-11-01

    To determine if self-reported balance symptoms can be used as a proxy for measures of the center of pressure (COP) to identify balance deficits in a group of concussed adolescents. Case-control. Thirteen adolescents 1-month post-concussion who reported ongoing balance problems (Balance+), 20 adolescent 1-month post-concussion who reported no balance problems (Balance-), and 30 non-injured adolescents (control) completed a series of balance tests. Participants completed two 2-min trials standing on a Nintendo Wii Balance Board™ during which the COP under their feet was recorded: i) double-leg stance, eyes open; ii) double-leg stance, eyes closed. Participants also completed a dual-task condition combining a double-leg stance and a Stroop Colour-word test. Participants in both the Balance+ and Balance- group swayed over a larger ellipse area compared to the control group while completing the Eyes Closed (Balance+, p=0.002; Balance-, p=0.002) and Dual-Task (Balance+, p=0.001; Balance-, p=0.004) conditions and performed the Dual-Task condition with faster medio-lateral velocity (Balance+, p=0.003; Balance-, p=0.009). The participants in the Balance- group also swayed over a larger ellipse area compared to the control group while completing the Eyes Open condition (p=0.005). No significant differences were identified between the Balance+ and Balance- groups. At 1-month post-concussion, adolescents demonstrated balance deficits compared to non-injured adolescents regardless of whether they reported balance problems. These results suggest that self-reported balance status might not be an accurate reflection of balance performance following a concussion in adolescents. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    Science.gov (United States)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  19. A simple method to compute the change in earth-atmosphere radiative balance due to a stratospheric aerosol layer

    Science.gov (United States)

    Lenoble, J.; Tanre, D.; Deschamps, P. Y.; Herman, M.

    1982-01-01

    A computer code was developed in terms of a three-layer model for the earth-atmosphere system, using a two-stream approximation for the troposphere and stratosphere. The analysis was limited to variable atmosphere loading by solar radiation over an unperturbed section of the atmosphere. The scattering atmosphere above a Lambertian ground layer was considered in order to derive the planar albedo and the spherical albedo. Attention was given to the influence of the aerosol optical thickness in the stratosphere, the single scattering albedo and asymmetry factor, and the sublayer albedo. Calculations were performed of the zonal albedo and the planetary radiation balance, taking into account a stratospheric aerosol layer containing H2SO4 droplets and volcanic ash. The resulting ground temperature disturbance was computed using a Budyko (1969) climate model. Local decreases in the albedo in the summer were observed in high latitudes, implying a heating effect of the aerosol. An accompanying energy loss of 23-27 W/sq m was projected, which translates to surface temperature decreases of either 1.1 and 0.45 C, respectively, for background and volcanic aerosols.

  20. A study on the force balance of an unbalanced globe valve

    International Nuclear Information System (INIS)

    Yang, Sang Min; Cho, Taik Dong; Ko, Sung Ho; Lee, Ho Young

    2007-01-01

    A pneumatic control valve is a piping element that controls the volumetric flow rate and pressure of a fluid: it is necessary to analyze the characteristics of the forces with respect to the opening of the valve in order to evaluate its operating performance. The forces occurring during operation are: resisting force and actuator force, where the load resistance is mostly affected by the fluid pressure difference of the valve. In this study, a force balance equation derived from the equilibrium relationship between the resisting force and the actuator force of an unbalanced globe valve is proposed, and the force balance equations are used to model the dynamic equations of a pneumatic unbalanced globe valve installed in nuclear power plants. A CFD analysis is also carried out to evaluate the pressure distribution and forces acting on the top and bottom planes of the valve plug. The results of this analysis have been verified through experimentation. This study has shown that the fluid pressure difference between the inlet and outlet of the valve, measured from the force balance equation of an unbalanced valve, should actually be examined with the fluid-pressure difference between the top and bottom side of the valve plug

  1. Well balanced finite volume methods for nearly hydrostatic flows

    International Nuclear Information System (INIS)

    Botta, N.; Klein, R.; Langenberg, S.; Luetzenkirchen, S.

    2004-01-01

    In numerical approximations of nearly hydrostatic flows, a proper representation of the dominant hydrostatic balance is of crucial importance: unbalanced truncation errors can induce unacceptable spurious motions, e.g., in dynamical cores of models for numerical weather prediction (NWP) in particular near steep topography. In this paper we develop a new strategy for the construction of discretizations that are 'well-balanced' with respect to dominant hydrostatics. The classical idea of formulating the momentum balance in terms of deviations of pressure from a balanced background distribution is realized here through local, time dependent hydrostatic reconstructions. Balanced discretizations of the pressure gradient and of the gravitation source term are achieved through a 'discrete Archimedes' buoyancy principle'. This strategy is applied to extend an explicit standard finite volume Godunov-type scheme for compressible flows with minimal modifications. The resulting method has the following features: (i) It inherits its conservation properties from the underlying base scheme. (ii) It is exactly balanced, even on curvilinear grids, for a large class of near-hydrostatic flows. (iii) It solves the full compressible flow equations without reference to a background state that is defined for an entire vertical column of air. (iv) It is robust with respect to details of the implementation, such as the choice of slope limiting functions, or the particularities of boundary condition discretizations

  2. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  3. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    Science.gov (United States)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  4. Seismic passive earth resistance using modified pseudo-dynamic method

    Science.gov (United States)

    Pain, Anindya; Choudhury, Deepankar; Bhattacharyya, S. K.

    2017-04-01

    In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.

  5. Effects of Wii balance board exercises on balance after posterior cruciate ligament reconstruction.

    Science.gov (United States)

    Puh, Urška; Majcen, Nia; Hlebš, Sonja; Rugelj, Darja

    2014-05-01

    To establish the effects of training on Wii balance board (WBB) after posterior cruciate ligament (PCL) reconstruction on balance. Included patient injured her posterior cruciate ligament 22 months prior to the study. Training on WBB was performed 4 weeks, 6 times per week, 30-45 min per day. Center of pressure (CoP) sway during parallel and one-leg stance, and body weight distribution in parallel stance were measured. Additionally, measurements of joint range of motion and limb circumferences were taken before and after training. After training, the body weight was almost equally distributed on both legs. Decrease in CoP sway was most significant for one-leg stance with each leg on compliant surface with eyes open and closed. The knee joint range of motion increased and limb circumferences decreased. According to the results of this single case report, we might recommend the use of WBB for balance training after PCL reconstruction. Case series with no comparison group, Level IV.

  6. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  7. The earth's radius and the G variation

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York

    1981-01-01

    It has been assumed that if the gravitational constant G was larger in the past, the Earth's radius had to be smaller. The assertion holds provided the input from microphysics (in particular the equation of state) is independent of G. While this is true for some theories of gravity with variable G it is not so in the scale covariant theory, where the pressure can be affected by a variable G in a way that, for a constant mass of the Earth, a larger G in the past implies a larger Earth's radius. Comparison with recent palaeomagnetic data is presented. (author)

  8. Surface energy balance of fresh and saline waters : AquaSEBS

    NARCIS (Netherlands)

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  9. Isotope composition and volume of Earth's early oceans.

    Science.gov (United States)

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 3 .... Assessment of the regional water balance of the limestone subaquifers of Cyprus ... characterized by its small watersheds and the lack of ephemeral surface water resources. .... Optimization method for quantitative calculation of clay minerals in soil.

  11. A finite world, earth sciences, and public trust.

    Science.gov (United States)

    Narasimhan, T N

    2003-01-01

    The beginning of the 21st century has coincided with our recognition that life-sustaining earth cycles are remarkably fine-tuned, and that humans have developed technological abilities to perturb these cycles. Also, inspired bythe gifts of freedom and democracy, humans have given themselves laws to exploit nature for profit. The upshot is that nature's balance, governed by immutable physical laws, is being confronted by social laws driven by human aspirations. This conflict and its implications to the human relevance of the earth sciences are explored in the context of an extraordinary tradition of European culture known as public trust.

  12. Some observations on the greenhouse effect at the Earth's surface.

    Science.gov (United States)

    Akitt, J W

    2018-01-05

    It is shown that the greenhouse gases carbon dioxide and water vapour reflect back to the surface, all IR radiation originating at the surface within their respective spectral bands. This reflection occurs in a very thin layer at the surface, not much over 12cm in thickness. Heat is lost from the surface by heat exchange with the atmosphere and by loss of radiation. About 52% of radiation leaves the surface in two principal window regions but this is not enough to account for the earth's equilibrium temperature. This window radiation seems to disappear quite quickly and is replaced by black body radiation. It is this which eventually contributes to the earth's radiation balance, and has to originate approximately between 40 and 50km altitude where the temperature is about correct, near 255K. Doubling the CO 2 concentration increases the surface temperature by about 0.9°C and this need not have any influence higher up in the atmosphere. The surface temperature seems indeed to have no direct influence on the earth's external radiation balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pressure correction schemes for compressible flows

    International Nuclear Information System (INIS)

    Kheriji, W.

    2011-01-01

    This thesis is concerned with the development of semi-implicit fractional step schemes, for the compressible Navier-Stokes equations; these schemes are part of the class of the pressure correction methods. The chosen spatial discretization is staggered: non conforming mixed finite elements (Crouzeix-Raviart or Rannacher-Turek) or the classic MA C scheme. An upwind finite volume discretization of the mass balance guarantees the positivity of the density. The positivity of the internal energy is obtained by discretizing the internal energy balance by an upwind finite volume scheme and b y coupling the discrete internal energy balance with the pressure correction step. A special finite volume discretization on dual cells is performed for the convection term in the momentum balance equation, and a renormalisation step for the pressure is added to the algorithm; this ensures the control in time of the integral of the total energy over the domain. All these a priori estimates imply the existence of a discrete solution by a topological degree argument. The application of this scheme to Euler equations raises an additional difficulty. Indeed, obtaining correct shocks requires the scheme to be consistent with the total energy balance, property which we obtain as follows. First of all, a local discrete kinetic energy balance is established; it contains source terms winch we somehow compensate in the internal energy balance. The kinetic and internal energy equations are associated with the dual and primal meshes respectively, and thus cannot be added to obtain a total energy balance; its continuous counterpart is however recovered at the limit: if we suppose that a sequence of discrete solutions converges when the space and time steps tend to 0, we indeed show, in 1D at least, that the limit satisfies a weak form of the equation. These theoretical results are comforted by numerical tests. Similar results are obtained for the baro-tropic Navier-Stokes equations. (author)

  14. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  15. Validity and reliability of balance assessment software using the Nintendo Wii balance board: usability and validation.

    Science.gov (United States)

    Park, Dae-Sung; Lee, GyuChang

    2014-06-10

    A balance test provides important information such as the standard to judge an individual's functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment.

  16. Detection of solar neutrinos with a torsion balance with sapphire crystal

    Science.gov (United States)

    Cruceru, M.; Nicolescu, G.

    2018-01-01

    The solar neutrinos (antineutrinos) are detected with a dedicated torsion balance in the case when they interact coherently on stiff crystals (sapphire with high Debye temperature ∼1000K and lead with ∼100K Debye temperature). The balance consists in two equal masses of lead and sapphire, of 25g. An autocollimator coupled to this balance measures small rotation angles of the balance. The force with which neutrino flux interacts with these crystals is between 10-5 dyn and 10-8 dyn, comparable with that reported in Weber’s experiments [1]. A diurnal effect is observed for solar neutrinos due to the rotation of the Earth around its own axes. The solar neutrino flux obtained at the site of our experiment is ∼3.8*1010neutrinos/cm2*s [2]. Experimental data for neutrinos signals from this high sensitivity torsion balance are presented and commented [3].

  17. The origin of the moon and the early history of the earth - a chemical model. Part 2: The earth

    International Nuclear Information System (INIS)

    O'Neill, H.St.C.

    1991-01-01

    The geochemical implications for the earth of a giant impact model for the origin of the earth-moon system are discussed, using a mass balance between three components: the proto-earth, the Impactor, and a late veneer. It is argued that the proto-earth accretes from material resembling a high temperature condensate from the solar nebula. Core formation takes place under very reducing conditions, resulting in the mantle of the proto-earth being completely stripped of all elements more siderophile than Fe, and partly depleted in the barely siderophile elements V, Cr, and perhaps Si. The Impactor then collides with the proto-earth, causing vaporisation of both the Impactor and a substantial portion of the earth's mantle. Most of this material recondenses to the earth, but some forms the moon. The Impactor adds most of the complement of the siderophile elements of the present mantle in an oxidized form. The oxidation state of the mantle is set near to its present, oxidized level. Finally, the addition of a late veneer, of composition similar to that of the H-group ordinary chondrites, accounts for the complement of the highly siderophile elements of the present mantle. The model accounts at least semi-quantitatively for the siderophile element abundances of the present mantle. Implications for the composition of the earth's core are discussed; the model predicts that neither S, O, nor Si should be present in sufficient quantities to provide the required light element in the core, whose identity, therefore, remains enigmatic

  18. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  19. Rough wall skin friction measurements using a high resolution surface balance

    International Nuclear Information System (INIS)

    Krogstad, Per-Age; Efros, Vladislav

    2010-01-01

    This paper describes the design of a floating element friction balance which is based upon a commercially available micro force balance. The balance has a perfectly linear calibration function and was successfully applied to rough wall flows in a channel and a diffusor. Extrapolation of the turbulent shear stress measured by two component LDA to the wall matched very well the shear stress measured using the friction balance. Also, the wall shear stress obtained from the balance in the fully developed channel flow agreed with the stress that could be derived from the pressure gradient to within 3%.

  20. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  1. Calibration and Data Analysis of the MC-130 Air Balance

    Science.gov (United States)

    Booth, Dennis; Ulbrich, N.

    2012-01-01

    Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.

  2. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    Science.gov (United States)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  3. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Paepe, M. de [Ghent University (Belgium). Department of Flow, Heat and Combustion Mechanics; Janssens, A. [Ghent University (Belgium). Department of Architecture and Urbanism

    2003-05-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  4. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Ghent (Belgium); Janssens, A. [Department of Architecture and Urbanism, Ghent University, Ghent (Belgium)

    2003-07-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  5. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    Science.gov (United States)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.

  6. THE SIGNAL APPROACH TO MODELLING THE BALANCE OF PAYMENT CRISIS

    Directory of Open Access Journals (Sweden)

    O. Chernyak

    2016-12-01

    Full Text Available The paper considers and presents synthesis of theoretical models of balance of payment crisis and investigates the most effective ways to model the crisis in Ukraine. For mathematical formalization of balance of payment crisis, comparative analysis of the effectiveness of different calculation methods of Exchange Market Pressure Index was performed. A set of indicators that signal the growing likelihood of balance of payments crisis was defined using signal approach. With the help of minimization function thresholds indicators were selected, the crossing of which signalize increase in the probability of balance of payment crisis.

  7. Reliability and feasibility of gait initiation centre-of-pressure excursions using a Wii® Balance Board in older adults at risk of falling.

    Science.gov (United States)

    Lee, James; Webb, Graham; Shortland, Adam P; Edwards, Rebecca; Wilce, Charlotte; Jones, Gareth D

    2018-04-17

    Impairments in dynamic balance have a detrimental effect in older adults at risk of falls (OARF). Gait initiation (GI) is a challenging transitional movement. Centre of pressure (COP) excursions using force plates have been used to measure GI performance. The Nintendo Wii Balance Board (WBB) offers an alternative to a standard force plate for the measurement of CoP excursion. To determine the reliability of COP excursions using the WBB, and its feasibility within a 4-week strength and balance intervention (SBI) treating OARF. Ten OARF subjects attending SBI and ten young healthy adults, each performed three GI trials after 10 s of quiet stance from a standardised foot position (shoulder width) before walking forward 3 m to pick up an object. Averaged COP mediolateral (ML) and anteroposterior (AP) excursions (distance) and path-length time (GI-onset to first toe-off) were analysed. WBB ML (0.866) and AP COP excursion (0.895) reliability (ICC 3,1 ) was excellent, and COP path-length reliability was fair (0.517). Compared to OARF, healthy subjects presented with larger COP excursion in both directions and shorter COP path length. OARF subjects meaningfully improved their timed-up-and-go and ML COP excursion between weeks 1-4, while AP COP excursions, path length, and confidence-in-balance remained stable. COP path length and excursion directions probably measure different GI postural control attributes. Limitations in WBB accuracy and precision in transition tasks needs to be established before it can be used clinically to measure postural aspects of GI viably. The WBB could provide valuable clinical evaluation of balance function in OARF.

  8. Blood pressure, magnesium and other mineral balance in two rat models of salt-sensitive, induced hypertension: effects of a non-peptide angiotensin II receptor type 1 antagonist.

    Science.gov (United States)

    Rondón, Lusliany Josefina; Marcano, Eunice; Rodríguez, Fátima; del Castillo, Jesús Rafael

    2014-01-01

    The renin-angiotensin system is critically involved in regulating arterial blood pressure (BP). Inappropriate angiotensin type-1 receptor activation by angiotensin-II (Ang-II) is related to increased arterial BP. Mg has a role in BP; it can affect cardiac electrical activity, myocardial contractility, and vascular tone. To evaluate the relationship between high BP induced by a high sodium (Na) diet and Mg, and other mineral balances, two experimental rat models of salt-sensitive, induced-hypertension were used: Ang-II infused and Dahl salt-sensitive (SS) rats. We found that: 1) Ang-II infusion progressively increased BP, which was accompanied by hypomagnesuria and signs of secondary hyperaldosteronism; 2) an additive effect between Ang-II and a high Na load may have an effect on strontium (Sr), zinc (Zn) and copper (Cu) balances; 3) Dahl SS rats fed a high Na diet had a slow pressor response, accompanied by altered Mg, Na, potassium (K), and phosphate (P) balances; and 4) losartan prevented BP increases induced by Ang II-NaCl, but did not modify mineral balances. In Dahl SS rats, losartan attenuated high BP and ameliorated magnesemia, Na and K balances. Mg metabolism maybe considered a possible defect in this strain of rat that may contribute to hypertension.

  9. A rightly balanced intellectual property rights regime as a mechanism to enhance commercial earth observation activities

    Science.gov (United States)

    Doldirina, Catherine

    2010-09-01

    Earth observation by satellites is one of the developing sectors of space activities with the growing involvement in private capital or actors. This leads to the question of how efficient legal rules governing this activity are. Copyright law is one of the key fields of law applicable to earth observation activities and is the subject of the present analysis. This paper describes the current state of copyright regulations in different jurisdictions. It also addresses the issue of defining earth observation data for the purpose of applying copyright protection to them. Finally, it analyses whether more or less copyright protection would be beneficial for the commercialisation of the earth observation activities, and the distribution and further use of data they produce. The paper is largely based on my current doctoral research. Draft chapter on file with the author.

  10. Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments

    Science.gov (United States)

    Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.; hide

    2016-01-01

    This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production

  11. Solar rotation effects on the thermospheres of Mars and Earth.

    Science.gov (United States)

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G

    2006-06-02

    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  12. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.

  13. Assessing and training standing balance in older adults: a novel approach using the 'Nintendo Wii' Balance Board.

    Science.gov (United States)

    Young, William; Ferguson, Stuart; Brault, Sébastien; Craig, Cathy

    2011-02-01

    Older adults, deemed to be at a high risk of falling, are often unable to participate in dynamic exercises due to physical constraints and/or a fear of falling. Using the Nintendo 'Wii Balance Board' (WBB) (Nintendo, Kyoto, Japan), we have developed an interface that allows a user to accurately calculate a participant's centre of pressure (COP) and incorporate it into a virtual environment to create bespoke diagnostic or training programmes that exploit real-time visual feedback of current COP position. This platform allows researchers to design, control and validate tasks that both train and test balance function. This technology provides a safe, adaptable and low-cost balance training/testing solution for older adults, particularly those at high-risk of falling. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Dynamic calibration and validation of an accelerometer force balance for hypersonic lifting models.

    Science.gov (United States)

    Singh, Prakash; Trivedi, Sharad; Menezes, Viren; Hosseini, Hamid

    2014-01-01

    An accelerometer-based force balance was designed and developed for the measurement of drag, lift, and rolling moment on a blunt-nosed, flapped delta wing in a short-duration hypersonic shock tunnel. Calibration and validation of the balance were carried out by a convolution technique using hammer pulse test and surface pressure measurements. In the hammer pulse test, a known impulse was applied to the model in the appropriate direction using an impulse hammer, and the corresponding output of the balance (acceleration) was recorded. Fast Fourier Transform (FFT) was operated on the output of the balance to generate a system response function, relating the signal output to the corresponding load input. Impulse response functions for three components of the balance, namely, axial, normal, and angular, were obtained for a range of input load. The angular system response function was corresponding to rolling of the model. The impulse response functions thus obtained, through dynamic calibration, were operated on the output (signals) of the balance under hypersonic aerodynamic loading conditions in the tunnel to get the time history of the unknown aerodynamic forces and moments acting on the model. Surface pressure measurements were carried out on the model using high frequency pressure transducers, and forces and moments were deduced thereon. Tests were carried out at model angles of incidence of 0, 5, 10, and 15 degrees. A good agreement was observed among the results of different experimental methods. The balance developed is a comprehensive force/moment measurement device that can be used on complex, lifting, aerodynamic geometries in ground-based hypersonic test facilities.

  15. Effects of orthopedic insoles on static balance of older adults wearing thick socks.

    Science.gov (United States)

    Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun

    2018-06-01

    The wearing of socks and insoles may affect the ability of the foot to detect tactile input influencing postural balance. The aim of this study was to investigate whether (1) thick socks adversely affected the elderly postural balance and (2) orthopedic insoles could improve the elderly postural balance while wearing thick socks. Repeated-measures study design. In total, 14 healthy older adults were recruited. A monofilament test was conducted to evaluate foot plantar sensation with and without thick socks. Subjects then performed the Romberg tests under three conditions: (1) barefoot, (2) with socks only, and (3) with both socks and insoles. Postural balance was assessed by measuring the center of pressure movement during standing in each experimental condition. Thick socks significantly decreased the monofilament score ( p thick socks ( p thick socks reduces plantar pressure sensitivity and increases postural sway which may increase risk of falls. Orthopedic insoles and footwear with similar design could potentially be a cost-effective method in maintaining postural balance when wearing thick socks.

  16. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  17. Thermal structure of the accreting earth

    International Nuclear Information System (INIS)

    Turcotte, D.L.; Pflugrath, J.C.

    1985-01-01

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper we postulate the existence of a global magma ocean and carry out calculations of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. We find that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. We conclude that the core segregated and an atmosphere was formed during accretion

  18. Hydrostatic Paradox: Experimental Verification of Pressure Equilibrium

    Science.gov (United States)

    Kodejška, C.; Ganci, S.; Ríha, J.; Sedlácková, H.

    2017-01-01

    This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical…

  19. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  20. Characteristic evaluations of BWR uprate method based on heat balance shift concept

    International Nuclear Information System (INIS)

    Kitou, Kazuaki; Aoyama, Motoo; Shiina, Kouji; Sasaki, Hiroshi; Yoshikawa, Kazuhiro

    2007-01-01

    Reactor power uprate of nuclear power plants is an efficient plant operating method. Most BWR plants need the exchange of high pressure turbines when plant thermal power increases over 5% because main steam flow rate exceeds the limitation of inlet steam flow rate of a high pressure turbine. Therefore, the new power uprate method named heat balance shift power uprate method has been developed. This method decreases feedwater temperature with increasing plant thermal power not to increase main steam flower rate. This study clarified that the heat balance shift method could increase plant electric power up to 2.8% compared with conventional power uprate method without the exchange of a high pressure turbine. (author)

  1. Earth in the balance - ecology and the human spirit

    International Nuclear Information System (INIS)

    Gore, A.

    1992-01-01

    This book by Senator Albert Gore presents a global prospective on the environmental crisis facing the Earth. The chapters are framed in the twin ideas of the threat posed by human civilization to the global environment and the threat to human civilization posed by changes in the global environment. Gore first looks at evidence of risk in the environment: historical aspects of climate and civilization; ozone layer; water; land use; food supply; waste disposal. In Part II different aspects of our current approaches to the environment are described: politics; economics; technology; social problems; environmentalism of the human spirit. Finally in Part III, Gore presents his approach to the global environmental crisis, first presenting a section about a global sense of responsibility and purpose and then describing his ideas for A Global Marshal Plan. 169 refs., 4 figs

  2. Bioremediation at a global scale: from the test tube to planet Earth

    OpenAIRE

    de Lorenzo, V?ctor; Marli?re, Philippe; Sol?, Ricard

    2016-01-01

    Summary Planet Earth's biosphere has evolved over billions of years as a balanced bio?geological system ultimately sustained by sunpower and the large?scale cycling of elements largely run by the global environmental microbiome. Humans have been part of this picture for much of their existence. But the industrial revolution started in the XIX century and the subsequent advances in medicine, chemistry, agriculture and communications have impacted such balances to an unprecedented degree ? and ...

  3. Relationship between foot sensation and standing balance in patients with multiple sclerosis.

    Science.gov (United States)

    Citaker, Seyit; Gunduz, Arzu Guclu; Guclu, Meral Bosnak; Nazliel, Bijen; Irkec, Ceyla; Kaya, Defne

    2011-06-01

    The aims of the present study were to investigate the relationship between the foot sensations and standing balance in patients with Multiple Sclerosis (MS) and find out the sensation, which best predicts balance. Twenty-seven patients with MS (Expanded Disability Status Scale 1-3.5) and 10 healthy volunteers were included. Threshold of light touch-pressure, duration of vibration, and distance of two-point discrimination of the foot sole were assessed. Duration of static one-leg standing balance was measured. Light touch-pressure, vibration, two-point discrimination sensations of the foot sole, and duration of one-leg standing balance were decreased in patients with MS compared with controls (pbalance in patients with MS. In the multiple regression analysis conducted in the 27 MS patients, 47.6% of the variance in the duration of one-leg standing balance was explained by two-point discrimination sensation of the heel (R(2)=0.359, p=0.001) and vibration sensation of the first metatarsal head (R(2)=0.118, p=0.029). As the cutaneous receptors sensitivity decreases in the foot sole the standing balance impairs in patients with MS. Two-point discrimination sensation of the heel and vibration sensation of the first metatarsal head region are the best predictors of the static standing balance in patients with MS. Other factors which could be possible to predict balance and effects of sensorial training of foot on balance should be investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  5. Future Satellite Gravimetry and Earth Dynamics

    CERN Document Server

    Flury, Jakob

    2005-01-01

    Currently, a first generation of dedicated satellite missions for the precise mapping of the Earth’s gravity field is in orbit (CHAMP, GRACE, and soon GOCE). The gravity data from these satellite missions provide us with very new information on the dynamics of planet Earth. In particular, on the mass distribution in the Earth’s interior, the entire water cycle (ocean circulation, ice mass balance, continental water masses, and atmosphere), and on changes in the mass distribution. The results are fascinating, but still rough with respect to spatial and temporal resolution. Technical progress in satellite-to-satellite tracking and in gravity gradiometry will allow more detailed results in the future. In this special issue, Earth scientists develop visions of future applications based on follow-on high-precision satellite gravimetry missions.

  6. Energy balance in a coaxial plasma diode

    International Nuclear Information System (INIS)

    Ivanov, A.A. Jr.

    1999-01-01

    The energy fluxes in a coaxial system with a propagating convective magnetic-field wave are considered in an electron MHD model with inertia-free electrons. In contrast to the previous results obtained by other authors, it is shown that, with allowance for a finite electron pressure after the passage of the wave front, the energy flux at the boundary between the generator and coaxial system is continuous. The balance of energy fluxes in the system is studied. The angular anode point is shown to play an important role in this balance

  7. Rare earths production and marketing opportunities

    International Nuclear Information System (INIS)

    Falconnet, P.G.

    1988-01-01

    The rare earths (RE) market is relatively small. The total production during 1968 was only 10000 tons (REO) which rose to 27000 tons (REO) during 1985. The three major areas of application, which are volume market for ceric rare earths are catalysts, glass ceramics and metallurgy. Among the other uses of rare earths, the permanent magnets, lamp phosphors and fine ceramics have registered significant growth in RE consumption. Monazite and bastnasite are the main natural source for rare earths and processing of these for one of the rare earths in high demand leads to over production of some others not in demand, thus creating a balance problem. The growth in RE market has always been influenced by the technology shifts and product substitution. For example, the RE consumption during 1974/76 for desulfurization of steel had substantially decreased due to the usage of calcium. Similarly, 1985 had witnessed a drastic cut in the use of REs in fluid cracking due to the introduction of stabilized zeolites which contain less REO. Thus, the overall compound growth rate of demand was only 3.9 % per year during the period 1970-1985. At present, 37 % of the rare earths production goes to the glass/ceramics industry, 33 % for catalyst and 25 % to metallurgy. The price of REs constantly shows a downward trend. This trend coupled with the rapid changes taking place in the various technological fields, demands greater flexibility and high marketing skills from the RE producers. The key factor for future expansion of RE market will be the development of 'high volume' application of ceric rare earths. (author) 2 figs., 8 tabs

  8. Mineral evolution and Earth history

    Science.gov (United States)

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  9. Evolving NASA's Earth Science Data Systems

    Science.gov (United States)

    Walter, J.; Behnke, J.; Murphy, K. J.; Lowe, D. R.

    2013-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth science data. The system supports a multitude of missions and serves diverse science research and other user communities. Keeping up with ever-changing information technology and figuring out how to leverage those changes across such a large system in order to continuously improve and meet the needs of a diverse user community is a significant challenge. Maintaining and evolving the system architecture and infrastructure is a continuous and multi-layered effort. It requires a balance between a "top down" management paradigm that provides a coherent system view and maintaining the managerial, technological, and functional independence of the individual system elements. This presentation will describe some of the key elements of the current system architecture, some of the strategies and processes we employ to meet these challenges, current and future challenges, and some ideas for meeting those challenges.

  10. Improved estimation of geocenter motion and changes in the Earth's dynamic oblateness from GRACE data and an ocean bottom pressure model

    Science.gov (United States)

    Sun, Y.; Ditmar, P.; Riva, R.

    2015-12-01

    The Gravity Recovery and Climate Experiment (GRACE) satellite mission, since the launch in 2002, has enabled the monitoring of mass transport in the Earth's system on a monthly basis. In spite of continuous improvements in data processing techniques, an estimation of very low-degree spherical harmonic coefficients remains problematic. GRACE is insensitive to variations in the degree-1 coefficients (ΔC11, ΔS11 and ΔC10), which reflect the motion of the geocenter. The variations of C20 coefficients, which characterize changes in the Earth's dynamic oblateness (Δ J2) are corrupted by ocean tide aliases and usually replaced with estimates from other techniques.In this study, the methodology proposed by Swenson et al. (2008) to estimate geocenter motion is updated and extended to co-estimate changes in the Earth's dynamic oblateness. The algorithm uses monthly GRACE gravity solutions (in the form of spherical harmonic coefficients), an ocean bottom pressure model (over the oceans), and a glacial isostatic adjustment (GIA) model (globally). GRACE solutions over coastal areas may suffer from signal leakage due to their limited spectral content and to filtering. We effectively avoid the influence of this effect by introducing a carefully chosen buffer zone. We also take into account self-attraction and loading effects when dealing with water redistribution in the oceans. The estimated annual amplitude of ΔC10 , i.e. the Z component of the geocenter motion, is significantly amplified compared to the original estimations of Swenson et al. (2008) and it is in line with estimates from other techniques, such as the global GPS inversion. The resulting ΔC20 time-series agree remarkably well with a solution based on satellite laser ranging data, which is currently believed to be one of the most accurate sources of information on changes in the Earth's dynamic oblateness. Trends in both geocenter position and the Earth's oblateness are estimated as well. The results show a

  11. Digital Earth reloaded - Beyond the next generation

    Science.gov (United States)

    Ehlers, M.; Woodgate, P.; Annoni, A.; Schade, S.

    2014-02-01

    Digital replicas (or 'mirror worlds') of complex entities and systems are now routine in many fields such as aerospace engineering; archaeology; medicine; or even fashion design. The Digital Earth (DE) concept as a digital replica of the entire planet occurs in Al Gore's 1992 book Earth in the Balance and was popularized in his speech at the California Science Center in January 1998. It played a pivotal role in stimulating the development of a first generation of virtual globes, typified by Google Earth that achieved many elements of this vision. Almost 15 years after Al Gore's speech, the concept of DE needs to be re-evaluated in the light of the many scientific and technical developments in the fields of information technology, data infrastructures, citizen?s participation, and earth observation that have taken place since. This paper intends to look beyond the next generation predominantly based on the developments of fields outside the spatial sciences, where concepts, software, and hardware with strong relationships to DE are being developed without referring to this term. It also presents a number of guiding criteria for future DE developments.

  12. Energy Budget: Earth's Most Important and Least Appreciated Planetary Attribute

    Science.gov (United States)

    Chambers, Lin; Bethea, Katie

    2013-01-01

    The energy budget involves more than one kind of energy. People can sense this energy in different ways, depending on what type of energy it is. We see visible light using our eyes. We feel infrared energy using our skin (such as around a campfire). We know some species of animals can see ultraviolet light and portions of the infrared spectrum. NASA satellites use instruments that can "see" different parts of the electromagnetic spectrum to observe various processes in the Earth system, including the energy budget. The Sun is a very hot ball of plasma emitting large amounts of energy. By the time it reaches Earth, this energy amounts to about 340 Watts for every square meter of Earth on average. That's almost 6 60-Watt light bulbs for every square meter of Earth! With all of that energy shining down on the Earth, how does our planet maintain a comfortable balance that allows a complex ecosystem, including humans, to thrive? The key thing to remember is the Sun - hot though it is - is a tiny part of Earth's environment. Earth's energy budget is a critical but little understood aspect of our planetary home. NASA is actively studying this important Earth system feature, and sharing data and knowledge about it with the education community.

  13. A balanced strategy in managing steam generator thermal performance

    International Nuclear Information System (INIS)

    Hu, M. H.; Nelson, P. R.

    2009-01-01

    This paper presents a balanced strategy in managing thermal performance of steam generator designed to deliver rated megawatt thermal (MWt) and megawatt electric (MWe) power without loss with some amount of thermal margin. A steam generator (SG) is a boiling heat exchanger whose thermal performance may degrade because of steam pressure loss. In other words, steam pressure loss is an indicator of thermal performance degradation. Steam pressure loss is mainly a result of either 1) tube scale induced poor boiling or 2) tube plugging historically resulting from tubing corrosion, wear due to flow induced tube vibration or loose parts impact. Thermal performance degradation was historically due to tube plugging but more recently it is due to poor boiling caused by more bad than good constituents of feedwater impurities. The whole SG industry still concentrates solely on maintenance programs towards preventing causes for tube plugging and yet almost no programs on maintaining adequate boiling of fouled tubes. There can be an acceptable amount of tube scale that provides excellent boiling capacity without tubing corrosion, as operational experience has repeatedly demonstrated. Therefore, future maintenance has to come up balanced programs for allocating limited resources in both maintaining good boiling capacity and preventing tube plugging. This paper discusses also thermal performance degradation due to feedwater impurity induced blockage of tube support plate and thus subsequent water level oscillations, and how to mitigate them. This paper provides a predictive management of tube scale for maintaining adequate steam pressure and stable water level without loss in MWt/MWe or recovering from steam pressure loss or water level oscillations. This paper offers a balanced strategy in managing SG thermal performance to fulfill its mission. Such a strategy is even more important in view of the industry trend in pursuing extended power uprate as high as 20 percent

  14. Numerical simulation of abutment pressure redistribution during face advance

    Science.gov (United States)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  15. Effects of single and repeated doses of the calcium antagonist felodipine on blood pressure, renal function, electrolytes and water balance, and renin-angiotensin-aldosterone system in hypertensive patients.

    Science.gov (United States)

    Leonetti, G; Gradnik, R; Terzoli, L; Fruscio, M; Rupoli, L; Cuspidi, C; Sampieri, L; Zanchetti, A

    1986-01-01

    Doses of 10 mg b.i.d. of the new dihydropyridine calcium antagonist, felodipine, were tested for seven consecutive days in 11 hospitalized hypertensive patients. A significant reduction of both systolic and diastolic blood pressures, with patients in both the supine and upright positions, occurred immediately after the first dose and was maintained (daily average 15%) throughout the following days. An increase in heart rate was observed after the first dose (15 and 23 beats/min, in supine and upright postures), and subsequently declined to average values of 8 and 14 beats/min on the seventh day. There was a marked natriuretic response during the first and second day, during which an average negative sodium balance of 95 mmol developed; on the following days sodium output was not significantly different from control, but a negative balance averaging 135 mmol was still present on the seventh day of felodipine administration. A moderate negative potassium balance also progressively developed and reached -48 mmol on the seventh day. Glomerular filtration rate was unchanged, but renal plasma flow increased significantly during administration of felodipine. Plasma renin activity and plasma aldosterone were also increased very moderately by felodipine. Compared with previous observations by our group with higher doses of felodipine (12.5, 25, and 50 mg t.i.d.), 10 mg b.i.d. of this new calcium antagonist appear to exert a marked and prolonged blood pressure reduction, accompanied by a definite natriuretic instead of an antinatriuretic effect.

  16. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  17. A Simple Approach to Dynamic Material Balance in Gas-Condensate Reservoirs

    Directory of Open Access Journals (Sweden)

    Heidari Sureshjani M.

    2013-02-01

    Full Text Available In traditional material balance calculations, shut-in well pressure data are used to determine average reservoir pressure while recent techniques do not require the well to be shut-in and use instead flowing well pressure-rate data. These methods, which are known as “dynamic” material balance, are developed for single-phase flow (oil or gas in reservoirs. However, utilization of such methods for gas-condensate reservoirs may create significant errors in prediction of average reservoir pressure due to violation of the single-phase assumption in such reservoirs. In a previous work, a method for production data analysis in gas-condensate reservoirs was developed. The method required standard gas production rate, producing gas-oil ratio, flowing well pressure, CVD data and relative permeability curves. This paper presents a new technique which does not need relative permeability curves and flowing well pressure. In this method, the producing oil-gas ratio is interpolated in the vaporized oil in gas phase (Rv versus pressure (p data in the CVD table and the corresponding pressure is located. The parameter pressure/two-phase deviation factor (p/ztp is then evaluated at the determined pressure points and is plotted versus produced moles (np which forms a straight line. The nature of this plot is such that its extrapolation to point where p/ztp = 0 will give initial moles in place. Putting initial pressure/initial two-phase deviation factor (pi/ztp,i (known parameter and estimated initial moles (ni into the material balance equation, average reservoir pressure can be determined. A main assumption behind the method is that the region where both gas and condensate phases are mobile is of negligible size compared to the reservoir. The approach is quite simple and calculations are much easier than the previous work. It provides a practical engineering tool for industry studies as it requires data which are generally available in normal production

  18. Seismic rehabilitation and analysis of Chaohe earth dam

    Science.gov (United States)

    Fu, Lei; Zeng, Xiangwu

    2005-12-01

    Stability of earth dams during earthquakes has been a major concern for geotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the suburb of Beijing, China, during the 1976 Tangshan Earthquake. The gravelly soil with loose initial condition liquefied under relatively small ground vibration. In recent years, a major seismic rehabilitation project was carried out on a similar earth dam nearby using dumped quarry stone. Seismic stability analysis was carried out using model test, finite element simulation, and pseudo-static slope stability program after taking into account the influence of excess pore pressure.

  19. Research of Human Postural Balance Parameters

    Directory of Open Access Journals (Sweden)

    Julius Griškevičius

    2011-02-01

    Full Text Available In present article postural balance between subjects with stroke and healthy subjects, is being investigated with eyes opened and eyes closed. In the research participated 30 healthy subjects and 15 subjects with stroke. At the same time two experimental measurements were performed – postural balance was measured using balance platform and oscillations of the centre of mass were observed using two-axial accelerometer. It was noted, that amplitudes of subjects with stroke were larger almost two times than control group’s of healthy subjects. It was find out, that ratios of pressure distribution on both left and right legs are in range from 1 to 0.9 for healthy subjects, and ratios below 0.9 are common for subjects with stroke. When subjects were standing with eyes closed, sway amplitudes were higher and the ratios of load distribution on left and right legs were lower.Article in Lithuanian

  20. Earth's Paleomagnetosphere and Planetary Habitability

    Science.gov (United States)

    Tarduno, J. A.; Blackman, E. G.; Oda, H.; Bono, R. K.; Carroll-Nellenback, J.; Cottrell, R. D.; Nimmo, F.

    2017-12-01

    The geodynamo is thought to play an important role in protecting Earth's hydrosphere, vital for life as we know it, from loss due to the erosive potential of the solar wind. Here we consider the mechanisms and history of this shielding. A larger core dynamo magnetic field strength provides more pressure to abate the solar wind dynamic pressure, increasing the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. The important variable is not mass capture but energy transfer, which does not scale linearly with magnetosphere size. Moreover, the ordered field provides the magnetic topology for recapturing atmospheric components in the opposite hemisphere such that the net global loss might not be greatly affected. While a net protection role for magnetospheres is suggested, forcing by the solar wind will change with stellar age. Paleomagnetism utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a reduced magnetopause of 5 Earth radii, implying the potential for some atmospheric loss. Terrestrial zircons from the Jack Hills (Western Australia) and other localities host magnetic inclusions, whose magnetization has now been recorded by a new generation of ultra-sensitive 3-component SQUID magnetometer (U. Rochester) and SQUID microscope (GSJ/AIST). Paleointensity data suggest the presence of a terrestrial dynamo and magnetic shielding for Eoarchean to Hadean times, at ages as old as 4.2 billion years ago. However, the magnetic data suggest that for intervals >100,000 years long, magnetopause standoff distances may have reached 3 to 4 Earth radii or less. The early inception of the geodynamo, which probably occurred shortly after the lunar-forming impact, its continuity, and an early robust hydrosphere, appear to be key ingredients for Earth's long-term habitability.

  1. The Precession Index and a Nonlinear Energy Balance Climate Model

    Science.gov (United States)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  2. Atmospheres of partially differentiated super-Earth exoplanets

    Science.gov (United States)

    Schaefer, Laura; Sasselov, Dimitar

    2015-11-01

    Terrestrial exoplanets have been discovered in a range of sizes, densities and orbital locations that defy our expectations based upon the Solar System. Planets discovered to date with radii less than ~1.5-1.6 Earth radii all seem to fall on an iso-density curve with the Earth [1]. However, mass and radius determinations, which depend on the known properties of the host star, are not accurate enough to distinguish between a fully differentiated three-layer planet (core, mantle, ocean/atmosphere) and an incompletely differentiated planet [2]. Full differentiation of a planet will depend upon the conditions at the time of accretion, including the abundance of short-lived radioisotopes, which will vary from system to system, as well as the number of giant impacts the planet experiences. Furthermore, separation of metal and silicates at the much larger pressures found inside super-Earths will depend on how the chemistry of these materials change at high pressures. There are therefore hints emerging that not all super-Earths will be fully differentiated. Incomplete differentiation will result in a more reduced mantle oxidation state and may have implications for the composition of an outgassed atmosphere. Here we will present the first results from a chemical equilibrium model of the composition of such an outgassed atmosphere and discuss the possibility of distinguishing between fully and incompletely differentiated planets through atmospheric observations.[1] Rogers, L. 2015. ApJ, 801, 41. [2] Zeng, L. & Sasselov, D. 2013. PASP, 125, 227.

  3. Convergent evidence for widespread rock nitrogen sources in Earth's surface environment.

    Science.gov (United States)

    Houlton, B Z; Morford, S L; Dahlgren, R A

    2018-04-06

    Nitrogen availability is a pivotal control on terrestrial carbon sequestration and global climate change. Historical and contemporary views assume that nitrogen enters Earth's land-surface ecosystems from the atmosphere. Here we demonstrate that bedrock is a nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global terrestrial environment. Evidence drawn from the planet's nitrogen balance, geochemical proxies, and our spatial weathering model reveal that ~19 to 31 teragrams of nitrogen are mobilized from near-surface rocks annually. About 11 to 18 teragrams of this nitrogen are chemically weathered in situ, thereby increasing the unmanaged (preindustrial) terrestrial nitrogen balance from 8 to 26%. These findings provide a global perspective to reconcile Earth's nitrogen budget, with implications for nutrient-driven controls over the terrestrial carbon sink. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. The balanced scorecard: sustainable performance assessment for forensic laboratories.

    Science.gov (United States)

    Houck, Max; Speaker, Paul J; Fleming, Arron Scott; Riley, Richard A

    2012-12-01

    The purpose of this article is to introduce the concept of the balanced scorecard into the laboratory management environment. The balanced scorecard is a performance measurement matrix designed to capture financial and non-financial metrics that provide insight into the critical success factors for an organization, effectively aligning organization strategy to key performance objectives. The scorecard helps organizational leaders by providing balance from two perspectives. First, it ensures an appropriate mix of performance metrics from across the organization to achieve operational excellence; thereby the balanced scorecard ensures that no single or limited group of metrics dominates the assessment process, possibly leading to long-term inferior performance. Second, the balanced scorecard helps leaders offset short term performance pressures by giving recognition and weight to long-term laboratory needs that, if not properly addressed, might jeopardize future laboratory performance. Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Customized Noise-Stimulation Intensity for Bipedal Stability and Unipedal Balance Deficits Associated With Functional Ankle Instability

    Science.gov (United States)

    Ross, Scott E.; Linens, Shelley W.; Wright, Cynthia J.; Arnold, Brent L.

    2013-01-01

    Context: Stochastic resonance stimulation (SRS) administered at an optimal intensity could maximize the effects of treatment on balance. Objective: To determine if a customized optimal SRS intensity is better than a traditional SRS protocol (applying the same percentage sensory threshold intensity for all participants) for improving double- and single-legged balance in participants with or without functional ankle instability (FAI). Design: Case-control study with an embedded crossover design. Setting: Laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women; age = 22 ± 2 years, height = 170 ± 7 cm, mass = 64 ± 10 kg) and 12 participants (6 men, 6 women; age = 23 ± 3 years, height = 174 ± 8 cm, mass = 69 ± 10 kg) with FAI. Intervention(s): The SRS optimal intensity level was determined by finding the intensity from 4 experimental intensities at the percentage sensory threshold (25% [SRS25], 50% [SRS50], 75% [SRS75], 90% [SRS90]) that produced the greatest improvement in resultant center-of-pressure velocity (R-COPV) over a control condition (SRS0) during double-legged balance. We examined double- and single-legged balance tests, comparing optimal SRS (SRSopt1) and SRS0 using a battery of center-of-pressure measures in the frontal and sagittal planes. Main Outcome Measure(s): Anterior-posterior (A-P) and medial-lateral (M-L) center-of-pressure velocity (COPV) and center-of-pressure excursion (COPE), R-COPV, and 95th percentile center-of-pressure area ellipse (COPA-95). Results: Data were organized into bins that represented optimal (SRSopt1), second (SRSopt2), third (SRSopt3), and fourth (SRSopt4) improvement over SRS0. The SRSopt1 enhanced R-COPV (P ≤ .05) over SRS0 and other SRS conditions (SRS0 = 0.94 ± 0.32 cm/s, SRSopt1 = 0.80 ± 0.19 cm/s, SRSopt2 = 0.88 ± 0.24 cm/s, SRSopt3 = 0.94 ± 0.25 cm/s, SRSopt4 = 1.00 ± 0.28 cm/s). However, SRS did not improve R-COPV over SRS0 when data were categorized by sensory threshold

  6. A contribution to the validation of the Wii Balance Board for the assessment of standing balance.

    Science.gov (United States)

    Pavan, Piero; Cardaioli, Matteo; Ferri, Ilaria; Gobbi, Erica; Carraro, Attilio

    2015-01-01

    Valid and reliable accessible measures of balance are required in a health-related fitness test battery, both in the general population and in groups with special needs. For this purpose, the capability of the Wii Balance Board (WBB) in evaluating standing balance was analysed and compared with a laboratory-graded force platform (FP). A 30-s double limb standing test with open and closed eyes was performed by 28 individuals (12 male and 16 female, mean age = 23.8, SD = ±2.7 years). A simple method of acquisition of the centre of pressure (CoP) over time was applied to compare WBB and FP simultaneously on the same signal. User-defined software was developed to obtain the CoP from WBB over time and the resulting related measures and graphical representations. The comparison of measures, such as sway path and maximum oscillations along the anterior-posterior and medial-lateral direction, obtained with the FP and the WBB shows that the latter, in conjunction with the user-defined developed software, can be appropriate, considering prescribed limits, and an easy-to-use tool for evaluating standing balance.

  7. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance.

    Science.gov (United States)

    Clark, Ross A; Bryant, Adam L; Pua, Yonghao; McCrory, Paul; Bennell, Kim; Hunt, Michael

    2010-03-01

    Impaired standing balance has a detrimental effect on a person's functional ability and increases their risk of falling. There is currently no validated system which can precisely quantify center of pressure (COP), an important component of standing balance, while being inexpensive, portable and widely available. The Wii Balance Board (WBB) fits these criteria, and we examined its validity in comparison with the 'gold standard'-a laboratory-grade force platform (FP). Thirty subjects without lower limb pathology performed a combination of single and double leg standing balance tests with eyes open or closed on two separate occasions. Data from the WBB were acquired using a laptop computer. The test-retest reliability for COP path length for each of the testing devices, including a comparison of the WBB and FP data, was examined using intraclass correlation coefficients (ICC), Bland-Altman plots (BAP) and minimum detectable change (MDC). Both devices exhibited good to excellent COP path length test-retest reliability within-device (ICC=0.66-0.94) and between-device (ICC=0.77-0.89) on all testing protocols. Examination of the BAP revealed no relationship between the difference and the mean in any test, however the MDC values for the WBB did exceed those of the FP in three of the four tests. These findings suggest that the WBB is a valid tool for assessing standing balance. Given that the WBB is portable, widely available and a fraction of the cost of a FP, it could provide the average clinician with a standing balance assessment tool suitable for the clinical setting. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  9. People with chronic low back pain have poorer balance than controls in challenging tasks.

    Science.gov (United States)

    da Silva, Rubens A; Vieira, Edgar R; Fernandes, Karen B P; Andraus, Rodrigo A; Oliveira, Marcio R; Sturion, Leandro A; Calderon, Mariane G

    2018-06-01

    To compare the balance of individuals with and without chronic low back pain during five tasks. The participants were 20 volunteers, 10 with and 10 without nonspecific chronic low back pain, mean age 34 years, 50% females. The participants completed the following balance tasks on a force platform in random order: (1) two-legged stance with eyes open, (2) two-legged stance with eyes closed, (3) semi-tandem with eyes open, (4) semi-tandem with eyes closed and (5) one-legged stance with eyes open. The participants completed three 60-s trials of tasks 1-4, and three 30-s trials of task 5 with 30-s rests between trials. The center of pressure area, velocity and frequency in the antero-posterior and medio-lateral directions were computed during each task, and compared between groups and tasks. Participants with chronic low back pain presented significantly larger center of pressure area and higher velocity than the healthy controls (p chronic low back pain group than two-legged stance tasks 1 and 2 (effect size >1.37 vs. effect size chronic low back pain presented poorer postural control using center of pressure measurements than the healthy controls, mainly during more challenging balance tasks such as semi-tandem and one-legged stance conditions. Implications for Rehabilitation People with chronic low back had poorer balance than those without it. Balance tasks need to be sensitive to capture impairments. Balance assessments during semi-tandem and one-legged stance were the most sensitive tasks to determine postural control deficit in people with chronic low back. Balance assessment should be included during rehabilitation programs for individuals with chronic low back pain for better clinical decision making related to balance re-training as necessary.

  10. Plasma sheet pressure anisotropies

    International Nuclear Information System (INIS)

    Stiles, G.S.; Hones, E.W. Jr; Bame, S.J.; Asbridge, J.R.

    1978-01-01

    The ecliptic plane components of the pressure tensors for low-energy ( or =1.2 approximately 25% of the time. Due to the low energy density of the electrons, however, this anisotropy is not itself sufficient to balance the tension of the magnetic field

  11. Entropy of balance - some recent results

    Directory of Open Access Journals (Sweden)

    Laxåback Gerd

    2010-07-01

    Full Text Available Abstract Background Entropy when applied to biological signals is expected to reflect the state of the biological system. However the physiological interpretation of the entropy is not always straightforward. When should high entropy be interpreted as a healthy sign, and when as marker of deteriorating health? We address this question for the particular case of human standing balance and the Center of Pressure data. Methods We have measured and analyzed balance data of 136 participants (young, n = 45; elderly, n = 91 comprising in all 1085 trials, and calculated the Sample Entropy (SampEn for medio-lateral (M/L and anterior-posterior (A/P Center of Pressure (COP together with the Hurst self-similariy (ss exponent α using Detrended Fluctuation Analysis (DFA. The COP was measured with a force plate in eight 30 seconds trials with eyes closed, eyes open, foam, self-perturbation and nudge conditions. Results 1 There is a significant difference in SampEn for the A/P-direction between the elderly and the younger groups Old > young. 2 For the elderly we have in general A/P > M/L. 3 For the younger group there was no significant A/P-M/L difference with the exception for the nudge trials where we had the reverse situation, A/P Eyes Open. 5 In case of the Hurst ss-exponent we have for the elderly, M/L > A/P. Conclusions These results seem to be require some modifications of the more or less established attention-constraint interpretation of entropy. This holds that higher entropy correlates with a more automatic and a less constrained mode of balance control, and that a higher entropy reflects, in this sense, a more efficient balancing.

  12. Interaction analysis of back-to-back mechanically stabilized earth walls

    Directory of Open Access Journals (Sweden)

    Sadok Benmebarek

    2016-10-01

    Full Text Available Back-to-back mechanically stabilized earth walls (BBMSEWs are encountered in bridge approaches, ramp ways, rockfall protection systems, earth dams, levees and noise barriers. However, available design guidelines for BBMSEWs are limited and not applicable to numerical modeling when back-to-back walls interact with each other. The objective of this paper is to investigate, using PLAXIS code, the effects of the reduction in the distance between BBMSEW, the reinforcement length, the quality of backfill material and the connection of reinforcements in the middle, when the back-to-back walls are close. The results indicate that each of the BBMSEWs behaves independently if the width of the embankment between mechanically stabilized earth walls is greater than that of the active zone. This is in good agreement with the result of FHWA design guideline. However, the results show that the FHWA design guideline underestimates the lateral earth pressure when back-to-back walls interact with each other. Moreover, for closer BBMSEWs, FHWA design guideline strongly overestimates the maximum tensile force in the reinforcement. The investigation of the quality of backfill material shows that the minor increase in embankment cohesion can lead to significant reductions in both the lateral earth pressure and the maximum tensile force in geosynthetic. When the distance between the two earth walls is close to zero, the connection of reinforcement between back-to-back walls significantly improves the factor of safety.

  13. Medial shoe-ground pressure and specific running injuries: A 1-year prospective cohort study.

    Science.gov (United States)

    Brund, René B K; Rasmussen, Sten; Nielsen, Rasmus O; Kersting, Uwe G; Laessoe, Uffe; Voigt, Michael

    2017-09-01

    Achilles tendinitis, plantar fasciopathy and medial tibial stress syndrome injuries (APM-injuries) account for approximately 25% of the total number of running injuries amongst recreational runners. Reports on the association between static foot pronation and APM-injuries are contradictory. Possibly, dynamic measures of pronation may display a stronger relationship with the risk of APM-injuries. Therefore, the purpose of the present study was to investigate if running distance until the first APM-injury was dependent on the foot balance during stance phase in recreational male runners. Prospective cohort study. Foot balance for both feet was measured during treadmill running at the fastest possible 5000-m running pace in 79 healthy recreational male runners. Foot balance was calculated by dividing the average of medial pressure with the average of lateral pressure. Foot balance was categorized into those which presented a higher lateral shod pressure (LP) than medial pressure, and those which presented a higher medial shod pressure (MP) than lateral pressure during the stance phase. A time-to-event model was used to compare differences in incidence between foot balance groups. Compared with the LP-group (n=59), the proportion of APM-injuries was greater in the MP-group (n=99) after 1500km of running, resulting in a cumulative risk difference of 16%-points (95% CI=3%-point; 28%-point, p=0.011). Runners displaying a more medial pressure during stance phase at baseline sustained a greater amount of APM-injuries compared to those displaying a lateral shod pressure during stance phase. Prospective studies including a greater amount of runners are needed to confirm this relationship. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. MODEL SPECTRA OF THE FIRST POTENTIALLY HABITABLE SUPER-EARTH-Gl581d

    International Nuclear Information System (INIS)

    Kaltenegger, Lisa; Segura, AntIgona; Mohanty, Subhanjoy

    2011-01-01

    Gl581d has a minimum mass of 7 M Earth and is the first detected potentially habitable rocky Super-Earth. Our models confirm that a habitable atmosphere can exist on Gl581d. We derive spectroscopic features for atmospheres assuming an Earth-like composition for this planet, from high-oxygen atmosphere analogous to Earth's to high-CO 2 atmospheres with and without biotic oxygen concentrations. We find that a minimum CO 2 partial pressure of about 7 bar, in an atmosphere with a total surface pressure of 7.6 bar, is needed to maintain a mean surface temperature above freezing on Gl581d. We model transmission and emergent synthetic spectra from 0.4 μm to 40 μm and show where indicators of biological activities in such a planet's atmosphere could be observed by future ground- and space-based telescopes. The model we present here only represents one possible nature-an Earth-like composition-of a planet like Gl581d in a wide parameter space. Future observations of atmospheric features can be used to examine if our concept of habitability and its dependence on the carbonate-silicate cycle is correct, and assess whether Gl581d is indeed a habitable Super-Earth.

  15. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  16. The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle.

    Science.gov (United States)

    Oganov, A R; Brodholt, J P; Price, G D

    2001-06-21

    The temperature anomalies in the Earth's mantle associated with thermal convection can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800 K at 1,000 km, 1,500 K at 2,000 km, and possibly over 2,000 K at the core-mantle boundary.

  17. Energy Balance, Climate, and Life - Work of M. Budyko

    Science.gov (United States)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  18. Energy Balance, Climate, and Life \\-- Work of M. Budyko

    Science.gov (United States)

    Cahalan, R. F.

    2003-12-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at the age of 81 in St. Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth's biosphere.

  19. Optimized balance rehabilitation training strategy for the elderly through an evaluation of balance characteristics in response to dynamic motions

    Science.gov (United States)

    Jung, HoHyun; Chun, Keyoung Jin; Hong, Jaesoo; Lim, Dohyung

    2015-01-01

    Balance is important in daily activities and essential for maintaining an independent lifestyle in the elderly. Recent studies have shown that balance rehabilitation training can improve the balance ability of the elderly, and diverse balance rehabilitation training equipment has been developed. However, there has been little research into optimized strategies for balance rehabilitation training. To provide an optimized strategy, we analyzed the balance characteristics of participants in response to the rotation of a base plate on multiple axes. Seven male adults with no musculoskeletal or nervous system-related diseases (age: 25.5±1.7 years; height: 173.9±6.4 cm; body mass: 71.3±6.5 kg; body mass index: 23.6±2.4 kg/m2) were selected to investigate the balance rehabilitation training using customized rehabilitation equipment. Rotation of the base plate of the equipment was controlled to induce dynamic rotation of participants in the anterior–posterior, right-diagonal, medial–lateral, and left-diagonal directions. We used a three-dimensional motion capture system employing infrared cameras and the Pedar Flexible Insoles System to characterize the major lower-extremity joint angles, center of body mass, and center of pressure. We found statistically significant differences between the changes in joint angles in the lower extremities in response to dynamic rotation of the participants (P0.05). These results indicate that optimizing rotation control of the base plate of balance rehabilitation training equipment to induce anterior–posterior and medial–lateral dynamic rotation preferentially can lead to effective balance training. Additional tests with varied speeds and ranges of angles of base plate rotation are expected to be useful as well as an analysis of the balance characteristics considering a balance index that reflects the muscle activity and cooperative characteristics. PMID:26508847

  20. Digital Earth reloaded – Beyond the next generation

    International Nuclear Information System (INIS)

    Ehlers, M; Woodgate, P; Annoni, A; Schade, S

    2014-01-01

    Digital replicas (or 'mirror worlds') of complex entities and systems are now routine in many fields such as aerospace engineering; archaeology; medicine; or even fashion design. The Digital Earth (DE) concept as a digital replica of the entire planet occurs in Al Gore's 1992 book Earth in the Balance and was popularized in his speech at the California Science Center in January 1998. It played a pivotal role in stimulating the development of a first generation of virtual globes, typified by Google Earth that achieved many elements of this vision. Almost 15 years after Al Gore's speech, the concept of DE needs to be re-evaluated in the light of the many scientific and technical developments in the fields of information technology, data infrastructures, citizen?s participation, and earth observation that have taken place since. This paper intends to look beyond the next generation predominantly based on the developments of fields outside the spatial sciences, where concepts, software, and hardware with strong relationships to DE are being developed without referring to this term. It also presents a number of guiding criteria for future DE developments

  1. Accretion disc origin of the Earth's water.

    Science.gov (United States)

    Vattuone, Luca; Smerieri, Marco; Savio, Letizia; Asaduzzaman, Abu Md; Muralidharan, Krishna; Drake, Michael J; Rocca, Mario

    2013-07-13

    Earth's water is conventionally believed to be delivered by comets or wet asteroids after the Earth formed. However, their elemental and isotopic properties are inconsistent with those of the Earth. It was thus proposed that water was introduced by adsorption onto grains in the accretion disc prior to planetary growth, with bonding energies so high as to be stable under high-temperature conditions. Here, we show both by laboratory experiments and numerical simulations that water adsorbs dissociatively on the olivine {100} surface at the temperature (approx. 500-1500 K) and water pressure (approx. 10⁻⁸ bar) expected for the accretion disc, leaving an OH adlayer that is stable at least up to 900 K. This may result in the formation of many Earth oceans, provided that a viable mechanism to produce water from hydroxyl exists. This adsorption process must occur in all disc environments around young stars. The inevitable conclusion is that water should be prevalent on terrestrial planets in the habitable zone around other stars.

  2. Analysis of Human Standing Balance by Largest Lyapunov Exponent

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2015-01-01

    Full Text Available The purpose of this research is to analyse the relationship between nonlinear dynamic character and individuals’ standing balance by the largest Lyapunov exponent, which is regarded as a metric for assessing standing balance. According to previous study, the largest Lyapunov exponent from centre of pressure time series could not well quantify the human balance ability. In this research, two improvements were made. Firstly, an external stimulus was applied to feet in the form of continuous horizontal sinusoidal motion by a moving platform. Secondly, a multiaccelerometer subsystem was adopted. Twenty healthy volunteers participated in this experiment. A new metric, coordinated largest Lyapunov exponent was proposed, which reflected the relationship of body segments by integrating multidimensional largest Lyapunov exponent values. By using this metric in actual standing performance under sinusoidal stimulus, an obvious relationship between the new metric and the actual balance ability was found in the majority of the subjects. These results show that the sinusoidal stimulus can make human balance characteristics more obvious, which is beneficial to assess balance, and balance is determined by the ability of coordinating all body segments.

  3. Interface Evolution During Transient Pressure Solution Creep

    Science.gov (United States)

    Dysthe, D. K.; Podladchikov, Y. Y.; Renard, F.; Jamtveit, B.; Feder, J.

    When aggregates of small grains are pressed together in the presence of small amounts of solvent the aggregate compacts and the grains tend to stick together. This hap- pens to salt and sugar in humid air, and to sediments when buried in the Earths crust. Stress concentration at the grain contacts cause local dissolution, diffusion of the dissolved material out of the interface and deposition on the less stressed faces of the grains{1}. This process, in geology known as pressure solution, plays a cen- tral role during compaction of sedimentary basins{1,2}, during tectonic deformation of the Earth's crust{3}, and in strengthening of active fault gouges following earth- quakes{4,5}. Experimental data on pressure solution has so far not been sufficiently accurate to understand the transient processes at the grain scale. Here we present ex- perimental evidence that pressure solution creep does not establish a steady state inter- face microstructure as previously thought. Conversely, cumulative creep strain and the characteristic size of interface microstructures grow as the cubic root of time. A sim- ilar transient phenomenon is known in metallurgy (Andrade creep) and is explained here using an analogy with spinodal dewetting. 1 Weyl, P. K., Pressure solution and the force of crystallization - a phenomenological theory. J. Geophys. Res., 64, 2001-2025 (1959). 2 Heald, M. T., Cementation of Simpson and St. Peter Sandstones in parts of Okla- homa, Arkansas and Missouri, J. Geol. Chicago, 14, 16-30 (1956). 3 Schwartz, S., Stöckert, B., Pressure solution in siliciclastic HP-LT metamorphic rocks constraints on the state of stress in deep levels of accretionary complexes. Tectonophysics, 255, 203-209 (1996). 4 Renard, F., Gratier, J.P., Jamtveit, B., Kinetics of crack-sealing, intergranular pres- sure solution, and compaction around active faults. J. Struct. Geol., 22, 1395-1407, (2000). 5 Miller, S. A., BenZion, Y., Burg, J. P.,A three-dimensional fluid-controlled earth

  4. Chemical Reactions Between Fe and H2O up to Megabar Pressures and Implications for Water Storage in the Earth's Mantle and Core

    Science.gov (United States)

    Yuan, Liang; Ohtani, Eiji; Ikuta, Daijo; Kamada, Seiji; Tsuchiya, Jun; Naohisa, Hirao; Ohishi, Yasuo; Suzuki, Akio

    2018-02-01

    We investigated the phase relations of the Fe-H2O system at high pressures based on in situ X-ray diffraction experiments and first-principles calculations and demonstrate that FeHx and FeO are present at pressures less than 78 GPa. A recently reported pyrite-structured FeO2 was identified in the Fe-H2O system at pressures greater than 78 GPa after laser heating. The phase observed in this study has a unit cell volume 8%-11% larger than that of FeO2, produced in the Fe-O binary system reported previously, suggesting that hydrogen might be retained in a FeO2Hx crystal structure. Our observations indicate that H2O is likely introduced into the deep Earth through reaction between iron and water during the accretion and separation of the metallic core. Additionally, reaction between Fe and H2O would occur at the core-mantle boundary, given water released from hydrous subducting slabs that intersect with the metallic core. Accumulation of volatile-bearing iron compounds may provide new insights into the enigmatic seismic structures observed at the base of the lower mantle.

  5. Measuring N2 Pressure Using Cyanobacteria

    Science.gov (United States)

    Silverman, S. N.; Kopf, S.; Gordon, R.; Bebout, B.; Som, S.

    2017-11-01

    We have shown that cyanobacteria can record information about N2 partial pressure both morphologically and isotopically, and thus may serve as useful geobarometers to help us better understand Earth's ancient atmosphere.

  6. Gas conditioning and gas balance in tokamak

    International Nuclear Information System (INIS)

    Grisolia, C.; Bonnel, P.; Grosman, A.; Rodriguez, L.; Bardon, J.

    1990-01-01

    An accurate barometry is very helpful in analysing the plasma wall interaction processes in controlled fusion devices. In Tore Supra, residual gas analysis and various types of pressure gauges allow to monitor the various conditioning processes and the global particle balance. In this paper, measurements are described and analysis of two examples is given [fr

  7. Solar energy resources not accounted in Brazilian National Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Paulo Cesar da Costa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Emails: pinheiro@netuno.Lcc.ufmg.br, pinheiro@demec.ufmg.br

    2009-07-01

    The main development vector of a society is the energy. The solar energy is the main energy source on the planet earth. Brazil is a tropical country, and the incident solar energy on its soil (15 trillion MWh/year) is 20,000 times its annual oil production. Several uses of solar energy are part of our lives in a so natural way that it despised in the consumption and use energy balance. In Brazil, solar energy is used directly in many activities and not accounted for in Energy Balance (BEN 2007), consisting of a virtual power generation. This work aims to make a preliminary assessment of solar energy used in different segments of the Brazilian economy. (author)

  8. Perceived Work-Life Balance Ability, Job Satisfaction, and Professional Commitment among Agriculture Teachers

    Science.gov (United States)

    Sorensen, Tyson J.; McKim, Aaron J.

    2014-01-01

    Agriculture teachers participate in various work and life roles, which can create challenges when trying to balance the pressures and responsibilities associated with each role. When one is unable to balance and prioritize between roles, both satisfaction and professional commitment may be reduced. The purpose of this study was to describe Oregon…

  9. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  10. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  11. Balance point characterization of interstitial fluid volume regulation.

    Science.gov (United States)

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M

    2009-07-01

    The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.

  12. Flute instability in the plasma shell of the earth's magnetosphere

    International Nuclear Information System (INIS)

    Ivanov, V.N.; Pokhotelov, O.A.

    1987-01-01

    In the plasma shell of the earth's magnetosphere, the surfaces of constant pressure may not coincide with surfaces of constant specific volume. This circumstance forces a reexamination of the theory for the flute instability, in which the pressure has been assumed to remain constant on surfaces of constant specific volume. The MHD equations for flute waves in a curvilinear magnetic field are used to show that an instability of a new type, with a pressure which does not remain constant on surfaces of constant specific volume, can occur in the plasma shell of the magnetosphere. An expression is derived for the growth rate of this instability. Analysis of the equation also shows that perturbations with wavelengths shorter than the ion Larmor radius are stable by virtue of magnetodrift effects. The growth rates of the flute instabilities are calculated for both a dipole magnetic field and an arbitrary magnetic-field configuration. Growth rates calculated for typical values of the characteristics of the earth's plasma shell are reported

  13. Effects of pressurization procedures on calibration results for precise pressure transducers

    International Nuclear Information System (INIS)

    Kajikawa, Hiroaki; Kobata, Tokihiko

    2010-01-01

    The output of electromechanical pressure gauges depends on not only the currently applied pressure, but also the pressurization history. Thus, the calibration results of gauges are affected by the pressurization procedure. In this paper, among several important factors influencing the results, we report the effects of the interval between the calibration cycles and the effects of the preliminary pressurizations. In order to quantitatively evaluate these effects, we developed a fully automated system that uses a pressure balance to calibrate pressure gauges. Subsequently, gauges containing quartz Bourdon-type pressure transducers were calibrated in a stepwise manner for pressures between 10 MPa and 100 MPa. The typical standard deviation of the data over three cycles was reduced to a few parts per million (ppm). The interval between the calibration cycles, which ranges from zero to more than 12 h, exerts a strong influence on the results in the process of increasing the pressure, where at 10 MPa the maximum difference between the results was approximately 40 ppm. The preliminary pressurization immediately before the calibration cycle reduces the effects of the interval on the results in certain cases. However, in turn, the influence of the waiting time between the preliminary pressurization and the main calibration cycle becomes strong. In the present paper, we outline several possible measures for obtaining calibration results with high reproducibility

  14. Spreadsheet eases heat balance, payback calculations

    International Nuclear Information System (INIS)

    Conner, K.P.

    1992-01-01

    This paper reports that a generalized Lotus type spreadsheet program has been developed to perform the heat balance and simple payback calculations for various turbine-generator (TG) inlet steam pressures. It can be used for potential plant expansions or new cogeneration installations. The program performs the basic heat balance calculations that are associated with turbine-generator, feedwater heating process steam requirements and desuperheating. The printout, shows the basic data and formulation used in the calculations. The turbine efficiency data used are applicable for automatic extraction turbine-generators in the 30-80 MW range. Simple payback calculations are for chemical recovery boilers and power boilers used in the pulp and paper industry. However, the program will also accommodate boilers common to other industries

  15. Postural balance in low back pain patients

    DEFF Research Database (Denmark)

    Maribo, Thomas; Stengaard-Pedersen, Kristian; Jensen, Lone Donbæk

    2011-01-01

    Low back pain (LBP) patients have poorer postural control compared to healthy controls, and the importance of assessing and addressing balance is a matter of debate. In the clinic, balance is often tested by means of the one leg stand test (OLST) while research often employs center of pressure (Co......P) on a force platform. Portable force platforms might be of clinical relevance, but their reliability for LBP patients in a clinical setting has not been demonstrated. As LBP patients are more dependent on vision compared to healthy controls, the ratio of tests performed with eyes open and eyes closed (Romberg...... Ratio) might be of clinical interest. This study aimed to assess postural balance in LBP patients by analyzing intra-session reliability of CoP parameters on a portable force platform, the Romberg Ratio, and the OLST. Furthermore, we aimed to determine whether CoP parameters and OLST measure identical...

  16. A Cloud Top Pressure Algorithm for DSCOVR-EPIC

    Science.gov (United States)

    Min, Q.; Morgan, E. C.; Yang, Y.; Marshak, A.; Davis, A. B.

    2017-12-01

    The Earth Polychromatic Imaging Camera (EPIC) sensor on the Deep Space Climate Observatory (DSCOVR) satellite presents unique opportunities to derive cloud properties of the entire daytime Earth. In particular, the Oxygen A- and B-band and corresponding reference channels provide cloud top pressure information. In order to address the in-cloud penetration depth issue—and ensuing retrieval bias—a comprehensive sensitivity study has been conducted to simulate satellite-observed radiances for a wide variety of cloud structures and optical properties. Based on this sensitivity study, a cloud top pressure algorithm for DSCOVR-EPIC has been developed. Further, the algorithm has been applied to EPIC measurements.

  17. Can balance trampoline training promote motor coordination and balance performance in children with developmental coordination disorder?

    Science.gov (United States)

    Giagazoglou, Paraskevi; Sidiropoulou, Maria; Mitsiou, Maria; Arabatzi, Fotini; Kellis, Eleftherios

    2015-01-01

    The present study aimed to examine movement difficulties among typically developing 8- to 9-year-old elementary students in Greece and to investigate the possible effects of a balance training program to those children assessed with Developmental Coordination Disorder (DCD). The Body Coordination Test for Children (BCTC; Körperkoordinationstest fur Kinder, KTK, Kiphard & Schilling, 1974) was chosen for the purposes of this study and 20 children out of the total number of 200, exhibited motor difficulties indicating a probable DCD disorder. The 20 students diagnosed with DCD were equally separated into two groups where each individual of the experimental group was paired with an individual of the control group. The intervention group attended a 12-week balance training program while students of the second - control group followed the regular school schedule. All participants were tested prior to the start and after the end of the 12-week period by performing static balance control tasks while standing on an EPS pressure platform and structured observation of trampoline exercises while videotaping. The results indicated that after a 12-week balance training circuit including a trampoline station program, the intervention group improved both factors that were examined. In conclusion, balance training with the use of attractive equipment such as trampoline can be an effective intervention for improving functional outcomes and can be recommended as an alternative mode of physical activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Computational search for rare-earth free hard-magnetic materials

    Science.gov (United States)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  19. Effects of Water-Based Training on Static and Dynamic Balance of Older Women.

    Science.gov (United States)

    Bento, Paulo Cesar Barauce; Lopes, Maria de Fátima A; Cebolla, Elaine Cristine; Wolf, Renata; Rodacki, André L F

    2015-08-01

    The aim of this study was to evaluate the effects of a water-based exercise program on static and dynamic balance. Thirty-six older women were randomly assigned to a water-based training (3 days/week for 12 weeks) or control group. Water level was kept at the level of the xiphoid process and temperature at ∼28-30°C. Each session included aerobic activities and lower limb strength exercises. The medial-lateral, the anterior-posterior amplitude, and displacement of the center of pressure (CP-D) were measured in a quiet standing position (60 sec eyes opened and closed). The dynamic balance and 8-Foot Up-and-Go tests were also applied. Group comparisons were made using two-way analysis of variance (ANOVA) with repeated measures. No differences were found in the center of pressure variables; however, the WBT group showed better performance in the 8 Foot Up-and-Go Test after training (5.61±0.76 vs. 5.18±0.42; pwater-based training was effective in improving dynamic balance, but not static balance.

  20. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance.

    Directory of Open Access Journals (Sweden)

    Pilou L H R Janssens

    Full Text Available BACKGROUND: Addition of capsaicin (CAPS to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. AIM: We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. METHODS: Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions '100%CAPS', '100%Control', '75%CAPS' and '75%Control'. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU with every meal. RESULTS: An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT and resting energy expenditure (REE at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively. Sleeping metabolic rate (SMR at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04. Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03, while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ was more decreased at 75%CAPS (p = 0.04 than at 75%Control (p = 0.05 when compared with 100%Control. Blood pressure did not differ between the four conditions. CONCLUSION: In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. TRIAL REGISTRATION

  1. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, Sebastian

    2014-01-01

    Light scalar fields can drive accelerated expansion of the universe. Hence, scalars are obvious dark energy candidates. To make these models compatible with test of General Relativity in the solar system and fifth force searches on earth, one needs to screen them. One possibility is the chameleon mechanism, which renders an effective mass depending on the local energy density. If chameleons exist, they can be produced in the sun and detected on earth through their radiation pressure. We calculate the solar chameleon spectrum and the sensitivity of an experiment to be carried out at CAST, CERN, utilizing a radiation pressure sensor currently under development at INFN, Trieste. We show that such an experiment will be sensitive to a wide range of model parameters and signifies a pioneering effort searching for chameleons in unprobed paramterspace.

  2. A Reconciled Estimate of Ice-Sheet Mass Balance

    Science.gov (United States)

    Shepherd, Andrew; Ivins, Erik R.; Geruo, A.; Barletta, Valentia R.; Bentley, Mike J.; Bettadpur, Srinivas; Briggs, Kate H.; Bromwich, David H.; Forsberg, Rene; Galin, Natalia; hide

    2012-01-01

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup -1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup -1) to the rate of global sea-level rise.

  3. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth System Models

    OpenAIRE

    A. Gnanadesikan; R. Abernathey; M.-A. Pradal

    2014-01-01

    This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium–heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to b...

  4. Ion Composition and Energization in the Earth's Inner Magnetosphere and the Effects on Ring Current Buildup

    Science.gov (United States)

    Keika, K.; Kistler, L. M.; Brandt, P. C.

    2014-12-01

    In-situ observations and modeling work have confirmed that singly-charged oxygen ions, O+, which are of Earth's ionospheric origin, are heated/accelerated up to >100 keV in the magnetosphere. The energetic O+ population makes a significant contribution to the plasma pressure in the Earth's inner magnetosphere during magnetic storms, although under quiet conditions H+ dominates the plasma pressure. The pressure enhancements, which we term energization, are caused by adiabatic heating through earthward transport of source population in the plasma sheet, local acceleration in the inner magnetosphere and near-Earth plasma sheet, and enhanced ion supply from the topside ionosphere. The key issues regarding stronger O+ energization than H+ are non-adiabatic local acceleration, responsible for increase in O+ temperature, and more significant O+ supply than H+, responsible for increase in O+ density. Although several acceleration mechanisms and O+ supply processes have been proposed, it remains an open question what mechanism(s)/process(es) play the dominant role in stronger O+ energization. In this paper we summarize important spacecraft observations including those from Van Allen Probes, introduces the proposed mechanisms/processes that generate O+-rich energetic plasma population, and outlines possible scenarios of O+ pressure abundance in the Earth's inner magnetosphere.

  5. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  6. Evolution of the Oxidation State of the Earth's Mantle

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  7. Cycle studies: material balance estimation in the domain of pressurized water and boiling water reactors. Experimental qualification

    International Nuclear Information System (INIS)

    Chabert, Christine

    1994-01-01

    This study is concerned with the physics of the fuel cycle the aim being to develop and make recommendations concerning schemes for calculating the neutronics of light water reactor fuel cycles. A preliminary study carried out using the old fuel cycle calculation scheme APOLLO1- KAFKA and the library SERMA79 has shown that for the compositions of totally dissolved assemblies from Pressurized Water Reactors (type 17*17) and also for the first time, for Boiling Water Reactor assemblies (type 8*8), the differences between calculation and measurement are large and must be reduced. The integration of the APOLLO2 neutronics code into the fuel cycle calculation scheme improves the results because it can model the situation more precisely. A comparison between APOLLO1 and APOLLO2 using the same options, demonstrated the consistency of the two methods for PWR and BWR geometries. Following this comparison, we developed an optimised scheme for PWR applications using the library CEA86 and the code APOLLO2. Depending on whether the information required is the detailed distribution of the composition of the irradiated fuel or the average composition (estimation of the total material balance of the fuel assembly), the physics options recommended are different. We show that the use of APOLLO2 and the library CEA86 improves the results and especially the estimation of the Pu 239 content. Concerning the Boiling Water Reactor, we have highlighted the need to treat several axial sections of the fuel assembly (variation of the void-fraction, heterogeneity of composition). A scheme using Sn transport theory, permits one to obtain a better coherence between the consumption of U 235 , the production of plutonium and burnup, and a better estimation of the material balance. (author) [fr

  8. On a role of the Bsub(z) component of interplanetary magnetic field in a force balance in the day time magnetopause

    International Nuclear Information System (INIS)

    Kuznetsova, T.V.

    1980-01-01

    The role of interplanetary magnetic field (IMF) in the force balance in the day time magnetopause is discussed. The effect of the circular DR-current on the balance of pressures in the magnetopause is taken into account in the calculations. It is shown that IMF plays a significant role in the balance of forces in the day time magnetopause. The ratio of magnetic pressure to the thermal pressure of solar wind in subsolar point is k=0.5. The field observed in magnetosphere near the neutral line is lower by the value of transition region field. All the conclusions are obtained for Bsub(z) [ru

  9. Responding to complex societal challenges: A decade of Earth System Science Partnership (ESSP) interdisciplinary research

    NARCIS (Netherlands)

    Ignaciuk, A.; Rice, M.; Bogardi, J.; Canadell, J.G.; Dhakal, S.; Ingram, J.; Leemans, R.; Rosenberg, M.

    2012-01-01

    The Earth system is an integrated, self-regulating system under increasing pressure from anthropogenic transformation. The Earth System Science Partnership (ESSP), which was established by the international global environmental change research programs (i.e., DIVERSITAS, IGBP, IHDP and WCRP)

  10. Intra-session test-retest reliability of magnitude and structure of center of pressure from the Nintendo Wii Balance Board™ for a visually impaired and normally sighted population.

    Science.gov (United States)

    Jeter, Pamela E; Wang, Jiangxia; Gu, Jialiang; Barry, Michael P; Roach, Crystal; Corson, Marilyn; Yang, Lindsay; Dagnelie, Gislin

    2015-02-01

    Individuals with visual impairment (VI) have irreparable damage to one of the input streams contributing to postural stability. Here, we evaluated the intra-session test-retest reliability of the Wii Balance Board (WBB) for measuring Center of Pressure (COP) magnitude and structure, i.e. approximate entropy (ApEn) in fourteen legally blind participants and 21 participants with corrected-to-normal vision. Participants completed a validated balance protocol which included four sensory conditions: double-leg standing on a firm surface with eyes open (EO-firm); a firm surface with eyes closed (EC-firm); a foam surface with EO (EO-foam); and a foam surface with EC (EC-foam). Participants performed the full balance protocol twice during the session, separated by a period of 15min, to determine the intraclass correlation coefficient (ICC). Absolute reliability was determined by the standard error of measurement (SEM). The minimal difference (MD) was estimated to determine clinical significance for future studies. COP measures were derived from data sent by the WBB to a laptop via Bluetooth. COP scores increased with the difficulty of sensory condition indicating WBB sensitivity (all pbalance impairment among VI persons. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Does Nintendo Wii Balance Board improve standing balance? A randomized controlled trial in children with cerebral palsy.

    Science.gov (United States)

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo; Guzman-Muñoz, Eduardo; Soto-Poblete, Alex; Cartes-Velásquez, Ricardo; Elgueta-Cancino, Edith; Cofré Lizama, L Eduardo

    2017-08-01

    Evidence on the effect of systemic exercise programs to improve the standing balance with the Nintendo Wii system is very limited and its post-treatment effectiveness is unknown in cerebral palsy (CP) patients. Primary aim was to compare the effect of Nintendo Wii balance board (Wii-therapy) and standard physiotherapy (SPT), on the performance of standing balance in children and adolescents with CP. Secondary aim was to determine the post-treatment effectiveness of Wii-therapy and SPT. Two-arm, matched-pairs, parallel-groups, randomized, controlled clinical trial. Outpatient Rehabilitation Centre in the city of Talca. Patients with CP type spastic hemiplegia (SHE) and spastic diplegia (SDI), aged 7 to 14 years, and level I or II of GMFCS or GMFCS-ER. Were excluded patients with FSIQWii-therapy (SDI=7; SHE=9) or SPT intervention (SDI=7; SHE=9). In each group, patients received three sessions per week over a period of 6 weeks. Standing balance was assessed at baseline and every 2 weeks. Additionally, two follow-up assessments (4 additional weeks) were performed to determine post-treatment effectiveness. Standing balance was quantified on force platform obtaining the outcomes area of center-of-pressure (CoP) sway (CoPSway), standard deviation in the medial-lateral (SDML) and the anterior-posterior (SDAP) directions, and velocity in both directions (VML and VAP). Compared to SPT, Wii-therapy significantly reduced the CoPSway (P=0.02) and SDAP in the eyes-open condition (P=0.01). However, the effects wane after 2-4 weeks. Post-hoc analysis revealed that only SHE children benefited from Wii-therapy. Wii-therapy was better than SPT in improving standing balance in patients with CP, but improves the balance only in SHE patients. Also, Wii-therapy effectiveness waned 2-4 weeks after the end the intervention. A systematic exercise program like Wii-therapy using the Nintendo Wii Balance Board device can be considered to improves the standing balance in patients with CP

  12. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.R.

    1984-01-01

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  13. Separation method for rare-earths using high-voltage electrophoresis on paper strip

    International Nuclear Information System (INIS)

    Clarence, J.

    1966-01-01

    The equipment includes an electrophoresis set running at 3 000 V and 20 mA. Two cooling plates are used as heat exchanger, and a pneumatic pressure device to insure an uniform pressure on the paper strip laid flat. The mobilities and the separations of the rare earths in lactic, and, α hydroxy-isobutyric acid solutions are investigated on cellulose acetate strip. Better results are obtained with α hydroxy-isobutyric acid. The method is rapid and allows a fine fractionation of rare earth elements within less than an hour. A complete separation of a Ce - Pr - Nd - Pm - Eu mixture, and a Y - Tb mixture is obtained. (author) [fr

  14. Eutectic propeties of primitive Earth's magma ocean

    Science.gov (United States)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and

  15. Comparing postural balance among older adults and Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Isabela Andrelino de Almeida

    Full Text Available ABSTRACT The objective of this study was to compare postural balance among healthy older adults and Parkinson's disease (PD patients during one-legged stance balance. We recruited 36 individuals of both sexes and divided them into two groups: healthy older adults (HG, and individuals with PD (PG. All the participants were assessed through a single-leg balance test, with eyes open, during 30 seconds (30 seconds of rest across trials on a force platform. Balance parameters were computed from mean across trials to quantify postural control: center of pressure (COP area and mean velocity in both directions of movement, anterior-posterior and medial-lateral. Significant differences between-group were reported for area of COP (P=0.002 and mean velocity in anterior-posterior direction (P=0.037, where poor postural control was related to PD patients rather than to healthy individuals. One-legged stance balance was a sensitive task used to discriminate poor postural control in Parkinson individuals.

  16. Accuracy of force and center of pressure measures of the Wii Balance Board.

    Science.gov (United States)

    Bartlett, Harrison L; Ting, Lena H; Bingham, Jeffrey T

    2014-01-01

    The Nintendo Wii Balance Board (WBB) is increasingly used as an inexpensive force plate for assessment of postural control; however, no documentation of force and COP accuracy and reliability is publicly available. Therefore, we performed a standard measurement uncertainty analysis on 3 lightly and 6 heavily used WBBs to provide future users with information about the repeatability and accuracy of the WBB force and COP measurements. Across WBBs, we found the total uncertainty of force measurements to be within ± 9.1N, and of COP location within ± 4.1mm. However, repeatability of a single measurement within a board was better (4.5 N, 1.5mm), suggesting that the WBB is best used for relative measures using the same device, rather than absolute measurement across devices. Internally stored calibration values were comparable to those determined experimentally. Further, heavy wear did not significantly degrade performance. In combination with prior evaluation of WBB performance and published standards for measuring human balance, our study provides necessary information to evaluate the use of the WBB for analysis of human balance control. We suggest the WBB may be useful for low-resolution measurements, but should not be considered as a replacement for laboratory-grade force plates. Published by Elsevier B.V.

  17. Turbine interstage seal with self-balancing capability

    Science.gov (United States)

    Mills, Jacob A; Jones, Russell B; Sexton, Thomas D

    2017-09-26

    An interstage seal for a turbine of a gas turbine engine, the interstage seal having a seal carrier with an axial extending seal tooth movable with a stator of the engine, and a rotor with a seal surface that forms the interstage seal with the seal tooth, where a magnetic force produced by two magnets and a gas force produced by a gas pressure acting on the seal carrier forms a balancing force to maintain a close clearance of the seal without the seal tooth contacting the rotor seal surfaces during engine operation. In other embodiments, two pairs of magnets produce first and second magnetic forces that balance the seal in the engine.

  18. Comparative impacts of Tai Chi, balance training, and a specially-designed yoga program on balance in older fallers.

    Science.gov (United States)

    Ni, Meng; Mooney, Kiersten; Richards, Luca; Balachandran, Anoop; Sun, Mingwei; Harriell, Kysha; Potiaumpai, Melanie; Signorile, Joseph F

    2014-09-01

    To compare the effect of a custom-designed yoga program with 2 other balance training programs. Randomized controlled trial. Research laboratory. A group of older adults (N=39; mean age, 74.15 ± 6.99 y) with a history of falling. Three different exercise interventions (Tai Chi, standard balance training, yoga) were given for 12 weeks. Balance performance was examined during pre- and posttest using field tests, including the 8-foot up-and-go test, 1-leg stance, functional reach, and usual and maximal walking speed. The static and dynamic balances were also assessed by postural sway and dynamic posturography, respectively. Training produced significant improvements in all field tests (Ptime × group interaction were not detected. For postural sway, significant decreases in the area of the center of pressure with eyes open (P=.001) and eyes closed (P=.002) were detected after training. For eyes open, maximum medial-lateral velocity significantly decreased for the sample (P=.013). For eyes closed, medial-lateral displacement decreased for Tai Chi (Ptime on the test (P=.006), and 2 linear measures in lateral (P=.001) and anterior-posterior (P<.001) directions were seen for the sample. Yoga was as effective as Tai Chi and standard balance training for improving postural stability and may offer an alternative to more traditional programs. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    Science.gov (United States)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  20. Salutogenic resources in relation to teachers' work-life balance.

    Science.gov (United States)

    Nilsson, Marie; Blomqvist, Kerstin; Andersson, Ingemar

    2017-01-01

    Experiencing work-life balance is considered a health promoting resource. To counter-balance the negative development of teachers' work situation, salutogenic resources need to be examined among teachers. To examine resources related to teachers' experience of their work-life balance. Using a cross-sectional design, a questionnaire was distributed to 455 teachers in compulsory schools in a Swedish community. A total of 338 teachers participated (74%). A multiple linear regression method was used for the analysis. Four variables in the regression model significantly explained work-life balance and were thereby possible resources: time experience at work; satisfaction with everyday life; self-rated health; and recovery. The strongest association with work-life balance was time experience at work. Except time experience at work, all were individual-related. This study highlights the importance of school management's support in reducing teachers' time pressure. It also emphasizes the need to address teachers' individual resources in relation to work-life balance. In order to support teachers' work-life balance, promote their well-being, and preventing teachers' attrition, we suggest that the school management would benefit from creating a work environment with strengthened resources.

  1. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: afu@jsg.utexas.edu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)

    2016-04-21

    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  2. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    Science.gov (United States)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  3. Policy for Robust Space-based Earth Science, Technology and Applications

    Science.gov (United States)

    Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence

    2013-01-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.

  4. Balancing on a narrow ridge : biomechanics and control

    NARCIS (Netherlands)

    Otten, E.

    1999-01-01

    The balance of standing humans is usually explained by the inverted pendulum model. The subject invokes a horizontal ground-reaction force in this model and controls it by changing the location of the centre of pressure under the foot or feet. In experiments I showed that humans are able to stand on

  5. A point of application study to determine the accuracy, precision and reliability of a low-cost balance plate for center of pressure measurement.

    Science.gov (United States)

    Goble, Daniel J; Khan, Ehran; Baweja, Harsimran S; O'Connor, Shawn M

    2018-04-11

    Changes in postural sway measured via force plate center of pressure have been associated with many aspects of human motor ability. A previous study validated the accuracy and precision of a relatively new, low-cost and portable force plate called the Balance Tracking System (BTrackS). This work compared a laboratory-grade force plate versus BTrackS during human-like dynamic sway conditions generated by an inverted pendulum device. The present study sought to extend previous validation attempts for BTrackS using a more traditional point of application (POA) approach. Computer numerical control (CNC) guided application of ∼155 N of force was applied five times to each of 21 points on five different BTrackS Balance Plate (BBP) devices with a hex-nose plunger. Results showed excellent agreement (ICC > 0.999) between the POAs and measured COP by the BBP devices, as well as high accuracy ( 0.999) providing evidence of almost perfect inter-device reliability. Taken together, these results provide an important, static corollary to the previously obtained dynamic COP results from inverted pendulum testing of the BBP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    Science.gov (United States)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  7. Small Effect of Hydration on Elastic Wave Velocities of Ringwoodite in Earth's Transition Zone

    Science.gov (United States)

    Schulze, K.; Marquardt, H.; Boffa Ballaran, T.; Kurnosov, A.; Kawazoe, T.; Koch-Müller, M.

    2017-12-01

    Ringwoodite can incorporate significant amounts of hydrogen as OH-defects into its crystal structure. The measurement of 1.4 wt.% H20 in a natural ringwoodite diamond inclusion (Pearson et al. 2014) showed that hydrous ringwoodite can exist in the Earth's mantle. Since ringwoodite is considered to be the major phase in the mantle between 520 and 660 km depth it likely plays an important role for Earth's deep water cycle and the mantle water budget. Previous experimental work has shown that hydration reduces seismic wave velocities in ringwoodite, motivating attempts to map the hydration state of the mantle using seismic wave speed variations as depicted by seismic tomography. However, large uncertainties on the actual effects at transition zone pressures and temperatures remain. A major difficulty is the comparability of studies with different experimental setups and pressure- and temperature conditions. Here, we present results from a comparative elasticity study designed to quantify the effects of hydration on the seismic wave velocities of ringwoodite in Earth's transition zone. Focused ion beam cut single-crystals of four samples of either Fo90 or Fo100 ringwoodite with hydration states between 0.21 - 1.71 wt.% H2O were loaded in the pressure chamber of one diamond-anvil cell to ensure identical experimental conditions. Single-crystal Brillouin Spectroscopy and X-ray diffraction measurements were performed at room temperature to a pressure of 22 GPa. Additional experiments at high pressure and temperatures up to 500 K were performed. Our data collected at low pressures show a significant reduction of elastic wave velocities with hydration, consistent with previous work. However, in contrast to previous inferences, our results indicate that pressure significantly reduces the effect of hydration. Based on the outcome of our work, the redution in aggregate velocities caused by 1 wt.% H2O becomes smaller than 1% in ringwoodite at pressures equivalent to the Earth

  8. Correlations between the geomagnetic field variations, the fluctuations of the earth`s rotation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Greiner-Mai, H; Jochmann, H

    1995-03-01

    The amplitude spectra of global geophysical phenomena were investigated to motivate research of physical connections between them. The suggested causality was derived from comparison of the spectra, and from cross correlation functions. The following global parameters were discussed: For the earth rotation by the variations of the length of day, for the geomagnetic variation by the global field intensity, changes of the dipole axis and the westward drift, and for climate change by the atmospheric excitation function derived from air pressure variations, and temperature variations. The model of atmospheric excitation, which can be proved most exactly for the annual variations of length of day, is responsible for the 11 and 22 years periods, too. It failed for longer periods, e.g. partially for the 30 years periods and completely for the 60 to 80 years periods, which were also discovered in the mean temperature and geomagnetic field variations. Therefore, it was suggested that longer periods in climate change and in the variations of the earth`s rotation are caused independently by the same process in the earth core, provided that a physical influence of the geomagnetic field on climate will be accepted in future. The investigation was completed by comparison with the spectra of some local temperature variations in Europe. (orig.)

  9. Acoustic and Thermal Vibrational Behavior of Rare Earth Glasses

    International Nuclear Information System (INIS)

    Senin, H. B.; Kancono, W.; Sidek, H. A. A.

    2007-01-01

    The ultrasonic wave velocity and the thermal expansion of the rare earth glasses have been measured as functions of temperature and pressure to test predictions of the soft potential model for the acoustic and thermal properties. The longitudinal ultrasonic wave velocities increase under pressure. The hydrostatic pressure derivative of the bulk modulus is positive: these glasses show a normal elastic response as compressed. However, the pressure derivative of the shear modulus is negative and small, indicating weak softening of shear modes under pressure. The results found are used to determine the Gruneisen parameters. This is to obtain the acoustic mode contribution to thermal expansion. After subtraction of the relaxation and anharmonic contributions, the temperature dependence of the shear wave ultrasound velocity follows a linear law as predicted by the Soft Potential Model

  10. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    Science.gov (United States)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  11. Balance, Proprioception, and Gross Motor Development of Chinese Children Aged 3 to 6 Years.

    Science.gov (United States)

    Jiang, Gui-Ping; Jiao, Xi-Bian; Wu, Sheng-Kou; Ji, Zhong-Qiu; Liu, Wei-Tong; Chen, Xi; Wang, Hui-Hui

    2018-01-01

    The authors' aim was to find the features of balance, proprioception, and gross motor development of Chinese children 3-6 years old and their correlations, provide theoretical support for promoting children's motor development, and enrich the world theoretical system of motor development. This study used a Tekscan foot pressure measurement instrument (Tekscan, Inc., Boston, MA), walking on a balance beam, Xsens 3-dimensional positional measuring system (Xsens Technologies, Enschede, the Netherlands), and Test of Gross Motor Development-2 to assess static balance, dynamic balance, knee proprioception, and levels of gross motor development (GMD) of 3- to 6-year-old children (n = 60) in Beijing. The results are as follows: children had significant age differences in static balance, dynamic balance, proprioception, and levels of GMD; children had significant gender differences in static balance, proprioception, and levels of GMD; children's static balance, dynamic balance, and proprioception had a very significant positive correlation with GMD (p < .01), but no significant correlation with body mass index.

  12. Reducing maternal mortality: Systolic blood pressure

    African Journals Online (AJOL)

    2006-03-21

    Mar 21, 2006 ... While deaths due to fluid overload have ... of better fluid balance management, we have made .... systolic blood pressure plays a significant role in the .... one looks at the work of Martin et al.5 ... Promoting Healthy Life.

  13. Cenosphere formation from heavy fuel oil: a numerical analysis accounting for the balance between porous shells and internal pressure

    KAUST Repository

    Vanteru, Mahendra Reddy

    2016-01-18

    Heavy fuel oil (HFO) as a fuel in industrial and power generation plants ensures the availability of energy at economy. Coke and cenosphere emissions from HFO combustion need to be controlled by particulate control equipment such as electrostatic precipitators, and collection effectiveness is impacted by the properties of these particulates. The cenosphere formation is a function of HFO composition, which varies depending on the source of the HFO. Numerical modelling of the cenosphere formation mechanism presented in this paper is an economical method of characterising cenosphere formation potential for HFO in comparison to experimental analysis of individual HFO samples, leading to better control and collection. In the present work, a novel numerical model is developed for understanding the global cenosphere formation mechanism. The critical diameter of the cenosphere is modelled based on the balance between two pressures developed in an HFO droplet. First is the pressure (Prpf) developed at the interface of the liquid surface and the inner surface of the accumulated coke due to the flow restriction of volatile components from the interior of the droplet. Second is the pressure due to the outer shell strength (PrC) gained from van der Walls energy of the coke layers and surface energy. In this present study it is considered that when PrC ≥ Prpf the outer shell starts to harden. The internal motion in the shell layer ceases and the outer diameter (DSOut) of the shell is then fixed. The entire process of cenosphere formation in this study is analysed in three phases: regression, shell formation and hardening, and post shell hardening. Variations in pressures during shell formation are analysed. Shell (cenosphere) dimensions are evaluated at the completion of droplet evaporation. The rate of fuel evaporation, rate of coke formation and coke accumulation are analysed. The model predicts shell outer diameters of 650, 860 and 1040 µm, and inner diameters are 360, 410

  14. Cenosphere formation from heavy fuel oil: a numerical analysis accounting for the balance between porous shells and internal pressure

    KAUST Repository

    Vanteru, Mahendra Reddy; Rahman, Mustafa M.; Gandi, Appala; Elbaz, Ayman M.; Schrecengost, Robert A.; Roberts, William L.

    2016-01-01

    Heavy fuel oil (HFO) as a fuel in industrial and power generation plants ensures the availability of energy at economy. Coke and cenosphere emissions from HFO combustion need to be controlled by particulate control equipment such as electrostatic precipitators, and collection effectiveness is impacted by the properties of these particulates. The cenosphere formation is a function of HFO composition, which varies depending on the source of the HFO. Numerical modelling of the cenosphere formation mechanism presented in this paper is an economical method of characterising cenosphere formation potential for HFO in comparison to experimental analysis of individual HFO samples, leading to better control and collection. In the present work, a novel numerical model is developed for understanding the global cenosphere formation mechanism. The critical diameter of the cenosphere is modelled based on the balance between two pressures developed in an HFO droplet. First is the pressure (Prpf) developed at the interface of the liquid surface and the inner surface of the accumulated coke due to the flow restriction of volatile components from the interior of the droplet. Second is the pressure due to the outer shell strength (PrC) gained from van der Walls energy of the coke layers and surface energy. In this present study it is considered that when PrC ≥ Prpf the outer shell starts to harden. The internal motion in the shell layer ceases and the outer diameter (DSOut) of the shell is then fixed. The entire process of cenosphere formation in this study is analysed in three phases: regression, shell formation and hardening, and post shell hardening. Variations in pressures during shell formation are analysed. Shell (cenosphere) dimensions are evaluated at the completion of droplet evaporation. The rate of fuel evaporation, rate of coke formation and coke accumulation are analysed. The model predicts shell outer diameters of 650, 860 and 1040 µm, and inner diameters are 360, 410

  15. Cenosphere formation from heavy fuel oil: a numerical analysis accounting for the balance between porous shells and internal pressure

    Science.gov (United States)

    Reddy, Vanteru M.; Rahman, Mustafa M.; Gandi, Appala N.; Elbaz, Ayman M.; Schrecengost, Robert A.; Roberts, William L.

    2016-01-01

    Heavy fuel oil (HFO) as a fuel in industrial and power generation plants ensures the availability of energy at economy. Coke and cenosphere emissions from HFO combustion need to be controlled by particulate control equipment such as electrostatic precipitators, and collection effectiveness is impacted by the properties of these particulates. The cenosphere formation is a function of HFO composition, which varies depending on the source of the HFO. Numerical modelling of the cenosphere formation mechanism presented in this paper is an economical method of characterising cenosphere formation potential for HFO in comparison to experimental analysis of individual HFO samples, leading to better control and collection. In the present work, a novel numerical model is developed for understanding the global cenosphere formation mechanism. The critical diameter of the cenosphere is modelled based on the balance between two pressures developed in an HFO droplet. First is the pressure (Prpf) developed at the interface of the liquid surface and the inner surface of the accumulated coke due to the flow restriction of volatile components from the interior of the droplet. Second is the pressure due to the outer shell strength (PrC) gained from van der Walls energy of the coke layers and surface energy. In this present study it is considered that when PrC ≥ Prpf the outer shell starts to harden. The internal motion in the shell layer ceases and the outer diameter (DSOut) of the shell is then fixed. The entire process of cenosphere formation in this study is analysed in three phases: regression, shell formation and hardening, and post shell hardening. Variations in pressures during shell formation are analysed. Shell (cenosphere) dimensions are evaluated at the completion of droplet evaporation. The rate of fuel evaporation, rate of coke formation and coke accumulation are analysed. The model predicts shell outer diameters of 650, 860 and 1040 µm, and inner diameters are 360, 410

  16. In silico analysis of the anti-hypertensive drugs impact on myocardial oxygen balance.

    Science.gov (United States)

    Guala, A; Leone, D; Milan, A; Ridolfi, L

    2017-06-01

    Hypertension is a very common pathology, and its clinical treatment largely relies on different drugs. Some of these drugs exhibit specific protective functions in addition to those resulting from blood pressure reduction. In this work, we study the impact of commonly used anti-hypertensive drugs (RAAS, [Formula: see text] and calcium channel blockers) on myocardial oxygen supply-consumption balance, which plays a crucial role in type 2 myocardial infarction. To this aim, 42 wash-out hypertensive patients were selected, a number of measured data were used to set a validated multi-scale cardiovascular model to subject-specific conditions, and the administration of different drugs was suitably simulated. Our results ascribe the well-known major cardioprotective efficiency of [Formula: see text] blockers compared to other drugs to a positive change of myocardial oxygen balance due to the concomitant: (1) reduction in aortic systolic, diastolic and pulse pressures, (2) decrease in left ventricular work, diastolic cavity pressure and oxygen consumption, (3) increase in coronary flow and (4) ejection efficiency improvement. RAAS blockers share several positive outcomes with [Formula: see text] blockers, although to a reduced extent. In contrast, calcium channel blockers seem to induce some potentially negative effects on the myocardial oxygen balance.

  17. The development of hoof balance and landing preference in the post-natal period.

    Science.gov (United States)

    Gorissen, B M C; Serra Bragança, F M; Wolschrijn, C F; Back, W; van Weeren, P R

    2018-04-20

    Foals can follow the herd within hours of birth, but it has been shown that kinetic gait parameters and static balance still have to mature. However, development of dynamic balance has not been investigated. To objectively quantify landing and pressure pattern dynamics under the hoof during the first half year of life. Prospective, cohort study performed at a single stud farm. Pressure plate measurements at walk and trot from ten Dutch warmblood foals during the first 24 weeks of life were used to quantify toe-heel and medial-lateral hoof balance asymmetry indexes and to determine preferred landing strategy. Concurrently, radiographs of the tarsocrural and femoropatellar joints were taken at 4-6 weeks and after 6 months to check for osteochondrosis. A linear mixed model was used to determine the effects of time point, limb pair (front/hind), side (left/right) and osteochondrosis status of every foal. At 25% of stance duration at walk, front limbs were more loaded in the heel region in weeks 6-20 (P≤0.04), the medial-lateral balance was more to the lateral side from week 6 onwards at both walk and trot (P≤0.04). Landing preference gradually changed in the same directions. Variability in pressure distribution decreased over time. (Subclinical) osteochondrosis did not influence any of the measured parameters. This study is limited by the relatively small sample size only containing one breed from a single stud farm. Dynamic hoof balance in new-born foals is more variable and less oriented towards the lateral side of the hoof and to the heel than in mature horses. This pattern changes gradually during the first weeks of life. Knowledge of this process is essential for the clinician when considering interventions in this area in early life. © 2018 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

  18. Women in orthodontics and work-family balance: challenges and strategies.

    Science.gov (United States)

    Davidson, Sarah; Major, Paul W; Flores-Mir, Carlos; Amin, Maryam; Keenan, Louanne

    2012-01-01

    The number of women entering the orthodontic profession over the past few decades has increased dramatically. A review of the literature revealed the lack of research on achieving a work-family balance among female dentists and dental specialists. Work-family balance has been researched more extensively in the field of medicine; however, despite some critical differences, parallels between these 2 professions exist. This study identified issues that Canadian female orthodontists face and strategies they use to achieve a work-family balance. A phenomenological qualitative study was used to analyze the results of semi-structured telephone interviews of a purposive sample of 13 Canadian female orthodontists. The results strongly support the role-conflict theory about the competing pressures of maternal and professional roles. Female orthodontists described their challenges and strategies to minimize role conflict in their attempt to achieve a work-family balance. The women defined balance as having success and satisfaction in both their family life and professional life. They identified specific challenges of achieving a work-family balance that are unique to orthodontic practice and strategies for adapting to their maternal and professional roles. Achieving a work-family balance is of paramount importance to female orthodontists, and the results of this study may be applied to other specialties in dentistry.

  19. BALANCE

    Science.gov (United States)

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  20. Conclusions drawn of tritium balance in light water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1978-01-01

    In the tritium balance of pressurized water reactors, using boric acid and lithium in the cooling water, contribution of the tritium produced by fission, diffusing through the zircalloy of the fuel cladding estimated to 0.1%, was not in agreement with quantities measured in reactors. It is still difficult to estimate what percentage is represented by the tritium formed by fission in the fuel, owing to diffusion through cladding. The tritium balance in different working nuclear power stations is consequently of interest. The tritium balance method in the water of the cooling circuit of PWR is fast and experimentally simple. It is less sensitive to errors originating from fission yields than balance of tritium produced by fission in the fuel. A tritium balance in the water of the cooling circuit of Biblis-A, with a specific burn-up of 18000 MWd/t gives a better precision. Diffusion rate of tritium produced by fission was less than 0.2%. So low a contribution is a justification to the use of lithium with an isotopic purity of 99.9% of lithium 7 to limit at a low value the residual lithium 6 [fr

  1. High pressure apparatus for hydrogen isotopes to pressures of 345 MPa (50,000 psi) and temperatures of 12000C

    International Nuclear Information System (INIS)

    Lakner, J.F.

    1977-01-01

    A functional new high pressure, high temperature apparatus for hydrogen isotopes uses an internally heated pressure vessel within a larger pressure vessel. The pressure capability is 345 MPa (50 K psi) at 1200 0 C. The gas pressure inside the internal vessel is balanced with gas pressure in the external vessel. The internal vessel is attached to a closure and is also the sample container. Our design allows thin-walled internal vessel construction and keeps the sample from ''seeing'' the furnace or other extraneous environment. The sample container together with the closure can easily be removed and loaded under argon using standard glove-box procedures. The small volume of the inner vessel permits small volumes of gas to be used, thus increasing the sensitivity during pressure-volume-temperature (PVT) work

  2. Balanced scorecard application in the health care industry: a case study.

    Science.gov (United States)

    Kocakülâh, Mehmet C; Austill, A David

    2007-01-01

    Balanced scorecards became a popular strategic performance measurement and management tool in the 1990s by Robert Kaplan and David Norton. Mainline companies accepted balanced scorecards quickly, but health care organizations were slow to adopt them for use. A number of problems face the health care industry, including cost structure, payor limitations and constraints, and performance and quality issues that require changes in how health care organizations, both profit and nonprofit, manage operations. This article discusses balanced scorecards generally from theoretical and technical views, and why they should be used by health care organizations. The authors argue that balanced scorecards are particularly applicable to hospitals, clinics, and other health care companies. Finally, the authors perform a case study of the development, implementation, and use of balance scorecards by a regional Midwestern health care system. The positive and negative aspects of the subject's balanced scorecard are discussed. Leaders in today's health care industry are under great pressure to meet their financial goals. The industry is faced with financial pressures from consumers, insurers, and governments. Inflation in the industry is much higher than it is within the overall economy. Employers can no longer bear the burden of rising group health insurance costs for its employees. Too many large companies have used bankruptcy law as a shield to reduce or shift some of their legal obligations to provide health insurance coverage to present or retired employees. Stakeholders of health care providers are demanding greater control over costs. As the segment of un- or underinsured within the United States becomes larger as a percentage of the population, voters are seriously beginning to demand some form of national health insurance, which will drastically change the health care industry.

  3. Validation of balance-quality assessment using a modified bathroom scale.

    Science.gov (United States)

    Hewson, D J; Duchêne, J; Hogrel, J-Y

    2015-02-01

    The balance quality tester (BQT), based on a standard electronic bathroom scale has been developed in order to assess balance quality. The BQT includes automatic detection of the person to be tested by means of an infrared detector and bluetooth communication capability for remote assessment when linked to a long-distance communication device such as a mobile phone. The BQT was compared to a standard force plate for validity and agreement. The two most widely reported parameters in balance literature, the area of the centre of pressure (COP) displacement and the velocity of the COP displacement, were compared for 12 subjects, each of whom was tested on ten occasions on each of the 2 days. No significant differences were observed between the BQT and the force plate for either of the two parameters. In addition a high level of agreement was observed between both devices. The BQT is a valid device for remote assessment of balance quality, and could provide a useful tool for long-term monitoring of people with balance problems, particularly during home monitoring.

  4. The influence of pressure relaxation on the structure of an axial vortex

    Science.gov (United States)

    Ash, Robert L.; Zardadkhan, Irfan; Zuckerwar, Allan J.

    2011-07-01

    Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and published axial vortex experiments have been employed to estimate the pressure relaxation coefficient in water. Non-equilibrium pressure gradient forces have been shown to balance the viscous stresses in the vortex core region, and the predicted pressure deficits that result from this non-equilibrium balance can be substantially larger than the pressure deficits predicted using a Bernoulli equation approach. Previously reported pressure deficit distributions for dust devils and tornados have been employed to validate the non-equilibrium pressure deficit predictions.

  5. Entropy budget of the earth,atmosphere and ocean system

    Institute of Scientific and Technical Information of China (English)

    GAN Zijun; YAN Youfangand; QI Yiquan

    2004-01-01

    The energy budget in the system of the earth, atmosphere and ocean conforms to the first law of thermodynamics, namely the law of conservation of energy, and it is balanced when the system is in a steady-state condition. However, the entropy budget following the second law of thermodynamics is unbalanced. In this paper, we deduce the expressions of entropy flux and re-estimate the earth, atmosphere and ocean annual mean entropy budget with the updated climatologically global mean energy budget and the climatologically air-sea flux data. The calculated results show that the earth system obtains a net influx of negative entropy (-1179.3 mWm-2K-1) from its surroundings, and the atmosphere and the ocean systems obtain a net input of negative entropy at about -537.4 mWm-2K-1 and -555.6 mWm-2K-1, respectively. Calculations of the entropy budget can provide some guidance for further understanding the spatial-temporal change of the local entropy flux, and the entropy production resulting from all kinds of irreversible processes inside these systems.

  6. The Effect of Water Exercise Program on Static and Dynamic Balance in Elderly Women

    Directory of Open Access Journals (Sweden)

    Heydar Sadeghi

    2008-01-01

    Full Text Available Objectives: Poor balance is one of risk factors of falling, a cause of injury and even death in elderly. The aim of this study was to evaluate the effect of a water exercise program on static and dynamic balance in elder women. Methods & Materials: Thirty participants aged 55-70 years completed an exercise program (60 min, 3 days and 6 weeks, in 2 groups, exercise and control, voluntarily. Static and dynamic balances were measured before and after exercise program in both groups. Postural sway parameters, including mean displacement of center of pressure and velocity of center of pressure in Medio-Lateral (ML and Anterio-Posterior (AP directions, in single stance position, as a measure of static balance and functional reach test, functional reach right test and functional reach left test, as dynamic measure of balance was considered. T test for deepened groups was used for evaluation of changes within groups, and T test for independent groups was used for between groups' changes at threshold of 0.05 After 6 weeks. Results: Significant changes were observed in results of Functional Reach Test (FRT, Functional Reach Left Test (FRLT after exercise program, also in average displacement of cop and velocity of cop in ML direction. Between groups significant differences were observed in results of average cop displacement and velocity of displacement, FRT and FRLT. Conclusion: These results suggest that challenging the physiological systems involved in balance control, in water, while on the non stable support surface, improved both static and dynamic balance and probably might decrease the risk of falling.

  7. The melting curve of iron to 250 gigapascals - A constraint on the temperature at earth's center

    Science.gov (United States)

    Williams, Quentin; Jeanloz, Raymond; Bass, Jay; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    The melting curve of iron, the primary constituent of earth's core, has been measured to pressures of 250 gigapascals with a combination of static and dynamic techniques. The melting temperature of iron at the pressure of the core-mantle boundary (136 GPa) is 4800 + or - 200 K, whereas at the inner core-outer core boundary (330 GPa), it is 7600 + or - 500 K. A melting temperature for iron-rich alloy of 6600 K at the inner core-outer core boundary and a maximum temperature of 6900 K at earth's center are inferred. This latter value is the first experimental upper bound on the temperature at earth's center, and these results imply that the temperature of the lower mantle is significantly less than that of the outer core.

  8. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    Science.gov (United States)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  9. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    International Nuclear Information System (INIS)

    Cornelius, Andrew L.

    2016-01-01

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  10. Effects of local fatigue on myoelectrical activity of erector spine muscles and the center for pressure displacement of the feet during balance recovery following postural perturbation in kyphotic subjects

    Directory of Open Access Journals (Sweden)

    Rooholah Rezaee

    2014-07-01

    Full Text Available Background: kyphosis deformity affects postural control. Muscular fatigue is one of the factors that can impair the mechanism of body balance. The aim of this study was to determine the effects of local fatigue on the myoelectrical activity of erector spine muscles and the center for pressure displacement of the feet during balance recovery following postural perturbation in kyphotic subjects. Methods: In this quasi-experimental study, 12 male students with>40 degrees thoracic kyphosis and 12 controls were selected to participate in the study. A flexible ruler was used to measure thoracic kyphosis. For postural control assessment, each subject underwent unexpected, forward-backward perturbations while standing on a foot scan mounted on a movable plate triggered by a weight equivalent to 10% of the subjects’ body weight. Experimental procedure was measured before (3 trails and after (3 trials the fatigue protocol. The myoelectric activity of the erector spine and multi fidus was compared in the groups using repeated measures of ANOVA and independent t-test (P<0.05. Results: There was no significant difference in the foot center of pressure displacement in both groups after muscular fatigue. After fatigue, there was an increase in the activity of longissimus thoracis (P=0.001 and iliocostalis thoracis (P= 0.001 in control group, while no significant difference was reported for the muscular activity of multifidus (p=0.084. The activity of langisimus thoracis was significantly increased (P=0.028 in kyphtic group after fatigue. Conclusion: erector spine muscles fatigue could not significantly affect the postural control in both groups, but the electrical activity of erector spine muscles during balance recovery following postural perturbation in kyphotic subjects was different than the controls.

  11. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  12. Power balance limit in collective ion acceleration

    International Nuclear Information System (INIS)

    Olson, C.L.

    1978-01-01

    The power balance limit to the IREB beam front propagation velocity, as first applied to the problem of collective ion acceleration by Olson in 1973, is investigated in view of recent data of Ecker and Putnam. The beam front velocity β/sub f/c as a function of IREB impedance Z is given, showing the dependence on the power balance limit, the ionization front velocity, and the runaway cutoff. The Olson theory predictions, with no fitted parameters, are shown to be in agreement with the data. Further comparisons of β/sub f/ with respect to the IREB electron energy, the IREB current, and the neutral gas pressure are given. Various forms for the power balance limit are discussed; it is shown that inclusion of the secondary electron power loss term results in an essentially negligible correction to β/sub f/ for typical data parameters. The power balance limit used by Ecker and Putnam is shown to be simply a 3-parameter curve fit, wherein the fitted parameters must exceed their allowed physical values to obtain a reasonable fit for β/sub f/ vs Z. Further, it is shown that this curve fitting leads to serious disagreements with other aspects of the data. It is concluded that the original Olson theory adequately accounts for the data, and that the power balance limit for IREB/gas data is typically not significant except for very small values of Z

  13. The theory of Earth constructed by the method of full energy minimisation

    International Nuclear Information System (INIS)

    Vasiliev, B.V.

    1999-01-01

    The problem of whether the appearance of electrical polarization of the core of a planet can be energetically advantageous is discussed. It is shown that for the Earth, this is energetically advantageous if it is connected with metallizing of the core and is accompanied by a pressure and density jump on the core-mantle interface. This makes is possible to construct an intrinsic self-consistent theory of the Earth. The calculate density distributions, the moment of inertia, and the magnetic moment of the Earth evaluated in the framework of the discussed theory are in a agreement with measurement results

  14. Alcohol-Induced Impairment of Balance is Antagonized by Energy Drinks.

    Science.gov (United States)

    Marczinski, Cecile A; Fillmore, Mark T; Stamates, Amy L; Maloney, Sarah F

    2018-01-01

    The acute administration of alcohol reliably impairs balance and motor coordination. While it is common for consumers to ingest alcohol with other stimulant drugs (e.g., caffeine, nicotine), little is known whether prototypical alcohol-induced balance impairments are altered by stimulant drugs. The purpose of this study was to examine whether the coadministration of a high-caffeine energy drink with alcohol can antagonize expected alcohol-induced increases in body sway. Sixteen social drinkers (of equal gender) participated in 4 separate double-blind dose administration sessions that involved consumption of alcohol and energy drinks, alone and in combination. Following dose administration, participants completed automated assessments of balance stability (both eyes open and eyes closed) measured using the Biosway Portable Balance System. Participants completed several subjective measures including self-reported ratings of sedation, stimulation, fatigue, and impairment. Blood pressure and pulse rate were recorded repeatedly. The acute administration of alcohol increased body sway, and the coadministration of energy drinks antagonized this impairment. When participants closed their eyes, alcohol-induced body sway was similar whether or not energy drinks were ingested. While alcohol administration increased ratings of sedation and fatigue, energy drink administration increased ratings of stimulation and reduced ratings of fatigue. Modest increases in systolic and diastolic blood pressure following energy drink administration were also observed. Visual assessment of balance impairment is frequently used to indicate that an individual has consumed too much alcohol (e.g., as part of police-standardized field sobriety testing or by a bartender assessing when someone should no longer be served more alcohol). The current findings suggest that energy drinks can antagonize alcohol-induced increases in body sway, indicating that future work is needed to determine whether this

  15. Validity and reliability of Nintendo Wii Fit balance scores.

    Science.gov (United States)

    Wikstrom, Erik A

    2012-01-01

    Interactive gaming systems have the potential to help rehabilitate patients with musculoskeletal conditions. The Nintendo Wii Balance Board, which is part of the Wii Fit game, could be an effective tool to monitor progress during rehabilitation because the board and game can provide objective measures of balance. However, the validity and reliability of Wii Fit balance scores remain unknown. To determine the concurrent validity of balance scores produced by the Wii Fit game and the intrasession and intersession reliability of Wii Fit balance scores. Descriptive laboratory study. Sports medicine research laboratory. Forty-five recreationally active participants (age = 27.0 ± 9.8 years, height = 170.9 ± 9.2 cm, mass = 72.4 ± 11.8 kg) with a heterogeneous history of lower extremity injury. Participants completed a single-limb-stance task on a force plate and the Star Excursion Balance Test (SEBT) during the first test session. Twelve Wii Fit balance activities were completed during 2 test sessions separated by 1 week. Postural sway in the anteroposterior (AP) and mediolateral (ML) directions and the AP, ML, and resultant center-of-pressure (COP) excursions were calculated from the single-limb stance. The normalized reach distance was recorded for the anterior, posteromedial, and posterolateral directions of the SEBT. Wii Fit balance scores that the game software generated also were recorded. All 96 of the calculated correlation coefficients among Wii Fit activity outcomes and established balance outcomes were interpreted as poor (r Wii Fit balance activity scores ranged from good (intraclass correlation coefficient [ICC] = 0.80) to poor (ICC = 0.39), with 8 activities having poor intrasession reliability. Similarly, 11 of the 12 Wii Fit balance activity scores demonstrated poor intersession reliability, with scores ranging from fair (ICC = 0.74) to poor (ICC = 0.29). Wii Fit balance activity scores had poor concurrent validity relative to COP outcomes and SEBT

  16. A magma ocean and the Earth's internal water budget

    Science.gov (United States)

    Ahrens, Thomas J.

    1992-01-01

    There are lines of evidence which relate bounds on the primordial water content of the Earth's mantle to a magma ocean and the accompanying Earth accretion process. We assume initially (before a magma ocean could form) that as the Earth accreted, it grew from volatile- (H2O, CO2, NH3, CH4, SO2, plus noble) gas-rich planetesimals, which accreted to form an initial 'primitive accretion core' (PAC). The PAC retained the initial complement of planetesimal gaseous components. Shock wave experiments in which both solid, and more recently, the gaseous components of materials such as serpentine and the Murchison meteorite have demonstrated that planetesimal infall velocities of less than 0.5 km/sec, induce shock pressures of less than 0.5 GPa and result in virtually complete retention of planetary gases.

  17. Heliotropic dust rings for Earth climate engineering

    Science.gov (United States)

    Bewick, R.; Lücking, C.; Colombo, C.; Sanchez, J. P.; McInnes, C. R.

    2013-04-01

    This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth's J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.

  18. High-time resolution measurements of upstream magnetic field and plasma conditions during flux transfer events at the Earth's dayside magnetopause

    International Nuclear Information System (INIS)

    Jacob, J.D.; Cattell, C.

    1993-01-01

    This paper presents preliminary analysis of six flux transfer events which were observed simultaneously by IRM and CCE. IRM was able to measure magnetic fields and pressures far from the earth, while CCE made observations at the earth's magnetopause. The objective is to better understand the coupling of energy and momentum into the earth's magnetosphere, by in this case trying to better understand the processes active in flux transfer events. For three of the events the observations were made on common field lines, and IRM observed fluctuations in B z large enough to cause a south to north swing in the interplanetary magnetic field (IMF). Pressure pulses were observed during two of these events. For the other three events there was no such consistent behavior of IMF direction or pressure pulses

  19. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    Science.gov (United States)

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  20. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, S.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.

    2014-10-24

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary re...

  1. The Benefits of Peer-to-Peer Mentoring: Lessons from The Earth Science Women's Network (ESWN)

    Science.gov (United States)

    Holloway, T.; Steiner, A.; Fiore, A.; Hastings, M.; McKinley, G.; Staudt, A.; Wiedinmyer, C.

    2007-12-01

    The Earth Science Women's Network (ESWN) is a grassroots organization that began with the meeting of six women graduate students and recent Ph.D.s at the Spring 2002 AGU meeting in Washington, DC. Since then, the group has grown to over 400 members, completely by word of mouth. We provide an informal, peer-to-peer network developed to promote and support careers of women in the Earth sciences. Through the network, women have found jobs, established research collaborations, shared strategies on work/life balance, and built a community stretching around the world. We maintain an email list for members to develop an expanded peer network outside of their own institution, and we have recently launched a co-ed jobs list to benefit the wider geoscience community. We will present a summary of strategies that have been discussed by group members on how to transition to a new faculty position, build a research group, develop new research collaborations, and balance career and family.

  2. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit; Meadows, Victoria [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Crisp, Dave, E-mail: amit0@astro.washington.edu [NAI Virtual Planetary Laboratory, Seattle, WA (United States)

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  3. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    International Nuclear Information System (INIS)

    Misra, Amit; Meadows, Victoria; Crisp, Dave

    2014-01-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  4. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    Science.gov (United States)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  5. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    KAUST Repository

    He, Weihua

    2016-09-30

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of −0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m, with balanced air and water pressures of 10–25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  6. Modeling long-term changes in forested landscapes and their relation to the Earth's energy balance

    Science.gov (United States)

    Shugart, H. H.; Emanuel, W. R.; Solomon, A. M.

    1984-01-01

    The dynamics of the forested parts of the Earth's surface on time scales from decades to centuries are discussed. A set of computer models developed at Oak Ridge National Laboratory and elsewhere are applied as tools. These models simulate a landscape by duplicating the dynamics of growth, death and birth of each tree living on a 0.10 ha element of the landscape. This spatial unit is generally referred to as a gap in the case of the forest models. The models were tested against and applied to a diverse array of forests and appear to provide a reasonable representation for investigating forest-cover dynamics. Because of the climate linkage, one important test is the reconstruction of paleo-landscapes. Detailed reconstructions of changes in vegetation in response to changes in climate are crucial to understanding the association of the Earth's vegetation and climate and the response of the vegetation to climate change.

  7. Use of Nintendo Wii Balance Board for posturographic analysis of Multiple Sclerosis patients with minimal balance impairment.

    Science.gov (United States)

    Severini, Giacomo; Straudi, Sofia; Pavarelli, Claudia; Da Roit, Marco; Martinuzzi, Carlotta; Di Marco Pizzongolo, Laura; Basaglia, Nino

    2017-03-11

    The Wii Balance Board (WBB) has been proposed as an inexpensive alternative to laboratory-grade Force Plates (FP) for the instrumented assessment of balance. Previous studies have reported a good validity and reliability of the WBB for estimating the path length of the Center of Pressure. Here we extend this analysis to 18 balance related features extracted from healthy subjects (HS) and individuals affected by Multiple Sclerosis (MS) with minimal balance impairment. Eighteen MS patients with minimal balance impairment (Berg Balance Scale 53.3 ± 3.1) and 18 age-matched HS were recruited in this study. All subjects underwent instrumented balance tests on the FP and WBB consisting of quiet standing with the eyes open and closed. Linear correlation analysis and Bland-Altman plots were used to assess relations between path lengths estimated using the WBB and the FP. 18 features were extracted from the instrumented balance tests. Statistical analysis was used to assess significant differences between the features estimated using the WBB and the FP and between HS and MS. The Spearman correlation coefficient was used to evaluate the validity and the Intraclass Correlation Coefficient was used to assess the reliability of WBB measures with respect to the FP. Classifiers based on Support Vector Machines trained on the FP and WBB features were used to assess the ability of both devices to discriminate between HS and MS. We found a significant linear relation between the path lengths calculated from the WBB and the FP indicating an overestimation of these parameters in the WBB. We observed significant differences in the path lengths between FP and WBB in most conditions. However, significant differences were not found for the majority of the other features. We observed the same significant differences between the HS and MS populations across the two measurement systems. Validity and reliability were moderate-to-high for all the analyzed features. Both the FP and WBB

  8. Analyze satellite-tracking laser data in order to study satellite ephemerides, solid-Earth and ocean tides and laser system performance

    Science.gov (United States)

    Gaposchkin, E. M.

    1981-01-01

    The decrease in the semimajor axis of Lageos is considerably larger than expected. Gravitational effects, reference system effects, solar radiation pressure, Earth albedo pressure, neutral atmospheric drag, the Poynting Robertson Effect, and electrodynamic effects were used in explaining the observations. Quick look data provided are used to determine the Earth's polar motion and length of day. This process is routine, and provides these geophysical data every five days.

  9. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    NARCIS (Netherlands)

    Helsen, Michiel M.; van de Wal, Roderik S. W.; Reerink, Thomas J.; Bintanja, Richard; Madsen, Marianne S.; Yang, Shuting; Li, Qiang; Zhang, Qiong

    2017-01-01

    The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by

  10. SiO2 Glass Density to Lower-Mantle Pressures

    DEFF Research Database (Denmark)

    Petitgirard, Sylvain; Malfait, Wim J.; Journaux, Baptiste

    2017-01-01

    and present Earth. SiO2 is the main constituent of Earth's mantle and is the reference model system for the behavior of silicate melts at high pressure. Here, we apply our recently developed x-ray absorption technique to the density of SiO2 glass up to 110 GPa, doubling the pressure range...... for such measurements. Our density data validate recent molecular dynamics simulations and are in good agreement with previous experimental studies conducted at lower pressure. Silica glass rapidly densifies up to 40 GPa, but the density trend then flattens to become asymptotic to the density of SiO2 minerals above 60...... GPa. The density data present two discontinuities at similar to 17 and similar to 60 GPa that can be related to a silicon coordination increase from 4 to a mixed 5/6 coordination and from 5/6 to sixfold, respectively. SiO2 glass becomes denser than MgSiO3 glass at similar to 40 GPa, and its density...

  11. Home-based balance training using the Wii balance board: a randomized, crossover pilot study in multiple sclerosis.

    Science.gov (United States)

    Prosperini, Luca; Fortuna, Deborah; Giannì, Costanza; Leonardi, Laura; Marchetti, Maria Rita; Pozzilli, Carlo

    2013-01-01

    To evaluate the effectiveness of a home-based rehabilitation of balance using the Nintendo Wii Balance Board System (WBBS) in patients affected by multiple sclerosis (MS). In this 24-week, randomized, 2-period crossover pilot study, 36 patients having an objective balance disorder were randomly assigned in a 1:1 ratio to 2 counterbalanced arms. Group A started a 12-week period of home-based WBBS training followed by a 12-week period without any intervention; group B received the treatment in reverse order. As endpoints, we considered the mean difference (compared with baseline) in force platform measures (i.e., the displacement of body center of pressure in 30 seconds), 4-step square test (FSST), 25-foot timed walking test (25-FWT), and 29-item MS Impact Scale (MSIS-29), as evaluated after 12 weeks and at the end of the 24-week study period. The 2 groups did not differ in baseline characteristics. Repeated-measures analyses of variance showed significant time × treatment effects, indicating that WBBS was effective in ameliorating force platform measures (F = 4.608, P = .016), FSST (F = 3.745, P = .034), 25-FWT (F = 3.339, P = .048), and MSIS-29 (F = 4.282, P = .023). Five adverse events attributable to the WBSS training (knee or low back pain) were recorded, but only 1 patient had to retire from the study. A home-based WBBS training might potentially provide an effective, engaging, balance rehabilitation solution for people with MS. However, the risk of WBBS training-related injuries should be carefully balanced with benefits. Further studies, including cost-effectiveness analyses, are warranted to establish whether WBBS may be useful in the home setting.

  12. Technologies for Advanced Gait and Balance Assessments in People with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Camille J. Shanahan

    2018-02-01

    Full Text Available Subtle gait and balance dysfunction is a precursor to loss of mobility in multiple sclerosis (MS. Biomechanical assessments using advanced gait and balance analysis technologies can identify these subtle changes and could be used to predict mobility loss early in the disease. This update critically evaluates advanced gait and balance analysis technologies and their applicability to identifying early lower limb dysfunction in people with MS. Non-wearable (motion capture systems, force platforms, and sensor-embedded walkways and wearable (pressure and inertial sensors biomechanical analysis systems have been developed to provide quantitative gait and balance assessments. Non-wearable systems are highly accurate, reliable and provide detailed outcomes, but require cumbersome and expensive equipment. Wearable systems provide less detail but can be used in community settings and can provide real-time feedback to patients and clinicians. Biomechanical analysis using advanced gait and balance analysis technologies can identify changes in gait and balance in early MS and consequently have the potential to significantly improve monitoring of mobility changes in MS.

  13. Air Circulation and Heat Exchange Under Reduced Pressures

    Science.gov (United States)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  14. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  15. Steady state magnetic field configurations for the earth's magnetotail

    International Nuclear Information System (INIS)

    Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.

    1989-01-01

    The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet

  16. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    NARCIS (Netherlands)

    van de Klundert, L.J.M.; Bos, M.R.E.; van der Meij, J.A.M.; Steffens, H.A.

    1977-01-01

    The osmotic pressure of 3He-4He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated.

  17. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    International Nuclear Information System (INIS)

    Klundert, L.J.M. van de; Bos, M.R.E.; Meij, J.A.M. van der; Steffens, H.A.

    1977-01-01

    The osmotic pressure of 3 He- 4 He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4 He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated. (Auth.)

  18. Energy conservation in the earth's crust and climate change.

    Science.gov (United States)

    Mu, Yao; Mu, Xinzhi

    2013-02-01

    Among various matters which make up the earth's crust, the thermal conductivity of coal, oil, and oil-gas, which are formed over a long period of geological time, is extremely low. This is significant to prevent transferring the internal heat of the earth to the thermal insulation of the surface, cooling the surface of the earth, stimulating biological evolution, and maintaining natural ecological balance as well. Fossil energy is thermal insulating layer in the earth's crust. Just like the function of the thermal isolation of subcutaneous fatty tissue under the dermis of human skin, it keeps the internal heat within the organism so it won't be transferred to the skin's surface and be lost maintaining body temperature at low temperatures. Coal, oil, oil-gas, and fat belong to the same hydrocarbons, and the functions of their thermal insulation are exactly the same. That is to say, coal, oil, and oil-gas are just like the earth's "subcutaneous fatty tissue" and objectively formed the insulation protection on earth's surface. This paper argues that the human large-scale extraction of fossil energy leads to damage of the earth's crust heat-resistant sealing, increasing terrestrial heat flow, or the heat flow as it is called, transferring the internal heat of the earth to Earth's surface excessively, and causing geotemperature and sea temperature to rise, thus giving rise to global warming. The reason for climate warming is not due to the expansion of greenhouse gases but to the wide exploitation of fossil energy, which destroyed the heat insulation of the earth's crust, making more heat from the interior of the earth be released to the atmosphere. Based on the energy conservation principle, the measurement of the increase of the average global temperature that was caused by the increase of terrestrial heat flow since the Industrial Revolution is consistent with practical data. This paper illustrates "pathogenesis" of climate change using medical knowledge. The

  19. Pressure and compressibility of a quantum plasma in a magnetic field

    NARCIS (Netherlands)

    Suttorp, L.G.

    1993-01-01

    The equilibrium pressure tensor that occurs in the momentum balance equation for a quantum plasma in a magnetic field is shown to be anisotropic. Its relation to the pressure that follows from thermodynamics is elucidated. A general proof of the compressibility rule for a magnetized quantum plasma

  20. Pressure measurements in magnetic-fusion devices

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  1. Pressure measurements in magnetic-fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  2. Evolution and dynamics of Earth from a molten initial stage

    Science.gov (United States)

    Louro Lourenço, D. J.; Tackley, P.

    2016-12-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007; Labrosse et al., The Early Earth 2015). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the

  3. Effects of imipramine of the orthostatic changes in blood pressure, heart rate and plasma catecholamines

    DEFF Research Database (Denmark)

    Nielsen, J R; Johansen, Torben; Arentoft, A

    1983-01-01

    The effect of imipramine on the orthostatic changes in heart rate, blood pressure and plasma catecholamines were examined in six healthy male subjects on two occasions on high sodium balance (Na+ excretion greater than 120 mmol per day) and on low sodium balance (Na+ excretion less than 110 mmol...... per day), respectively. Orthostatic tests were carried out before and 2 h after ingestion of 150 mg imipramine hydrochloride. Imipramine caused a moderate increase in supine systolic blood pressure, and a pronounced increase in the rise in heart rate, when the subjects assumed erect position....... The orthostatic drop in systolic blood pressure was in most cases only moderately increased after ingestion of imipramine, but in three subjects pronounced orthostatic hypotension developed when the sodium balance was low, whereas no clinical symptoms were seen in the same subjects when tested after imipramine...

  4. Water cycling between ocean and mantle: Super-earths need not be waterworlds

    International Nuclear Information System (INIS)

    Cowan, Nicolas B.; Abbot, Dorian S.

    2014-01-01

    Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.

  5. Water cycling between ocean and mantle: Super-earths need not be waterworlds

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Earth and Planetary Sciences, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Abbot, Dorian S., E-mail: n-cowan@northwestern.edu [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2014-01-20

    Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.

  6. Theory and computation of general force balance in non-axisymmetric tokamak equilibria

    Science.gov (United States)

    Park, Jong-Kyu; Logan, Nikolas; Wang, Zhirui; Kim, Kimin; Boozer, Allen; Liu, Yueqiang; Menard, Jonathan

    2014-10-01

    Non-axisymmetric equilibria in tokamaks can be effectively described by linearized force balance. In addition to the conventional isotropic pressure force, there are three important components that can strongly contribute to the force balance; rotational, anisotropic tensor pressure, and externally given forces, i.e. ∇ --> p + ρv-> . ∇ --> v-> + ∇ --> . Π + f-> = j-> × B-> , especially in, but not limited to, high β and rotating plasmas. Within the assumption of nested flux surfaces, Maxwell equations and energy minimization lead to the modified-generalized Newcomb equation for radial displacements with simple algebraic relations for perpendicular and parallel displacements, including an inhomogeneous term if any of the forces are not explicitly dependent on displacements. The general perturbed equilibrium code (GPEC) solves this force balance consistent with energy and torque given by external perturbations. Local and global behaviors of solutions will be discussed when ∇ --> . Π is solved by the semi-analytic code PENT and will be compared with MARS-K. Any first-principle transport code calculating ∇ --> . Π or f-> , e.g. POCA, can also be incorporated without demanding iterations. This work was supported by DOE Contract DE-AC02-09CH11466.

  7. Physics and Chemistry of Earth Materials

    Science.gov (United States)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  8. How much uranium is in the Earth? Predictions for geoneutrinos at KamLAND

    International Nuclear Information System (INIS)

    Fiorentini, Gianni; Lissia, Marcello; Mantovani, Fabio; Vannucci, Riccardo

    2005-01-01

    Geo-neutrino detection can determine the amount of long-lived radioactive elements within our planet, thus providing a direct test of the bulk silicate Earth (BSE) model and fixing the radiogenic contribution to the terrestrial heat. We present a prediction for the geo-neutrino signal at KamLAND as a function of the uranium mass in the Earth. The prediction is based on global mass balance, supplemented by a detailed geochemical and geophysical study of the region near the detector. The prediction is weakly dependent on mantle modeling. If BSE is correct, uranium geo-neutrinos will produce between 25 and 35 events per year and 10 32 protons at Kamioka

  9. High pressure phases of terbium: Possibility of a thcp phase

    International Nuclear Information System (INIS)

    Staun Olsen, J.; Steenstrup, S.; Gerward, L.

    1985-01-01

    High pressure phases of trivalent Tb studied by energy dispersive X-ray diffraction with synchrotron radiation exhibits the closed packed sequence (hcp -> Sm -> dhcp -> fcc) typical of the trivalent rare earth metals. Furthermore, a phase consistent with a triple hexagonal closed packed (thcp) structure was observed in a narrow pressure range around 30 GPa. (orig.)

  10. Using time management to achieve balance.

    Science.gov (United States)

    Schroeder, R E

    1998-01-01

    A recent MGMA survey showed work-life balance as the number one issue facing group practice managers. This article explains techniques from the field of time management that will enable group practice managers to gain control of their schedules, reduce time pressures and stress and increase productivity. The article covers: goal setting, daily lists, handling paperwork, delegating and limiting involvement, socializing, communicating, overachieving, planning, writing, telephone calling, attending meetings, reading, financial planning, developing a philosophy, involving family, evaluating skills and teaching time management to employees.

  11. Analysis of work-life balance from the viewpoint of Iranian accountants

    OpenAIRE

    Abbas Ghanbari; Morteza Ramazani; Majid Jalilinia

    2013-01-01

    Work-life balance (WLB) plays an essential role on having peaceful life. There has been a substantial growth of families where both husband and wife work. Despite enjoying advantages of role mixture, life style in family has been faced by tremendous pressures due to ignoring conventional division of work in family as well as making new and more commitments. One of these pressures is the conflict between work and life, which could lead to unfavorable impacts on social integrity of family funct...

  12. High pressure structural studies on nanophase praseodymium oxide

    International Nuclear Information System (INIS)

    Saranya, L.; Chandra Shekar, N.V.; Amirthapandian, S.; Hussain, Shamima; Arulraj, A.; Sahu, P. Ch.

    2014-01-01

    The phase stability of nanocrystalline Pr 2 O 3 has been investigated under pressure by in-situ high pressure X-ray diffraction using Mao-Bell type diamond anvil cell. The ambient structure and phase of the praseodymium oxide have been resolved unambiguously using x-ray diffraction, SEM and TEM techniques. Under the action of pressure the cubic phase of the system is retained up to 15 GPa. This is unusual as other isostructural rare earth oxides show structural transformations even at lower pressures. From the best fit to the P–V data with the Murnaghan equation of state yields a bulk modulus of 171 GPa

  13. High pressure structural studies on nanophase praseodymium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Saranya, L. [Jamal Mohamed College, Tiruchirapalli 620020, Tamil Nadu (India); Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Hussain, Shamima [UGC-DAE-CSR node, Kokilamedu 603103, Tamil Nadu (India); Arulraj, A.; Sahu, P. Ch. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)

    2014-09-15

    The phase stability of nanocrystalline Pr{sub 2}O{sub 3} has been investigated under pressure by in-situ high pressure X-ray diffraction using Mao-Bell type diamond anvil cell. The ambient structure and phase of the praseodymium oxide have been resolved unambiguously using x-ray diffraction, SEM and TEM techniques. Under the action of pressure the cubic phase of the system is retained up to 15 GPa. This is unusual as other isostructural rare earth oxides show structural transformations even at lower pressures. From the best fit to the P–V data with the Murnaghan equation of state yields a bulk modulus of 171 GPa.

  14. Detecting solar chameleons through radiation pressure

    International Nuclear Information System (INIS)

    Baum, S.; Cantatore, G.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.

    2014-01-01

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space

  15. Detecting solar chameleons through radiation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baum, S., E-mail: sebastian.baum@cern.ch [Uppsala Universitet, Box 516, SE 75120, Uppsala (Sweden); European Organization for Nuclear Research (CERN), Gèneve (Switzerland); Cantatore, G. [Università di Trieste, Via Valerio 2, 34127 Trieste (Italy); INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Hoffmann, D.H.H. [Institut für Kernphysik, TU-Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Karuza, M. [INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Phys. Dept. and CMNST, University of Rijeka, R. Matejcic 2, Rijeka (Croatia); Semertzidis, Y.K. [Center for Axion and Precision Physics Research (IBS), Daejeon 305-701 (Korea, Republic of); Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Upadhye, A. [Physics Department, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706 (United States); Zioutas, K., E-mail: konstantin.zioutas@cern.ch [European Organization for Nuclear Research (CERN), Gèneve (Switzerland); University of Patras, GR 26504 Patras (Greece)

    2014-12-12

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  16. High pressure studies of configuration interaction and crystal field effects in Sm2+

    International Nuclear Information System (INIS)

    Shen, Y.; Bray, K.L.

    1998-01-01

    Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of

  17. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  18. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M; Venaelaeinen, A; Tourula, T [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  19. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  20. Force Plate Assessment of Quiet Standing Balance Control: Perspectives on Clinical Application within Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Avril Mansfield

    2015-01-01

    Full Text Available Assessment of balance control is essential to guide physical rehabilitation poststroke. However, current observational assessment tools available to physiotherapists provide limited information about underlying dyscontrol. This paper describes a force plate-based assessment of quiet standing balance control that we have implemented for individuals attending inpatient stroke rehabilitation. The assessment uses two force plates to measure location of ground reaction forces to maintain stability in quiet standing in five conditions (eyes open, eyes closed, standing symmetrically, and maximal loading on the less-affected and more-affected limbs. Measures of interest are variability of the centers of pressure under each foot and both feet combined, weight-bearing asymmetry, and correlation of center of pressure fluctuations between limbs. We present representative values for the above-mentioned measures and case examples to illustrate how the assessment can reveal patient-specific balance control problems and direct treatment. We identify limitations to our current assessment and recommendations for future research.

  1. The assessment of static balance in children with hearing, visual and intellectual disabilities

    OpenAIRE

    Aija Klavina; Anna Zusa-Rodke; Zinta Galeja

    2017-01-01

    Background: Balance is a fundamental part of many movement tasks a child performs. Maintaining upright posture is a complex process involving multiple body parts and functional systems. Objective: This study aimed to explore the mean amplitude and velocity of the center of pressure (COP) displacements during static balance tests in children with and without disabilities. Methods: Participants were 34 children (age 8.5 to 10.8 years) including 6 typically developed children, 8 children with he...

  2. Balancing the Demands of Education and Training

    DEFF Research Database (Denmark)

    Christensen, Mette Krogh; Sørensen, Jan Kahr

    Balancing the Demands of Education and Training – A Qualitative Study on Young Male Football Talents’ Dual Careers. M. K. Christensena and J. K. Sørensenb a Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark b Department of Public Health – Sport Science, Aarhus...... University Workshop: Negotiating Athlete Identity in Career Transitions Abstract: Today’s young semi-professional football players are expected to continue their education while honing their talents as footballers. This means they must balance the contradictory demands that come from coming from the fields...... of education and of elite sport. At the same time elite sportspeople in the top international sports are being placed under increasing pressure as a result of the performance optimization approaches that are now a fundamental part of competing at the national elite level, and which have resulted...

  3. Size-Selective Modes of Aeolian Transport on Earth and Mars

    Science.gov (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.; McLean, C. J.

    2016-12-01

    Aeolian sand transport is a dominant driver of surface change and dust emission on Mars. Estimates of aeolian sand transport on Earth and Mars rely on terrestrial transport models that do not differentiate between transport modes (e.g., creep vs. saltation), which limits estimates of the critical threshold for transport and the total sand flux during a transport event. A gap remains in understanding how the different modes contribute to the total sand flux. Experiments conducted at the MARtian Surface WInd Tunnel separated modes of transport for uniform and mixed grain size surfaces at Earth and Martian atmospheric pressures. Crushed walnut shells with a density of 1.0 gm/cm3 were used. Experiments resolved grain size distributions for creeping and saltating grains over 3 uniform surfaces, U1, U2, and U3, with median grain sizes of 308 µm, 721 µm, and 1294 µm, and a mixed grain size surface, M1, with median grain sizes of 519 µm. A mesh trap located 5 cm above the test bed and a surface creep trap were deployed to capture particles moving as saltation and creep. Grains that entered the creep trap at angles ≥ 75° were categorized as moving in creep mode only. Only U1 and M1 surfaces captured enough surface creep at both Earth and Mars pressure for statistically significant grain size analysis. Our experiments show that size selective transport differs between Earth and Mars conditions. The median grain size of particles moving in creep for both uniform and mixed surfaces are larger under Earth conditions. (U1Earth = 385 µm vs. U1Mars = 355 µm; M1Earth = 762 vs. M1Mars = 697 µm ). However, particles moving in saltation were larger under Mars conditions (U1Earth = 282 µm; U1Mars = 309 µm; M1Earth = 347 µm; M1Mars = 454 µm ). Similar to terrestrial experiments, the median size of surface creep is larger than the median grain size of saltation. Median sizes of U1, U2, U3 at Mars conditions for creep was 355 µm, 774 µm and 1574 µm. Saltation at Mars

  4. Theory and Practice - Measuring High-Pressure Electronic and Magnetic Properties

    International Nuclear Information System (INIS)

    Hemley, R.J.; Struzhkin, V.V.; Cohen, R.E.

    2008-01-01

    Measurements of the electronic and magnetic properties of Earth and planetary materials at high pressure play a crucial role in modern geoscience. There have been numerous advances in the field, primarily as a result of developments in diamond-anvil cell methods. In particular, synchrotron radiation techniques play an especially important role. The chapter begins with a short review of fundamental properties of the relevant materials, with emphasis on how these are altered under very high pressures and temperatures of the Earth's deep interior, followed by a discussion of different classes of electronic and magnetic excitations. Various techniques currently used for high-pressure studies are then described, beginning with optical spectroscopies, Moessbauer spectroscopy, elastic X-ray and neutron scattering, many new X-ray spectroscopy and inelastic scattering methods, transport techniques, and finally resonance methods. Selected examples of the techniques are given, with a common theme being the high P-T behavior of iron-containing oxides, silicates, and metals at conditions found throughout the Earth's interior. Applications to upper-mantle phases, 'simple' oxides, silicate perovskite and post-perovskite, volatiles, and iron and iron alloys are discussed, with an emphasis given to integrated studies utilizing a combination of different techniques to understand high P-T electronic and magnetic phenomena.

  5. Resonance in the restricted problem caused by solar radiation pressure

    International Nuclear Information System (INIS)

    Bhatnagar, K.B.; Gupta, B.

    1977-01-01

    Resonance is discussed in the motion of an artificial Earth satellite caused by solar radiation pressure. The Hamiltonian and the generating functions occurring in the problem are expanded in the power series of small parameter β, which depends on solar radiation pressure. Also the perturbations in the osculating elements are obtained up to O(βsup(1/2)). (author)

  6. Influence of the atmospheric aerosol and air pollution on solar albedo of the earth. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Mayhoub, A B; Mohamed, K S [Mathematics and Theoretical Physics Department, Nuclear Research Center, Atomic Energy Auhtority, Cairo, (Egypt)

    1996-03-01

    The effect of increasing atmospheric aerosol and air pollutant concentration on the solar albedo and consequently upon the heat budget near the earth`s surface is studied. The magnitude of aerosol absorption coefficient to back-scattering coefficient B{sub ab}/B{sub bs} is calculated. This study will be used to estimate atmospheric stability categories and other meteorological parameters which are affected by thermal state radiation balance of the atmosphere as mixing and inversion height of Inshas nuclear reactor site. Consequently, concentration distribution of radioactive release from Inshas can be evaluated.. 4 figs., 5 tabs.

  7. Static postural balance in healthy individuals: Comparisons between three age groups

    Directory of Open Access Journals (Sweden)

    Yanne Salviano Pereira

    2014-03-01

    Full Text Available The aim of the study was to compare static postural balance of healthy individuals of three age groups in different conditions of support and vision. Seventy one individuals, divided into 3 groups, were analyzed: young group (YG: 22.2 ± 2.1 years, middle aged group (MAG: 50.7 ± 5.7 years and older individuals group (EG: 66.8 ± 5.4 years. Their balance was tested on a force platform, under 3 support and 3 visual conditions. Measures included: total (TD, anterior-posterior (APD and mediolateral displacement (MLD of the center of pressure (CoP. ANOVA revealed significant differences for interactions between group X support conditions and group X visual conditions for the 3 variables (p<0.01, with greater displacements for the MAG and EG groups during single-leg stance with partial and occluded vision (p<0.05. Static postural balance decreased over time in healthy individuals, and conditions of support and visual negatively affected balance with the increment of age.

  8. South Dakota Space Grant Consortium: Balancing Indigenous Earth System and Space Science with Western/Contemporary Science

    Science.gov (United States)

    Bolman, J.; Nall, J.

    2005-05-01

    The South Dakota Space Grant Consortium (SDSGC) was established March 1, 1991 by a NASA Capability Enhancement Grant. Since that time SDSGC has worked to provide earth system and space science education, outreach and services to all students across South Dakota. South Dakota has nine tribes and five Tribal Colleges. This has presented a tremendous opportunity to develop sustainable equitable partnerships and collaborations. SDSGC believes strongly in developing programs and activities that highlight and reinforce the balance of Indigenous science and ways of knowing with current findings in Western/Contemporary Science. This blending of science and culture creates a learning community where individuals especially students, can gain confidence and pride in their unique skills and abilities. Universities are also witnessing the accomplishments and achievements of students who are able to experience a tribal environment and then carry that experience to a college/university/workplace and significantly increase the learning achievement of all. The presentation will highlight current Tribal College and Tribal Community partnerships with the Rosebud Sioux Reservation (Sinte Gleska University), Pine Ridge Indian Reservation (Oglala Lakota College), Standing Rock Sioux Reservation (Sitting Bull College) and Cheyenne River Sioux Reservation (Si Tanka) amongst others. Programs and activities to be explained during the presentation include but not limited to: NASA Workforce Native Connections, Scientific Knowledge for Indian Learning and Leadership (SKILL), NSF "Bridges to Success" Summer Research Program, NSF "Fire Ecology" Summer Research Experience, as well as geospatial and space science programs for students and general community members. The presentation will also cover the current initiatives underway through NASA Workforce Development. These include: partnering with the Annual He Sapa Wacipi (Black Hills Pow Wow - attendance of 14,000 Natives) to host Native Space

  9. On output measurements via radiation pressure

    DEFF Research Database (Denmark)

    Leeman, S.; Healey, A.J.; Forsberg, F.

    1990-01-01

    It is shown, by simple physical argument, that measurements of intensity with a radiation pressure balance should not agree with those based on calorimetric techniques. The conclusion is ultimately a consequence of the circumstance that radiation pressure measurements relate to wave momentum, while...... calorimetric methods relate to wave energy. Measurements with some typical ultrasound fields are performed with a novel type of hydrophone, and these allow an estimate to be made of the magnitude of the discrepancy to be expected between the two types of output measurement in a typical case....

  10. A public data set of human balance evaluations

    Directory of Open Access Journals (Sweden)

    Damiana A. Santos

    2016-11-01

    Full Text Available The goal of this study was to create a public data set with results of qualitative and quantitative evaluations related to human balance. Subject’s balance was evaluated by posturography using a force platform and by the Mini Balance Evaluation Systems Tests. In the posturography test, we evaluated subjects standing still for 60 s in four different conditions where vision and the standing surface were manipulated: on a rigid surface with eyes open; on a rigid surface with eyes closed; on an unstable surface with eyes open; on an unstable surface with eyes closed. Each condition was performed three times and the order of the conditions was randomized. In addition, the following tests were employed in order to better characterize each subject: Short Falls Efficacy Scale International; International Physical Activity Questionnaire Short Version; and Trail Making Test. The subjects were also interviewed to collect information about their socio-cultural, demographic, and health characteristics. The data set comprises signals from the force platform (raw data for the force, moments of forces, and centers of pressure of 163 subjects plus one file with information about the subjects and balance conditions and the results of the other evaluations. All the data is available at PhysioNet and at Figshare.

  11. Validity and Reliability of Nintendo Wii Fit Balance Scores

    Science.gov (United States)

    Wikstrom, Erik A.

    2012-01-01

    Context: Interactive gaming systems have the potential to help rehabilitate patients with musculoskeletal conditions. The Nintendo Wii Balance Board, which is part of the Wii Fit game, could be an effective tool to monitor progress during rehabilitation because the board and game can provide objective measures of balance. However, the validity and reliability of Wii Fit balance scores remain unknown. Objective: To determine the concurrent validity of balance scores produced by the Wii Fit game and the intrasession and intersession reliability of Wii Fit balance scores. Design: Descriptive laboratory study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty-five recreationally active participants (age  =  27.0 ± 9.8 years, height  =  170.9 ± 9.2 cm, mass  =  72.4 ± 11.8 kg) with a heterogeneous history of lower extremity injury. Intervention(s): Participants completed a single-limb–stance task on a force plate and the Star Excursion Balance Test (SEBT) during the first test session. Twelve Wii Fit balance activities were completed during 2 test sessions separated by 1 week. Main Outcome Measure(s): Postural sway in the anteroposterior (AP) and mediolateral (ML) directions and the AP, ML, and resultant center-of-pressure (COP) excursions were calculated from the single-limb stance. The normalized reach distance was recorded for the anterior, posteromedial, and posterolateral directions of the SEBT. Wii Fit balance scores that the game software generated also were recorded. Results: All 96 of the calculated correlation coefficients among Wii Fit activity outcomes and established balance outcomes were interpreted as poor (r Wii Fit balance activity scores ranged from good (intraclass correlation coefficient [ICC]  =  0.80) to poor (ICC  =  0.39), with 8 activities having poor intrasession reliability. Similarly, 11 of the 12 Wii Fit balance activity scores demonstrated poor intersession reliability, with

  12. Method of forming magnetostrictive rods from rare earth-iron alloys

    Science.gov (United States)

    McMasters, O. Dale

    1986-09-02

    Rods of magnetrostructive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube.

  13. Typical balance exercises or exergames for balance improvement?

    Science.gov (United States)

    Gioftsidou, Asimenia; Vernadakis, Nikolaos; Malliou, Paraskevi; Batzios, Stavros; Sofokleous, Polina; Antoniou, Panagiotis; Kouli, Olga; Tsapralis, Kyriakos; Godolias, George

    2013-01-01

    Balance training is an effective intervention to improve static postural sway and balance. The purpose of the present study was to investigate the effectiveness of the Nintendo Wii Fit Plus exercises for improving balance ability in healthy collegiate students in comparison with a typical balance training program. Forty students were randomly divided into two groups, a traditional (T group) and a Nintendo Wii group (W group) performed an 8 week balance program. The "W group" used the interactive games as a training method, while the "T group" used an exercise program with mini trampoline and inflatable discs (BOSU). Pre and Post-training participants completed balance assessments. Two-way repeated measures analyses of variance (ANOVAs) were conducted to determine the effect of training program. Analysis of the data illustrated that both training program groups demonstrated an improvement in Total, Anterior-posterior and Medial Lateral Stability Index scores for both limbs. Only at the test performed in the balance board with anterior-posterior motion, the improvement in balance ability was greater in the "T group" than the "W group", when the assessment was performed post-training (p=0.023). Findings support the effectiveness of using the Nintendo Wii gaming console as a balance training intervention tool.

  14. Decreased Respiratory Muscle Function Is Associated with Impaired Trunk Balance among Chronic Stroke Patients: A Cross-sectional Study.

    Science.gov (United States)

    Lee, Kyeongbong; Cho, Ji-Eun; Hwang, Dal-Yeon; Lee, WanHee

    2018-06-01

    The abdominal muscles play a role in trunk balance. Abdominal muscle thickness is asymmetrical in stroke survivors, who also have decreased respiratory muscle function. We compared the thickness of the abdominal muscles between the affected and less affected sides in stroke survivors. In addition, the relationship between respiratory muscle function and trunk balance was evaluated. Chronic stroke patients (18 men, 15 women; mean age, 58.94 ± 12.30 years; Mini-Mental Status Examination score ≥ 24) who could sit without assist were enrolled. Abdominal muscle thickness during rest and contraction was measured with ultrasonography, and the thickening ratio was calculated. Respiratory muscle function assessment included maximum respiratory pressure, peak flow, and air volume. Trunk function was evaluated using the Trunk Impairment Scale, and trunk balance was estimated based on the center of pressure velocity and path length within the limit of stability in sitting posture. Abdominal muscles were significantly thinner on the affected side, and the thickening ratio was lower in the affected side (P respiratory muscle function was significantly correlated with higher level of trunk function and balance in stroke patients (P respiratory muscle function has positive correlation with trunk function and balance. We propose that respiratory muscle training should be included as part of trunk balance training in chronic stroke patients.

  15. The effect of meteorological data on atmospheric pressure loading corrections in VLBI data analysis

    Science.gov (United States)

    Balidakis, Kyriakos; Glaser, Susanne; Karbon, Maria; Soja, Benedikt; Nilsson, Tobias; Lu, Cuixian; Anderson, James; Liu, Li; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Heinkelmann, Robert; Schuh, Harald

    2015-04-01

    Earth's crustal deformation is a manifestation of numerous geophysical processes, which entail the atmosphere and ocean general circulation and tidal attraction, climate change, and the hydrological circle. The present study deals with the elastic deformations induced by atmospheric pressure variations. At geodetic sites, APL (Atmospheric Pressure Loading) results in displacements covering a wide range of temporal scales which is undesirable when rigorous geodetic/geophysical analysis is intended. Hence, it is of paramount importance that the APL signal are removed at the observation level in the space geodetic data analysis. In this study, elastic non-tidal components of loading displacements were calculated in the local topocentric frame for all VLBI (Very Long Baseline Interferometry) stations with respect to the center-of-figure of the solid Earth surface and the center-of-mass of the total Earth system. The response of the Earth to the load variation at the surface was computed by convolving Farrell Green's function with the homogenized in situ surface pressure observations (in the time span 1979-2014) after the subtraction of the reference pressure and the S1, S2 and S3 thermal tidal signals. The reference pressure was calculated through a hypsometric adjustment of the absolute pressure level determined from World Meteorological Organization stations in the vicinity of each VLBI observatory. The tidal contribution was calculated following the 2010 International Earth Rotation and Reference Systems Service conventions. Afterwards, this approach was implemented into the VLBI software VieVS@GFZ and the entirety of available VLBI sessions was analyzed. We rationalize our new approach on the basis that the potential error budget is substantially reduced, since several common errors are not applicable in our approach, e.g. those due to the finite resolution of NWM (Numerical Weather Models), the accuracy of the orography model necessary for adjusting the former as

  16. Study on Yen Phu rare earth ore concentrate treatment technology and separation of major heavy rare earth elements by solvent extraction method

    International Nuclear Information System (INIS)

    Le Ba Thuan; Pham Quang Trung; Vu Lap Lai

    2003-01-01

    1. Yenphu rare earth ore concentrate treatment by alkali under pressure: On the base of studying mineral and chemical compositions of Yenphu rare earth ore concentrate containing 28% TREO and conditions for digestion of ore concentrate by alkali under pressure such as ore concentrate/ NaOH ratio, alkali concentration, pressure and temperature at bench scale (100 gram and 5 kg per batch), the optimal conditions for decomposition of REE ore concentrate have been determined. The yield of the decomposition stage is about 90%. The studies on alkali washing, REE leaching by HCl, pH for leaching process, and iron and radioactive impurities removing by Na 2 S + Na 2 PO 4 have been carried out. The obtained results show that mixture of Na 2 S 5% + Na2PO 4 1% is effective in iron and radioactive impurities removing. The obtained REE oxides get purity of > 99% and meet the need of solvent extraction (SX) individual separation of rare earth elements. The schema for recovery of REEs from Yenphu REE ore concentrate by alkali decomposition under high pressure has been proposed. 2. Fractionation of Yenphu rare earth mixture into subgroups by solvent extraction with PC88A: On the base of simulation program, the parameters for fractional process of rare earths mixture into subgroups by solvent extraction with PC88A have been proposed and determined by experimental verification on mixer-settler set. According to this process, rare earths mixture fractionated into yttrium and light subgroups. In their turn, the light subgroup was separated into light (La, Ce, Pr, Nd) and middle (Sm, Eu, Gd) subgroups. The average yield of the process reached value > 95%. The composition of light subgroup meets the needs for individual separation of Gd, Eu, and Sm. 3. Separation and purification of yttrium: The process for recovery of yttrium consists of two stages: upgrade to get high quality Y concentrate by PC88A and purification by Aliquat 336 in NH 4 SCN-NH 4 Cl medium. The process parameter for

  17. Tackling the work-life balance challenge in Professional Service Firms: the impact of projects, organizing and service characteristics

    NARCIS (Netherlands)

    Noury, L.C.; Gand, Sébastien; Sardas, Jean-Claude

    2017-01-01

    Professional Service Firms (PSFs) are currently under considerable pressure for economic reasons (low growth, pressure on cost), but also from the emergence of individual demands for work-life balance (WLB) from professionals, which challenge traditional ways of organizing both projects and careers.

  18. The esa earth explorer land surface processes and interactions mission

    Science.gov (United States)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  19. Nuclear methods: applications to Earth sciences

    International Nuclear Information System (INIS)

    Segovia, N.

    1994-01-01

    The discovery of radioactivity phenomenon occurred almost 100 years ago, in 1896, and constituted the base for new perspectives in many disciplines, including the Earth sciences. The initial works in this field, during the first quarter of the Century, established that the series of radioactive decay of long lifetime Uranium 238, Uranium 235 and Thorium 232 present radioactive isotopes of several elements which are physically and chemically different. The chemical differentiation of the Earth during its evolution has concentrated in the crust the major part of the radioactive materials. The application of radioactive in balance which occur as a consequence of chemical and physical differences, has evolve quickly, and the utilization of natural radioactive isotopes can be detach in two major headings: geologic clocks and tracers. The applications cover a wide spectra of geological, oceanographical, volcanic, hydrological, paleoclimatic and archaeological problems. In this paper, a description of radioactive phenomenon is presented, as well as the chemical and physical properties of the natural radioactive elements, the measurement methods and, finally, some examples of the uses in chronology and as radioactive tracers will be presented, doing an emphasis of some results obtained in Mexico. (Author)

  20. Nickel hydrogen common pressure vessel battery development

    Science.gov (United States)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1992-01-01

    Our present design for a common pressure vessel (CPV) battery, a nickel hydrogen battery system to combine all of the cells into a common pressure vessel, uses an open disk which allows the cell to be set into a shallow cavity; subsequent cells are stacked on each other with the total number based on the battery voltage required. This approach not only eliminates the assembly error threat, but also more readily assures equal contact pressure to the heat fin between each cell, which further assures balanced heat transfer. These heat fin dishes with their appropriate cell stacks are held together with tie bars which in turn are connected to the pressure vessel weld rings at each end of the tube.

  1. Applications of liquid state physics to the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1980-01-01

    New results derived for application to the earth's outer core using the modern theory of liquids and the hard-sphere model of liquid structure are presented. An expression derived in terms of the incompressibility and pressure is valid for a high-pressure liquid near its melting point, provided that the pressure is derived from a strongly repulsive pair potential; a relation derived between the melting point and density leads to a melting curve law of essentially the same form as Lindemann's law. Finally, it is shown that the 'core paradox' of Higgins and Kennedy (1971) can occur only if the Gruneisen parameter is smaller than 2/3, and this constant is larger than this value in any liquid for which the pair potential is strongly repulsive.

  2. Chaotic behavior in a system simulating the pressure balanced injection system. Analysis of passive safety reactor behavior. JAERI's nuclear research promotion program, H12-012 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Madarame, Haruki; Okamoto, Koji; Tanaka, Gentaro; Morimoto, Yuichiro [Tokyo Univ., School of Engineering, Tokyo (Japan); Sato, Akira [Yamagata Univ., Faculty of Engineering, Yonezawa, Yamagata (Japan); Kondou, Masaya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The pressure Balanced Injection System (PBIS) was proposed in a passive safety reactor. Pressurizing Line (PL) connects the Reactor Vessel (RV) and the gas area in the Contain Vessel (CV), and Injected Line (IL) connects two vessels at relatively lower position. In an accident, the two lines are passively opened. The vapor generated by the residual heat pressed downward the water level in the RV. When the level is lower than the inlet of the PL, vapor is ejected into the CV through the PL attaining the pressure balance between the vessels. Then boron water in the CV is injected into the RV through the IL by the static head. This process is repeated by the succeeding vapor generation. In an experiment, the oscillating system was replaced by water column in a U-shaped duct. The vapor generation was simulated by cover gas supply to one end of the duct, while the other end was open to the atmosphere. When the water level reached a certain level, electromagnetic valves opened and the cover gas was ejected. The gas pressure decreased rapidly, resulting in a surface rise. When the water level reached another level, the valves closed. The cover gas pressure increased again, thus, gas ejection occurred intermittently. The interval of the gas ejection was not constant but fluctuated widely. Mere stochastic noise could hardly explain the large amplitude. Then was expressed the system using a set of linear equations. Various types of piecewise linear model were developed to examine the cause of the fluctuation. There appeared tangential bifurcation, period-doubling bifurcation, period-adding bifurcation and so on. The calculated interval exhibited chaotic features. Thus the cause of the fluctuation can be attributed to chaotic features of the system having switching. Since the piecewise linear model was highly simplified the behavior, a quantitative comparison between the calculation and the experiment was difficult. Therefore, numerical simulation code considering nonlinear

  3. Physical load handling and listening comprehension effects on balance control.

    Science.gov (United States)

    Qu, Xingda

    2010-12-01

    The purpose of this study was to determine the physical load handling and listening comprehension effects on balance control. A total of 16 young and 16 elderly participants were recruited in this study. The physical load handling task required holding a 5-kg load in each hand with arms at sides. The listening comprehension task involved attentive listening to a short conversation. Three short questions were asked regarding the conversation right after the testing trial to test the participants' attentiveness during the experiment. Balance control was assessed by centre of pressure-based measures, which were calculated from the force platform data when the participants were quietly standing upright on a force platform. Results from this study showed that both physical load handling and listening comprehension adversely affected balance control. Physical load handling had a more deleterious effect on balance control under the listening comprehension condition vs. no-listening comprehension condition. Based on the findings from this study, interventions for the improvement of balance could be focused on avoiding exposures to physically demanding tasks and cognitively demanding tasks simultaneously. STATEMENT OF RELEVANCE: Findings from this study can aid in better understanding how humans maintain balance, especially when physical and cognitive loads are applied. Such information is useful for developing interventions to prevent fall incidents and injuries in occupational settings and daily activities.

  4. Balance Problems

    Science.gov (United States)

    ... fully trust your sense of balance. Loss of balance also raises the risk of falls. This is a serious and even life-threatening ... 65. Balance disorders are serious because of the risk of falls. But occasionally balance problems may warn of another health condition, such ...

  5. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  6. Striving for balance between family and work demands among Iranian nurses.

    Science.gov (United States)

    Lagerström, Monica; Josephson, Malin; Arsalani, Narges; Fallahi-Khoshknab, Masoud

    2010-04-01

    The study reported here explored Iranian nurses' experience of managing work and family roles. Grounded theory method guided the data collection and data analysis from both individual and focus group interviews. Five categories emerged: family role, working conditions, seeking support, perceiving dissatisfaction, and perceiving threats to health. The core concept that emerged was striving for balance between family and work demands. In the work-family role the Iranian nurses faced significant pressures, and they mostly relied on their own capabilities to create balance, often neglecting their own needs. This resulted in perceived dissatisfaction and health threats.

  7. Effects of dynamic posturographic balance training versus conventional balance training on mobility and balance in elderly

    International Nuclear Information System (INIS)

    Saddiqi, F.A.; Masood, T.

    2017-01-01

    To determine the effects of dynamic posturographic balance training versus conventional balance training in improving mobility and balance in elderly. Methodology: Forty subjects between 50 to 80 years of age were selected via non-probability convenience sampling technique, for this randomized controlled trial. Both females and males with no major co-morbid conditions and cognitive impairments were recruited and randomized via coin toss method into two equal groups: Dynamic Posturographic balance training (DPG) group and Conventional balance training (CBT) group. The DPG training was provided via Biodex Balance System (Static and Dynamic). Both groups received interventions 3 times (35 to 45min each day) a week for 8 weeks, after which terminal assessment was done. Data were collected on demographic profile, balance via berg balance score and mobility by using Timed Up and Go Test. Independent samples t test was used to check difference between CBT group and DPG Group and repeated measures Analysis of Variance (ANOVA) was used for within-group analysis. Results: Baseline analysis of Berg balance scale and timed up and go test between two groups showed no significant difference with (p 0.805 and 0.251, respectively). After 8 weeks of intervention, there was significant difference between the groups in both variables (p 0.019 and 0.001, respectively). Conclusion: Dynamic posturographic balance training was more effective in improving dynamic balance and mobility in elderly population in comparison to conventional balance training. (author)

  8. Eutectic melting temperature of the lowermost Earth's mantle

    Science.gov (United States)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  9. Balance and postural skills in normal-weight and overweight prepubertal boys.

    Science.gov (United States)

    Deforche, Benedicte I; Hills, Andrew P; Worringham, Charles J; Davies, Peter S W; Murphy, Alexia J; Bouckaert, Jacques J; De Bourdeaudhuij, Ilse M

    2009-01-01

    This study investigated differences in balance and postural skills in normal-weight versus overweight prepubertal boys. Fifty-seven 8-10-year-old boys were categorized overweight (N = 25) or normal-weight (N = 32) according to the International Obesity Task Force cut-off points for overweight in children. The Balance Master, a computerized pressure plate system, was used to objectively measure six balance skills: sit-to-stand, walk, step up/over, tandem walk (walking on a line), unilateral stance and limits of stability. In addition, three standardized field tests were employed: standing on one leg on a balance beam, walking heel-to-toe along the beam and the multiple sit-to-stand test. Overweight boys showed poorer performances on several items assessed on the Balance Master. Overweight boys had slower weight transfer (p test, greater step width while walking (p walking on a line (p test, the unilateral stance and the limits of stability were comparable between both groups. On the balance beam, overweight boys could not hold their balance on one leg as long (p test (p < 0.001) than normal-weight boys. Finally, overweight boys were slower in standing up and sitting down five times in the multiple sit-to-stand task (p < 0.01). This study demonstrates that when categorised by body mass index (BMI) level, overweight prepubertal boys displayed lower capacity on several static and dynamic balance and postural skills.

  10. Comparison of Static Balance and the Role of Vision in Elite Athletes

    Directory of Open Access Journals (Sweden)

    Hammami Raouf

    2014-07-01

    Full Text Available When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Indeed, how athletes from different sports perform on balance tests is not well understood. The goal of the present study was to compare static balance and the role of vision among elite sprinters, jumpers and rugby players. The modified clinical test of sensory interaction on balance (mCTSIB was used to assess the velocity of the center-of-pressure (CoP on a force platform during a 30 s bipedal quiet standing posture in 4 conditions: firm surface with opened and closed eyes, foam surface with opened and closed eyes. Three-factor ANOVA indicated a significant main effect for groups (F=21.69, df=2, p0.05. The nature of the sport practiced and the absence of visual control are linked to modify static balance in elite athletes. Coaches and strength and conditioning professionals are recommended to use a variety of exercises to improve balance, including both exercises with opened and closed eyes on progressively challenging surfaces in order to make decisions about tasks and sensory availability during assessment and training.

  11. Impact of atmospheric refraction: how deeply can we probe exo-earth's atmospheres during primary eclipse observations?

    Energy Technology Data Exchange (ETDEWEB)

    Bétrémieux, Yan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kaltenegger, Lisa, E-mail: betremieux@mpia.de [Also at Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. (United States)

    2014-08-10

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 μm model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.

  12. Possible Origin of Stagnation and Variability of Earth's Biodiversity

    Science.gov (United States)

    Stollmeier, Frank; Geisel, Theo; Nagler, Jan

    2014-06-01

    The magnitude and variability of Earth's biodiversity have puzzled scientists ever since paleontologic fossil databases became available. We identify and study a model of interdependent species where both endogenous and exogenous impacts determine the nonstationary extinction dynamics. The framework provides an explanation for the qualitative difference of marine and continental biodiversity growth. In particular, the stagnation of marine biodiversity may result from a global transition from an imbalanced to a balanced state of the species dependency network. The predictions of our framework are in agreement with paleontologic databases.

  13. The influence of a balanced volume replacement concept on inflammation, endothelial activation, and kidney integrity in elderly cardiac surgery patients.

    Science.gov (United States)

    Boldt, Joachim; Suttner, Stephan; Brosch, Christian; Lehmann, Andreas; Röhm, Kerstin; Mengistu, Andinet

    2009-03-01

    A balanced fluid replacement strategy appears to be promising for correcting hypovolemia. The benefits of a balanced fluid replacement regimen were studied in elderly cardiac surgery patients. In a randomized clinical trial, 50 patients aged >75 years undergoing cardiac surgery received a balanced 6% HES 130/0.42 plus a balanced crystalloid solution (n = 25) or a non-balanced HES in saline plus saline solution (n = 25) to keep pulmonary capillary wedge pressure/central venous pressure between 12-14 mmHg. Acid-base status, inflammation, endothelial activation (soluble intercellular adhesion molecule-1, kidney integrity (kidney-specific proteins glutathione transferase-alpha; neutrophil gelatinase-associated lipocalin) were studied after induction of anesthesia, 5 h after surgery, 1 and 2 days thereafter. Serum creatinine (sCr) was measured approximately 60 days after discharge. A total of 2,750 +/- 640 mL of balanced and 2,820 +/- 550 mL of unbalanced HES were given until the second POD. Base excess (BE) was significantly reduced in the unbalanced (from +1.21 +/- 0.3 to -4.39 +/- 1.0 mmol L(-1) 5 h after surgery; P volume replacement strategy including a balanced HES and a balanced crystalloid solution resulted in moderate beneficial effects on acid-base status, inflammation, endothelial activation, and kidney integrity compared to a conventional unbalanced volume replacement regimen.

  14. Upper limb contributions to frontal plane balance control in rollator-assisted walking.

    Science.gov (United States)

    Tung, James Y; Gage, William H; Poupart, Pascal; McIlroy, William E

    2014-01-01

    While assisting with balance is a primary reason for rollator use, few studies have examined how the upper limbs are used for balance. This study examines upper limb contributions to balance control during rollator-assisted walking. We hypothesized that there would be an increased upper limb contribution, measured by mean vertical loading (Fz) and variation in frontal plane center-of-pressure (COPhigh), when walking balance is challenged/impaired. Experiment 1 compared straight-line and beam-walking in young adults (n = 11). As hypothesized, Fz and COPhighincreased in beam-walking compared to baseline (mean Fz: 13.7 vs. 9.1% body weight (BW), p < 0.001, RMS COPhigh: 1.35 vs. 1.07 cm, p < 0.001). Experiment 2 compared older adults who regularly use rollators (RU, n = 10) to older adult controls (CTL, n = 10). The predicted higher upper limb contribution in the RU group was not supported. However, when individuals were grouped by balance impairment, those with the lowest Berg Balance scores (< 45) demonstrated greater speed-adjusted COPhigh than those with higher scores (p = 0.013). Furthermore, greater COPhigh and Fz were correlated to greater reduction in step width, supporting the role of upper limb contributions to frontal plane balance. This work will guide studies assessing reliance on rollators by providing a basis for measurement of upper limb balance contributions.

  15. Analysis of heat balance on innovative-simplified nuclear power plant using multi-stage steam injectors

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Michitsugu

    2006-01-01

    The total space and weight of the feedwater heaters in a nuclear power plant (NPP) can be reduced by replacing low-pressure feedwater heaters with high-efficiency steam injectors (SIs). The SI works as a direct heat exchanger between feedwater from condensers and steam extracted from turbines. It can attain pressures higher than the supplied steam pressure. The maintenance cost is lower than that of the current feedwater heater because of its simplified system without movable parts. In this paper, we explain the observed mechanisms of the SI experimentally and the analysis of the computational fluid dynamics (CFD). We then describe mainly the analysis of the heat balance and plant efficiency of the innovative-simplified NPP, which adapted to the boiling water reactor (BWR) with the high-efficiency SI. The plant efficiencies of this innovative-simplified BWR with SI are compared with those of a 1 100 MWe-class BWR. The SI model is adopted in the heat balance simulator as a simplified model. The results show that the plant efficiencies of the innovate-simplified BWR with SI are almost equal to those of the original BWR. They show that the plant efficiency would be slightly higher if the low-pressure steam, which is extracted from the low-pressure turbine, is used because the first-stage of the SI uses very low pressure. (author)

  16. Balancing food and predator pressure induces chronic stress in songbirds.

    OpenAIRE

    Clinchy, Michael; Zanette, Liana; Boonstra, Rudy; Wingfield, John C.; Smith, James N. M.

    2004-01-01

    The never-ending tension between finding food and avoiding predators may be the most universal natural stressor wild animals experience. The 'chronic stress' hypothesis predicts: (i) an animal's stress profile will be a simultaneous function of food and predator pressures given the aforesaid tension; and (ii) these inseparable effects on physiology will produce inseparable effects on demography because of the resulting adverse health effects. This hypothesis was originally proposed to explain...

  17. Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth

    Science.gov (United States)

    Siebert, Julien; Sossi, Paolo A.; Blanchard, Ingrid; Mahan, Brandon; Badro, James; Moynier, Frédéric

    2018-03-01

    The depletion pattern of volatile elements on Earth and other differentiated terrestrial bodies provides a unique insight as to the nature and origin of planetary building blocks. The processes responsible for the depletion of volatile elements range from the early incomplete condensation in the solar nebula to the late de-volatilization induced by heating and impacting during planetary accretion after the dispersion of the H2-rich nebular gas. Furthermore, as many volatile elements are also siderophile (metal-loving), it is often difficult to deconvolve the effect of volatility from core formation. With the notable exception of the Earth, all the differentiated terrestrial bodies for which we have samples have non-chondritic Mn/Na ratios, taken as a signature of post-nebular volatilization. The bulk silicate Earth (BSE) is unique in that its Mn/Na ratio is chondritic, which points to a nebular origin for the depletion; unless the Mn/Na in the BSE is not that of the bulk Earth (BE), and has been affected by core formation through the partitioning of Mn in Earth's core. Here we quantify the metal-silicate partitioning behavior of Mn at deep magma ocean pressure and temperature conditions directly applicable to core formation. The experiments show that Mn becomes more siderophile with increasing pressure and temperature. Modeling the partitioning of Mn during core formation by combining our results with previous data at lower P-T conditions, we show that the core likely contains a significant fraction (20 to 35%) of Earth's Mn budget. However, we show that the derived Mn/Na value of the bulk Earth still lies on the volatile-depleted end of a trend defined by chondritic meteorites in a Mn/Na vs Mn/Mg plot, which tend to higher Mn/Na with increasing volatile depletion. This suggests that the material that formed the Earth recorded similar chemical fractionation processes for moderately volatile elements as chondrites in the solar nebula, and experienced limited post

  18. Studies of the rare earth-iron interactions in the orthoferrites GdFeO3 and HoFeO3

    International Nuclear Information System (INIS)

    Sakata, T.; Enomura, A.

    1979-01-01

    The magnetic behaviour of GdFeO 3 and HoFeO 3 is investigated by means of a Faraday type magnetic balance in a temperature range where rare earth ions are in the paramagnetic state. The results are analyzed in terms of an effective field at a rare earth ion site. Thereby the isotropic exchange field as well as the magnetic dipole field are taken into account. By this means the exchange integral, J/k(K), between an iron ion and a rare earth ion may be estimated to be 0.23 for GdFeO 3 and 0.25 for HoFeO 3 , respectively. (author)

  19. Chance for balance: Chance for balance

    OpenAIRE

    Sævild, Katariina; Skov Sørensen, Katrine; Kildahl Lauritsen, Louise; Fuglsang, Sofie Olivia; Arnbjerg, Stine Høegh

    2015-01-01

    This project investigates how (im) balance between family and career influences Danish women's desire to have children. In order to answer this question, we have chosen to use qualitative method and our analysis is based on two semi-structured research interviews with two chosen women. Thus these women’s definition of balance and their view on children define the project. We have chosen to use of work-life balance theories, Thomas Hoejrup’s lifeform-analysis and Anthony Giddens’ theories of s...

  20. Mineralizer-assisted high-pressure high-temperature synthesis and characterization of novel phosphorus nitride imides and luminescent alkaline earth metal (oxo)nitridophosphates

    International Nuclear Information System (INIS)

    Marchuk, Alexey

    2016-01-01

    The main objectives of this thesis were the synthesis, identification and structural characterization of new alkaline earth metal (oxo)nitridophopshates and phosphorus nitrides. Furthermore, luminescence properties of the resulting materials should be investigated and a connection between these properties and the respective structures should be established. For this purpose, a range of synthesis strategies was employed, including conventional solid-state syntheses in silica ampoules and high-pressure high-temperature syntheses using the multianvil technique. The emphasis of the synthetic part of this thesis lies on the development of new synthetic strategies in order to increase crystallinity of alkaline earth metal (oxo)nitridophosphates and thus accelerate their structure determination. This involves the selection of a suitable mineralizer and the investigation of its interaction with the respective starting materials. In addition, the analytical methods applied in this thesis in order to identify and characterize the compounds are just as essential as the synthesis strategies. X-ray diffraction on single crystals and on powders was carried out as the main analytical method while being supported by quantitative and qualitative 1 H and 31 P solid-state NMR measurements, FTIR and energy-dispersive X-ray (EDX) spectroscopy, as well as electron microscopy methods including both imaging and diffraction techniques. Implied by the large number of novel structures investigated, theoretical studies including topological analysis, calculations of lattice energies and bond-valence sums also played a major role in this thesis. Optical analysis methods such as reflectance spectroscopy, luminescence microscopy and photoluminescence measurements helped to determine the luminescence properties of some of the presented compounds.

  1. A new glove-box system for a high-pressure tritium pump

    International Nuclear Information System (INIS)

    Wilson, S.W.; Borree, R.J.; Chambers, D.I.; Chang, Y.; Merrill, J.T.; Souers, P.C.; Wiggins, R.K.

    1988-01-01

    A new glove-box system that was designed around a high-pressure tritium pump is described. The system incorporates new containment ideas such as ''burpler'' passive pressure controls, valves that can be turned from outside the box, inflatable door seals, ferro-fluidic motor-shaft seals, and rapid box-to-hood conversion during cryostaging. Currently under construction, the system will contain nine separate sections with automatic pressure-balancing and venting systems. 3 refs., 5 figs

  2. Pressure correction schemes for compressible flows: application to baro-tropic Navier-Stokes equations and to drift-flux model

    International Nuclear Information System (INIS)

    Gastaldo, L.

    2007-11-01

    We develop in this PhD thesis a simulation tool for bubbly flows encountered in some late phases of a core-melt accident in pressurized water reactors, when the flow of molten core and vessel structures comes to chemically interact with the concrete of the containment floor. The physical modelling is based on the so-called drift-flux model, consisting of mass balance and momentum balance equations for the mixture (Navier-Stokes equations) and a mass balance equation for the gaseous phase. First, we propose a pressure correction scheme for the compressible Navier-Stokes equations based on mixed non-conforming finite elements. An ad hoc discretization of the advection operator, by a finite volume technique based on a dual mesh, ensures the stability of the velocity prediction step. A priori estimates for the velocity and the pressure yields the existence of the solution. We prove that this scheme is stable, in the sense that the discrete entropy is decreasing. For the conservation equation of the gaseous phase, we build a finite volume discretization which satisfies a discrete maximum principle. From this last property, we deduce the existence and the uniqueness of the discrete solution. Finally, on the basis of these works, a conservative and monotone scheme which is stable in the low Mach number limit, is build for the drift-flux model. This scheme enjoys, moreover, the following property: the algorithm preserves a constant pressure and velocity through moving interfaces between phases (i.e. contact discontinuities of the underlying hyperbolic system). In order to satisfy this property at the discrete level, we build an original pressure correction step which couples the mass balance equation with the transport terms of the gas mass balance equation, the remaining terms of the gas mass balance being taken into account with a splitting method. We prove the existence of a discrete solution for the pressure correction step. Numerical results are presented; they

  3. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants

    International Nuclear Information System (INIS)

    Saatz, Jessica; Vetterlein, Doris; Mattusch, Jürgen; Otto, Matthias; Daus, Birgit

    2015-01-01

    Rare earth elements (REE) are expected to become pollutants by enriching in the environment due to their wide applications nowadays. The uptake and distribution of gadolinium and yttrium and its influence on biomass production and nutrient balance was investigated in hydroponic solution experiments with maize plants using increasing application doses of 0.1, 1 and 10 mg L −1 . It could be shown that concentrations of up to 1 mg L −1 of Gd and Y did not reduce or enhance the plant growth or alter the nutrient balance. 10 mg L −1  Gd or Y resulted in REE concentrations of up to 1.2 weight-% in the roots and severe phosphate deficiency symptoms. Transfer rates showed that there was only little transport of Gd and Y from roots to shoots. Significant correlations were found between the concentration of Gd and Y in the nutrient solution and the root tissue concentration of Ca, Mg and P. - Highlights: • Roots accumulate REE in very high concentrations. • Transfer factors from root to shoot tissue are very low, with HREE higher than MREE. • The nutrient balance of the plant is severely influenced by REE addition. • Phosphate deficiency appears at high concentrations of REE addition. - The addition of the rare-earth elements Gd and Y results in less Ca and Mg uptake and phosphate deficiency in maize plants grown in hydroponics

  4. Probabilistic integrity assessment of pressure tubes in an operating pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young-Jin; Park, Heung-Bae [KEPCO E and C, 188 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-870 (Korea, Republic of); Lee, Jung-Min; Kim, Young-Jin [School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon-si, Gyeonggi-do 440-746 (Korea, Republic of); Ko, Han-Ok [Korea Institute of Nuclear Safety, 34 Gwahak-ro, Yuseong-gu, Daejeon-si 305-338 (Korea, Republic of); Chang, Yoon-Suk, E-mail: yschang@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-02-15

    Even though pressure tubes are major components of a pressurized heavy water reactor (PHWR), only small proportions of pressure tubes are sampled for inspection due to limited inspection time and costs. Since the inspection scope and integrity evaluation have been treated by using a deterministic approach in general, a set of conservative data was used instead of all known information related to in-service degradation mechanisms because of inherent uncertainties in the examination. Recently, in order that pressure tube degradations identified in a sample of inspected pressure tubes are taken into account to address the balance of the uninspected ones in the reactor core, a probabilistic approach has been introduced. In the present paper, probabilistic integrity assessments of PHWR pressure tubes were carried out based on accumulated operating experiences and enhanced technology. Parametric analyses on key variables were conducted, which were periodically measured by in-service inspection program, such as deuterium uptake rate, dimensional change rate of pressure tube and flaw size distribution. Subsequently, a methodology to decide optimum statistical distribution by using a robust method adopting a genetic algorithm was proposed and applied to the most influential variable to verify the reliability of the proposed method. Finally, pros and cons of the alternative distributions comparing with corresponding ones derived from the traditional method as well as technical findings from the statistical assessment were discussed to show applicability to the probabilistic assessment of pressure tubes.

  5. Earth tidal and barometric responses observed in the Callovo-Oxfordian formation at ANDRA Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Delcourt-Honorez, M.; Scholz, E.

    2012-01-01

    Document available in extended abstract form only. Fluid pressure or hydraulic head measured in wells in geological formations can respond to Earth tidal forces and atmospheric pressure variations. At Andra Meuse/Haute-Marne underground research laboratory located in Bure (France), water level and fluid pressure are measured in several boreholes in the Callovo-Oxfordian clay formation (COX) and in overlying geological formations. One of these boreholes (EST207) is equipped with a multi-packer system monitoring 11 intervals, including 8 in the COX. The recorded fluid pressures in EST207 were analyzed to determine possible Earth tidal responses. In this borehole, the fluid pressure and atmospheric pressure variations data are recorded every fifteen minutes and 6.5 years of such data from 2004/06/02 to 2010/12/31 were analyzed. Various perturbed data, gaps, drift and abnormal data were corrected through a data preprocessing process. Data interpolation and filtering processes were performed to have data available every 15 minutes at 0, 15, 30 and 45 minutes on the hour. A spectral analysis (Fast Fourier Transform) of each pressure data series shows amplitude peaks at frequencies corresponding to various Earth tidal frequencies: diurnal and semi diurnal waves can be identified. Spectral analyses were also performed on the atmospheric pressure data. The solar semi diurnal wave (S2) was identified. The 'Earth Tides ETERNA package' was used to separate the waves according to the frequencies bands. The analyses performed using ETERNA are indicated as 'Earth Tidal Analyses' (ETAN). Tidal parameters are estimated from ETAN: amplitudes A and its standard deviation σ(A)[hPa], phase φ for the main waves in diurnal and semi diurnal frequencies bands before and after atmospheric pressure variations correction. The barometric efficiency (BE) and its standard deviation σ (BE) as regression coefficient is calculated. The atmospheric pressure data are also analyzed with ETERNA; the

  6. Rotational modes of a simple Earth model

    Science.gov (United States)

    Seyed-Mahmoud, B.; Rochester, M. G.; Rogister, Y. J. G.

    2017-12-01

    We study the tilt-over mode (TOM), the spin-over mode (SOM), the free core nutation (FCN), and their relationships to each other using a simple Earth model with a homogeneous and incompressible liquid core and a rigid mantle. Analytical solutions for the periods of these modes as well as that of the Chandler wobble is found for the Earth model. We show that the FCN is the same mode as the SOM of a wobbling Earth. The reduced pressure, in terms of which the vector momentum equation is known to reduce to a scalar second order differential equation (the so called Poincaŕe equation), is used as the independent variable. Analytical solutions are then found for the displacement eigenfucntions in a meridional plane of the liquid core for the aforementioned modes. We show that the magnitude of motion in the mantle during the FCN is comparable to that in the liquid core, hence very small. The displacement eigenfunctions for these aforementioned modes as well as those for the free inner core nutation (FICN), computed numerically, are also given for a three layer Earth model which also includes a rigid but capable of wobbling inner core. We will discuss the slow convergence of the period of the FICN in terms of the characteristic surfaces of the Poincare equation.

  7. Thermodynamic properties, melting temperature and viscosity of the mantles of Super Earths

    Science.gov (United States)

    Stamenkovic, V.; Spohn, T.; Breuer, D.

    2010-12-01

    The recent dicscovery of extrasolar planets with radii of about twice the Earth radius and masses of several Earth masses such as e.g., Corot-7b (approx 5Mearth and 1.6Rearth, Queloz et al. 2009) has increased the interest in the properties of rock at extremely high pressures. While the pressure at the Earth’s core-mantle boundary is about 135GPa, pressures at the base of the mantles of extraterrestrial rocky planets - if these are at all differentiated into mantles and cores - may reach Tera Pascals. Although the properties and the mineralogy of rock at extremely high pressure is little known there have been speculations about mantle convection, plate tectonics and dynamo action in these “Super-Earths”. We assume that the mantles of these planets can be thought of as consisting of perovskite but we discuss the effects of the post-perovskite transition and of MgO. We use the Keane equation of state and the Slater relation (see e.g., Stacey and Davies 2004) to derive an infinite pressure value for the Grüneisen parameter of 1.035. To derive this value we adopted the infinite pressure limit for K’ (pressure derivative of the bulk modulus) of 2.41 as derived by Stacey and Davies (2004) by fitting PREM. We further use the Lindeman law to calculate the melting curve. We gauge the melting curve using the available experimental data for pressures up to 120GPa. The melting temperature profile reaches 6000K at 135GPa and increases to temperatures between 12,000K and 24,000K at 1.1TPa with a preferred value of 21,000K. We find the adiabatic temperature increase to reach 2,500K at 135GPa and 5,400K at 1.1TPa. To calculate the pressure dependence of the viscosity we assume that the rheology is diffusion controlled and calculate the partial derivative with respect to pressure of the activation enthalpy. We cast the partial derivative in terms of an activation volume and use the semi-empirical homologous temperature scaling (e.g., Karato 2008). We find that the

  8. Migration of Small Bodies and Dust to Near-Earth Space

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.

    Computer simulations of the orbital evolution of Jupiter-family comets (JFCs), resonant asteroids, and asteroidal, kuiperoidal, and cometary dust particles were made. The gravitational influence of planets (exclusive of Pluto and sometimes of Mercury) was taken into account. For dust particles we also considered radiation pressure, Poynting-Robertson drag, and solar wind drag. A few JFCs got Earth-crossing orbits with semi-major axes adisintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. In our runs for dust particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 0.0004 to 0.4 (for silicates, such values correspond to particle diameters between 1000 and 1 microns). For β >0.01 the collision probabilities of dust particles with the terrestrial planets during lifetimes of particles were considerably greater for larger asteroidal and cometary particles. At β ≥ 0.1 and β ≤ 0.001 some asteroidal particles migrated beyond Jupiter's orbit. The peaks in the distribution of migrating asteroidal dust particles with semi-major axis corresponding to the n:(n+1) resonances with Earth and Venus and the gaps associated with the 1:1 resonances with these planets are more pronounced for larger particles. Several our papers on this problem were put in http://arXiv.org/format/astro-ph/ (e.g., 0305519, 0308448, 0308450). This work was supported by INTAS (00-240) and NASA (NAG5-10776).

  9. Infrared radiation in the energy balance of the upper atmosphere

    International Nuclear Information System (INIS)

    Gordiets, B.F.; Markov, M.N.

    1977-01-01

    The contribution of the infrared radiation to the energy balance of the Earth's upper atmosphere is discussed. The theoretical analysis has been carried out of the mechanisms of the transformation of the energy of outgoing particles and the ultraviolet-radiation of the Sun absorbed at the heights of Z >= 90 km into the infrared radiation. It is found out the the infrared radiation within the wave length range of 1.2-20 μ is more intensive that the 63 μ radiation of atomic oxygen and plays an important role in the general energy balance and the thermal regime of the thermosphere. It has been found out too that in the area of Z >= 120 km heights the radiation in the 5.3 μ NO band is the most intensive. This radiation is to be considered for the more accurate description of parameters of the atmosphere (temperature, density) conditioning the nature of the translocation of ionospheric sounds (ISS)

  10. Regional positioning using a low Earth orbit satellite constellation

    Science.gov (United States)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  11. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  12. Rare gas systematics: Formation of the atmosphere, evolution and structure of the Earth's mantle

    International Nuclear Information System (INIS)

    Allegre, C.J.; Staudacher, T.; Sarda, P.; Paris-6 Univ., 75; Paris-7 Univ., 75

    1987-01-01

    To explain the rare gas content and isotopic composition measured in modern terrestrial materials we explore in this paper an Earth model based on four reservoirs: atmosphere, continental crust, upper mantle and lower mantle. This exploration employs three tools: mass balance equations, the concept of mean age of outgassing and the systematic use of all of the rare gases involving both absolute amount and isotopic composition. The results obtained are as follows: half of the Earth's mantle is 99% outgassed. Outgassing occurred in an early very intense stage within the first 50 Ma of Earth history and a slow continuous stage which continues to the present day. The mean age of the atmosphere is 4.4 Ga. Our model with four main reservoirs explains quantitatively both isotopic and chemical ratios, assuming that He migrates from the lower to the upper mantle whereas the heavy rare gases did not. Noble gas fluxes for He, Ar and Xe from different reservoirs have been estimated. The results constrain the K content in the earth to 278 ppm. Several geodynamic consequences are discussed. (orig.)

  13. Effects of a Nintendo Wii exercise program on spasticity and static standing balance in spastic cerebral palsy.

    Science.gov (United States)

    Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Guzman-Muñoz, Eduardo; Lizama, L Eduardo Cofré

    2017-08-01

    This study sought to evaluate the effects of a Nintendo Wii Balance Board (NWBB) intervention on ankle spasticity and static standing balance in young people with spastic cerebral palsy (SCP). Ten children and adolescents (aged 72-204 months) with SCP participated in an exercise program with NWBB. The intervention lasted 6 weeks, 3 sessions per week, 25 minutes for each session. Ankle spasticity was assessed using the Modified Modified Ashworth Scale (MMAS), and static standing balance was quantified using posturographic measures (center-of-pressure [CoP] measures). Pre- and post-intervention measures were compared. Significant decreases of spasticity in the ankle plantar flexor muscles (p balance in young people with SCP.

  14. Solar wind and its interaction with the Earth magnetosphere

    International Nuclear Information System (INIS)

    Grib, S.A.

    1978-01-01

    A critical review is given regarding the research of the stationary and non-stationary interaction of the solar wind with the Earth magnetosphere. Highlighted is the significance of the interplanetary magnetic field in the non-stationary movement of the solar wind flux. The problem of the solar wind shock waves interaction with the ''bow wave-Earth's magnetosphere'' system is being solved. Considered are the secondary phenomena, as a result of which the depression-type wave occurs, that lowers the pressure on the Earth's maanetosphere. The law, governing the movement of the magnetosphere subsolar point during the abrupt start of a geomagnetic storm has been discovered. Stationary circumvention of the magnetosphere by the solar wind flux is well described by the gas dynamic theory of the hypersonic flux. Non-stationary interaction of the solar wind shock waves with the magnetosphere is magnetohydrodynamic. It is pointed out, that the problems under consideration are important for the forecasting of strong geomagnetic perturbations on the basis of cosmic observations

  15. Is standing balance altered in individuals with chronic low back pain? A systematic review.

    Science.gov (United States)

    Berenshteyn, Yevgeniy; Gibson, Kelsey; Hackett, Gavin C; Trem, Andrew B; Wilhelm, Mark

    2018-01-30

    To examine the static standing balance of individuals with chronic low back pain when compared to a healthy control group. A search of available literature was done using PubMed, SPORTDiscus, CINAHL, and Scopus databases. Studies were included if they contained the following: (1) individuals with chronic low back pain 3 months or longer; (2) healthy control group; (3) quantified pain measurement; and (4) center of pressure measurement using a force plate. Two authors independently reviewed articles for inclusion, and assessed for quality using the Joanna Briggs Institute Critical Appraisal Checklist for Analytical Cross Sectional Studies. Cohen's d effect size was calculated to demonstrate the magnitude of differences between groups. Nine articles were included in this review. Quality scores ranged from 5/8 to 8/8. Although center of pressure measures were nonhomogeneous, subjects with chronic low back pain had poorer performance overall compared to healthy controls. Despite inconsistencies in statistical significance, effect sizes were frequently large, indicating a lack of sufficient power in the included studies. Data were insufficiently reported among certain studies, limiting the ability of direct study comparison. Results suggest that balance is impaired in individuals with chronic low back pain when compared to healthy individuals. Implications for rehabilitation Static balance is affected in individuals with chronic low back pain. Balance assessments should be completed for individuals with chronic low back pain. Results from balance assessments should be used to indicate areas of improvement and help guide the course of treatment, as well as reassess as treatment progresses.

  16. The relevance of clinical balance assessment tools to differentiate balance deficits

    OpenAIRE

    Mancini, Martina; Horak, Fay B

    2010-01-01

    Control of balance is complex and involves maintaining postures, facilitating movement, and recovering equilibrium. Balance control consists of controlling the body center of mass over its limits of stability. Clinical balance assessment can help assess fall risk and/or determine the underlying reasons for balance disorders. Most functional balance assessment scales assess fall risk and the need for balance rehabilitation but do not differentiate types of balance deficits. A system approach t...

  17. Parkinsonian Balance Deficits Quantified Using a Game Industry Board and a Specific Battery of Four Paradigms.

    Science.gov (United States)

    Darbin, Olivier; Gubler, Coral; Naritoku, Dean; Dees, Daniel; Martino, Anthony; Adams, Elizabeth

    2016-01-01

    This study describes a cost-effective screening protocol for parkinsonism based on combined objective and subjective monitoring of balance function. Objective evaluation of balance function was performed using a game industry balance board and an automated analyses of the dynamic of the center of pressure in time, frequency, and non-linear domains collected during short series of stand up tests with different modalities and severity of sensorial deprivation. The subjective measurement of balance function was performed using the Dizziness Handicap Inventory questionnaire. Principal component analyses on both objective and subjective measurements of balance function allowed to obtained a specificity and selectivity for parkinsonian patients (vs. healthy subjects) of 0.67 and 0.71 respectively. The findings are discussed regarding the relevance of cost-effective balance-based screening system as strategy to meet the needs of broader and earlier screening for parkinsonism in communities with limited access to healthcare.

  18. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    Science.gov (United States)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  19. Do the earth tides have an influence on short-term variations in radon concentration?

    International Nuclear Information System (INIS)

    Barnet, I.; Prochazka, J.; Skalsky, L.

    1997-01-01

    The short term (diurnal) indoor radon variations are often explained as a result of temperature and air pressure changes inside a dwelling (the so-called stack effect). The observations of indoor and soil gas radon variations related to the temperature and pressure variations in a test dwelling at Lipova, Northern Bohemia, have not proved the expected correlation between the radon and climatic parameters. The stack effect was clearly observed at the beginning of the four week cycles, when the indoor temperature growth was obvious. However, the indoor radon variations were of the same range or higher than at the beginning of the cycles during the whole week cycles, even when the temperature changes were of the 1-3 o C range. A theory is therefore presented, supported by the known fluctuations of the groundwater level caused by the Earth tides, and the widely observed free air radon variations. According to this theory, the Earth tides lead to the compression of the aquifers and synchronous rise of the groundwater level, which displaces the soil gas with radon into the atmosphere or dwellings. The Earth tide components were calculated for the studied locality and time intervals. The very good phase fit of the amplitudes of gravity variations, vertical and volume strain and vertical displacement with the indoor radon variations was found. This agreement leads to the conclusion that the Earth tides can be considered as one of the causes of the indoor radon variations. This conclusion is also supported by the observations of the radon variations in the underground unventilated spaces under constant temperature and air pressure conditions. (Author)

  20. THERMAL EVOLUTION AND LIFETIME OF INTRINSIC MAGNETIC FIELDS OF SUPER-EARTHS IN HABITABLE ZONES

    International Nuclear Information System (INIS)

    Tachinami, C.; Ida, S.; Senshu, H.

    2011-01-01

    We have numerically studied the thermal evolution of different-mass terrestrial planets in habitable zones, focusing on the duration of dynamo activity to generate their intrinsic magnetic fields, which may be one of the key factors in habitability of the planets. In particular, we are concerned with super-Earths, observations of which are rapidly developing. We calculated the evolution of temperature distributions in the planetary interior using Vinet equations of state, the Arrhenius-type formula for mantle viscosity, and the astrophysical mixing-length theory for convective heat transfer modified for mantle convection. After calibrating the model with terrestrial planets in the solar system, we apply it for 0.1-10 M + rocky planets with a surface temperature of 300 K (in habitable zones) and Earth-like compositions. With the criterion of heat flux at the core-mantle boundary (CMB), the lifetime of the magnetic fields is evaluated from the calculated thermal evolution. We found that the lifetime slowly increases with planetary mass (M p ), independent of the initial temperature gap at the CMB (ΔT CMB ), but beyond the critical value M c,p (∼O(1) M + ) it abruptly declines from the mantle viscosity enhancement due to the pressure effect. We derived M c,p as a function of ΔT CMB and a rheological parameter (activation volume, V*). Thus, the magnetic field lifetime of super-Earths with M p >M p,c sensitively depends on ΔT CMB , which reflects planetary accretion, and V*, which has uncertainty at very high pressure. More advanced high-pressure experiments and first-principle simulation, as well as planetary accretion simulation, are needed to discuss the habitability of super-Earths.

  1. Multidisciplinary approaches to radiation-balanced lasers (MARBLE): a MURI program by AFOSR (Conference Presentation)

    Science.gov (United States)

    Sheik-Bahae, Mansoor

    2017-02-01

    An overview of the diverse research activities under the newly funded MURI project by AFOSR will be presented. The main goal is to advance the science of radiation-balanced lasers, also known as athermal lasers, in order to mitigate the thermal degradation of the high-power laser beams. The MARBLE project involves researchers from four universities and spans research activities in rare-earth doped crystals and fibers to semiconductor disc lasers.

  2. Validity and reliability of the Nintendo Wii Balance Board to assess standing balance and sensory integration in highly functional older adults.

    Science.gov (United States)

    Scaglioni-Solano, Pietro; Aragón-Vargas, Luis F

    2014-06-01

    Standing balance is an important motor task. Postural instability associated with age typically arises from deterioration of peripheral sensory systems. The modified Clinical Test of Sensory Integration for Balance and the Tandem test have been used to screen for balance. Timed tests present some limitations, whereas quantification of the motions of the center of pressure (CoP) with portable and inexpensive equipment may help to improve the sensitivity of these tests and give the possibility of widespread use. This study determines the validity and reliability of the Wii Balance Board (Wii BB) to quantify CoP motions during the mentioned tests. Thirty-seven older adults completed three repetitions of five balance conditions: eyes open, eyes closed, eyes open on a compliant surface, eyes closed on a compliant surface, and tandem stance, all performed on a force plate and a Wii BB simultaneously. Twenty participants repeated the trials for reliability purposes. CoP displacement was the main outcome measure. Regression analysis indicated that the Wii BB has excellent concurrent validity, and Bland-Altman plots showed good agreement between devices with small mean differences and no relationship between the difference and the mean. Intraclass correlation coefficients (ICCs) indicated modest-to-excellent test-retest reliability (ICC=0.64-0.85). Standard error of measurement and minimal detectable change were similar for both devices, except the 'eyes closed' condition, with greater standard error of measurement for the Wii BB. In conclusion, the Wii BB is shown to be a valid and reliable method to quantify CoP displacement in older adults.

  3. Work/ Life Balance Implementation Motives, Obstacles and Facilitators

    OpenAIRE

    Tramboo, Burhan

    2008-01-01

    The growing competitive business environment has resulted in a situation where organizations are faced with number of strategic decisions in search of growth. The ever increasing pressure of globalization has created a boundary less economy which drives the organizations to adopt the appropriate strategy not only for the growth but also to create sustainable competitive advantage. The push for managing work/ life balance seems to have emerged out of ever increasing diversity as a result of ch...

  4. Pressure control device in a BWR type reactor

    International Nuclear Information System (INIS)

    Nagata, Yoshifumi.

    1983-01-01

    Purpose: To perform an adequate pressure control with no erroneous scram operation even when the balance of pressure is lost between main steam pipelines. Constitution: Pressure detectors are disposed respectively to a plurality of main steam pipelines and pressure detection values therefrom are inputted into a higher value preference circuit to select a higher value. The deviation between the higher pressure value signal and an aimed value is calculated in an addition circuit and the calculated deviation is inputted to a succeeding higher value preference circuit by way of a servo mechanism as an output from an electronic main steam pressure controller. The above output and the output from another mechanical main steam pressure controller are compared in this circuit to issue a higher value signal to a governer to control the degree of a steam control valve by way of the governor and the servo mechanism. The deviation hereinafter is converged through the same procedures into an aimed predetermined value. (Sekiya, K.)

  5. A Model of Volcanic Outgassing for Earth's Early Atmosphere

    Science.gov (United States)

    Dhaliwal, J. K.; Kasting, J. F.; Zhang, Z.

    2017-12-01

    We build on historical paradigms of volcanic degassing [1] to account for non-linear relations among C-O-H-S volatiles, their speciation, solubility and concentrations in magmatic melts, and the resulting contribution to atmospheric volatile inventories. We focus on the build-up of greenhouse-relevant carbon species (CO2 and CH4) and molecular oxygen to better understand the environments of early life and the Great Oxygenation Event [2,3,4]. The mantle is an important reservoir of C-O-H-S volatiles [5], and melt concentrations depend on temperature, pressure and oxygen fugacity. We present a preliminary chemical model that simulates volatile concentrations released into the Earth's atmosphere at 1 bar, or pressures corresponding to the early Earth prior to 2.4 Ga. We maintain redox balance in the system using H+ [2, 6] because the melt oxidation state evolves with volatile melt concentrations [7] and affects the composition of degassed compounds. For example, low fO2 in the melt degasses CO, CH4, H2S and H2 while high fO2 yields CO2, SO2 and H2O [1,8,9]. Our calculations incorporate empirical relations from experimental petrology studies [e.g., 10, 11] to account for inter-dependencies among volatile element solubility trends. This model has implications for exploring planetary atmospheric evolution and potential greenhouse effects on Venus and Mars [12]­, and possibly exoplanets. A future direction of this work would be to link this chemical degassing model with different tectonic regimes [13] to account for degassing and ingassing, such as during subduction. References: [1] Holland, H. D. (1984) The chemical evolution of the atmosphere and oceans [2] Kasting, J. F. (2013) Chem. Geo. 362, 13-25 [3] Kasting, J.F. (1993) Sci. 259, 920-926 [4] Duncan, M.S. & Dasgupta, R. (2017) Nat. Geoscience 10, 387-392. [5] Hier-Majumder, S. & Hirschmann, M.M. (2017) G3, doi: 10.1002/2017GC006937 [6] Gaillard, F. et al. (2003) GCA 67, 2427- 2441 [7] Moussalam, Y. et al. (2014

  6. Cardiorespiratory effects of balancing PEEP with intra-abdominal pressures during laparoscopic cholecystectomy.

    Science.gov (United States)

    Kundra, Pankaj; Subramani, Yamini; Ravishankar, M; Sistla, Sarath C; Nagappa, Mahesh; Sivashanmugam, T

    2014-06-01

    Applying appropriate positive end-expiratory pressure (PEEP) to corresponding intra-abdominal pressure (IAP) can improve gas exchange during capnoperitoneum without any hemodynamic effects. A total of 75 patients were randomly allocated to group 0PEEP (n=25), group 5PEEP (n=25), and group 10PEEP (n=25) according to the level of PEEP, in whom capnoperitoneum was created with IAP of 14, 8, and 14 mm Hg, respectively. Hemodynamic and respiratory parameters were recorded up to 30 minutes after capnoperitoneum. In 0PEEP group, mean end-tidal carbon dioxide demonstrated significant rise 2 minutes after capnoperitoneum and plateaued at about 15 minutes but remained at high level for up to 30 minutes when compared with the 5PEEP and 10PEEP groups (Phigher at 30 minutes when compared with 5PEEP (37.8±2.7 mm Hg) and 10PEEP (37.2±3.9 mm Hg) groups. The oxygenation was better preserved in 5PEEP and 10PEEP groups with significantly higher PaO2/Fio2 ratio. Heart rate, mean arterial pressure, and cardiac output remained stable throughout the study in all the 3 groups. Application of appropriate PEEP corresponding to the IAP helped maintain CO2 elimination and improved oxygenation without any hemodynamic disturbance in patients undergoing laparoscopic cholecystectomy.

  7. Pilot study comparing changes in postural control after training using a video game balance board program and 2 standard activity-based balance intervention programs.

    Science.gov (United States)

    Pluchino, Alessandra; Lee, Sae Yong; Asfour, Shihab; Roos, Bernard A; Signorile, Joseph F

    2012-07-01

    To compare the impacts of Tai Chi, a standard balance exercise program, and a video game balance board program on postural control and perceived falls risk. Randomized controlled trial. Research laboratory. Independent seniors (N=40; 72.5±8.40) began the training, 27 completed. Tai Chi, a standard balance exercise program, and a video game balance board program. The following were used as measures: Timed Up & Go, One-Leg Stance, functional reach, Tinetti Performance Oriented Mobility Assessment, force plate center of pressure (COP) and time to boundary, dynamic posturography (DP), Falls Risk for Older People-Community Setting, and Falls Efficacy Scale. No significant differences were seen between groups for any outcome measures at baseline, nor were significant time or group × time differences for any field test or questionnaire. No group × time differences were seen for any COP measures; however, significant time differences were seen for total COP, 3 of 4 anterior/posterior displacement and both velocity, and 1 displacement and 1 velocity medial/lateral measure across time for the entire sample. For DP, significant improvements in the overall score (dynamic movement analysis score), and in 2 of the 3 linear and angular measures were seen for the sample. The video game balance board program, which can be performed at home, was as effective as Tai Chi and the standard balance exercise program in improving postural control and balance dictated by the force plate postural sway and DP measures. This finding may have implications for exercise adherence because the at-home nature of the intervention eliminates many obstacles to exercise training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. An Earth-sized planet with an Earth-like density.

    Science.gov (United States)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  9. Balance Problems

    Science.gov (United States)

    ... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady. You may ... related injuries, such as a hip fracture. Some balance problems are due to problems in the inner ...

  10. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  11. Explaining Earths Energy Budget: CERES-Based NASA Resources for K-12 Education and Public Outreach

    Science.gov (United States)

    Chambers, L. H.; Bethea, K.; Marvel, M. T.; Ruhlman, K.; LaPan, J.; Lewis, P.; Madigan, J.; Oostra, D.; Taylor, J.

    2014-01-01

    Among atmospheric scientists, the importance of the Earth radiation budget concept is well understood. Papers have addressed the topic for over 100 years, and the large Clouds and the Earth's Radiant Energy System (CERES) science team (among others), with its multiple on-orbit instruments, is working hard to quantify the details of its various parts. In education, Earth's energy budget is a concept that generally appears in middle school and Earth science curricula, but its treatment in textbooks leaves much to be desired. Students and the public hold many misconceptions, and very few people have an appreciation for the importance of this energy balance to the conditions on Earth. More importantly, few have a correct mental model that allows them to make predictions and understand the effect of changes such as increasing greenhouse gas concentrations. As an outreach element of the core CERES team at NASA Langley, a multi-disciplinary group of scientists, educators, graphic artists, writers, and web developers has been developing and refining graphics and resources to explain the Earth's Energy budget over the last few decades. Resources have developed through an iterative process involving ongoing use in front of a variety of audiences, including students and teachers from 3rd to 12th grade as well as public audiences.

  12. ANKLE TAPING DOES NOT IMPAIR PERFORMANCE IN JUMP OR BALANCE TESTS

    Directory of Open Access Journals (Sweden)

    Javier Abián-Vicén

    2008-09-01

    Full Text Available This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96. The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed

  13. Equation of State of Fe3C and Implications for the Carbon Content of Earth's Core

    Science.gov (United States)

    Davis, A.; Brauser, N.; Thompson, E. C.; Chidester, B.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Carbon is a common component in protoplanetary cores, as represented by iron meteorites. Therefore, along with silicon, oxygen, and other light elements, it is likely to be an alloying component with iron in Earth's core. Previous studies of the densities of iron carbides have not reached the combined pressure and temperature conditions relevant to Earth's core. To better understand the geophysical implications of carbon addition to Earth's core, we report P-V-T measurements of Fe3C to pressures and temperatures exceeding 110 GPa and 2500 K, using synchrotron X-ray diffraction in a laser heated diamond anvil cell. Fitting these measurements to an equation of state and assuming 1.5% density change upon melting and a 4000 K core-mantle boundary temperature, we report a value of 6 wt% carbon necessary to match the PREM density in the outer core. This value should be considered an upper bound due to the likely presence of other light elements.

  14. Mitigation of indoor radon using balanced mechanical ventilation

    International Nuclear Information System (INIS)

    Wellford, B.W.

    1986-01-01

    Previous research has shown that, for a given source strength, the concentration of Rn 222 in the home is inversely proportional to the ventilation rate. Further reductions in the concentration of the decay products of radon can be achieved due to the decrease in residence time of the parent gas as well as increased plate-out of the progeny. Natural and mechanical ventilation can affect the distribution of pressure across the building envelope potentially increasing the flow of radon bearing soil gas into the home gas into the home and/or promoting mixing of areas of higher and lower concentration. Balanced heat recovery ventilation systems were installed in ten homes in the Boyertown, Pennsylvania area. Ventilation was restricted initially to the basement area. Five installations were later modified to introduce supply air to upstairs living spaces while continuing to exhaust from the basement. An independent contractor measured Rn 222 concentrations and decay product activity in the basement and first floor living area before and after installation or modification of the heat recovery ventilation system. Additional experiments to evaluate the effect of house tightening techniques and positive pressurization of the basement were conducted. With balanced ventilation of the basement only, the mean reduction in Working Level was 92.8% with a high of 98% and a low of 76%. Mean reduction of radon gas concentration was 79.1%. When modified to supply air upstairs, mean reduction in Working Level in the living area was 90%. House tightening measures to reduce stack effect were observed to reduce radon concentration. Results indicate that balanced ventilation is an effective strategy for radon mitigation and can be expected to achieve recommended levels in a majority of homes. 9 references, 2 figures, 2 tables

  15. The effect of balance holes to centrifugal pump performance

    Science.gov (United States)

    Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.

    2017-07-01

    The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.

  16. The structural response of gadolinium phosphate to pressure

    International Nuclear Information System (INIS)

    Heffernan, Karina M.; Ross, Nancy L.; Spencer, Elinor C.; Boatner, Lynn A.

    2016-01-01

    Accurate elastic constants for gadolinium phosphate (GdPO 4 ) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO 4 determined under hydrostatic conditions, 128.1(8) GPa (K′=5.8(2)), is markedly different from that obtained with GdPO 4 under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. High pressure Raman and diffraction analysis indicate that the PO 4 tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO 4 structure is facilitated by bending/twisting of the Gd–O–P links that result in increased distortion in the GdO 9 polyhedra. - Graphical abstract: A high-pressure single crystal diffraction study of GdPO 4 with the monazite structure is presented. The elastic behaviour of rare-earth phosphates are believed to be sensitive to shear forces. The bulk modulus of GdPO 4 measured under hydrostatic conditions is 128.1(8) GPa. Compression of the structure is facilitated by bending/twisting of the Gd−O−P links that result in increased distortion in the GdO 9 polyhedra. Display Omitted - Highlights: • The elastic responses of rare-earth phosphates are sensitive to shear forces. • The bulk modulus of GdPO 4 measured under hydrostatic conditions is 128.1(8) GPa. • Twisting of the inter-polyhedral links allows compression of the GdPO 4 structure. • Changes to the GdO 9 polyhedra occur in response to pressure (<7.0 GPa).

  17. Continuity of Earth Radiation Budget Observations

    Science.gov (United States)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  18. Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.

    Science.gov (United States)

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.

  19. Effects of imipramine of the orthostatic changes in blood pressure, heart rate and plasma catecholamines

    DEFF Research Database (Denmark)

    Nielsen, J R; Johansen, Torben; Arentoft, A

    1983-01-01

    The effect of imipramine on the orthostatic changes in heart rate, blood pressure and plasma catecholamines were examined in six healthy male subjects on two occasions on high sodium balance (Na+ excretion greater than 120 mmol per day) and on low sodium balance (Na+ excretion less than 110 mmol...... per day), respectively. Orthostatic tests were carried out before and 2 h after ingestion of 150 mg imipramine hydrochloride. Imipramine caused a moderate increase in supine systolic blood pressure, and a pronounced increase in the rise in heart rate, when the subjects assumed erect position...

  20. Adaptive Load Balancing of Parallel Applications with Multi-Agent Reinforcement Learning on Heterogeneous Systems

    Directory of Open Access Journals (Sweden)

    Johan Parent

    2004-01-01

    Full Text Available We report on the improvements that can be achieved by applying machine learning techniques, in particular reinforcement learning, for the dynamic load balancing of parallel applications. The applications being considered in this paper are coarse grain data intensive applications. Such applications put high pressure on the interconnect of the hardware. Synchronization and load balancing in complex, heterogeneous networks need fast, flexible, adaptive load balancing algorithms. Viewing a parallel application as a one-state coordination game in the framework of multi-agent reinforcement learning, and by using a recently introduced multi-agent exploration technique, we are able to improve upon the classic job farming approach. The improvements are achieved with limited computation and communication overhead.