Sample records for earth occultation observations

  1. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings (United States)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.; hide


    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  2. Observing Tropospheric Water Vapor by Radio Occultation using the Global Positioning System (United States)

    Kursinski, E. R.; Hajj, G. A.; Hardy, K. R.; Romans, L. J.; Schofield, J. T.


    Given the importance of water vapor to weather, climate and hydrology, global humidity observations from satellites are critical. At low latitudes, radio occultation observations of Earth's atmosphere using the Global Positioning System (GPS) satellites allow water vapor profiles to be retrieved with accuracies of 10 to 20% below 6 to 7 km altitude and approx. 5% or better within the boundary layer. GPS observations provide a unique combination of accuracy, vertical resolution (less than or equal to 1 km) and insensitivity to cloud and aerosol particles that is well suited to observations of the lower troposphere. These characteristics combined with the inherent stability of radio occultation observations make it an excellent candidate for the measurement of long term trends.

  3. Sensing Water Vapon via Spacecraft Radio Occultation Observations (United States)

    Kursinski, E. Robert; Hajj, George A.


    The radio occultation technique has been used to characterize planetary atmospheres since the 1960's spanning atmospheric pressures from 16 microbars to several bars. In 1988, the use of GPS signals to make occultation observations of Earth's atmosphere was realized by Tom Yunck and Gunnar Lindal at JPL. In the GPS to low-Earth-orbiter limb- viewing occultation geometry, Fresnel diffraction yield a unique combination of high vertical resolution of 100 m to 1 km at long wavelengths (approx. 20 cm) insensitive to particulate scattering which allows routine limb sounding from the lower mesosphere through the troposphere. A single orbiting GPS/GLONASS receiver can observe - 1000 to 1400 daily occultations providing as many daily, high vertical resolution soundings as the present global radiosonde network, but with far more evenly distributed, global coverage. The occultations yield profiles of refractivity as a function of height. In the cold, dry conditions of the upper troposphere and above (T less than 240 K), profiles of density, pressure (geopotential), and temperature can be derived. Given additional temperature information, water vapor can be derived in the midddle and lower troposphere with a unique combination of vertical resolution, global distribution and insensitivity to clouds and precipitation to an accuracy of approx. 0.2 g/kg. At low latitudes, moisture profiles will be accurate to 1-5% within the convective boundary layer and better than 20% below 6 to 7 km. Accuracies of climatological averages should be approx. 0. 1 g/kg limited by the biases in the temperature estimates. To use refractivity to constrain water vapor, knowledge of temperature is required. The simplest approach is to use the temperature field from an analysis such as the 6 hour ECMWF global analysis interpolated to the locations of each occultation. A better approach is to combine the temperature and moisture fields from such an analysis with the occultation refractivity in a weighting


    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.; Muinonen, K.; Poutanen, M. [Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430 Masala (Finland); Bach, U. [Max-Planck-Institut für Radioastronomie, Radioobservatorium Effelsberg, Max-Planck-Str. 28, D-53902 Bad Münstereifel-Effelsberg (Germany); Petrov, L., E-mail: [Astrogeo Center, Falls Church, VA 22043 (United States)


    Stellar occultations by asteroids observed at visual wavelengths have been an important tool for studying the size and shape of asteroids and for revising the orbital parameters of asteroids. At radio frequencies, a shadow of an asteroid on the Earth is dominated by diffraction effects. Here, we show, for the first time, that a single observation of an occultation of a compact radio source at a frequency of 5 GHz can be used to derive the effective size of the occulting object and to derive the distance between the observer and the center of the occultation path on the Earth. The derived diameter of the occulting object, asteroid (115) Thyra, is 75 ± 6 km. The observed occultation profile shows features that cannot be explained by diffraction of a single asteroid.

  5. Fluctuations of radio occultation signals in sounding the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    V. Kan


    Full Text Available We discuss the relationships that link the observed fluctuation spectra of the amplitude and phase of signals used for the radio occultation sounding of the Earth's atmosphere, with the spectra of atmospheric inhomogeneities. Our analysis employs the approximation of the phase screen and of weak fluctuations. We make our estimates for the following characteristic inhomogeneity types: (1 the isotropic Kolmogorov turbulence and (2 the anisotropic saturated internal gravity waves. We obtain the expressions for the variances of the amplitude and phase fluctuations of radio occultation signals as well as their estimates for the typical parameters of inhomogeneity models. From the GPS/MET observations, we evaluate the spectra of the amplitude and phase fluctuations in the altitude interval from 4 to 25 km in the middle and polar latitudes. As indicated by theoretical and experimental estimates, the main contribution into the radio signal fluctuations comes from the internal gravity waves. The influence of the Kolmogorov turbulence is negligible. We derive simple relationships that link the parameters of internal gravity waves and the statistical characteristics of the radio signal fluctuations. These results may serve as the basis for the global monitoring of the wave activity in the stratosphere and upper troposphere.

  6. A unique airborne observation. [Martian atmospheric temperature and abundances from occultation of Epsilon Geminorum (United States)

    Elliot, J. L.; Dunham, E.; Church, C.


    The occultation of 3rd magnitude Epsilon Geminorum by Mars was observed using a 36-inch telescope equipped with a photoelectric photometer at the bent Cassegrain focus, carried aboard the Kuiper Airborne Observatory at altitudes up to 45,000 feet. Scintillation from the earth's atmosphere was greatly reduced in comparison with ground observations. The observations clearly show the central flash, caused by the symmetrical refraction of light by the atmosphere of Mars. The data are being analyzed to obtain temperature profiles and to assess the relative abundance of argon and carbon dioxide in the atmosphere of the planet.

  7. Lunar occultation of Saturn. IV - Astrometric results from observations of the satellites (United States)

    Dunham, D. W.; Elliot, J. L.


    The method of determining local lunar limb slopes, and the consequent time scale needed for diameter studies, from accurate occultation timings at two nearby telescopes is described. Results for photoelectric observations made at Mauna Kea Observatory during the occultation of Saturn's satellites on March 30, 1974, are discussed. Analysis of all observations of occultations of Saturn's satellites during 1974 indicates possible errors in the ephemerides of Saturn and its satellites.

  8. Observations of Hot-Jupiter occultations combining Spitzer and Kepler photometry

    Directory of Open Access Journals (Sweden)

    Knutson H.


    Full Text Available We present the status of an ongoing program which aim at measuring occultations by their parent stars of transiting hot giant exoplanets discovered recently by Kepler. The observations are obtained in the near infrared with WarmSpitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of measuring the mid-occultation times and the relative occultation depths in each band-passes. Our measurements of occultations depths in the Kepler bandpass is turned into the determination of the optical geometric albedo Ag in this wavelength domain. The brightness temperatures of these planets are deduced from the infrared observations. We combine the optical and near infrared planetary emergent fluxes to obtain broad band emergent spectra of individual planet. We finally compare these spectra to hot Jupiter atmospheric models in order broadly distinguishing these atmospheres between different classes of models.

  9. Occultations for probing atmosphere and climate

    CERN Document Server

    Foelsche, Ulrich; Steiner, Andrea


    Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite­ crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi­ fication of the occultation-related scientific community into a...

  10. Lunar occultation observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Maloney, F.P.


    Three lunar of occultations of the Crab Nebula were observed, two at 114 MHz and one at 26.3 MHz, during the 1974 series of events. The higher frequency observations were deconvolved of diffraction effects to yield four strip integrated brightness profiles of the Nebula, with an effective resolution of 30 arc-seconds. These four profiles were Fourier inverted and cleaned of sidelobe structure to synthesize a two-dimensional map of the Nebula. At 114 MHz, the Nebula is composed of a broad envelope of emission which contains several smaller sources. The attenuation of the low radio frequency radiation by the thermal hydrogen in the filaments is considered as a possible mechanism to explain these new data. The 26.3 MHz observations indicate the presence of a bright, localized source containing greater than 80% of the flux of the Nebula. The position of the source is confined by the data to a narrow strip centered at the pulsar position. Both sets of data are compared with past occultation observations

  11. Lunar occultation observation of μ Sgr: A progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jatmiko, A. T. P. [Bosscha Observatory, Institut Teknologi Bandung (Indonesia); Puannandra, G. P.; Hapsari, R. D.; Putri, R. A.; Arifin, Z. M.; Haans, G. K.; Hadiputrawan, I. P. W. [Bosscha Observatory, Institut Teknologi Bandung, Indonesia and Astronomy Study Program, Institut Teknologi Bandung (Indonesia)


    Lunar Occultation (LO) is an event where limb of the Moon passing over a particular heavenly bodies such as stars, asteroids, or planets. In other words, during the event, stars, asteroids and planets are occulted by the Moon. When occulted objects contact the lunar limb, there will be a diffraction fringe(s) which can be measured photometrically, until the signal vanishes into noise. This event will give us a valuable information about binarities (of stars) and/or angular diameters estimation (of stars, planets, asteroids) in milliarcsecond resolution, by fitting with theoretical LO pattern. CCDs are common for LO observation because of its fast read out, and recently are developed for sub-meter class telescope. In this paper, our LO observation attempt of μ Sgr and its progress report are presented. The observation was conducted on July 30{sup th}, 2012 at Bosscha Observatory, Indonesia, using 45cm f/12 GOTO telescope combined with ST-9 XE CCD camera and Bessel B filter. We used drift-scan method to obtain light curve of the star as it was disappearing behind Moon's dark limb. Our goal is to detect binarity (or multiplicity) of this particular object.

  12. Pluto-Charon Stellar Occultation Candidates: 1990-1995 (United States)

    Dunham, E. W.; McDonald, S. W.; Elliot, J. L.


    We have carried out a search to identify stars that might be occulted by Pluto or Charon during the period 1990-1995 and part of 1996. This search was made with an unfiltered CCD camera operated in the strip scanning mode, and it reaches an R magnitude of approximately 17.5-about 1.5 mag fainter than previous searches. Circumstances for each of the 162 potential occultations are given, including an approximate R magnitude of the star, which allows estimation of the signal-to-noise ratio (S/N) for observation of each occultation. The faintest stars in our list would yield an S/N of about 20 for a 1 S integration when observed with a CCD detector on an 8 m telescope under a dark sky. Our astrometric precision (+/- 0.2 arcsec, with larger systematic errors possible for individual cases) is insufficient to serve as a final prediction for these potential occultations, but is sufficient to identify stars deserving of further, more accurate, astrometric observations. Statistically, we expect about 32 of these events to be observable somewhere on Earth. The number of events actually observed will be substantially smaller because of clouds and the sparse distribution of large telescopes. Finder charts for each of the 91 stars involved are presented.

  13. Crosslink Radio Occultation for the Remote Sensing of Planetary Atmospheres (United States)

    Mannucci, A. J.; Ao, C. O.; Asmar, S.; Edwards, C. D.; Kahan, D. S.; Paik, M.; Pi, X.; Williamson, W.


    Radio occultation utilizing deep space telecommunication signals has been used with great success in the profiling of planetary atmospheres and ionospheres since the 1960s. A shortcoming of this technique, however, is the limited temporal and spatial sampling that it provides. We consider a different approach where radio occultation measurements are taken between two spacecraft orbiting an extra-terrestrial body. Such "crosslink" radio occultations between the Global Positioning System satellites and low-earth orbiting spacecraft have been routinely acquired to provide global observations of the Earth's atmosphere and ionosphere that are used for weather forecast, climate analysis, and space weather applications. The feasibility of applying this concept to other planets has recently been demonstrated for the first time, where crosslink occultation measurements have been acquired between the Mars Odyssey and Mars Reconnaissance Orbiter spacecraft. These measurements leverage the proximity link telecommunication payloads on each orbiter, which are nominally used to provide relay communication and navigation services to Mars landers and rovers. In this presentation, we will describe the Mars crosslink experiments and the corresponding data analysis in detail. In addition, we will discuss how the crosslink occultation concepts can be effectively applied in future space exploration missions.

  14. Atmospheric gravity wave detection following the 2011 Tohoku earthquakes combining COSMIC occultation and GPS observations (United States)

    Yan, X.; Tao, Y.; Xia, C.; Qi, Y.; Zuo, X.


    Several studies have reported the earthquake-induced atmospheric gravity waves detected by some new technologies such as airglow (Makela et al., 2011), GOCE (Garcia et al., 2013), GRACE (Yang et al., 2014), F3/C radio occultation sounding (Coïsson et al., 2015). In this work, we collected all occultation events on 11 March, and selected four events to analyze at last. The original and filtered podTEC is represented as function of the altitude of the impact parameter and UT of the four events. Then, the travel time diagrams of filtered podTEC derived from the events were analyzed. The occultation signal from one event (marked as No.73) is consistent with the previous results reported by Coïsson. 2015, which is corresponds to the ionospheric signal induced from tsunami gravity wave. What is noticeable, in this work, is that three occultation events of No.403, 77 and 118 revealed a disturbance of atmospheric gravity wave with velocity 300m/s, preceding the tsunami. It would probably be correspond to the gravity waves caused by seismic rupture but not tsunami. In addition, it can be seen that the perturbation height of occultation observation TEC is concentrated at 200-400km, corresponding ionosphere F region. The signals detected above are compared with GPS measurements of TEC from GEONET and IGS. From GPS data, traveling ionospheric disturbances were observed spreading out from the epicenter as a quasi-circular propagation pattern with the time. Exactly, we observed an acoustic wave coupled with Rayleigh wave starting from the epicenter with a speed of 3.0km/s and a superimposed acoustic-gravity wave moving with a speed of 800m/s. The acoustic-gravity wave generated at the epicenter and gradually attenuated 800km away, then it is replaced by a gravity wave coupled with the tsunami that moves with a speed of between 100 and 300m/s. It is necessary to confirm the propagation process of the waves if we attempt to evaluate the use of ionospheric seismology as a

  15. Developing an Optical Lunar Occultation Measurement Reduction System for Observations at Kaau Observatory (United States)

    Malawi, Abdulrahman A.


    We present here a detailed explanation of the reduction method that we use to determine the angular diameters of the stars occulted by the dark limb of the moon. This is a main part of the lunar occultation observation program running at King Abdul Aziz University observatory since late 1993. The process is based on the least square model fitting method of analyzing occultation data, first introduced by Nather et al. (Astron. J. 75:963, 1970).

  16. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission. (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D


    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  17. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode (United States)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie


    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  18. The GNSS polarimetric radio-occultation technique to sense precipitation events: a new concept to be tested aboard PAZ Low Earth Satellite (United States)

    Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio


    The Radio Occultation and Heavy Precipitation (ROHP) experiment, to be conducted aboard the Spanish PAZ satellite, consists of a radio occultation (RO) mission provided with dual-polarization capabilities. The research with polarimetric RO data has the goal of assessing the capabilities and limitations of this technique to infer profiles of heavy precipitation. The technique aims to provide vertical profiles of precipitation simultaneously to the vertical profiles of thermodynamic parameters (standard RO products) perfectly collocated both in space and time. If successful, the polarimetric RO will represent the first technique able to provide these complementary information on precipitation. This is a relevant input for studies on heavy and violent rainfall events, which being poorly represented by the current-generation of Numerical Weather Prediction and General Circulation Models appear to be difficult to forecast on all time-scales. The Low Earth Orbiter hosting this experiment, to be launched in 2013, will orbit at 500 km altitude in a near-Polar orbit. The Radio Occulation payload includes a RO GNSS receiver and a dual polarization (H/V) limb oriented antenna to capture the signals of setting GNSS transmitters. NOAA and UCAR participate in the ground-segment of the radiometric experiment to enable near-real time dissemination of the level-1 standard RO products. The space-based GNSS RO technique scans the atmosphere vertically at fine resolution (close to 300 meter in the troposphere) by precisely measure the delay between a GNSS transmitter and a GNSS receiver aboard a Low Earth Orbiter, when the former is setting below or rising above the Earth limb. The standard, thermodynamical, products are extracted from the excess delay induced by the atmosphere at different layers. This presentation will not focus on this well-established application, but a novel concept using polarimetry to also retrieve rain information. The precipitation-measurement principle is

  19. Atmospheric diurnal variations observed with GPS radio occultation soundings

    Directory of Open Access Journals (Sweden)

    F. Xie


    Full Text Available The diurnal variation, driven by solar forcing, is a fundamental mode in the Earth's weather and climate system. Radio occultation (RO measurements from the six COSMIC satellites (Constellation Observing System for Meteorology, Ionosphere and Climate provide nearly uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal variations of temperature and refractivity from three-year (2007–2009 COSMIC RO measurements in the troposphere and stratosphere between 30° S and 30° N. The RO observations reveal both propagating and trapped vertical structures of diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity shows the minimum around 14 km and increases to a local maximum around 32 km in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from stratopause to the upper troposphere with a vertical wavelength of about 25 km. At ~32 km the seasonal variation of the tidal amplitude maximizes at the opposite side of the equator relative to the solar forcing. The vertical structure of tidal amplitude shows strong seasonal variations and becomes asymmetric along the equator and tilted toward the summer hemisphere in the solstice months. Such asymmetry becomes less prominent in equinox months.

  20. Characterization and evolution of distant planetary atmospheres using stellar occultations (United States)

    Young, L. A.


    Ground-based or near-Earth (e.g., HST) stellar occultations of every atmosphere in our solar system has been observed: Venus, Mars, Jupiter, Saturn, Titan, Uranus, Neptune, Triton, and Pluto [1]. These observations probe the atmospheres at roughly 0.1 to 100 microbar. I will talk about three aspects of stellar occultations: one-dimensional vertical profiles of the atmosphere, two- or three-dimensional atmospheric states, and the time evolution of atmosphere. In all three, I will draw on recent observations, with an emphasis on Pluto. Occultations are particularly important for the study of Pluto's atmosphere, which is impossible to study with imaging, and extremely difficult to study with spectroscopy. It was discovered by stellar occultation in 1988 [2]. No subsequent Pluto occultations were observed until two events in 2002 [3]. Pluto is now crossing the galactic plane, and there have been several additional occultations observed since 2006. These include a high signal-to-noise observation from the Anglo Australian Observatory in 2006 [4] (Fig 1), densely spaced visible and infrared observations of Pluto's upper atmosphere from telescopes in the US and Mexico in March, 2007 [5] (Fig. 2), and a dualwavelength central flash observation from Mt. John in July, 2007 [6] (Fig 3). The flux from a star occulted by an atmosphere diminishes primarily due to the increase in refraction with depth in the atmosphere, defocusing the starlight, although absorption and tangential focusing can also contribute. Because the atmospheric density, to first order, follows an exponential, it is feasible to derive a characteristic pressure and temperature from isothermal fits to even low-quality occultation light curves. Higher quality light curves allow fits with more flexible models, or light curve inversions that derive temperatures limited by the resolution of the data. These allow the derivation of one-dimensional profiles of temperature and pressure vs. altitude, which are critical

  1. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer


    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We


    Energy Technology Data Exchange (ETDEWEB)

    Person, M. J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Sallum, S. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139-4307 (United States); Dunham, E. W.; Collins, P.; Bida, T.; Bright, L. [Lowell Observatory, Flagstaff, AZ (United States); Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D. [Williams College-Hopkins Observatory, Williamstown, MA (United States); Tholen, D. J. [Institute for Astronomy, University of Hawaii, Manoa, HI (United States); Taylor, B. [Boston University, Boston, MA (United States); Wolf, J.; Pfueller, E. [Deutsches SOFIA Institut, Universitaet Stuttgart, Pfaffenwaldring 29, D-70569 Stuttgart (Germany); Meyer, A., E-mail: [SOFIA Science Center, NASA Ames Research Center, MS 211-1, Moffett Field, CA 94035 (United States); and others


    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it

  3. Measurement of stellar occultations (United States)

    Eberle, Andreas


    Whenever an asteroid occults a star, we have the opportunity to study that asteroid in great detail. As frequently shown in the past, amateur astronomers1 have the necessary equipment to measure such events successfully2. Combined with the dense net of amateur observatories and online coordination tools3 for movable stations, they can create fine grids to detect even small bodies. The analysis of these events gives us the possibility to receive high precision astrometry data, to determine the asteroids size and shape (and therefore its albedo), and even to collect information on the star itself.4 While usually a set of several light curves is required to do so, a single recording5 of (10734) Wieck's occultation of HIP 22157 on 2008 Feb 08 was sufficient to retrieve the necessary data6. 1 Observation campaigns are organized by the International Occultation Timing Association (IOTA), 2 for results see e.g. by E. Frappa, 3 Occult Watcher by H. Pavlov, 4 see K. Miyashita's analysis of the observation of the occultation of TYC 1886-01206-1 by Kalliope and Linus, miyash/occ02/kalliope/doublestar en.html 5 recording obtained by H. Michels, MPC Station Code 240 6 using Limovie by K. Miyashita

  4. First light of an external occulter testbed at flight Fresnel numbers (United States)

    Kim, Yunjong; Sirbu, Dan; Hu, Mia; Kasdin, Jeremy; Vanderbei, Robert J.; Harness, Anthony; Shaklan, Stuart


    Many approaches have been suggested over the last couple of decades for imaging Earth-like planets. One of the main candidates for creating high-contrast for future Earth-like planets detection is an external occulter. The external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. The occulter is typically tens of meters in diameter and the separation from the telescope is of the order of tens of thousands of kilometers. Optical testing of a full-scale external occulter on the ground is impossible because of the long separations. Therefore, laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The goal of this experiment is to demonstrate a pupil plane suppression of better than 1e-9 with a corresponding image plane contrast of better than 1e-11. The occulter testbed uses a 77.2 m optical propagation distance to realize the flight Fresnel number of 14.5. The scaled mask is placed at 27.2 m from the artificial source and the camera is located 50.0 m from the scaled mask. We will use an etched silicon mask, manufactured by the Microdevices Lab(MDL) of the Jet Propulsion Laboratory(JPL), as the occulter. Based on conversations with MDL, we expect that 0.5 μm feature size is an achievable resolution in the mask manufacturing process and is therefore likely the indicator of the best possible performance. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the experimental setup of the testbed. We compare the experimental results with simulations

  5. Assimilation of GNSS radio occultation observations in GRAPES (United States)

    Liu, Y.; Xue, J.


    This paper reviews the development of the global navigation satellite system (GNSS) radio occultation (RO) observations assimilation in the Global/Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration, including the choice of data to assimilate, the data quality control, the observation operator, the tuning of observation error, and the results of the observation impact experiments. The results indicate that RO data have a significantly positive effect on analysis and forecast at all ranges in GRAPES not only in the Southern Hemisphere where conventional observations are lacking but also in the Northern Hemisphere where data are rich. It is noted that a relatively simple assimilation and forecast system in which only the conventional and RO observation are assimilated still has analysis and forecast skill even after nine months integration, and the analysis difference between both hemispheres is gradually reduced with height when compared with NCEP (National Centers for Enviromental Prediction) analysis. Finally, as a result of the new onboard payload of the Chinese FengYun-3 (FY-3) satellites, the research status of the RO of FY-3 satellites is also presented.

  6. Celestial shadows eclipses, transits, and occultations

    CERN Document Server

    Westfall, John


    Much of what is known about the universe comes from the study of celestial shadows—eclipses, transits, and occultations.  The most dramatic are total eclipses of the Sun, which constitute one of the most dramatic and awe-inspiring events of nature.  Though once a source of consternation or dread, solar eclipses now lead thousands of amateur astronomers and eclipse-chasers to travel to remote points on the globe to savor their beauty and the adrenaline-rush of experiencing totality, and were long the only source of information about the hauntingly beautiful chromosphere and corona of the Sun.   Long before Columbus, the curved shadow of the Earth on the Moon during a lunar eclipse revealed that we inhabit a round world. The rare and wonderful transits of Venus, which occur as it passes between the Earth and the Sun, inspired eighteenth century expeditions to measure the distance from the Earth to the Sun, while the recent transits of 2004 and 2012 were the most widely observed ever--and still produced re...

  7. Optical performance of the New Worlds Occulter (United States)

    Arenberg, Jonathan W.; Lo, Amy S.; Glassman, Tiffany M.; Cash, Webster


    The New Worlds Observer (NWO) is a multiple spacecraft mission that is capable of detecting and characterizing extra-solar planets and planetary systems. NWO consists of an external occulter and a generic space telescope, flying in tandem. The external occulter has specific requirements on its shape and size, while the telescope needs no special modification beyond that required to do high-quality astrophysical observations. The occulter is a petal-shaped, opaque screen that creates a high-suppression shadow large enough to accommodate the telescope. This article reports on the optical performance of the novel New Worlds occulter design. It also introduces two new aspects of its optical performance which enhance the detectability of extra-solar planets. We also include a brief discussion of the buildability and the tolerances of the occulter. It is also shown that an occulter design can be found for any set of science requirements. We show that NWO is a viable mission concept for the study of extra-solar planets. To cite this article: J.W. Arenberg et al., C. R. Physique 8 (2007).

  8. A Climate Benchmark of Upper Air Temperature Observations from GNSS Radio Occultation (United States)

    Ao, C. O.; Mannucci, A. J.; Leroy, S. S.; Verkhoglyadova, O. P.


    GPS (Global Positioning System), or more generally Global Navigation Satellite System (GNSS), radio occultation (RO) is a remote sensing technique that produces highly accurate temperature in the upper troposphere and lower stratosphere across the globe with fine vertical resolution. Its fundamental measurement is the time delay of the microwave signal as it travels from a GNSS satellite to the receiver in low Earth orbit. With a relatively simple physical retrieval, the uncertainty in the derived temperature can be traced rigorously through the retrieval chain back to the raw measurements. The high absolute accuracy of RO allows these observations to be assimilated without bias correction in numerical weather prediction models and provides an anchor for assimilating other types of observations. The high accuracy, coupled with long-term stability, makes RO valuable in detecting decadal temperature trends. In this presentation, we will summarize the current state of RO observations and show temperature trends derived from 15 years of RO data in the upper troposphere and lower stratosphere. We will discuss our recent efforts in developing retrieval algorithms that are more tailored towards climate applications. Despite the relatively robust "self-calibrating" nature of RO observations, disparity in receiver hardware and software may introduce subtle differences that need to be carefully addressed. While the historic RO data record came from relatively homogeneous hardware based largely on NASA/JPL design (e.g., CHAMP and COSMIC), the future data will likely be comprised of a diverse set of observations from Europe, China, and various commercial data providers. In addition, the use of non-GPS navigation systems will become more prevalent. We will discuss the challenges involved in establishing a long-term RO climate data record from a suite of research and operational weather satellites with changes in instrumentation and coverage.

  9. Operation of the Radio Occultation Mission in KOMPSAT-5

    Directory of Open Access Journals (Sweden)

    Mansoo Choi


    Full Text Available Korea multi-purpose satellite-5 (KOMPSAT-5 is a low earth orbit (LEO satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD system which consists of a space-borne dual frequency global positioning system (GPS receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

  10. Exploring small bodies in the outer solar system with stellar occultations (United States)

    Elliot, Jim L.; Dunham, Edward W.; Olkin, C. B.


    Stellar occultation observations probe the atmospheric structure and extinction of outer solar system bodies with a spatial resolution of a few kilometers, and an airborne platform allows the observation of occultations by small bodies that are not visible from fixed telescopes. Results from occultations by Triton, Pluto, and Chiron observed with KAO are discussed, and future directions for this program are presented.

  11. Reflective Occultation Mask for Evaluation of Occulter Designs for Planet Finding (United States)

    Hagopian, John; Lyon, Richard; Shiri, Shahram; Roman, Patrick


    Advanced formation flying occulter designs utilize a large occulter mask flying in formation with an imaging telescope to block and null starlight to allow imaging of faint planets in exosolar systems. A paper describes the utilization of subscale reflective occultation masks to evaluate formation flying occulter designs. The use of a reflective mask allows mounting of the occulter by conventional means and simplifies the test configuration. The innovation alters the test set-up to allow mounting of the mask using standard techniques to eliminate the problems associated with a standard configuration. The modified configuration uses a reflective set-up whereby the star simulator reflects off of a reflective occulting mask and into an evaluation telescope. Since the mask is sized to capture all rays required for the imaging test, it can be mounted directly to a supporting fixture without interfering with the beam. Functionally, the reflective occultation mask reflects light from the star simulator instead of transmitting it, with a highly absorptive carbon nanotube layer simulating the occulter blocking mask. A subscale telescope images the star source and companion dim source that represents a planet. The primary advantage of this is that the occulter can be mounted conventionally instead of using diffractive wires or magnetic levitation.

  12. An Examination of the Change in the Earth's Rotation Rate From Ancient Chinese Observations of Lunar Occultations of the Planets

    National Research Council Canada - National Science Library

    Hilton, James L; Seidelmann, P. Kenneth; Ciyuan, Liu


    ...., a period with no other known observations useful for Earth rotation studies. The observations are compared to topocentric ephemerides computed using Bretagnon's planetary theories VSOP82 and the Chapront-Touze lunar theory ELP2000-85...

  13. Influence of Ionospheric Weather on GNSS Radio Occultation Signals (United States)

    Yue, X.; Schreiner, W. S.; Pedatella, N. M.; Kuo, Y. H.


    Transient loss of lock (LOL) is one of the key space weather effects on the Global Navigation Satellite System (GNSS). Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) observations during 2007-2011, we have analyzed the signal cycle slip (CS) occurrence comprehensively and its correlation to the ionospheric weather phenomena such as sporadic E (Es), equatorial F region irregularity (EFI), and the ionospheric equatorial ionization anomaly (EIA). The high vertical resolution of RO observations enables us to distinguish the CS resulting from different ionospheric layers clearly on a global scale. In the E layer, the CS is dominated by the Es occurrence, while in the F layer, the CS is mainly related to the EIA and EFI at low and equatorial latitudes. In the polar region, the CS is primarily related to polar cap electron density gradients. The overall average CS (> 6 cycles) occurrence is 23% per occultation, with the E (50-150 km) and F (150-600 km) layers contributing 8.3% and 14.7%, respectively. Awareness of the effect of the ionospheric weather on the CS of the low-Earth-orbit (LEO)-based GNSS signal could be beneficial to a variety of applications, including the LEO-based GNSS data processing and the corresponding hardware/firmware design.

  14. Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations (United States)

    Hinson, D. P.; Tyler, G. L.


    Radio scintillations (at 3.6 and 13 cm) produced by scattering from ionospheric irregularities during the Voyager occultations are interpreted using a weak-scattering theory. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yield estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. It is shown that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  15. Strong scintillations during atmospheric occultations Theoretical intensity spectra. [radio scattering during spacecraft occultations by planetary atmospheres (United States)

    Hinson, D. P.


    Each of the two Voyager spacecraft launched in 1977 has completed a reconnaissance of the Jovian and Saturnian systems. In connection with occultation experiments, strong scintillations were observed. Further theoretical work is required before these scintillations can be interpreted. The present study is, therefore, concerned with the derivation of a theory for strong scattering during atmospheric occultation experiments, taking into account as fundamental quantity of interest the spatial spectrum (or spectral density) of intensity fluctuations. Attention is given to a theory for intensity spectra, and numerical calculations. The new formula derived for Phi-i accounts for strong scattering of electromagnetic waves during atmospheric occultations.

  16. Who Uses Earth Observations? User Types in Group on Earth Observations (United States)

    Fontaine, K. S.


    How can we communicate concepts in the physical sciences unless we know our audience? The Group on Earth Observations (GEO) User Interface Committee (UIC) has a responsibility within GEO to support and advocate for the user community in the development of Global Earth Observations System of Systems (GEOSS) and related work. As part of its efforts, the UIC has been working on developing a taxonomy that can be used to characterize the broad spectrum of users of GEOSS and its data, services, and applications. The user type taxonomy is designed to be broad and flexible but aims at describing the needs of the users GEOSS is going to serve. These user types represent a continuum of users of Earth observations from research through to decision support activities, and it includes organizations that use GEOSS as a tool to provide data and services for customers and consumers of the information. The classification scheme includes factors about skills and capacity for using Earth observations, sophistication level, spatial resolution, latency, and frequency of data. As part of the effort to develop a set of User Types, the GEO UIC foresees that those inside and outside GEO can use the typologies to understand how to engage users at a more effective level. This talk presents the GEOSS User Type taxonomy, explaining the development and highlights of key feedback. The talk will highlight possible ways to use the User Type taxonomy to communicate concepts and promote the use of Earth observations to a wide variety of users.

  17. Pluto occultation on 2015 June 29 UTC with central flash and atmospheric spikes just before the New Horizons flyby (United States)

    Pasachoff, Jay M.; Babcock, Bryce A.; Durst, Rebecca F.; Seeger, Christina H.; Levine, Stephen E.; Bosh, Amanda S.; Person, Michael J.; Sickafoose, Amanda A.; Zuluaga, Carlos A.; Kosiarek, Molly R.; Abe, Fumio; Nagakane, Masayuki; Suzuki, Daisuke; Tristram, Paul J.; Arredondo, Anicia


    We observed the occultation by Pluto of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 2015 June 29 UTC. At the Univ. of Canterbury Mt. John Observatory (New Zealand), under clear skies throughout, we used a POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. At the Auckland Observatory, we used a POETS and a PICO on 0.5-m and 0.4-m telescopes, with 0.4 s and 2 s cadences, respectively, obtaining ingress observations before clouds moved in. The Mt. John light curves show a central flash, indicating that we were close to the center of the occultation path. Analysis of our light curves show that Pluto's atmosphere remains robust. The presence of spikes at both sites in the egress and ingress shows atmospheric layering. We coordinated our observations with aircraft observations (Bosh et al., 2017) with the Stratospheric Observatory for Infrared Astronomy (SOFIA). Our chords helped constrain the path across Pluto that SOFIA saw. Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days before the flyby of NASA's New Horizons spacecraft.

  18. Evaluation of Inversion Methods Applied to Ionospheric ro Observations (United States)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Guyot, Elia

    The new technique of radio-occultation can be used to study the Earth's ionosphere. The retrieval processes of ionospheric profiling from radio occultation observations usually assume spherical symmetry of electron density distribution at the locality of occultation and use the Abel integral transform to invert the measured total electron content (TEC) values. This pa-per presents a set of ionospheric profiles obtained from SAC-C satellite with the Abel inversion technique. The effects of the ionosphere on the GPS signal during occultation, such as bending and scintillation, are examined. Electron density profiles are obtained using the Abel inversion technique. Ionospheric radio occultations are validated using vertical profiles of electron con-centration from inverted ionograms , obtained from ionosonde sounding in the vicinity of the occultation. Results indicate that the Abel transform works well in the mid-latitudes during the daytime, but is less accurate during the night-time.

  19. Taiwan/TriG Radio Occultation Process System (TROPS): A Brief Introduction of Atmospheric Productions (United States)

    Huang, Cheng-Yung; Yeh, Wen-Hao; Tseng, Tzu-Pang; Chen, Linton J.


    Global Positioning System (GPS) Radio Occultation (RO) technique has been used to investigate the Earth's atmosphere since 1990s. In 2006, Taiwan has launched six low Earth orbit (LEO) satellites as a RO constellation mission, named FORMOSAT-3 /COSMIC (F-3/C). F-3/C mission can release 1500-2500 data sets per day for both neutral atmosphere and ionosphere. With the advent of Global Navigation Satellite System (GNSS) in ten years and FORMOSAT-7/COSMIC-2 (F-7/C-2) mission, 12 LEO satellites are planned to be launched and deployed in two clusters of 6-satellites into the designated low and high inclination orbits in 2017 and 2020(TBD), respectively. The amount of RO data set will increase to about 8000 set per day with the using of GNSS TriG (GPS, Glonass, Galileo) receivers. The first phase of FS-7 mission is designed to low inclination (24 deg) orbit to improve the ability of server weather forecasting, like typhoon and monsoon rainfall around tropical region. The second is high inclination (72 deg) for global distribution. In order to observe better water vapor profiles, the 4x3 antennas arrays will be on board to receive weak signals which pass through low troposphere around earth surface. This report will introduce the status of F-7/C-2 mission and atmospheric part of occultation data process software TROPS.

  20. COSMIC Radio Occultation technique for measurement of the tropopause during tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    Basin during July 2008 and reached a maximum intensity of Category 3 and the typhoon Hondo, formed in the south Indian basin during February 2008 with maximum intensity of Category 4. Using measurements from a variety of earth observation satellites (A-Train constellation) and from aircraft together...... and they cool the tropopause layers. The GPS radio occultation technique is useful for studying severe weather phenomena because the GPS signals penetrate through clouds and allow measurements of atmospheric profiles related to temperature, pressure, and water vapour with high vertical resolution...

  1. Occultations of Astrophysical Radio Sources as Probes of Planetary Environments: A Case Study of Jupiter and Possible Applications to Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Paul [Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Vogt, Marissa F. [Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)


    Properties of planetary atmospheres, ionospheres, and magnetospheres are difficult to measure from Earth. Radio occultations are a common method for measuring these properties, but they traditionally rely on radio transmissions from a spacecraft near the planet. Here, we explore whether occultations of radio emissions from a distant astrophysical radio source can be used to measure magnetic field strength, plasma density, and neutral density around planets. In a theoretical case study of Jupiter, we find that significant changes in polarization angle due to Faraday rotation occur for radio signals that pass within 10 Jupiter radii of the planet and that significant changes in frequency and power occur from radio signals that pass through the neutral atmosphere. There are sufficient candidate radio sources, such as pulsars, active galactic nuclei, and masers, that occultations are likely to occur at least once per year. For pulsars, time delays in the arrival of their emitted pulses can be used to measure plasma density. Exoplanets, whose physical properties are very challenging to observe, may also occult distant astrophysical radio sources, such as their parent stars.

  2. Radio Occultation Bending Angle Anomalies During Tropical Cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), we show that the bending angle anomaly of a GPS radio occultation signal is typically larger...

  3. Occult pneumothorax in the blunt trauma patient: tube thoracostomy or observation? (United States)

    Wilson, Heather; Ellsmere, James; Tallon, John; Kirkpatrick, Andrew


    The term occult pneumothorax (OP) describes a pneumothorax that is not suspected on the basis of either clinical examination or initial chest radiography, but is subsequently detected on computed tomography (CT) scan. The optimal management of OP in the blunt trauma setting remains controversial. Some physicians favour placement of a thoracostomy tube for patients with OP, particularly those undergoing positive pressure ventilation (PPV), while others favour close observation without chest drainage. This study was conducted both to determine the incidence of OP and to describe its current treatment status in the blunt trauma population at a Canadian tertiary trauma centre. Of interest were the rates of tube thoracostomy vs. observation without chest drainage and their respective outcomes. A retrospective review was conducted of the Nova Scotia Trauma Registry. The data on all consecutive blunt trauma patients between October 1994 and March 2003 was reviewed. Outcome measures evaluated include length of stay, discharge status-dead vs. alive, intervention and time to intervention (tube thoracostomy and its relation to institution of PPV). Direct comparison was made between the OP with tube thoracostomy group and OP without tube thoracostomy group (observation or control group). They were compared in terms of their baseline characteristics and outcome measures. In 1881 consecutive blunt trauma patients over a 102-month period there were 307 pneumothoraces of which 68 were occult. Thirty five patients with OP underwent tube thoracostomy, 33 did not. Twenty nine (82.8%) with tube thoracostomy received positive pressure ventilation (PPV), as did 16 (48.4%) in the observation group. Mean injury severity score (ISS) for tube thoracostomy and observation groups were similar (25.80 and 22.39, p=0.101) whereas length of stay (LOS) was different (17.4 and 10.0 days, p=0.026). Mortality was similar (11.4% and 9.1%). There were no tension pneumothoraces. The natural history of

  4. Possible occultation by Pluto from US East Coast (United States)

    Waagen, Elizabeth O.


    We have been asked to help disseminate the news of a possible occultation by Pluto visible to observers on the US East coast. Although the AAVSO does not ordinarily issue announcements of upcoming occultations, in this case the object is Pluto and the NASA New Horizons mission ( will be visiting Pluto in 2015. The information below has been supplied by Dr. Leslie Young (Southwest Research Institute), who is coordinating this observing campaign on Pluto. Dr. Young is also Deputy Project Scientist for the New Horizons mission. ALERT: Possible Pluto occultation Wednesday night (2012/06/14 03:28 UT) from US East coast. CONTACT: Leslie Young (; work: 303-546-6057; skype: drpluto). Also see our planning pages in progress at Pluto's thin, nitrogen atmosphere is in vapor-pressure equilibrium with the surface ice, and changes seasonally. We've seen it double since 1988, and now we measure its pressure once or twice a year. The technique we use is stellar occultation, when a star passes behind Pluto's atmosphere. The atmosphere defocuses the starlight. By the timing of the fading of the star, we measure the pressure and temperature in Pluto's atmosphere at ~10 km resolution. MORE INFORMATION: See

  5. Earth observation from the manned low Earth orbit platforms (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan


    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  6. Beamsteerable GNSS Radio Occultation ASIC (United States)

    National Aeronautics and Space Administration — We will develop an integrated RF ASIC to enable high quality radio occultation (RO) weather observations using the Global Navigations System Satellite (GNSS)...

  7. Partially Transparent Petaled Mask/Occulter for Visible-Range Spectrum (United States)

    Shiri, Ron Shahram; Wasylkiwskyj, Wasyl


    The presence of the Poisson Spot, also known as the spot of Arago, has been known since the 18th century. This spot is the consequence of constructive interference of light diffracted by the edge of the obstacle where the central position can be determined by symmetry of the object. More recently, many NASA missions require the suppression of this spot in the visible range. For instance, the exoplanetary missions involving space telescopes require telescopes to image the planetary bodies orbiting central stars. For this purpose, the starlight needs to be suppressed by several orders of magnitude in order to image the reflected light from the orbiting planet. For the Earth-like planets, this suppression needs to be at least ten orders of magnitude. One of the common methods of suppression involves sharp binary petaled occulters envisioned to be placed many thousands of miles away from the telescope blocking the starlight. The suppression of the Poisson Spot by binary sharp petal tips can be problematic when the thickness of the tips becomes smaller than the wavelength of the incident beam. First they are difficult to manufacture and also it invalidates the laws of physical optics. The proposed partially transparent petaled masks/occulters compensate for this sharpness with transparency along the surface of the petals. Depending on the geometry of the problem, this transparency can be customized such that only a small region of the petal is transparent and the remaining of the surface is opaque. This feature allows easy fabrication of this type of occultation device either as a mask or occulter. A partially transparent petaled mask/ occulter has been designed for the visible spectrum range. The mask/occulter can suppress the intensity along the optical axis up to ten orders of magnitude. The design process can tailor the mask shape, number of petals, and transparency level to the near-field and farfield diffraction region. The mask/occulter can be used in space

  8. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations. (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D


    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  9. Exploring atmospheric blocking with GPS radio occultation observations

    Directory of Open Access Journals (Sweden)

    L. Brunner


    Full Text Available Atmospheric blocking has been closely investigated in recent years due to its impact on weather and climate, such as heat waves, droughts, and flooding. We use, for the first time, satellite-based observations from Global Positioning System (GPS radio occultation (RO and explore their ability to resolve blocking in order to potentially open up new avenues complementing models and reanalyses. RO delivers globally available and vertically highly resolved profiles of atmospheric variables such as temperature and geopotential height (GPH. Applying a standard blocking detection algorithm, we find that RO data robustly capture blocking as demonstrated for two well-known blocking events over Russia in summer 2010 and over Greenland in late winter 2013. During blocking episodes, vertically resolved GPH gradients show a distinct anomalous behavior compared to climatological conditions up to 300 hPa and sometimes even further up into the tropopause. The accompanying increase in GPH of up to 300 m in the upper troposphere yields a pronounced tropopause height increase. Corresponding temperatures rise up to 10 K in the middle and lower troposphere. These results demonstrate the feasibility and potential of RO to detect and resolve blocking and in particular to explore the vertical structure of the atmosphere during blocking episodes. This new observation-based view is available globally at the same quality so that blocking in the Southern Hemisphere can also be studied with the same reliability as in the Northern Hemisphere.

  10. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit (United States)

    Romero, P.; Pablos, B.; Barderas, G.


    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  11. The stellar occultation by the dwarf planet Haumea (United States)

    Santos-Sanz, Pablo; Ortiz, Jose Luis; Sicardy, Bruno; Rossi, Gustavo; Berard, Diane; Morales, Nicolas; Duffard, Rene; Braga-Ribas, Felipe; Hopp, Ulrich; Ries, Christoph; Nascimbeni, Valerio; Marzari, Francesco; Granata, Valentina; Pál, András; Kiss, Csaba; Pribulla, Theodor; Milan Komzík, Richard; Hornoch, Kamil; Pravec, Petr; Bacci, Paolo; Maestripieri, Martina; Nerli, Luca; Mazzei, Leonardo; Bachini, Mauro; Martinelli, Fabio; Succi, Giacomo; Ciabattari, Fabrizio; Mikuz, Herman; Carbognani, Albino; Gaehrken, Bernd; Mottola, Stefano; Hellmich, Stephan; Rommel, Flavia; Fernández-Valenzuela, Estela; Campo Bagatin, Adriano; Haumea occultation international Collaboration:


    The dwarf planet Haumea is a very peculiar Trans-Neptunian Object (TNO) with unique and exotic characteristics. It is currently classified as one of the five dwarf planets of the solar system, and it is the only one for which size, shape, albedo, density and other basic properties were not accurately known. To solve that we predicted an occultation of the star GaiaDR1 1233009038221203584 by Haumea and organized observations within the expected shadow path. Medium/large telescopes were needed to record the occultation with enough signal to noise ratio because the occulted star is of similar brightness as Haumea (R~17.7 mag). We will report results derived from this successful stellar occultation by Haumea on 2017 January 21st. The occultation was positive from 12 telescopes at 10 observing stations in Europe: the Asiago Observatory 1.8m telescope (Italy), the Mount Agliale Observatory 0.5m telescope (Italy), the Lajatico Astronomical Centre 0.5m telescope (Italy), the S.Marcello Pistoiese Observatory 0.6m telescope (Italy), the Crni Vrh Observatory 0.6m telescope (Slovenia), the Ondrejov Observatory 0.65m telescope (Czech Republic), the Bavarian Public Observatory 0.81m telescope (Germany), the Konkoly Observatory 1m and 0.6m telescopes (Hungary), the Skalnate Pleso Observatory 1.3m telescope (Slovakia), and the Wendelstein Observatory 2m and 0.4m telescopes (Germany). This is the occultation by a TNO with the largest number of chords ever recorded.Part of this work has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 687378.

  12. Occult hepatitis B virus infection in immunocompromised patients

    Directory of Open Access Journals (Sweden)

    Ruth Nogueira Cordeiro Moraes Jardim

    Full Text Available Occult hepatitis B infection is characterized by hepatitis B virus (HBV DNA in the serum in the absence of hepatitis B surface antigen (HBsAg. We assessed occult HBV infection prevalence in two groups of immunocompromised patients (maintenance hemodialysis patients and HIV-positive patients presenting HBsAg-negative and anti-HBc positive serological patterns, co-infected or not by HCV. Thirty-four hemodialysis anti-HIV negative patients, 159 HIV-positive patients and 150 blood donors who were anti-HBc positive (control group were selected. HBV-DNA was detected by nested-PCR. Occult hepatitis B infection was not observed in the hemodialysis patients group but was found in 5% of the HIV-patients and in 4% of the blood donors. Immunosuppression in HIV positive patients was not a determining factor for occult HBV infection. In addition, no significant relationship between HBV-DNA and HCV co-infection in the HIV-positive patient group was found. A lack of significant associations was also observed between positivity for HBV-DNA and CD4 count, viral load and previous lamivudine treatment in these HIV-positive patients.

  13. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.


    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  14. The effect of solar radio bursts on the GNSS radio occultation signals (United States)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Zhao, Biqiang; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Wei, Yong; Lei, Jiuhou; Solomon, Stan; Rocken, Christian


    radio burst (SRB) is the radio wave emission after a solar flare, covering a broad frequency range, originated from the Sun's atmosphere. During the SRB occurrence, some specific frequency radio wave could interfere with the Global Navigation Satellite System (GNSS) signals and therefore disturb the received signals. In this study, the low Earth orbit- (LEO-) based high-resolution GNSS radio occultation (RO) signals from multiple satellites (COSMIC, CHAMP, GRACE, SAC-C, Metop-A, and TerraSAR-X) processed in University Corporation for Atmospheric Research (UCAR) were first used to evaluate the effect of SRB on the RO technique. The radio solar telescope network (RSTN) observed radio flux was used to represent SRB occurrence. An extreme case during 6 December 2006 and statistical analysis during April 2006 to September 2012 were studied. The LEO RO signals show frequent loss of lock (LOL), simultaneous decrease on L1 and L2 signal-to-noise ratio (SNR) globally during daytime, small-scale perturbations of SNR, and decreased successful retrieval percentage (SRP) for both ionospheric and atmospheric occultations during SRB occurrence. A potential harmonic band interference was identified. Either decreased data volume or data quality will influence weather prediction, climate study, and space weather monitoring by using RO data during SRB time. Statistically, the SRP of ionospheric and atmospheric occultation retrieval shows ~4% and ~13% decrease, respectively, while the SNR of L1 and L2 show ~5.7% and ~11.7% decrease, respectively. A threshold value of ~1807 SFU of 1415 MHz frequency, which can result in observable GNSS SNR decrease, was derived based on our statistical analysis.

  15. USGEO Common Framework For Earth Observation Data (United States)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.


    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  16. Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis (United States)

    Hinson, D. P.


    The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.


    Energy Technology Data Exchange (ETDEWEB)

    Desert, Jean-Michel; Charbonneau, David; Fressin, Francois; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Knutson, Heather A. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Deming, Drake [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Brown, Timothy M. [Las Cumbres Observatory Global Telescope, Goleta, CA 93117 (United States); Caldwell, Douglas [SETI Institute, Mountain View, CA 94043 (United States); Ford, Eric B. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Marcy, Geoffrey W. [Berkeley Astronomy Department, University of California, Berkeley, CA 94720 (United States); Seager, Sara, E-mail: [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)


    This paper reports the detection and the measurements of occultations of the two transiting hot giant exoplanets Kepler-5b and Kepler-6b by their parent stars. The observations are obtained in the near-infrared with Warm-Spitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of constraining the eccentricities of these systems and of obtaining broadband emergent photometric data for individual planets. For both targets, the occultations are detected at the 3{sigma} level at each wavelength with mid-occultation times consistent with circular orbits. The brightness temperatures of these planets are deduced from the infrared observations and reach T{sub Spitzer} = 1930 {+-} 100 K and T{sub Spitzer} = 1660 {+-} 120 K for Kepler-5b and Kepler-6b, respectively. We measure optical geometric albedos A{sub g} in the Kepler bandpass and find A{sub g} = 0.12 {+-} 0.04 for Kepler-5b and A{sub g} = 0.11 {+-} 0.04 for Kepler-6b, leading to upper an limit for the Bond albedo of A{sub B} {<=} 0.17 in both cases. The observations for both planets are best described by models for which most of the incident energy is redistributed on the dayside, with only less than 10% of the absorbed stellar flux redistributed to the nightside of these planets.

  18. Occult diaphragmatic injuries caused by stab wounds. (United States)

    Leppäniemi, Ari; Haapiainen, Reijo


    Missed diaphragmatic perforation caused by penetrating trauma can lead to subsequent strangulation of a hollow viscus, which has prompted the use of invasive diagnostic procedures to exclude occult diaphragmatic injuries in asymptomatic, high-risk patients. The objective of this study was to determine the incidence of occult diaphragmatic injuries caused by stab wounds of the lower chest and upper abdomen, and to examine the natural history and consequences of missed diaphragmatic injuries. On the basis of patient data from two previous randomized studies from our institution, a retrospective analysis was performed on 97 patients treated for anterior stab wounds located between the nipple line, the umbilical level, and the posterior axillary lines not having indications for immediate surgical exploration. The patients were divided into two groups on the basis of their initial randomized management (open or laparoscopic exploration vs. expectant observation). In the exploration group (n = 47), four diaphragmatic injuries (9%) were detected (three left-sided and one right-sided). Excluding patients with associated injuries requiring surgical repair, the incidence of occult diaphragmatic injuries was 3 of 43 (7%). In the observation group (n = 50), there were two patients (4%) with delayed presentation of missed left-sided diaphragmatic injury 2 and 23 months later, respectively. Both injuries resulted from stab wounds of the left flank and presented with herniation of the stomach or small bowel and colon. The overall incidence of occult diaphragmatic injuries in left-sided thoracoabdominal stab wounds was 4 of 24 (17%), and was much lower after stab wounds of left epigastrium (0%), right lower chest (0%), and right epigastrium (4%). In asymptomatic patients with anterior or flank stab wounds of the lower chest or upper abdominal area, the risk of an occult diaphragmatic injury is approximately 7% which, if undetected, is associated with a high risk of subsequent


    Directory of Open Access Journals (Sweden)

    Putu Aditha Satya Putra


    Full Text Available Pneumothorax is a recognized cause of death in chest wall trauma. Radiological examination is the key factor to establish the existence of a pneumothorax. Occult pneumothorax is pneumothorax that undiagnosed clinically and with thoracic x-ray, but it can be tolerated while other more urgent trauma. Occult pneumothorax can be detected by CT (Computed tomography. Occult pneumothorax may progress to tension pneumothorax in certain circumstances. Missing in diagnosed pneumothorax will cause death. This literature will discuss radiological examination for diagnosing, early detection, and management of occult pneumothorax. If thoracic x-ray examination did not reveal the occult pneumothorax, it can be dangerous if existence of pneumothorax was not known. In this case, the examination of thoracic CT-Scan is gold standard for determining the presence of occult pneumothorax and can provide appropriate care.

  20. [Results of conservative treatment in patients with occult pneumothorax]. (United States)

    Llaquet Bayo, Heura; Montmany Vioque, Sandra; Rebasa, Pere; Navarro Soto, Salvador


    An occult pneumothorax is found in 2-15% trauma patients. Observation (without tube thoracostomy) in these patients presents still some controversies in the clinical practice. The objective of the study is to evaluate the efficacy and the adverse effects when observation is performed. A retrospective observational study was undertaken in our center (university hospital level II). Data was obtained from a database with prospective registration. A total of 1087 trauma patients admitted in the intensive care unit from 2006 to 2013 were included. In this period, 126 patients with occult pneumothorax were identified, 73 patients (58%) underwent immediate tube thoracostomy and 53 patients (42%) were observed. Nine patients (12%) failed observation and required tube thoracostomy for pneumothorax progression or hemothorax. No patient developed a tension pneumothorax or experienced another adverse event related to the absence of tube thoracostomy. Of the observed patients 16 were under positive pressure ventilation, in this group 3 patients (19%) failed observation. There were no differences in mortality, hospital length of stay or intensive care length of stay between the observed and non-observed group. Observation is a safe treatment in occult pneumothorax, even in pressure positive ventilated patients. Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Occult Macular Dystrophy

    Directory of Open Access Journals (Sweden)

    Işıl Sayman Muslubaş


    Full Text Available Occult macular dystrophy is an inherited macular dystrophy characterized by a progressive decline of bilateral visual acuity with normal fundus appearance, fluorescein angiogram and full-field electroretinogram. This case report presents a 20-year-old female patient with bilateral progressive decline of visual acuity for six years. Her visual acuity was 3-4/10 in both eyes. Anterior segment and fundus examination, fluorescein angiogram and full-field electroretinogram were normal. She could read all Ishihara pseudoisochromatic plates. Fundus autofluorescence imaging was normal. There was a mild central hyporeflectance on fundus infrared reflectance imaging in both eyes. Reduced foveal thickness and alterations of the photoreceptor inner and outer segment junction were observed by optical coherence tomography in both eyes. Central scotoma was also found by microperimetry and reduced central response was revealed by multifocal electroretinogram in both eyes. These findings are consistent with the clinical characteristics of occult macular dystrophy

  2. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation (United States)

    Hinson, D. P.; Tyler, G. L.


    The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.

  3. David Levy's Guide to Eclipses, Transits, and Occultations (United States)

    Levy, David H.


    Introduction; Part I. The Magic and History of Eclipses: 1. Shakespeare, King Lear, and the Great Eclipse of 1605; 2. Three centuries later: Einstein, relativity, and the solar eclipse of 1919; 3. What causes solar and lunar eclipses; Part II. Observing Solar Eclipses: 4. Safety considerations; 5. What to expect during a partial eclipse; 6. Annular eclipses and what to see in them; 7. Total eclipse of the Sun: introduction to the magic; 8. The onset: temperature drop, Baily's Beads, Diamond Ring; 9. Totality: Corona, Prominences, Chromosphere, and surrounding area; 10. Photographing and imaging a solar eclipse; Part III. Observing Lunar Eclipses: 11. Don't forget the penumbral eclipses!; 12. Partial lunar eclipses; 13. Total lunar eclipses; 14. Photographing and imaging lunar eclipses; Part IV. Occultations: 15. When the Moon occults a star; Part V. Transits: 16. When planets cross the Sun; Part VI. My Favorite Eclipses: 17. A personal canon of eclipses, occultations, and transits I have seen; Appendices; Index.

  4. Polarimetric mountain based radio-occultation for rain detection: The ROHP-PAZ ground campaign (United States)

    Padulles, Ramon; Cardellach, Estel; Tomas, Sergio; de la Torre, Manuel; Turk, Joe


    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of precipitation through simultaneous thermodynamic and vertical rain profiles. Prior to the launch of the satellite, expected for 2014, a ground experimental campaign is being conducted with the goal of starting the process of identifying and understanding all the factors that might affect the polarimetric RO observables. The campaign is being carried out at the top of Puig Sesolles, a 1667m peak in the Natural Park of Montseny (41º46'24 N, 2º26'17 E), 50 km N-NE from Barcelona, with clear views over the horizon to the South (East to West) direction, an area in which intense precipitation events tend to occur a few times per year. The campaign uses a ICE-CSIC/IEEC's GOLD-RTR open-loop receiver initially designed for collecting GNSS signals reflected off the sea surface. The receiver has been adjusted to track occulting GNSS radio-links. A double polarization (H and V) GNSS antenna has been designed and manufactured by the Polytechnic University of Barcelona (UPC) team for this particular ground-based experiment. The antenna is a phase-array made of 7 elements, each of them being a square patch built using a Rogers 4003 substrate, and symmetrically fed by four probes. It provides a pattern of 12.9 dB peak gain, 45 degrees half-power beam-width, and <-35 dB cross-polar isolation at the peak (better than -30 dB in the main lobe). The preliminary results show that not only precipitation, but also other factors are affecting the GNSS signal, wich means that the polarimetric signal is richer than expected

  5. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Effenberger, Frederic; Costa, Fatima Rubio da; Petrosian, Vahé [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Oka, Mitsuo; Saint-Hilaire, Pascal; Krucker, Säm [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Liu, Wei [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952 (United States); Glesener, Lindsay, E-mail:, E-mail: [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)


    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES ) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  6. New high-sensitivity, milliarcsecond resolution results from routine observations of lunar occultations at the ESO VLT (United States)

    Richichi, A.; Fors, O.; Chen, W.-P.; Mason, E.


    Context. Lunar occultations (LO) are a very efficient and powerful technique that achieves the best combination of high angular resolution and sensitivity possible today at near-infrared wavelengths. Given that the events are fixed in time, that the sources are occulted randomly, and that the telescope use is minimal, the technique is very well suited for service mode observations. Aims: We have established a program of routine LO observations at the VLT observatory, especially designed to take advantage of short breaks available in-between other programs. We have used the ISAAC instrument in burst mode, capable of producing continuous read-outs at millisecond rates on a suitable subwindow. Given the random nature of the source selection, our aim has been primarily the investigation of a large number of stellar sources at the highest angular resolution in order to detect new binaries. Serendipitous results such as resolved sources and detection of circumstellar components were also anticipated. Methods: We have recorded the signal from background stars for a few seconds, around the predicted time of occultation by the Moon's dark limb. At millisecond time resolution, a characteristic diffraction pattern can be observed. Patterns for two or more sources superimpose linearly, and this property is used for the detection of binary stars. The detailed analysis of the diffraction fringes can be used to measure specific properties such as the stellar angular size and the presence of extended light sources such as a circumstellar shell. Results: We present a list of 191 stars for which LO data could be recorded and analyzed. Results include the detection of 16 binary and 2 triple stars, all but one of which were previously unknown. The projected angular separations are as small as 4 milliarcsec and magnitude differences as high as Δ K = 5.8 mag. Additionally we derive accurate angular diameters for 2 stars and resolve circumstellar emission around another one, also all

  7. Interplanetary scintillation observations of an unbiased sample of 90 Ooty occultation radio sources at 326.5 MHz

    International Nuclear Information System (INIS)

    Banhatti, D.G.; Ananthakrishnan, S.


    We present 327-MHz interplanetary scintillation (IPS) observations of an unbiased sample of 90 extragalactic radio sources selected from the ninth Ooty lunar occultation list. The sources are brighter than 0.75 Jy at 327 MHz and lie outside the galactic plane. We derive values, the fraction of scintillating flux density, and the equivalent Gaussian diameter for the scintillating structure. Various correlations are found between the observed parameters. In particular, the scintillating component weakens and broadens with increasing largest angular size, and stronger scintillators have more compact scintillating components. (author)

  8. Portable Telescopic Observations of the 3 June 2017 Stellar Occultation by New Horizons Kuiper Extended Mission Target (486958) 2014 MU69 (United States)

    Verbiscer, Anne J.; Buie, Marc W.; Porter, Simon Bernard; Tamblyn, Peter; Terrell, Dirk; Benecchi, Susan; Parker, Alex; Soto, Alejandro; Wasserman, Lawrence H.; Young, Eliot F.; Zangari, Amanda Marie; New Horizons MU69 Occultation Team


    The New Horizons spacecraft will encounter the cold classical Kuiper Belt Object (486958) 2014 MU69 on 1 January 2019. Because it is extremely faint (V mag ~27), MU69 has only been directly observed by the Hubble Space Telescope since its discovery (by HST) in 2014 (Spencer et al. 2015 EPSC 10, 417S). Current knowledge of the physical properties of MU69 is therefore limited to its red color (F606W-F814W = 0.99 ± 0.18, Benecchi et al. 2017) and a crude estimate on its size (20-40 km) based on association with other cold classical KBO visible albedos (0.04-0.15). Stellar occultations are powerful tools with which to measure the size and shape of objects whose distance and faintness precludes any spatially resolved observations. Here we report the results of a stellar occultation of a g’=15.33 magnitude star by MU69 on 3 June 2017. The shadow path crossed both southern Africa and South America. We deployed 12 portable telescopes from Mendoza, Argentina and 13 portable telescopes from Clanwilliam, Western Cape, South Africa. Although 24 of these 25 telescopes successfully observed the occultation star at the predicted event time, no solid body detection appeared in any of the acquired lightcurves. Following the successful detection of MU69 by stellar occultation on 17 July 2017, revised predictions of the location of the shadow path on 3 June now allow the lightcurves obtained on 3 June to place important constraints on the environment surrounding MU69 as well as upper limits on the size of any small satellites in the regions probed. This work would not have been possible without the financial support of NASA, the New Horizons Project, the astrometric support of the Gaia mission, and logistical support from the South African Astronomical Observatory, the US Embassies in Buenos Aires and Pretoria and the US Consulate in Cape Town.

  9. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations (United States)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.


    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  10. External occulter edge scattering control using metamaterials for exoplanet detection (United States)

    Bendek, Eduardo A.; Sirbu, Dan; Liu, Zhaowei; Martin, Stefan; Lu, Dylan


    Direct imaging of earth-like exoplanets in the Habitable Zone of sun-like stars requires image contrast of ~10^10 at angular separations of around a hundred milliarcseconds. One approach for achieving this performance is to fly a starshade at a long distance in front of the telescope, shading the telescope from the direct starlight, but allowing planets around the star to be seen. The starshade is positioned so that sunlight falls on the surface away from the telescope, so the sun does not directly illuminate it. However, sunlight scattered from the starshade edge can enter the telescope, raising the background light level and potentially preventing the starshade from delivering the required contrast. As a result, starshade edge design has been identified as one of the highest priority technology gaps for external occulter missions in the NASAs Exoplanet Exploration Program Technology Plan 2013. To reduce the sunlight edge scatter to an acceptable level, the edge Radius Of Curvature (ROC) should be 1μm or less (commercial razor blades have ROC of a few hundred nanometer). This poses a challenging manufacturing requirement and may make the occulter difficult to handle. In this paper we propose an alternative approach to controlling the edge scattering by applying a flexible metamaterial to the occulter edge. Metamaterials are artificially structured materials, which have been designed to display properties not found in natural materials. Metamaterials can be designed to direct the scatter at planned incident angles away from the space telescope, thereby directly decreasing the contaminating background light. Reduction of the background light translates into shorter integration time to characterize a target planet and therefore improves the efficiency of the observations. As an additional benefit, metamaterials also have potential to produce increased tolerance to edge defects.

  11. Photometry and position observations of Saturnian satellites during their mutual eclipses and occultations in 1995 performed at the Observatories in Russia and Kazakhstan (United States)

    Emelianov, N. V.; Irsmambetova, T. R.; Kiseleva, T. P.; Tejfel, V. G.; Vashkovjak, S. N.; Glushkova, E. A.; Kornilov, V. G.; Charitonova, G. A.


    Photometry of mutual eclipses and occultations of planetary satellites is a powerful technique to explore these bodies. Observations of these rare events are a source of much precise information. In 1995 the Celestial Mechanics Department of the Sternberg Astronomical Institute (SAI) has organized the observations of mutual eclipses and occultations of Saturnian satellites on a number of observatories of the Commonwealth of Independent States (CIS) -- the former Soviet Union (FSU). The ephemerides of satellites and their observing conditions have been computed beforehand and mailed these data to many observatories of CIS. The Crimean laboratory (CL) of the Sternberg Astronomical Institute, two observatories of the Fesenkov Astrophysical Institute of the Academy of Sciences of the Republic of Kazakhstan (FAI AS RK) in Almaty, and the Main Astronomical Observatory of Russian Academy of Sciences (MAO RAS) in Pulkovo took part in observations. A photoelectric photometer was used in CL of SAI, a CCD was employed to secure satellite images in FAI AS RK, and both CCD and photographic plates were used in MAO RAS. As a result of this observing campaign, photometric data and light curves were obtained for three mutual eclipses and occultations of Saturnian satellites. A number of position observations made allowed us to measure relative coordinates of satellites. Astrometric information has already been derived from photometric data. The mutual apparent positions of satellites were calculated with an accuracy of 0farcs 002 - 0farcs 003. In this paper observations are described and the parameters characterizing the observed phenomena are given. The results of observations are available in electronic form. This work supported by the Russian Foundation for Basic Research, projects Nos. 95-02-05042, 97-02-16551. Results of observations available in electronic form at CDS via anonymous ftp to ( or via

  12. Case study of inclined sporadic E layers in the Earth's ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves (United States)

    Gubenko, Vladimir N.; Pavelyev, A. G.; Kirillovich, I. A.; Liou, Y.-A.


    We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.

  13. Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point.

    Directory of Open Access Journals (Sweden)

    Joan-Pau Sánchez

    Full Text Available Within the context of anthropogenic climate change, but also considering the Earth's natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth's radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth's climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.

  14. Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point. (United States)

    Sánchez, Joan-Pau; McInnes, Colin R


    Within the context of anthropogenic climate change, but also considering the Earth's natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth's radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth's climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.

  15. Large Binocular Telescope Observations of Europa Occulting Io's Volcanoes at 4.8 μm (United States)

    Skrutskie, Michael F.; Conrad, Albert; Resnick, Aaron; Leisenring, Jarron; Hinz, Phil; de Pater, Imke; de Kleer, Katherine; Spencer, John; Skemer, Andrew; Woodward, Charles E.; Davies, Ashley Gerard; Defrére, Denis


    On 8 March 2015 Europa passed nearly centrally in front of Io. The Large Binocular Telescope observed this event in dual-aperture AO-corrected Fizeau interferometric imaging mode using the mid-infrared imager LMIRcam operating behind the Large Binocular Telescope Interferometer (LBTI) at a broadband wavelength of 4.8 μm (M-band). Occultation light curves generated from frames recorded every 123 milliseconds show that both Loki and Pele/Pillan were well resolved. Europa's center shifted by 2 kilometers relative to Io from frame-to-frame. The derived light curve for Loki is consistent with the double-lobed structure reported by Conrad et al. (2015) using direct interferometric imaging with LBTI.

  16. Hand gesture recognition in confined spaces with partial observability and occultation constraints (United States)

    Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen


    Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.

  17. Progress in turbulence detection via GNSS occultation data

    Directory of Open Access Journals (Sweden)

    L. B. Cornman


    Full Text Available The increased availability of radio occultation (RO data offers the ability to detect and study turbulence in the Earth's atmosphere. An analysis of how RO data can be used to determine the strength and location of turbulent regions is presented. This includes the derivation of a model for the power spectrum of the log-amplitude and phase fluctuations of the permittivity (or index of refraction field. The bulk of the paper is then concerned with the estimation of the model parameters. Parameter estimators are introduced and some of their statistical properties are studied. These estimators are then applied to simulated log-amplitude RO signals. This includes the analysis of global statistics derived from a large number of realizations, as well as case studies that illustrate various specific aspects of the problem. Improvements to the basic estimation methods are discussed, and their beneficial properties are illustrated. The estimation techniques are then applied to real occultation data. Only two cases are presented, but they illustrate some of the salient features inherent in real data.

  18. Delivery of information from earth observation satellites

    International Nuclear Information System (INIS)

    MacDonald, J.S.


    Satellite-based systems for measuring the surface of the earth and its atmosphere from space have evolved rapidly in the past decade. The amount of data available in the future promises to be truly staggering. This paper addresses the requirements for handling data from earth observation systems. It begins with the premise that our objective is to acquire an understanding of the state and evolution of our planet, and proceeds from there to argue that earth observation satellite systems are, in reality, systems for delivering information. This view has implications on how we approach the design of such systems, and how we handle the data they produce in order to derive maximum benefit from them. The paper examines these issues and puts forth some of the technical requirements for future satellite-based earth observation systems, based on the concept that earth observation is a quantitative measurement discipline that is driven by requirements for information. (Author). 8 refs., 3 figs

  19. Earth Observing System Covariance Realism Updates (United States)

    Ojeda Romero, Juan A.; Miguel, Fred


    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  20. Progress on the occulter experiment at Princeton (United States)

    Cady, Eric; Balasubramanian, Kunjithapatham; Carr, Michael; Dickie, Matthew; Echternach, Pierre; Groff, Tyler; Kasdin, Jeremy; Laftchiev, Christian; McElwain, Michael; Sirbu, Dan; Vanderbei, Robert; White, Victor


    An occulter is used in conjunction with a separate telescope to suppress the light of a distant star. To demonstrate the performance of this system, we are building an occulter experiment in the laboratory at Princeton. This experiment will use an etched silicon mask as the occulter, with some modifications to try to improve the performance. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. We present the progress of this experiment and expectations for future work.



    Putu Aditha Satya Putra; Nyoman Srie Laksminingsih


    Pneumothorax is a recognized cause of death in chest wall trauma. Radiological examination is the key factor to establish the existence of a pneumothorax. Occult pneumothorax is pneumothorax that undiagnosed clinically and with thoracic x-ray, but it can be tolerated while other more urgent trauma. Occult pneumothorax can be detected by CT (Computed tomography). Occult pneumothorax may progress to tension pneumothorax in certain circumstances. Missing in diagnosed pneumothorax will cause deat...


    Energy Technology Data Exchange (ETDEWEB)

    Demory, Brice-Olivier; Seager, Sara; Benneke, Bjoern [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Gillon, Michaeel [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout 17, Bat. B5C, Liege 1 (Belgium); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Jackson, Brian, E-mail: [Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington, DC 20015 (United States)


    We report on the detection of infrared light from the super-Earth 55 Cnc e, based on four occultations obtained with Warm Spitzer at 4.5 {mu}m. Our data analysis consists of a two-part process. In a first step, we perform individual analyses of each data set and compare several baseline models to optimally account for the systematics affecting each light curve. We apply independent photometric correction techniques, including polynomial detrending and pixel mapping, that yield consistent results at the 1{sigma} level. In a second step, we perform a global Markov Chain Monte Carlo analysis, including all four data sets that yield an occultation depth of 131 {+-} 28 ppm, translating to a brightness temperature of 2360 {+-} 300 K in the IRAC 4.5 {mu}m channel. This occultation depth suggests a low Bond albedo coupled to an inefficient heat transport from the planetary day side to the night side, or else possibly that the 4.5 {mu}m observations probe atmospheric layers that are hotter than the maximum equilibrium temperature (i.e., a thermal inversion layer or a deep hot layer). The measured occultation phase and duration are consistent with a circular orbit and improves the 3{sigma} upper limit on 55 Cnc e's orbital eccentricity from 0.25 to 0.06.

  3. Connecting Earth observation to high-throughput biodiversity data

    DEFF Research Database (Denmark)

    Bush, Alex; Sollmann, Rahel; Wilting, Andreas


    Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could...... observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services....

  4. Data Assimilation: Making Sense of Earth Observation

    Directory of Open Access Journals (Sweden)

    William Albert Lahoz


    Full Text Available Climate change, air quality and environmental degradation are important societal challenges for the 21st Century. These challenges require an intelligent response from society, which in turn requires access to information about the Earth System. This information comes from observations and prior knowledge, the latter typically embodied in a model describing relationships between variables of the Earth System. Data assimilation provides an objective methodology to combine observational and model information to provide an estimate of the most likely state and its uncertainty for the whole Earth System. This approach adds value to the observations – by filling in the spatio-temporal gaps in observations; and to the model – by constraining it with the observations. In this review paper we motivate data assimilation as a methodology to fill in the gaps in observational information; illustrate the data assimilation approach with examples that span a broad range of features of the Earth System (atmosphere, including chemistry; ocean; land surface; and discuss the outlook for data assimilation, including the novel application of data assimilation ideas to observational information obtained using Citizen Science. Ultimately, a strong motivation of data assimilation is the many benefits it provides to users. These include: providing the initial state for weather and air quality forecasts; providing analyses and reanalyses for studying the Earth System; evaluating observations, instruments and models; assessing the relative value of elements of the Global Observing System (GOS; and assessing the added value of future additions to the GOS.


    Energy Technology Data Exchange (ETDEWEB)

    Capalbo, Fernando J.; Bénilan, Yves [Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), UMR 7583 du CNRS, Universités Paris Est Créteil (UPEC) and Paris Diderot - UPD, 61 avenue du Général de Gaulle, F-94010, Créteil Cédex (France); Yelle, Roger V.; Koskinen, Tommi T., E-mail: [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States)


    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  6. The Earth Observation Technology Cluster (United States)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.


    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.


    African Journals Online (AJOL)

    Dr Ike

    people believe in the existence of occult powers and this belief affects their ... make use of occult powers to solve their problems. For example, ... existence and influence of paranormal and occult powers, argues that ..... and friends.

  8. Magnetic field orientations in Saturn's upper ionosphere inferred from Voyager radio occultations (United States)

    Hinson, D. P.


    The radio scintillations observed during occultations of Voyagers 1 and 2 by Saturn are analyzed to determine the morphology of plasma irregularities and hence the magnetic field orientation in Saturn's upper atmosphere. The measurement techniques, the weak scattering theory, and the method used to relate the observed radio scintillations to physical properties of the ionospheric irregularities are briefly described. Results on the spatial characteristics of the irregularities are presented, and the magnetic field orientation in Saturn's ionosphere is inferred. Although the occultation measurements generally confirm the accuracy of the Saturnian magnetic field model of Connerney et al. (1982), it is found that a small adjustment of the coefficients in that model's zonal harmonic expansion would remove the discrepancy between the model predictions and the measurements. A strategy for obtaining improved measurements of Saturn's magnetic field from radio occultation observations of scintillations and Faraday rotation using an orbiting spacecraft is briefly discussed.

  9. Occult hepatitis B among Iranian hepatitis C patients

    Directory of Open Access Journals (Sweden)

    Ahmad shavakhi


    Full Text Available

    • BACKGROUND: Occult hepatitis B is defined as presence of HBV DNA in tissue or serum without hepatitis B surface antigen. The aim of this study is to determine frequency of occult hepatitis B among hepatitis C patients in Tehran and compare the route of transmission and liver enzymes between positive and negative HBV DNA patients.
    • METHODS: In a cross sectional study, serum of 103 hepatitis C cases (79.6% men and 20.4% women were analyzed for s, x and core genes via a nested polymerase chain reaction technique.
    • RESULTS: HBV DNA was detectable in serum of 20 patients (19.4%. No significant difference in age, sex and route of transmission were seen in HBV DNA positive and negative patients. In HBV DNA positive and negative groups, mean of AST was 73, 47 (p < 0.05 and mean of ALT was 76 and 36 respectively (p < 0.05.
    • CONCLUSION: Occult hepatitis B was observed in a considerable number of hepatitis C patients in Tehran. It was associated with elevation in liver enzyme but was not related to route of transmission.
    • KEY WORD: Occult hepatitis B, hepatitis C, cirrhosis.

  10. A grid portal for Earth Observation community

    International Nuclear Information System (INIS)

    Aloisio, G.; Cafaro, M.; Carteni, G.; Epicoco, I.; Quarta, G.


    Earth Observation techniques offer many powerful instruments far Earth planet study, urban development planning, military intelligence helping and so on. Tera bytes of EO and geo spatial data about lands, oceans, glaciers, cities, etc. are continuously downloaded through remote-sensing infrastructures and stored into heterogeneous, distributed repositories usually belonging to different virtual organizations. A problem-solving environment can be a viable solution to handle, coordinate and share heterogeneous and distributed resources. Moreover, grid computing is an emerging technology to salve large-scale problems in dynamic, multi-institutional Virtual Organizations coordinated by sharing resources such as high-performance computers, observation devices, data and databases aver high-speed networks, etc. In this paper we present the Italian Grid far Earth Observation (I-GEO) project, a pervasive environment based on grid technology to help the integration and processing of Earth Observation data, providing a tool to share and access data, applications and computational resources among several organizations

  11. Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona (United States)

    Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.


    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.

  12. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. (United States)

    Ortiz, J L; Santos-Sanz, P; Sicardy, B; Benedetti-Rossi, G; Bérard, D; Morales, N; Duffard, R; Braga-Ribas, F; Hopp, U; Ries, C; Nascimbeni, V; Marzari, F; Granata, V; Pál, A; Kiss, C; Pribulla, T; Komžík, R; Hornoch, K; Pravec, P; Bacci, P; Maestripieri, M; Nerli, L; Mazzei, L; Bachini, M; Martinelli, F; Succi, G; Ciabattari, F; Mikuz, H; Carbognani, A; Gaehrken, B; Mottola, S; Hellmich, S; Rommel, F L; Fernández-Valenzuela, E; Bagatin, A Campo; Cikota, S; Cikota, A; Lecacheux, J; Vieira-Martins, R; Camargo, J I B; Assafin, M; Colas, F; Behrend, R; Desmars, J; Meza, E; Alvarez-Candal, A; Beisker, W; Gomes-Junior, A R; Morgado, B E; Roques, F; Vachier, F; Berthier, J; Mueller, T G; Madiedo, J M; Unsalan, O; Sonbas, E; Karaman, N; Erece, O; Koseoglu, D T; Ozisik, T; Kalkan, S; Guney, Y; Niaei, M S; Satir, O; Yesilyaprak, C; Puskullu, C; Kabas, A; Demircan, O; Alikakos, J; Charmandaris, V; Leto, G; Ohlert, J; Christille, J M; Szakáts, R; Farkas, A Takácsné; Varga-Verebélyi, E; Marton, G; Marciniak, A; Bartczak, P; Santana-Ros, T; Butkiewicz-Bąk, M; Dudziński, G; Alí-Lagoa, V; Gazeas, K; Tzouganatos, L; Paschalis, N; Tsamis, V; Sánchez-Lavega, A; Pérez-Hoyos, S; Hueso, R; Guirado, J C; Peris, V; Iglesias-Marzoa, R


    Haumea-one of the four known trans-Neptunian dwarf planets-is a very elongated and rapidly rotating body. In contrast to other dwarf planets, its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system, and the Centaur Chiron was later found to possess something similar to Chariklo's rings. Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multi-chord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea's equator and the orbit of its satellite Hi'iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea's spin period-that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea's largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates. In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen- or methane-dominated atmosphere was detected.

  13. Sociology of religion and the occult revival

    Directory of Open Access Journals (Sweden)

    Lennart Ejerfeldt


    Full Text Available The "new" that makes the cults of the occult revival to "new religions" of the Western world, is their recently increased social significance. Historically most of modern occultism is anything but new. From the research and theorizing about the occult revival we have picked up some main themes. The first is the social diffusion of the new occultism. In this field, we find some studies of superstition, especially astrology. These illuminate the differences in social connotation between the consumers of superstition and the followers of institutional religion. Secondly the study of the occult revival has made valuable contributions to the conceptualizing of "cult" and the cultic phenomenon. Thirdly, we will look upon the connection between the occult revival and the counter-culture. The problem of the rise of cults as a symptom of socio-cultural change will be briefly discussed with reference to Bell's thesis of "the disjuntion of culture and social structure". Lastly, we proffer some reflections on the occult revival and the new spiritual trends in the churches, which so sharply contrast with the theology and churchmanship of the sixties.

  14. Occult Phenomena in Sherlock Holmes the Movie




    Keywords: Occult phenomena, Sherlock Holmes, movie. Lately, it is not difficult for people to find occult practices. There are many television programs and movie which air mystical programme aggressively to raise the rating and attract the viewers. A movie that raise occultism theme is Sherlock Holmes, the Movie. This movie tells about the struggle of detective Sherlock Holmes to fight the black magic power of Lord Blackwood.To carry out the study, the theories of Occultism such as the secrec...

  15. Predictions of stellar occultations by TNOs/Centaurs using Gaia (United States)

    Desmars, Josselin; Camargo, Julio; Berard, Diane; Sicardy, Bruno; Leiva, Rodrigo; Vieira-Martins, Roberto; Braga-Ribas, Felipe; Assafin, Marcelo; Rossi, Gustavo; Chariklo occultations Team, Rio Group, Lucky Star Occultation Team, Granada Occultation Team


    Stellar occultations are the unique technique from the ground to access physical parameters of the distant solar system objects, such as the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings, jets).Predictions of stellar occultations require accurate positions of the star and the object.The Gaia DR1 catalog now allows to get stellar position to the milliarcsecond (mas) level. The main uncertainty in the prediction remains in the position of the object (tens to hundreds of mas).Now, we take advantage of the NIMA method for the orbit determination that uses the most recent observations reduced by the Gaia DR1 catalog and the astrometric positions derived from previous positive occultations.Up to now, we have detected nearly 50 positive occultations for about 20 objects that provide astrometric positions of the object at the time of the occultation. The uncertainty of these positions only depends on the uncertainty on the position of the occulted stars, which is a few mas with the Gaia DR1 catalog. The main limitation is now on the proper motion of the star which is only given for bright stars in the Tycho-Gaia Astrometric Solution. This limitation will be solved with the publicationof the Gaia DR2 expected on April 2018 giving proper motions and parallaxes for the Gaia stars. Until this date, we use hybrid stellar catalogs (UCAC5, HSOY) that provide proper motions derived from Gaia DR1 and another stellar catalog.Recently, the Gaia team presented a release of three preliminary Gaia DR2 stellar positions involved in the occultations by Chariklo (22 June and 23 July 2017) and by Triton (5 October 2017).Taking the case of Chariklo as an illustration, we will present a comparison between the proper motions of DR2 and the other catalogs and we will show how the Gaia DR2 will lead to a mas level precision in the orbit and in the prediction of stellar

  16. Earth Observing System, Conclusions and Recommendations (United States)


    The following Earth Observing Systems (E.O.S.) recommendations were suggested: (1) a program must be initiated to ensure that present time series of Earth science data are maintained and continued. (2) A data system that provides easy, integrated, and complete access to past, present, and future data must be developed as soon as possible. (3) A long term research effort must be sustained to study and understand these time series of Earth observations. (4) The E.O.S. should be established as an information system to carry out those aspects of the above recommendations which go beyond existing and currently planned activities. (5) The scientific direction of the E.O.S. should be established and continued through an international scientific steering committee.

  17. The international earth observing system: a cultural debate about earth sciences from space

    NARCIS (Netherlands)

    Menenti, M.


    This paper gives an overview of the International Earth Observing System, i.e. the combined earth observation programmes of space agencies worldwide and of the relevance of advanced space-borne sensor systems to the study and understanding of interactions between land surface and atmosphere. The

  18. Air-cooling mathematical analysis as inferred from the air-temperature observation during the 1st total occultation of the Sun of the 21st century at Lusaka, Zambia (United States)

    Peñaloza-Murillo, Marcos A.; Pasachoff, Jay M.


    We analyze mathematically air temperature measurements made near the ground by the Williams College expedition to observe the first total occultation of the Sun [TOS (commonly known as a total solar eclipse)] of the 21st century in Lusaka, Zambia, in the afternoon of June 21, 2001. To do so, we have revisited some earlier and contemporary methods to test their usefulness for this analysis. Two of these methods, based on a radiative scheme for solar radiation modeling and that has been originally applied to a morning occultation, have successfully been combined to obtain the delay function for an afternoon occultation, via derivation of the so-called instantaneous temperature profiles. For this purpose, we have followed the suggestion given by the third of these previously applied methods to calculate this function, although by itself it failed to do so at least for this occultation. The analysis has taken into account the limb-darkening, occultation and obscuration functions. The delay function obtained describes quite fairly the lag between the solar radiation variation and the delayed air temperature measured. Also, in this investigation, a statistical study has been carried out to get information on the convection activity produced during this event. For that purpose, the fluctuations generated by turbulence has been studied by analyzing variance and residuals. The results, indicating an irreversible steady decrease of this activity, are consistent with those published by other studies. Finally, the air temperature drop due to this event is well estimated by applying the empirical scheme given by the fourth of the previously applied methods, based on the daily temperature amplitude and the standardized middle time of the occultation. It is demonstrated then that by using a simple set of air temperature measurements obtained during solar occultations, along with some supplementary data, a simple mathematical analysis can be achieved by applying of the four

  19. Stellar Occultations by TNOs and Centaurs: first results in the “Gaia era” (United States)

    Rossi, Gustavo; Vieira-Martins, Roberto; Sicardy, Bruno; Ortiz, Jose Luis; Rio Group, Lucky Star Occultation Team, Granada Occultation Team


    After the first release of the GAIA catalog (in September/2016), stellar positions are now known with unprecedented accuracy, reaching values of the order of milliarcseconds. This improvement reflected into a stunning accuracy on the astrometry of moving objects, such as TNOs. Unfortunately, Gaia stars proper motions will be only available on the second data release (DR2) next year, so there is still a need to use hybrid stellar catalogs for occultation predictions until then. Despite that, stellar occultations predictions are now much more accurate, and the biggest uncertainties comes mainly from the object ephemerides. This issue will be overcome by large surveys such as the LSST, which will provide positions for the known TNOs and it is expected to increase the number of known TNOs by nearly 40,000, with an unprecedent amount of acquired information.This huge amount of data also poses a new era in stellar occultations: predictions will be very accurate and the participation of professional astronomers, laboratories, and the amateur community will be crucial to observe the predicted events; observation campaigns will need to be selected according to a specific scientific purpose such as the probability to detect rings or archs around a body, the presence of atmosphere or even the detection of topographic features; the development of softwares capable of reducing the data more efficiently and an easier method to coordinate observation campaigns are needed.Here we present some impressive results obtained from predictions and observed occultations in 2017 (among them we have Pluto, Chariklo and Haumea), the problems we are starting to face in the beginning of the “Gaia era” and the future challenges of stellar occultation.

  20. Precise pointing knowledge for SCIAMACHY solar occultation measurements

    Directory of Open Access Journals (Sweden)

    K. Bramstedt


    Full Text Available We present a method to precisely determine the viewing direction for solar occultation instruments from scans over the solar disk. Basic idea is the fit of the maximum intensity during the scan, which corresponds to the center of the solar disk in the scanning direction. We apply this method to the solar occultation measurements of the satellite instrument SCIAMACHY, which scans the Sun in elevation direction. The achieved mean precision is 0.46 mdeg, which corresponds to an tangent height error of about 26 m for individual occultation sequences. The deviation of the derived elevation angle from the geolocation information given along with the product has a seasonal cycle with an amplitude of 2.26 mdeg, which is in tangent height an amplitude of about 127 m. The mean elevation angle offset is −4.41 mdeg (249 m. SCIAMACHY's sun follower device controls the azimuth viewing direction during the occultation measurements. The derived mean azimuth direction has an standard error of 0.65 mdeg, which is about 36 m in horizontal direction at the tangent point. We observe also a seasonal cycle of the azimuth mispointing with an amplitude of 2.3 mdeg, which is slightly increasing with time. The almost constant mean offset is 88 mdeg, which is about 5.0 km horizontal offset at the tangent point.

  1. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers (United States)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.


    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  2. Earth Observation for Biodiversity Assessment (EO-BA)

    CSIR Research Space (South Africa)

    Cho, Moses A


    Full Text Available in the Dukuduku coastal forest Earth Observation for Biodiversity Assessment (EO-BA) MA CHO, P DEBBA, R MATHIEU, A RAMOELO, L NAIDOO, H VAN DEVENTER, O MALAHLELA AND R MAIN CSIR Natural Resources and the Environment, Pretoria, South Africa PO Box 395... Observation for Biodiversity Assessment (EO-BA) programme is designed to enhance biodiversity assessment and conservation through the application of earth observation data, with particular focus on the African continent. MISSION To initiate and develop...

  3. A 2017 stellar occultation by Orcus/Vanth (United States)

    Sickafoose, Amanda A.; Bosh, Amanda S.; Levine, Stephen; Zuluaga, Carlos A.; Genade, Anja; Schindler, Karsten; Lister, Tim; Person, Michael J.


    (90482) Orcus is a large trans-Neptunian object (TNO) of diameter ~900 km, located in the 3:2 orbital resonance with Neptune. This plutino has a satellite, Vanth, approximately 280 km in diameter. Vanth orbits roughly 9000 km from Orcus in a ~9.5-day period. This system is particularly interesting, as Orcus falls between the small, spectrally-bland TNOs and the large TNOs having spectra rich in volatile features, while Vanth might have resulted from either collision or capture.A stellar occultation by Orcus was predicted to occur on 07 March 2017. Observations were made from five sites: the 0.6-m Astronomical Telescope of the University of Stuttgart (ATUS) at Sierra Remote Observatories (SRO), California; Las Cumbres Observatory’s 1-m telescope (ELP) at McDonald Observatory, Fort Davis, Texas; NASA’s 3-m InfraRed Telescope Facility (IRTF) on Mauna Kea, Hawaii; the 4.1-m Southern Astrophysical Research telescope (SOAR) on Cerro Pachón, Chile; and the 0.6-m Southeastern Association for Research in Astronomy telescope (SARA-CT) at Cerro Tololo, Chile. High-speed, visible-wavelength images were taken at all sites, in addition to simultaneous K-band images at the IRTF. A solid-body occultation was observed at both ELP and the IRTF. Offset midtimes and incompatible light ratios suggest that two different stars were occulted by two different bodies, likely Orcus and Vanth. See Bosh et al. this conference for details of the astrometry for the event. Here, we present results from the observations, including light curves, size and albedo estimates, and upper limits on a possible atmosphere.

  4. Estimation and evaluation of COSMIC radio occultation excess phase using undifferenced measurements (United States)

    Xia, Pengfei; Ye, Shirong; Jiang, Kecai; Chen, Dezhong


    In the GPS radio occultation technique, the atmospheric excess phase (AEP) can be used to derive the refractivity, which is an important quantity in numerical weather prediction. The AEP is conventionally estimated based on GPS double-difference or single-difference techniques. These two techniques, however, rely on the reference data in the data processing, increasing the complexity of computation. In this study, an undifferenced (ND) processing strategy is proposed to estimate the AEP. To begin with, we use PANDA (Positioning and Navigation Data Analyst) software to perform the precise orbit determination (POD) for the purpose of acquiring the position and velocity of the mass centre of the COSMIC (The Constellation Observing System for Meteorology, Ionosphere and Climate) satellites and the corresponding receiver clock offset. The bending angles, refractivity and dry temperature profiles are derived from the estimated AEP using Radio Occultation Processing Package (ROPP) software. The ND method is validated by the COSMIC products in typical rising and setting occultation events. Results indicate that rms (root mean square) errors of relative refractivity differences between undifferenced and atmospheric profiles (atmPrf) provided by UCAR/CDAAC (University Corporation for Atmospheric Research/COSMIC Data Analysis and Archive Centre) are better than 4 and 3 % in rising and setting occultation events respectively. In addition, we also compare the relative refractivity bias between ND-derived methods and atmPrf profiles of globally distributed 200 COSMIC occultation events on 12 December 2013. The statistical results indicate that the average rms relative refractivity deviation between ND-derived and COSMIC profiles is better than 2 % in the rising occultation event and better than 1.7 % in the setting occultation event. Moreover, the observed COSMIC refractivity profiles from ND processing strategy are further validated using European Centre for Medium

  5. Photometry of occultation candidate stars. I - Uranus 1985 and Saturn 1985-1991 (United States)

    French, L. M.; Morales, G.; Dalton, A. S.; Klavetter, J. J.; Conner, S. R.


    Photometric observations of five stars to be occulted by the rings around Uranus are presented. The four stars to be occulted by Saturn or its rings during the period 1985-1991 were also observed. The observations were carried out with a CCD detector attached to the Kitt Peak McGraw-Hill 1.30-m telescope. Landolt standards of widely ranging V-I color indices were used to determine the extinction coefficients, transformation coefficients, and zero points of the stars. Mean extinction coefficients are given for each night of observation. K magnitudes for each star were estimated on the basis of the results of Johnson (1967). The complete photometric data set is given in a series of tables.

  6. Astrometry of the Orcus/Vanth occultation on UT 7 March 2017 (United States)

    Bosh, Amanda S.; Zuluaga, Carlos; Levine, Stephen; Sickafoose, Amanda A.; Genade, Anja; Schindler, Karsten; Lister, Tim; Person, Michael J.


    On UT 7 March 2017, Orcus was predicted to occult a star with m=14.3. Observations were made at five observatories: the 0.6-m Astronomical Telescope of the University of Stuttgart (ATUS) at Sierra Remote Observatories (SRO), California; Las Cumbres Observatory’s 1-m telescope (ELP) at McDonald Observatory, Fort Davis, Texas; NASA’s 3-m InfraRed Telescope Facility (IRTF) on Mauna Kea, Hawaii; the 4.1-m Southern Astrophysical Research telescope (SOAR) on Cerro Pachón, Chile; and the 0.6-m Southeastern Association for Research in Astronomy telescope (SARA-CT) at Cerro Tololo, Chile. While observations at all sites were successful, only two—ELP and IRTF—observed solid-body occultation signatures. We will discuss the various predictions for this event and the reasons for the differences among them, including an offset of 130 mas for the star position from the position in the Gaia catalog. The sum of the positive and negative detections place constraints on the geometry of the Orcus/Vanth system, and we present our astrometric results for the geometric solution for this occultation. The implications of the light curve analyses are presented by Sickafoose et al., this conference.

  7. Results from occultations by minor planets

    International Nuclear Information System (INIS)

    Taylor, G.E.


    Since the minor planets are believed to consist of primordial matter dating from the time of the formation of the solar system there is great interest in determining their composition. It is therefore necessary to calculate their densities, for which we need accurate masses and sizes. On the rare occasions when a minor planet occults a star, timed observations of the event from a number of observing sites enable an accurate size of the minor planet to be determined. (Auth.)

  8. JEOS. The JANUS earth observation satellite (United States)

    Molette, P.; Jouan, J.

    The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground

  9. The Common Framework for Earth Observation Data (United States)

    Gallo, J.; Stryker, T. S.; Sherman, R.


    Each year, the Federal government records petabytes of data about our home planet. That massive amount of data in turn provides enormous benefits to society through weather reports, agricultural forecasts, air and water quality warnings, and countless other applications. To maximize the ease of transforming the data into useful information for research and for public services, the U.S. Group on Earth Observations released the first Common Framework for Earth Observation Data in March 2016. The Common Framework recommends practices for Federal agencies to adopt in order to improve the ability of all users to discover, access, and use Federal Earth observations data. The U.S. Government is committed to making data from civil Earth observation assets freely available to all users. Building on the Administration's commitment to promoting open data, open science, and open government, the Common Framework goes beyond removing financial barriers to data access, and attempts to minimize the technical impediments that limit data utility. While Earth observation systems typically collect data for a specific purpose, these data are often also useful in applications unforeseen during development of the systems. Managing and preserving these data with a common approach makes it easier for a wide range of users to find, evaluate, understand, and utilize the data, which in turn leads to the development of a wide range of innovative applications. The Common Framework provides Federal agencies with a recommended set of standards and practices to follow in order to achieve this goal. Federal agencies can follow these best practices as they develop new observing systems or modernize their existing collections of data. This presentation will give a brief on the context and content of the Common Framework, along with future directions for implementation and keeping its recommendations up-to-date with developing technology.

  10. Equatorial Kelvin Waves Observed with GPS Occultation Measurements : CHAMP and SAC-C (2.Space-Borne GPS Meteorology and Related Techniques)


    Ho-Fang, TSAI; Toshitaka, TSUDA; George A., HAJJ; Jens, WICKERT; Yuichi, AOYAMA; Radio Science Center for Space and Atmosphere (RASC), Kyoto University :National Space Program Office(NSPO); Radio Science Center for Space and Atmosphere (RASC), Kyoto University; Jet Propulsion Laboratory (JPL), California Institute of Technology; GeoForschungsZentrum Potsdam (GFZ), Department 1:Geodesy and Remote Sensing; RASC, Kyoto University


    Structure and propagation of equatorial Kelvin waves during May 2001 and December 2002 are observed from the temperature profiles in the upper troposphere and the lower stratosphere using CHAMP and SAC-C GPS radio occultation data. Kelvin waves derived from temperature fluctuations characterize eastward phase propagation in time-longitude section and eastward phase tilts with height in altitude-longitude section between 10 and 30 km. The phase progression spans the range indicating the contin...

  11. Cassini UVIS solar occultations by Saturn's F ring and the detection of collision-produced micron-sized dust (United States)

    Becker, Tracy M.; Colwell, Joshua E.; Esposito, Larry W.; Attree, Nicholas O.; Murray, Carl D.


    We present an analysis of eleven solar occultations by Saturn's F ring observed by the Ultraviolet Imaging Spectrograph (UVIS) on the Cassini spacecraft. In four of the solar occultations we detect an unambiguous signal from diffracted sunlight that adds to the direct solar signal just before or after the occultations occur. The strongest detection was a 10% increase over the direct signal that was enabled by the accidental misalignment of the instrument's pointing. We compare the UVIS data with images of the F ring obtained by the Cassini Imaging Science Subsystem (ISS) and find that in each instance of an unambiguous diffraction signature in the UVIS data, the ISS data shows that there was a recent disturbance in that region of the F ring. Similarly, the ISS images show a quiescent region of the F ring for all solar occultations in which no diffraction signature was detected. We therefore conclude that collisions in the F ring produce a population of small ring particles that can produce a detectable diffraction signal immediately interior or exterior to the F ring. The clearest example of this connection comes from the strong detection of diffracted light in the 2007 solar occultation, when the portion of the F ring that occulted the Sun had suffered a large collisional event, likely with S/2004 S 6, several months prior. This collision was observed in a series of ISS images (Murray et al., 2008). Our spectral analysis of the data shows no significant spectral features in the F ring, indicating that the particles must be at least 0.2 μm in radius. We apply a forward model of the solar occultations, accounting for the effects of diffracted light and the attenuated direct solar signal, to model the observed solar occultation light curves. These models constrain the optical depth, radial width, and particle size distribution of the F ring. We find that when the diffraction signature is present, we can best reproduce the occultation data using a particle population

  12. First results of the earth observation water cycle multi-mission observation strategy (WACMOS)

    NARCIS (Netherlands)

    Su, Zhongbo; Fernadez-Prieto, D.; Timmermans, J.; Chen, Xuelong; Hungershoefer, K.; Schröder, M.; Schulz, J.; Stammes, P.; Wang, Peng; Wolters, e.


    Observing and monitoring the different components of the global water cycle and their dynamics are essential steps to understand the climate of the Earth, forecast the weather, predict natural disasters like floods and droughts, and improve water resources management. Earth observation technology is

  13. Optical MEMS for earth observation payloads (United States)

    Rodrigues, B.; Lobb, D. R.; Freire, M.


    An ESA study has been taken by Lusospace Ltd and Surrey Satellite Techonoly Ltd (SSTL) into the use of optical Micro Eletro-Mechanical Systems (MEMS) for earth Observation. A review and analysis was undertaken of the Micro-Optical Electro-Mechanical Systems (MOEMS) available in the market with potential application in systems for Earth Observation. A summary of this review will be presented. Following the review two space-instrument design concepts were selected for more detailed analysis. The first was the use of a MEMS device to remove cloud from Earth images. The concept is potentially of interest for any mission using imaging spectrometers. A spectrometer concept was selected and detailed design aspects and benefits evaluated. The second concept developed uses MEMS devices to control the width of entrance slits of spectrometers, to provide variable spectral resolution. This paper will present a summary of the results of the study.

  14. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions

    Directory of Open Access Journals (Sweden)

    Alyssa K. Whitcraft


    Full Text Available Agriculture is a highly dynamic process in space and time, with many applications requiring data with both a relatively high temporal resolution (at least every 8 days and fine-to-moderate (FTM < 100 m spatial resolution. The relatively infrequent revisit of FTM optical satellite observatories coupled with the impacts of cloud occultation have translated into a barrier for the derivation of agricultural information at the regional-to-global scale. Drawing upon the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM Initiative’s general satellite Earth observation (EO requirements for monitoring of major production areas, Whitcraft et al. (this issue have described where, when, and how frequently satellite data acquisitions are required throughout the agricultural growing season at 0.05°, globally. The majority of areas and times of year require multiple revisits to probabilistically yield a view at least 70%, 80%, 90%, or 95% clear within eight days, something that no present single FTM optical observatory is capable of delivering. As such, there is a great potential to meet these moderate spatial resolution optical data requirements through a multi-space agency/multi-mission constellation approach. This research models the combined revisit capabilities of seven hypothetical constellations made from five satellite sensors—Landsat 7 Enhanced Thematic Mapper (Landsat 7 ETM+, Landsat 8 Operational Land Imager and Thermal Infrared Sensor (Landsat 8 OLI/TIRS, Resourcesat-2 Advanced Wide Field Sensor (Resourcesat-2 AWiFS, Sentinel-2A Multi-Spectral Instrument (MSI, and Sentinel-2B MSI—and compares these capabilities with the revisit frequency requirements for a reasonably cloud-free clear view within eight days throughout the agricultural growing season. Supplementing Landsat 7 and 8 with missions from different space agencies leads to an improved capacity to meet requirements, with Resourcesat-2 providing the largest

  15. Analysis of Critical Earth Observation Priorities for Societal Benefit (United States)

    Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.


    To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel

  16. Titan's Surface Composition from Cassini VIMS Solar Occultation Observations (United States)

    McCord, Thomas; Hayne, Paul; Sotin, Christophe


    Titan's surface is obscured by a thick absorbing and scattering atmosphere, allowing direct observation of the surface within only a few spectral win-dows in the near-infrared, complicating efforts to identify and map geologi-cally important materials using remote sensing IR spectroscopy. We there-fore investigate the atmosphere's infrared transmission with direct measure-ments using Titan's occultation of the Sun as well as Titan's reflectance measured at differing illumination and observation angles observed by Cas-sini's Visual and Infrared Mapping Spectrometer (VIMS). We use two im-portant spectral windows: the 2.7-2.8-mm "double window" and the broad 5-mm window. By estimating atmospheric attenuation within these windows, we seek an empirical correction factor that can be applied to VIMS meas-urements to estimate the true surface reflectance and map inferred composi-tional variations. Applying the empirical corrections, we correct the VIMS data for the viewing geometry-dependent atmospheric effects to derive the 5-µm reflectance and 2.8/2.7-µm reflectance ratio. We then compare the cor-rected reflectances to compounds proposed to exist on Titan's surface. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scattering in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass water ice for the majority of the low-to-mid latitude area covered by VIMS measurements. Four compositional units are defined and mapped on Titan's surface based on the positions of data clusters in 5-mm vs. 2.8/2.7-mm scatter plots; a simple ternary mixture of H2O, hydrocarbons and CO2 might explain the reflectance properties of these surface units. The vast equatorial "dune seas" are compositionally very homogeneous, perhaps suggesting transport and mixing of particles over very large distances and/or and very consistent formation process and source material. The composi-tional branch characterizing Tui Regio and Hotei Regio is

  17. STS-39 Earth observation of Earth's limb at sunset shows atmospheric layers (United States)


    STS-39 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, shows the Earth's limb at sunset with numerous atmospheric scattering layers highlighted. The layers consist of fine particles suspended in very stable layers of the atmosphere. The layers act as a prism for the sunlight.

  18. OCCULT-ORSER complete conversational user-language translator (United States)

    Ramapriyan, H. K.; Young, K.


    Translator program (OCCULT) assists non-computer-oriented users in setting up and submitting jobs for complex ORSER system. ORSER is collection of image processing programs for analyzing remotely sensed data. OCCULT is designed for those who would like to use ORSER but cannot justify acquiring and maintaining necessary proficiency in Remote Job Entry Language, Job Control Language, and control-card formats. OCCULT is written in FORTRAN IV and OS Assembler for interactive execution.

  19. Occult pneumomediastinum in blunt chest trauma: clinical significance. (United States)

    Rezende-Neto, J B; Hoffmann, J; Al Mahroos, M; Tien, H; Hsee, L C; Spencer Netto, F; Speers, V; Rizoli, S B


    Thoracic injuries are potentially responsible for 25% of all trauma deaths. Chest X-ray is commonly used to screen patients with chest injury. However, the use of computed tomography (CT) scan for primary screening is increasing, particularly for blunt trauma. CT scans are more sensitive than chest X-ray in detecting intra-thoracic abnormalities such as pneumothoraces and pneumomediastinums. Pneumomediastinum detected by chest X-ray or "overt pneumomediastinum", raises the concern of possible aerodigestive tract injuries. In contrast, there is scarce information on the clinical significance of pneumomediastinum diagnosed by CT scan only or "occult pneumomediastinum". Therefore we investigated the clinical consequences of occult pneumomediastinum in our blunt trauma population. A 2-year retrospective chart review of all blunt chest trauma patients with initial chest CT scan admitted to a level I trauma centre. Data extracted from the medical records include; demographics, occult, overt, or no pneumomediastinum, the presence of intra-thoracic aerodigestive tract injuries (trachea, bronchus, and/or esophagus), mechanism and severity of injury, endotracheal intubation, chest thoracostomy, operations and radiological reports by an attending radiologist. All patients with intra-thoracic aerodigestive tract injuries from 1994 to 2004 were also investigated. Of 897 patients who met the inclusion criteria 839 (93.5%) had no pneumomediastinum. Five patients (0.6%) had overt pneumomediastinum and 53 patients (5.9%) had occult pneumomediastinum. Patients with occult pneumomediastinum had significantly higher ISS and AIS chest (pchest thoracostomy tube was more common (ppneumothorax. None of the patients with occult pneumomediastinum had aerodigestive tract injuries (95%CI 0-0.06). Follow up CT scan of patients with occult pneumomediastinum showed complete resolution in all cases, in average 3 h after the initial exam. Occult pneumomediastinum occurred in approximately 6% of

  20. Influence of misalignments on the performance of externally occulted solar coronagraphs. Application to PROBA-3/ASPIICS (United States)

    Shestov, S. V.; Zhukov, A. N.


    Context. The ASPIICS instrument is a novel externally occulted coronagraph that will be launched on board the PROBA-3 mission of the European Space Agency. The external occulter will be placed on one satellite 150 m ahead of the second satellite that will carry an optical instrument. During 6 h out of 19.38 h of orbit, the satellites will fly in a precise (accuracy around a few millimeters) formation, constituting a giant externally occulted coronagraph. The large distance between the external occulter and the primary objective will allow observations of the white-light solar corona starting from extremely low heights 1.1R⊙. Aims: We intend to analyze influence of shifts of the satellites and misalignments of optical elements on the ASPIICS performance in terms of diffracted light. Based on the quantitative influence of misalignments on diffracted light, we provide a recipe for choosing the size of the internal occulter (IO) to achieve a trade-off between the minimal height of observations and sustainability to possible misalignments. Methods: We considered different types of misalignments and analyzed their influence from optical and computational points of view. We implemented a numerical model of the diffracted light and its propagation through the optical system and computed intensities of diffracted light throughout the instrument. Our numerical approach is based on a model from the literature that considered the axisymmetrical case. Here we extend the model to include nonsymmetrical cases and possible misalignments. Results: The numerical computations fully confirm the main properties of the diffracted light that we obtained from semi-analytical consideration. We obtain that relative influences of various misalignments are significantly different. We show that the internal occulter with RIO = 1.694 mm = 1.1R⊙ is large enough to compensate possible misalignments expected to occur in PROBA-3/ASPIICS. Besides that we show that apodizing the edge of the

  1. Spatial irregularities in Jupiter's upper ionosphere observed by voyager radio occultations

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, D.P.; Tyler, G.L.


    Dual frequency radio occultation experiments carried out with Voyagers 1 and 2 provided data on the spatial irregularities in Jupiter's ionosphere at four different locations. Sample spectra of weak fluctuations in amplitude and phase of the 3.6-cm and 13-cm wavelength radio signals can be interpreted by using the theory for scattering from an anisotropic power law phase screen. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yielded estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. Equipment limitations and the method of analysis constrain the observations to irregularities of approximate size 1--200 km. No evidence of the inner or outer scale of the irregularities was found. For length scales in the range given, the three-dimensional spatial spectrum obeys a power law with exponent varying from -3.0 to -3.7, and the root mean square fractional variations in electron density are 1--15%. All observed irregularities appear to be anisotropic with axial ratios between 2:1 and 10:1. Ionospheric parameters vary with altitude and latitude. We conclude that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.


    International Nuclear Information System (INIS)

    Shao, Michael; Catanzarite, Joseph; Pan Xiaopei


    The holy grail of exoplanet searches is an exo-Earth, an Earth mass planet in the habitable zone (HZ) around a nearby star. Mass is one of the most important characteristics of a planet and can only be measured by observing the motion of the star around the planet-star center of gravity. The planet's orbit can be measured either by imaging the planet at multiple epochs or by measuring the position of the star at multiple epochs by space-based astrometry. The measurement of an exoplanet's orbit by direct imaging is complicated by a number of factors. One is the inner working angle (IWA). A space coronagraph or interferometer imaging an exo-Earth can separate the light from the planet from the light from the star only when the star-planet separation is larger than the IWA. Second, the apparent brightness of a planet depends on the orbital phase. A single image of a planet cannot tell us whether the planet is in the HZ or distinguish whether it is an exo-Earth or a Neptune-mass planet. Third is the confusion that may arise from the presence of multiple planets. With two images of a multiple planet system, it is not possible to assign a dot to a planet based only on the photometry and color of the planet. Finally, the planet-star contrast must exceed a certain minimum value in order for the planet to be detected. The planet may be unobservable even when it is outside the IWA, such as when the bright side of the planet is facing away from us in a 'crescent' phase. In this paper we address the question: 'Can a prior astrometric mission that can identify which stars have Earth-like planets significantly improve the science yield of a mission to image exo-Earths?' In the case of the Occulting Ozone Observatory, a small external occulter mission that cannot measure spectra, we find that the occulter mission could confirm the orbits of ∼4 to ∼5 times as many exo-Earths if an astrometric mission preceded it to identify which stars had such planets. In the case of an

  3. Digest of NASA earth observation sensors (United States)

    Drummond, R. R.


    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  4. Development of the AuScope Australian Earth Observing System (United States)

    Rawling, T.


    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  5. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise (United States)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.


    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the

  6. Validation of the Earth atmosphere models using the EUV solar occultation data from the CORONAS and PROBA 2 instruments (United States)

    Slemzin, Vladimir; Kuzin, Sergey; Berghmans, David; Pertsov, Andrey; Dominique, Marie; Ulyanov, Artyom; Gaikovich, Konstantin

    Absorption in the atmosphere below 500 km results in attenuation of the solar EUV flux, variation of its spectra and distortion of solar images acquired by solar EUV instruments operating on LEO satellites even on solar synchronous orbits. Occultation measurements are important for planning of solar observations from these satellites, and can be used for monitoring the upper atmosphere as well as for studying its response to the solar activity. We present the results of the occultation measurements of the solar EUV radiation obtained by the CORONAS-F/SPIRIT telescope at high solar activity (2002), by the CORONAS-Photon/TESIS telescope at low activity (2009), and by the SWAP telescope and LYRA radiometer onboard the PROBA 2 satellite at moderate activity (2010). The measured attenuation profiles and the retrieved linear extinction coefficients at the heights 200-500 km are compared with simulations by the NRLMSIS-00 and DTM2013 atmospheric models. It was shown that the results of simulations by the DTM2013 model are well agreed with the data of measurements at all stages of solar activity and in presence of the geomagnetic storm, whereas the results of the NRLMSISE-00 model significantly diverge from the measurements, in particular, at high and low activity. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project No.284461,

  7. NASA's Earth Observing Data and Information System (United States)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.


    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  8. NASA's Earth Observing Data and Information System (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.


    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  9. Continuity of Earth Radiation Budget Observations (United States)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.


    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  10. Observed tidal braking in the earth/moon/sun system (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.


    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  11. Oligometastasis as a predictor for occult disease. (United States)

    Kendal, Wayne S


    Oligometastasis can be defined as a state of limited metastases that is potentially amenable to ablative local therapy; the success of such therapy depends on whether or not additional occult metastases exist. A model is presented here to predict occult metastases given detectable oligometastases. Predictions were based on Bayes' theorem, in conjunction with descriptions of the statistical distributions for the sizes and numbers of hematogenous metastases. The background probability for occult metastases in individuals with oligometastases increased markedly with relatively minor increases in metastatic potential. With each additional metastasis detected the chance of further occult metastases increased. These latter increases were incremental and proportionately smaller with the more metastatic tumors. Long disease free intervals had a major effect to decrease in the probability of further occult disease. Demonstration of oligometastases depends heavily upon the sensitivity of radiological imaging techniques, where the proportion of detectable metastases relates to the position of the distribution of metastasis growth times with respect to the detection threshold. Given the limitations of radiological methods, and the possibility that the oligometastases detected may be the only disease, an aggressive approach appears indicated. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications (United States)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.


    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  13. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform (United States)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut


    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  14. Earth Observations from Space: The First 50 Years of Scientific Achievements (United States)


    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  15. The Crew Earth Observations Experiment: Earth System Science from the ISS (United States)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin


    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  16. Sizes of the Smallest Particles at Saturn Ring Edges from Diffraction in UVIS Stellar Occultations (United States)

    Eckert, S.; Colwell, J. E.; Becker, T. M.; Esposito, L. W.


    Cassini's Ultraviolet Imaging Spectrograph (UVIS) has observed more than 150 ring stellar occultations since its arrival at Saturn in 2004. We use stellar occultation data from the UVIS High Speed Photometer (HSP) to identify diffraction signals at ring edges caused by small particles diffracting light into the detector and consequently increasing the signal above that of the unocculted star. The shape of a diffraction signal is indicative of the particle size distribution at the ring edge, which may be a dynamically perturbed region. Becker et al. (2015 Icarus doi:10.1016/j.icarus.2015.11.001) analyzed diffraction signals at the outer edge of the A Ring and the edges of the Encke Gap. We apply the Becker et al. (2015) model to the outer edge of the B Ring as well as the edges of ringlets within the C Ring and Cassini Division. In addition, we analyze diffraction signatures at the A Ring outer edge in 2 new occultations. The best-fit model signals to these occultations are consistent with the findings of Becker et al. (2015) who found an average minimum particle size amin =4.5 mm and average power law slope q=3.2. At the B Ring outer edge, we detect a diffraction signal in 10 of 28 occultations in which the diffraction signal would be observable according to our criteria for star brightness and observation geometry. We find a mean amin =11 mm and a mean q=3.0. At both edges of the so-called "Strange" ringlet (R6) we find a mean amin = 20 mm and mean q values of 3.0 and 2.8 at the inner and outer edges, respectively. In contrast, we do not observe any clear diffraction signals at either edge of the wider Huygens ringlet. This could imply an absence of cm-scale or smaller particles and indicates that collisions here may be less vigorous than at the other ring edges analyzed in this study. We detect diffraction in a small fraction ( 10%) of occultations at 3 ringlets within the Cassini Division: the Herschel ringlet, the Laplace ringlet, and the Barnard ringlet. We

  17. Impact of tropospheric scintillation in the Ku/K bands on the communications between two LEO satellites in a radio occultation geometry

    DEFF Research Database (Denmark)

    Martini, Enrica; Freni, A.; Facheris, L.


    A theoretical analysis of the impact of clear-air tropospheric scintillation on a radio occultation link between two low Earth orbit satellites in K- and Ku-bands is presented, with particular reference to differential approaches for the measure of the total content of water vapor. The troposphere...

  18. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral (United States)

    Holwerda, Benne


    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.


    Directory of Open Access Journals (Sweden)

    Y. Ito


    Full Text Available In the present study, we introduce to secondary education an Earth observation technique using synthetic aperture radar (SAR. The goal is to increase interest in and raise the awareness of students in the Earth observation technique through practical activities. A curriculum is developed based on the result of questionnaire surveys of school teachers. The curriculum is composed of 16 units. Teaching materials related to the Earth observation technique are researched and developed. We designed a visual SAR processor and a small corner reflector (CR as a new teaching technique. In teaching sessions at secondary school, the developed teaching materials and software were used effectively. In observation experiments, students set up CRs that they had built, and ALOS PALSAR was able to clearly observe all of the CRs. The proposed curriculum helped all of the students to understand the usefulness of the Earth observation technique.

  20. First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE) (United States)

    Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.


    Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.

  1. Observation and integrated Earth-system science: A roadmap for 2016-2025 (United States)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted


    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the


    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A.; Veres, P.; Briggs, M. S.; Burns, E. [University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Wilson-Hodge, C. A.; Hui, M. [Marshall Space Flight Center, Huntsville, AL 35812 (United States); Homan, Jeroen [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Connaughton, V.; Finger, M. H., E-mail: [Universities Space Research Association, Huntsville, AL 35805 (United States)


    V404 Cygni was discovered in 1989 by the Ginga X-ray satellite during its only previously observed X-ray outburst and soon after confirmed as a black hole binary. On 2015 June 15, the Gamma-ray Burst Monitor (GBM) triggered on a new outburst of V404 Cygni. We present 13 days of GBM observations of this outburst, including Earth occultation flux measurements and spectral and temporal analysis. The Earth occultation fluxes reached 30 Crab with detected emission to 100 keV and determined, via hardness ratios, that the source was in a hard state. At high luminosity, spectral analysis between 8 and 300 keV showed that the electron temperature decreased with increasing luminosity. This is expected if the protons and electrons are in thermal equilibrium during an outburst with the electrons cooled by the Compton scattering of softer seed photons from the disk. However, the implied seed photon temperatures are unusually high, suggesting a contribution from another source, such as the jet. No evidence of state transitions is seen during this time period. The temporal analysis reveals power spectra that can be modeled with two or three strong, broad Lorentzians, similar to the power spectra of black hole binaries in their hard state.

  3. Policy Document on Earth Observation for Urban Planning and Management: State of the Art and Recommendations for Application of Earth Observation in Urban Planning (United States)

    Nichol, Janet; King, Bruce; Xiaoli, Ding; Dowman, Ian; Quattrochi, Dale; Ehlers, Manfred


    A policy document on earth observation for urban planning and management resulting from a workshop held in Hong Kong in November 2006 is presented. The aim of the workshop was to provide a forum for researchers and scientists specializing in earth observation to interact with practitioners working in different aspects of city planning, in a complex and dynamic city, Hong Kong. A summary of the current state of the art, limitations, and recommendations for the use of earth observation in urban areas is presented here as a policy document.

  4. Atmospheric correction of Earth-observation remote sensing images

    Indian Academy of Sciences (India)

    In earth observation, the atmospheric particles contaminate severely, through absorption and scattering, the reflected electromagnetic signal from the earth surface. It will be greatly beneficial for land surface characterization if we can remove these atmospheric effects from imagery and retrieve surface reflectance that ...

  5. Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation. (United States)

    Cord, Anna F; Brauman, Kate A; Chaplin-Kramer, Rebecca; Huth, Andreas; Ziv, Guy; Seppelt, Ralf


    Managing ecosystem services in the context of global sustainability policies requires reliable monitoring mechanisms. While satellite Earth observation offers great promise to support this need, significant challenges remain in quantifying connections between ecosystem functions, ecosystem services, and human well-being benefits. Here, we provide a framework showing how Earth observation together with socioeconomic information and model-based analysis can support assessments of ecosystem service supply, demand, and benefit, and illustrate this for three services. We argue that the full potential of Earth observation is not yet realized in ecosystem service studies. To provide guidance for priority setting and to spur research in this area, we propose five priorities to advance the capabilities of Earth observation-based monitoring of ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Diagnostic strategy for occult hepatitis B virus infection (United States)

    Ocana, Sara; Casas, Maria Luisa; Buhigas, Ingrid; Lledo, Jose Luis


    In 2008, the European Association for the study of the liver (EASL) defined occult hepatitis B virus infection (OBI) as the “presence of hepatitis B virus (HBV) DNA in the liver (with detectable or undetectable HBV DNA in the serum) of individuals testing hepatitis B surface antigen (HBsAg) negative by currently available assays”. Several aspects of occult HBV infection are still poorly understood, including the definition itself and a standardized approach for laboratory-based detection, which is the purpose of this review. The clinical significance of OBI has not yet been established; however, in terms of public health, the clinical importance arises from the risk of HBV transmission. Consequently, it is important to detect high-risk groups for occult HBV infection to prevent transmission. The main issue is, perhaps, to identify the target population for screening OBI. Viremia is very low or undetectable in occult HBV infection, even when the most sensitive methods are used, and the detection of the viral DNA reservoir in hepatocytes would provide the best evaluation of occult HBV prevalence in a defined set of patients. However, this diagnostic approach is obviously unsuitable: blood detection of occult hepatitis B requires assays of the highest sensitivity and specificity with a lower limit of detection < 10 IU/mL for HBV DNA and < 0.1 ng/mL for HBsAg. PMID:21472120

  7. First results from stellar occultations in the "GAIA era" (United States)

    Benedetti-Rossi, G.; Vieira-Martins, R.; Sicardy, B.


    Stellar occultation is a powerful technique to study distant solar system bodies. It allows high angular resolution of the occulting body from the analysis of a light curve acquired with high temporal resolution with uncertainties comparable as probes. In the "GAIA era", stellar occultations is now able to obtain even more impressive results such as the presence of atmosphere, rings and topographic features.

  8. The Group on Earth Observations (GEO) through 2025 (United States)

    Ryan, Barbara; Cripe, Douglas

    Ministers from the Group on Earth Observations (GEO) Member governments, meeting in Geneva, Switzerland in January 2014, unanimously renewed the mandate of GEO through 2025. Through a Ministerial Declaration, they reconfirmed that GEO’s guiding principles of collaboration in leveraging national, regional and global investments and in developing and coordinating strategies to achieve full and open access to Earth observations data and information in order to support timely and knowledge-based decision-making - are catalysts for improving the quality of life of people around the world, advancing global sustainability, and preserving the planet and its biodiversity. GEO Ministers acknowledged and valued the contributions of GEO Member governments and invited all remaining Member States of the United Nations to consider joining GEO. The Ministers also encouraged all Members to strengthen national GEO arrangements, and - of particular interest to COSPAR - they highlighted the unique contributions of Participating Organizations. In this regard, ten more organizations saw their applications approved by Plenary and joined the ranks along with COSPAR to become a Participating Organization in GEO, bringing the current total to 77. Building on the efforts of a Post-2015 Working Group, in which COSPAR participated, Ministers provided additional guidance for GEO and the evolution of its Global Earth Observation System of System (GEOSS) through 2025. Five key areas of activities for the next decade include the following: 1.) Advocating for the value of Earth observations and the need to continue improving Earth observation worldwide; 2.) Urging the adoption and implementation of data sharing principles globally; 3.) Advancing the development of the GEOSS information system for the benefit of users; 4.) Developing a comprehensive interdisciplinary knowledge base defining and documenting observations needed for all disciplines and facilitate availability and accessibility of

  9. The New Worlds Observer: An Optimal Path to Direct Study of Earth-like Planets (United States)

    Cash, Webster C., Jr.; New Worlds Study Team


    Direct detection and spectroscopic study of the planets around the nearby stars is generally recognized as a prime goal of astronomy. The New Worlds Observer mission concept is being studied as an Astrophysics Strategic Mission Concept Study for this purpose. NWO features two spacecraft: a general purpose 4m telescope that operates from the UV to the Near IR, and a starshade, a flower-shaped occulter about 50m in diameter flying in alignment about 70,000km away. Our study shows this is the most effective way to map nearby planetary systems. In this poster we will show that NWO can return much more science than any of the competing approaches at any given price point. Images will show dust and debris down to a fraction of our zodiacal light level. Planets fainter than the Earth can be seen from the Habitable Zone outward, at distances up to 20pc. High throughput and low noise enable immediate follow-up spectroscopy of discovered planets. NWO can discover many more Earth-like planets than all competing approaches including astrometric, interferometric, and internal coronagraphic. Within hours of discovery, a high quality spectrum can determine the true nature of the exoplanet and open the search for biomarkers and life. Over half of the time will be spent with the starshade in transit to the next target. During those times the telescope will be available to for general astrophysics purposes. Operating from the ultraviolet to the near infrared, this will be a true HST follow-on. The study shows all needed technologies already exist. The cost scales primarily with telescope size. The mission is definitely within the financial and technical reach of NASA for the coming decade.

  10. Helios-1 Faraday rotation experiment - Results and interpretations of the solar occultations in 1975 (United States)

    Volland, H.; Bird, M. K.; Levy, G. S.; Stelzried, C. T.; Seidel, B. L.


    The first of two solar occultations of the satellite Helios-1 in 1975 occurred in April when the satellite's ray path approached the west limb of the sun to a minimum distance of 1.63 solar radii. The second occultation took place in late August/early September when Helios-1 was totally eclipsed by the photosphere. Measurements of the polarization angle of the linearly polarized telemetry signal were performed with automatic tracking polarimeters at the 64 m Goldstone Tracking Station in California and also at the 100 m radio telescope in Effelsberg, West Germany. The coronal Faraday rotation as a function of the solar offset for both occultations is shown in graphs. The theoretical significance of the observations is investigated.

  11. Boundary diffraction wave integrals for diffraction modeling of external occulters


    Cady, E.


    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly...

  12. 21 CFR 864.6550 - Occult blood test. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Occult blood test. 864.6550 Section 864.6550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6550 Occult blood test. (a...

  13. Earth rotation excitation mechanisms derived from geodetic space observations (United States)

    Göttl, F.; Schmidt, M.


    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  14. X-ray observations of two lunar occultations of the Crab Nebula

    International Nuclear Information System (INIS)

    Ku, W.H.M.


    The x-ray source in the Crab nebula was observed during two lunar occultations. The combined results of the two scans of the nebula indicate that the spatial distribution of the X-ray flux from the nebula is centered on a region 10'' to 15'' NW of the pulsar. The half-intensity size, as measured by the FWHM of the best Gaussian representation of each strip flux distribution, is 46.7'' +- 1.5'' along p.a. = 300 0 , and is 42'' +- 2'' along p.a. = 255 0 . A closer examination of the size of the nebular emission region measured along p.a. = 300 0 reveals that the size decreases significantly with increasing photon energy. A power-law function with an exponent of γ = -0.148 +- 0.012 characterizes the optical (approximately 2 eV) to X-ray (approximately 50 keV) size measurements well, but it fails to predict the observed sizes of the radio nebula. Power-law spectral indices derived for different regions of the nebula support this finding. These results are interpreted in terms of existing theoretical models for the motion of electrons in the nebula. The data obtained on 28 December 1974 also provide strong evidence for the existence of a low-luminosity soft X-ray component more than 60'' W of the pulsar. Such emission was not detected in data from the first scan, but the upper limit derived from those data is consistent with the existence of a soft extended source. Several plausible explanations for the origin of this radiation are considered including the interesting possibility of thermal emission from a supernova remnant shell. Data obtained near the time of emergence of the pulsar for both observations are examined for possible flux contribution from a discrete steady radiation source. The null result allows an upper limit of 4.7 x 10 6 0 K (99 percent confidence) to be established on the surface temperature of the neutron star associated with NP 0532. This result is used to set limits on some physical parameters of a neutron star

  15. Investigation of particle sizes in Pluto's atmosphere from the 29 June 2015 occultation (United States)

    Sickafoose, Amanda A.; Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfüller, E.; de, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristam, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.


    The 29 June 2015 observations of a stellar occultation by Pluto, from SOFIA and ground-based sites in New Zealand, indicate that haze was present in the lower atmosphere (Bosh et al., this conference). Previously, slope changes in the occultation light curve profile of Pluto’s lower atmosphere have been attributed to haze, a steep thermal gradient, and/or a combination of the two. The most useful diagnostic for differentiating between these effects has been observing occultations over a range of wavelengths: haze scattering and absorption are functions of particle size and are wavelength dependent, whereas effects due to a temperature gradient should be largely independent of observational wavelength. The SOFIA and Mt. John data from this event exhibit obvious central flashes, from multiple telescopes observing over a range of wavelengths at each site (Person et al. and Pasachoff et al., this conference). SOFIA data include Red and Blue observations from the High-speed Imaging Photometer for Occultations (HIPO, at ~ 500 and 850 nm), First Light Infrared Test Camera (FLITECAM, at ~1800 nm), and the Focal Plan Imager (FPI+, at ~ 600 nm). Mt. John data include open filter, g', r', i', and near infrared. Here, we analyze the flux at the bottom of the light curves versus observed wavelength. We find that there is a distinct trend in flux versus wavelength, and we discuss applicable Mie scattering models for different particle size distributions and compositions (as were used to characterize haze in Pluto's lower atmosphere in Gulbis et al. 2015).SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by the National Research Foundation of South Africa, NASA SSO grants NNX15AJ82G (Lowell Observatory), PA NNX10AB27G (MIT), and PA NNX12AJ29G (Williams College), and the NASA

  16. Value of Earth Observation for Risk Mitigation (United States)

    Pearlman, F.; Shapiro, C. D.; Grasso, M.; Pearlman, J.; Adkins, J. E.; Pindilli, E.; Geppi, D.


    Societal benefits flowing from Earth observation are intuitively obvious as we use the information to assess natural hazards (such as storm tracks), water resources (such as flooding and droughts in coastal and riverine systems), ecosystem vitality and other dynamics that impact the health and economic well being of our population. The most powerful confirmation of these benefits would come from quantifying the impact and showing direct quantitative links in the value chain from data to decisions. However, our ability to identify and quantify those benefits is challenging. The impact of geospatial data on these types of decisions is not well characterized and assigning a true value to the observations on a broad scale across disciplines still remains to be done in a systematic way. This presentation provides the outcomes of a workshop held in October 2017 as a side event of the GEO Plenary that addressed research on economic methodologies for quantification of impacts. To achieve practical outputs during the meeting, the workshop focused on the use and value of Earth observations in risk mitigation including: ecosystem impacts, weather events, and other natural and manmade hazards. Case studies on approaches were discussed and will be part of this presentation. The presentation will also include the exchange of lessons learned and a discussion of gaps in the current understanding of the use and value of earth observation information for risk mitigation.

  17. Occult spinal dysraphism

    African Journals Online (AJOL)

    paediatricians, paediatric neurosurgeons, urologists, orthopaedic surgeons, occupational ... Occult spinal dysraphism refers to a diverse group of congenital abnormalities resulting from varying degrees of disordered neuro- embryogenesis. Several terms have .... can image the whole spine. T1-weighted sagittal and axial ...

  18. GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Cardellach, Estel; Bandeiras, Jorge


    GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus...... of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans...

  19. The ionosphere of Europa from Galileo radio occultations (United States)

    Kliore, A. J.; Hinson, D. P.; Flasar, F. M.; Nagy, A. F.; Cravens, T. E.


    The Galileo spacecraft performed six radio occultation observations of Jupiter's Galilean satellite Europa during its tour of the jovian system. In five of the six instances, these occultations revealed the presence of a tenuous ionosphere on Europa, with an average maximum electron density of nearly 10(4) per cubic centimeter near the surface and a plasma scale height of about 240 +/- 40 kilometers from the surface to 300 kilometers and of 440 +/- 60 kilometers above 300 kilometers. Such an ionosphere could be produced by solar photoionization and jovian magnetospheric particle impact in an atmosphere having a surface density of about 10(8) electrons per cubic centimeter. If this atmosphere is composed primarily of O2, then the principal ion is O2+ and the neutral atmosphere temperature implied by the 240-kilometer scale height is about 600 kelvin. If it is composed of H2O, the principal ion is H3O+ and the neutral temperature is about 340 kelvin. In either case, these temperatures are much higher than those observed on Europa's surface, and an external heating source from the jovian magnetosphere is required.

  20. Sensing Planet Earth - Chalmers' MOOCs on Earth observation (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger


    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  1. Utilizing Earth Observations for Societal Issues (United States)

    Habib, Shahid


    Over the last four decades a tremendous progress has been made in the Earth science space-based remote sensing observations, technologies and algorithms. Such advancements have improved the predictability by providing lead-time and accuracy of forecast in weather, climate, natural hazards, and natural resources. It has further reduced or bounded the overall uncertainties by partially improving our understanding of planet Earth as an integrated system that is governed by non-linear and chaotic behavior. Many countries such as the US, European Community, Japan, China, Russia, India has and others have invested billions of dollars in developing and launching space-based assets in the low earth (LEO) and geostationary (GEO) orbits. However, the wealth of this scientific knowledge that has potential of extracting monumental socio-economic benefits from such large investments have been slow in reaching the public and decision makers. For instance, there are a number of areas such as water resources and availability, energy forecasting, aviation safety, agricultural competitiveness, disaster management, air quality and public health, which can directly take advantage. Nevertheless, we all live in a global economy that depends on access to the best available Earth Science information for all inhabitants of this planet. This presentation discusses a process to transition Earth science data and products for societal needs including NASA's experience in achieving such objectives. It is important to mention that there are many challenges and issues that pertain to a number of areas such as: (1) difficulties in making a speedy transition of data and information from observations and models to relevant Decision Support Systems (DSS) or tools, (2) data and models inter-operability issues, (3) limitations of spatial, spectral and temporal resolution, (4) communication limitations as dictated by the availability of image processing and data compression techniques. Additionally, the

  2. Copernicus: a quantum leap in Earth Observation (United States)

    Aschbacher, Josef


    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  3. Occult carbon monoxide poisoning. (United States)

    Kirkpatrick, J N


    A syndrome of headache, fatigue, dizziness, paresthesias, chest pain, palpitations and visual disturbances was associated with chronic occult carbon monoxide exposure in 26 patients in a primary care setting. A causal association was supported by finding a source of carbon monoxide in a patient's home, workplace or vehicle; results of screening tests that ruled out other illnesses; an abnormally high carboxyhemoglobin level in 11 of 14 patients tested, and abatement or resolution of symptoms when the source of carbon monoxide was removed. Exposed household pets provided an important clue to the diagnosis in some cases. Recurrent occult carbon monoxide poisoning may be a frequently overlooked cause of persistent or recurrent headache, fatigue, dizziness, paresthesias, abdominal pain, diarrhea and unusual spells.

  4. Predictive factors of occult neck metastasis in patients with oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Renato Fortes Bittar

    Full Text Available ABSTRACT INTRODUCTION: It is well established that cervical lymph node metastasis is the most important prognostic factor in patients with oral squamous cell carcinoma of the upper aerodigestive tract. The definition of parameters and classifications that could separate patients in groups of low, intermediate and high-risk is being attempted for several years. OBJECTIVE: The objective of this study was to determine possible predictive factors related to the occurrence of occult cervical lymph node metastasis through the analysis of histopathological reports of surgical specimens obtained after oral squamous cell carcinoma resection and selective neck dissections of patients initially classified as N0. METHODS: This was a primary, retrospective, observational, case-control study. Histopathological reports were reviewed to determine if some findings were related to the occurrence of occult lymph node metastasis. The events analyzed were oral cavity subsites, pT-stage, muscular infiltration, desmoplasia, vascular emboli, perineural infiltration, tumor thickness and compromised margins. RESULTS: Occult cervical metastasis accounted for 19.10 percent of the cases. Desmoplasia, perineural infiltration, tumor thickness and pT4a stage are predictive factors of occult neck metastasis (p-value = 0.0488, 0.0326, 0.0395, 0.0488, respectively. CONCLUSION: The accurate definition of predictive factors of occult cervical metastasis may guide the selection of patients that should be referred to radiotherapy, avoiding the unnecessary exposure of low-risk patients to radiation and allowing a better regional control of the disease in those of moderate or high risk.

  5. Earth observation open science and innovation

    CERN Document Server

    Aubrecht, Christoph


    This book is published open access under a CC BY 4.0 license. Over  the  past  decades,  rapid developments in digital and sensing technologies, such  as the Cloud, Web and Internet of Things, have dramatically changed the way we live and work. The digital transformation is revolutionizing our ability to monitor our planet and transforming the  way we access, process and exploit Earth Observation data from satellites. This book reviews these megatrends and their implications for the Earth Observation community as well as the wider data economy. It provides insight into new paradigms of Open Science and Innovation applied to space data, which are characterized by openness, access to large volume of complex data, wide availability of new community tools, new techniques for big data analytics such as Artificial Intelligence, unprecedented level of computing power, and new types of collaboration among researchers, innovators, entrepreneurs and citizen scientists. In addition, this book aims to provide reade...

  6. Occult spondyloarthritis in inflammatory bowel disease. (United States)

    Bandinelli, Francesca; Manetti, Mirko; Ibba-Manneschi, Lidia


    Spondyloarthritis (SpA) is a frequent extra-intestinal manifestation in patients with inflammatory bowel disease (IBD), although its real diffusion is commonly considered underestimated. Abnormalities in the microbioma and genetic predisposition have been implicated in the link between bowel and joint inflammation. Otherwise, up to date, pathogenetic mechanisms are still largely unknown and the exact influence of the bowel activity on rheumatic manifestations is not clearly explained. Due to evidence-based results of clinical studies, the interest on clinically asymptomatic SpA in IBD patients increased in the last few years. Actually, occult enthesitis and sacroiliitis are discovered in high percentages of IBD patients by different imaging techniques, mainly enthesis ultrasound (US) and sacroiliac joint X-ray examinations. Several diagnostic approaches and biomarkers have been proposed in an attempt to correctly classify and diagnose clinically occult joint manifestations and to define clusters of risk for patient screening, although definitive results are still lacking. The correct recognition of occult SpA in IBD requires an integrated multidisciplinary approach in order to identify common diagnostic and therapeutic strategies. The use of inexpensive and rapid imaging techniques, such as US and X-ray, should be routinely included in daily clinical practice and trials to correctly evaluate occult SpA, thus preventing future disability and worsening of quality of life in IBD patients.

  7. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System (United States)

    King, M. D. (Editor); Greenstone, R. (Editor)


    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  8. Applying sensor web strategies to big data earth observations

    CSIR Research Space (South Africa)

    Van Zyl, TL


    Full Text Available Earth observation data and meta-data are a central concern of the earth sciences. These data are generated by a myriad of both in-situ and remote sensors. Other sources of data include computational simulations, various ex-situ sources...

  9. Earth Observations: Experiences from Various Communication Strategies (United States)

    Lilja Bye, Bente


    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  10. International Space Station Earth Observations Working Group (United States)

    Stefanov, William L.; Oikawa, Koki


    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  11. INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth

    DEFF Research Database (Denmark)

    Churazov, E.; Sunyaev, R.; Revnivtsev, M.


    by the Earth atmosphere and the Earth auroral emission. Results. The spectrum of the cosmic X-ray background in the energy band 5-100 keV is obtained. The shape of the spectrum is consistent with that obtained previously by the HEAO-1 observatory, while the normalization is similar to 10% higher....... This difference in normalization can ( at least partly) be traced to the different assumptions on the absolute flux from the Crab Nebulae. The increase relative to the earlier adopted value of the absolute flux of the CXB near the energy of maximum luminosity (20-50 keV) has direct implications for the energy...

  12. Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation (ADONIS mission proposal

    Directory of Open Access Journals (Sweden)

    Hettrich Sebastian


    Full Text Available The Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation mission (ADONIS studies the dynamics of the terrestrial thermosphere and ionosphere in dependency of solar events over a full solar cycle in Low Earth Orbit (LEO. The objectives are to investigate satellite drag with in-situ measurements and the ionospheric electron density profiles with radio occultation and scintillation measurements. A constellation of two satellites provides the possibility to gain near real-time data (NRT about ionospheric conditions over the Arctic region where current coverage is insufficient. The mission shall also provide global high-resolution data to improve assimilative ionospheric models. The low-cost constellation can be launched using a single Vega rocket and most of the instruments are already space-proven allowing for rapid development and good reliability. From July 16 to 25, 2013, the Alpbach Summer School 2013 was organised by the Austrian Research Promotion Agency (FFG, the European Space Agency (ESA, the International Space Science Institute (ISSI and the association of Austrian space industries Austrospace in Alpbach, Austria. During the workshop, four teams of 15 students each independently developed four different space mission proposals on the topic of “Space Weather: Science, Missions and Systems”, supported by a team of tutors. The present work is based on the mission proposal that resulted from one of these teams’ efforts.

  13. Fecal Occult Blood Test and Gastrointestinal Parasitic Infection

    Directory of Open Access Journals (Sweden)

    Majed H. Wakid


    Full Text Available Stool specimens of 1238 workers in western region of Saudi Arabia were examined for infection with intestinal parasites and for fecal occult blood (FOB to investigate the possibility that enteroparasites correlate to occult intestinal bleeding. Direct smears and formal ether techniques were used for detection of diagnostic stages of intestinal parasites. A commercially available guaiac test was used to detect fecal occult blood. 47.01% of the workers were infected with intestinal parasites including eight helminthes species and eight protozoan species. The results provided no significant evidence (P-value=0.143 that intestinal parasitic infection is in association with positive guaiac FOB test.

  14. CT detection of occult pneumothorax in head trauma

    International Nuclear Information System (INIS)

    Tocino, I.M.; Miller, M.H.; Frederick, P.R.; Bahr, A.L.; Thomas, F.


    A prospective evaluation for occult pneumothorax was performed in 25 consecutive patients with serious head trauma by combining a limited chest CT examination with the emergency head CT examination. Of 21 pneuomothoraces present in 15 patients, 11 (52%) were found only by chest CT and were not identified clinically or by supine chest radiograph. Because of pending therapeutic measures, chest tubes were placed in nine of the 11 occult pneumothoraces, regardless of the volume. Chest CT proved itself as the most sensitive method for detection of occult pneumothorax, permitting early chest tube placement to prevent transition to a tension pneumothorax during subsequent mechanical ventilation or emergency surgery under general anesthesia

  15. CT detection of occult pneumothorax in head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Tocino, I.M.; Miller, M.H.; Frederick, P.R.; Bahr, A.L.; Thomas, F.


    A prospective evaluation for occult pneumothorax was performed in 25 consecutive patients with serious head trauma by combining a limited chest CT examination with the emergency head CT examination. Of 21 pneuomothoraces present in 15 patients, 11 (52%) were found only by chest CT and were not identified clinically or by supine chest radiograph. Because of pending therapeutic measures, chest tubes were placed in nine of the 11 occult pneumothoraces, regardless of the volume. Chest CT proved itself as the most sensitive method for detection of occult pneumothorax, permitting early chest tube placement to prevent transition to a tension pneumothorax during subsequent mechanical ventilation or emergency surgery under general anesthesia.

  16. Lunar occultation of the Galactic center at 2.2 microns

    NARCIS (Netherlands)

    Adams, D. J.; Becklin, E. E.; Jameson, R. F.; Longmore, A. J.; Sandqvist, Aa.; Valentijn, E.


    Results of the lunar occultation of IRS 16 on 1986 September 11 are reported. Sixty percent of the observed flux in a 6arcsec.5 beam comes from four discrete sources. Three sources are unresolved pointlike objects (<0arcsec.05) and are assumed to be individual stars. The fourth object is well

  17. STS-59 crewmembers in training for onboard Earth observations (United States)


    The six astronauts in training for the STS-59 mission are shown onboard Earth observations tips by Justin Wilkinson (standing, foreground) of the Space Shuttle Earth Observations Project (SSEOP) group. Astronaut Sidney M. Gutierrez, mission commander, is at center on the left side of the table. Others, left to right, are Astronauts Kevin P. Chilton, pilot; Jerome (Jay) Apt and Michael R.U. (Rich) Clifford, both mission specialists; Linda M. Godwin, payload commander; and Thomas D. Jones, mission specialist.

  18. Korea Earth Observation Satellite Program (United States)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  19. Pioneer Venus and near-earth observations of interplanetary shocks

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Russell, C.T.; Knudsen, W.C.; Scarf, F.L.


    Twenty-three transient interplanetary shocks observed near earth during 1978-1982, and mostly reported in the literature, have also been identified at the Pioneer Venus Orbiter spacecraft. There seems to be a fairly consistent trend for lower shock speeds, farther from the sun. Shock normals obtained using the Pioneer Venus data correspond well with published values from near earth. By referring to the portion of the Pioneer Venus plasma data used here from locations at longitudes within 37 degree of earth, it is found that shocks are weaker at earth, compared with closer to the sun

  20. The Earth Observing System Terra Mission (United States)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)


    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  1. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations (United States)

    Lynnes, Chris; Little, Mike; Huang, Thomas; Jacob, Joseph; Yang, Phil; Kuo, Kwo-Sen


    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based file systems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  2. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations (United States)

    Lynnes, C.; Little, M. M.; Huang, T.; Jacob, J. C.; Yang, C. P.; Kuo, K. S.


    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based filesystems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  3. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per


    This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...

  4. "New Space Explosion" and Earth Observing System Capabilities (United States)

    Stensaas, G. L.; Casey, K.; Snyder, G. I.; Christopherson, J.


    This presentation will describe recent developments in spaceborne remote sensing, including introduction to some of the increasing number of new firms entering the market, along with new systems and successes from established players, as well as industry consolidation reactions to these developments from communities of users. The information in this presentation will include inputs from the results of the Joint Agency Commercial Imagery Evaluation (JACIE) 2017 Civil Commercial Imagery Evaluation Workshop and the use of the US Geological Survey's Requirements Capabilities and Analysis for Earth Observation (RCA-EO) centralized Earth observing systems database and how system performance parameters are used with user science applications requirements.

  5. The future of Earth observation in hydrology

    KAUST Repository

    McCabe, Matthew; Rodell, Matthew; Alsdorf, Douglas E.; Miralles, Diego G.; Uijlenhoet, Remko; Wagner, Wolfgang; Lucieer, Arko; Houborg, Rasmus; Verhoest, Niko E. C.; Franz, Trenton E.; Shi, Jiancheng; Gao, Huilin; Wood, Eric F.


    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles

  6. Aspiring to Spectral Ignorance in Earth Observation (United States)

    Oliver, S. A.


    Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.

  7. Earth observations from space: History, promise, and reality. Executive summary (United States)


    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  8. Spanish Earth Observation Satellite System (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.


    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  9. Theoretical performance of serrated external occulters for solar coronagraphy. Application to ASPIICS (United States)

    Rougeot, R.; Aime, C.


    Context. This study is made in the context of the future solar coronagraph ASPIICS of the ESA formation-flying mission Proba-3. Aims: In the context of solar coronagraphy, we provide a comparative study of the theoretical performance of serrated (or toothed) external occulters by varying the number and size of the teeth, which we compare to the sharp-edged and apodized disks. The tooth height is small (a few centimeters), to avoid hindering the observation of the solar corona near the limb. We first analyze the diffraction pattern produced by such occulters. In a second step, we compute the umbra profile by integration over the Sun. Methods: We explored a few methods to compute the diffraction pattern. Two of them were implemented. The first is based on 2D fast Fourier transformation (FFT) routines and a multiplication by the Fresnel filter of the form exp(-iπλzu2). Simple rules were derived and discussed to set the sampling conditions. The Maggi-Rubinowicz representation is then proposed as an alternative method, and is proven to be very efficient for this study. Results: Serrated occulters tend to create a two-level intensity pattern, the inner being the darker, which perfectly matches a previously reported geometrical prediction. The diffraction in this central region is lower by two to four orders of magnitude when compared to the sharp-edged disk. The achieved umbra level at the center ranges from 10-4 to below 10-7, depending on the geometry of the teeth. Conclusions: Our study shows that serrated occulters can achieve a high rejection and can almost reach the performance of the apodized disk when very many teeth are used. We prove that shaped occulters must be preferred to simple disks in solar and stellar coronagraphy.


    Directory of Open Access Journals (Sweden)

    Alisson Diêgo Dias de Medeiros


    Full Text Available This work is the result of a research on the influence that the occultism had on the work of the Portuguese poet Fernando Pessoa. To delimitate the study, we selected papers of Fernando Pessoa, which  suggested that the poet considered himself medium, and hence influenced his work, building his depersonalization. This work presents, thus, as main objectiveto analyze personal papers of Fernando Pessoa, whose outstanding characteristic is the presence of occultism and the supposed mediumship defended by him in response to non-literary and heteronymic manifestations. To this end, I focused on specific objectives, which are: a to study the speech of Fernando Pessoa on his supposed mediumship / occultism b to analyze specific texts that are, for the poet, mediumistic manifestations c to study excerpts from a set of personal letters in which Fernando Pessoa suggested being a medium. It is true that this dissertation will address many discussions already made by scholars and specialists in Fernando Pessoa, but we consider the possibility to deepen issues and contribute to the critical fortune of the poet.

  11. Diffraction-based analysis of tunnel size for a scaled external occulter testbed (United States)

    Sirbu, Dan; Kasdin, N. Jeremy; Vanderbei, Robert J.


    For performance verification of an external occulter mask (also called a starshade), scaled testbeds have been developed to measure the suppression of the occulter shadow in the pupil plane and contrast in the image plane. For occulter experiments the scaling is typically performed by maintaining an equivalent Fresnel number. The original Princeton occulter testbed was oversized with respect to both input beam and shadow propagation to limit any diffraction effects due to finite testbed enclosure edges; however, to operate at realistic space-mission equivalent Fresnel numbers an extended testbed is currently under construction. With the longer propagation distances involved, diffraction effects due to the edge of the tunnel must now be considered in the experiment design. Here, we present a diffraction-based model of two separate tunnel effects. First, we consider the effect of tunnel-edge induced diffraction ringing upstream from the occulter mask. Second, we consider the diffraction effect due to clipping of the output shadow by the tunnel downstream from the occulter mask. These calculations are performed for a representative point design relevant to the new Princeton occulter experiment, but we also present an analytical relation that can be used for other propagation distances.

  12. Occult hepatitis B infection: an evolutionary scenario

    Directory of Open Access Journals (Sweden)

    Lukashov Vladimir V


    Full Text Available Abstract Background Occult or latent hepatitis B virus (HBV infection is defined as infection with detectable HBV DNA and undetectable surface antigen (HBsAg in patients' blood. The cause of an overt HBV infection becoming an occult one is unknown. To gain insight into the mechanism of the development of occult infection, we compared the full-length HBV genome from a blood donor carrying an occult infection (d4 with global genotype D genomes. Results The phylogenetic analysis of polymerase, core and X protein sequences did not distinguish d4 from other genotype D strains. Yet, d4 surface protein formed the evolutionary outgroup relative to all other genotype D strains. Its evolutionary branch was the only one where accumulation of substitutions suggests positive selection (dN/dS = 1.3787. Many of these substitutiions accumulated specifically in regions encoding the core/surface protein interface, as revealed in a 3D-modeled protein complex. We identified a novel RNA splicing event (deleting nucleotides 2986-202 that abolishes surface protein gene expression without affecting polymerase, core and X-protein related functions. Genotype D strains differ in their ability to perform this 2986-202 splicing. Strains prone to 2986-202 splicing constitute a separate clade in a phylogenetic tree of genotype D HBVs. A single substitution (G173T that is associated with clade membership alters the local RNA secondary structure and is proposed to affect splicing efficiency at the 202 acceptor site. Conclusion We propose an evolutionary scenario for occult HBV infection, in which 2986-202 splicing generates intracellular virus particles devoid of surface protein, which subsequently accumulates mutations due to relaxation of coding constraints. Such viruses are deficient of autonomous propagation and cannot leave the host cell until it is lysed.

  13. NEOCE: a new external occulting coronagraph experiment for ultimate observations of the chromosphere, corona and interface (United States)

    Damé, Luc; Fineschi, Silvano; Kuzin, Sergey; Von Fay-Siebenburgen, Erdélyi Robert

    Several ground facilities and space missions are currently dedicated to the study of the Sun at high resolution and of the solar corona in particular. However, and despite significant progress with the advent of space missions and UV, EUV and XUV direct observations of the hot chromosphere and million-degrees coronal plasma, much is yet to be achieved in the understanding of these high temperatures, fine dynamic dissipative structures and of the coronal heating in general. Recent missions have shown the definite role of a wide range of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically fundamental changes occur. The dynamics of the chromosphere and corona is controlled and governed by the emerging magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. The solar corona consists of many localised loop-like structures or threads with the plasmas brightening and fading independently. The plasma evolution in each thread is believed to be related to the formation of filaments, each one being dynamic, in a non-equilibrium state. The mechanism sustaining this dynamics, oscillations or waves (Alfvén or other magneto-plasma waves), requires both very high-cadence, multi-spectral observations, and high resolution and coronal magnetometry. This is foreseen in the future Space Mission NEOCE (New External Occulting Coronagraph Experiment), the ultimate new generation high-resolution coronagraphic heliospheric mission, to be proposed for ESA M4. NEOCE, an evolution of the HiRISE mission, is ideally placed at the L5 Lagrangian point (for a better follow-up of CMEs), and provides FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and

  14. Earth observation space programmes, SAFISY activities, strategies of international organisations, legal aspects. Volume 3

    International Nuclear Information System (INIS)


    This volume is separated in four sessions. First part is on earth observation space programmes (international earth observation projects and international collaboration, the ERS-1, SPOT and PRIRODA programmes, the first ESA earth observation polar platform and its payload, the future earth observation remote sensing techniques and concepts). The second part is on SAFISY activities (ISY programmes, education and applications, demonstrations and outreach projects). The third part is on programme and strategies of international organisations with respect to earth observation from space. The fourth part is on legal aspects of the use of satellite remote sensing data in Europe. (A.B.). refs., figs., tabs

  15. Planning and Scheduling for Fleets of Earth Observing Satellites (United States)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)


    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  16. Occult Hepatitis B Virus in Gezira State Sudan | Gasmelseed ...

    African Journals Online (AJOL)

    Background: Occult hepatitis B infection (OBI) is simply defined as serologically undetectable hepatitis B surface antigen (HBsAg-ve), despite the presence of circulating HBV DNA. Objective: The aim of this study was to determine the prevalence of occult HBV among Screened HBsAg subjects in Gezira State, Sudan.

  17. Transforming Water Management: an Emerging Promise of Integrated Earth Observations (United States)

    Lawford, R. G.


    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  18. Enhancing Earth Observation Capacity in the Himalayan Region (United States)

    Shrestha, B. R.


    Earth observations bear special significance in the Himalayan Region owing to the fact that routine data collections are often hampered by highly inaccessible terrain and harsh climatic conditions. The ongoing rapid environmental changes have further emphasized its relevance and use for informed decision-making. The International Center for Integrated Mountain Development (ICIMOD), with a regional mandate is promoting the use of earth observations in line with the GEOSS societal benefit areas. ICIMOD has a proven track record to utilize earth observations notably in the areas of understanding glaciers and snow dynamics, disaster risk preparedness and emergency response, carbon estimation for community forestry user groups, land cover change assessment, agriculture monitoring and food security analysis among others. This paper presents the challenges and lessons learned as a part of capacity building of ICIMOD to utilize earth observations with the primary objectives to empower its member countries and foster regional cooperation. As a part of capacity building, ICIMOD continues to make its efforts to augment as a regional resource center on earth observation and geospatial applications for sustainable mountain development. Capacity building possesses multitude of challenges in the region: the complex geo-political reality with differentiated capacities of member states, poorer institutional and technical infrastructure; addressing the needs for multiple user and target groups; integration with different thematic disciplines; and high resources intensity and sustainability. A capacity building framework was developed based on detailed needs assessment with a regional approach and strategy to enhance capability of ICIMOD and its network of national partners. A specialized one-week training course and curriculum have been designed for different thematic areas to impart knowledge and skills that include development practitioners, professionals, researchers and

  19. Value of Earth Observations: Key principles and techniques of socioeconomic benefits analysis (Invited) (United States)

    Friedl, L.; Macauley, M.; Bernknopf, R.


    Internationally, multiple organizations are placing greater emphasis on the societal benefits that governments, businesses, and NGOs can derive from applications of Earth-observing satellite observations, research, and models. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services by companies, agencies, and civil society. There are, however, significant efforts needed to bridge the Earth sciences and social and economic sciences fields to build capacity, develop case studies, and refine analytic techniques in quantifying socioeconomic benefits from the use of Earth observations. Some government programs, such as the NASA Earth Science Division's Applied Sciences Program have initiated activities in recent years to quantify the socioeconomic benefits from applications of Earth observations research, and to develop multidisciplinary models for organizations' decision-making activities. A community of practice has conducted workshops, developed impact analysis reports, published a book, developed a primer, and pursued other activities to advance analytic methodologies and build capacity. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to pursue a research agenda on analytic techniques, develop a body of knowledge, and promote broader skills and capabilities.

  20. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby (United States)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.


    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  1. Retrieval of Electron Density Profile for KOMPSAT-5 GPS Radio Occultation

    Directory of Open Access Journals (Sweden)

    Woo-Kyoung Lee


    Full Text Available The AOPOD (Atmosphere Occultation and Precision Orbit Determination system, the secondary payload of KOMPSAT (KOrea Multi-Purpose SATellite-5 scheduled to be launched in 2010, shall provide GPS radio occultation data. In this paper, we simulated the GPS radio occultation characteristic of KOMPSAT-5 and retrieved electron density profiles using KROPS (KASI Radio Occultation Processing Software. The electron density retrieved from CHAMP (CHAllenging Minisatellite Payload GPS radio occultation data on June 20, 2004 was compared with IRI (International Reference Ionosphere - 2001, PLP (Planar Langmuir Probe, and ionosonde measurements. When the result was compared with ionosonde measurements, the discrepancies were 5 km on the F_2 peak height (hmF_2 and 3×10^{10} el/m^3 on the electron density of the F_2 peak height (NmF_2. By comparing with the Langmuir Probe measurements of CHAMP satellite (PLP, both agrees with 1.6×10^{11} el/m^3 at the height of 365.6 km.

  2. Earth observing system - Concepts and implementation strategy (United States)

    Hartle, R. E.


    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  3. The future of Earth observation in hydrology

    NARCIS (Netherlands)

    McCabe, Matthew F.; Rodell, Matthew; Alsdorf, Douglas E.; Miralles, Diego G.; Uijlenhoet, Remko; Wagner, Wolfgang; Lucieer, Arko; Houborg, Rasmus; Verhoest, Niko E.C.; Franz, Trenton E.


    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by

  4. Recent progress on external occulter technology for imaging exosolar planets (United States)

    Kasdin, N. J.; Vanderbei, R. J.; Sirbu, D.; Samuels, J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Martin, S.

    Imaging planets orbiting nearby stars requires a system for suppressing the host starlight by at least ten orders of magnitude. One such approach uses an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. Much progress has been made recently in designing, testing and manufacturing starshade technology. In this paper we describe the design of starshades and report on recent accomplishments in manufacturing and measuring a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions (TDEM) program. We demonstrate that the as-built petal is consistent with a full-size occulter achieving better than 10-10 contrast. We also discuss laboratory testing at the Princeton Occulter Testbed. These experiments use sub-scale, long-distance beam propagation to verify the diffraction analysis associated with occulter starlight suppression. We demonstrate roughly 10-10 suppression in the laboratory and discuss the important challenges and limitations.

  5. Molecular and serological detection of occult hepatitis B virus ...

    African Journals Online (AJOL)

    Background: Occult hepatitis B infections are becoming a major global threat, but the available data on its prevalence in various parts of the world are often divergent. Objective: This study aimed to detect occult hepatitis B virus in hepatitis B surface antigen-negative serum using anti-HBc as a marker of previous infection.

  6. The prevalence of visible and/or occult blood on anesthesia and monitoring equipment. (United States)

    Perry, S M; Monaghan, W P


    The Occupational Safety and Health Administration (OSHA) and the Centers for Disease Control and Prevention (CDC) have attempted to stop the spread of blood-borne pathogens by issuing several recommendations and regulations. However, unless healthcare workers comply with these standards, they are not effective. In the anesthesia care environment, the anesthetist is responsible for ensuring that the equipment is clean, and disinfected, before use. We studied the prevalence of visible and occult blood on 6 types of anesthesia and monitoring equipment identified as ready for use in 28 operating suites, in 2 facilities. The sample consisted of 336 observations of the 6 types of equipment. The equipment was inspected for visible blood and then tested for occult blood using a 3-stage phenolphthalein test. Of the 336 observations, 110 (32.7%), were positive for occult blood with only 6 showing visible blood. The presence of blood on this equipment may be in direct violation of the OSHA Blood-borne Pathogen Standard and the infection control guidelines of the American Association of Nurse Anesthetists. Furthermore, the presence of blood on this equipment may increase the risk for nosocomial and occupational exposure to viral and bacterial pathogens. Recommendations were made to decrease the risks from this contamination by redesigning equipment, increasing the use of disposable equipment, and ensuring compliance with effective infection control practices.

  7. Providing Context-sensitive Access to the Earth Observation Product Library


    Kiemle, Stephan; Freitag, Burkhard


    The German Remote Sensing Data Center (DFD) has developed a digital library for the long-term management of earth observation data products. This Product Library is a central part of DFD’s multi-mission ground segment Data and Information Management System (DIMS) currently hosting one million digital products, corresponding to 150 Terabyte of data. Its data model is regularly extended to support products of upcoming earth observation missions. The ever increasing complexity led to the develop...

  8. NextGEOSS: The Next Generation Data Hub For Earth Observations (United States)

    Lilja Bye, Bente; De Lathouwer, Bart; Catarino, Nuno; Concalves, Pedro; Trijssenaar, Nicky; Grosso, Nuno; Meyer-Arnek, Julian; Goor, Erwin


    The Group on Earth observation embarked on the next 10 year phase with an ambition to streamline and further develop its achievements in building the Global Earth Observing System of Systems (GEOSS). The NextGEOSS project evolves the European vision of GEOSS data exploitation for innovation and business, relying on the three main pillars of engaging communities, delivering technological developments and advocating the use of GEOSS, in order to support the creation and deployment of Earth observation based innovative research activities and commercial services. In this presentation we will present the NextGEOSS concept, a concept that revolves around providing the data and resources to the users communities, together with Cloud resources, seamlessly connected to provide an integrated ecosystem for supporting applications. A central component of NextGEOSS is the strong emphasis put on engaging the communities of providers and users, and bridging the space in between.

  9. The European Plate Observing System (EPOS) Services for Solid Earth Science (United States)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos


    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  10. Citizen Observatories and the New Earth Observation Science

    Directory of Open Access Journals (Sweden)

    Alan Grainger


    Full Text Available Earth observation is diversifying, and now includes new types of systems, such as citizen observatories, unmanned aerial vehicles and wireless sensor networks. However, the Copernicus Programme vision of a seamless chain from satellite data to usable information in the hands of decision makers is still largely unrealized, and remote sensing science lacks a conceptual framework to explain why. This paper reviews the literatures on citizen science, citizen observatories and conceptualization of remote sensing systems. It then proposes a Conceptual Framework for Earth Observation which can be used in a new Earth observation science to explain blockages in the chain from collecting data to disseminating information in any Earth observation system, including remote sensing systems. The framework differs from its predecessors by including social variables as well as technological and natural ones. It is used here, with evidence from successful citizen science projects, to compare the factors that are likely to influence the effectiveness of satellite remote sensing systems and citizen observatories. The paper finds that constraints on achieving the seamless “Copernicus Chain” are not solely technical, as assumed in the new Space Strategy for Europe, but include social constraints too. Achieving the Copernicus Chain will depend on the balance between: (a the ‘forward’ momentum generated by the repetitive functioning of each component in the system, as a result of automatic operation or human institutions, and by the efficiency of interfaces between components; and (b the ‘backward’ flow of information on the information needs of end users. Citizen observatories will face challenges in components which for satellite remote sensing systems are: (a automatic or straightforward, e.g., sensor design and launch, data collection, and data products; and (b also challenging, e.g., data processing. Since citizen observatories will rely even more on

  11. Occult hepatitis B virus coinfection in HIV-positive African migrants to the UK: a point prevalence study. (United States)

    Chadwick, D; Doyle, T; Ellis, S; Price, D; Abbas, I; Valappil, M; Geretti, A M


    Occult (surface antigen-negative/DNA-positive) hepatitis B virus (HBV) infection is common in areas of the world where HBV is endemic. The main objectives of this study were to determine the prevalence of occult HBV infection in HIV-infected African migrants to the UK and to determine factors associated with occult coinfection. This anonymized point-prevalence study identified Africans attending three HIV clinics, focussing on patients naïve to antiretroviral therapy (ART). Stored blood samples were tested for HBV DNA. Prevalence was calculated in the entire cohort, as well as in subpopulations. Risk factors for occult HBV coinfection were identified using logistic regression analysis. Among 335 HIV-positive African migrants, the prevalence of occult HBV coinfection was 4.5% [95% confidence interval (CI) 2.8-7.4%] overall, and 6.5% (95% CI 3.9-10.6%) and 0.8% (95% CI 0.2-4.6%) in ART-naïve and ART-experienced patients, respectively. Among ART-naïve anti-HBV core (anti-HBc)-positive patients, the prevalence was 16.4% (95% CI 8.3-25.6%). The strongest predictor of occult coinfection was anti-HBc positivity [odds ratio (OR) 7.4; 95% CI 2.0-27.6]. Median HBV DNA and ALT levels were 54 IU/mL [interquartile range (IQR) 33-513 IU/mL] and 22 U/L (IQR 13-27 U/L), respectively. Occult HBV coinfection remains under-diagnosed in African HIV-infected patients in the UK. Given the range of HBV DNA levels observed, further studies are warranted to determine its clinical significance and to guide screening strategies and ART selection in these patients. © 2013 British HIV Association.

  12. The Earth Observing System (EOS) nickel-hydrogen battery (United States)

    Bennett, Charles W.


    Information is given in viewgraph form on the Earth Observing System (EOS) nickel hydrogen battery. Information is given on the life evaluation test, cell characteristics, acceptance and characterization tests, and the battery system description.

  13. Observations of Near-Earth Asteroids in Polarized Light (United States)

    Afanasiev, V. L.; Ipatov, A. V.


    We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made onMarch 8, 2016 (approximately 20m at a distance of about 0.23 AU from the Earth) showed a 0.m2-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2-3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson's B-, V-, and R-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0.m02). Spectropolarimetric observations in the 420-800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44°, which is typical for S-type near-Earth asteroids.

  14. Earth observations from space: the first 50 years of scientific achievements

    National Research Council Canada - National Science Library

    Committee on Scientific Accomplishments of Earth Observations from Space; National Research Council; Division on Earth and Life Studies; National Research Council

    .... This book describes how the ability to view the entire globe at once, uniquely available from satellite observations, has revolutionized Earth studies and ushered in a new era of multidisciplinary Earth sciences...

  15. Role of light satellites in the high-resolution Earth observation domain (United States)

    Fishman, Moshe


    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  16. LIDAR technology developments in support of ESA Earth observation missions (United States)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland


    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  17. The Potential Benefits of Earth Observations for the Water-Energy-Food Nexus and Beyond (United States)

    Lawford, R. G.


    Earth Observations have been shown to have the potential to play an important role in the management of the Water-Energy-Food (W-E-F) Nexus. To date, their primary application has come through support to decisions related to the better use of water in the production of food and in the extraction of energy. However, to be fully effective, the uses of Earth observations should be coordinated across the sectors and appropriately applied at multiple levels of the governance process. This observation argues for a new approach to governance and management of the W-E-F Nexus that implements collaborative planning based on broader usage of Earth observations. The Future Earth W-E-F Nexus Cluster project has documented a number of ways in which Earth observations can support decision-making that benefits the management of these sectors and has identified gaps in the data and information systems needed for this purpose. This presentation will summarize those findings and discuss how the role of Earth observations could be strengthened and expanded to the Sustainable Development Goals and Integrated Water Resources Management.

  18. [Occultism, parapsychology and the esoteric from the perspective of psychopathology]. (United States)

    Scharfetter, C


    The concepts and main themes of occultism, parapsychology and esoterics are set in comparison to religion, spirituality, mysticism. The cultural relativity of these concepts is emphasised. Occultism means dealing with phenomena, processes, and/or powers which are not accessible to "normal perception". The manipulation of such powers is effected via (white, black, grey) magic. Parapsychology, in its popular sense, deals with occult phenomena, whereas scientific parapsychology investigates them empirically. Esoterics is a complex of beliefs within a hermetic tradition about occult processes and about desting after death. Transpersonal psychology deals with these issues while calling them "spiritual". Effects of paranormal experiences and actions on the side of the actor as well as the adept are discussed: personality types, interpersonal effects, crises and psychoses (mediumistic psychoses). The concept of dissociation of subpersonalities (subselves) appears to be a viable perspective to explain these phenomena. In mediumistic psychoses, the splitting of non-ego parts of the psyche leads to a manifestation of schizophrenic symptoms. Dangers for mental health are an ego inflation by self-attribution of "superhuman" power. A personality disposition for parapsychological perception and/or action may be seen in schizotypia and similar near-psychotic "personalities up the border". Adepts of occultism may present with a "false self" in the sense of Winnicott.

  19. Destiny's Earth Observation Window (United States)


    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  20. McDonald's and the Occult. (United States)

    Singer, Barry


    Discusses "occult" and "paranormal" literature which is often mistaken for nonfiction. Suggests that most publishers are unwilling to publish scientific perspectives on the paranormal because such writings would be unmarketable. Journal availability: see SO 507 190. (KC)

  1. Earth Observing Data System Data and Information System (EOSDIS) Overview (United States)

    Klene, Stephan


    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  2. Earth Observation Research for GMES Initial Operations (United States)

    van Beijma, Sybrand; Balzter, Heiko; Nicolas-Perea, Virginia


    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: * Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). * Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centres and market leaders in the private sector. * Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. * Developing a collaborative training network, through the placement of researchers for short periods in other GIONET organizations. Reliable, thorough and up-to-date environmental information is essential for understanding climate change the impacts it has on people's lives and ways to adapt to them. The GIONET researchers are being trained to understand the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers have been placed in industry and universities across Europe, as

  3. Prevalence of occult inflammatory bowel disease in ankylosing spondylitis. (United States)

    Costello, P B; Alea, J A; Kennedy, A C; McCluskey, R T; Green, F A


    Fifty-five patients with ankylosing spondylitis and 16 control patients matched for sex and age were examined for evidence of occult inflammatory bowel disease. In all patients evaluation included history and physical examination, barium enema, sigmoidoscopy, and rectal biopsy. The results of this study suggest that there is no increased prevalence of occult inflammatory bowel disease in patients with ankylosing spondylitis.

  4. Sharing Earth Observation Data When Health Management (United States)

    Cox, E. L., Jr.


    While the global community is struck by pandemics and epidemics from time to time the ability to fully utilize earth observations and integrate environmental information has been limited - until recently. Mature science understanding is allowing new levels of situational awareness be possible when and if the relevant data is available and shared in a timely and useable manner. Satellite and other remote sensing tools have been used to observe, monitor, assess and predict weather and water impacts for decades. In the last few years much of this has included a focus on the ability to monitor changes on climate scales that suggest changes in quantity and quality of ecosystem resources or the "one-health" approach where trans-disciplinary links between environment, animal and vegetative health may provide indications of best ways to manage susceptibility to infectious disease or outbreaks. But the scale of impacts and availability of information from earth observing satellites, airborne platforms, health tracking systems and surveillance networks offer new integrated tools. This presentation will describe several recent events, such as Superstorm Sandy in the United States and the Ebola outbreak in Africa, where public health and health infrastructure have been exposed to environmental hazards and lessons learned from disaster response in the ability to share data have been effective in risk reduction.

  5. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.


    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  6. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, A. A. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Vasko, I. Y.; Petrukovich, A. A.; Zelenyi, L. M. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); Artemyev, A. V. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); University of California, Los Angeles, California 90095 (United States); Yushkov, E. V. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation)


    Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.

  7. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere

    International Nuclear Information System (INIS)

    Vinogradov, A. A.; Vasko, I. Y.; Petrukovich, A. A.; Zelenyi, L. M.; Artemyev, A. V.; Yushkov, E. V.


    Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.

  8. Scaled model guidelines for solar coronagraphs' external occulters with an optimized shape. (United States)

    Landini, Federico; Baccani, Cristian; Schweitzer, Hagen; Asoubar, Daniel; Romoli, Marco; Taccola, Matteo; Focardi, Mauro; Pancrazzi, Maurizio; Fineschi, Silvano


    One of the major challenges faced by externally occulted solar coronagraphs is the suppression of the light diffracted by the occulter edge. It is a contribution to the stray light that overwhelms the coronal signal on the focal plane and must be reduced by modifying the geometrical shape of the occulter. There is a rich literature, mostly experimental, on the appropriate choice of the most suitable shape. The problem arises when huge coronagraphs, such as those in formation flight, shall be tested in a laboratory. A recent contribution [Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757] provides the guidelines for scaling the geometry and replicate in the laboratory the flight diffraction pattern as produced by the whole solar disk and a flight occulter but leaves the conclusion on the occulter scale law somehow unjustified. This paper provides the numerical support for validating that conclusion and presents the first-ever simulation of the diffraction behind an occulter with an optimized shape along the optical axis with the solar disk as a source. This paper, together with Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757, aims at constituting a complete guide for scaling the coronagraphs' geometry.

  9. Profiling Saturn's rings by radio occultation

    International Nuclear Information System (INIS)

    Marouf, E.A.; Tyler, G.L.; Rosen, P.A.


    The development of reconstruction algorithms that correct for diffraction effects in radio occultation measurements is described. The reciprocal Fresnel transform relationship between the complex amplitude of the observed coherent signal and the complex microwave transmittance of the rings is derived using the Huygens-Fresnel formulation of the diffraction problem. The effects of the finite data segment width, the uncertainties in the Fresnel scale, systematic phase errors in the kernel of the inverse transform, reference oscillator instabilities, and random noise measurements on the resolution of the reconstructed transmittance are analyzed. Examples of reconstructed opacity profiles for some regions of Saturn's rings derived by applying the reconstruction theory to Voyager 1 at Saturn data are presented. 35 references

  10. The Montaguto earth flow: nine years of observation and analysis (United States)

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.


    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  11. Novel Solar Sail Mission Concepts for High-Latitude Earth and Lunar Observation

    NARCIS (Netherlands)

    Heiligers, M.J.; Parker, Jeffrey S.; Macdonald, Malcolm


    This paper proposes the use of solar sail periodic orbits in the Earth-Moon system for ob-servation of the high-latitudes of the Earth and Moon. At the Earth, the high-latitudes will be crucial in answering questions concerning global climate change, monitoring space weather events and ensuring

  12. Advancing land surface model development with satellite-based Earth observations (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo


    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  13. Diagnostic accuracy of oblique chest radiograph for occult pneumothorax: comparison with ultrasonography


    Matsumoto, Shokei; Sekine, Kazuhiko; Funabiki, Tomohiro; Orita, Tomohiko; Shimizu, Masayuki; Hayashida, Kei; Kazamaki, Taku; Suzuki, Tatsuya; Kishikawa, Masanobu; Yamazaki, Motoyasu; Kitano, Mitsuhide


    Backgraound An occult pneumothorax is a pneumothorax that is not seen on a supine chest X-ray but is detected by computed tomography scanning. However, critical patients are difficult to transport to the computed tomography suite. We previously reported a method to detect occult pneumothorax using oblique chest radiography (OXR). Several authors have also reported that ultrasonography is an effective technique for detecting occult pneumothorax. The aim of this study was to evaluate the useful...

  14. The Taiwanese-American occultation survey project stellar variability. III. Detection of 58 new variable stars

    Energy Technology Data Exchange (ETDEWEB)

    Ishioka, R.; Wang, S.-Y.; Zhang, Z.-W.; Lehner, M. J.; Cook, K. H.; King, S.-K.; Lee, T.; Marshall, S. L.; Schwamb, M. E.; Wang, J.-H.; Wen, C.-Y. [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Alcock, C.; Protopapas, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Axelrod, T. [Steward Observatory, 933 North Cherry Avenue, Room N204, Tucson, AZ 85721 (United States); Bianco, F. B. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Byun, Y.-I. [Department of Astronomy and University Observatory, Yonsei University, 134 Shinchon, Seoul 120-749 (Korea, Republic of); Chen, W. P.; Ngeow, C.-C. [Institute of Astronomy, National Central University, No. 300, Jhongda Road, Jhongli City, Taoyuan County 320, Taiwan (China); Kim, D.-W. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Rice, J. A., E-mail: [Department of Statistics, University of California Berkeley, 367 Evans Hall, Berkeley, CA 94720 (United States)


    The Taiwanese-American Occultation Survey project is designed for the detection of stellar occultations by small-size Kuiper Belt Objects, and it has monitored selected fields along the ecliptic plane by using four telescopes with a 3 deg{sup 2} field of view on the sky since 2005. We have analyzed data accumulated during 2005-2012 to detect variable stars. Sixteen fields with observations of more than 100 epochs were examined. We recovered 85 variables among a total of 158 known variable stars in these 16 fields. Most of the unrecovered variables are located in the fields observed less frequently. We also detected 58 variable stars which are not listed in the International Variable Star Index of the American Association of Variable Star Observers. These variable stars are classified as 3 RR Lyrae, 4 Cepheid, 1 δ Scuti, 5 Mira, 15 semi-regular, and 27 eclipsing binaries based on the periodicity and the profile of the light curves.

  15. Mission operations update for the restructured Earth Observing System (EOS) mission (United States)

    Kelly, Angelita Castro; Chang, Edward S.


    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  16. Water vapour and methane coupling in the stratosphere observed using SCIAMACHY solar occultation measurements

    Directory of Open Access Journals (Sweden)

    S. Noël


    Full Text Available An improved stratospheric water vapour data set has been retrieved from SCIAMACHY/ENVISAT solar occultation measurements. It is similar to that successfully applied to methane and carbon dioxide. There is now a consistent set of data products for the three constituents covering the altitudes 17–45 km, the latitude range between about 50 and 70° N, and the period August 2002 to April 2012. The new water vapour concentration profiles agree with collocated results from ACE-FTS and MLS/Aura to within  ∼  5 %. A significant positive linear change in water vapour for the time 2003–2011 is observed at lower stratospheric altitudes with a value of about 0.015 ± 0.008 ppmv year−1 around 17 km. Between 30 and 37 km the changes become significantly negative (about −0.01 ± 0.008 ppmv year−1; all errors are 2σ values. The combined analysis of the SCIAMACHY methane and water vapour time series shows the expected anti-correlation between stratospheric methane and water vapour and a clear temporal variation related to the Quasi-Biennial Oscillation (QBO. Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. In addition short-term fluctuations and longer-term variations on a timescale of 5–6 years are observed. The SCIAMACHY data confirm that at lower altitudes the amount of water vapour and methane are transported from the tropics to higher latitudes via the shallow branch of the Brewer–Dobson circulation.

  17. Basic Earth's Parameters as estimated from VLBI observations

    Directory of Open Access Journals (Sweden)

    Ping Zhu


    Full Text Available The global Very Long Baseline Interferometry observation for measuring the Earth rotation's parameters was launched around 1970s. Since then the precision of the measurements is continuously improving by taking into account various instrumental and environmental effects. The MHB2000 nutation model was introduced in 2002, which is constructed based on a revised nutation series derived from 20 years VLBI observations (1980–1999. In this work, we firstly estimated the amplitudes of all nutation terms from the IERS-EOP-C04 VLBI global solutions w.r.t. IAU1980, then we further inferred the BEPs (Basic Earth's Parameters by fitting the major nutation terms. Meanwhile, the BEPs were obtained from the same nutation time series using a BI (Bayesian Inversion. The corrections to the precession rate and the estimated BEPs are in an agreement, independent of which methods have been applied.

  18. Occult HBV infection in HIV-infected adults and evaluation of pooled NAT for HBV. (United States)

    Dinesha, T R; Boobalan, J; Sivamalar, S; Subashini, D; Solomon, S S; Murugavel, K G; Balakrishnan, P; Smith, D M; Saravanan, S


    The study aimed to determine the prevalence of occult hepatitis B virus infection among HIV-infected persons and to evaluate the use of a pooling strategy to detect occult HBV infection in the setting of HIV infection. Five hundred and two HIV-positive individuals were tested for HBV, occult HBV and hepatitis C and D with serologic and nucleic acid testing (NAT). We also evaluated a pooled NAT strategy for screening occult HBV infection among the HIV-positive individuals. The prevalence of HBV infection among HIV-positive individuals was 32 (6.4%), and occult HBV prevalence was 10%. The pooling HBV NAT had a sensitivity of 66.7% and specificity of 100%, compared to HBV DNA NAT of individual samples. In conclusion, this study found a high prevalence of occult HBV infection among our HIV-infected population. We also demonstrated that pooled HBV NAT is highly specific, moderately sensitive and cost-effective. As conventional HBV viral load assays are expensive in resource-limited settings such as India, pooled HBV DNA NAT might be a good way for detecting occult HBV infection and will reduce HBV-associated complications. © 2018 John Wiley & Sons Ltd.

  19. Earth Observations for Global Water Security (United States)

    Lawford, Richard; Strauch, Adrian; Toll, David; Fekete, Balazs; Cripe, Douglas


    The combined effects of population growth, increasing demands for water to support agriculture, energy security, and industrial expansion, and the challenges of climate change give rise to an urgent need to carefully monitor and assess trends and variations in water resources. Doing so will ensure that sustainable access to adequate quantities of safe and useable water will serve as a foundation for water security. Both satellite and in situ observations combined with data assimilation and models are needed for effective, integrated monitoring of the water cycle's trends and variability in terms of both quantity and quality. On the basis of a review of existing observational systems, we argue that a new integrated monitoring capability for water security purposes is urgently needed. Furthermore, the components for this capability exist and could be integrated through the cooperation of national observational programmes. The Group on Earth Observations should play a central role in the design, implementation, management and analysis of this system and its products.

  20. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025 (United States)

    Fellous, Jean-Louis


    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  1. Decision-making contexts involving Earth observations in federal and state government agencies (United States)

    Kuwayama, Y.; Thompson, A.


    National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. One of the Consortium's activities is a set of Policy Briefs that document the use of Earth observations for decision making in federal and state government agencies. In developing these Policy Briefs, we pay special attention to documenting the entire information value chain associated with the use of Earth observations in government decision making, namely (a) the specific data product, modeling capability, or information system used by the agency, (b) the decision context that employs the Earth observation information and translates it into an agency action, (c) the outcomes that are realized as a result of the action, and (d) the beneficiaries associated with the outcomes of the decision. Two key examples include the use of satellite data for informing the US Drought Monitor (USDM), which is used to determine the eligibility of agricultural communities for drought disaster assistance programs housed at the US Department of Agriculture (USDA), and the use of satellite data by the Florida Department of Environmental Protection to develop numeric nutrient water quality standards and monitoring methods for chlorophyll-a, which is codified in Florida state code (62-302.532).

  2. CEOS contributions to informing energy management and policy decision making using space-based Earth observations

    International Nuclear Information System (INIS)

    Eckman, Richard S.; Stackhouse, Paul W.


    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the “space arm” for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. We discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space weather impacts on the power grid, and improve energy efficiency in the built environment.

  3. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations (United States)

    Eckman, Richard S.


    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  4. Earth Observation of Vegetation Dynamics in Global Drylands

    DEFF Research Database (Denmark)

    Tian, Feng

    Land degradation in global drylands has been a concern related to both the local livelihoods and the changes in terrestrial biosphere, especially in the context of substantial global environmental changes. Earth Observation (EO) provides a unique way to assess the vegetation dynamics over the past...

  5. Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission (United States)

    Marinan, Anne D.; Cahoy, Kerri L.; Bishop, Rebecca L.; Lui, Susan S.; Bardeen, James R.; Mulligan, Tamitha; Blackwell, William J.; Leslie, R. Vincent; Osaretin, Idahosa; Shields, Michael


    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. PMID:28828144

  6. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance (United States)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.


    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  7. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D. [NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035 (United States); Ennico, Kimberly [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Meadows, Victoria S.; Sparks, William; Schwieterman, Edward W. [NASA Astrobiology Institute' s Virtual Planetary Laboratory, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Bussey, D. Ben J. [NASA Ames Research Center, MS 17-1, Moffett Field, CA 94089, USA Now the NASA Solar System Exploration Research Virtual Institute. (United States); Breiner, Jonathan, E-mail: [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)


    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  8. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.; Sparks, William; Schwieterman, Edward W.; Bussey, D. Ben J.; Breiner, Jonathan


    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  9. Occult pneumothorax, revisited


    Mangar Devanand; Abdelmalak Hany; Omar Hesham R; Rashad Rania; Helal Engy; Camporesi Enrico M


    Abstract Pneumothorax is a recognized cause of preventable death following chest wall trauma where a simple intervention can be life saving. In cases of trauma patients where cervical spine immobilization is mandatory, supine AP chest radiograph is the most practical initial study. It is however not as sensitive as CT chest for early detection of a pneumothorax. "Occult" pneumothorax is an accepted definition of an existing but usually a clinically and radiologically silent disturbance that i...

  10. Occurrence of occult CSF leaks during standard FESS procedures. (United States)

    Bucher, S; Kugler, A; Probst, E; Epprecht, L; Stadler, R S; Holzmann, D; Soyka, M B


    To determine the incidence of occult cerebrospinal fluid leaks (CSF) after functional endoscopic sinus surgery (FESS) and to evaluate the diagnostic performance of beta2-transferrin in blood-contaminated conditions. Prospective cohort study. An analysis of 57 intraoperative samples using hydrogel 6 beta2-transferrin assay after FESS was undertaken. In case of CSF positive samples and continuing rhinorrhea, reanalysis after more than 1 year was conducted. In-vivo analysis of a primary spontaneous CSF leak sample took place to verify difficulties in detecting beta2-transferrin in blood-contaminated settings. Own titrations were performed to evaluate detection limits of CSF by beta2-transferrin and beta-trace protein assays in these settings. An incidence of 13% for occult CSF leaks after FESS was found. In blood-contaminated conditions, routine beta2-transferrin assays showed low sensitivity. In over 1 year follow-up, all samples were negative for CSF and none of them developed clinical relevant CSF leaks or meningitis. Occult and clinically irrelevant CSF leaks do occur in a significant proportion of patients during and shortly after FESS. Intra- and postoperatively, routine beta2-transferrin assays show low sensitivity. They should not be used in these settings. The clinical course of patients with occult CSF leaks indicated possibility of an uneventful follow-up.

  11. Optimization of the occulter for the Solar Orbiter/METIS coronagraph (United States)

    Landini, Federico; Vivès, Sébastien; Romoli, Marco; Guillon, Christophe; Pancrazzi, Maurizio; Escolle, Clement; Focardi, Mauro; Antonucci, Ester; Fineschi, Silvano; Naletto, Giampiero; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Spadaro, Daniele


    METIS (Multi Element Telescope for Imaging and Spectroscopy investigation), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona, by means of an integrated instrument suite located on a single optical bench and sharing the same aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. Coronagraphs history teaches that a particular attention must be dedicated to the occulter optimization. The METIS occulting system is of particular interest due to its innovative concept. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. A breadboard of the occulting assembly (BOA) has been manufactured in order to perform stray light tests in front of two solar simulators (in Marseille, France and in Torino, Italy). A first measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe the BOA design, the laboratory set-up and the preliminary results.

  12. Optical MEMS for Earth observation (United States)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan


    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  13. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation. (United States)

    Tsuda, Toshitaka


    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  14. The Network Structure Underlying the Earth Observation Assessment (United States)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.


    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  15. Earth Observations for Geohazards: Present and Future Challenges

    Directory of Open Access Journals (Sweden)

    Roberto Tomás


    Full Text Available Earth Observations (EO encompasses different types of sensors (e.g., Synthetic Aperture Radar, Laser Imaging Detection and Ranging, Optical and multispectral and platforms (e.g., satellites, aircraft, and Unmanned Aerial Vehicles and enables us to monitor and model geohazards over regions at different scales in which ground observations may not be possible due to physical and/or political constraints. EO can provide high spatial, temporal and spectral resolution, stereo-mapping and all-weather-imaging capabilities, but not by a single satellite at a time. Improved satellite and sensor technologies, increased frequency of satellite measurements, and easier access and interpretation of EO data have all contributed to the increased demand for satellite EO data. EO, combined with complementary terrestrial observations and with physical models, have been widely used to monitor geohazards, revolutionizing our understanding of how the Earth system works. This Special Issue presents a collection of scientific contributions focusing on innovative EO methods and applications for monitoring and modeling geohazards, consisting of four Sections: (1 earthquake hazards; (2 landslide hazards; (3 land subsidence hazards; and (4 new EO techniques and services.

  16. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences (United States)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.


    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  17. Observing atmospheric tides in Earth rotation parameters with VLBI (United States)

    Girdiuk, Anastasiia; Böhm, Johannes; Schindelegger, Michael


    In this study, we assess the contribution of diurnal (S1) and semi-diurnal (S2) atmospheric tides to variations in Earth rotation by analyzing Very Long Baseline Interferometry (VLBI) observations. Particular emphasis is placed on the dependency of S1 and S2 estimates on varying settings in the a priori delay model. We use hourly Earth rotation parameters (ERP) of polar motion and UT1 as determined with the Vienna VLBI Software (VieVS) from 25 years of VLBI observations and we adjust diurnal and semi-diurnal amplitudes to the hourly ERP estimates after disregarding the effect of high-frequency ocean tides. Prograde and retrograde polar motion coefficients are obtained for several solutions differing in processing strategies (with/without thermal deformation, time span of observations, choice of a priori ERP model and celestial pole offsets) and we compare the corresponding harmonics with those derived from atmospheric and non-tidal oceanic angular momentum estimates.

  18. Radioimmune localization of occult carcinoma

    International Nuclear Information System (INIS)

    Duda, R.B.; Zimmer, A.M.; Rosen, S.T.; Gilyon, K.A.; Webber, D.; Spies, S.; Spies, W.; Merchant, B.


    Patients with a rising serum carcinoembryonic antigen level and no clinical or roentgenographic evidence of recurrent or metastatic cancer present a treatment dilemma. Eleven such patients, 10 with a previously treated colorectal carcinoma and 1 with a previously treated breast carcinoma, received an injection of the anticarcinoembryonic antigen monoclonal antibody ZCE-025 labeled with the radioisotope indium 111. Nuclear scintigraphy was performed on days 3 and 5 through 7 to detect potential sites of tumor recurrence. The monoclonal antibody scan accurately predicted the presence or absence of occult malignancy in 7 (64%) patients. Second-look laparotomy confirmed the monoclonal antibody scan results in the patients with colorectal cancer, and magnetic resonance imaging confirmed metastatic breast cancer. This study demonstrates that In-ZCE-025 can localize occult carcinoma and may assist the surgeon in facilitating the operative exploration. In-ZCE-025 assisted in the initiation of adjuvant therapy for the patient with breast cancer

  19. VenSAR on EnVision: Taking earth observation radar to Venus (United States)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed


    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  20. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... to the analysis of tropical storms for the future mission ACES will also be evaluated. Using data from the past and ongoing GPS RO missions we have defined an algorithm to detect the clouds top of the convective systems and their thermal structure. Other satellite and in-situ measurements co-located with GPS ROs...

  1. Current NASA Earth Remote Sensing Observations (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide


    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.



    W. Xie; Y. Xue; L. Zhai; H. Sang


    Earth observation is the gathering of information via remote sensing technologies supplemented by earth surveying techniques, encompassing the collection, analysis and presentation of data. Remote sensing technology is playing a key role on precision agriculture. From the point of view of remote sensing and photogrammetry field, this article first took an overview of its applications on agriculture throughout past 3 decades, analyzed the advantages and disadvantages of different kind...

  3. Near-Earth Asteroid Physical Observations: 1993-1995 (United States)

    Skiff, B. A.; Buie, M. W.; Bowell, E.


    In September 1993, we initiated a regular program of photometric observations of Near-Earth objects. Since that time we have been allocated 5-7 nights per month at the 42'' Hall telescope at Anderson Mesa. There are three goals of our observing program for each asteroid: (1) to obtain an accurate rotation period and characterization of the lightcurve, (2) to obtain the surface color, and (3) to measure the photometric parameters, H and G. All of the lightcurve observations are made in Kron-Cousins R and we always obtain a V-R color. Limited ECAS colors are also obtained when the objects are bright enough. We have secured periods for 9 asteroids, 1864 Daedalus, 1866 Sisyphus, 3200 Phaethon, 4954 Eric, 5693 (1993 EA), 5836 (1993 MF), 6489 (1991 JX), 1993 QP, and 1993 WD. Some of these periods are a confimation of an earlier result but most are new. We obtained colors for all these objects as well as four additional asteroids, 5407 (1992 AX), 1993 UC, 1993 VW, and 1994 LW. We have additional (as yet unreduced) observations of 2062 Aten, 2212 Hephaistos, 3752 Camillo, 5143 Heracles, 5863 (1983 RB), 6053 (1993 BW3), 7025 (1993 QA), 7092 (1992 LC), 1989 VA, 1992 TC, 1994 RC, and 1995 YA3. The fastest rotation period we find is 2.402 hours for 1866 Sisyphus and the slowest is 93QP at ~ 24 hours. The colors for these objects range from V-R=0.34 for 3200 Phaethon to V-R=0.49 for 1866 Sisyphus and 4954 Eric. Most colors fall near V-R=0.43. These observations should help to provide a more complete understanding of the surface properties and rotational states of the Near-Earth asteroids. This work was supported by NASA Grant NAGW-1470.

  4. Electron number density profiles derived from radio occultation on the CASSIOPE spacecraft

    DEFF Research Database (Denmark)

    Shume, E. B.; Vergados, P.; Komjathy, A.


    This paper presents electron number density profiles derived from high resolution Global Positioning System (GPS) radio occultation (RO) observations performed using the Enhanced Polar Outflow Probe (e-POP) payload on the high inclination CAScade, Smallsat and IOnospheric Polar Explorer (CASSIOPE...... good agreement with density profiles estimated from ionosonde data, measured over nearby stations to the latitude and longitude of the RO tangent points, (2) in good agreement with density profiles inferred from GPS RO measured by the Constellation Observing System for Meteorology, Ionosphere...

  5. 78 FR 67418 - National Plan for Civil Earth Observations; Request for Information (United States)


    ... weather; natural hazards; land-use change; ecosystem health; water; natural resources; and other characteristics of the Earth system. Taken together, Earth observations provide the indispensable foundation for... Societal Benefit Areas (SBAs): Agriculture and Forestry Biodiversity Climate Disasters Ecosystems...


    International Nuclear Information System (INIS)

    Hearty, Thomas; Song, Inseok; Kim, Sam; Tinetti, Giovanna


    We have investigated mid-infrared spectra of Earth obtained by the Atmospheric Infrared Sounder (AIRS) instrument on-board the AQUA spacecraft to explore the characteristics that may someday be observed in extrasolar terrestrial planets. We have used the AIRS infrared (R ∼ 1200; 3.75-15.4 μm) spectra to construct directly observed high-resolution spectra of the only known life bearing planet, Earth. The AIRS spectra are the first such spectra that span the seasons. We investigate the rotational and seasonal spectral variations that would arise due to varying cloud amount and viewing geometry and we explore what signatures may be observable in the mid-infrared by the next generation of telescopes capable of observing extrasolar terrestrial planets.

  7. Recurring sets of recurring starspot occultations on exoplanet host Qatar-2 (United States)

    Močnik, T.; Southworth, J.; Hellier, C.


    We announce the detection of recurring sets of recurring starspot occultation events in the short-cadence K2 light curve of Qatar-2, a K dwarf star transited every 1.34 d by a hot Jupiter. In total, we detect 34 individual starspot occultation events, caused by five different starspots, occulted in up to five consecutive transits or after a full stellar rotation. The longest recurring set of recurring starspot occultations spans over three stellar rotations, setting a lower limit for the longest starspot lifetime of 58 d. Starspot analysis provided a robust stellar rotational period measurement of 18.0 ± 0.2 d and indicates that the system is aligned, having a sky-projected obliquity of 0° ± 8°. A pronounced rotational modulation in the light curve has a period of 18.2 ± 1.6 d, in agreement with the rotational period derived from the starspot occultations. We tentatively detect an ellipsoidal modulation in the phase curve, with a semi-amplitude of 18 ppm, but cannot exclude the possibility that this is the result of red noise or imperfect removal of the rotational modulation. We detect no transit-timing and transit-duration variations with upper limits of 15 s and 1 min, respectively. We also reject any additional transiting planets with transit depths above 280 ppm in the orbital period region 0.5-30 d.

  8. A method to detect occult pneumothorax with chest radiography. (United States)

    Matsumoto, Shokei; Kishikawa, Masanobu; Hayakawa, Koichi; Narumi, Atsushi; Matsunami, Katsutoshi; Kitano, Mitsuhide


    Small pneumothoraces are often not visible on supine screening chest radiographs because they develop anteriorly to the lung. These pneumothoraces are termed occult. Occult pneumothoraces account for an astonishingly high 52% to 63% of all traumatic pneumothoraces. A 19-year-old obese woman was involved in a head-on car accident. The admission anteroposterior chest radiographs were unremarkable. Because of the presence of right chest tenderness and an abrasion, we suspected the presence of a pneumothorax. Thus, we decided to take a supine oblique chest radiograph of the right side of the thorax, which clearly revealed a visceral pleural line, consistent with a diagnosis of traumatic pneumothorax. A pneumothorax may be present when a supine chest radiograph reveals either an apparent deepening of the costophrenic angle (the "deep sulcus sign") or the presence of 2 diaphragm-lung interfaces (the "double diaphragm sign"). However, in practice, supine chest radiographs have poor sensitivity for occult pneumothoraces. Oblique chest radiograph is a useful and fast screening tool that should be considered for cases of blunt chest trauma, especially when transport of critically ill patients to the computed tomographic suite is dangerous or when imminent transfer to another hospital is being arranged and early diagnosis of an occult pneumothorax is essential. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  9. A Comprehensive Assessment of Radio Occultation Ionospheric Measurements at Mid-Latitudes (United States)

    Keele, C.; Brum, C. G. M.; Rodrigues, F. S.; Aponte, N.; Sulzer, M. P.


    The GPS radio occultation (RO) has become a widely used technique for global measurements of the ionospheric electron density (Ne). To advance our understanding of the accuracy of the RO profiles at mid latitudes, we performed a comprehensive comparison of RO measurements made by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites and observations of Ne profiles made by the Arecibo Observatory incoherent scatter radar (ISR). COSMIC is formed by six satellites in circular, 800 km altitude low-Earth orbit (LEO) at 72° inclination. The satellites orbit in their own plane, approximately 24° apart in ascending node. The satellites are equipped with dual-frequency GPS receivers capable of making measurements of the total electron content (TEC) along the signal path and, therefore, RO observations. The Arecibo ISR, located at(18.35°N, 66.75°W; ˜28.25°N dip latitude), operates at a frequency of 430 MHz with a maximum bandwidth of about 1 MHz. The large collecting area provided by the 300 m dish antenna combined with high peak power transmitters (2.0-2.5 MW) allows the radar to make accurate Ne measurements throughout the entire ionospheric F-region and topside heights. We analyzed 74 and 89 days of line feed and Gregorian data, respectively, collected between 2006 and 2014. There were 638 RO profiles measured within 10° of latitude and 20° of longitude from Arecibo Observatory and within ±10 minutes of the radar measurements. Preliminary analyses of the observations show patterns in the relationship between densities measured by the Arecibo ISR and densities estimated from the COSMIC ROs. We will present and discuss the behavior of the patterns. We will also present results of a numerical model representing the patterns and discuss the possibility of using this model to improve RO estimates of density profiles.

  10. Ultrasound detection of nonpalpable mammographically occult malignancy

    International Nuclear Information System (INIS)

    Simpson, W.L.; Hermann, G.; Rausch, D.R.; Sherman, J.; Feig, S.A.; Bleiweiss, I.J.; Jaffer, S.


    To evaluate the prevalence of occult malignancy with screening breast ultrasound. All ultrasound-guided core needle breast biopsies performed between January 1, 1999, and June 30, 2001, were retrospectively reviewed. Lesions were identified during screening breast ultrasound in high-risk women with no mammographic or palpable abnormality in either breast, a unilateral mammographic or palpable abnormality in the contralateral breast, or a unilateral mammographic or palpable abnormality in a different quadrant of the same breast. All ultrasound-detected lesions were histologically verified. Six hundred and fifty-two women with a mean age of 49 years underwent 698 biopsies during the study period. Three hundred and forty-nine of these lesions were detected at screening breast ultrasound. Out of 349, 11 (3.2%) had a mammographically and clinically occult malignancy. Nine cancers were found in women with no mammographic or palpable abnormality. Two cancers were found in the same breast as the mammographic or palpable abnormality. None were found in the breast contralateral to a palpable or mammographic abnormality. Screening breast ultrasound of high-risk women has a similar detection rate for occult carcinoma as screening mammography, but has a low positive predictive value in cases where biopsy is performed. (author)

  11. Lunar occultation of Saturn. II - The normal reflectance of Rhea, Titan, and Iapetus (United States)

    Elliot, J. L.; Dunham, E. W.; Veverka, J.; Goguen, J.


    An inversion procedure to obtain the reflectance of the central region of a satellite's disk from lunar occultation data is presented. The scheme assumes that the limb darkening of the satellite depends only on the radial distance from the center of the disk. Given this assumption, normal reflectances can be derived that are essentially independent of the limb darkening and the diameter of the satellite. The procedure has been applied to our observations of the March 1974 lunar occultation of Tethys, Dione, Rhea, Titan, and Iapetus. In the V passband we derive the following normal reflectances: Rhea (0.97 plus or minus 0.20), Titan (0.24 plus or minus 0.03), Iapetus, bright face (0.60 plus or minus 0.14). For Tethys and Dione the values derived have large uncertainties, but are consistent with our result for Rhea.

  12. Presentation of Axillary Metastases from Occult Breast Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xin Wang


    Axillary presentation from occult breast cancer is uncommon and continues to be a diagnostic and therapeutic challenge to physicians.Once the diagnosis of adenocarcinoma metastatic to an axillary lymph node has been confirmed,a preoperative workup should be done.The current experience is based on several relatively small retrospective reviews and case reports.It is difficult to determine the best management of occult breast cancer.However,treatmenl of axillary Iymph node dissection is recommended for local control and complete staging information.Treatment of breast should be a choice between breast conservation with whole-breast radiotherapy and mastectomy.Adjuvant systemic treatment should be offered.

  13. Programmable wide field spectrograph for earth observation (United States)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean


    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  14. NASA's Earth Observing System Data and Information System - EOSDIS (United States)

    Ramapriyan, Hampapuram K.


    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  15. Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts (United States)

    Denis, Gil; Claverie, Alain; Pasco, Xavier; Darnis, Jean-Pierre; de Maupeou, Benoît; Lafaye, Murielle; Morel, Eric


    This paper reviews the trends in Earth observation (EO) and the possible impacts on markets of the new initiatives, launched either by existing providers of EO data or by new players, privately funded. After a presentation of the existing models, the paper discusses the new approaches, addressing both commercial and institutional markets. New concepts for the very high resolution markets, in Europe and in the US, are the main focus of this analysis. Two complementary perspectives are summarised: on the one hand, the type of system and its operational performance and, on the other, the related business models, concepts of operation and ownership schemes.

  16. The Earth Observation Data for Habitat Monitoring (EODHaM) system (United States)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola


    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.

  17. NASA Earth Observation Systems and Applications for Health: Moving from Research to Operational End Users (United States)

    Haynes, J.; Estes, S. M.


    Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate NASA's applied science programs efforts to transition from research to operations to benefit society. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in health research and the transition to operational end users.

  18. Information content in reflected signals during GPS Radio Occultation observations (United States)

    Aparicio, Josep M.; Cardellach, Estel; Rodríguez, Hilda


    The possibility of extracting useful information about the state of the lower troposphere from the surface reflections that are often detected during GPS radio occultations (GPSRO) is explored. The clarity of the reflection is quantified, and can be related to properties of the surface and the low troposphere. The reflected signal is often clear enough to show good phase coherence, and can be tracked and processed as an extension of direct non-reflected GPSRO atmospheric profiles. A profile of bending angle vs. impact parameter can be obtained for these reflected signals, characterized by impact parameters that are below the apparent horizon, and that is a continuation at low altitude of the standard non-reflected bending angle profile. If there were no reflection, these would correspond to tangent altitudes below the local surface, and in particular below the local mean sea level. A forward operator is presented, for the evaluation of the bending angle of reflected GPSRO signals, given atmospheric properties as described by a numerical weather prediction system. The operator is an extension, at lower impact parameters, of standard bending angle operators, and reproduces both the direct and reflected sections of the measured profile. It can be applied to the assimilation of the reflected section of the profile as supplementary data to the direct section. Although the principle is also applicable over land, this paper is focused on ocean cases, where the topographic height of the reflecting surface, the sea level, is better known a priori.

  19. Occult microscopic endometriosis: undetectable by laparoscopy in normal peritoneum. (United States)

    Khan, Khaleque Newaz; Fujishita, Akira; Kitajima, Michio; Hiraki, Koichi; Nakashima, Masahiro; Masuzaki, Hideaki


    Is there any occurrence of hidden (occult) endometriotic lesions in normal peritoneum of women with and without visible endometriosis? We detected a slightly higher occurrence of occult microscopic endometriosis (OME) in normal peritoneum of women with visible endometriosis than in control women. Based on a small number of cases, the concept of invisible microscopic endometriosis in visually normal peritoneum has been reported for more than a decade but there is controversy regarding their tissue activity and clinical significance. This case-controlled research study was conducted with prospectively collected normal peritoneal samples from 151 women with and 62 women without visible endometriosis. Normal peritoneal biopsy specimens from different pelvic sites of were collected during laparoscopy. A histological search of all peritoneal biopsy specimens for the detection of invisible endometriosis was done by immunoreaction to Ber-EP4 (epithelial cell marker), CD10 (stromal cell marker) and Calretinin (mesothelial cell marker). Tissue expression of estrogen/progesterone receptors (ER/PR) and cell proliferation marker, Ki-67, was performed by immunohistochemistry to identify tissue activity. Three different patterns of OME were detected based on (I) the presence of typical gland/stroma, (II) reactive hyperplastic change of endometrioid epithelial cells with surrounding stroma and (III) single-layered epithelium-lined cystic lesions with surrounding stroma. A higher tendency toward the occurrence of OME was found in women with visible endometriosis (15.2%, 23/151) compared with control women (6.4%, 4/62) (P = 0.06, χ(2) test). The epithelial cells and/or stromal cells of OME lesions were immunoreactive to Ber-EP4 and CD10 but not reactive to Calretinin. ER and PR expression was observed in all patterns of OME lesions. Ki-67 index was significantly higher in pattern I/II OME lesions than in pattern III OME lesions (Pendometriosis due to the presence of adhesions in

  20. [Surgical Diagnosis and Treatment of Primary Hyperthyroidism Complicated with Occult Thyroid Carcinoma]. (United States)

    Wu, Xin; Yu, Jian-chun; Kang, Wei-ming; Ma, Zhi-qiang; Ye, Xin


    To evaluate the surgical diagnosis and treatment of primary hyperthyroidism complicated with occult thyroid carcinoma. Data of 51 cases of primary hyperthyroidism complicated with occult thyroid carcinoma admitted during January 2004 to November 2014 were analyzed retrospectively. The incidence of occult thyroid carcinoma was 5.03% in hyperthyroidism,and 47 cases (92.16%) were female. The preoperative diagnosis of all these 51 cases was primary hyperthyroidism and 11 cases were diagnosed thyroid carcinoma at the same time;25 cases were diagnosed thyroid carcinoma by frozen section and the remaining 26 cases were diagnosed by postoperative pathology. Finally,26 cases underwent subtotal thyroidectomy,4 cases underwent total thyroidectomy, and 21 cases underwent total thyroidectomy with lymphadenectomy. The tumor size ranged from 0.1 to 1.0 cm [mean:(0.63 ± 0.35) cm]. The lesions were less than or equal to 0.5 cm in 28 cases (54.9%). The follow-up lasted from 1 to 121 months [mean:(28.6 ± 22.7)months] in 43 patients,and all of them survived. Primary hyperthyroidism complicated with occult thyroid carcinoma is commonly found in female patients. Preoperative diagnosis is difficult. Ultrasound is the major examining method. Frozen section can increase the detection rate. The postoperative prognosis of hyperthyroidism complicated with occult thyroid carcinoma is satisfactory.

  1. Semantics-enabled knowledge management for global Earth observation system of systems (United States)

    King, Roger L.; Durbha, Surya S.; Younan, Nicolas H.


    The Global Earth Observation System of Systems (GEOSS) is a distributed system of systems built on current international cooperation efforts among existing Earth observing and processing systems. The goal is to formulate an end-to-end process that enables the collection and distribution of accurate, reliable Earth Observation data, information, products, and services to both suppliers and consumers worldwide. One of the critical components in the development of such systems is the ability to obtain seamless access of data across geopolitical boundaries. In order to gain support and willingness to participate by countries around the world in such an endeavor, it is necessary to devise mechanisms whereby the data and the intellectual capital is protected through procedures that implement the policies specific to a country. Earth Observations (EO) are obtained from a multitude of sources and requires coordination among different agencies and user groups to come to a shared understanding on a set of concepts involved in a domain. It is envisaged that the data and information in a GEOSS context will be unprecedented and the current data archiving and delivery methods need to be transformed into one that allows realization of seamless interoperability. Thus, EO data integration is dependent on the resolution of conflicts arising from a variety of areas. Modularization is inevitable in distributed environments to facilitate flexible and efficient reuse of existing ontologies. Therefore, we propose a framework for modular ontologies based knowledge management approach for GEOSS and present methods to enable efficient reasoning in such systems.

  2. Occult fractures of the knee: tomographic evaluation

    International Nuclear Information System (INIS)

    Apple, J.S.; Martinez, S.; Allen, N.B.; Caldwell, D.S.; Rice, J.R.


    Seven adults with painful effusions of the knee were examined for occult fractures using pluridirectional tomograph in the coronal and lateral planes. Six patients (ages 50 to 82 years) were osteopenic and gave histories ranging from none to mild trauma; one 26-year-old man was not osteopenic and had severe trauma. In all cases, routine radiographs were interpreted as negative, but tomography demonstrated a fracture. Five fractures were subchondral. Bone scans in 2 patients were positive. The authors conclude that osteopenic patients with a painful effusion of the knee should be considered to have an occult fracture. While bone scans may be helpful, tomography is recommended as the procedure of choice to define the location and extent of the fracture

  3. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd


    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  4. Building a Global Earth Observation System of Systems (GEOSS) and Its Interoperability Challenges (United States)

    Ryan, B. J.


    Launched in 2005 by industrialized nations, the Group on Earth Observations (GEO) began building the Global Earth Observation System of Systems (GEOSS). Consisting of both a policy framework, and an information infrastructure, GEOSS, was intended to link and/or integrate the multitude of Earth observation systems, primarily operated by its Member Countries and Participating Organizations, so that users could more readily benefit from global information assets for a number of society's key environmental issues. It was recognized that having ready access to observations from multiple systems was a prerequisite for both environmental decision-making, as well as economic development. From the very start, it was also recognized that the shear complexity of the Earth's system cannot be captured by any single observation system, and that a federated, interoperable approach was necessary. While this international effort has met with much success, primarily in advancing broad, open data policies and practices, challenges remain. In 2014 (Geneva, Switzerland) and 2015 (Mexico City, Mexico), Ministers from GEO's Member Countries, including the European Commission, came together to assess progress made during the first decade (2005 to 2015), and approve implementation strategies and mechanisms for the second decade (2016 to 2025), respectively. The approved implementation strategies and mechanisms are intended to advance GEOSS development thereby facilitating the increased uptake of Earth observations for informed decision-making. Clearly there are interoperability challenges that are technological in nature, and several will be discussed in this presentation. There are, however, interoperability challenges that can be better characterized as economic, governmental and/or political in nature, and these will be discussed as well. With the emergence of the Sustainable Development Goals (SDGs), the World Conference on Disaster Risk Reduction (WCDRR), and the United Nations

  5. The occultation of Epsilon Geminorum by Mars - Analysis of McDonald data. [turbulent scintillation in light curves (United States)

    Africano, J.; De Vaucouleurs, G.; Evans, D. S.; Finkel, B. E.; Nather, R. E.; Palm, C.; Silverberg, E.; Wiant, J.; Hubbard, W. B.; Jokipii, J. R.


    An analysis of observations of the occultation of Epsilon Gem by Mars on April 8, 1976, is presented. The data were obtained by three neighboring telescopes at McDonald Observatory. Intensity fluctuations on time scales of the order of 100 ms were observed simultaneously at the three telescopes. As the observations compare well with predictions of turbulent scintillation theory, it is concluded that such fluctuations were probably largely the effect of stellar scintillations in the Martian atmosphere. The stellar diameter is included as a parameter in the theory but in a way which differs from previously published interpretations of occultations of extended sources by planetary atmospheres. Scintillations govern the experimental uncertainty in the deduction of the scale height of the high Martian atmosphere. A density scale height of 9.9 + or - 2.5 km is obtained at an altitude of 74 + or - 8 km above the mean surface. For CO 2 gas, this result corresponds to a temperature of 190 + or - 50 K.

  6. First lunar occultation results from the 2.4 m Thai national telescope equipped with ULTRASPEC

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, A.; Irawati, P.; Soonthornthum, B. [National Astronomical Research Institute of Thailand, 191 Siriphanich Building, Huay Kaew Road, Suthep, Muang, Chiang Mai 50200 (Thailand); Dhillon, V. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, T. R., E-mail: [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom)


    The recently inaugurated 2.4 m Thai National Telescope (TNT) is equipped with, among other instruments, the ULTRASPEC low-noise, frame-transfer EMCCD camera. At the end of its first official observing season, we report on the use of this facility to record high time resolution imaging using small detector subarrays with a sampling as fast as several 10{sup 2} Hz. In particular, we have recorded lunar occultations of several stars that represent the first contribution to this area of research made from Southeast Asia with a telescope of this class. Among the results, we discuss an accurate measurement of α Cnc, which has been reported previously as a suspected close binary. Attempts by several authors to resolve this star have so far met with a lack of unambiguous confirmation. With our observation we are able to place stringent limits on the projected angular separation (<0.''003) and brightness (Δm > 5) of a putative companion. We also present a measurement of the binary HR 7072, which extends considerably the time coverage available for its yet undetermined orbit. We discuss our precise determination of the flux ratio and projected separation in the context of other available data. We conclude by providing an estimate of the performance of ULTRASPEC at TNT for lunar occultation work. This facility can help to extend the lunar occultation technique in a geographical area where no comparable resources were available until now.

  7. A survey and assessment of the capabilities of Cubesats for Earth observation (United States)

    Selva, Daniel; Krejci, David


    In less than a decade, Cubesats have evolved from purely educational tools to a standard platform for technology demonstration and scientific instrumentation. The use of COTS (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising scientific value. Furthermore, advantages in terms of development cost and development time with respect to larger satellites, as well as the possibility of launching several dozens of Cubesats with a single rocket launch, have brought forth the potential for radically new mission architectures consisting of very large constellations or clusters of Cubesats. These architectures promise to combine the temporal resolution of GEO missions with the spatial resolution of LEO missions, thus breaking a traditional trade-off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific requirements in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. Based on this review, several Earth observation measurements are identified that can potentially be compatible with the current state-of-the-art of Cubesat technology although some of them have actually never been addressed by any Cubesat mission. Simultaneously, other measurements are identified which are unlikely to be performed by Cubesats in the next few years due to insuperable constraints. Ultimately, this paper is intended to supply a box of ideas for universities to design future Cubesat missions with high scientific payoff.

  8. Results of Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations (United States)

    Orton, Glenn; Momary, Thomas; Bolton, Scott; Levin, Steven; Hansen, Candice; Janssen, Michael; Adriani, Alberto; Gladstone, G. Randall; Bagenal, Fran; Ingersoll, Andrew


    The Juno mission has promoted and coordinated a network of Earth-based observations, including both Earth-proximal and ground-based facilities, to extend and enhance observations made by the Juno mission. The spectral region and timeline of all of these observations are summarized in the web site: Among the earliest of these were observation of Jovian auroral phenomena at X-ray, ultraviolet and infrared wavelengths and measurements of Jovian synchrotron radiation from the Earth simultaneously with the measurement of properties of the upstream solar wind. Other observations of significance to the magnetosphere measured the mass loading from Io by tracking its observed volcanic activity and the opacity of its torus. Observations of Jupiter's neutral atmosphere included observations of reflected sunlight from the near-ultraviolet through the near-infrared and thermal emission from 5 μm through the radio region. The point of these measurements is to relate properties of the deep atmosphere that are the focus of Juno's mission to the state of the "weather layer" at much higher atmospheric levels. These observations cover spectral regions not included in Juno's instrumentation, provide spatial context for Juno's often spatially limited coverage of Jupiter, and they describe the evolution of atmospheric features in time that are measured only once by Juno. We will summarize the results of measurements during the approach phase of the mission that characterized the state of the atmosphere, as well as observations made by Juno and the supporting campaign during Juno's perijoves 1 (2016 August 27), 3 (2016 December 11), 4 (2017 February 2) and possibly "early" results from 5 (2017 March 27). Besides a global network of professional astronomers, the Juno mission also benefited from the enlistment of a network of dedicated amateur astronomers who provided a quasi-continuous picture of the evolution of features observed by

  9. Building Capacity for Earth Observations in Support of the United Nations Sustainable Development Goals (United States)

    Blevins, B.; Prados, A. I.; Hook, E.


    The Group on Earth Observations (GEO) looks to build a future where the international community uses Earth observations to make better, informed decisions. This includes application in international agreements such as the UN Sustainable Development Goals (SDGs), the Sendai Framework for Disaster Risk Reduction, and the Convention on Biological Diversity. To do this, decision makers first need to build the necessary skills. NASA's Applied Remote Sensing Training program (ARSET) seeks to build capacity through remote sensing training. In-person and online trainings raise awareness, enable data access, and demonstrate applications of Earth observations. Starting in 2017, ARSET began offering training focused on applying Earth data to the UN SDGs. These trainings offer insight into applications of satellite data in support of implementing, monitoring, and evaluating the SDGs. This presentation will provide an overview of the use of NASA satellite data to track progress towards increased food security, disaster risk reduction, and conservation of natural resources for societal benefit. It will also include a discussion on capacity building best practices and lessons learned for using Earth observations to meet SDG targets, based on feedback from engaging over 800 participants from 89 nations and 580 organizations in ARSET SDG trainings.

  10. An Information Architect's View of Earth Observations for Disaster Risk Management (United States)

    Moe, K.; Evans, J. D.; Cappelaere, P. G.; Frye, S. W.; Mandl, D.; Dobbs, K. E.


    Satellite observations play a significant role in supporting disaster response and risk management, however data complexity is a barrier to broader use especially by the public. In December 2013 the Committee on Earth Observation Satellites Working Group on Information Systems and Services documented a high-level reference model for the use of Earth observation satellites and associated products to support disaster risk management within the Global Earth Observation System of Systems context. The enterprise architecture identified the important role of user access to all key functions supporting situational awareness and decision-making. This paper focuses on the need to develop actionable information products from these Earth observations to simplify the discovery, access and use of tailored products. To this end, our team has developed an Open GeoSocial API proof-of-concept for GEOSS. We envision public access to mobile apps available on smart phones using common browsers where users can set up a profile and specify a region of interest for monitoring events such as floods and landslides. Information about susceptibility and weather forecasts about flood risks can be accessed. Users can generate geo-located information and photos of local events, and these can be shared on social media. The information architecture can address usability challenges to transform sensor data into actionable information, based on the terminology of the emergency management community responsible for informing the public. This paper describes the approach to collecting relevant material from the disasters and risk management community to address the end user needs for information. The resulting information architecture addresses the structural design of the shared information in the disasters and risk management enterprise. Key challenges are organizing and labeling information to support both online user communities and machine-to-machine processing for automated product generation.

  11. Occult Carbon Monoxide Poisoning


    Kirkpatrick, John N.


    A syndrome of headache, fatigue, dizziness, paresthesias, chest pain, palpitations and visual disturbances was associated with chronic occult carbon monoxide exposure in 26 patients in a primary care setting. A causal association was supported by finding a source of carbon monoxide in a patient's home, workplace or vehicle; results of screening tests that ruled out other illnesses; an abnormally high carboxyhemoglobin level in 11 of 14 patients tested, and abatement or resolution of symptoms ...

  12. Detection of occult abscesses with 111In-labeled leukocytes

    International Nuclear Information System (INIS)

    Martin, W.R.; Gurevich, N.; Goris, M.L.; McDougall, I.R.


    Clinicians are frequently faced with the problem of a patient in whom they suspect an occult abscess. In such a situation, there may be no clinical signs to localize the site of the abscess and often extensive investigations do not provide additional useful information. This report illustrates the efficacy of autologous leukocytes labeled with 111 In oxine in detecting the site and extent of occult abscesses in two patients. The technique of in vitro lebeling of leukocytes is simple and has been mastered by all of our nuclear medicine technologists

  13. Earth Observation System Flight Dynamics System Covariance Realism (United States)

    Zaidi, Waqar H.; Tracewell, David


    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  14. HBV vaccination of HCV-infected patients with occult HBV infection and anti-HBc-positive blood donors

    Directory of Open Access Journals (Sweden)

    J.S.F. Pereira


    Full Text Available Anti-HBc positivity is a frequent cause of donation rejection at blood banks. Hepatitis B virus (HBV infection may also occur in HBsAg-negative patients, a situation denoted occult infection. Similarly, very low levels of HBV-DNA have also been found in the sera of patients with chronic hepatitis C virus (HCV infection, even in the absence of serum HBsAg. Initially we searched for HBV-DNA in serum of 100 blood donors and 50 HCV-infected patients who were HBsAg negative/anti-HBc positive by nested-PCR and by an HBV monitor commercial test for HBV-DNA. Anti-HBs seroconversion rates were measured in 100 blood donors and in 22 patients with chronic HCV infection after HBV vaccination to determine if the HBV vaccination could eliminate an occult HBV infection in these individuals. Occult HBV infection was detected in proportionally fewer blood donors (6/100 = 6% than chronic hepatitis C patients (12/50 = 24% (P 0.05. All subjects who were HBV-DNA(+ before the first dose of HBV vaccine (D1, became HBV-DNA(- after D1, D2, and D3. Among 22 HCV-positive patients, 10 HBV-DNA(+ and 12 HBV-DNA(-, seroconversion was observed in 9/10 (90% HBV-DNA(+ and in 9/12 (75% HBV-DNA(- subjects (P > 0.05. The disappearance of HBV-DNA in the majority of vaccinated patients suggests that residual HBV can be eliminated in patients with occult infection.

  15. A prospective evaluation of occult disorders in obstructed defecation using the 'iceberg diagram'. (United States)

    Pescatori, M; Spyrou, M; Pulvirenti d'Urso, A


    Surgical treatment of constipation and obstructed defecation (OD) carries frequent recurrences, as OD is an 'iceberg syndrome' characterized by 'underwater rocks' or occult diseases which may affect the outcome of surgery. The aim of this study was to evaluate occult disorders, in order to alert the clinician of these and minimize failures. One hundred consecutive constipated patients with OD symptoms, 81 women, median age 52 years, underwent perineal examination, proctoscopy, anorectal manometry and anal/vaginal ultrasound (US). Anorectal physiology and imaging tests were also carried out when indicated, as well as psychological and urogynaecological consultations. Symptoms were graded using a modified 1-20 constipation score. Both evident (e.g. rectocele) and occult (e.g. anismus) diseases were prospectively evaluated using a novel 'iceberg diagram'. The type of treatment, whether conservative or surgical, was also recorded. Fifty-four (54%) patients had both mucosal prolapse and rectocele. All patients had at least two occult OD-related diseases, 66 patients had at least three of them: anxiety-depression, anismus and rectal hyposensation were the most frequent (66%, 44% and 33%, respectively). The median constipation score was 11 (range 2-20), the median number of 'occult disorders' was 5 (range 2-8). Conservative treatment was carried out in most cases. Surgery was carried out in 14 (14%) patients. The novel 'iceberg diagram' allowed the adequate evaluation of OD-related occult diseases and better selection of patients for treatment. Most were managed conservatively, and only a minority were treated by surgery.

  16. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S. -P.


    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  17. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S.-P.


    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  18. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME (United States)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.


    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  19. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  20. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder


    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  1. VizieR Online Data Catalog: Times of transits and occultations of WASP-12b (Patra+, 2017) (United States)

    Patra, K. C.; Winn, J. N.; Holman, M. J.; Yu, L.; Deming, D.; Dai, F.


    Between 2016 October and 2017 February, we observed seven transits of WASP-12 with the 1.2m telescope at the Fred Lawrence Whipple Observatory on Mt. Hopkins, Arizona. Images were obtained with the KeplerCam detector through a Sloan r'-band filter. The typical exposure time was 15s, chosen to give a signal-to-noise ratio of about 200 for WASP-12. The field of view of this camera is 23.1' on a side. We used 2*2 binning, giving a pixel scale of 0.68''. We measured two new occultation times based on hitherto unpublished Spitzer observations in 2013 December (program 90186, P.I. Todorov). Two different transits were observed, one at 3.6μm and one at 4.5μm. The data take the form of a time series of 32*32-pixel subarray images, with an exposure time of 2.0s per image. The data were acquired over a wide range of orbital phases, but for our purpose, we analyzed only the ~14000 images within 4hr of each occultation. (1 data file).

  2. Parapsychology on the couch: the psychology of occult belief in Germany, c. 1870-1939. (United States)

    Wolffram, Heather


    This article considers the attempts of academic psychologists and critical occultists in Germany during the late nineteenth and early twentieth centuries to construct a psychology of occult belief. While they claimed that the purpose of this new subdiscipline was to help evaluate the work of occult researchers, the emergence of a psychology of occult belief in Germany served primarily to pathologize parapsychology and its practitioners. Not to be outdone, however, parapsychologists argued that their adversaries suffered from a morbid inability to accept the reality of the paranormal. Unable to resolve through experimental means the dispute over who should be allowed to mold the public's understanding of the occult, both sides resorted to defaming their opponent. (c) 2006 Wiley Periodicals, Inc.

  3. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions. (United States)

    Johannessen, J. A.


    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational

  4. Categorizing the Occult: Vodun, Sorcery and Religious Beliefs In Benin

    DEFF Research Database (Denmark)

    Strandsbjerg, Camilla


    In everyday life in Benin as well as in academic research on the topic, the terms of vodun, witchcraft and the occult are often used in a non distinct way covering quite similar phenomena while at the same time referring to different kinds of beliefs and practices. The problem of understanding...... confronted with this difficulty. Both because the vodun, as a recognized religion in the country - equal to Islam and Christianity - , plays an important role in society as well as in individual life, but also because all area of social life are on one level or another influenced by beliefs and practices...... characterized as witchcraft or occult. Reflecting upon earlier research and particularly on the choice of terminology of the occult in writing on religion and political change in Benin (PhD thesis 2008), this paper seeks to clarify some of the epistemological, academic and historical reasons that have formed...

  5. Inversion, error analysis, and validation of GPS/MET occultation data

    Directory of Open Access Journals (Sweden)

    A. K. Steiner

    Full Text Available The global positioning system meteorology (GPS/MET experiment was the first practical demonstration of global navigation satellite system (GNSS-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum of GNSS-transmitted radio waves caused by refraction during passage through the Earth's neutral atmosphere and ionosphere in limb geometry. It shows great potential utility for weather and climate system studies in providing an unique combination of global coverage, high vertical resolution and accuracy, long-term stability, and all-weather capability. We first describe our GPS/MET data processing scheme from excess phases via bending angles to the neutral atmospheric parameters refractivity, density, pressure and temperature. Special emphasis is given to ionospheric correction methodology and the inversion of bending angles to refractivities, where we introduce a matrix inversion technique (instead of the usual integral inversion. The matrix technique is shown to lead to identical results as integral inversion but is more directly extendable to inversion by optimal estimation. The quality of GPS/MET-derived profiles is analyzed with an error estimation analysis employing a Monte Carlo technique. We consider statistical errors together with systematic errors due to upper-boundary initialization of the retrieval by a priori bending angles. Perfect initialization and properly smoothed statistical errors allow for better than 1 K temperature retrieval accuracy up to the stratopause. No initialization and statistical errors yield better than 1 K accuracy up to 30 km but less than 3 K accuracy above 40 km. Given imperfect initialization, biases >2 K propagate down to below 30 km height in unfavorable realistic cases. Furthermore, results of a statistical validation of GPS/MET profiles through comparison

  6. Earth Observation from Space - The Issue of Environmental Sustainability (United States)

    Durrieu, Sylvie; Nelson, Ross F.


    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  7. Earth System Dynamics: The Determination and Interpretation of the Global Angular Momentum Budget using the Earth Observing System. Revised (United States)


    The objective of this investigation has been to examine the mass and momentum exchange between the atmosphere, oceans, solid Earth, hydrosphere, and cryosphere. The investigation has focused on changes in the Earth's gravity field, its rotation rate, atmospheric and oceanic circulation, global sea level change, ice sheet change, and global ground water circulation observed by contemporary sensors and models. The primary component of the mass exchange is water. The geodetic observables provided by these satellite sensors are used to study the transport of water mass in the hydrological cycle from one component of the Earth to another, and they are also used to evaluate the accuracy of models. As such, the investigation is concerned with the overall global water cycle. This report provides a description of scientific, educational and programmatic activities conducted during the period July 1, 1999 through June 30,2000. Research has continued into measurements of time-varying gravity and its relationship to Earth rotation. Variability of angular momentum and the related excitation of polar motion and Earth rotation have been examined for the atmosphere and oceans at time-scales of weeks to several years. To assess the performance of hydrologic models, we have compared geodetic signals derived from them with those observed by satellites. One key component is the interannual mass variability of the oceans obtained by direct observations from altimetry after removing steric signals. Further studies have been conducted on the steric model to quantify its accuracy at global and basin-scales. The results suggest a significant loss of water mass from the Oceans to the land on time-scales longer than 1-year. These signals are not reproduced in any of the models, which have poorly determined interannual fresh water fluxes. Output from a coupled atmosphere-ocean model testing long-term climate change hypotheses has been compared to simulated errors from the Gravity Recovery and

  8. The Role of Earth Observation on Environmental Management in ...

    African Journals Online (AJOL)

    The success of environmental management and protection lies on the availability of adequate information to support intervention measures. Such information acts as a prerequisite to predict the future and, subsequently, to validate the accuracy of those predictions. In this paper, we illustrate the potential of earth observation ...


    Energy Technology Data Exchange (ETDEWEB)

    Mainzer, A.; Bauer, J.; Masiero, J.; Eisenhardt, P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T.; Mo, W. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD (United States); McMillan, R. S. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Blvd., Tucson, AZ 85721-0092 (United States); Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Walker, R. [Monterey Institute for Research in Astronomy, Monterey, CA (United States); Wright, E. [Department of Physics and Astronomy, UCLA, P.O. Box 91547, Los Angeles, CA 90095-1547 (United States); Tholen, D. J.; Jedicke, R.; Denneau, L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI (United States); Spahr, T. [Minor Planet Center, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); DeBaun, E. [Department of Physics and Astronomy, Dartmouth University, Hanover, NH 03755 (United States); Elsbury, D. [University of California Santa Barbara, Broida Hall, Santa Barbara, CA 93103 (United States); Gautier, T. [Cornell University, Ithaca, NY 14853 (United States); Gomillion, S. [Department of Engineering Physics, Embry-Riddle Aeronautical University, 600 S. Clyde Morris Boulevard, Daytona Beach, FL 32114 (United States); Hand, E. [Department of Mechanical Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Watkins, J., E-mail: [Department of Earth and Space Sciences, UCLA, 595 Charles Young Drive East, Box 951567, Los Angeles, CA 90095 (United States); and others


    With the NEOWISE portion of the Wide-field Infrared Survey Explorer (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 {mu}m, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The survey's uniform sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981 {+-} 19 NEAs larger than 1 km and 20,500 {+-} 3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32 {+-} 0.14 below 1.5 km. This power-law slope produces {approx}13, 200 {+-} 1900 NEAs with D > 140 m. Although previous studies predict another break in the cumulative size distribution below D {approx} 50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100 and 1000 m is lower than previous estimates. The numbers of near-Earth comets and potentially hazardous NEOs will be the subject of future work.


    International Nuclear Information System (INIS)

    Mainzer, A.; Bauer, J.; Masiero, J.; Eisenhardt, P.; Grav, T.; Mo, W.; McMillan, R. S.; Cutri, R. M.; Walker, R.; Wright, E.; Tholen, D. J.; Jedicke, R.; Denneau, L.; Spahr, T.; DeBaun, E.; Elsbury, D.; Gautier, T.; Gomillion, S.; Hand, E.; Watkins, J.


    With the NEOWISE portion of the Wide-field Infrared Survey Explorer (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 μm, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The survey's uniform sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981 ± 19 NEAs larger than 1 km and 20,500 ± 3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32 ± 0.14 below 1.5 km. This power-law slope produces ∼13, 200 ± 1900 NEAs with D > 140 m. Although previous studies predict another break in the cumulative size distribution below D ∼ 50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100 and 1000 m is lower than previous estimates. The numbers of near-Earth comets and potentially hazardous NEOs will be the subject of future work.

  11. Naturally occurring mutations in large surface genes related to occult infection of hepatitis B virus genotype C.

    Directory of Open Access Journals (Sweden)

    Hong Kim

    Full Text Available Molecular mechanisms related to occult hepatitis B virus (HBV infection, particularly those based on genotype C infection, have rarely been determined thus far in the ongoing efforts to determine infection mechanisms. Therefore, we aim to elucidate the mutation patterns in the surface open reading frame (S ORF underlying occult infections of HBV genotype C in the present study. Nested PCRs were applied to 624 HBV surface antigen (HBsAg negative Korean subjects. Cloning and sequencing of the S ORF gene was applied to 41 occult cases and 40 control chronic carriers. Forty-one (6.6% of the 624 Korean adults with HBsAg-negative serostatus were found to be positive for DNA according to nested PCR tests. Mutation frequencies in the three regions labeled here as preS1, preS2, and S were significantly higher in the occult subjects compared to the carriers in all cases. A total of two types of deletions, preS1 deletions in the start codon and preS2 deletions as well as nine types of point mutations were significantly implicated in the occult infection cases. Mutations within the "a" determinant region in HBsAg were found more frequently in the occult subjects than in the carriers. Mutations leading to premature termination of S ORF were found in 16 occult subjects (39.0% but only in one subject from among the carriers (2.5%. In conclusion, our data suggest that preS deletions, the premature termination of S ORF, and "a" determinant mutations are associated with occult infections of HBV genotype C among a HBsAg-negative population. The novel mutation patterns related to occult infection introduced in the present study can help to broaden our understanding of HBV occult infections.

  12. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models (United States)

    Wińska, Małgorzata; Nastula, Jolanta


    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  13. The Contribution of GGOS to Understanding Dynamic Earth Processes (United States)

    Gross, Richard


    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  14. Global Earth Observation System of Systems: Characterizing Uncertainties of Space- based Measurements and Earth System Models Informing Decision Tools (United States)

    Birk, R. J.; Frederick, M.


    The Global Earth Observation System of Systems (GEOSS) framework identifies the benefits of systematically and scientifically networking the capacity of organizations and systems into solutions that benefit nine societal benefit areas. The U.S. Integrated Earth Observation System (IEOS), the U.S. contribution to the GEOSS, focuses on near-term, mid-term, and long-term opportunities to establish integrated system solutions based on capacities and capabilities of member agencies and affiliations. Scientists at NASA, NOAA, DOE, NSF and other U.S. agencies are evolving the predictive capacity of models of Earth processes based on space-based, airborne and surface-based instruments and their measurements. NASA research activities include advancing the power and accessibility of computational resources (i.e. Project Columbia) to enable robust science data analysis, modeling, and assimilation techniques to rapidly advance. The integration of the resulting observations and predictions into decision support tools require characterization of the accuracies of a range of input measurements includes temperature and humidity profiles, wind speed, ocean height, sea surface temperature, and atmospheric constituents that are measured globally by U.S. deployed spacecraft. These measurements are stored in many data formats on many different information systems with widely varying accessibility and have processes whose documentation ranges from extremely detailed to very minimal. Integrated and interdisciplinary modeling (enabled by the Earth System Model Framework) enable the types of ensemble analysis that are useful for decision processes associated with energy management, public health risk assessments, and optimizing transportation safety and efficiency. Interdisciplinary approaches challenge systems integrators (both scientists and engineers) to expand beyond the traditional boundaries of particular disciplines to develop, verify and validate, and ultimately benchmark the

  15. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations (United States)

    King, M. D.


    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  16. Astr 101 Students' Attitudes Towards Essays On Transits, Eclipses And Occultations (United States)

    D'Cruz, Noella L.


    Joliet Junior College, Joliet, IL offers a one semester introductory astronomy course each semester. We teach over 110 primarily non-science major students each semester. We use proven active learning strategies such lecture tutorials, think-pair-share questions and small group discussions to help these students develop and retain a good understanding of astrophysical concepts. Occasionally, we offer projects that allow students to explore course topics beyond the classroom. We hope that such projects will increase students' interest in astronomy. We also hope that these assignments will help students to improve their critical thinking and writing skills. In Spring 12, we are offering three short individual essay assignments in our face-to-face sections. The essays focus on transits, eclipses and occultations to highlight the 2012 transit of Venus. For the first essay, students will find images of transit and occultation events using the Astronomy Picture of the Day website and describe their chosen events. In addition, students will predict how variations in certain physical and orbital parameters would alter their particular events. The second essay involves transits, eclipses and occultations observed by spacecraft. Students will describe their transit event, their spacecraft's mission, orbital path, how the orbital path was achieved, etc. The third essay deals with transiting exoplanets. Students will choose at least two exoplanets from an exoplanet database, one of which has been discovered through the transit method. This essay will enable students to learn about detecting exoplanets and how they compare with our solar system. Details of the essay assignments and students' reactions to them will be presented at the meeting.

  17. Heparin as a pharmacologic intervention to induce positive scintiscan in occult gastrointestinal bleeding

    International Nuclear Information System (INIS)

    Chaudhuri, T.K.; Brantly, M.


    The value of using heparin as a pharmacologic intervention to induce a positive scintiscan was studied in a patient with chronic occult gastrointestinal bleeding. When all standard diagnostic tests (upper and lower gastrointestinal series, upper and lower endoscopy, and conventional noninterventional Tc-99m RBC imaging) fail to detect and localize gastrointestinal bleeding in a patient who has definite clinical evidence (guaiac positive stool and dropping hemoglobin, hematocrit) of chronic occult gastrointestinal oozing, heparin may be used (with proper precaution) as a last resort to aid in the scintigraphic detection and localization of chronic occult gastrointestinal bleeding

  18. Prevalence of occult hepatitis B virus infection in haemodialysis patients from central Greece (United States)

    Mina, Paraskevi; Georgiadou, Sarah P; Rizos, Christos; Dalekos, George N; Rigopoulou, Eirini I


    AIM: To assess the hepatitis B virus (HBV)-DNA and the prevalence of occult HBV infection in end-stage renal failure (ESRF) patients from Central Greece. METHODS: Sera from 366 ESRF patients attending five out of six dialysis units from Central Greece were investigated for HBV-DNA by real-time polymerase chain reaction. Only serum samples with repeatedly detectable HBV-DNA were considered positive. IgG antibodies to hepatitis C virus (anti-HCV) were tested by a third generation enzyme linked immunosorbent assay (ELISA), while IgG antibodies to hepatitis E virus (anti-HEV) were tested by two commercially available ELISAs. RESULTS: HBV-DNA was detected in 15/366 patients (4.1%) and HBsAg in 20/366 (5.5%). The prevalence of occult HBV infection was 0.9% (3/346 HBsAg-negative patients). Occult HBV was not associated with a specific marker of HBV infection or anti-HCV or anti-HEV reactivity. There was no significant difference in HBV-DNA titres, demographic and biochemical features, between patients with occult HBV infection and those with HBsAg-positive chronic HBV infection. CONCLUSION: In central Greece, 4% of ESRF patients had detectable HBV-DNA, though in this setting, the prevalence of occult HBV seems to be very low (0.9%). PMID:20066742

  19. UrtheCast Second-Generation Earth Observation Sensors (United States)

    Beckett, K.


    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  20. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase I (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  1. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase II (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  2. Ultraviolet Observations of the Earth and Moon during the Juno Flyby (United States)

    Gladstone, R.; Versteeg, M. H.; Davis, M.; Greathouse, T. K.; Gerard, J. M.; Grodent, D. C.; Bonfond, B.


    We present the initial results from Juno-UVS observations of the Earth and Moon obtained during the flyby of the Juno spacecraft on 9 October 2013. Juno-UVS is an imaging spectrograph with a bandpass of 70dog-bone' shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate cross delay line detector with a solar blind UV-sensitive CsI photocathode, which makes up the instrument's focal plane. Tantalum surrounds the detector assembly to shield it from high-energy electrons. The detector electronics are located behind the detector. All other electronics are located in a box inside Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. The recent Earth flyby provided an opportunity to: 1) use observations of the lunar surface to improve flux and wavelength calibration at EUV wavelengths λ<91 nm (for which there are few stellar calibration options); 2) test the Juno spacecraft nadir-pulse system (which will be used at Jupiter to control scan mirror movements); 3) observe Earth airglow, aurora, and geocoronal emissions (for science interest); and 4) determine the effectiveness of the Ta shielding to high-energy particles (using dark observations made during Juno's passage through Earth's radiation belts). Preliminary results for each of these objectives will be presented.

  3. Observations in the Earth's magnetotail relating to magnetic merging

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.


    For more than a decade there has been growing conviction that the burst of energy from a solar flare is first stored in magnetic fields and is then released rapidly by magnetic field annihilation (magnetic merging). There has also been recognition that magnetic merging may be responsible for the energy release manifested in auroral phenomena at the Earth. The most substantial evidence that magnetic merging does indeed occur in the Earth's magnetosphere and causes the auroral phenomena is provided by recent observations, in the magnetotail, of very rapid (approximately 500 km s -1 ) tailward, then earthward, flow of plasma during magnetospheric substorms. The observations, made with the Vela and IMP satellites, reveal also that the component of the tail magnetic field perpendicular to the tail neutral sheet changes polarity at the time of the reversal of plasma flow. These features are interpreted as indicative of passage of a magnetic neutral line, at which magnetic merging is proceeding, past the observing satellite. This paper describes an example of such observations made with IMP 6. It is anticipated that such systematic measurements of the plasma, energetic particles and magnetic field in the neighborhood of the passing neutral line on many such occasions will provide a general understanding of the magnetic merging process which can be applied to studies of solar flares and other astrophysical phenomena. (Auth.)

  4. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model. (United States)

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof


    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  5. Ultrasound Diagnosis of Either an Occult or Missed Fracture of an Extremity in Pediatric-Aged Children

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kil Ho [Yeungnam University, Daegu (Korea, Republic of); Lee, Sung Moon [Keimyung University Dongsan Hospital, Daegu (Korea, Republic of); Lee, Young Hwan [Daegu Catholic University, Daegu (Korea, Republic of); Suh, Kyung Jin [Dongkuk University, Kyungju (Korea, Republic of)


    To report and assess the usefulness of ultrasound (US) findings for occult fractures of growing bones. For six years, US scans were performed in children younger than 15 years who were referred with trauma-related local pain and swelling of the extremities. As a routine US examination, the soft tissue, bones, and adjacent joints were examined in the area of discomfort, in addition to the asymptomatic contralateral extremity for comparison. Twenty-five occult fractures in 25 children (age range, five months-15 years; average age, 7.7 years) were confirmed by initial and follow-up radiograms, additional imaging studies, and clinical observation longer than three weeks. The most common site of occult fractures was the elbow (n = 9, 36%), followed by the knee (n = 7, 28%), ischium (n = 4, 16%), distal fibula (n = 3, 12%), proximal femur (n = 1, 4%), and humeral shaft (n = 1, 4%). On the retrograde review of the routine radiographs, 13 out of the 25 cases showed no bone abnormalities except for various soft tissue swelling. For the US findings, cortical discontinuity (direct sign of a fracture) was clearly visualized in 23 cases (92%) and was questionable in two (8%). As auxiliary US findings (indirect signs of a fracture), step-off deformities, tiny avulsed bone fragments, double-line appearance of cortical margins, and diffuse irregularity of the bone surfaces were identified. Performing US for soft tissue and bone surfaces with pain and swelling, with or without trauma history in the extremities, is important for diagnosing occult or missed fractures of immature bones in pediatric-aged children.

  6. Magellan radio occultation measurements of atmospheric waves on Venus (United States)

    Hinson, David P.; Jenkins, J. M.


    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these

  7. Ionospheric Remote Sensing using GPS Radio Occultation and Ultraviolet Photometry aboard the ISS (United States)

    Budzien, S. A.; Powell, S. P.; O'Hanlon, B.; Humphreys, T.; Bishop, R. L.; Stephan, A. W.; Gross, J.; Chakrabarti, S.


    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiment launched to the International Space Station (ISS) on February 19, 2017 as part of the Space Test Program Houston #5 payload (STP-H5). After early orbit testing, GROUP-C began routine science operations in late April. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal nighttime ionospheric gradients and an advanced software-defined GPS receiver providing ionospheric electron density profiles, scintillation measurements, and lower atmosphere profiles. GROUP-C and a companion experiment, the Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES), offer a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor approaches, including ionospheric tomography. Data are collected continuously across low- and mid-latitudes as the ISS orbit precesses through all local times every 60 days. The GROUP-C GPS sensor routinely collects dual-frequency GPS occultations, makes targeted raw signal captures of GPS and Galileo occultations, and includes multiple antennas to characterize multipath in the ISS environment. The UV photometer measures the 135.6 nm ionospheric recombination airglow emision along the nightside orbital track. We present the first analysis of ionospheric observations, discuss the challenges and opportunities of remote sensing from the ISS platform, and explore how these new data help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere relevant to the upcoming GOLD and ICON missions.

  8. Occult hepatitis B virus among the patients with abnormal alanine transaminase. (United States)

    Makvandi, Manoochehr; Neisi, Niloofar; Khalafkhany, Davod; Makvandi, Kamyar; Hajiani, Eskandar; Shayesteh, Ali Akbar; Masjedi Zadeh, Abdolrahim; Sina, Amir Hosein; Hamidifard, Mojtaba; Rasti, Mojtaba; Aryan, Ehsan; Ahmadi, Kambiz; Yad Yad, Mohammad Jafar


    The occult hepatitis B infection (OBI) is defined as the presence of hepatitis B virus (HBV) DNA in the sera or in the liver biopsy and the absence of hepatitis B surface antigen (HBsAg) by serological test. The current study aimed to evaluate the occult HBV infection by polymerase chain reaction (PCR) and determine HBV genotyping among the patients with abnormal alanine transaminase (ALT) in Ahvaz city, Iran. The sera of 120 patients, 54 (45%) females and 66 (55%) males, with abnormal ALT 40-152 IU were collected. All the patients were negative for HBsAg for more than one year. The patients` sera were tested by PCR using primers specified for the S region of HBV. Then the positive PCR products were sequenced to determine HBV genotyping and phylogenic tree. Of these 120 subjects, 12 (10%) patients including 6 (5%) males and 6 (5%) females were found positive for HBV DNA by PCR, which indicated the presence of occult HBV infection among these patients. The sequencing results revealed that genotype D was predominant with sub-genotyping D1 among OBI patients. Occult hepatitis B infection is remarkably prevalent in Ahvaz, Iran, and should be considered as a potential risk factor for the transmission of Hepatitis B Virus throughout the community by the carriers.

  9. Earth-based Observing Campaign For Comet 103p/hartley 2 For The Dixi Mission (United States)

    Meech, Karen Jean; Kelley, M. S.; A'Hearn, M. F.; DIXI Observing Team


    The Deep Impact Extended mission (DIXI) is part of the EPOXI mission and will rendezvous with the comet 103P/Hartley 2 on 4 Nov. 2010 at 13:50 UT. Many of the anticipated key science results will come from the combined interpretation of the in-situ spacecraft data and the Earth- and space-based observing campaigns. DIXI in-situ objectives include characterizing the nucleus properties, understanding the activity (outbursts, and sources), mapping the surface and correlating surface albedo, color and temperature with topography to understand the thermal properties of the surface. The Earth-based observations provide a longer-term context for the in-situ observations, and will characterize the activity levels leading up to the encounter, including assessing the dust environment and volatile species production rates. Earth-based observations will search for outbursts and jets that might be linked to activity. The international observing campaign scheduled at more than 20 observatories, began in March 2010, and will continue beyond January 2011, although selected observations began in 2008 with the recovery of the nucleus (Snodgrass et al., (2010), A&A, 516L) and Spitzer IR observations (Lisse et al., (2009) PASP 121, 968), and in 2009 with the measurement of the rotational light curve. We will report on Earth-based observing highlights and their synergies with the in-situ observations. With these combined data we can not only better understand comet Hartley 2, but through the legacy of telescopic observations we may also better understand comets as a whole.

  10. Large micro-mirror arrays: key components in future space instruments for Universe and Earth Observation

    Directory of Open Access Journals (Sweden)

    Zamkotsian Frederic


    Full Text Available In future space missions for Universe and Earth Observation, scientific return could be optimized using MOEMS devices. Micro-mirror arrays are used for designing new generation of instruments, multi-object spectrographs in Universe Observation and programmable wide field spectrographs in Earth Observation. Mock-ups have been designed and built for both applications and they show very promising results.

  11. Public-Private Partnership: Joint recommendations to improve downloads of large Earth observation data (United States)

    Ramachandran, R.; Murphy, K. J.; Baynes, K.; Lynnes, C.


    With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way Earth observation data is processed, analyzed, and visualized. The cloud infrastructure provides the flexibility to scale up to large volumes of data and handle high velocity data streams efficiently. Having freely available Earth observation data collocated on a cloud infrastructure creates opportunities for innovation and value-added data re-use in ways unforeseen by the original data provider. These innovations spur new industries and applications and spawn new scientific pathways that were previously limited due to data volume and computational infrastructure issues. NASA, in collaboration with Amazon, Google, and Microsoft, have jointly developed a set of recommendations to enable efficient transfer of Earth observation data from existing data systems to a cloud computing infrastructure. The purpose of these recommendations is to provide guidelines against which all data providers can evaluate existing data systems and be used to improve any issues uncovered to enable efficient search, access, and use of large volumes of data. Additionally, these guidelines ensure that all cloud providers utilize a common methodology for bulk-downloading data from data providers thus preventing the data providers from building custom capabilities to meet the needs of individual cloud providers. The intent is to share these recommendations with other Federal agencies and organizations that serve Earth observation to enable efficient search, access, and use of large volumes of data. Additionally, the adoption of these recommendations will benefit data users interested in moving large volumes of data from data systems to any other location. These data users include the cloud providers, cloud users such as scientists, and other users working in a high performance computing environment who need to move large volumes of data.

  12. Long Term Preservation of Earth Observation Data in Europe - Challenge and Cooperation Activities (United States)

    Molch, K.; Albani, M.


    Earth observation data are unique snapshots of the Earth and the atmosphere. As such they constitute a humankind asset in their importance for monitoring changes in global environmental conditions. With spaceborne Earth observation (EO) missions dating back to the 1970s, 40 years worth of observations are now available in EO data archives worldwide. Data holdings are growing exponentially, e.g. with the Sentinel series of high resolution EO satellites of the European Copernicus Program - which introduces a new dimension of data volumes to be handled. As other EO data holders around the globe, the European Space Agency (ESA) and its member states are committed to keeping the valuable EO data assets safe, accessible, and useable for an unlimited timespan. Rapidly evolving information technology and changing user requirements call for a dedicated and coordinated approach to EO data long term preservation. In Europe collaborative EO data stewardship activities are coordinated by ESA within the ESA long term data preservation (LTDP) program. With a view to the entire data set life cycle of historic and current missions an active LTDP working group addresses a wide range of relevant technical and organizational topics. Studies investigate archiving and access technologies, user expectations, or applicable standards; guidelines and best practices recommend preservation workflows, steps to take in curating individual data sets, the composition of the preserved data set, or concepts for introducing persistent identifiers. Fostering an active international exchange, the activities and documents developed within this European LTDP framework extend beyond Europe by being introduced to the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). The paper describes the European LTDP cooperation framework, discusses individual focus areas and current activities, and highlights the interaction with global data stewardship initiatives.

  13. Sensitivity of GPS occultation to the stratopause height

    DEFF Research Database (Denmark)

    Schrøder, Thomas Morville; Ao, Chi; de la Torre Juárez, Manuel


    We scrutinize temperature profiles collected with radio occultation measurement for an imprint of the stratopause. In the retrieval step that integrates bending angle data to atmospheric refractivity, the falloff toward infinite altitude is constrained in a boundary condition with statistical opt...... rate, not isothermal conditions. Keeping the model seed for temperature conversion to subsequent retrieval steps eliminates external information from the deconvolved refractivity. It will help argue for radio occultation as independent vehicle for climate monitoring....... height gradient. On the basis of noise free simulation using a climatology covering all latitudes, seasons, and hours and on the basis of validation against data collected with weather balloons, laser imaging, and limb sounding, we find that adaptation to the fluctuating stratopause is crucial...

  14. Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core (United States)

    Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.


    Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.

  15. Occult pneumothorax in trauma patients: should this be sought in the focused assessment with sonography for trauma examination? (United States)

    Tam, Michael M K


    At present, CT scan is the gold standard for detecting occult traumatic pneumothorax not apparent on supine chest X-ray radiograph. Recently there were suggestions to expand focused assessment with sonography for trauma (FAST) to include thoracic ultrasound for detecting pneumothorax. The aim of the present study is to determine the incidence of occult pneumothorax (as shown by CT) in the subgroup of trauma patients undergoing FAST. Review of all trauma patients with FAST done from 1 June 2001 to 31 October 2002. Incidence of occult pneumothorax as diagnosed by CT was determined. Patients were not counted as having true occult pneumothorax if they had chest drains inserted before arrival or imaging studies. Selected clinical findings were tested for association with occult pneumothorax. In total, 143 patients underwent FAST, of whom 137 (95.8%) had chest X-ray examination performed. Of the 137 patients 59 required CT abdomen and/or thorax. Occult pneumothorax was found in three patients (2.1%). A history of thorax and/or abdominal injury plus one or more of: (i) mechanisms potentially causing major trauma; (ii) abnormal chest examination; and (iii) chest X-ray radiograph abnormality in the absence of pneumothorax, was significantly associated with the presence of occult pneumothorax (P = 0.03, Fisher's exact test; sensitivity: 100%; specificity: 71%; likelihood ratio: 3.42). The incidence of occult pneumothorax in the subgroup of trauma patients undergoing FAST is low. It implies that routine screening for its presence by adding thoracic ultrasound to FAST is unnecessary. Identifying those at risk of occult pneumothorax for further investigation appeared feasible.

  16. Long-term changes in the rotation of the Earth: 700 B.C. to A.D. 1980

    International Nuclear Information System (INIS)

    Stephenson, F.R.


    Occultations of stars by the Moon, and solar and lunar eclipses are analysed for variations in the Earth's rotation over the past 2700 years. Although tidal braking provides the dominant, long-term torque, it is found that the rate of rotation does not decrease uniformly as would be expected if tidal friction were the only mechanism affecting the Earth's rotation. There are also non-tidal changes present that vary on timescales ranging from decades to millennia. The magnitudinal and temporal behaviour of these non-tidal variations are evaluated in this paper. (author)

  17. Amplification and protein overexpression of cyclin D1: Predictor of occult nodal metastasis in early oral cancer. (United States)

    Noorlag, Rob; Boeve, Koos; Witjes, Max J H; Koole, Ronald; Peeters, Ton L M; Schuuring, Ed; Willems, Stefan M; van Es, Robert J J


    Accurate nodal staging is pivotal for treatment planning in early (stage I-II) oral cancer. Unfortunately, current imaging modalities lack sensitivity to detect occult nodal metastases. Chromosomal region 11q13, including genes CCND1, Fas-associated death domain (FADD), and CTTN, is often amplified in oral cancer with nodal metastases. However, evidence in predicting occult nodal metastases is limited. In 158 patients with early tongue and floor of mouth (FOM) squamous cell carcinomas, both CCND1 amplification and cyclin D1, FADD, and cortactin protein expression were correlated with occult nodal metastases. CCND1 amplification and cyclin D1 expression correlated with occult nodal metastases. Cyclin D1 expression was validated in an independent multicenter cohort, confirming the correlation with occult nodal metastases in early FOM cancers. Cyclin D1 is a predictive biomarker for occult nodal metastases in early FOM cancers. Prospective research on biopsy material should confirm these results before implementing its use in routine clinical practice. © 2016 Wiley Periodicals, Inc. Head Neck 39: 326-333, 2017. © 2016 Wiley Periodicals, Inc.

  18. Observations of Accreting Pulsars with the FERMI-GBM (United States)

    Wilson-Hodge, Colleen


    The Gamma-ray Burst Monitor (GBM) on-board Fermi comprises 12 NaI detectors spanning the 8-1000 keV band and 2 BGO detectors spanning the 100 keV to 40 MeV band. These detectors view the entire unocculted sky, providing long (approximately 40 ks/day) observations of accreting pulsars daily, which allow long-term monitoring of spin-frequencies and pulsed uxes via epoch-folded searches plus daily blind searches for new pulsars. Phase averaged uxes can be measured using the Earth occultation technique. In this talk I will present highlights of GBM accretion-powered pulsar monitoring such as the discovery of a torque reversal in 4U1626-67, a high-energy QPO in A0535+26, and evidence for a stable accretion disk in OAO 1657-415.

  19. The value of MR imaging of PDFASAT sequence in the diagnosis of extremities occult fractures

    International Nuclear Information System (INIS)

    Lu Lingquan; Xu Mingshen; Wu Qianzhi; Mao Chunnan; Wang Shuzi; Zhou Xingfan; Wang Liping


    Objective: To investigate the value of MR imaging of proton density weighted-fat saturated (PDFASAT) sequence in detecting the occult fracture of extremities. Methods: Thirty-one patients with acute trauma were studied using radiography and MR imaging within 45 days. MR sequences included FSE T 1 WI, T 2 WI, and PDFASAT. 21 occult fractures occurred in the knee joint, 6 in the hip joint, 1 in the elbow joint, 2 in the shoulder, and 1 in the ankle. Results: All 31 cases had normal radiographic results. 10 cases with proximal fibula, 4 with proximal tibia and 7 with femur condyle occult fractures were found in 21 knee joint acute trauma cases. 2 cases with intertrochanteric, 2 with femoral neck and 2 with cotyle occult fractures were found in 6 hip joint trauma cases. 2 proximal humerus occult fractures were found in 2 shoulder cases. 1 distal humerus and 1 distal fibula occult fracture was found in elbow and ankle cases. MR imaging demonstrated irregular linear low signal in the subcortical region on both T 1 WI and T 2 WI, and high signal changes around low signal were seen on T 2 WI in some cases. The high signal in PDFASAT sequence was more remarkable and wider than that on both T 1 WI and T 2 WI. Conclusion: MR imaging could determine the diagnosis of acute and chronic occult fractures. MRI should be the next choice when plain films fail to reveal suspected fractures in setting of suggestive symptoms and positive physical examination. PDFASAT would be the best effective sequence among the T 1 WI, T 2 WI, and PDFASAT. (author)

  20. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System (United States)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.


    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  1. Occult Pelvic Lymph Node Involvement in Bladder Cancer: Implications for Definitive Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, Benjamin; Baumann, Brian C.; He, Jiwei; Tucker, Kai; Bekelman, Justin; Deville, Curtiland; Vapiwala, Neha [Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Vaughn, David; Keefe, Stephen M. [Department of Medical Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Guzzo, Thomas; Malkowicz, S. Bruce [Department of Urology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Christodouleas, John P., E-mail: [Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (United States)


    Purpose: To inform radiation treatment planning for clinically staged, node-negative bladder cancer patients by identifying clinical factors associated with the presence and location of occult pathologic pelvic lymph nodes. Methods and Materials: The records of patients with clinically staged T1-T4N0 urothelial carcinoma of the bladder undergoing radical cystectomy and pelvic lymphadenectomy at a single institution were reviewed. Logistic regression was used to evaluate associations between preoperative clinical variables and occult pathologic pelvic or common iliac lymph nodes. Percentages of patient with involved lymph node regions entirely encompassed within whole bladder (perivesicular nodal region), small pelvic (perivesicular, obturator, internal iliac, and external iliac nodal regions), and extended pelvic clinical target volume (CTV) (small pelvic CTV plus common iliac regions) were calculated. Results: Among 315 eligible patients, 81 (26%) were found to have involved pelvic lymph nodes at the time of surgery, with 38 (12%) having involved common iliac lymph nodes. Risk of occult pathologically involved lymph nodes did not vary with clinical T stage. On multivariate analysis, the presence of lymphovascular invasion (LVI) on preoperative biopsy was significantly associated with occult pelvic nodal involvement (odds ratio 3.740, 95% confidence interval 1.865-7.499, P<.001) and marginally associated with occult common iliac nodal involvement (odds ratio 2.307, 95% confidence interval 0.978-5.441, P=.056). The percentages of patients with involved lymph node regions entirely encompassed by whole bladder, small pelvic, and extended pelvic CTVs varied with clinical risk factors, ranging from 85.4%, 95.1%, and 100% in non-muscle-invasive patients to 44.7%, 71.1%, and 94.8% in patients with muscle-invasive disease and biopsy LVI. Conclusions: Occult pelvic lymph node rates are substantial for all clinical subgroups, especially patients with LVI on biopsy. Extended

  2. Scalable Earth-observation Analytics for Geoscientists: Spacetime Extensions to the Array Database SciDB (United States)

    Appel, Marius; Lahn, Florian; Pebesma, Edzer; Buytaert, Wouter; Moulds, Simon


    Today's amount of freely available data requires scientists to spend large parts of their work on data management. This is especially true in environmental sciences when working with large remote sensing datasets, such as obtained from earth-observation satellites like the Sentinel fleet. Many frameworks like SpatialHadoop or Apache Spark address the scalability but target programmers rather than data analysts, and are not dedicated to imagery or array data. In this work, we use the open-source data management and analytics system SciDB to bring large earth-observation datasets closer to analysts. Its underlying data representation as multidimensional arrays fits naturally to earth-observation datasets, distributes storage and computational load over multiple instances by multidimensional chunking, and also enables efficient time-series based analyses, which is usually difficult using file- or tile-based approaches. Existing interfaces to R and Python furthermore allow for scalable analytics with relatively little learning effort. However, interfacing SciDB and file-based earth-observation datasets that come as tiled temporal snapshots requires a lot of manual bookkeeping during ingestion, and SciDB natively only supports loading data from CSV-like and custom binary formatted files, which currently limits its practical use in earth-observation analytics. To make it easier to work with large multi-temporal datasets in SciDB, we developed software tools that enrich SciDB with earth observation metadata and allow working with commonly used file formats: (i) the SciDB extension library scidb4geo simplifies working with spatiotemporal arrays by adding relevant metadata to the database and (ii) the Geospatial Data Abstraction Library (GDAL) driver implementation scidb4gdal allows to ingest and export remote sensing imagery from and to a large number of file formats. Using added metadata on temporal resolution and coverage, the GDAL driver supports time-based ingestion of

  3. A rightly balanced intellectual property rights regime as a mechanism to enhance commercial earth observation activities (United States)

    Doldirina, Catherine


    Earth observation by satellites is one of the developing sectors of space activities with the growing involvement in private capital or actors. This leads to the question of how efficient legal rules governing this activity are. Copyright law is one of the key fields of law applicable to earth observation activities and is the subject of the present analysis. This paper describes the current state of copyright regulations in different jurisdictions. It also addresses the issue of defining earth observation data for the purpose of applying copyright protection to them. Finally, it analyses whether more or less copyright protection would be beneficial for the commercialisation of the earth observation activities, and the distribution and further use of data they produce. The paper is largely based on my current doctoral research. Draft chapter on file with the author.

  4. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station (United States)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike


    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes

  5. Occult Hepatitis B Virus Among the Patients With Abnormal Alanine Transaminase (United States)

    Makvandi, Manoochehr; Neisi, Niloofar; Khalafkhany, Davod; Makvandi, Kamyar; Hajiani, Eskandar; Shayesteh, Ali Akbar; Masjedi Zadeh, Abdolrahim; Sina, Amir Hosein; Hamidifard, Mojtaba; Rasti, Mojtaba; Aryan, Ehsan; Ahmadi, Kambiz; Yad Yad, Mohammad Jafar


    Background: The occult hepatitis B infection (OBI) is defined as the presence of hepatitis B virus (HBV) DNA in the sera or in the liver biopsy and the absence of hepatitis B surface antigen (HBsAg) by serological test. Objectives: The current study aimed to evaluate the occult HBV infection by polymerase chain reaction (PCR) and determine HBV genotyping among the patients with abnormal alanine transaminase (ALT) in Ahvaz city, Iran. Patients and Methods: The sera of 120 patients, 54 (45%) females and 66 (55%) males, with abnormal ALT 40-152 IU were collected. All the patients were negative for HBsAg for more than one year. The patients` sera were tested by PCR using primers specified for the S region of HBV. Then the positive PCR products were sequenced to determine HBV genotyping and phylogenic tree. Results: Of these 120 subjects, 12 (10%) patients including 6 (5%) males and 6 (5%) females were found positive for HBV DNA by PCR, which indicated the presence of occult HBV infection among these patients. The sequencing results revealed that genotype D was predominant with sub-genotyping D1 among OBI patients. Conclusions: Occult hepatitis B infection is remarkably prevalent in Ahvaz, Iran, and should be considered as a potential risk factor for the transmission of Hepatitis B Virus throughout the community by the carriers. PMID:25485052

  6. Improving the Transition of Earth Satellite Observations from Research to Operations (United States)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.


    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (

  7. Outcome of Concurrent Occult Hemothorax and Pneumothorax in Trauma Patients Who Required Assisted Ventilation

    Directory of Open Access Journals (Sweden)

    Ismail Mahmood


    Full Text Available Background. The management and outcomes of occult hemopneumothorax in blunt trauma patients who required mechanical ventilation are not well studied. We aimed to study patients with occult hemopneumothorax on mechanical ventilation who could be carefully managed without tube thoracostomy. Methods. Chest trauma patients with occult hemopneumothorax who were on mechanical ventilation were prospectively evaluated. The presence of hemopneumothorax was confirmed by CT scanning. Hospital length of stay, complications, and outcome were recorded. Results. A total of 56 chest trauma patients with occult hemopneumothorax who were on ventilatory support were included with a mean age of 36 ± 13 years. Hemopneumothorax was managed conservatively in 72% cases and 28% underwent tube thoracostomy as indicated. 29% of patients developed pneumonia, 16% had Acute Respiratory Distress Syndrome (ARDS, and 7% died. Thickness of hemothorax, duration of mechanical ventilation, and development of ARDS were significantly associated with tube thoracostomy in comparison to no-chest tube group. Conclusions. The majority of occult hemopneumothorax can be carefully managed without tube thoracostomy in patients who required positive pressure ventilation. Tube thoracotomy could be restricted to those who had evidence of increase in the size of the hemothorax or pneumothorax on follow-up chest radiographs or developed respiratory compromise.

  8. Histopathological Parameters predicting Occult Nodal Metastases in Tongue Carcinoma Cases: An Indian Perspective. (United States)

    Jacob, Tina Elizabeth; Malathi, N; Rajan, Sharada T; Augustine, Dominic; Manish, N; Patil, Shankargouda


    It is a well-established fact that in squamous cell carcinoma cases, the presence of lymph node metastases decreased the 5-year survival rate by 50% and also caused the recurrence of the primary tumor with development of distant metastases. Till date, the predictive factors for occult cervical lymph nodes metastases in cases of tongue squamous cell carcinoma remain inconclusive. Therefore, it is imperative to identify patients who are at the greatest risk for occult cervical metastases. This study was thus performed with the aim to identify various histopathologic parameters of the primary tumor that predict occult nodal metastases. The clinicopathologic features of 56 cases of lateral tongue squamous cell carcinoma with cT1NoMo/cT2NoMo as the stage and without prior radiotherapy or chemotherapy were considered. The surgical excision of primary tumor was followed by elective neck dissection. The glossectomy specimen along with the neck nodes were fixed in formalin and 5 urn thick sections were obtained. The hematoxylin & eosin stained sections were then subjected to microscopic examination. The primary tumor characteristics that were analyzed include tumor grade, invading front, depth of tumor, lymphovascular invasion, perineural invasion and inflammatory response. The nodes were examined for possible metastases using hematoxylin & eosin followed by cytokeratin immunohistochemistry. A total of 12 cases were found with positive occult nodal metastases. On performing univariate analysis, the histopathologic parameters that were found to be statistically significant were lymphovascular invasion (p = 0.004) and perineural invasion (p = 0.003) along with a cut-off depth of infiltration more than 5 mm (p = 0.01). Histopathologic assessment of the primary tumor specimen therefore continues to provide information that is central to guide clinical management, particularly in cases of occult nodal metastases. Clinical significance The study highlights the importance of

  9. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide (United States)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)


    Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA's Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. Scientists from the Image Science and Analysis


    Directory of Open Access Journals (Sweden)

    I. A. El-Magd


    Full Text Available Egypt was one of the first developing countries in Africa that used earth observation and remote sensing in various applications since 1970s. It has grown up in the last decades to build its own capacity in space science and technology that ended up by launching earth observation satellites. At the same time Egypt continued to develop the capacity in EO applications and contribute to the national development plans. In this domain NARSS, the governmental research institute that lead the EO and space applications has completed many research and development projects in EO applications in mineral resources exploration, coastal and marine resources, air quality, water resources management, food security, etc. This was via operational projects with the stakeholders and users to ensure sustainability and operation of the services. For example, NARSS has developed an operational system to monitor the national crop rice using EO information that capable to provide the actual land planted with rice and predict the yield. The system has enabled to provide recommendations for other plots of land that suitable for rice plantation. In the area of environmental hazards, many projects on the flash floods and the vulnerability to flash flood hazards were developed providing decision makers with vulnerability maps and Atlases on national level. Further details on the EO activities and future plans at NARSS, Egypt will be presented in this paper.

  11. Treatment for occult hepatocellular carcinoma: does it offer survival advantages over symptom-driven treatment? (United States)

    Kim, Kwang Min; Kim, Jiyu; Sinn, Dong Hyun; Kim, Hye Seung; Kim, Kyunga; Kang, Wonseok; Gwak, Geum-Youn; Paik, Yong-Han; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon


    In order to claim a benefit of screen-based diagnosis for asymptomatic individuals, treatment of occult disease needs to offer survival advantages compared to the treatment of symptomatic disease, yet information on this issue is scarce with regard to hepatocellular carcinoma (HCC) screening. A total of 3353 treatment-naïve, consecutive, newly diagnosed HCC patients [age: 57.9 ± 10.3, male: 2,689 (80.2%), hepatitis B virus: 2555 (76.2%)], diagnosed between 2010 and 2013 were analyzed. Data on the mode of detection was prospectively collected at the time of HCC diagnosis and was used to group patients into occult or symptomatic cases. Overall, 643 (19.2%) patients were symptomatic cases. The proportion of patients undergoing resection, radiofrequency ablation or transplantation were lower in symptomatic cases than occult cases (20.8 vs. 56.2%, p offered a survival benefit to patients over symptomatic cases. These data support screening practices for asymptomatic individuals to diagnose occult HCC.

  12. GMES Initial Operations - Network for Earth Observation Research Training (GIONET) (United States)

    Nicolas-Perea, V.; Balzter, H.


    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: -Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). -Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centers and market leaders in the private sector. -Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: Forest monitoring: Global biomass information systems Forest Monitoring of the Congo Basin using Synthetic Aperture radar (SAR) Multi-concept Earth Observation Capabilities for Biomass Mapping and Change Detection: Synergy of Multi-temporal and Multi-frequency Interferometric Radar and Optical Satellite Data Land cover and change: Multi-scale Remote Sensing Synergy for Land Process Studies: from field Spectrometry to Airborne Hyperspectral and

  13. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Junga Hwang


    Full Text Available Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE. The SNIPE mission consists of four nanosatellites (~10 kg, which will be launched into a polar orbit at an altitude of 600 km (TBD in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  14. Atmospheric stability index using radio occultation refractivity profiles

    Indian Academy of Sciences (India)

    A new stability index based on atmospheric refractivity at ∼500 hPa level and surface measurements of temperature ... able at different heights rather than pressure levels. However ..... the radio occultation technique being a limb sound-.

  15. Prediction of occult hepatitis B virus infection in liver transplant donors through hepatitis B virus blood markers. (United States)

    Tandoi, Francesco; Caviglia, Gian Paolo; Pittaluga, Fabrizia; Abate, Maria Lorena; Smedile, Antonina; Romagnoli, Renato; Salizzoni, Mauro


    Occult hepatitis B virus infection is defined as detectable HBV-DNA in liver of HBsAg-negative individuals, with or without detectable serum HBV-DNA. In deceased liver donors, results of tissue analysis cannot be obtained prior to allocation for liver transplantation. we investigated prevalence and predictability of occult hepatitis B using blood markers of viral exposure/infection in deceased liver donors. In 50 consecutive HBsAg-negative/anti-HBc-positive and 20 age-matched HBsAg-negative/anti-HBc-negative donors, a nested-PCR assay was employed in liver biopsies for diagnosis of occult hepatitis B according to Taormina criteria. All donors were characterized for plasma HBV-DNA and serum anti-HBs/anti-HBe. In liver tissue, occult hepatitis B was present in 30/50 anti-HBc-positive (60%) and in 0/20 anti-HBc-negative donors (pdonors with detectable HBV-DNA in plasma (n=5) or anti-HBs>1,000 mIU/mL (n=5) eventually showed occult infection, i.e, 10/30 occult hepatitis B-positive donors which could have been identified prior to transplantation. In the remaining 40 anti-HBc-positive donors, probability of occult infection was 62% for anti-HBe-positive and/or anti-HBs ≥ 58 mIU/mL; 29% for anti-HBe-negative and anti-HBsdonors, combining anti-HBc with other blood markers of hepatitis B exposure/infection allows to predict occult hepatitis B with certainty and speed in one third of cases. These findings might help refine the allocation of livers from anti-HBc-positive donors. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  16. [Prevalence of occult hepatitis B virus infection and its phylogenetic features among mother-teenager pairs]. (United States)

    Dong, Xiao-lian; Yao, Qing-qing; Wang, Xue-cai; Xu, Hai-tao; Wang, Xiao-li; Chen, Sheng-yu; Tang, Zhi-feng; Zheng, Ying-Jie


    Prevalence of occult hepatitis B virus (HBV) infection (OBI) was investigated in a paired mother-teenager population and HBV S gene variation including overt and occult HBV, was determined. A follow-up study based on an initial survey of 135 mother-teenager pairs was carried out through collection of questionnaires and blood samples HBsAg were detected by ELISA method, viral load by PCR amplification and HBV S gene by phylogenetic analysis. 102 pairs of subjects were followed-up. Blood samples from 94 mothers and 101 children were collected. OBI prevalence in mothers was 10.0% (6/60), significantly higher than 2.0% (2/101) in teenagers. Medians of viral load were 399.9 IU/ml and 247.6 IU/ml in overt and occult HBV strains, but without significant difference. 1 occult HBV strain belonged to genotype B with serotype adw while the other 7 were genotype C with serotype adr. 15 of the overt HBV strains belonged to genotype B with serotype adw and the other 8 were genotype C with serotype adr. Proportions of genotype-C strains were significantly higher in occult HBV strains than in overt HBV strains. OBI was seen in teenage-mother population.

  17. Current management of occult bacteremia in infants

    Directory of Open Access Journals (Sweden)

    Eduardo Mekitarian Filho


    Full Text Available Objectives: To summarize the main clinical entities associated with fever without source (FWS in infants, as well as the clinical management of children with occult bacteremia, emphasizing laboratory tests and empirical antibiotics. Sources: A non-systematic review was conducted in the following databases – PubMed, EMBASE, and SciELO, between 2006 and 2015. Summary of the findings: The prevalence of occult bacteremia has been decreasing dramatically in the past few years, due to conjugated vaccination against Streptococcus pneumoniae and Neisseria meningitidis. Additionally, fewer requests for complete blood count and blood cultures have been made for children older than 3 months presenting with FWS. Urinary tract infection is the most prevalent bacterial infection in children with FWS. Some known algorithms, such as Boston and Rochester, can guide the initial risk stratification for occult bacteremia in febrile infants younger than 3 months. Conclusions: There is no single algorithm to estimate the risk of occult bacteremia in febrile infants, but pediatricians should strongly consider outpatient management in fully vaccinated infants older than 3 months with FWS and good general status. Updated data about the incidence of occult bacteremia in this environment after conjugated vaccination are needed. Resumo: Objetivos: Listar as principais entidades clínicas associadas a quadros de febre sem sinais localizatórios (FSSL em lactentes, bem como o manejo dos casos de bacteremia oculta com ênfase na avaliação laboratorial e na antibioticoterapia empírica. Fonte dos dados: Foi realizada revisão não sistemática da literatura nas bases de dados PubMed, EMBASE e Scielo no período de 2006 a 2015. Síntese dos dados: A ocorrência de bacteremia oculta vem diminuindo sensivelmente em lactentes com FSSL, principalmente devido à introdução da vacinação conjugada contra Streptococcus pneumoniae e Neisseria meningitidis nos últimos anos

  18. Lidar instruments for ESA Earth observation missions (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland


    for Earth Observation by initiating feasibility studies of a spaceborne concept to monitor atmospheric CO2 and other greenhouse gases. The purpose of this paper is to present the instruments concept and related technology/instrument developments that are currently running at the European Space Agency. The paper will also outline the development planning proposed for future lidar systems.

  19. Occult injuries of the femoral neck in osteoporosis of aged patients

    International Nuclear Information System (INIS)

    Reichelt, H.G.


    Fractures of the femoral neck in elderly patients are often a complication in osteoporosis. Diagnosis of fractures with displacement and compression of fragments is quite easy. The negative radiograph in old patients complaining of hip pain is generally considered a characteristic feature of presensile osteoporotic pain. Clinical examples present patients with hip pain caused by occult injuries of the femoral neck. They should be regarded as imminent fractures and adequately treated. Bone scan is very helpful in the early detection of such occult osteroporotic injuries. (orig.) [de

  20. Cloud Based Earth Observation Data Exploitation Platforms (United States)

    Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.


    In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland

  1. Co-ordination of satellite and data programs: The committee on earth observation satellites' approach (United States)

    Embleton, B. J. J.; Kingwell, J.


    Every year, an average of eight new civilian remote sensing satellite missions are launched. Cumulatively, over 250 such missions, each with a cost equivalent in current value to between US 100 million to US 1000 million, have been sponsored by space agencies in perhaps two dozen countries. These missions produce data and information products which are vital for informed decision making all over the world, on matters relating to natural resource exploitation, health and safety, sustainable national development, infrastructure planning, and a host of other applications. By contributing to better scientific understanding of global changes in the atmosphere, land surface, oceans and ice caps, these silently orbiting sentinels in the sky make it possible for governments and industries to make wiser environmental policy decisions and support the economic development needs of humanity. The international Committee on Earth Observation Satellites (CEOS) is the premier world body for co-ordinating and planning civilian satellite missions for Earth observation. Through its technical working groups and special task teams, it endeavours to: • maximise the international benefits from Earth observation satellites; and • harmonise practice in calibration, validation, data management and information systems for Earth observation. CEOS encompasses not only space agencies (data providers), but also the great international scientific and operational programs which rely on Earth science data from space. The user organisations affiliated with CEOS, together with the mission operators, attempt to reconcile user needs with the complex set of considerations — including national interests, cost, schedule — which affect the undertaking of space missions. Without such an internationally co-ordinated consensual approach, there is a much greater risk of waste through duplication, and of missed opportunity, or through the absence of measurements of some vital physical or biological

  2. Trio of Stellar Occultations by Pluto One Year Prior to New Horizons’ Arrival (United States)


    stellar signal, both with 20 s exposures with our frame-transfer Portable Occultation, Eclipse, and Transit System. Since Pluto had a geocentric velocity...and for New Horizons’s 2015 approach . For the July 31 event, though for our atmospheric studies we are glad to have detected the occultation of this

  3. Current Status and Perspectives for the Estimation of Crop Water Requirements from Earth Observation

    Directory of Open Access Journals (Sweden)

    Guido D’Urso


    Full Text Available This paper presents an overview of current techniques and recent developments in the application of Earth Observationdata for assessing crop water requirements. During recent years there has been much progress in understandingland surface-atmosphere processes and their parameterisation in the management of land and water resources.This knowledge can be combined with the potentiality of Earth Observation techniques from space, whichare able to provide detailed information for monitoring agricultural systems.As today, two main developments in the field of Earth Observation data acquisition and analysis have occurred:a availability of new generations of sensors, with enhanced spectral and spatial resolution;b detailed knowledge of the processes that determine the response of land surface as detected from remote sensorsin different regions of the electromagnetic spectrum.These advancements have made possible a “quantitative” approach in the interpretation of Earth Observation data,ready for being transferred to operative applications i.e. for irrigation scheduling and water management. Thispaper presents a review of current applications of optical data in the visible and near infrared spectral regions, withparticular emphasis to the experiences developed by the author within AQUATER and other research projectsproject.

  4. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.


    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  5. Greenhouse gas profiling by infrared-laser and microwave occultation: retrieval algorithm and demonstration results from end-to-end simulations

    Directory of Open Access Journals (Sweden)

    V. Proschek


    Full Text Available Measuring greenhouse gas (GHG profiles with global coverage and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS is key for improved monitoring of GHG concentrations in the free atmosphere. In this respect a new satellite mission concept adding an infrared-laser part to the already well studied microwave occultation technique exploits the joint propagation of infrared-laser and microwave signals between Low Earth Orbit (LEO satellites. This synergetic combination, referred to as LEO-LEO microwave and infrared-laser occultation (LMIO method, enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from the microwave signals and GHG profiles from the simultaneously measured infrared-laser signals. However, due to the novelty of the LMIO method, a retrieval algorithm for GHG profiling is not yet available. Here we introduce such an algorithm for retrieving GHGs from LEO-LEO infrared-laser occultation (LIO data, applied as a second step after retrieving thermodynamic profiles from LEO-LEO microwave occultation (LMO data. We thoroughly describe the LIO retrieval algorithm and unveil the synergy with the LMO-retrieved pressure, temperature, and altitude information. We furthermore demonstrate the effective independence of the GHG retrieval results from background (a priori information in discussing demonstration results from LMIO end-to-end simulations for a representative set of GHG profiles, including carbon dioxide (CO2, water vapor (H2O, methane (CH4, and ozone (O3. The GHGs except for ozone are well retrieved throughout the UTLS, while ozone is well retrieved from about 10 km to 15 km upwards, since the ozone layer resides in the lower stratosphere. The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. The retrieved profiles also appear unbiased, which points

  6. Multiple surface antigen mutations in five blood donors with occult hepatitis B virus infection

    NARCIS (Netherlands)

    Zaaijer, H. L.; Torres, P.; Ontañón, A.; Ponte, L. González; Koppelman, M. H. G. M.; Lelie, P. N.; Hemert, F. J. van; Boot, H. J.


    Occult hepatitis B virus (HBV) infection is characterized by the presence of HBV DNA while the HBV surface antigen (HBsAg) remains undetectable. The HBV genomes in five asymptomatic blood donors with occult HBV infection and low viremia ( <10 to 1,000 HBV DNA copies/mL, genotype D) were studied. An

  7. Continental-scale water fluxes from continuous GPS observations of Earth surface loading (United States)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.


    After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.

  8. Perspectives for Distributed Observations of Near-Earth Space Using a Russian-Cuban Observatory (United States)

    Bisikalo, D. V.; Savanov, I. S.; Naroenkov, S. A.; Nalivkin, M. A.; Shugarov, A. S.; Bakhtigaraev, N. S.; Levkina, P. A.; Ibragimov, M. A.; Kil'pio, E. Yu.; Sachkov, M. E.; Kartashova, A. P.; Fateeva, A. M.; Uratsuka, Marta R. Rodriguez; Estrada, Ramses Zaldivar; Diaz, Antonio Alonsa; Rodríguez, Omar Pons; Figuera, Fidel Hernandes; Garcia, Maritza Garcia


    The creation of a specialized network of large, wide-angle telescopes for distributed observations of near-Earth space using a Russian-Cuban Observatory is considered. An extremely important goal of routine monitoring of near-Earth and near-Sun space is warding off threats with both natural and technogenic origins. Natural threats are associated with asteroids or comets, and technogenic threats with man-made debris in near-Earth space. A modern network of ground-based optical instruments designed to ward off such threats must: (a) have a global and, if possible, uniform geographic distribution, (b) be suitable for wide-angle, high-accuracy precision survey observations, and (c) be created and operated within a single network-oriented framework. Experience at the Institute of Astronomy on the development of one-meter-class wide-angle telescopes and elements of a super-wide-angle telescope cluster is applied to determine preferences for the composition of each node of such a network. The efficiency of distributed observations in attaining maximally accurate predictions of the motions of potentially dangerous celestial bodies as they approach the Earth and in observations of space debris and man-made satellites is estimated. The first estimates of astroclimatic conditions at the proposed site of the future Russian-Cuban Observatory in the mountains of the Sierra del Rosario Biosphere Reserve are obtained. Special attention is given to the possible use of the network to carry out a wide range of astrophysical studies, including optical support for the localization of gravitational waves and other transient events.


    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: [Physics and Astronomy, York University, Toronto (Canada)


    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  10. Photoreceptor atrophy in acute zonal occult outer retinopathy

    DEFF Research Database (Denmark)

    Zibrandtsen, N.; Munch, I.C.; Klemp, K.


    Purpose: To assess retinal morphology in acute zonal occult outer retinopathy (AZOOR). Methods: Three patients with a normal ophthalmoscopic fundus appearance, a history of photopsia, and visual field loss compatible with AZOOR were examined using optical coherence tomography, automated perimetry...

  11. A New Cyber-enabled Platform for Scale-independent Interoperability of Earth Observations with Hydrologic Models (United States)

    Rajib, A.; Zhao, L.; Merwade, V.; Shin, J.; Smith, J.; Song, C. X.


    Despite the significant potential of remotely sensed earth observations, their application is still not full-fledged in water resources research, management and education. Inconsistent storage structures, data formats and spatial resolution among different platforms/sources of earth observations hinder the use of these data. Available web-services can help bulk data downloading and visualization, but they are not sufficiently tailored to meet the degree of interoperability required for direct application of earth observations in hydrologic modeling at user-defined spatio-temporal scales. Similarly, the least ambiguous way for educators and watershed managers is to instantaneously obtain a time-series at any watershed of interest without spending time and computational resources on data download and post-processing activities. To address this issue, an open access, online platform, named HydroGlobe, is developed that minimizes all these processing tasks and delivers ready-to-use data from different earth observation sources. HydroGlobe can provide spatially-averaged time series of earth observations by using the following inputs: (i) data source, (ii) temporal extent in the form of start/end date, and (iii) geographic units (e.g., grid cell or sub-basin boundary) and extent in the form of GIS shapefile. In its preliminary version, HydroGlobe simultaneously handles five data sources including the surface and root zone soil moisture from SMAP (Soil Moisture Active Passive Mission), actual and potential evapotranspiration from MODIS (Moderate Resolution Imaging Spectroradiometer), and precipitation from GPM (Global Precipitation Measurements). This presentation will demonstrate the HydroGlobe interface and its applicability using few test cases on watersheds from different parts of the globe.

  12. Radio Occultation Experiments with Venus Express and Mars Express using the Planetary Radio Interferometry and Doppler Experiment (PRIDE) Technique (United States)

    Bocanegra Bahamon, T.; Gurvits, L.; Molera Calves, G.; Cimo, G.; Duev, D.; Pogrebenko, S.; Dirkx, D.; Rosenblatt, P.


    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that can be used to enhance multiple radio science experiments of planetary missions. By 'eavesdropping' on the spacecraft signal using radio telescopes from different VLBI networks around the world, the PRIDE technique provides precise open-loop Doppler and VLBI observables to able to reconstruct the spacecraft's orbit. The application of this technique for atmospheric studies has been assessed by observing ESA's Venus Express (VEX) and Mars Express (MEX) during multiple Venus and Mars occultation events between 2012 and 2014. From these observing sessions density, temperature and pressure profiles of Venus and Mars neutral atmosphere and ionosphere have been retrieved. We present an error propagation analysis where the uncertainties of the atmospheric properties measured with this technique have been derived. These activities serve as demonstration of the applicability of the PRIDE technique for radio occultation studies, and provides a benchmark against the traditional Doppler tracking provided by the NASA's DSN and ESA's Estrack networks for these same purposes, in the framework of the upcoming ESA JUICE mission to the Jovian system.

  13. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis (United States)

    Moore, R. T.; Hansen, M. C.


    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as

  14. A global perspective on atmospheric blocking using GPS radio occultation – one decade of observations

    Directory of Open Access Journals (Sweden)

    L. Brunner


    Full Text Available Atmospheric blocking represents a weather pattern where a stationary high-pressure system weakens or reverses the climatological westerly flow at mid-latitudes for up to several weeks. It is closely connected to strong anomalies in key atmospheric variables such as geopotential height, temperature, and humidity. Here we provide, for the first time, a comprehensive, global perspective on atmospheric blocking and related impacts by using an observation-based data set from Global Positioning System (GPS radio occultation (RO from 2006 to 2016. The main blocking regions in both hemispheres and seasonal variations are found to be represented well in RO data. The effect of blocking on vertically resolved temperature and humidity anomalies in the troposphere and lower stratosphere is investigated for blocking regions in the Northern and Southern hemispheres, respectively. We find a statistically significant correlation of blocking with positive temperature anomalies, exceeding 3 K in the troposphere, and a reversal above the tropopause with negative temperature anomalies below −3 K in the lower stratosphere. Specific humidity is positively correlated with temperature throughout the troposphere with larger anomalies revealed in the Southern Hemisphere. At the eastern and equatorward side of the investigated blocking regions, a band of tropospheric cold anomalies reveals advection of cold air by anticyclonic motion around blocking highs, which is less distinct in the Southern Hemisphere due to stronger zonal flow. We find GPS RO to be a promising new data set for blocking research that gives insight into the vertical atmospheric structure, especially in light of the expected increase in data coverage that future missions will provide.


    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Weintraub, David A. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Cargile, Phillip [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shappee, Benjamin J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Siverd, Robert J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Pepper, Joshua [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Kochanek, Christopher S.; Gaudi, B. Scott; Stanek, Krzysztof Z.; Holoien, Thomas W.-S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); James, David [Cerro Tololo InterAmerican Observatory, Casilla 603, La Serena (Chile); Kuhn, Rudolf B. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Prieto, Jose L. [Nucleo de Astronoma de la Facultad de Ingeniera, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile); Feldman, Daniel M.; Espaillat, Catherine C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)


    In some planet formation theories, protoplanets grow gravitationally within a young star’s protoplanetary disk, a signature of which may be a localized disturbance in the disk’s radial and/or vertical structure. Using time-series photometric observations by the Kilodegree Extremely Little Telescope South project and the All-Sky Automated Survey for SuperNovae, combined with archival observations, we present the discovery of two extended dimming events of the young star, DM Ori. This young system faded by ∼1.5 mag from 2000 March to 2002 August and then again in 2013 January until 2014 September (depth ∼1.7 mag). We constrain the duration of the 2000–2002 dimming to be < 860 days, and the event in 2013–2014 to be < 585 days, separated by ∼12.5 years. A model of the spectral energy distribution indicates a large infrared excess consistent with an extensive circumstellar disk. Using basic kinematic arguments, we propose that DM Ori is likely being periodically occulted by a feature (possibly a warp or perturbation) in its circumstellar disk. In this scenario, the occulting feature is located >6 au from the host star, moving at ∼14.6 km s{sup −1} and is ∼4.9 au in width. This localized structure may indicate a disturbance such as that which may be caused by a protoplanet early in its formation.

  16. Evaluation of atmospheric profiles derived from single- and zero-difference excess phase processing of BeiDou radio occultation data from the FY-3C GNOS mission (United States)

    Bai, Weihua; Liu, Congliang; Meng, Xiangguang; Sun, Yueqiang; Kirchengast, Gottfried; Du, Qifei; Wang, Xianyi; Yang, Guanglin; Liao, Mi; Yang, Zhongdong; Zhao, Danyang; Xia, Junming; Cai, Yuerong; Liu, Lijun; Wang, Dongwei


    The Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) is one of the new-generation payloads onboard the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. The GNOS was designed for acquiring setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BeiDou System (BDS) and the US Global Positioning System (GPS). An ultra-stable oscillator with 1 s stability (Allan deviation) at the level of 10-12 was installed on the FY-3C GNOS, and thus both zero-difference and single-difference excess phase processing methods should be feasible for FY-3C GNOS observations. In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing, in order to investigate the zero-difference feasibility for this new instrument, which after its launch in September 2013 started to use BDS signals from five geostationary orbit (GEO) satellites, five inclined geosynchronous orbit (IGSO) satellites and four medium Earth orbit (MEO) satellites. We used a 3-month set of GNOS BDS RO data (October to December 2013) for the evaluation and compared atmospheric bending angle and refractivity profiles, derived from single- and zero-difference excess phase data, against co-located profiles from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. We also compared against co-located refractivity profiles from radiosondes. The statistical evaluation against these reference data shows that the results from single- and zero-difference processing are reasonably consistent in both bias and standard deviation, clearly demonstrating the feasibility of zero differencing for GNOS BDS RO observations. The average bias (and standard deviation) of the bending angle and refractivity profiles were found to be about 0.05 to 0.2 % (and 0.7 to 1.6 %) over the upper troposphere and lower stratosphere. Zero differencing was found

  17. Evaluation of atmospheric profiles derived from single- and zero-difference excess phase processing of BeiDou radio occultation data from the FY-3C GNOS mission

    Directory of Open Access Journals (Sweden)

    W. Bai


    Full Text Available The Global Navigation Satellite System (GNSS Occultation Sounder (GNOS is one of the new-generation payloads onboard the Chinese FengYun 3 (FY-3 series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. The GNOS was designed for acquiring setting and rising radio occultation (RO data by using GNSS signals from both the Chinese BeiDou System (BDS and the US Global Positioning System (GPS. An ultra-stable oscillator with 1 s stability (Allan deviation at the level of 10−12 was installed on the FY-3C GNOS, and thus both zero-difference and single-difference excess phase processing methods should be feasible for FY-3C GNOS observations. In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing, in order to investigate the zero-difference feasibility for this new instrument, which after its launch in September 2013 started to use BDS signals from five geostationary orbit (GEO satellites, five inclined geosynchronous orbit (IGSO satellites and four medium Earth orbit (MEO satellites. We used a 3-month set of GNOS BDS RO data (October to December 2013 for the evaluation and compared atmospheric bending angle and refractivity profiles, derived from single- and zero-difference excess phase data, against co-located profiles from European Centre for Medium-Range Weather Forecasts (ECMWF analyses. We also compared against co-located refractivity profiles from radiosondes. The statistical evaluation against these reference data shows that the results from single- and zero-difference processing are reasonably consistent in both bias and standard deviation, clearly demonstrating the feasibility of zero differencing for GNOS BDS RO observations. The average bias (and standard deviation of the bending angle and refractivity profiles were found to be about 0.05 to 0.2 % (and 0.7 to 1.6 % over the upper troposphere and lower stratosphere. Zero

  18. Observations of nonadiabatic acceleration of ions in Earth's magnetotail (United States)

    Frank, L. A.; Paterson, W. R.; Kivelson, M. G.


    We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity

  19. An operational, multistate, earth observation data management system (United States)

    Eastwood, L. F., Jr.; Hays, T. R.; Hill, C. T.; Ballard, R. J.; Morgan, R. P.; Crnkovich, G. G.; Gohagan, J. K.; Schaeffer, M. A.


    The purpose of this paper is to investigate a group of potential users of satellite remotely sensed data - state, local, and regional agencies involved in natural resources management. We assess this group's needs in five states and outline alternative data management systems to serve some of those needs. We conclude that an operational Earth Observation Data Management System (EODMS) will be of most use to these user agencies if it provides a full range of information services - from raw data acquisition to interpretation and dissemination of final information products.

  20. Observing Human-induced Linkages between Urbanization and Earth's Climate System (United States)

    Shepherd, J. Marshall; Jin, Menglin


    Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world s population will live in cities. Human activity in urban environments also alters atmospheric composition; impacts components of the water cycle; and modifies the carbon cycle and ecosystems. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s atmosphere-ocean-land-biosphere components interact as a coupled system and the influence of the urban environment on this climate system is critical. The goal of the 2003 AGU Union session Human-induced climate variations on urban areas: From observations to modeling was to bring together scientists from interdisciplinary backgrounds to discuss the data, scientific approaches and recent results on observing and modeling components of the urban environment with the intent of sampling our current stand and discussing future direction on this topic. Herein, a summary and discussion of the observations component of the session are presented.

  1. ALISEO on MIOSat: an imaging interferometer for earth observation (United States)

    Barducci, A.; Castagnoli, F.; Castellini, G.; Guzzi, D.; Marcoionni, P.; Pippi, I.


    The Italian Space Agency (ASI) decided to perform an low cost Earth observation mission based on a new mini satellite named MIOsat which will carry various technological payloads. Among them an imaging interferometer designed and now ready to be assembled and tested by our Institute. The instrument, named ALISEO (Aerospace Leap-frog Imaging Stationary interferometer for Earth Observation), operates in the common-path Sagnac configuration, and it does not utilize any moving part to scan the phase delays between the two interfering beams. The sensor acquires target images modulated by a pattern of autocorrelation functions of the energy coming from each scene pixel, and the resulting fringe pattern remains spatially fixed with respect to the instrument's field-of-view. The complete interferogram of each target location is retrieved by introducing a relative source-observer motion, which allows any image pixels to be observed under different viewing-angles and experience discrete path differences. The paper describes the main characteristics of the imaging interferometer as well as the overall optical configuration and the electronics layout. Moreover some theoretical issues concerning sampling theory in "common path" imaging interferometry are investigated. The experimental activity performed in laboratory is presented and its outcomes are analysed. Particularly, a set of measurements has been carried out using both standard (certificate) reflectance tiles and natural samples of different volcanic rocks. An algorithm for raw data pre-processing aimed at retrieving the at-sensor radiance spectrum is introduced and its performance is addressed by taking into account various issues such as dark signal subtraction, spectral instrument response compensation, effects of vignetting, and Fourier backtransform. Finally, examples of retrieved absolute reflectance of several samples are sketched at different wavelengths.

  2. The SMM UV observations of Active Region 5395 (United States)

    Drake, Stephen A.; Gurman, Joseph B.


    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft was used extensively to study the spatial morphology and time variability of solar active regions in the far UV (at approx. wavelength of 1370 A) since July 1985. The normal spatial resolution of UVSP observations in this 2nd-order mode is 10 sec., and the highest temporal resolution is 64 milliseconds. To make a full-field, 4 min. by 4 min. image this wavelength using 5 sec. raster steps takes about 3 minutes. UVSP can also make observations of the Sun at approx. wavelength of 2790 with 3 sec. spatial resolution when operated in its 1st-order mode; a full-field image at this wavelength (a so-called SNEW image) takes about 8 minutes. UVSP made thousands of observations (mostly in 2nd-order) of AR 5395 during its transit across the visible solar hemisphere (from 7 to 19 March, inclusive). During this period, UVSP's duty cycle for observing AR 5395 was roughly 40 percent, with the remaining 60 percent of the time being fairly evenly divided between aeronomy studies of the Earth's atmosphere and dead time due to Earth occultation of the Sun. UVSP observed many of the flares tagged to AR 5395, including 26 GOES M-level flares and 3 X-level flares, one of which produced so much UV emission that the safety software of UVSP turned off the detector to avoid damage due to saturation. Images and light curves of some of the more spectacular of the AR 5395 events are presented.

  3. the law governing acquisition and use of earth observation data in ...

    African Journals Online (AJOL)

    Adv. Phetole P Sekhula

    authorises the South African National Space Agency (SANSA) to acquire and ... agricultural use, environmental mapping and management, disaster .... intergovernmental organisations active in the earth observation arena as well as .... The Principles identify three categories of data and each category is treated uniquely.

  4. Clinical features of secondary glaucoma caused by lens suspensory ligament laxity or occult subluxation

    Directory of Open Access Journals (Sweden)

    Yi Ma


    Full Text Available AIM: To investigate the clinical characteristics of secondary glaucoma caused by lens suspensory ligament laxity or occult subluxation, and to analyze the influence of operation on visual acuity and intraocular pressure(IOP. METHODS: Totally 38 cases(38 eyesof the secondary glaucoma caused by lens suspensory ligament laxity or occult subluxation in ophthalmology department of our hospital from December 2014 to December 2016 were enrolled and their medical records were analyzed retrospectively to observe the clinical characteristics of glaucoma. Preoperative mydriasis was carried out and surgical methods were chosen according to the lenses location and extent of suspensory ligament. Preoperative and postoperative anterior chamber depth, corneal endothelial cell density, IOP, visual field, visual acuity and complications were analyzed. RESULTS: The average intraocular pressure was 18.17±1.43mmHg at postoperatively 10d, which was significantly lower than 38.77±2.45mmHg before operation, the difference had statistical significance(PP>0.05. The postoperative anterior chamber depth was 2.45±0.44mm, which was significantly higher than 1.23±0.35mm before operation, the difference had statistical significance(P2 and decreased significantly, compared with 1735.32±340.32/mm2 before operation, the difference had statistical significance(PCONCLUSION: Clinical symptoms and signs of secondary glaucoma in patients with lens suspensory ligament laxity or occult subluxation are more complex, which needs to be distinguished with other types of glaucoma in clinical treatment, and its surgical methods shall be chosen according to different suspensory ligament site and lens subluxation scope.

  5. UARS Halogen Occultation Experiment (HALOE) Level 2 V001 (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  6. Detection of an occult transclival cerebrospinal fluid fistula by CT and MRI

    International Nuclear Information System (INIS)

    Schick, B.; Brors, D.; Draf, W.; Goedecke, A.; Prescher, A.


    We describe an unusual occult transclival cerebrospinal fluid (CSF) fistula to the sphenoid sinus demonstrated by MRI. CT was performed because of a posterior cerebral infarct caused by cardiac arrhythmia. Axial sections showed fluid in the sphenoid sinus. High-resolution scans revealed a bony defect 3 mm in diameter of the posterior wall of the sphenoid sinus, and MRI showed a transclival CSF fistula. This occult lesion was confirmed by surgery and duraplasty was successfully performed via an endonasal approach. (orig.)

  7. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis (United States)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.


    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  8. High prevalence of occult left heart disease in scleroderma-pulmonary hypertension. (United States)

    Fox, Benjamin D; Shimony, Avi; Langleben, David; Hirsch, Andrew; Rudski, Lawrence; Schlesinger, Robert; Eisenberg, Mark J; Joyal, Dominique; Hudson, Marie; Boutet, Kim; Serban, Alexandrina; Masetto, Ariel; Baron, Murray


    Our study aimed to determine the prevalence of occult left-heart disease in patients with scleroderma and pulmonary hypertension. In patients with pulmonary hypertension (mean pulmonary artery pressure (mean PAP)≥25 mmHg), differentiation between pre- and post-capillary pulmonary hypertension has been made according to pulmonary artery wedge pressure (PAWP) less than or more than 15 mmHg, respectively. We performed a retrospective chart review of 107 scleroderma patients. All patients with suspected pulmonary hypertension had routine right or left heart catheterisation with left ventricular end-diastolic pressure (LVEDP) measurement pre-/post-fluid challenge. We extracted demographic, haemodynamic and echocardiographic data. Patients were classified into one of four groups: haemodynamically normal (mean PAP15 mmHg); occult PVH (mean PAP≥25 mmHg, PAWP≤15 mmHg, LVEDP>15 mmHg before or after fluid challenge); and pulmonary arterial hypertension (PAH) (mean PAP≥25 mmHg, PAWP≤15 mmHg and LVEDP≤15 mmHg before or after fluid challenge). 53 out of 107 patients had pulmonary hypertension. Based on the PAWP-based definition, 29 out of 53 had PAH and 24 out of 53 had PVH. After considering the resting and post-fluid-challenge LVEDP, 11 PAH patients were reclassified as occult PVH. The occult PVH group was haemodynamically, echocardiographically and demographically closer to the PVH group than the PAH group. PVH had high prevalence in our scleroderma-pulmonary hypertension population. Distinguishing PAH from PVH with only PAWP may result in some PVH patients being misclassified as having PAH.

  9. An integration time adaptive control method for atmospheric composition detection of occultation (United States)

    Ding, Lin; Hou, Shuai; Yu, Fei; Liu, Cheng; Li, Chao; Zhe, Lin


    When sun is used as the light source for atmospheric composition detection, it is necessary to image sun for accurate identification and stable tracking. In the course of 180 second of the occultation, the magnitude of sun light intensity through the atmosphere changes greatly. It is nearly 1100 times illumination change between the maximum atmospheric and the minimum atmospheric. And the process of light change is so severe that 2.9 times per second of light change can be reached. Therefore, it is difficult to control the integration time of sun image camera. In this paper, a novel adaptive integration time control method for occultation is presented. In this method, with the distribution of gray value in the image as the reference variable, and the concepts of speed integral PID control, the integration time adaptive control problem of high frequency imaging. The large dynamic range integration time automatic control in the occultation can be achieved.

  10. Synthetic aperture lidar as a future tool for earth observation (United States)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain


    Synthetic aperture radar (SAR) is a tool of prime importance for Earth observation; it provides day and night capabilities in various weather conditions. State-of-the-art satellite SAR systems are a few meters in height and width and achieve resolutions of less than 1 m with revisit times on the order of days. Today's Earth observation needs demand higher resolution imaging together with timelier data collection within a compact low power consumption payload. Such needs are seen in Earth Observation applications such as disaster management of earthquakes, landslides, forest fires, floods and others. In these applications the availability of timely reliable information is critical to assess the extent of the disaster and to rapidly and safely deploy rescue teams. Synthetic aperture lidar (SAL) is based on the same basic principles as SAR. Both rely on the acquisition of multiple electromagnetic echoes to emulate a large antenna aperture providing the ability to produce high resolution images. However, in SAL, much shorter optical wavelengths (1.5 μm) are used instead of radar ones (wavelengths around 3 cm). Resolution being related to the wavelength, multiple orders of magnitude of improvement could be theoretically expected. Also, the sources, the detector, and the components are much smaller in optical domain than those for radar. The resulting system can thus be made compact opening the door to deployment onboard small satellites, airborne platforms and unmanned air vehicles. This has a strong impact on the time required to develop, deploy and use a payload. Moreover, in combination with airborne deployment, revisit times can be made much smaller and accessibility to the information can become almost in real-time. Over the last decades, studies from different groups have been done to validate the feasibility of a SAL system for 2D imagery and more recently for 3D static target imagery. In this paper, an overview of the advantages of this emerging technology will

  11. Advancing land surface model development with satellite-based Earth observations (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo


    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  12. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques

    Directory of Open Access Journals (Sweden)

    M. Flach


    Full Text Available Today, many processes at the Earth's surface are constantly monitored by multiple data streams. These observations have become central to advancing our understanding of vegetation dynamics in response to climate or land use change. Another set of important applications is monitoring effects of extreme climatic events, other disturbances such as fires, or abrupt land transitions. One important methodological question is how to reliably detect anomalies in an automated and generic way within multivariate data streams, which typically vary seasonally and are interconnected across variables. Although many algorithms have been proposed for detecting anomalies in multivariate data, only a few have been investigated in the context of Earth system science applications. In this study, we systematically combine and compare feature extraction and anomaly detection algorithms for detecting anomalous events. Our aim is to identify suitable workflows for automatically detecting anomalous patterns in multivariate Earth system data streams. We rely on artificial data that mimic typical properties and anomalies in multivariate spatiotemporal Earth observations like sudden changes in basic characteristics of time series such as the sample mean, the variance, changes in the cycle amplitude, and trends. This artificial experiment is needed as there is no gold standard for the identification of anomalies in real Earth observations. Our results show that a well-chosen feature extraction step (e.g., subtracting seasonal cycles, or dimensionality reduction is more important than the choice of a particular anomaly detection algorithm. Nevertheless, we identify three detection algorithms (k-nearest neighbors mean distance, kernel density estimation, a recurrence approach and their combinations (ensembles that outperform other multivariate approaches as well as univariate extreme-event detection methods. Our results therefore provide an effective workflow to

  13. Distributed Space Mission Design for Earth Observation Using Model-Based Performance Evaluation (United States)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Cervantes, Ben; DeWeck, Oliver


    Distributed Space Missions (DSMs) are gaining momentum in their application to earth observation missions owing to their unique ability to increase observation sampling in multiple dimensions. DSM design is a complex problem with many design variables, multiple objectives determining performance and cost and emergent, often unexpected, behaviors. There are very few open-access tools available to explore the tradespace of variables, minimize cost and maximize performance for pre-defined science goals, and therefore select the most optimal design. This paper presents a software tool that can multiple DSM architectures based on pre-defined design variable ranges and size those architectures in terms of predefined science and cost metrics. The tool will help a user select Pareto optimal DSM designs based on design of experiments techniques. The tool will be applied to some earth observation examples to demonstrate its applicability in making some key decisions between different performance metrics and cost metrics early in the design lifecycle.

  14. Disparities in the receipt of fecal occult blood test versus endoscopy among Filipino American immigrants. (United States)

    Maxwell, Annette E; Danao, Leda L; Crespi, Catherine M; Antonio, Cynthia; Garcia, Gabriel M; Bastani, Roshan


    This report examines disparities associated with the type of colorectal screening test, fecal occult blood test versus endoscopy, within a particular racial/ethnic group, Filipino American immigrants. Between July 2005 and October 2006, Filipino Americans aged 50 to 75 years from 31 community organizations in Los Angeles completed a 15-minute survey in English (65%) or Filipino (35%). Of the 487 respondents included in this analysis, 257 (53%) had never received any type of colorectal cancer screening. Among the 230 subjects who had ever received a routine screening test, 78 had fecal occult blood test only (16% of the total sample), and 152 had endoscopy with or without fecal occult blood test (31% of the total sample). After controlling for access to care and key demographic variables in a multivariate analysis, only two characteristics distinguished between respondents who had fecal occult blood test only versus those who had endoscopy: acculturation, assessed by percent lifetime in the United States and language of interview, and income. Our data suggest a two-tier system, fecal occult blood test for less acculturated Filipino Americans with lower income versus endoscopy for Filipino immigrants with higher levels of acculturation and income. The disparity persists after adjusting for access to care. Instead of treating minority groups as monolithic, differences within groups need to be examined so that interventions can be appropriately targeted.

  15. Detection of an occult transclival cerebrospinal fluid fistula by CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Schick, B.; Brors, D.; Draf, W. [Department of Ear, Nose and Throat Diseases, Head, Neck and Facial Plastic Surgery, Marburg Univ. (Germany); Goedecke, A. [Department of Radiology, Academic Teaching Hospital, Fulda (Germany); Prescher, A. [Department of Anatomy and Embryology, University Medical School, RWTH, Aachen (Germany)


    We describe an unusual occult transclival cerebrospinal fluid (CSF) fistula to the sphenoid sinus demonstrated by MRI. CT was performed because of a posterior cerebral infarct caused by cardiac arrhythmia. Axial sections showed fluid in the sphenoid sinus. High-resolution scans revealed a bony defect 3 mm in diameter of the posterior wall of the sphenoid sinus, and MRI showed a transclival CSF fistula. This occult lesion was confirmed by surgery and duraplasty was successfully performed via an endonasal approach. (orig.) With 3 figs., 19 refs.

  16. Cassini-VIMS at Jupiter: Solar occultation measurements using Io (United States)

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.


    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  17. Global biogeographical pattern of ecosystem functional types derived from earth observation data

    DEFF Research Database (Denmark)

    Ivits, Eva; Cherlet, Michael; Horion, Stéphanie Marie Anne F


    correspondence of the EFTs to global climate and also to land use classification. The results show the great potential of Earth Observation derived parameters for the quantification of ecosystem functional dynamics and for providing reference status information for future assessments of ecosystem changes........ The association of the EFTs with existing climate and land cover classifications was demonstrated via Detrended Correspondence Analysis (DCA). The ordination indicated good description of the global environmental gradient by the EFTs, supporting the understanding of phenological and productivity dynamics...... of global ecosystems. Climatic constraints of vegetation growth explained 50% of variation in the phenological data along the EFTs showing that part of the variation in the global phenological gradient is not climate related but is unique to the Earth Observation derived variables. DCA demonstrated good...

  18. Focal plane for the next generation of earth observation instruments (United States)

    Pranyies, P.; Toubhans, I.; Badoil, B.; Tanguy, F.; Descours, Francis


    Sodern is the French focal plane provider for Earth Observation (EO) satellites. Since the 1980's, Sodern has played an active role first in the SPOT program. Within the two-spacecraft constellation Pleiades 1A/1B over the next years, Sodern introduced advanced technologies as Silicon Carbide (SiC) focal plane structure and multispectral strip filters dedicated to multiple-lines detectors.

  19. Assessment of vegetation trends in drylands from time series of earth observation data

    NARCIS (Netherlands)

    Fensholt, R.; Horion, S.; Tagesson, T.; Ehammer, A.; Grogan, K.; Tian, F.; Huber, S.; Verbesselt, J.; Prince, S.D.; Tucker, C.J.; Rasmussen, K.


    This chapter summarizes approaches to the detection of dryland vegetation change and methods for observing spatio-temporal trends from space. An overview of suitable long-term Earth Observation (EO) based datasets for assessment of global dryland vegetation trends is provided and a status map of

  20. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.


    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements...... will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect...

  1. Occultism in an African context: a case for the Vhavenda-speaking people of the Limpopo Province

    Directory of Open Access Journals (Sweden)

    T. D. Mashau


    Full Text Available Occultism in Africa is as old as the primal religion itself, or what came to be known as African Traditional Religion (ATR in mo- dern times. It dates back to time immemorial. Occultism in Africa has taken various forms and has manifested in different ways over the ages, i.e. spiritism, divination, witchcraft and ma- gic. The underlying premise of African occultism is the belief in a spiritual world with spiritual forces that have power to inflict harm on the living. In the traditional African worldview suffering of every sort – illness, barrenness, drought and death – is nor- mally explained in personal terms: “there is always somebody”. This “somebody” often belongs to the world of the occult: a “spirit” has brought pain to human beings and must therefore be repelled or accommodated. This is very common among the Vhavenda-speaking people of the Limpopo Province. This ar- ticle seeks to investigate how occultism is practised among these people and to provide a reformed perspective as to how people who are suffering under demonic attacks can be helped. Contrary to other Christian traditions that see exorcism as the only way out, reformed theology suggests a missio-pastoral approach in dealing with the problem.

  2. Recommendations to Improve Downloads of Large Earth Observation Data

    Directory of Open Access Journals (Sweden)

    Rahul Ramachandran


    Full Text Available With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way these data are processed, analyzed, and visualized. Collocating freely available Earth observation data on a cloud computing infrastructure may create opportunities unforeseen by the original data provider for innovation and value-added data re-use, but existing systems at data centers are not designed for supporting requests for large data transfers. A lack of common methodology necessitates that each data center handle such requests from different cloud vendors differently. Guidelines are needed to support enabling all cloud vendors to utilize a common methodology for bulk-downloading data from data centers, thus preventing the providers from building custom capabilities to meet the needs of individual vendors. This paper presents recommendations distilled from use cases provided by three cloud vendors (Amazon, Google, and Microsoft and are based on the vendors’ interactions with data systems at different Federal agencies and organizations. These specific recommendations range from obvious steps for improving data usability (such as ensuring the use of standard data formats and commonly supported projections to non-obvious undertakings important for enabling bulk data downloads at scale. These recommendations can be used to evaluate and improve existing data systems for high-volume data transfers, and their adoption can lead to cloud vendors utilizing a common methodology.

  3. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos


    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  4. Incidence of occult leiomyosarcoma in presumed morcellation cases: a database study. (United States)

    Rodriguez, Ana M; Asoglu, Mehmet R; Sak, Muhammet Erdal; Tan, Alai; Borahay, Mostafa A; Kilic, Gokhan S


    Our objective was to estimate the incidence of uterine leiomyosarcoma in patients with leiomyomas following laparoscopic supracervical hysterectomy and myomectomy procedures. For this study, we analyzed records of 13,964 women aged 25-64 years who underwent laparoscopic supracervical hysterectomies or myomectomies for leiomyomas from 2002 to 2011 using Clinformatics DataMart. Patient records were divided into two groups: history of laparoscopic supracervical hysterectomy and history of myomectomy. Subjects were tracked to identify diagnosis of leiomyosarcoma within 1 year of the procedure. We analyzed data from the 25-39, 40-49, and 50-64 age brackets. Evidence was obtained from a cohort study from national private insurance claims in the US. Our results showed the incidence of occult leiomyosarcoma developing within 1 year following supracervical hysterectomy using a laparoscopic-assisted approach are 9.8, 10.7, and 33.4 per 10,000 for the 25-39, 40-49, and 50-64 age brackets, respectively; the overall incidence rate is 13.1 per 10,000. The incidence rate of occult leiomyosarcoma developing within 1 year following myomectomy using a laparoscopic-assisted approach are 0.0, 33.8, and 90.1 per 10,000 for the 25-39, 40-49, and 50-64 age brackets, respectively; the overall incidence rate is 17.3 per 10,000. Our analysis shows the overall risk of being diagnosed with occult leiomyosarcoma is 12.9 per 10,000 in laparoscopic-assisted supracervical hysterectomy and myomectomy for patients younger than 49. There is no evidence of occult leiomyosarcoma 1 year after operation for patients younger than 40 who underwent laparoscopic myomectomy. Copyright © 2015. Published by Elsevier Ireland Ltd.

  5. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Haugstad, B.S.


    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements

  6. Vegetation Earth System Data Record from DSCOVR EPIC Observations (United States)

    Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.


    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.

  7. The “communication line” suggests occult posterior malleolar fracture associated with a spiral tibial shaft fracture

    International Nuclear Information System (INIS)

    Hou Zhiyong; Zhang Liping; Zhang Qi; Yao Shuangquan; Pan Jinshe; Irgit, Kaan; Zhang Yingze


    Objectives: To demonstrate radiographical characteristics of the relationship between distal spiral tibial shaft fractures and associated occult posterior malleolar fractures (PMF) that confirmed by CT and MRI. Materials and methods: X-rays for a ninety-six patients with spiral tibia fracture and associated PMF were reviewed. All patients additionally had an ankle CT. Patients with a negative CT scans underwent an ankle MRI. Radiographic observations included fracture location, characteristics, and a presence of a fracture line between the two injuries. Results: The spiral tibia fracture line was contiguous with PMF in 89 of 96 cases after evaluation with the CT and MRI. The line connecting the two injuries, which occurs between the medial inferior apex of the spiral tibia fracture line and the posterior superior apex of the PMF was identified as the “communication line”. In 47 of the 89 conjunction fractures, the “communication line” was detectable preoperatively and in 12 cases postoperatively by anteroposterior radiograph. By using the CT and MRI scans, we found that no “communication line” was present in only 7 cases. Conclusion: It is important to understand the nature of the association between distal spiral tibial shaft fractures and occult posterior malleolar fractures for optimal stabilization of the fracture and for appropriate rehabilitation. The “communication line” is a useful diagnostic clue for early recognition the occult PMF and alerts a closer evaluation of the lateral view and further CT examination.

  8. Radio occultation bending angle anomalies during tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, S.


    -located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock...

  9. Global Earth Observation System of Systems (GEOSS): Initial Actions to Enhance Data Sharing to Meet Societal Needs (United States)

    Adang, T.


    Over 60 nations and 50 participating organizations are working to make the Global Earth Observation System of Systems (GEOSS) a reality. The U.S. contribution to GEOSS is the Integrated Earth Observation System (IEOS), with a vision of enabling a healthy public, economy and planet through an integrated, comprehensive, and sustained Earth observation system. The international Group on Earth Observations (GEO) and the U.S. Group on Earth Observations have developed strategic plans for both GEOSS and IEOS, respectively, and are now working the first phases of implementation. Many of these initial actions are data architecture related and are being addressed by architecture and data working groups from both organizations - the GEO Architecture and Data Committee and the USGEO Architecture and Data Management Working Group. NOAA has actively participated in both architecture groups and has taken internal action to better support GEOSS and IEOS implementation by establishing the Global Earth Observation Integrated Data Environment (GEO IDE). GEO IDE provides a "system of systems" framework for effective and efficient integration of NOAA's many quasi-independent systems, which individually address diverse mandates in such areas resource management, weather forecasting, safe navigation, disaster response, and coastal mapping among others. GEO IDE will have a services oriented architecture, allowing NOAA Line Offices to retain a high level of independence in many of their data management decisions, and encouraging innovation in pursuit of their missions. Through GEO IDE, NOAA partners (both internal and external) will participate in a well-ordered, standards-based data and information infrastructure that will allow users to easily locate, acquire, integrate and utilize NOAA data and information. This paper describes the initial progress being made by GEO and USGEO architecture and data working groups, a status report on GEO IDE development within NOAA, and an assessment of

  10. Siberian Earth System Science Cluster - A web-based Geoportal to provide user-friendly Earth Observation Products for supporting NEESPI scientists (United States)

    Eberle, J.; Gerlach, R.; Hese, S.; Schmullius, C.


    To provide earth observation products in the area of Siberia, the Siberian Earth System Science Cluster (SIB-ESS-C) was established as a spatial data infrastructure at the University of Jena (Germany), Department for Earth Observation. This spatial data infrastructure implements standards published by the Open Geospatial Consortium (OGC) and the International Organizsation for Standardization (ISO) for data discovery, data access, data processing and data analysis. The objective of SIB-ESS-C is to faciliate environmental research and Earth system science in Siberia. The region for this project covers the entire Asian part of the Russian Federation approximately between 58°E - 170°W and 48°N - 80°N. To provide discovery, access and analysis services a webportal was published for searching and visualisation of available data. This webportal is based on current web technologies like AJAX, Drupal Content Management System as backend software and a user-friendly surface with Drag-n-Drop and further mouse events. To have a wide range of regular updated earth observation products, some products from sensor MODIS at the satellites Aqua and Terra were processed. A direct connection to NASA archive servers makes it possible to download MODIS Level 3 and 4 products and integrate it in the SIB-ESS-C infrastructure. These data can be downloaded in a file format called Hierarchical Data Format (HDF). For visualisation and further analysis, this data is reprojected, converted to GeoTIFF and global products clipped to the project area. All these steps are implemented as an automatic process chain. If new MODIS data is available within the infrastructure this process chain is executed. With the link to a MODIS catalogue system, the system gets new data daily. With the implemented analysis processes, timeseries data can be analysed, for example to plot a trend or different time series against one another. Scientists working in this area and working with MODIS data can make use

  11. Low-Cost Small Satellite Atmospheric Rotating Solar Occultation Imager (ROI) (United States)

    National Aeronautics and Space Administration — Utilizing a unique, new occultation technique involving imaging, the ROI concept will meet or exceed the quality of SAGE measurements at a small fraction of the...

  12. ESA web mapping activities applied to Earth observation (United States)

    Caspar, C.; Petiteville, I.; Kohlhammer, G.; Tandurella, G.


    Thousands of Earth Observation satellite instrument products are generated daily, in a multitude of formats, using a variety of projection coordinate sytems. This diversity is a barrier to the development of EO multi-mission-based applications and prevents the merging of EO data with GIS data, which is requested by the user community (value-added companies, serivce providers, scientists, institutions, commercial users, and academic users). The web mapping technologies introduced in this article represent an elegant and low-technologies introduced in this article represent an elegant and low-cost solution. The extraordinary added value that is achieved may be considered a revolution in the use of EO data products.

  13. Mission operations concepts for Earth Observing System (EOS) (United States)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.


    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  14. Development of the Earth Observation Camera of MIRIS

    Directory of Open Access Journals (Sweden)

    Dae-Hee Lee


    Full Text Available We have designed and manufactured the Earth observation camera (EOC of multi-purpose infrared imaging system (MIRIS. MIRIS is a main payload of the STSAT-3, which will be launched in late 2012. The main objective of the EOC is to test the operation of Korean IR technology in space, so we have designed the optical and mechanical system of the EOC to fit the IR detector system. We have assembled the flight model (FM of EOC and performed environment tests successfully. The EOC is now ready to be integrated into the satellite system waiting for operation in space, as planned.

  15. Earth Observation for the Preservation of the Bacalar Area (United States)

    Guida, Raffaella; Iervolino, Pasquale; Freemantle, Terri; Spittle, Stephen; Minchella, Andrea; Marti, Paula; Napiorkowska, Milena; Howard, Gemma; Hernandez Arana, Hector; Cabrera Alvarado, Sandra


    Near-Real-Time applications have been designed to monitor the impact of human activities in the Bacalar region in Mexico. In particular, Synthetic Aperture Radar (SAR) and optical images have been used for this purpose and satellite derived products have been created to study urban growth, change of mangrove cover over time, and land use. The Earth Observation (EO) derived products have been integrated into a web-based geospatial data platform developed under the project, with the aim of allowing ease of data visualisation and manipulation.

  16. Earth observations during Space Shuttle mission STS-45 Mission to Planet Earth - March 24-April 2, 1992 (United States)

    Pitts, David E.; Helfert, Michael R.; Lulla, Kamlesh P.; Mckay, Mary F.; Whitehead, Victor S.; Amsbury, David L.; Bremer, Jeffrey; Ackleson, Steven G.; Evans, Cynthia A.; Wilkinson, M. J.


    A description is presented of the activities and results of the Space Shuttle mission STS-45, known as the Mission to Planet Earth. Observations of Mount St. Helens, Manila Bay and Mt. Pinatubo, the Great Salt Lake, the Aral Sea, and the Siberian cities of Troitsk and Kuybyshev are examined. The geological features and effects of human activity seen in photographs of these areas are pointed out.

  17. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations (United States)

    Koskinen, T. T.; Guerlet, S.


    We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.

  18. Naval EarthMap Observer: overview and data processing (United States)

    Bowles, Jeffrey H.; Davis, Curtiss O.; Carney, Megan; Clamons, Dean; Gao, Bo-Cai; Gillis, David; Kappus, Mary E.; Lamela, G.; Montes, Marcos J.; Palmadesso, Peter J.; Rhea, J.; Snyder, William A.


    We present an overview of the Naval EarthMap Observer (NEMO) spacecraft and then focus on the processing of NEMO data both on-board the spacecraft and on the ground. The NEMO spacecraft provides for Joint Naval needs and demonstrates the use of hyperspectral imagery for the characterization of the littoral environment and for littoral ocean model development. NEMO is being funded jointly by the U.S. government and commercial partners. The Coastal Ocean Imaging Spectrometer (COIS) is the primary instrument on the NEMO and covers the spectral range from 400 to 2500 nm at 10-nm resolution with either 30 or 60 m work GSD. The hyperspectral data is processed on-board the NEMO using NRL's Optical Real-time Automated Spectral Identification System (ORASIS) algorithm that provides for real time analysis, feature extraction and greater than 10:1 data compression. The high compression factor allows for ground coverage of greater than 106 km2/day. Calibration of the sensor is done with a combination of moon imaging, using an onboard light source and vicarious calibration using a number of earth sites being monitored for that purpose. The data will be atmospherically corrected using ATREM. Algorithms will also be available to determine water clarity, bathymetry and bottom type.

  19. Enhancing Earth Observation and Modeling for Tsunami Disaster Response and Management (United States)

    Koshimura, Shunichi; Post, Joachim


    In the aftermath of catastrophic natural disasters, such as earthquakes and tsunamis, our society has experienced significant difficulties in assessing disaster impact in the limited amount of time. In recent years, the quality of satellite sensors and access to and use of satellite imagery and services has greatly improved. More and more space agencies have embraced data-sharing policies that facilitate access to archived and up-to-date imagery. Tremendous progress has been achieved through the continuous development of powerful algorithms and software packages to manage and process geospatial data and to disseminate imagery and geospatial datasets in near-real time via geo-web-services, which can be used in disaster-risk management and emergency response efforts. Satellite Earth observations now offer consistent coverage and scope to provide a synoptic overview of large areas, repeated regularly. These can be used to compare risk across different countries, day and night, in all weather conditions, and in trans-boundary areas. On the other hand, with use of modern computing power and advanced sensor networks, the great advances of real-time simulation have been achieved. The data and information derived from satellite Earth observations, integrated with in situ information and simulation modeling provides unique value and the necessary complement to socio-economic data. Emphasis also needs to be placed on ensuring space-based data and information are used in existing and planned national and local disaster risk management systems, together with other data and information sources as a way to strengthen the resilience of communities. Through the case studies of the 2011 Great East Japan earthquake and tsunami disaster, we aim to discuss how earth observations and modeling, in combination with local, in situ data and information sources, can support the decision-making process before, during and after a disaster strikes.

  20. The DEVELOP National Program: Building Dual Capacity in Decision Makers and Young Professionals Through NASA Earth Observations (United States)

    Childs, L. M.; Rogers, L.; Favors, J.; Ruiz, M.


    Through the years, NASA has played a distinct/important/vital role in advancing Earth System Science to meet the challenges of environmental management and policy decision making. Within NASA's Earth Science Division's Applied Sciences' Program, the DEVELOP National Program seeks to extend NASA Earth Science for societal benefit. DEVELOP is a capacity building program providing young professionals and students the opportunity to utilize NASA Earth observations and model output to demonstrate practical applications of those resources to society. Under the guidance of science advisors, DEVELOP teams work in alignment with local, regional, national and international partner organizations to identify the widest array of practical uses for NASA data to enhance related management decisions. The program's structure facilitates a two-fold approach to capacity building by fostering an environment of scientific and professional development opportunities for young professionals and students, while also providing end-user organizations enhanced management and decision making tools for issues impacting their communities. With the competitive nature and growing societal role of science and technology in today's global workplace, DEVELOP is building capacity in the next generation of scientists and leaders by fostering a learning and growing environment where young professionals possess an increased understanding of teamwork, personal development, and scientific/professional development and NASA's Earth Observation System. DEVELOP young professionals are partnered with end user organizations to conduct 10 week feasibility studies that demonstrate the use of NASA Earth science data for enhanced decision making. As a result of the partnership, end user organizations are introduced to NASA Earth Science technologies and capabilities, new methods to augment current practices, hands-on training with practical applications of remote sensing and NASA Earth science, improved remote

  1. Results from Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations (United States)

    Orton, G. S.; Bolton, S. J.; Levin, S.; Hansen, C. J.; Janssen, M. A.; Adriani, A.; Gladstone, R.; Bagenal, F.; Ingersoll, A. P.; Momary, T.; Payne, A.


    The Juno mission has promoted and coordinated a network of Earth-based observations, including both space- and ground-based facilities, to extend and enhance observations made by the Juno mission. The spectral region and timeline of all of these observations are summarized in the web site: Among the earliest of these were observation of Jovian auroral phenomena at X-ray, ultraviolet and infrared wavelengths and measurements of Jovian synchrotron radiation from the Earth simultaneously with the measurement of properties of the upstream solar wind described elsewhere in this meeting. Other observations of significance to the magnetosphere measured the mass loading from Io by tracking its observed volcanic activity and the opacity of its torus. Observations of Jupiter's neutral atmosphere included observations of reflected sunlight from the near-ultraviolet through the near-infrared and thermal emission from 5 microns through the radio region. The point of these measurements is to relate properties of the deep atmosphere that are the focus of Juno's mission to the state of the "weather layer" at much higher atmospheric levels. These observations cover spectral regions not included in Juno's instrumentation, provide spatial context for Juno's often spatially limited coverage of Jupiter, and they describe the evolution of atmospheric features in time that are measured only once by Juno. We will summarize the results of measurements during the approach phase of the mission that characterized the state of the atmosphere, as well as observations made by Juno and the supporting campaign during Juno's perijoves 1 (August 27), 2 (October 19), 3 (November 2), 4 (November 15), and 5 (November 30). The Juno mission also benefited from the enlistment of a network of dedicated amateur astronomers who, besides providing input needed for public operation of the JunoCam visible camera, tracked the evolution of features in Jupiter

  2. Digital solar edge tracker for the Halogen Occultation Experiment (United States)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.


    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  3. CubeSat Nighttime Earth Observations (United States)

    Pack, D. W.; Hardy, B. S.; Longcore, T.


    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  4. Significance of occult hbv infection in patients with chronic hepatitis c

    International Nuclear Information System (INIS)

    Anwar, W.; Sarwar, M.; Saif, M.; Hussain, A.B.; Tariq, W.Z.


    Objective: To determine the frequency of occurrence of occult Hepatitis B infection in chronic hepatitis C patients and its impact (if any) on the effectivity of standard chronic hepatitis C treatment. Design: Quasi-experimental study. Place and Duration of Study: The study was conducted at the Department of Medicine, Military Hospital, Rawalpindi, and Virology Department, Armed Forces Institute of Pathology, Rawalpindi, for a period of nine months from January 2003 to September 2003. Patients and Methods: This study was conducted on 30 HBsAg negative patients with chronic hepatitis C liver disease who were receiving combination therapy with interferon and ribavirin. Occult hepatitis B infection was assessed by carrying out HBV DNA by polymerase chain reaction (PCR) in the sera of these patients. Markers of previous hepatitis B infection Le; anti-HBs and total anti-HBc antibodies were also tested. Response to treatment for hepatitis C (with interferon and ribavirin) was assessed at the end of six months of therapy by measuring ALT levels and HCV RNA by PCR in the serum. Results: In our study only one patient (3.33%) was found to be harbouring HBV DNA in the serum detectable by PCR, with markers of previous HBV infection (both anti HBc antibodies and anti HBs antibodies were positive). A total 14 patients (46.67%) had markers of previous HBV infection, while 16 patients (53.33%) had no such sero markers. Twenty five out of 30 patients (83.33%) responded to treatment and 5 (16.66%) turned out to be non-responders. The single case of occult hepatitis B detected in this study responded to hepatitis C treatment. Conclusion: Occult hepatitis B is not a common occurrence in chronic hepatitis C patients and it did not alter the outcome of treatment for hepatitis C in our study. (author)

  5. Symptoms of thyrotoxicosis, bone metabolism and occult atrial fibrillation in older women with mild endogenous subclinical hyperthyroidism. (United States)

    Rosario, Pedro Weslley; Carvalho, Marina; Calsolari, Maria Regina


    The objective of this study was to evaluate symptoms of thyrotoxicosis, bone turnover, bone mineral density (BMD) and occult atrial fibrillation (AF) in women ≥65 years with mild endogenous subclinical hyperthyroidism (SCH). Cross-sectional and case-control study. Signs and symptoms of thyrotoxicosis, serum carboxyterminal telopeptide (CTx) and procollagen type I N-terminal propeptide (PINP), BMD, resting electrocardiogram (ECG) and 72-h ECG monitoring were evaluated in 180 women ≥65 years, including 90 with mild SCH (TSH between 0·1 and 0·4 mIU/l) and 90 euthyroid controls matched for age and body mass index. Symptom Rating Scale scores did not differ between patients and controls. None of the patients with SCH scored 20 points, a score compatible with clinical thyrotoxicosis. Eighty patients with SCH (89%) obtained seven or fewer points, a score compatible with euthyroidism. No difference in serum CTx or PINP concentrations was observed between patients and controls. There was also no correlation between these markers and TSH, free T4 or total T3 levels. Finally, no difference in femoral neck or lumbar spine BMD was observed between patients with SCH and controls. Three patients with SCH (3·3%) and two euthyroid women (2·2%) had known AF or AF in the resting ECG. ECG monitoring for 72 h revealed episodes of occult AF in 1/87 patients with SCH and in 1/88 euthyroid women (1·1%). Mild endogenous SCH (TSH between 0·1 and 0·4 mIU/l) was not associated with symptoms of thyrotoxicosis, altered bone metabolism or a higher prevalence of occult AF in women ≥65 years. © 2015 John Wiley & Sons Ltd.

  6. Fecal Occult Blood Test (FOBT): MedlinePlus Lab Test Information (United States)

    ... caused by a variety of conditions, including: Polyps Hemorrhoids Diverticulosis Ulcers Colitis , a type of inflammatory bowel ... on a fecal occult blood test include ulcers, hemorrhoids, polyps, and benign tumors. If your test results ...


    Shifera, Amde Selassie; Pennesi, Mark E; Yang, Paul; Lin, Phoebe


    To determine whether ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute zonal occult outer retinopathy correlated well with perimetry, optical coherence tomography, and electroretinography findings. Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables, and Mann-Whitney U test used for comparisons of nonparametric continuous variables. All eyes examined within 3 months of symptom onset (five of the five eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard fundus autofluorescence centered on the fovea. There were 3 patterns of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). The UWFFAF lesions corresponded well with perimetric, optical coherence tomography, and electroretinography abnormalities. The UWFFAF along with optical coherence tomography can be useful in the evaluation and monitoring of acute zonal occult outer retinopathy patients.

  8. Occult spontaneous lateral intrasphenoidal encephalocele: A rare presentation

    Directory of Open Access Journals (Sweden)

    Shahina Bano


    Full Text Available Basal encephaloceles are extremely rare congenital malformations. Advanced cross-sectional imaging modalities like computed tomography and magnetic resonance imaging are necessary for diagnosing the asymptomatic, occult basal encephalocele and planning the surgical approach. We present an interesting case of clinically silent right-sided lateral intrasphenoidal encephalocele through a large bony defect.

  9. Observing the Earth from an Astronaut's View - Applied Remote Sensing in Schools (United States)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Kerstin, Voß


    Since spring 2014, NASA conducts the High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS). HDEV consists of four cameras mounted at ESA's Columbus laboratory. They continuously observe our earth in three different perspectives. Hence, they provide not only footage showing the Sun and the Moon rising and setting but also regular images of landscapes that are difficult to access, such as mountain ranges, deserts, and tropical rainforests. The German educational project "Columbus Eye", which is executed by the University of Bonn and is funded by the German Aerospace Center (DLR), aims at the implementation of the HDEV imagery and videos in a teaching portal: Pupils should be motivated to work with the footage in order to learn about pattern and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal ( Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 7 years since FIS' kickoff. The talk presents the educational valorization of ISS and satellite borne imagery data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular STEM curricula. A report of first experiences of a nationwide road show accompanying the mission of the ESA astronaut Alexander Gerst will be given. Among others it involved an event during which pupils from a secondary school in North Rhine-Westphalia have talked to the astronaut via ham radio. Accordingly, the presentation addresses the question of how synergies of human

  10. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.


    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  11. Vaginal prolapse repair with or without a midurethral sling in women with genital prolapse and occult stress urinary incontinence: a randomized trial. (United States)

    van der Ploeg, J Marinus; Oude Rengerink, Katrien; van der Steen, Annemarie; van Leeuwen, Jules H Schagen; van der Vaart, C Huub; Roovers, Jan-Paul W R


    We compared pelvic organ prolapse (POP) repair with and without midurethral sling (MUS) in women with occult stress urinary incontinence (SUI). This was a randomized trial conducted by a consortium of 13 teaching hospitals assessing a parallel cohort of continent women with symptomatic stage II or greater POP. Women with occult SUI were randomly assigned to vaginal prolapse repair with or without MUS. Women without occult SUI received POP surgery. Main outcomes were the absence of SUI at the 12-month follow-up based on the Urogenital Distress Inventory and the need for additional treatment for SUI. We evaluated 231 women, of whom 91 randomized as follows: 43 to POP surgery with and 47 without MUS. A greater number of women in the MUS group reported absence of SUI [86 % vs. 48 %; relative risk (RR) 1.79; 95 % confidence interval (CI) 1.29-2.48]. No women in the MUS group received additional treatment for postoperative SUI; six (13 %) in the control group had a secondary MUS. Women with occult SUI reported more urinary symptoms after POP surgery and more often underwent treatment for postoperative SUI than women without occult SUI. Women with occult SUI had a higher risk of reporting SUI after POP surgery compared with women without occult SUI. Adding a MUS to POP surgery reduced the risk of postoperative SUI and the need for its treatment in women with occult SUI. Of women with occult SUI undergoing POP-only surgery, 13 % needed additional MUS. We found no differences in global impression of improvement and quality of life.

  12. Transforming Science Data for GIS: How to Find and Use NASA Earth Observation Data Without Being a Rocket Scientist (United States)

    Bagwell, Ross; Peters, Byron; Berrick, Stephen


    NASAs Earth Observing System Data Information System (EOSDIS) manages Earth Observation satellites and the Distributed Active Archive Centers (DAACs), where the data is stored and processed. The challenge is that Earth Observation data is complicated. There is plenty of data available, however, the science teams have had a top-down approach: define what it is you are trying to study -select a set of satellite(s) and sensor(s), and drill down for the data.Our alternative is to take a bottom-up approach using eight environmental fields of interest as defined by the Group on Earth Observations (GEO) called Societal Benefit Areas (SBAs): Disaster Resilience (DR) Public Health Surveillance (PHS) Energy and Mineral Resource Management (EMRM) Water Resources Management (WRM) Infrastructure and Transport Management (ITM) Sustainable Urban Development (SUD) Food Security and Sustainable Agriculture (FSSA) Biodiversity and Ecosystems Sustainability (BES).

  13. Subfracture insult to the human cadaver patellofemoral joint produces occult injury. (United States)

    Atkinson, P J; Haut, R C


    The current criterion used by the automotive industry for injury to the lower extremity is based on visible bone fracture. Studies suggest, however, that chronic joint degeneration may occur after subfracture impact loads on the knee. We hypothesized that subfracture loading of the patellofemoral joint could result in previously undocumented microtrauma in areas of high contact pressure. In the current study, seven patellofemoral joints from human cadavers were subjected to impact with successively greater energy until visible fracture was noted. Transverse and comminuted fractures of the patella were noted at 6.7 kN of load. Approximately 45% of the impact energy then was delivered to the contralateral joint. Subfracture loads of 5.2 kN resulted in no gross bone fracture in five of seven specimens. Histological examination of the patellae horizontal split fracture in the subchondral bone, at the tidemark, or at the interface of calcified cartilage and subchondral bone. The trauma appeared predominantly on the lateral facet, adjacent to or directly beneath preexisting fibrillation of the articular surface. Surface fibrillation was noted in histological sections of control patellae (not subjected to impact loading), but occult damages were not observed. Although the mechanism of this occult trauma is unknown, similar damage has been shown to occur from direct shear loading. As these microcracks can potentiate a disease process in the joint, this study may suggest that the current criterion for injury, based on bone fracture alone, is not sufficiently conservative.

  14. Determining characteristics of artificial near-Earth objects using observability analysis (United States)

    Friedman, Alex M.; Frueh, Carolin


    Observability analysis is a method for determining whether a chosen state of a system can be determined from the output or measurements. Knowledge of state information availability resulting from observability analysis leads to improved sensor tasking for observation of orbital debris and better control of active spacecraft. This research performs numerical observability analysis of artificial near-Earth objects. Analysis of linearization methods and state transition matrices is performed to determine the viability of applying linear observability methods to the nonlinear orbit problem. Furthermore, pre-whitening is implemented to reformulate classical observability analysis. In addition, the state in observability analysis is typically composed of position and velocity; however, including object characteristics beyond position and velocity can be crucial for precise orbit propagation. For example, solar radiation pressure has a significant impact on the orbit of high area-to-mass ratio objects in geosynchronous orbit. Therefore, determining the time required for solar radiation pressure parameters to become observable is important for understanding debris objects. In order to compare observability analysis results with and without measurement noise and an extended state, quantitative measures of observability are investigated and implemented.

  15. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Kass, Steve; Huber, Silvia


    The Water Observation and Information System (WOIS) is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO) data. The WOIS has been developed by, among others, the authors of this paper under the TIGER......-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA) and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed...... to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements...

  16. Land and Atmosphere Near-Real-Time Capability for Earth Observing System (United States)

    Murphy, Kevin J.


    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  17. Neurogenic bladder from occult herpes zoster. (United States)

    Rothrock, J F; Walicke, P A; Swenson, M R


    Active infection with herpes zoster may cause acute urinary retention, especially when it involves sacral dermatomes. Although frank retention usually develops days to weeks after eruption of the typical rash, bladder incompetence infrequently develops first, raising concern over other, more ominous etiologies. In the case presented, rash appearance was delayed until six weeks after the initial onset of urinary retention, a much longer interval than previously reported. Occult herpes zoster infection should be considered in patients presenting with an acute neurogenic bladder of obscure cause.

  18. Validation of Refractivity Profiles Retrieved from FORMOSAT-3/COSMIC Radio Occultation Soundings: Preliminary Results of Statistical Comparisons Utilizing Balloon-Borne Observations

    Directory of Open Access Journals (Sweden)

    Hiroo Hayashi


    Full Text Available The GPS radio occultation (RO soundings by the FORMOSAT-3/COSMIC (Taiwan¡¦s Formosa Satellite Misssion #3/Constellation Observing System for Meteorology, Ionosphere and Climate satellites launched in mid-April 2006 are compared with high-resolution balloon-borne (radiosonde and ozonesonde observations. This paper presents preliminary results of validation of the COSMIC RO measurements in terms of refractivity through the troposphere and lower stratosphere. With the use of COSMIC RO soundings within 2 hours and 300 km of sonde profiles, statistical comparisons between the collocated refractivity profiles are erformed for some tropical regions (Malaysia and Western Pacific islands where moisture-rich air is expected in the lower troposphere and for both northern and southern polar areas with a very dry troposphere. The results of the comparisons show good agreement between COSMIC RO and sonde refractivity rofiles throughout the troposphere (1 - 1.5% difference at most with a positive bias generally becoming larger at progressively higher altitudes in the lower stratosphere (1 - 2% difference around 25 km, and a very small standard deviation (about 0.5% or less for a few kilometers below the tropopause level. A large standard deviation of fractional differences in the lowermost troposphere, which reaches up to as much as 3.5 - 5%at 3 km, is seen in the tropics while a much smaller standard deviation (1 - 2% at most is evident throughout the polar troposphere.

  19. Long-term comparison of the ionospheric F2 layer electron density peak derived from ionosonde data and Formosat-3/COSMIC occultations

    Directory of Open Access Journals (Sweden)

    Limberger Marco


    Full Text Available Electron density profiles (EDPs derived from GNSS radio occultation (RO measurements provide valuable information on the vertical electron density structure of the ionosphere and, among others, allow the extraction of key parameters such as the maximum electron density NmF2 and the corresponding peak height hmF2 of the F2 layer. An efficient electron density retrieval method, developed at the UPC (Barcelona, Spain, has been applied in this work to assess the accuracy of NmF2and hmF2 as determined from Formosat-3/COSMIC (F-3/C radio occultation measurements for a period of more than half a solar cycle between 2006 and 2014. Ionosonde measurements of the Space Physics Interactive Data Resource (SPIDR network serve as a reference. Investigations on the global trend as well as comparisons of the F2 layer electron density peaks derived from both occultations and ionosonde measurements are carried out. The studies are performed in the global domain and with the distinction of different latitude sectors around the magnetic equator ±[0°, 20°], ±]20°, 60°] and ±]60°, 90°] and local times (LT accounting for different ionospheric conditions at night (02:00 LT ± 2 h, dawn (08:00 LT ± 2 h, and day (14:00 LT ± 2 h. The mean differences of F2 layer electron density peaks observed by F-3/C and ionosondes are found to be insignificant. Relative variations of the peak differences are determined in the range of 22%–30% for NmF2 and 10%–15% for hmF2. The consistency of observations is generally high for the equatorial and mid-latitude sectors at daytime and dawn whereas degradations have been detected in the polar regions and during night. It is shown, that the global averages of NmF2 and hmF2 derived from F-3/C occultations appear as excellent indicators for the solar activity.

  20. Management of occult stress urinary incontinence with prolapse surgery. (United States)

    Al-Mandeel, H; Al-Badr, A


    Pelvic organ prolapse (POP) and stress urinary incontinence (SUI), are two common health-related conditions, each affecting up to 50% women worldwide. Stress urinary incontinence only observed after the reduction of co-existent prolapse is called occult SUI (OSUI), and is found in up to 80% of women with advanced POP. Although there is no consensus on how to diagnose OSUI, there are several reported methods to better diagnose. Counseling symptomatically continent women with POP concerning the potential risk for developing SUI postoperatively cannot be overstated. Evidence suggests that positive OSUI in symptomatically continent women who are planning to have POP repair is associated with a high risk of POSUI, furthermore, adding continence procedure is found to reduce postoperative SUI. Therefore, adding continence surgery at the time of POP surgery in patients who are found to have OSUI preoperatively is advocated.

  1. Poster 7: Could PAH or HAC explain the Titan's stratosphere absorption around 3.4 µm revealed by solar occultations? (United States)

    Cordier, Daniel; Cours, Thibaud; Rey, Michael; Maltagliati, Luca; Seignovert, Benoit; Biennier, Ludovic


    In 2006, during Cassini's 10th flyby of Titan (T10), Bellucci et al. (2009) observed a solar occultation by Titan's atmosphere through the solar port of the Cassini/VIMS instrument. These authors noticed the existence of an unexplained additional absorption superimposed to the CH4 3.3 µm band. Because they were unable to model this absorption with gases, they attributed this intriguing feature to the signature of solid state organic components. Kim et al. (2011) revisited the data collected by Bellucci et al. (2009) and they considered the possible contribution of aerosols formed by hydrocarbon ices. They specifically took into account C2H6, CH4, CH3CN, C5H12 and C6H12 ices. More recently, Maltagliati et al. (2015) analyzed a set of four VIMS solar occultations, corresponding to flybys performed between January 2006 and September 2011 at different latitudes. They confirmed the presence of the 3.3 µm absorption in all occultations and underlined the possible importance of gaseous ethane, which has a strong plateau of absorption lines in that wavelength range.In this work, we show that neither hydrocarbon ices nor molecular C2H6 cannot satisfactorily explain the observed absorption. Our simulations speak in favor of an absorption due to the presence of PAH molecules or HAC in the stratosphere of Titan. PAH have been already considered by Lopes-Puertas et al. (2013) at altitudes larger than ˜900 km and tentatively identified in the stratosphere by Maltagliati et al. (2015); PAH and HAC are good candidates for Titan's aerosols precursors.

  2. Verifying occulter deployment tolerances as part of NASA's technology development for exoplanet missions (United States)

    Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Webb, D.; Cady, E.; Marks, G. W.; Lo, A.


    An external occulter is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. In support of NASA's Exoplanet Exploration Program and the Technology Development for Exoplanet Missions (TDEM), we recently completed a 2 year study of the manufacturability and metrology of starshade petals. In this paper we review the results of that successful first TDEM which demonstrated an occulter petal could be built and measured to an accuracy consistent with close to 10-10 contrast. We then present the results of our second TDEM to demonstrate the next critical technology milestone: precision deployment of the central truss and petals to the necessary accuracy. We show the deployment of an existing deployable truss outfitted with four sub-scale petals and a custom designed central hub.

  3. Understanding Interdependencies between Heterogeneous Earth Observation Systems When Applied to Federal Objectives (United States)

    Gallo, J.; Sylak-Glassman, E.


    We will present a method for assessing interdependencies between heterogeneous Earth observation (EO) systems when applied to key Federal objectives. Using data from the National Earth Observation Assessment (EOA), we present a case study that examines the frequency that measurements from each of the Landsat 8 sensors are used in conjunction with heterogeneous measurements from other Earth observation sensors to develop data and information products. This EOA data allows us to map the most frequent interactions between Landsat measurements and measurements from other sensors, identify high-impact data and information products where these interdependencies occur, and identify where these combined measurements contribute most to meeting a key Federal objective within one of the 13 Societal Benefit Areas used in the EOA study. Using a value-tree framework to trace the application of data from EO systems to weighted key Federal objectives within the EOA study, we are able to estimate relative contribution of individual EO systems to meeting those objectives, as well as the interdependencies between measurements from all EO systems within the EOA study. The analysis relies on a modified Delphi method to elicit relative levels of reliance on individual measurements from EO systems, including combinations of measurements, from subject matter experts. This results in the identification of a representative portfolio of all EO systems used to meet key Federal objectives. Understanding the interdependencies among a heterogeneous set of measurements that modify the impact of any one individual measurement on meeting a key Federal objective, especially if the measurements originate from multiple agencies or state/local/tribal, international, academic, and commercial sources, can impact agency decision-making regarding mission requirements and inform understanding of user needs.

  4. The Importance of Earth Observations and Data Collaboration within Environmental Intelligence Supporting Arctic Research (United States)

    Casas, Joseph


    Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.

  5. Paraneoplastic retinopathy associated with occult bladder cancer

    DEFF Research Database (Denmark)

    Nivean, M; Muttuvelu, Danson V; Afzelius, Pia Maria Tullia


    (ERG), serology including serum antibodies for CAR, and positron emission tomography-computed tomography (PET-CT) scan. The patient was diagnosed with bladder carcinoma revealed by PET-CT. Timely recognition of this entity may be crucial for an increased patient survival thus adult onset progressive...... photoreceptor dysfunction, confirmed by ERG, should alert to a possible remote effect of known or occult malignancy. In the latter, PET-CT may be exploited as a powerful diagnostic tool....

  6. Performance measures in the earth observations commercialization applications program (United States)

    Macauley, Molly K.


    Performance measures in the Earth Observations Commercialization Application Program (EOCAP) are key to its success and include net profitability; enhancements to industry productivity through generic innovations in industry practices, standards, and protocols; and documented contributions to public policy governing the newly developing remote sensing industry. Because EOCAP requires company co-funding, both parties to the agreement (the government and the corporate partner) have incentives to pursue these goals. Further strengthening progress towards these goals are requirements for business plans in the company's EOCAP proposal, detailed scrutiny given these plans during proposal selection, and regularly documented progress reports during project implementation.

  7. Towards the creation of a European Network of Earth Observation Networks within GEO. The ConnectinGEO project. (United States)

    Masó, Joan; Serral, Ivette; Menard, Lionel; Wald, Lucien; Nativi, Stefano; Plag, Hans-Peter; Jules-Plag, Shelley; Nüst, Daniel; Jirka, Simon; Pearlman, Jay; De Maziere, Martine


    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is a new H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. ConnectinGEO aims to facilitate a broader and more accessible knowledge base to support the needs of GEO, its Societal Benefit Areas (SBAs) and the users of the Global Earth Observing System of Systems (GEOSS). A broad range of subjects from climate, natural resources and raw materials, to the emerging UN Sustainable Development Goals (SDGs) will be addressed. The project will generate a prioritized list of critical gaps within available observation data and models to translate observations into practice-relevant knowledge, based on stakeholder consultation and systematic analysis. Ultimately, it will increase coherency of European observation networks, increase the use of Earth observations for assessments and forecasts and inform the planning for future observation systems. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed by project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the space-based, airborne and in-situ observations European networks (e.g. EPOS, EMSO and GROOM, etc), representatives of the industry sector and European and national funding agencies, in particular those participating in the future ERA-PlaNET. At the beginning, the ENEON will be created and managed by the project. Then the management will be transferred to the network itself to ensure

  8. The Nimbus satellites - Pioneering earth observers (United States)

    White, Carolynne


    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  9. Male occult triple-negative breast cancer with dermatomyositis: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Zhang L


    Full Text Available Le Zhang,1 Chenghua Zhang,2 Zhaoying Yang,1 Miao He,3 Lijuan Zhang,1 Shereen Ezzat,4 Xi Liang5 1Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China; 2Endoscopy Department, Jilin Cancer Hospital, Changchun, Jilin,China; 3Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin, China; 4Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada; 5Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China Abstract: Occult breast cancer is defined by the presence of axillary metastases without an identifiable primary breast tumor. Here, we report a rare case of a male occult breast cancer with dermatomyositis. We performed a modified radical mastectomy consisting of whole breast mastectomy and axillary lymph node dissection. Immunohistochemistry and fluorescent in situ hybridization analyses demonstrated an adenocarcinoma likely of breast origin, which was an occult triple-negative breast cancer. Interestingly, the patient’s previously noted periorbital dermatomyositis resolved promptly following surgical excision. Keywords: male breast cancer, occult breast cancer, triple-negative breast cancer, dermato­myositis 

  10. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    Directory of Open Access Journals (Sweden)

    R. Baatz


    Full Text Available Advancing our understanding of Earth system dynamics (ESD depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER, Critical Zone Observatories (CZOs, and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1 widen application of terrestrial observation network data in Earth system modelling, (2 develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3 identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  11. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling (United States)

    Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris


    Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  12. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles (United States)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko


    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  13. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    KAUST Repository

    McCabe, Matthew


    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-Agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  14. Occult Metabolic Bone Disease in Chronic Pancreatitis | Hari Kumar ...

    African Journals Online (AJOL)

    Background: Chronic pancreatitis (CP) leads to malabsorption and metabolic bone disease (MBD). Alcoholic CP (ACP) and tropical CP (TCP) are the two common types of CP. Objective: We investigated the presence of occult MBD in patients with CP and compared the same between ACP and TCP. Materials and Methods: ...

  15. Integrating NASA Earth Observations into the Global Indicator Framework for Monitoring the United Nations' Sustainable Development Goals (United States)

    Crepps, G.; Gotschalk, E.; Childs-Gleason, L. M.; Favors, J.; Ruiz, M. L.; Allsbrook, K. N.; Rogers, L.; Ross, K. W.


    The NASA DEVELOP National Program conducts rapid 10-week feasibility projects that build decision makers' capacity to utilize NASA Earth observations in their decision making. Teams, in collaboration with partner organizations, conduct projects that create end products such as maps, analyses, and automated tools tailored for their partners' specific decision making needs. These projects illustrate the varied applications about which Earth observations can assist in making better informed decisions, such topics as land use changes, ecological forecasting, public health, and species habitats. As a capacity building program, DEVELOP is interested in understanding how these end products are utilized once the project is over and if Earth observations become a regular tool in the partner's decision making toolkit. While DEVELOP's niche is short-term projects, to assess the impacts of these projects, a longer-term scale is needed. As a result, DEVELOP has created a project strength metrics, and partner assessments, pre- and post-project, as well as a follow up form. This presentation explores the challenges in both quantitative and qualitative assessments of valuing the contributions of these Earth observation tools. This proposal lays out the assessment framework created within the program, and illustrates case studies in which projects have been assessed and long-term partner use of tools examined and quantified.

  16. Interoperability And Value Added To Earth Observation Data (United States)

    Gasperi, J.


    Geospatial web services technology has provided a new means for geospatial data interoperability. Open Geospatial Consortium (OGC) services such as Web Map Service (WMS) to request maps on the Internet, Web Feature Service (WFS) to exchange vectors or Catalog Service for the Web (CSW) to search for geospatialized data have been widely adopted in the Geosciences community in general and in the remote sensing community in particular. These services make Earth Observation data available to a wider range of public users than ever before. The mapshup web client offers an innovative and efficient user interface that takes advantage of the power of interoperability. This presentation will demonstrate how mapshup can be effectively used in the context of natural disasters management.

  17. Observing the Earth from afar with NASA's Worldview (United States)

    Wong, M. M.; Boller, R. A.; King, B. A.; Baynes, K.; Rice, Z.


    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  18. The value of earth observations: methods and findings on the value of Landsat imagery (United States)

    Miller, Holly M.; Serbina, Larisa O.; Richardson, Leslie A.; Ryker, Sarah J.; Newman, Timothy R.


    Data from Earth observation systems are used extensively in managing and monitoring natural resources, natural hazards, and the impacts of climate change, but the value of such data can be difficult to estimate, particularly when it is available at no cost. Assessing the socioeconomic and scientific value of these data provides a better understanding of the existing and emerging research, science, and applications related to this information and contributes to the decision making process regarding current and future Earth observation systems. Recent USGS research on Landsat data has advanced the literature in this area by using a variety of methods to estimate value. The results of a 2012 survey of Landsat users, a 2013 requirements assessment, and 2013 case studies of applications of Landsat imagery are discussed.

  19. Earth's transmission spectrum from lunar eclipse observations. (United States)

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L


    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  20. On the possibility of space objects invasion observations into the Earth's atmosphere with the help of a multifunctional polarimeter (United States)

    Nevodovskyi, P. V.; Steklov, A. F.; Vidmachenko, A. P.


    Relevance of the tasks associated with the observation of the invasion of space objects into the Earth's atmosphere increases with each passing year. We used astronomical panoramic polarimeter for carrying out of polarimetric observations of objects, that flying into the atmosphere of the Earth from the surrounding outer space.

  1. Resolved, Time-Series Observations of Pluto-Charon with the Magellan Telescopes (United States)

    Elliot, J. L.; Person, M. J.; Adams, E. R.; Gulbis, A. A. S.; Kramer, E. A.


    In support of prediction refinements at MIT for stellar occultations by Pluto and Charon, resolved photometric observations of Pluto and Charon at optical wavelengths have been carried out with the Magellan telescopes at Las Campanas Observatory for each apparition since 2001. Both Sloan and Johnson-Kron-Cousins filters have been used. The median natural image quality for the site is about 0.7 arcsec (with some nights better than 0.3 arcsec). These data yield accurate light ratios for the two bodies as a function of: (1) wavelength, (2) Charon's orbital phase, and (3) the sub-Earth latitude for Pluto and Charon. This information is needed to interpret the location of their center of light, relative to their center of mass, for unresolved images of Pluto and Charon taken with wide-field astrometric instruments. The Raymond and Beverly Magellan Instant Camera ("MagIC") -- the instrument used for these observations -- has a focal-plane scale of 0.069 arcsec/pix and a field of 2.3 arcmin. This field is large enough so that many of our Pluto-Charon frames can be tied to the International Coordinate Reference Frame (ICRF) with stars in the UCAC2 catalog. Initial results for this program have been reported by Clancy et al. (Highlights of Astr. vol. 13, in press), who found a strong trend in the Charon to Pluto light ratio over the wavelength range spanned by the Sloan filters. Further results from this program used to predict the 2005 July 11 stellar occultation by Charon will be presented. We gratefully acknowledge support from NASA Grant NNG04GF25G from the Planetary Astronomy program.

  2. Molecular and serological detection of occult hepatitis B virus ...

    African Journals Online (AJOL)

    hepatitis B surface antigen-negative blood donors in Malaysia. ... Objective: This study aimed to detect occult hepatitis B virus in hepatitis B surface .... of the standard HBV-positive serum and the detection ... in general population ranges from 1.5 to 9.8% but report- .... Putra, Malaysia for their financial support of this research.

  3. Facilitating the Easy Use of Earth Observation Data in Earth System Models through CyberConnector (United States)

    Di, L.; Sun, Z.; Zhang, C.


    Earth system models (ESM) are an important tool used to understand the Earth system and predict its future states. On other hand, Earth observations (EO) provides the current state of the system. EO data are very useful in ESM initialization, verification, validation, and inter-comparison. However, EO data often cannot directly be consumed by ESMs because of the syntactic and semantic mismatches between EO products and ESM requirements. In order to remove the mismatches, scientists normally spend long time to customize EO data for ESM consumption. CyberConnector, a NSF EarthCube building block, is intended to automate the data customization so that scientists can be relieved from the laborious EO data customization. CyberConnector uses web-service-based geospatial processing models (GPM) as the mechanism to automatically customize the EO data into the right products in the right form needed by ESMs. It can support many different ESMs through its standard interfaces. It consists of seven modules: GPM designer, GPM binder, GPM runner, GPM monitor, resource register, order manager, and result display. In CyberConnector, EO data instances and GPMs are independent and loosely coupled. A modeler only needs to create a GPM in the GMP designer for EO data customization. Once the modeler specifies a study area, the designed GPM will be activated and take the temporal and spatial extents as constraints to search the data sources and customize the available EO data into the ESM-acceptable form. The execution of GMP is completely automatic. Currently CyberConnector has been fully developed. In order to validate the feasibility, flexibility, and ESM independence of CyberConnector, three ESMs from different geoscience disciplines, including the Cloud-Resolving Model (CRM), the Finite Volume Coastal Ocean Model (FVCOM), and the Community Multiscale Air Quality Model (CMAQ), have been experimented with CyberConnector through closely collaborating with modelers. In the experiment

  4. Do X-ray-occult fractures play a role in chronic pain following a whiplash injury?

    DEFF Research Database (Denmark)

    Hertzum-Larsen, Rasmus; Petersen, Henrik; Kasch, Helge


    symptoms following an MVA was invited to have a cervical SPECT shortly post injury and again 6 months later. Associations between occult fractures and pain levels at baseline, 6 and 12 months of follow-up were analyzed. Eighty-eight patients had baseline SPECT performed at median 15 days (r