WorldWideScience

Sample records for earth observation systems

  1. Earth Observing System Covariance Realism Updates

    Science.gov (United States)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  2. Earth Observing System, Conclusions and Recommendations

    Science.gov (United States)

    1984-01-01

    The following Earth Observing Systems (E.O.S.) recommendations were suggested: (1) a program must be initiated to ensure that present time series of Earth science data are maintained and continued. (2) A data system that provides easy, integrated, and complete access to past, present, and future data must be developed as soon as possible. (3) A long term research effort must be sustained to study and understand these time series of Earth observations. (4) The E.O.S. should be established as an information system to carry out those aspects of the above recommendations which go beyond existing and currently planned activities. (5) The scientific direction of the E.O.S. should be established and continued through an international scientific steering committee.

  3. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.

    2009-12-01

    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  4. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  5. The international earth observing system: a cultural debate about earth sciences from space

    NARCIS (Netherlands)

    Menenti, M.

    1996-01-01

    This paper gives an overview of the International Earth Observing System, i.e. the combined earth observation programmes of space agencies worldwide and of the relevance of advanced space-borne sensor systems to the study and understanding of interactions between land surface and atmosphere. The

  6. Observation and integrated Earth-system science: A roadmap for 2016-2025

    Science.gov (United States)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  7. NASA's Earth Observing System Data and Information System - EOSDIS

    Science.gov (United States)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  8. Earth Observing Data System Data and Information System (EOSDIS) Overview

    Science.gov (United States)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  9. Development of the AuScope Australian Earth Observing System

    Science.gov (United States)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  10. "New Space Explosion" and Earth Observing System Capabilities

    Science.gov (United States)

    Stensaas, G. L.; Casey, K.; Snyder, G. I.; Christopherson, J.

    2017-12-01

    This presentation will describe recent developments in spaceborne remote sensing, including introduction to some of the increasing number of new firms entering the market, along with new systems and successes from established players, as well as industry consolidation reactions to these developments from communities of users. The information in this presentation will include inputs from the results of the Joint Agency Commercial Imagery Evaluation (JACIE) 2017 Civil Commercial Imagery Evaluation Workshop and the use of the US Geological Survey's Requirements Capabilities and Analysis for Earth Observation (RCA-EO) centralized Earth observing systems database and how system performance parameters are used with user science applications requirements.

  11. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  12. The Earth Observing System Terra Mission

    Science.gov (United States)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  13. Earth observing system - Concepts and implementation strategy

    Science.gov (United States)

    Hartle, R. E.

    1986-01-01

    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  14. Semantics-enabled knowledge management for global Earth observation system of systems

    Science.gov (United States)

    King, Roger L.; Durbha, Surya S.; Younan, Nicolas H.

    2007-10-01

    The Global Earth Observation System of Systems (GEOSS) is a distributed system of systems built on current international cooperation efforts among existing Earth observing and processing systems. The goal is to formulate an end-to-end process that enables the collection and distribution of accurate, reliable Earth Observation data, information, products, and services to both suppliers and consumers worldwide. One of the critical components in the development of such systems is the ability to obtain seamless access of data across geopolitical boundaries. In order to gain support and willingness to participate by countries around the world in such an endeavor, it is necessary to devise mechanisms whereby the data and the intellectual capital is protected through procedures that implement the policies specific to a country. Earth Observations (EO) are obtained from a multitude of sources and requires coordination among different agencies and user groups to come to a shared understanding on a set of concepts involved in a domain. It is envisaged that the data and information in a GEOSS context will be unprecedented and the current data archiving and delivery methods need to be transformed into one that allows realization of seamless interoperability. Thus, EO data integration is dependent on the resolution of conflicts arising from a variety of areas. Modularization is inevitable in distributed environments to facilitate flexible and efficient reuse of existing ontologies. Therefore, we propose a framework for modular ontologies based knowledge management approach for GEOSS and present methods to enable efficient reasoning in such systems.

  15. Global Earth Observation System of Systems: Characterizing Uncertainties of Space- based Measurements and Earth System Models Informing Decision Tools

    Science.gov (United States)

    Birk, R. J.; Frederick, M.

    2006-05-01

    The Global Earth Observation System of Systems (GEOSS) framework identifies the benefits of systematically and scientifically networking the capacity of organizations and systems into solutions that benefit nine societal benefit areas. The U.S. Integrated Earth Observation System (IEOS), the U.S. contribution to the GEOSS, focuses on near-term, mid-term, and long-term opportunities to establish integrated system solutions based on capacities and capabilities of member agencies and affiliations. Scientists at NASA, NOAA, DOE, NSF and other U.S. agencies are evolving the predictive capacity of models of Earth processes based on space-based, airborne and surface-based instruments and their measurements. NASA research activities include advancing the power and accessibility of computational resources (i.e. Project Columbia) to enable robust science data analysis, modeling, and assimilation techniques to rapidly advance. The integration of the resulting observations and predictions into decision support tools require characterization of the accuracies of a range of input measurements includes temperature and humidity profiles, wind speed, ocean height, sea surface temperature, and atmospheric constituents that are measured globally by U.S. deployed spacecraft. These measurements are stored in many data formats on many different information systems with widely varying accessibility and have processes whose documentation ranges from extremely detailed to very minimal. Integrated and interdisciplinary modeling (enabled by the Earth System Model Framework) enable the types of ensemble analysis that are useful for decision processes associated with energy management, public health risk assessments, and optimizing transportation safety and efficiency. Interdisciplinary approaches challenge systems integrators (both scientists and engineers) to expand beyond the traditional boundaries of particular disciplines to develop, verify and validate, and ultimately benchmark the

  16. The Earth Observing System (EOS) nickel-hydrogen battery

    Science.gov (United States)

    Bennett, Charles W.

    1992-01-01

    Information is given in viewgraph form on the Earth Observing System (EOS) nickel hydrogen battery. Information is given on the life evaluation test, cell characteristics, acceptance and characterization tests, and the battery system description.

  17. The Crew Earth Observations Experiment: Earth System Science from the ISS

    Science.gov (United States)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  18. Building a Global Earth Observation System of Systems (GEOSS) and Its Interoperability Challenges

    Science.gov (United States)

    Ryan, B. J.

    2015-12-01

    Launched in 2005 by industrialized nations, the Group on Earth Observations (GEO) began building the Global Earth Observation System of Systems (GEOSS). Consisting of both a policy framework, and an information infrastructure, GEOSS, was intended to link and/or integrate the multitude of Earth observation systems, primarily operated by its Member Countries and Participating Organizations, so that users could more readily benefit from global information assets for a number of society's key environmental issues. It was recognized that having ready access to observations from multiple systems was a prerequisite for both environmental decision-making, as well as economic development. From the very start, it was also recognized that the shear complexity of the Earth's system cannot be captured by any single observation system, and that a federated, interoperable approach was necessary. While this international effort has met with much success, primarily in advancing broad, open data policies and practices, challenges remain. In 2014 (Geneva, Switzerland) and 2015 (Mexico City, Mexico), Ministers from GEO's Member Countries, including the European Commission, came together to assess progress made during the first decade (2005 to 2015), and approve implementation strategies and mechanisms for the second decade (2016 to 2025), respectively. The approved implementation strategies and mechanisms are intended to advance GEOSS development thereby facilitating the increased uptake of Earth observations for informed decision-making. Clearly there are interoperability challenges that are technological in nature, and several will be discussed in this presentation. There are, however, interoperability challenges that can be better characterized as economic, governmental and/or political in nature, and these will be discussed as well. With the emergence of the Sustainable Development Goals (SDGs), the World Conference on Disaster Risk Reduction (WCDRR), and the United Nations

  19. Earth Observation System Flight Dynamics System Covariance Realism

    Science.gov (United States)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  20. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    Science.gov (United States)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  1. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    Science.gov (United States)

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  2. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd

    2006-01-01

    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  3. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    Science.gov (United States)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  4. Mission operations update for the restructured Earth Observing System (EOS) mission

    Science.gov (United States)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  5. The Earth Observation Data for Habitat Monitoring (EODHaM) system

    Science.gov (United States)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola

    2015-05-01

    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.

  6. Who Uses Earth Observations? User Types in Group on Earth Observations

    Science.gov (United States)

    Fontaine, K. S.

    2011-12-01

    How can we communicate concepts in the physical sciences unless we know our audience? The Group on Earth Observations (GEO) User Interface Committee (UIC) has a responsibility within GEO to support and advocate for the user community in the development of Global Earth Observations System of Systems (GEOSS) and related work. As part of its efforts, the UIC has been working on developing a taxonomy that can be used to characterize the broad spectrum of users of GEOSS and its data, services, and applications. The user type taxonomy is designed to be broad and flexible but aims at describing the needs of the users GEOSS is going to serve. These user types represent a continuum of users of Earth observations from research through to decision support activities, and it includes organizations that use GEOSS as a tool to provide data and services for customers and consumers of the information. The classification scheme includes factors about skills and capacity for using Earth observations, sophistication level, spatial resolution, latency, and frequency of data. As part of the effort to develop a set of User Types, the GEO UIC foresees that those inside and outside GEO can use the typologies to understand how to engage users at a more effective level. This talk presents the GEOSS User Type taxonomy, explaining the development and highlights of key feedback. The talk will highlight possible ways to use the User Type taxonomy to communicate concepts and promote the use of Earth observations to a wide variety of users.

  7. The European Plate Observing System (EPOS) Services for Solid Earth Science

    Science.gov (United States)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  8. Big Data in the Earth Observing System Data and Information System

    Science.gov (United States)

    Lynnes, Chris; Baynes, Katie; McInerney, Mark

    2016-01-01

    Approaches that are being pursued for the Earth Observing System Data and Information System (EOSDIS) data system to address the challenges of Big Data were presented to the NASA Big Data Task Force. Cloud prototypes are underway to tackle the volume challenge of Big Data. However, advances in computer hardware or cloud won't help (much) with variety. Rather, interoperability standards, conventions, and community engagement are the key to addressing variety.

  9. Delivery of information from earth observation satellites

    International Nuclear Information System (INIS)

    MacDonald, J.S.

    1992-01-01

    Satellite-based systems for measuring the surface of the earth and its atmosphere from space have evolved rapidly in the past decade. The amount of data available in the future promises to be truly staggering. This paper addresses the requirements for handling data from earth observation systems. It begins with the premise that our objective is to acquire an understanding of the state and evolution of our planet, and proceeds from there to argue that earth observation satellite systems are, in reality, systems for delivering information. This view has implications on how we approach the design of such systems, and how we handle the data they produce in order to derive maximum benefit from them. The paper examines these issues and puts forth some of the technical requirements for future satellite-based earth observation systems, based on the concept that earth observation is a quantitative measurement discipline that is driven by requirements for information. (Author). 8 refs., 3 figs

  10. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    Science.gov (United States)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  11. Global Earth Observation System of Systems (GEOSS): Initial Actions to Enhance Data Sharing to Meet Societal Needs

    Science.gov (United States)

    Adang, T.

    2006-05-01

    Over 60 nations and 50 participating organizations are working to make the Global Earth Observation System of Systems (GEOSS) a reality. The U.S. contribution to GEOSS is the Integrated Earth Observation System (IEOS), with a vision of enabling a healthy public, economy and planet through an integrated, comprehensive, and sustained Earth observation system. The international Group on Earth Observations (GEO) and the U.S. Group on Earth Observations have developed strategic plans for both GEOSS and IEOS, respectively, and are now working the first phases of implementation. Many of these initial actions are data architecture related and are being addressed by architecture and data working groups from both organizations - the GEO Architecture and Data Committee and the USGEO Architecture and Data Management Working Group. NOAA has actively participated in both architecture groups and has taken internal action to better support GEOSS and IEOS implementation by establishing the Global Earth Observation Integrated Data Environment (GEO IDE). GEO IDE provides a "system of systems" framework for effective and efficient integration of NOAA's many quasi-independent systems, which individually address diverse mandates in such areas resource management, weather forecasting, safe navigation, disaster response, and coastal mapping among others. GEO IDE will have a services oriented architecture, allowing NOAA Line Offices to retain a high level of independence in many of their data management decisions, and encouraging innovation in pursuit of their missions. Through GEO IDE, NOAA partners (both internal and external) will participate in a well-ordered, standards-based data and information infrastructure that will allow users to easily locate, acquire, integrate and utilize NOAA data and information. This paper describes the initial progress being made by GEO and USGEO architecture and data working groups, a status report on GEO IDE development within NOAA, and an assessment of

  12. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations

    Science.gov (United States)

    King, M. D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  13. Mission operations concepts for Earth Observing System (EOS)

    Science.gov (United States)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  14. An operational, multistate, earth observation data management system

    Science.gov (United States)

    Eastwood, L. F., Jr.; Hays, T. R.; Hill, C. T.; Ballard, R. J.; Morgan, R. P.; Crnkovich, G. G.; Gohagan, J. K.; Schaeffer, M. A.

    1977-01-01

    The purpose of this paper is to investigate a group of potential users of satellite remotely sensed data - state, local, and regional agencies involved in natural resources management. We assess this group's needs in five states and outline alternative data management systems to serve some of those needs. We conclude that an operational Earth Observation Data Management System (EODMS) will be of most use to these user agencies if it provides a full range of information services - from raw data acquisition to interpretation and dissemination of final information products.

  15. Data Assimilation: Making Sense of Earth Observation

    Directory of Open Access Journals (Sweden)

    William Albert Lahoz

    2014-05-01

    Full Text Available Climate change, air quality and environmental degradation are important societal challenges for the 21st Century. These challenges require an intelligent response from society, which in turn requires access to information about the Earth System. This information comes from observations and prior knowledge, the latter typically embodied in a model describing relationships between variables of the Earth System. Data assimilation provides an objective methodology to combine observational and model information to provide an estimate of the most likely state and its uncertainty for the whole Earth System. This approach adds value to the observations – by filling in the spatio-temporal gaps in observations; and to the model – by constraining it with the observations. In this review paper we motivate data assimilation as a methodology to fill in the gaps in observational information; illustrate the data assimilation approach with examples that span a broad range of features of the Earth System (atmosphere, including chemistry; ocean; land surface; and discuss the outlook for data assimilation, including the novel application of data assimilation ideas to observational information obtained using Citizen Science. Ultimately, a strong motivation of data assimilation is the many benefits it provides to users. These include: providing the initial state for weather and air quality forecasts; providing analyses and reanalyses for studying the Earth System; evaluating observations, instruments and models; assessing the relative value of elements of the Global Observing System (GOS; and assessing the added value of future additions to the GOS.

  16. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    Science.gov (United States)

    Larson, Jay W.

    1998-01-01

    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  17. Observed tidal braking in the earth/moon/sun system

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  18. NASA Earth Observation Systems and Applications for Health: Moving from Research to Operational End Users

    Science.gov (United States)

    Haynes, J.; Estes, S. M.

    2017-12-01

    Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate NASA's applied science programs efforts to transition from research to operations to benefit society. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in health research and the transition to operational end users.

  19. Observing Human-induced Linkages between Urbanization and Earth's Climate System

    Science.gov (United States)

    Shepherd, J. Marshall; Jin, Menglin

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world s population will live in cities. Human activity in urban environments also alters atmospheric composition; impacts components of the water cycle; and modifies the carbon cycle and ecosystems. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s atmosphere-ocean-land-biosphere components interact as a coupled system and the influence of the urban environment on this climate system is critical. The goal of the 2003 AGU Union session Human-induced climate variations on urban areas: From observations to modeling was to bring together scientists from interdisciplinary backgrounds to discuss the data, scientific approaches and recent results on observing and modeling components of the urban environment with the intent of sampling our current stand and discussing future direction on this topic. Herein, a summary and discussion of the observations component of the session are presented.

  20. Conference on Earth Observation and Information Systems

    CERN Document Server

    Morley, Lawrence

    1977-01-01

    The NATO Science Committee and its subsidiary Programme Panels provide support for Advanced Research Institutes (ARI) in various fields. The idea is to bring together scientists of a chosen field with the hope that they will achieve a consensus on research direc­ tions for the future, and make recommendations for the benefit of a wider scientific community. Attendance is therefore limited to those whose experience and expertise make the conclusions significant and acceptable to the wider community. Participants are selected on the basis of substantial track records in research or in the synthesis of research results to serve mankind. The proposal for a one-week ARIon Earth Observation and In­ formation Systems was initiated by the NATO Special Programme Panel on Systems Science (SPPOSS). In approving the ARI, the senior NATO Science Committee identified the subject as one of universal impor­ tance, requiring a broad perspective on the development of opera­ tional systems based on successful experimental s...

  1. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    Science.gov (United States)

    Murphy, Kevin J.

    2011-01-01

    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  2. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    Science.gov (United States)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.

    1995-01-01

    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  3. Big Data challenges and solutions in building the Global Earth Observation System of Systems (GEOSS)

    Science.gov (United States)

    Mazzetti, Paolo; Nativi, Stefano; Santoro, Mattia; Boldrini, Enrico

    2014-05-01

    The Group on Earth Observation (GEO) is a voluntary partnership of governments and international organizations launched in response to calls for action by the 2002 World Summit on Sustainable Development and by the G8 (Group of Eight) leading industrialized countries. These high-level meetings recognized that international collaboration is essential for exploiting the growing potential of Earth observations to support decision making in an increasingly complex and environmentally stressed world. To this aim is constructing the Global Earth Observation System of Systems (GEOSS) on the basis of a 10-Year Implementation Plan for the period 2005 to 2015 when it will become operational. As a large-scale integrated system handling large datasets as those provided by Earth Observation, GEOSS needs to face several challenges related to big data handling and big data infrastructures management. Referring to the traditional multiple Vs characteristics of Big Data (volume, variety, velocity, veracity and visualization) it is evident how most of them can be found in data handled by GEOSS. In particular, concerning Volume, Earth Observation already generates a large amount of data which can be estimated in the range of Petabytes (1015 bytes), with Exabytes (1018) already targeted. Moreover, the challenge is related not only to the data size, but also to the large amount of datasets (not necessarily having a big size) that systems need to manage. Variety is the other main challenge since datasets coming from different sensors, processed for different use-cases are published with highly heterogeneous metadata and data models, through different service interfaces. Innovative multidisciplinary applications need to access and use those datasets in a harmonized way. Moreover Earth Observation data are growing in size and variety at an exceptionally fast rate and new technologies and applications, including crowdsourcing, will even increase data volume and variety in the next future

  4. Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts

    Science.gov (United States)

    Denis, Gil; Claverie, Alain; Pasco, Xavier; Darnis, Jean-Pierre; de Maupeou, Benoît; Lafaye, Murielle; Morel, Eric

    2017-08-01

    This paper reviews the trends in Earth observation (EO) and the possible impacts on markets of the new initiatives, launched either by existing providers of EO data or by new players, privately funded. After a presentation of the existing models, the paper discusses the new approaches, addressing both commercial and institutional markets. New concepts for the very high resolution markets, in Europe and in the US, are the main focus of this analysis. Two complementary perspectives are summarised: on the one hand, the type of system and its operational performance and, on the other, the related business models, concepts of operation and ownership schemes.

  5. Understanding Interdependencies between Heterogeneous Earth Observation Systems When Applied to Federal Objectives

    Science.gov (United States)

    Gallo, J.; Sylak-Glassman, E.

    2017-12-01

    We will present a method for assessing interdependencies between heterogeneous Earth observation (EO) systems when applied to key Federal objectives. Using data from the National Earth Observation Assessment (EOA), we present a case study that examines the frequency that measurements from each of the Landsat 8 sensors are used in conjunction with heterogeneous measurements from other Earth observation sensors to develop data and information products. This EOA data allows us to map the most frequent interactions between Landsat measurements and measurements from other sensors, identify high-impact data and information products where these interdependencies occur, and identify where these combined measurements contribute most to meeting a key Federal objective within one of the 13 Societal Benefit Areas used in the EOA study. Using a value-tree framework to trace the application of data from EO systems to weighted key Federal objectives within the EOA study, we are able to estimate relative contribution of individual EO systems to meeting those objectives, as well as the interdependencies between measurements from all EO systems within the EOA study. The analysis relies on a modified Delphi method to elicit relative levels of reliance on individual measurements from EO systems, including combinations of measurements, from subject matter experts. This results in the identification of a representative portfolio of all EO systems used to meet key Federal objectives. Understanding the interdependencies among a heterogeneous set of measurements that modify the impact of any one individual measurement on meeting a key Federal objective, especially if the measurements originate from multiple agencies or state/local/tribal, international, academic, and commercial sources, can impact agency decision-making regarding mission requirements and inform understanding of user needs.

  6. Optical MEMS for earth observation payloads

    Science.gov (United States)

    Rodrigues, B.; Lobb, D. R.; Freire, M.

    2017-11-01

    An ESA study has been taken by Lusospace Ltd and Surrey Satellite Techonoly Ltd (SSTL) into the use of optical Micro Eletro-Mechanical Systems (MEMS) for earth Observation. A review and analysis was undertaken of the Micro-Optical Electro-Mechanical Systems (MOEMS) available in the market with potential application in systems for Earth Observation. A summary of this review will be presented. Following the review two space-instrument design concepts were selected for more detailed analysis. The first was the use of a MEMS device to remove cloud from Earth images. The concept is potentially of interest for any mission using imaging spectrometers. A spectrometer concept was selected and detailed design aspects and benefits evaluated. The second concept developed uses MEMS devices to control the width of entrance slits of spectrometers, to provide variable spectral resolution. This paper will present a summary of the results of the study.

  7. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)

    Science.gov (United States)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann

    2008-01-01

    One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect

  8. Taming Big Data Variety in the Earth Observing System Data and Information System

    Science.gov (United States)

    Lynnes, Christopher; Walter, Jeff

    2015-01-01

    Although the volume of the remote sensing data managed by the Earth Observing System Data and Information System is formidable, an oft-overlooked challenge is the variety of data. The diversity in satellite instruments, science disciplines and user communities drives cost as much or more as the data volume. Several strategies are used to tame this variety: data allocation to distinct centers of expertise; a common metadata repository for discovery, data format standards and conventions; and services that further abstract the variations in data.

  9. The Common Framework for Earth Observation Data

    Science.gov (United States)

    Gallo, J.; Stryker, T. S.; Sherman, R.

    2016-12-01

    Each year, the Federal government records petabytes of data about our home planet. That massive amount of data in turn provides enormous benefits to society through weather reports, agricultural forecasts, air and water quality warnings, and countless other applications. To maximize the ease of transforming the data into useful information for research and for public services, the U.S. Group on Earth Observations released the first Common Framework for Earth Observation Data in March 2016. The Common Framework recommends practices for Federal agencies to adopt in order to improve the ability of all users to discover, access, and use Federal Earth observations data. The U.S. Government is committed to making data from civil Earth observation assets freely available to all users. Building on the Administration's commitment to promoting open data, open science, and open government, the Common Framework goes beyond removing financial barriers to data access, and attempts to minimize the technical impediments that limit data utility. While Earth observation systems typically collect data for a specific purpose, these data are often also useful in applications unforeseen during development of the systems. Managing and preserving these data with a common approach makes it easier for a wide range of users to find, evaluate, understand, and utilize the data, which in turn leads to the development of a wide range of innovative applications. The Common Framework provides Federal agencies with a recommended set of standards and practices to follow in order to achieve this goal. Federal agencies can follow these best practices as they develop new observing systems or modernize their existing collections of data. This presentation will give a brief on the context and content of the Common Framework, along with future directions for implementation and keeping its recommendations up-to-date with developing technology.

  10. JEOS. The JANUS earth observation satellite

    Science.gov (United States)

    Molette, P.; Jouan, J.

    The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground

  11. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    Directory of Open Access Journals (Sweden)

    R. Baatz

    2018-05-01

    Full Text Available Advancing our understanding of Earth system dynamics (ESD depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER, Critical Zone Observatories (CZOs, and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1 widen application of terrestrial observation network data in Earth system modelling, (2 develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3 identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  12. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    Science.gov (United States)

    Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris

    2018-05-01

    Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  13. Siberian Earth System Science Cluster - A web-based Geoportal to provide user-friendly Earth Observation Products for supporting NEESPI scientists

    Science.gov (United States)

    Eberle, J.; Gerlach, R.; Hese, S.; Schmullius, C.

    2012-04-01

    To provide earth observation products in the area of Siberia, the Siberian Earth System Science Cluster (SIB-ESS-C) was established as a spatial data infrastructure at the University of Jena (Germany), Department for Earth Observation. This spatial data infrastructure implements standards published by the Open Geospatial Consortium (OGC) and the International Organizsation for Standardization (ISO) for data discovery, data access, data processing and data analysis. The objective of SIB-ESS-C is to faciliate environmental research and Earth system science in Siberia. The region for this project covers the entire Asian part of the Russian Federation approximately between 58°E - 170°W and 48°N - 80°N. To provide discovery, access and analysis services a webportal was published for searching and visualisation of available data. This webportal is based on current web technologies like AJAX, Drupal Content Management System as backend software and a user-friendly surface with Drag-n-Drop and further mouse events. To have a wide range of regular updated earth observation products, some products from sensor MODIS at the satellites Aqua and Terra were processed. A direct connection to NASA archive servers makes it possible to download MODIS Level 3 and 4 products and integrate it in the SIB-ESS-C infrastructure. These data can be downloaded in a file format called Hierarchical Data Format (HDF). For visualisation and further analysis, this data is reprojected, converted to GeoTIFF and global products clipped to the project area. All these steps are implemented as an automatic process chain. If new MODIS data is available within the infrastructure this process chain is executed. With the link to a MODIS catalogue system, the system gets new data daily. With the implemented analysis processes, timeseries data can be analysed, for example to plot a trend or different time series against one another. Scientists working in this area and working with MODIS data can make use

  14. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    Science.gov (United States)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the

  15. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    Science.gov (United States)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  16. Analysis of Critical Earth Observation Priorities for Societal Benefit

    Science.gov (United States)

    Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.

    2011-12-01

    To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel

  17. Vegetation Earth System Data Record from DSCOVR EPIC Observations

    Science.gov (United States)

    Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.

    2017-12-01

    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.

  18. Digest of NASA earth observation sensors

    Science.gov (United States)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  19. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers

    Science.gov (United States)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.

    2015-04-01

    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  20. NASA's Earth Observing System (EOS): Delivering on the Dream, Today and Tomorrow

    Science.gov (United States)

    Kelly, Angelita C.; Johnson, Patricia; Case, Warren F.

    2010-01-01

    This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.

  1. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  2. A Web 2.0 and OGC Standards Enabled Sensor Web Architecture for Global Earth Observing System of Systems

    Science.gov (United States)

    Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville

    2007-01-01

    This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.

  3. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  4. NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution

    Science.gov (United States)

    Ramapriyan, H. K.

    2012-12-01

    NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a

  5. Graphics Processing Units (GPU) and the Goddard Earth Observing System atmospheric model (GEOS-5): Implementation and Potential Applications

    Science.gov (United States)

    Putnam, William M.

    2011-01-01

    Earth system models like the Goddard Earth Observing System model (GEOS-5) have been pushing the limits of large clusters of multi-core microprocessors, producing breath-taking fidelity in resolving cloud systems at a global scale. GPU computing presents an opportunity for improving the efficiency of these leading edge models. A GPU implementation of GEOS-5 will facilitate the use of cloud-system resolving resolutions in data assimilation and weather prediction, at resolutions near 3.5 km, improving our ability to extract detailed information from high-resolution satellite observations and ultimately produce better weather and climate predictions

  6. Facilitating the Easy Use of Earth Observation Data in Earth System Models through CyberConnector

    Science.gov (United States)

    Di, L.; Sun, Z.; Zhang, C.

    2017-12-01

    Earth system models (ESM) are an important tool used to understand the Earth system and predict its future states. On other hand, Earth observations (EO) provides the current state of the system. EO data are very useful in ESM initialization, verification, validation, and inter-comparison. However, EO data often cannot directly be consumed by ESMs because of the syntactic and semantic mismatches between EO products and ESM requirements. In order to remove the mismatches, scientists normally spend long time to customize EO data for ESM consumption. CyberConnector, a NSF EarthCube building block, is intended to automate the data customization so that scientists can be relieved from the laborious EO data customization. CyberConnector uses web-service-based geospatial processing models (GPM) as the mechanism to automatically customize the EO data into the right products in the right form needed by ESMs. It can support many different ESMs through its standard interfaces. It consists of seven modules: GPM designer, GPM binder, GPM runner, GPM monitor, resource register, order manager, and result display. In CyberConnector, EO data instances and GPMs are independent and loosely coupled. A modeler only needs to create a GPM in the GMP designer for EO data customization. Once the modeler specifies a study area, the designed GPM will be activated and take the temporal and spatial extents as constraints to search the data sources and customize the available EO data into the ESM-acceptable form. The execution of GMP is completely automatic. Currently CyberConnector has been fully developed. In order to validate the feasibility, flexibility, and ESM independence of CyberConnector, three ESMs from different geoscience disciplines, including the Cloud-Resolving Model (CRM), the Finite Volume Coastal Ocean Model (FVCOM), and the Community Multiscale Air Quality Model (CMAQ), have been experimented with CyberConnector through closely collaborating with modelers. In the experiment

  7. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    Science.gov (United States)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  8. The Group on Earth Observations (GEO) through 2025

    Science.gov (United States)

    Ryan, Barbara; Cripe, Douglas

    Ministers from the Group on Earth Observations (GEO) Member governments, meeting in Geneva, Switzerland in January 2014, unanimously renewed the mandate of GEO through 2025. Through a Ministerial Declaration, they reconfirmed that GEO’s guiding principles of collaboration in leveraging national, regional and global investments and in developing and coordinating strategies to achieve full and open access to Earth observations data and information in order to support timely and knowledge-based decision-making - are catalysts for improving the quality of life of people around the world, advancing global sustainability, and preserving the planet and its biodiversity. GEO Ministers acknowledged and valued the contributions of GEO Member governments and invited all remaining Member States of the United Nations to consider joining GEO. The Ministers also encouraged all Members to strengthen national GEO arrangements, and - of particular interest to COSPAR - they highlighted the unique contributions of Participating Organizations. In this regard, ten more organizations saw their applications approved by Plenary and joined the ranks along with COSPAR to become a Participating Organization in GEO, bringing the current total to 77. Building on the efforts of a Post-2015 Working Group, in which COSPAR participated, Ministers provided additional guidance for GEO and the evolution of its Global Earth Observation System of System (GEOSS) through 2025. Five key areas of activities for the next decade include the following: 1.) Advocating for the value of Earth observations and the need to continue improving Earth observation worldwide; 2.) Urging the adoption and implementation of data sharing principles globally; 3.) Advancing the development of the GEOSS information system for the benefit of users; 4.) Developing a comprehensive interdisciplinary knowledge base defining and documenting observations needed for all disciplines and facilitate availability and accessibility of

  9. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  10. Earth System Dynamics: The Determination and Interpretation of the Global Angular Momentum Budget using the Earth Observing System. Revised

    Science.gov (United States)

    2003-01-01

    The objective of this investigation has been to examine the mass and momentum exchange between the atmosphere, oceans, solid Earth, hydrosphere, and cryosphere. The investigation has focused on changes in the Earth's gravity field, its rotation rate, atmospheric and oceanic circulation, global sea level change, ice sheet change, and global ground water circulation observed by contemporary sensors and models. The primary component of the mass exchange is water. The geodetic observables provided by these satellite sensors are used to study the transport of water mass in the hydrological cycle from one component of the Earth to another, and they are also used to evaluate the accuracy of models. As such, the investigation is concerned with the overall global water cycle. This report provides a description of scientific, educational and programmatic activities conducted during the period July 1, 1999 through June 30,2000. Research has continued into measurements of time-varying gravity and its relationship to Earth rotation. Variability of angular momentum and the related excitation of polar motion and Earth rotation have been examined for the atmosphere and oceans at time-scales of weeks to several years. To assess the performance of hydrologic models, we have compared geodetic signals derived from them with those observed by satellites. One key component is the interannual mass variability of the oceans obtained by direct observations from altimetry after removing steric signals. Further studies have been conducted on the steric model to quantify its accuracy at global and basin-scales. The results suggest a significant loss of water mass from the Oceans to the land on time-scales longer than 1-year. These signals are not reproduced in any of the models, which have poorly determined interannual fresh water fluxes. Output from a coupled atmosphere-ocean model testing long-term climate change hypotheses has been compared to simulated errors from the Gravity Recovery and

  11. Vision of the Global Earth Observation System of Systems: a European Perspective

    Science.gov (United States)

    Ollier, G.; Craglia, M.; Nativi, S.

    2013-12-01

    The possibility of involving citizens in measuring and providing data is becoming a reality through the concept of "Citizen Observatories". This takes advantage of everybody's capacity to use mobile phone/tablet/laptop to monitor the environment and by trying to find cheap solutions to strengthen the in-situ network of observatories needed for a Global Earth Observation System. Further to the Citizen Observatories approach, the development of cheap sensors based on disposable technologies, nanotech and the piggy-back approach could also be applied to several Societal Challenges and contribute to the GEOSS. The involvement of citizens in the domain of Earth Observation implies dealing with many diverse communities that need to be fully connected into the overall GEOSS architecture. With the introduction of a brokering capability this becomesnow possible. The value of the brokering approach has been demonstrated within the European Union funded EuroGEOSS research project. The EuroGEOSS brokering capability has now been incorporated into the GEOSS information system, (known as the GEOSS Common Infrastructure, or GCI) and renamed the GEOSS Discovery and Access Broker. In a matter of a few months the GEOSS DAB has enabled the GEOSS to extend the data resources available from a few hundred to over 28 million The vison which is discussed here is that with a more active participation of the Citizens one could imagine a world with instant information flow about the state and future evolution of the environment available, similar to what has been achieved in weather forecasting but covering fields such as climate, agriculture, water etc. and covering larger forecast time spans from months to years. Failure on crops for instance could be forecasted and measures to mitigate potential upcoming problems could be put in place well in advance. Obviously, the societal and economic benefits would be manifold and large

  12. Citizen Observatories and the New Earth Observation Science

    Directory of Open Access Journals (Sweden)

    Alan Grainger

    2017-02-01

    Full Text Available Earth observation is diversifying, and now includes new types of systems, such as citizen observatories, unmanned aerial vehicles and wireless sensor networks. However, the Copernicus Programme vision of a seamless chain from satellite data to usable information in the hands of decision makers is still largely unrealized, and remote sensing science lacks a conceptual framework to explain why. This paper reviews the literatures on citizen science, citizen observatories and conceptualization of remote sensing systems. It then proposes a Conceptual Framework for Earth Observation which can be used in a new Earth observation science to explain blockages in the chain from collecting data to disseminating information in any Earth observation system, including remote sensing systems. The framework differs from its predecessors by including social variables as well as technological and natural ones. It is used here, with evidence from successful citizen science projects, to compare the factors that are likely to influence the effectiveness of satellite remote sensing systems and citizen observatories. The paper finds that constraints on achieving the seamless “Copernicus Chain” are not solely technical, as assumed in the new Space Strategy for Europe, but include social constraints too. Achieving the Copernicus Chain will depend on the balance between: (a the ‘forward’ momentum generated by the repetitive functioning of each component in the system, as a result of automatic operation or human institutions, and by the efficiency of interfaces between components; and (b the ‘backward’ flow of information on the information needs of end users. Citizen observatories will face challenges in components which for satellite remote sensing systems are: (a automatic or straightforward, e.g., sensor design and launch, data collection, and data products; and (b also challenging, e.g., data processing. Since citizen observatories will rely even more on

  13. Continuity of Earth Radiation Budget Observations

    Science.gov (United States)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  14. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  15. Results of scatterometer systems analysis for NASA/MSC Earth Observation Sensor Evaluation Program.

    Science.gov (United States)

    Krishen, K.; Vlahos, N.; Brandt, O.; Graybeal, G.

    1971-01-01

    Radar scatterometers have applications in the NASA/MSC Earth Observation Aircraft Program. Over a period of several years, several missions have been flown over both land and ocean. In this paper a system evaluation of the NASA/MSC 13.3-GHz Scatterometer System is presented. The effects of phase error between the Scatterometer channels, antenna pattern deviations, aircraft attitude deviations, environmental changes, and other related factors such as processing errors, system repeatability, and propeller modulation, were established. Furthermore, the reduction in system errors and calibration improvement was investigated by taking into account these parameter deviations. Typical scatterometer data samples are presented.

  16. USGEO Common Framework For Earth Observation Data

    Science.gov (United States)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  17. Korea Earth Observation Satellite Program

    Science.gov (United States)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  18. Copernicus: a quantum leap in Earth Observation

    Science.gov (United States)

    Aschbacher, Josef

    2015-04-01

    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  19. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    Science.gov (United States)

    Lynnes, Chris; Little, Mike; Huang, Thomas; Jacob, Joseph; Yang, Phil; Kuo, Kwo-Sen

    2016-01-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based file systems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  20. Earth Observing System (EOS)/ Advanced Microwave Sounding Unit-A (AMSU-A): Special Test Equipment. Software Requirements

    Science.gov (United States)

    Schwantje, Robert

    1995-01-01

    This document defines the functional, performance, and interface requirements for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A) Special Test Equipment (STE) software used in the test and integration of the instruments.

  1. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    Science.gov (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  2. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Kass, Steve; Huber, Silvia

    2014-01-01

    The Water Observation and Information System (WOIS) is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO) data. The WOIS has been developed by, among others, the authors of this paper under the TIGER......-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA) and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed...... to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements...

  3. Utilizing Earth Observations for Societal Issues

    Science.gov (United States)

    Habib, Shahid

    2010-01-01

    Over the last four decades a tremendous progress has been made in the Earth science space-based remote sensing observations, technologies and algorithms. Such advancements have improved the predictability by providing lead-time and accuracy of forecast in weather, climate, natural hazards, and natural resources. It has further reduced or bounded the overall uncertainties by partially improving our understanding of planet Earth as an integrated system that is governed by non-linear and chaotic behavior. Many countries such as the US, European Community, Japan, China, Russia, India has and others have invested billions of dollars in developing and launching space-based assets in the low earth (LEO) and geostationary (GEO) orbits. However, the wealth of this scientific knowledge that has potential of extracting monumental socio-economic benefits from such large investments have been slow in reaching the public and decision makers. For instance, there are a number of areas such as water resources and availability, energy forecasting, aviation safety, agricultural competitiveness, disaster management, air quality and public health, which can directly take advantage. Nevertheless, we all live in a global economy that depends on access to the best available Earth Science information for all inhabitants of this planet. This presentation discusses a process to transition Earth science data and products for societal needs including NASA's experience in achieving such objectives. It is important to mention that there are many challenges and issues that pertain to a number of areas such as: (1) difficulties in making a speedy transition of data and information from observations and models to relevant Decision Support Systems (DSS) or tools, (2) data and models inter-operability issues, (3) limitations of spatial, spectral and temporal resolution, (4) communication limitations as dictated by the availability of image processing and data compression techniques. Additionally, the

  4. Earth Observations from Space: The First 50 Years of Scientific Achievements

    Science.gov (United States)

    2008-01-01

    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  5. Earth observations from space: History, promise, and reality. Executive summary

    Science.gov (United States)

    1995-01-01

    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  6. NextGEOSS: The Next Generation Data Hub For Earth Observations

    Science.gov (United States)

    Lilja Bye, Bente; De Lathouwer, Bart; Catarino, Nuno; Concalves, Pedro; Trijssenaar, Nicky; Grosso, Nuno; Meyer-Arnek, Julian; Goor, Erwin

    2017-04-01

    The Group on Earth observation embarked on the next 10 year phase with an ambition to streamline and further develop its achievements in building the Global Earth Observing System of Systems (GEOSS). The NextGEOSS project evolves the European vision of GEOSS data exploitation for innovation and business, relying on the three main pillars of engaging communities, delivering technological developments and advocating the use of GEOSS, in order to support the creation and deployment of Earth observation based innovative research activities and commercial services. In this presentation we will present the NextGEOSS concept, a concept that revolves around providing the data and resources to the users communities, together with Cloud resources, seamlessly connected to provide an integrated ecosystem for supporting applications. A central component of NextGEOSS is the strong emphasis put on engaging the communities of providers and users, and bridging the space in between.

  7. NASA Earth Observing System Data and Information System (EOSDIS): A U.S. Network of Data Centers Serving Earth Science Data: A Network Member of ICSU WDS

    Science.gov (United States)

    Behnke, Jeanne; Ramapriyan, H. K. " Rama"

    2016-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, and serving a diverse user community around the world with Earth science data from satellites, aircraft, field campaigns and research investigations. The ESDIS Project, responsible for EOSDIS is a Network Member of the International Council for Sciences (ICSU) World Data System (WDS). Nine of the 12 Distributed Active Archive Centers (DAACs), which are part of EOSDIS, are Regular Members of the ICSUWDS. This poster presents the EOSDIS mission objectives, key characteristics of the DAACs that make them world class Earth science data centers, successes, challenges and best practices of EOSDIS focusing on the years 2014-2016, and illustrates some highlights of accomplishments of EOSDIS. The highlights include: high customer satisfaction, growing archive and distribution volumes, exponential growth in number of products distributed to users around the world, unified metadata model and common metadata repository, flexibility provided to uses by supporting data transformations to suit their applications, near-real-time capabilities to support various operational and research applications, and full resolution image browse capabilities to help users select data of interest. The poster also illustrates how the ESDIS Project is actively involved in several US and international data system organizations.

  8. Smarter Earth Science Data System

    Science.gov (United States)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  9. Earth rotation excitation mechanisms derived from geodetic space observations

    Science.gov (United States)

    Göttl, F.; Schmidt, M.

    2009-04-01

    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  10. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    Science.gov (United States)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  11. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  12. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    Science.gov (United States)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Laboratory (ISAL) at NASA s Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (approx.185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. There are four major systems or spheres of Earth. They are: Atmosphere, Biosphere, Hydrosphe, and

  13. Stability and lifetime testing of photomultiplier detectors for the Earth observing system SOLSTICE program

    Science.gov (United States)

    Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul

    1998-10-01

    The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.

  14. NASA Earth Observation Systems and Applications for Health and Air Quality

    Science.gov (United States)

    Omar, Ali H.

    2015-01-01

    There is a growing body of evidence that the environment can affect human health in ways that are both complex and global in scope. To address some of these complexities, NASA maintains a diverse constellation of Earth observing research satellites, and sponsors research in developing satellite data applications across a wide spectrum of areas. These include environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality in a number of interrelated efforts. The Health and Air Quality Applications fosters the use of observations, modeling systems, forecast development, application integration, and the research to operations transition process to address environmental health effects. NASA has been a primary partner with Federal operational agencies over the past nine years in these areas. This talk presents the background of the Health and Air Quality Applications program, recent accomplishments, and a plan for the future.

  15. Role of light satellites in the high-resolution Earth observation domain

    Science.gov (United States)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  16. Value of Earth Observation for Risk Mitigation

    Science.gov (United States)

    Pearlman, F.; Shapiro, C. D.; Grasso, M.; Pearlman, J.; Adkins, J. E.; Pindilli, E.; Geppi, D.

    2017-12-01

    Societal benefits flowing from Earth observation are intuitively obvious as we use the information to assess natural hazards (such as storm tracks), water resources (such as flooding and droughts in coastal and riverine systems), ecosystem vitality and other dynamics that impact the health and economic well being of our population. The most powerful confirmation of these benefits would come from quantifying the impact and showing direct quantitative links in the value chain from data to decisions. However, our ability to identify and quantify those benefits is challenging. The impact of geospatial data on these types of decisions is not well characterized and assigning a true value to the observations on a broad scale across disciplines still remains to be done in a systematic way. This presentation provides the outcomes of a workshop held in October 2017 as a side event of the GEO Plenary that addressed research on economic methodologies for quantification of impacts. To achieve practical outputs during the meeting, the workshop focused on the use and value of Earth observations in risk mitigation including: ecosystem impacts, weather events, and other natural and manmade hazards. Case studies on approaches were discussed and will be part of this presentation. The presentation will also include the exchange of lessons learned and a discussion of gaps in the current understanding of the use and value of earth observation information for risk mitigation.

  17. Providing Context-sensitive Access to the Earth Observation Product Library

    OpenAIRE

    Kiemle, Stephan; Freitag, Burkhard

    2007-01-01

    The German Remote Sensing Data Center (DFD) has developed a digital library for the long-term management of earth observation data products. This Product Library is a central part of DFD’s multi-mission ground segment Data and Information Management System (DIMS) currently hosting one million digital products, corresponding to 150 Terabyte of data. Its data model is regularly extended to support products of upcoming earth observation missions. The ever increasing complexity led to the develop...

  18. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  19. CEOS contributions to informing energy management and policy decision making using space-based Earth observations

    International Nuclear Information System (INIS)

    Eckman, Richard S.; Stackhouse, Paul W.

    2012-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the “space arm” for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. We discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space weather impacts on the power grid, and improve energy efficiency in the built environment.

  20. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    Science.gov (United States)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  1. PanEurasian Experiment (PEEX): Modelling Platform for Earth System Observations and Forecasting

    Science.gov (United States)

    Baklanov, Alexander; Mahura, Alexander; Penenko, Vladimir; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    As the part of the PEEX initiative, for the purpose of supporting the PEEX observational system and answering on the PEEX scientific questions, a hierarchy/ framework of modern multi-scale models for different elements of the Earth System integrated with the observation system is needed. One of the acute topics in the international debate on land-atmosphere interactions in relation to global change is the Earth System Modeling (ESM). The question is whether the ESM components actually represent how the Earth is functioning. The ESMs consist of equations describing the processes in the atmosphere, ocean, cryosphere, terrestrial and marine biosphere. ESMs are the best tools for analyzing the effect of different environmental changes on future climate or for studying the role of whole processes in the Earth System. These types of analysis and prediction of the future change are especially important in the Arctic latitudes, where climate change is proceeding fastest and where near-surface warming has been about twice the global average during the recent decades. The processes, and hence parameterization, in ESMs are still based on insufficient knowledge of physical, chemical and biological mechanisms involved in the climate system and the resolution of known processes is insufficient. Global scale modeling of land-atmosphere-ocean interactions using ESMs provides a way to explore the influence of spatial and temporal variation in the activities of land system and on climate. There is a lack, however, ways to forward a necessary process understanding effectively to ESMs and to link all this to the decision-making process. Arctic-boreal geographical domain plays significant role in terms of green-house gases and anthropogenic emissions and as an aerosol source area in the Earth System. The PEEX Modelling Platform (PEEX-MP) is characterized by: • An ensemble approach with the integration of modelling results from different models/ countries etc.; • A hierarchy of

  2. Novel Solar Sail Mission Concepts for High-Latitude Earth and Lunar Observation

    NARCIS (Netherlands)

    Heiligers, M.J.; Parker, Jeffrey S.; Macdonald, Malcolm

    2016-01-01

    This paper proposes the use of solar sail periodic orbits in the Earth-Moon system for ob-servation of the high-latitudes of the Earth and Moon. At the Earth, the high-latitudes will be crucial in answering questions concerning global climate change, monitoring space weather events and ensuring

  3. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  4. I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    Science.gov (United States)

    Lucchesi, Rob; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The GEOS DAS will be used to provide background fields of meteorological quantities to EOS satellite instrument teams for use in their data algorithms as well as providing assimilated data sets for climate studies on decadal time scales. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now embarking on an effort to convert the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). The GEOS DAS consists of two main components, an atmospheric General Circulation Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM operates on data that are stored on a regular grid while PSAS works with observational data that are scattered irregularly throughout the atmosphere. As a result, the two components have different data decompositions. The GCM is decomposed horizontally as a checkerboard with all vertical levels of each box existing on the same processing element(PE). The dynamical core of the GCM can also operate on a rotated grid, which requires communication-intensive grid transformations during GCM integration. PSAS groups observations on PEs in a more irregular and dynamic fashion.

  5. Earth Observations for Global Water Security

    Science.gov (United States)

    Lawford, Richard; Strauch, Adrian; Toll, David; Fekete, Balazs; Cripe, Douglas

    2013-01-01

    The combined effects of population growth, increasing demands for water to support agriculture, energy security, and industrial expansion, and the challenges of climate change give rise to an urgent need to carefully monitor and assess trends and variations in water resources. Doing so will ensure that sustainable access to adequate quantities of safe and useable water will serve as a foundation for water security. Both satellite and in situ observations combined with data assimilation and models are needed for effective, integrated monitoring of the water cycle's trends and variability in terms of both quantity and quality. On the basis of a review of existing observational systems, we argue that a new integrated monitoring capability for water security purposes is urgently needed. Furthermore, the components for this capability exist and could be integrated through the cooperation of national observational programmes. The Group on Earth Observations should play a central role in the design, implementation, management and analysis of this system and its products.

  6. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A): Instrumentation interface control document

    Science.gov (United States)

    1994-01-01

    This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).

  7. Connecting Earth observation to high-throughput biodiversity data

    DEFF Research Database (Denmark)

    Bush, Alex; Sollmann, Rahel; Wilting, Andreas

    2017-01-01

    Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could...... observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services....

  8. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    Science.gov (United States)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    of some Earth Observation oriented applications based on flexible description of processing, and adaptive and portable execution over Cloud infrastructure. Main references for further information: [1] BigEarth project, http://cgis.utcluj.ro/projects/bigearth [2] Gorgan, D., "Flexible and Adaptive Processing of Earth Observation Data over High Performance Computation Architectures", International Conference and Exhibition Satellite 2015, August 17-19, Houston, Texas, USA. [3] Mihon, D., Bacu, V., Colceriu, V., Gorgan, D., "Modeling of Earth Observation Use Cases through the KEOPS System", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 455-460, (2015). [4] Nandra, C., Gorgan, D., "Workflow Description Language for Defining Big Earth Data Processing Tasks", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 461-468, (2015). [5] Bacu, V., Stefan, T., Gorgan, D., "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015).

  9. International Space Station Earth Observations Working Group

    Science.gov (United States)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  10. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    Science.gov (United States)

    Lynnes, C.; Little, M. M.; Huang, T.; Jacob, J. C.; Yang, C. P.; Kuo, K. S.

    2016-12-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based filesystems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  11. The Earth Observation Technology Cluster

    Science.gov (United States)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.

    2012-07-01

    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  12. 78 FR 67418 - National Plan for Civil Earth Observations; Request for Information

    Science.gov (United States)

    2013-11-12

    ... weather; natural hazards; land-use change; ecosystem health; water; natural resources; and other characteristics of the Earth system. Taken together, Earth observations provide the indispensable foundation for... Societal Benefit Areas (SBAs): Agriculture and Forestry Biodiversity Climate Disasters Ecosystems...

  13. A grid portal for Earth Observation community

    International Nuclear Information System (INIS)

    Aloisio, G.; Cafaro, M.; Carteni, G.; Epicoco, I.; Quarta, G.

    2005-01-01

    Earth Observation techniques offer many powerful instruments far Earth planet study, urban development planning, military intelligence helping and so on. Tera bytes of EO and geo spatial data about lands, oceans, glaciers, cities, etc. are continuously downloaded through remote-sensing infrastructures and stored into heterogeneous, distributed repositories usually belonging to different virtual organizations. A problem-solving environment can be a viable solution to handle, coordinate and share heterogeneous and distributed resources. Moreover, grid computing is an emerging technology to salve large-scale problems in dynamic, multi-institutional Virtual Organizations coordinated by sharing resources such as high-performance computers, observation devices, data and databases aver high-speed networks, etc. In this paper we present the Italian Grid far Earth Observation (I-GEO) project, a pervasive environment based on grid technology to help the integration and processing of Earth Observation data, providing a tool to share and access data, applications and computational resources among several organizations

  14. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    Science.gov (United States)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational

  15. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    Science.gov (United States)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so

  16. Cyberinfrastructure Initiatives of the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS)

    Science.gov (United States)

    McDonald, K. R.; Faundeen, J. L.; Petiteville, I.

    2005-12-01

    The Committee on Earth Observation Satellites (CEOS) was established in 1984 in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. CEOS participants are Members, who are national or international governmental organizations who operate civil spaceborne Earth observation satellites, and Associates who are governmental organizations with civil space programs in development or international scientific or governmental bodies who have an interest in and support CEOS objectives. The primary objective of CEOS is to optimize benefits of satellite Earth observations through cooperation of its participants in mission planning and in development of compatible data products, formats, services, applications and policies. To pursue its objectives, CEOS establishes working groups and associated subgroups that focus on relevant areas of interest. While the structure of CEOS has evolved over its lifetime, today there are three permanent working groups. One is the Working Group on Calibration and Validation that addresses sensor-specific calibration and validation and geophysical parameter validation. A second is the Working Group on Education, Training, and Capacity Building that facilitates activities that enhance international education and training in Earth observation techniques, data analysis, interpretation and applications, with a particular focus on developing countries. The third permanent working group is the Working Group on Information Systems and Services (WGISS). The purpose of WGISS is to promote collaboration in the development of the systems and services based on international standards that manage and supply the Earth observation data and information from participating agencies' missions. WGISS places great emphasis on the use of demonstration projects involving user groups to solve the critical interoperability issues associated with the

  17. Aspiring to Spectral Ignorance in Earth Observation

    Science.gov (United States)

    Oliver, S. A.

    2016-12-01

    Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.

  18. The Role and Evolution of NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  19. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    Science.gov (United States)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  20. The computational challenges of Earth-system science.

    Science.gov (United States)

    O'Neill, Alan; Steenman-Clark, Lois

    2002-06-15

    The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.

  1. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  2. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    Science.gov (United States)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  3. The Potential Benefits of Earth Observations for the Water-Energy-Food Nexus and Beyond

    Science.gov (United States)

    Lawford, R. G.

    2016-12-01

    Earth Observations have been shown to have the potential to play an important role in the management of the Water-Energy-Food (W-E-F) Nexus. To date, their primary application has come through support to decisions related to the better use of water in the production of food and in the extraction of energy. However, to be fully effective, the uses of Earth observations should be coordinated across the sectors and appropriately applied at multiple levels of the governance process. This observation argues for a new approach to governance and management of the W-E-F Nexus that implements collaborative planning based on broader usage of Earth observations. The Future Earth W-E-F Nexus Cluster project has documented a number of ways in which Earth observations can support decision-making that benefits the management of these sectors and has identified gaps in the data and information systems needed for this purpose. This presentation will summarize those findings and discuss how the role of Earth observations could be strengthened and expanded to the Sustainable Development Goals and Integrated Water Resources Management.

  4. An Information Architect's View of Earth Observations for Disaster Risk Management

    Science.gov (United States)

    Moe, K.; Evans, J. D.; Cappelaere, P. G.; Frye, S. W.; Mandl, D.; Dobbs, K. E.

    2014-12-01

    Satellite observations play a significant role in supporting disaster response and risk management, however data complexity is a barrier to broader use especially by the public. In December 2013 the Committee on Earth Observation Satellites Working Group on Information Systems and Services documented a high-level reference model for the use of Earth observation satellites and associated products to support disaster risk management within the Global Earth Observation System of Systems context. The enterprise architecture identified the important role of user access to all key functions supporting situational awareness and decision-making. This paper focuses on the need to develop actionable information products from these Earth observations to simplify the discovery, access and use of tailored products. To this end, our team has developed an Open GeoSocial API proof-of-concept for GEOSS. We envision public access to mobile apps available on smart phones using common browsers where users can set up a profile and specify a region of interest for monitoring events such as floods and landslides. Information about susceptibility and weather forecasts about flood risks can be accessed. Users can generate geo-located information and photos of local events, and these can be shared on social media. The information architecture can address usability challenges to transform sensor data into actionable information, based on the terminology of the emergency management community responsible for informing the public. This paper describes the approach to collecting relevant material from the disasters and risk management community to address the end user needs for information. The resulting information architecture addresses the structural design of the shared information in the disasters and risk management enterprise. Key challenges are organizing and labeling information to support both online user communities and machine-to-machine processing for automated product generation.

  5. Earth Observation for Biodiversity Assessment (EO-BA)

    CSIR Research Space (South Africa)

    Cho, Moses A

    2012-10-01

    Full Text Available in the Dukuduku coastal forest Earth Observation for Biodiversity Assessment (EO-BA) MA CHO, P DEBBA, R MATHIEU, A RAMOELO, L NAIDOO, H VAN DEVENTER, O MALAHLELA AND R MAIN CSIR Natural Resources and the Environment, Pretoria, South Africa PO Box 395... Observation for Biodiversity Assessment (EO-BA) programme is designed to enhance biodiversity assessment and conservation through the application of earth observation data, with particular focus on the African continent. MISSION To initiate and develop...

  6. The NASA Earth Observing System Higher-Education Alliance Curriculum Development Project at Middle Tennessee State University

    Science.gov (United States)

    Abolins, M. J.; Wylie, M.

    2008-12-01

    During the last three years, geodata-rich undergraduate curricula were developed at Middle Tennessee State University (MTSU) with major support from the NASA Earth Observing System Higher-Education Alliance ("GeoBrain") and additional support from Tennessee Space Grant and the NSF StepMT program. These curricula fall into three broad categories: (1) GIS-based curricula, (2) the free on-line textbook "Physical Regions and Features of the United States," and (3) presentation graphics (primarily satellite images) for faculty involved in teaching and research outside the United States. All three incorporate Earth Observing System data as well as data from other public sources. Most data was obtained through the GeoBrain data download website, the USGS Seamless Data Distribution System, or the National Atlas of the United States website. The three categories of curricula exemplify the diverse educational applications of satellite images and other map data. The GIS-based curricula (1) are built around ESRI GIS software and include an asteroid impact activity and a volcano activity. The free on-line textbook (2) provides a broad overview of the physical features of the United States and is intended as a supplement for undergraduate geoscience courses. Presentation graphics (3) have been created for faculty investigating Scottish archeology and historical/cultural issues in Portugal and Morocco. The three categories represent three distinctly different ways to use remotely-sensed data to improve undergraduate instruction.

  7. Evolving NASA's Earth Science Data Systems

    Science.gov (United States)

    Walter, J.; Behnke, J.; Murphy, K. J.; Lowe, D. R.

    2013-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth science data. The system supports a multitude of missions and serves diverse science research and other user communities. Keeping up with ever-changing information technology and figuring out how to leverage those changes across such a large system in order to continuously improve and meet the needs of a diverse user community is a significant challenge. Maintaining and evolving the system architecture and infrastructure is a continuous and multi-layered effort. It requires a balance between a "top down" management paradigm that provides a coherent system view and maintaining the managerial, technological, and functional independence of the individual system elements. This presentation will describe some of the key elements of the current system architecture, some of the strategies and processes we employ to meet these challenges, current and future challenges, and some ideas for meeting those challenges.

  8. Evolving Metadata in NASA Earth Science Data Systems

    Science.gov (United States)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  9. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    Science.gov (United States)

    Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun

    2017-07-01

    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.

  10. Sharing Earth Observation Data When Health Management

    Science.gov (United States)

    Cox, E. L., Jr.

    2015-12-01

    While the global community is struck by pandemics and epidemics from time to time the ability to fully utilize earth observations and integrate environmental information has been limited - until recently. Mature science understanding is allowing new levels of situational awareness be possible when and if the relevant data is available and shared in a timely and useable manner. Satellite and other remote sensing tools have been used to observe, monitor, assess and predict weather and water impacts for decades. In the last few years much of this has included a focus on the ability to monitor changes on climate scales that suggest changes in quantity and quality of ecosystem resources or the "one-health" approach where trans-disciplinary links between environment, animal and vegetative health may provide indications of best ways to manage susceptibility to infectious disease or outbreaks. But the scale of impacts and availability of information from earth observing satellites, airborne platforms, health tracking systems and surveillance networks offer new integrated tools. This presentation will describe several recent events, such as Superstorm Sandy in the United States and the Ebola outbreak in Africa, where public health and health infrastructure have been exposed to environmental hazards and lessons learned from disaster response in the ability to share data have been effective in risk reduction.

  11. Programmable wide field spectrograph for earth observation

    Science.gov (United States)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  12. First results of the earth observation water cycle multi-mission observation strategy (WACMOS)

    NARCIS (Netherlands)

    Su, Zhongbo; Fernadez-Prieto, D.; Timmermans, J.; Chen, Xuelong; Hungershoefer, K.; Schröder, M.; Schulz, J.; Stammes, P.; Wang, Peng; Wolters, e.

    2014-01-01

    Observing and monitoring the different components of the global water cycle and their dynamics are essential steps to understand the climate of the Earth, forecast the weather, predict natural disasters like floods and droughts, and improve water resources management. Earth observation technology is

  13. NASA's Earth Science Data Systems: A "Bit of History" and Observations

    Science.gov (United States)

    Ramapriyan, H. K.

    2008-01-01

    NASA has significantly improved its Earth Science Data Systems over the last two decades. Open data policy and inexpensive (or free) availability of data has promoted data usage by broad research and applications communities. Flexibility, accommodation of diversity, evolvability, responsiveness to community feedback are key to success.

  14. STS-39 Earth observation of Earth's limb at sunset shows atmospheric layers

    Science.gov (United States)

    1991-01-01

    STS-39 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, shows the Earth's limb at sunset with numerous atmospheric scattering layers highlighted. The layers consist of fine particles suspended in very stable layers of the atmosphere. The layers act as a prism for the sunlight.

  15. NASA's Earth Observing System: The Transition from Climate Monitoring to Climate Change Prediction

    Science.gov (United States)

    King, Michael D.; Herring, David D.

    1998-01-01

    Earth's 4.5 billion year history is a study in change. Natural geological forces have been rearranging the surface features and climatic conditions of our planet since its beginning. There is scientific evidence that some of these natural changes have not only led to mass extinctions of species (e.g., dinosaurs), but have also severely impacted human civilizations. For instance, there is evidence that a relatively sudden climate change caused a 300-year drought that contributed to the downfall of Akkadia, one of the most powerful empires in the Middle-East region around 2200 BC. More recently, the "little ice age" from 1200-1400 AD forced the Vikings to abandon Greenland when temperatures there dropped by about 1.5 C, rendering it too difficult to grow enough crops to sustain the population. Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rate of global change. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. We don't understand the cause-and-effect relationships among Earth's land, ocean, and atmosphere well enough to predict what, if any, impacts these rapid changes will have on future climate conditions. We need to make many measurements all over the world, over a long period of time, in order to assemble the information needed to construct accurate computer models that will enable us to forecast climate change. In 1988, the Earth System Sciences Committee, sponsored by NASA, issued a report calling for an integrated, long-term strategy for measuring the vital signs of Earth's climate system. The report urged that the measurements must all be intimately coupled with focused process studies, they must facilitate development of Earth system models, and they must be stored in an information system that ensures open access to consistent, long-term data

  16. Public-Private Partnership: Joint recommendations to improve downloads of large Earth observation data

    Science.gov (United States)

    Ramachandran, R.; Murphy, K. J.; Baynes, K.; Lynnes, C.

    2016-12-01

    With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way Earth observation data is processed, analyzed, and visualized. The cloud infrastructure provides the flexibility to scale up to large volumes of data and handle high velocity data streams efficiently. Having freely available Earth observation data collocated on a cloud infrastructure creates opportunities for innovation and value-added data re-use in ways unforeseen by the original data provider. These innovations spur new industries and applications and spawn new scientific pathways that were previously limited due to data volume and computational infrastructure issues. NASA, in collaboration with Amazon, Google, and Microsoft, have jointly developed a set of recommendations to enable efficient transfer of Earth observation data from existing data systems to a cloud computing infrastructure. The purpose of these recommendations is to provide guidelines against which all data providers can evaluate existing data systems and be used to improve any issues uncovered to enable efficient search, access, and use of large volumes of data. Additionally, these guidelines ensure that all cloud providers utilize a common methodology for bulk-downloading data from data providers thus preventing the data providers from building custom capabilities to meet the needs of individual cloud providers. The intent is to share these recommendations with other Federal agencies and organizations that serve Earth observation to enable efficient search, access, and use of large volumes of data. Additionally, the adoption of these recommendations will benefit data users interested in moving large volumes of data from data systems to any other location. These data users include the cloud providers, cloud users such as scientists, and other users working in a high performance computing environment who need to move large volumes of data.

  17. Terra - the Earth Observing System flagship observatory

    Science.gov (United States)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  18. Development of the Earth Observation Camera of MIRIS

    Directory of Open Access Journals (Sweden)

    Dae-Hee Lee

    2011-09-01

    Full Text Available We have designed and manufactured the Earth observation camera (EOC of multi-purpose infrared imaging system (MIRIS. MIRIS is a main payload of the STSAT-3, which will be launched in late 2012. The main objective of the EOC is to test the operation of Korean IR technology in space, so we have designed the optical and mechanical system of the EOC to fit the IR detector system. We have assembled the flight model (FM of EOC and performed environment tests successfully. The EOC is now ready to be integrated into the satellite system waiting for operation in space, as planned.

  19. Earth Observations for Geohazards: Present and Future Challenges

    Directory of Open Access Journals (Sweden)

    Roberto Tomás

    2017-02-01

    Full Text Available Earth Observations (EO encompasses different types of sensors (e.g., Synthetic Aperture Radar, Laser Imaging Detection and Ranging, Optical and multispectral and platforms (e.g., satellites, aircraft, and Unmanned Aerial Vehicles and enables us to monitor and model geohazards over regions at different scales in which ground observations may not be possible due to physical and/or political constraints. EO can provide high spatial, temporal and spectral resolution, stereo-mapping and all-weather-imaging capabilities, but not by a single satellite at a time. Improved satellite and sensor technologies, increased frequency of satellite measurements, and easier access and interpretation of EO data have all contributed to the increased demand for satellite EO data. EO, combined with complementary terrestrial observations and with physical models, have been widely used to monitor geohazards, revolutionizing our understanding of how the Earth system works. This Special Issue presents a collection of scientific contributions focusing on innovative EO methods and applications for monitoring and modeling geohazards, consisting of four Sections: (1 earthquake hazards; (2 landslide hazards; (3 land subsidence hazards; and (4 new EO techniques and services.

  20. Improving the Transition of Earth Satellite Observations from Research to Operations

    Science.gov (United States)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.

    2004-01-01

    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).

  1. Earth Observation from Space - The Issue of Environmental Sustainability

    Science.gov (United States)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  2. Migration to Earth Observation Satellite Product Dissemination System at JAXA

    Science.gov (United States)

    Ikehata, Y.; Matsunaga, M.

    2017-12-01

    JAXA released "G-Portal" as a portal web site for search and deliver data of Earth observation satellites in February 2013. G-Portal handles ten satellites data; GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 and archives 5.17 million products and 14 million catalogues in total. Users can search those products/catalogues in GUI web search and catalogue interface(CSW/Opensearch). In this fiscal year, we will replace this to "Next G-Portal" and has been doing integration, test and migrations. New G-Portal will treat data of satellites planned to be launched in the future in addition to those handled by G - Portal. At system architecture perspective, G-Portal adopted "cluster system" for its redundancy, so we must replace the servers into those with higher specifications when we improve its performance ("scale up approach"). This requests a lot of cost in every improvement. To avoid this, Next G-Portal adopts "scale out" system: load balancing interfaces, distributed file system, distributed data bases. (We reported in AGU fall meeting 2015(IN23D-1748).) At customer usability perspective, G-Portal provides complicated interface: "step by step" web design, randomly generated URLs, sftp (needs anomaly tcp port). Customers complained about the interfaces and the support team had been tired from answering them. To solve this problem, Next G-Portal adopts simple interfaces: "1 page" web design, RESTful URL, and Normal FTP. (We reported in AGU fall meeting 2016(IN23B-1778).) Furthermore, Next G-Portal must merge GCOM-W data dissemination system to be terminated in the next March as well as the current G-Portal. This might arrise some difficulties, since the current G-Portal and GCOM-W data dissemination systems are quite different from Next G-Portal. The presentation reports the knowledge obtained from the process of merging those systems.

  3. The Sun/Earth System and Space Weather

    Science.gov (United States)

    Poland, Arthur I.; Fox, Nicola; Lucid, Shannon

    2003-01-01

    Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P K Kunhikrishnan. Articles written in Journal of Earth System Science. Volume 113 Issue 3 September 2004 pp 353-363. Observations of the atmospheric surface layer parameters over a semi arid region during the solar eclipse of August 11th, 1999 · Praveena Krishnan ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Gurubaran. Articles written in Journal of Earth System Science. Volume 116 Issue 3 June 2007 pp 179-186. Fairweather atmospheric electricity at Antarctica during local summer as observed from Indian station, Maitri · C Panneerselvam C Selvaraj K Jeeva K U Nair C P ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C Selvaraj. Articles written in Journal of Earth System Science. Volume 116 Issue 3 June 2007 pp 179-186. Fairweather atmospheric electricity at Antarctica during local summer as observed from Indian station, Maitri · C Panneerselvam C Selvaraj K Jeeva K U Nair C P ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V Fernando. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 1045-1074. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope · P Amol D Shankar V Fernando A Mukherjee S G ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Devesh Kumar Maurya. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 935-944. Validation of two gridded soil moisture products over India with in-situ observations · C K Unnikrishnan John P George Abhishek Lodh Devesh Kumar ...

  9. Overview of NASA's Earth Science Data Systems

    Science.gov (United States)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  10. Using dCache in Archiving Systems oriented to Earth Observation

    Science.gov (United States)

    Garcia Gil, I.; Perez Moreno, R.; Perez Navarro, O.; Platania, V.; Ozerov, D.; Leone, R.

    2012-04-01

    The object of LAST activity (Long term data Archive Study on new Technologies) is to perform an independent study on best practices and assessment of different archiving technologies mature for operation in the short and mid-term time frame, or available in the long-term with emphasis on technologies better suited to satisfy the requirements of ESA, LTDP and other European and Canadian EO partners in terms of digital information preservation and data accessibility and exploitation. During the last phase of the project, a testing of several archiving solutions has been performed in order to evaluate their suitability. In particular, dCache, aimed to provide a file system tree view of the data repository exchanging this data with backend (tertiary) Storage Systems as well as space management, pool attraction, dataset replication, hot spot determination and recovery from disk or node failures. Connected to a tertiary storage system, dCache simulates unlimited direct access storage space. Data exchanges to and from the underlying HSM are performed automatically and invisibly to the user Dcache was created to solve the requirements of big computer centers and universities with big amounts of data, putting their efforts together and founding EMI (European Middleware Initiative). At the moment being, Dcache is mature enough to be implemented, being used by several research centers of relevance (e.g. LHC storing up to 50TB/day). This solution has been not used so far in Earth Observation and the results of the study are summarized in this article, focusing on the capacities over a simulated environment to get in line with the ESA requirements for a geographically distributed storage. The challenge of a geographically distributed storage system can be summarized as the way to provide a maximum quality for storage and dissemination services with the minimum cost.

  11. Earth System Science Education Interdisciplinary Partnerships

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  12. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    Science.gov (United States)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  13. Synthetic aperture lidar as a future tool for earth observation

    Science.gov (United States)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2017-11-01

    Synthetic aperture radar (SAR) is a tool of prime importance for Earth observation; it provides day and night capabilities in various weather conditions. State-of-the-art satellite SAR systems are a few meters in height and width and achieve resolutions of less than 1 m with revisit times on the order of days. Today's Earth observation needs demand higher resolution imaging together with timelier data collection within a compact low power consumption payload. Such needs are seen in Earth Observation applications such as disaster management of earthquakes, landslides, forest fires, floods and others. In these applications the availability of timely reliable information is critical to assess the extent of the disaster and to rapidly and safely deploy rescue teams. Synthetic aperture lidar (SAL) is based on the same basic principles as SAR. Both rely on the acquisition of multiple electromagnetic echoes to emulate a large antenna aperture providing the ability to produce high resolution images. However, in SAL, much shorter optical wavelengths (1.5 μm) are used instead of radar ones (wavelengths around 3 cm). Resolution being related to the wavelength, multiple orders of magnitude of improvement could be theoretically expected. Also, the sources, the detector, and the components are much smaller in optical domain than those for radar. The resulting system can thus be made compact opening the door to deployment onboard small satellites, airborne platforms and unmanned air vehicles. This has a strong impact on the time required to develop, deploy and use a payload. Moreover, in combination with airborne deployment, revisit times can be made much smaller and accessibility to the information can become almost in real-time. Over the last decades, studies from different groups have been done to validate the feasibility of a SAL system for 2D imagery and more recently for 3D static target imagery. In this paper, an overview of the advantages of this emerging technology will

  14. Earth system commitments due to delayed mitigation

    International Nuclear Information System (INIS)

    Pfister, Patrik L; Stocker, Thomas F

    2016-01-01

    As long as global CO 2 emissions continue to increase annually, long-term committed Earth system changes grow much faster than current observations. A novel metric linking this future growth to policy decisions today is the mitigation delay sensitivity (MDS), but MDS estimates for Earth system variables other than peak temperature (ΔT max ) are missing. Using an Earth System Model of Intermediate Complexity, we show that the current emission increase rate causes a ΔT max increase roughly 3–7.5 times as fast as observed warming, and a millenial steric sea level rise (SSLR) 7–25 times as fast as observed SSLR, depending on the achievable rate of emission reductions after the peak of emissions. These ranges are only slightly affected by the uncertainty range in equilibrium climate sensitivity, which is included in the above values. The extent of ocean acidification at the end of the century is also strongly dependent on the starting time and rate of emission reductions. The preservable surface ocean area with sufficient aragonite supersaturation for coral reef growth is diminished globally at an MDS of roughly 25%–80% per decade. A near-complete loss of this area becomes unavoidable if mitigation is delayed for a few years to decades. Also with respect to aragonite, 12%–18% of the Southern Ocean surface become undersaturated per decade, if emission reductions are delayed beyond 2015–2040. We conclude that the consequences of delaying global emission reductions are much better captured if the MDS of relevant Earth system variables is communicated in addition to current trends and total projected future changes. (letter)

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G S Meena. Articles written in Journal of Earth System Science. Volume 115 Issue 3 June 2006 pp 333-347. Retrieval of stratospheric O3 and NO2 vertical profiles using zenith scattered light observations · G S Meena C S Bhosale D B Jadhav · More Details Abstract Fulltext ...

  16. Decision-making contexts involving Earth observations in federal and state government agencies

    Science.gov (United States)

    Kuwayama, Y.; Thompson, A.

    2017-12-01

    National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. One of the Consortium's activities is a set of Policy Briefs that document the use of Earth observations for decision making in federal and state government agencies. In developing these Policy Briefs, we pay special attention to documenting the entire information value chain associated with the use of Earth observations in government decision making, namely (a) the specific data product, modeling capability, or information system used by the agency, (b) the decision context that employs the Earth observation information and translates it into an agency action, (c) the outcomes that are realized as a result of the action, and (d) the beneficiaries associated with the outcomes of the decision. Two key examples include the use of satellite data for informing the US Drought Monitor (USDM), which is used to determine the eligibility of agricultural communities for drought disaster assistance programs housed at the US Department of Agriculture (USDA), and the use of satellite data by the Florida Department of Environmental Protection to develop numeric nutrient water quality standards and monitoring methods for chlorophyll-a, which is codified in Florida state code (62-302.532).

  17. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  18. A Desktop Virtual Reality Earth Motion System in Astronomy Education

    Science.gov (United States)

    Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang

    2007-01-01

    In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…

  19. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  20. Collaborations and Partnerships in NASA’s Earth Science Data Systems

    Directory of Open Access Journals (Sweden)

    Hampapuram K. Ramapriyan

    2017-11-01

    Full Text Available NASA has been collecting Earth observation data from spaceborne instruments since 1960. Today, there are tens of satellites orbiting the Earth and collecting frequent global observations for the benefit of mankind. Collaboration between NASA and organizations in the US and other countries has been extremely important in maintaining the Earth observation capabilities as well as collecting, organizing and managing the data. These collaborations have occurred in the form of: 1. NASA’s developing and launching spacecraft and instruments for operation by other agencies; 2. Instruments from collaborating organizations being flown on NASA satellites; and 3. Instruments from NASA being flown on satellites from collaborating organizations. In addition, there are collaborations such as joint science teams, data exchanges, and participation in international organizations to promote interoperability of various data systems. The purpose of this paper is to describe some of the Earth science data-related collaborative efforts in which NASA participates, and highlight a few results relevant to Earth system science research obtained through such collaborations.

  1. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    Directory of Open Access Journals (Sweden)

    Radoslaw Guzinski

    2014-08-01

    Full Text Available The Water Observation and Information System (WOIS is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO data. The WOIS has been developed by, among others, the authors of this paper under the TIGER-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements of the participating key African water authorities, and demonstrated with dedicated case studies utilizing the software in operational scenarios. They cover a wide range of themes and information products, including basin-wide characterization of land and water resources, lake water quality monitoring, hydrological modeling and flood forecasting and mapping. For each monitoring task, step-by-step workflows were developed, which can either be adjusted by the user or largely automatized to feed into existing data streams and reporting schemes. The WOIS enables African water authorities to fully exploit the increasing EO capacity offered by current and upcoming generations of satellites, including the Sentinel missions.

  2. EARTH OBSERVATION ACTIVITIES AND FUTURE PERSPECTIVES IN EGYPT

    Directory of Open Access Journals (Sweden)

    I. A. El-Magd

    2017-11-01

    Full Text Available Egypt was one of the first developing countries in Africa that used earth observation and remote sensing in various applications since 1970s. It has grown up in the last decades to build its own capacity in space science and technology that ended up by launching earth observation satellites. At the same time Egypt continued to develop the capacity in EO applications and contribute to the national development plans. In this domain NARSS, the governmental research institute that lead the EO and space applications has completed many research and development projects in EO applications in mineral resources exploration, coastal and marine resources, air quality, water resources management, food security, etc. This was via operational projects with the stakeholders and users to ensure sustainability and operation of the services. For example, NARSS has developed an operational system to monitor the national crop rice using EO information that capable to provide the actual land planted with rice and predict the yield. The system has enabled to provide recommendations for other plots of land that suitable for rice plantation. In the area of environmental hazards, many projects on the flash floods and the vulnerability to flash flood hazards were developed providing decision makers with vulnerability maps and Atlases on national level. Further details on the EO activities and future plans at NARSS, Egypt will be presented in this paper.

  3. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  4. Optical MEMS for Earth observation

    Science.gov (United States)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  5. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    Science.gov (United States)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  6. DEVELOPMENT AND EVALUATION OF TECHNOLOGY EDUCATION USING EARTH OBSERVATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Y. Ito

    2012-07-01

    Full Text Available In the present study, we introduce to secondary education an Earth observation technique using synthetic aperture radar (SAR. The goal is to increase interest in and raise the awareness of students in the Earth observation technique through practical activities. A curriculum is developed based on the result of questionnaire surveys of school teachers. The curriculum is composed of 16 units. Teaching materials related to the Earth observation technique are researched and developed. We designed a visual SAR processor and a small corner reflector (CR as a new teaching technique. In teaching sessions at secondary school, the developed teaching materials and software were used effectively. In observation experiments, students set up CRs that they had built, and ALOS PALSAR was able to clearly observe all of the CRs. The proposed curriculum helped all of the students to understand the usefulness of the Earth observation technique.

  7. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    for Earth Observation by initiating feasibility studies of a spaceborne concept to monitor atmospheric CO2 and other greenhouse gases. The purpose of this paper is to present the instruments concept and related technology/instrument developments that are currently running at the European Space Agency. The paper will also outline the development planning proposed for future lidar systems.

  8. Policy Document on Earth Observation for Urban Planning and Management: State of the Art and Recommendations for Application of Earth Observation in Urban Planning

    Science.gov (United States)

    Nichol, Janet; King, Bruce; Xiaoli, Ding; Dowman, Ian; Quattrochi, Dale; Ehlers, Manfred

    2007-01-01

    A policy document on earth observation for urban planning and management resulting from a workshop held in Hong Kong in November 2006 is presented. The aim of the workshop was to provide a forum for researchers and scientists specializing in earth observation to interact with practitioners working in different aspects of city planning, in a complex and dynamic city, Hong Kong. A summary of the current state of the art, limitations, and recommendations for the use of earth observation in urban areas is presented here as a policy document.

  9. Recommendations to Improve Downloads of Large Earth Observation Data

    Directory of Open Access Journals (Sweden)

    Rahul Ramachandran

    2018-01-01

    Full Text Available With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way these data are processed, analyzed, and visualized. Collocating freely available Earth observation data on a cloud computing infrastructure may create opportunities unforeseen by the original data provider for innovation and value-added data re-use, but existing systems at data centers are not designed for supporting requests for large data transfers. A lack of common methodology necessitates that each data center handle such requests from different cloud vendors differently. Guidelines are needed to support enabling all cloud vendors to utilize a common methodology for bulk-downloading data from data centers, thus preventing the providers from building custom capabilities to meet the needs of individual vendors. This paper presents recommendations distilled from use cases provided by three cloud vendors (Amazon, Google, and Microsoft and are based on the vendors’ interactions with data systems at different Federal agencies and organizations. These specific recommendations range from obvious steps for improving data usability (such as ensuring the use of standard data formats and commonly supported projections to non-obvious undertakings important for enabling bulk data downloads at scale. These recommendations can be used to evaluate and improve existing data systems for high-volume data transfers, and their adoption can lead to cloud vendors utilizing a common methodology.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 5 .... Atmospheric correction of Earth-observation remote sensing images by Monte Carlo method ... Decision tree approach for classification of remotely sensed satellite data ... Analysis of carbon dioxide, water vapour and energy fluxes over an Indian ...

  11. Atmospheric correction of Earth-observation remote sensing images

    Indian Academy of Sciences (India)

    In earth observation, the atmospheric particles contaminate severely, through absorption and scattering, the reflected electromagnetic signal from the earth surface. It will be greatly beneficial for land surface characterization if we can remove these atmospheric effects from imagery and retrieve surface reflectance that ...

  12. Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation.

    Science.gov (United States)

    Cord, Anna F; Brauman, Kate A; Chaplin-Kramer, Rebecca; Huth, Andreas; Ziv, Guy; Seppelt, Ralf

    2017-06-01

    Managing ecosystem services in the context of global sustainability policies requires reliable monitoring mechanisms. While satellite Earth observation offers great promise to support this need, significant challenges remain in quantifying connections between ecosystem functions, ecosystem services, and human well-being benefits. Here, we provide a framework showing how Earth observation together with socioeconomic information and model-based analysis can support assessments of ecosystem service supply, demand, and benefit, and illustrate this for three services. We argue that the full potential of Earth observation is not yet realized in ecosystem service studies. To provide guidance for priority setting and to spur research in this area, we propose five priorities to advance the capabilities of Earth observation-based monitoring of ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  14. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  15. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques

    Directory of Open Access Journals (Sweden)

    M. Flach

    2017-08-01

    Full Text Available Today, many processes at the Earth's surface are constantly monitored by multiple data streams. These observations have become central to advancing our understanding of vegetation dynamics in response to climate or land use change. Another set of important applications is monitoring effects of extreme climatic events, other disturbances such as fires, or abrupt land transitions. One important methodological question is how to reliably detect anomalies in an automated and generic way within multivariate data streams, which typically vary seasonally and are interconnected across variables. Although many algorithms have been proposed for detecting anomalies in multivariate data, only a few have been investigated in the context of Earth system science applications. In this study, we systematically combine and compare feature extraction and anomaly detection algorithms for detecting anomalous events. Our aim is to identify suitable workflows for automatically detecting anomalous patterns in multivariate Earth system data streams. We rely on artificial data that mimic typical properties and anomalies in multivariate spatiotemporal Earth observations like sudden changes in basic characteristics of time series such as the sample mean, the variance, changes in the cycle amplitude, and trends. This artificial experiment is needed as there is no gold standard for the identification of anomalies in real Earth observations. Our results show that a well-chosen feature extraction step (e.g., subtracting seasonal cycles, or dimensionality reduction is more important than the choice of a particular anomaly detection algorithm. Nevertheless, we identify three detection algorithms (k-nearest neighbors mean distance, kernel density estimation, a recurrence approach and their combinations (ensembles that outperform other multivariate approaches as well as univariate extreme-event detection methods. Our results therefore provide an effective workflow to

  16. The Development of Two Science Investigator-led Processing Systems (SIPS) for NASA's Earth Observation System (EOS)

    Science.gov (United States)

    Tilmes, Curt

    2004-01-01

    In 2001, NASA Goddard Space Flight Center's Laboratory for Terrestrial Physics started the construction of a science Investigator-led Processing System (SIPS) for processing data from the Ozone Monitoring Instrument (OMI) which will launch on the Aura platform in mid 2004. The Ozone Monitoring Instrument (OMI) is a contribution of the Netherlands Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI) to the Earth Observing System (EOS) Aura mission. It will continue the Total Ozone Monitoring System (TOMS) record for total ozone and other atmospheric parameters related to ozone chemistry and climate. OMI measurements will be highly synergistic with the other instruments on the EOS Aura platform. The LTP previously developed the Moderate Resolution Imaging Spectrometer (MODIS) Data Processing System (MODAPS), which has been in full operations since the launches of the Terra and Aqua spacecrafts in December, 1999 and May, 2002 respectively. During that time, it has continually evolved to better support the needs of the MODIS team. We now run multiple instances of the system managing faster than real time reprocessings of the data as well as continuing forward processing. The new OMI Data Processing System (OMIDAPS) was adapted from the MODAPS. It will ingest raw data from the satellite ground station and process it to produce calibrated, geolocated higher level data products. These data products will be transmitted to the Goddard Distributed Active Archive Center (GDAAC) instance of the Earth Observing System (EOS) Data and Information System (EOSDIS) for long term archive and distribution to the public. The OMIDAPS will also provide data distribution to the OMI Science Team for quality assessment, algorithm improvement, calibration, etc. We have taken advantage of lessons learned from the MODIS experience and software already developed for MODIS. We made some changes in the hardware system organization, database and

  17. Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Goto, Hayato; Ichimura, Kouichi

    2007-01-01

    Coherent population transfer in a laser-driven four-level system in a tripod configuration is experimentally investigated with a rare-earth-metal-ion-doped crystal (Pr 3+ :Y 2 SiO 5 ). The population transfers observed here indicate that a main process inducing them is not optical pumping, which is an incoherent process inducing population transfer. Moreover, numerical simulation, which well reproduces the experimental results, also shows that the process inducing the observed population transfers is similar to stimulated Raman adiabatic passage (STIRAP) in the sense that this process possesses characteristic features of STIRAP

  18. Earth Observation Research for GMES Initial Operations

    Science.gov (United States)

    van Beijma, Sybrand; Balzter, Heiko; Nicolas-Perea, Virginia

    2013-04-01

    well as receiving the best technical training and scientific education. This training is currently being delivered through individually supervised research, international summer schools and local training. GIONET will develop better methods for monitoring climate change, environmental disasters and land cover change. It will also lead to the development of new methods using satellite monitoring for disaster relief after landslides and floods, controlling deforestation and overseeing the protection of tropical rainforests, as well as for climate change monitoring, lake water quality measurement and coastal erosion assessment. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: * Forest monitoring: o Global biomass information systems o Forest monitoring of the Congo Basin using Synthetic Aperture Radar (SAR) o Multi-concept Earth Observation capabilities for biomass mapping and change detection: synergy of multi-temporal and multi-frequency interferometric radar and optical satellite data * Land cover and change: o Multi-scale remote sensing synergy for land process studies: from field spectrometry to airborne hyperspectral and LiDAR campaigns to radar-optical satellite data o Multi-temporal, multi-frequency SAR for landscape dynamics * Coastal zone and freshwater monitoring: o SAR-based Earth Observation in support of management of intertidal salt marsh habitats o Dynamics and conservation ecology of emergent and submerged macrophytes in Lake Balaton using airborne remote sensing o Satellite remote sensing of water quality (chlorophyll and suspended sediment) using MODIS and ship-mounted LIDAR * Geohazards and emergency response: o Methods for detection and monitoring of small scale land surface feature changes in complex crisis situations o Monitoring landslide displacements with Radar Interferometry o DINSAR/PSI hybrid

  19. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    Science.gov (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  20. Transforming Science Data for GIS: How to Find and Use NASA Earth Observation Data Without Being a Rocket Scientist

    Science.gov (United States)

    Bagwell, Ross; Peters, Byron; Berrick, Stephen

    2017-01-01

    NASAs Earth Observing System Data Information System (EOSDIS) manages Earth Observation satellites and the Distributed Active Archive Centers (DAACs), where the data is stored and processed. The challenge is that Earth Observation data is complicated. There is plenty of data available, however, the science teams have had a top-down approach: define what it is you are trying to study -select a set of satellite(s) and sensor(s), and drill down for the data.Our alternative is to take a bottom-up approach using eight environmental fields of interest as defined by the Group on Earth Observations (GEO) called Societal Benefit Areas (SBAs): Disaster Resilience (DR) Public Health Surveillance (PHS) Energy and Mineral Resource Management (EMRM) Water Resources Management (WRM) Infrastructure and Transport Management (ITM) Sustainable Urban Development (SUD) Food Security and Sustainable Agriculture (FSSA) Biodiversity and Ecosystems Sustainability (BES).

  1. BIG DATA-Related Challenges and Opportunities in Earth System Modeling

    Science.gov (United States)

    Bamzai, A. S.

    2012-12-01

    Knowledge of the Earth's climate has increased immensely in recent decades, both through observational analysis and modeling. BIG DATA-related challenges emerge in our quest for understanding the variability and predictability of the climate and earth system on a range of time scales, as well as in our endeavor to improve predictive capability using state-of-the-science models. To enable further scientific discovery, bottlenecks in current paradigms need to be addressed. An overview of current NSF activities in Earth System Modeling with a focus on associated data-related challenges and opportunities, will be presented.

  2. UrtheCast Second-Generation Earth Observation Sensors

    Science.gov (United States)

    Beckett, K.

    2015-04-01

    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  3. Earth observation open science and innovation

    CERN Document Server

    Aubrecht, Christoph

    2018-01-01

    This book is published open access under a CC BY 4.0 license. Over  the  past  decades,  rapid developments in digital and sensing technologies, such  as the Cloud, Web and Internet of Things, have dramatically changed the way we live and work. The digital transformation is revolutionizing our ability to monitor our planet and transforming the  way we access, process and exploit Earth Observation data from satellites. This book reviews these megatrends and their implications for the Earth Observation community as well as the wider data economy. It provides insight into new paradigms of Open Science and Innovation applied to space data, which are characterized by openness, access to large volume of complex data, wide availability of new community tools, new techniques for big data analytics such as Artificial Intelligence, unprecedented level of computing power, and new types of collaboration among researchers, innovators, entrepreneurs and citizen scientists. In addition, this book aims to provide reade...

  4. The Global Geodetic Observing System: Recent Activities and Accomplishments

    Science.gov (United States)

    Gross, R. S.

    2017-12-01

    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions

  5. Applying sensor web strategies to big data earth observations

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2013-07-01

    Full Text Available Earth observation data and meta-data are a central concern of the earth sciences. These data are generated by a myriad of both in-situ and remote sensors. Other sources of data include computational simulations, various ex-situ sources...

  6. Earth Observations: Experiences from Various Communication Strategies

    Science.gov (United States)

    Lilja Bye, Bente

    2015-04-01

    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  7. Cubesats and drones: bridging the spatio-temporal divide for enhanced earth observation

    Science.gov (United States)

    McCabe, M. F.; Aragon, B.; Parkes, S. D.; Mascaro, J.; Houborg, R.

    2017-12-01

    In just the last few years, a range of advances in remote sensing technologies have enabled an unprecedented opportunity in earth observation. Parallel developments in cubesats and unmanned aerial vehicles (UAVs) have overcome one of the outstanding challenges in observing the land surface: the provision of timely retrievals at a spatial resolution that is sufficiently detailed to make field-level decisions. Planet cubesats have revolutionized observing capacity through their objective of near daily global retrieval. These nano-satellite systems provide high resolution (approx. 3 m) retrievals in red-green-blue and near-infrared wavelengths, offering capacity to develop vegetation metrics for both hydrological and precision agricultural applications. Apart from satellite based advances, nearer to earth technology is being exploited for a range of observation needs. UAVs provide an adaptable platform from which a variety of sensing systems can be deployed. Combinations of optical, thermal, multi- and hyper-spectral systems allow for the estimation of a range of land surface variables, including vegetation structure, vegetation health, land surface temperature and evaporation. Here we explore some of these exciting developments in the context of agricultural hydrology, providing examples of cubesat and UAV imagery that has been used to inform upon crop health and water use. An investigation of the spatial and temporal advantage of these complementary systems is undertaken, with examples of multi-day high-resolution vegetation dynamics from cubesats presented alongside diurnal-cycle responses derived from multiple within-day UAV flights.

  8. The value of earth observations: methods and findings on the value of Landsat imagery

    Science.gov (United States)

    Miller, Holly M.; Serbina, Larisa O.; Richardson, Leslie A.; Ryker, Sarah J.; Newman, Timothy R.

    2016-01-01

    Data from Earth observation systems are used extensively in managing and monitoring natural resources, natural hazards, and the impacts of climate change, but the value of such data can be difficult to estimate, particularly when it is available at no cost. Assessing the socioeconomic and scientific value of these data provides a better understanding of the existing and emerging research, science, and applications related to this information and contributes to the decision making process regarding current and future Earth observation systems. Recent USGS research on Landsat data has advanced the literature in this area by using a variety of methods to estimate value. The results of a 2012 survey of Landsat users, a 2013 requirements assessment, and 2013 case studies of applications of Landsat imagery are discussed.

  9. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    Science.gov (United States)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  10. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    KAUST Repository

    McCabe, Matthew

    2016-10-25

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-Agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  11. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  12. STS-59 crewmembers in training for onboard Earth observations

    Science.gov (United States)

    1993-01-01

    The six astronauts in training for the STS-59 mission are shown onboard Earth observations tips by Justin Wilkinson (standing, foreground) of the Space Shuttle Earth Observations Project (SSEOP) group. Astronaut Sidney M. Gutierrez, mission commander, is at center on the left side of the table. Others, left to right, are Astronauts Kevin P. Chilton, pilot; Jerome (Jay) Apt and Michael R.U. (Rich) Clifford, both mission specialists; Linda M. Godwin, payload commander; and Thomas D. Jones, mission specialist.

  13. Ultraviolet Observations of the Earth and Moon during the Juno Flyby

    Science.gov (United States)

    Gladstone, R.; Versteeg, M. H.; Davis, M.; Greathouse, T. K.; Gerard, J. M.; Grodent, D. C.; Bonfond, B.

    2013-12-01

    We present the initial results from Juno-UVS observations of the Earth and Moon obtained during the flyby of the Juno spacecraft on 9 October 2013. Juno-UVS is an imaging spectrograph with a bandpass of 70dog-bone' shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate cross delay line detector with a solar blind UV-sensitive CsI photocathode, which makes up the instrument's focal plane. Tantalum surrounds the detector assembly to shield it from high-energy electrons. The detector electronics are located behind the detector. All other electronics are located in a box inside Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. The recent Earth flyby provided an opportunity to: 1) use observations of the lunar surface to improve flux and wavelength calibration at EUV wavelengths λ<91 nm (for which there are few stellar calibration options); 2) test the Juno spacecraft nadir-pulse system (which will be used at Jupiter to control scan mirror movements); 3) observe Earth airglow, aurora, and geocoronal emissions (for science interest); and 4) determine the effectiveness of the Ta shielding to high-energy particles (using dark observations made during Juno's passage through Earth's radiation belts). Preliminary results for each of these objectives will be presented.

  14. Achievement report for fiscal 1984 describing research and development of earth resources observation systems; 1984 nendo shigen tansayo kansoku system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    Japan's Outline of Space Development were renewed in February 1984. Under the new principles, the earth resources satellite (ERS-1) program is to be promoted and that research and development efforts for a launch in fiscal 1989 are to be started. Industrial, academic, and governmental organizations concerned making their utmost efforts have established a Technology Research Association for Resources Remote Sensing for the execution of the tasks. The contents of its business are the research and development of an observation system to be installed aboard ERS-1. That is, a synthetic aperture radar and other equipment such as optical sensors and data transmission systems will be developed, and technologies necessary for the development of a satellite borne observation system will be established through evaluation and verification by testing such systems for instance aboard aircraft. Carried out in fiscal 1984 are the studies of required specifications and the drafting of research and development programs for the next and the following fiscal years involving the research and development of the resources exploration system as a whole, sensor systems, and data transmission systems. (NEDO)

  15. Co-ordination of satellite and data programs: The committee on earth observation satellites' approach

    Science.gov (United States)

    Embleton, B. J. J.; Kingwell, J.

    1997-01-01

    Every year, an average of eight new civilian remote sensing satellite missions are launched. Cumulatively, over 250 such missions, each with a cost equivalent in current value to between US 100 million to US 1000 million, have been sponsored by space agencies in perhaps two dozen countries. These missions produce data and information products which are vital for informed decision making all over the world, on matters relating to natural resource exploitation, health and safety, sustainable national development, infrastructure planning, and a host of other applications. By contributing to better scientific understanding of global changes in the atmosphere, land surface, oceans and ice caps, these silently orbiting sentinels in the sky make it possible for governments and industries to make wiser environmental policy decisions and support the economic development needs of humanity. The international Committee on Earth Observation Satellites (CEOS) is the premier world body for co-ordinating and planning civilian satellite missions for Earth observation. Through its technical working groups and special task teams, it endeavours to: • maximise the international benefits from Earth observation satellites; and • harmonise practice in calibration, validation, data management and information systems for Earth observation. CEOS encompasses not only space agencies (data providers), but also the great international scientific and operational programs which rely on Earth science data from space. The user organisations affiliated with CEOS, together with the mission operators, attempt to reconcile user needs with the complex set of considerations — including national interests, cost, schedule — which affect the undertaking of space missions. Without such an internationally co-ordinated consensual approach, there is a much greater risk of waste through duplication, and of missed opportunity, or through the absence of measurements of some vital physical or biological

  16. Pioneer Venus and near-earth observations of interplanetary shocks

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Russell, C.T.; Knudsen, W.C.; Scarf, F.L.

    1987-01-01

    Twenty-three transient interplanetary shocks observed near earth during 1978-1982, and mostly reported in the literature, have also been identified at the Pioneer Venus Orbiter spacecraft. There seems to be a fairly consistent trend for lower shock speeds, farther from the sun. Shock normals obtained using the Pioneer Venus data correspond well with published values from near earth. By referring to the portion of the Pioneer Venus plasma data used here from locations at longitudes within 37 degree of earth, it is found that shocks are weaker at earth, compared with closer to the sun

  17. The Importance of Earth Observations and Data Collaboration within Environmental Intelligence Supporting Arctic Research

    Science.gov (United States)

    Casas, Joseph

    2017-01-01

    Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.

  18. The future of Earth observation in hydrology

    KAUST Repository

    McCabe, Matthew; Rodell, Matthew; Alsdorf, Douglas E.; Miralles, Diego G.; Uijlenhoet, Remko; Wagner, Wolfgang; Lucieer, Arko; Houborg, Rasmus; Verhoest, Niko E. C.; Franz, Trenton E.; Shi, Jiancheng; Gao, Huilin; Wood, Eric F.

    2017-01-01

    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles

  19. Current Status and Perspectives for the Estimation of Crop Water Requirements from Earth Observation

    Directory of Open Access Journals (Sweden)

    Guido D’Urso

    2010-06-01

    Full Text Available This paper presents an overview of current techniques and recent developments in the application of Earth Observationdata for assessing crop water requirements. During recent years there has been much progress in understandingland surface-atmosphere processes and their parameterisation in the management of land and water resources.This knowledge can be combined with the potentiality of Earth Observation techniques from space, whichare able to provide detailed information for monitoring agricultural systems.As today, two main developments in the field of Earth Observation data acquisition and analysis have occurred:a availability of new generations of sensors, with enhanced spectral and spatial resolution;b detailed knowledge of the processes that determine the response of land surface as detected from remote sensorsin different regions of the electromagnetic spectrum.These advancements have made possible a “quantitative” approach in the interpretation of Earth Observation data,ready for being transferred to operative applications i.e. for irrigation scheduling and water management. Thispaper presents a review of current applications of optical data in the visible and near infrared spectral regions, withparticular emphasis to the experiences developed by the author within AQUATER and other research projectsproject.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 1 ... with a parametric study of the effect of four hydrometeors (cloud liquid water, cloud ice, ... Impact of additional surface observation network on short range weather forecast ... Doppler SODAR observations of the temperature structure parameter during ...

  1. NASA: Changes to the scope, schedule, and estimated cost of the Earth Observing System. Report to the Chair, Government Activities and Transportation Subcommittee, Committee on Government Operations, House of Representatives

    International Nuclear Information System (INIS)

    1992-07-01

    Congress funded the Earth Observing System (EOS) as a new NASA program beginning in fiscal year 1991. NASA proposed to launch about 30 types of earth observing instruments beginning in 1998. These instruments were intended to improve satellite data about the earth and to provide new data to support interdisciplinary studies of the earth. EOS is seen by NASA as the first step toward a future period of space-based scientific observation of the earth. The program is directly linked to the objectives of the U.S. Global Change Research Program and international efforts to observe and study the earth. The U.S. Global Change Research Program, which is funded by 11 agencies, is an attempt to achieve these objectives and to improve predictions of climate and other forms of global change. Within that program, EOS is intended to significantly improve scientists' abilities to model, and thereby predict, broad natural relationships among the sea, land, and atmosphere; to observe how water, carbon, and other substances move on the planet or are affected by variations in the sun's radiation; and to assess the impact of human activities on the earth's climate. Ultimately, EOS is to help determine the extent to which human activities are affecting the earth's environment and to provide policymakers with the information they will need to preserve the earth

  2. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  3. The Role of NASA Observations in Understanding Earth System Change

    Science.gov (United States)

    Fladeland, Matthew M.

    2009-01-01

    This presentation will introduce a non-technical audience to NASA Earth science research goals and the technologies used to achieve them. The talk will outline the primary science focus areas and then provide overviews of current and planned missions, in addition to instruments, aircraft, and other technologies that are used to turn data into useful information for scientists and policy-makers. This presentation is part of an Earth Day symposium at the University of Mary.

  4. A Multi-Purpose Data Dissemination Infrastructure for the Marine-Earth Observations

    Science.gov (United States)

    Hanafusa, Y.; Saito, H.; Kayo, M.; Suzuki, H.

    2015-12-01

    To open the data from a variety of observations, the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has developed a multi-purpose data dissemination infrastructure. Although many observations have been made in the earth science, all the data are not opened completely. We think data centers may provide researchers with a universal data dissemination service which can handle various kinds of observation data with little effort. For this purpose JAMSTEC Data Management Office has developed the "Information Catalog Infrastructure System (Catalog System)". This is a kind of catalog management system which can create, renew and delete catalogs (= databases) and has following features, - The Catalog System does not depend on data types or granularity of data records. - By registering a new metadata schema to the system, a new database can be created on the same system without sytem modification. - As web pages are defined by the cascading style sheets, databases have different look and feel, and operability. - The Catalog System provides databases with basic search tools; search by text, selection from a category tree, and selection from a time line chart. - For domestic users it creates the Japanese and English pages at the same time and has dictionary to control terminology and proper noun. As of August 2015 JAMSTEC operates 7 databases on the Catalog System. We expect to transfer existing databases to this system, or create new databases on it. In comparison with a dedicated database developed for the specific dataset, the Catalog System is suitable for the dissemination of small datasets, with minimum cost. Metadata held in the catalogs may be transfered to other metadata schema to exchange global databases or portals. Examples: JAMSTEC Data Catalog: http://www.godac.jamstec.go.jp/catalog/data_catalog/metadataList?lang=enJAMSTEC Document Catalog: http://www.godac.jamstec.go.jp/catalog/doc_catalog/metadataList?lang=en&tab=categoryResearch Information

  5. Studies with the EC-Earth seamless Earth system prediction model

    NARCIS (Netherlands)

    Hazeleger, W.; Bintanja, R.

    2012-01-01

    EC-Earth is a new Earth System Model (ESM) based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). Climate and weather forecasting applications share a common ancestry and are build on the same physical principles. The emerging concept of

  6. Earth observation space programmes, SAFISY activities, strategies of international organisations, legal aspects. Volume 3

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in four sessions. First part is on earth observation space programmes (international earth observation projects and international collaboration, the ERS-1, SPOT and PRIRODA programmes, the first ESA earth observation polar platform and its payload, the future earth observation remote sensing techniques and concepts). The second part is on SAFISY activities (ISY programmes, education and applications, demonstrations and outreach projects). The third part is on programme and strategies of international organisations with respect to earth observation from space. The fourth part is on legal aspects of the use of satellite remote sensing data in Europe. (A.B.). refs., figs., tabs

  7. CONSTRUCTION OF AN EARTH MODEL: ANALYSIS OF EXOPLANET LIGHT CURVES AND MAPPING THE NEXT EARTH WITH THE NEW WORLDS OBSERVER

    International Nuclear Information System (INIS)

    Oakley, P. H. H.; Cash, W.

    2009-01-01

    The orbital light curve of a terrestrial exoplanet will likely contain valuable information about the surface and atmospheric features of the planet, both in its overall shape and hourly variations. We have constructed an empirically based code capable of simulating observations of the Earth from any orientation, at any time of year with continuously updated cloud and snow coverage with a New Worlds Observatory. By simulating these observations over a full orbital revolution at a distance of 10 pc we determine that the detection of an obliquity or seasonal terrain change is possible at low inclinations. In agreement with other studies, a 4 m New Worlds Observer can accurately determine the rotation rate of the planet at a success rate from ∼30% to 80% with only 5 days of observations depending on the signal to noise of the observations. We also attempt simple inversions of these diurnal light curves to sketch a map of the reflecting planet's surface features. This mapping technique is only successful with highly favorable systems and in particular requires that the cloud coverage must be lower than the Earth's average. Our test case of a 2 M + planet at 7 pc distance with low exo-zodiacal light and 25% cloud coverage produced crude, but successful results. Additionally, with these highly favorable systems NWO may be able to discern the presence of liquid surface water (or other smooth surfaces) though it requires a complex detection available only at crescent phases in high inclination systems.

  8. Planning and Scheduling for Fleets of Earth Observing Satellites

    Science.gov (United States)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  9. Student Learning of Complex Earth Systems: Conceptual Frameworks of Earth Systems and Instructional Design

    Science.gov (United States)

    Scherer, Hannah H.; Holder, Lauren; Herbert, Bruce

    2017-01-01

    Engaging students in authentic problem solving concerning environmental issues in near-surface complex Earth systems involves both developing student conceptualization of Earth as a system and applying that scientific knowledge using techniques that model those used by professionals. In this first paper of a two-part series, we review the state of…

  10. Transforming Water Management: an Emerging Promise of Integrated Earth Observations

    Science.gov (United States)

    Lawford, R. G.

    2011-12-01

    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  11. Enhancing Earth Observation Capacity in the Himalayan Region

    Science.gov (United States)

    Shrestha, B. R.

    2012-12-01

    Earth observations bear special significance in the Himalayan Region owing to the fact that routine data collections are often hampered by highly inaccessible terrain and harsh climatic conditions. The ongoing rapid environmental changes have further emphasized its relevance and use for informed decision-making. The International Center for Integrated Mountain Development (ICIMOD), with a regional mandate is promoting the use of earth observations in line with the GEOSS societal benefit areas. ICIMOD has a proven track record to utilize earth observations notably in the areas of understanding glaciers and snow dynamics, disaster risk preparedness and emergency response, carbon estimation for community forestry user groups, land cover change assessment, agriculture monitoring and food security analysis among others. This paper presents the challenges and lessons learned as a part of capacity building of ICIMOD to utilize earth observations with the primary objectives to empower its member countries and foster regional cooperation. As a part of capacity building, ICIMOD continues to make its efforts to augment as a regional resource center on earth observation and geospatial applications for sustainable mountain development. Capacity building possesses multitude of challenges in the region: the complex geo-political reality with differentiated capacities of member states, poorer institutional and technical infrastructure; addressing the needs for multiple user and target groups; integration with different thematic disciplines; and high resources intensity and sustainability. A capacity building framework was developed based on detailed needs assessment with a regional approach and strategy to enhance capability of ICIMOD and its network of national partners. A specialized one-week training course and curriculum have been designed for different thematic areas to impart knowledge and skills that include development practitioners, professionals, researchers and

  12. The DEVELOP National Program: Building Dual Capacity in Decision Makers and Young Professionals Through NASA Earth Observations

    Science.gov (United States)

    Childs, L. M.; Rogers, L.; Favors, J.; Ruiz, M.

    2012-12-01

    Through the years, NASA has played a distinct/important/vital role in advancing Earth System Science to meet the challenges of environmental management and policy decision making. Within NASA's Earth Science Division's Applied Sciences' Program, the DEVELOP National Program seeks to extend NASA Earth Science for societal benefit. DEVELOP is a capacity building program providing young professionals and students the opportunity to utilize NASA Earth observations and model output to demonstrate practical applications of those resources to society. Under the guidance of science advisors, DEVELOP teams work in alignment with local, regional, national and international partner organizations to identify the widest array of practical uses for NASA data to enhance related management decisions. The program's structure facilitates a two-fold approach to capacity building by fostering an environment of scientific and professional development opportunities for young professionals and students, while also providing end-user organizations enhanced management and decision making tools for issues impacting their communities. With the competitive nature and growing societal role of science and technology in today's global workplace, DEVELOP is building capacity in the next generation of scientists and leaders by fostering a learning and growing environment where young professionals possess an increased understanding of teamwork, personal development, and scientific/professional development and NASA's Earth Observation System. DEVELOP young professionals are partnered with end user organizations to conduct 10 week feasibility studies that demonstrate the use of NASA Earth science data for enhanced decision making. As a result of the partnership, end user organizations are introduced to NASA Earth Science technologies and capabilities, new methods to augment current practices, hands-on training with practical applications of remote sensing and NASA Earth science, improved remote

  13. Value of Earth Observations: Key principles and techniques of socioeconomic benefits analysis (Invited)

    Science.gov (United States)

    Friedl, L.; Macauley, M.; Bernknopf, R.

    2013-12-01

    Internationally, multiple organizations are placing greater emphasis on the societal benefits that governments, businesses, and NGOs can derive from applications of Earth-observing satellite observations, research, and models. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services by companies, agencies, and civil society. There are, however, significant efforts needed to bridge the Earth sciences and social and economic sciences fields to build capacity, develop case studies, and refine analytic techniques in quantifying socioeconomic benefits from the use of Earth observations. Some government programs, such as the NASA Earth Science Division's Applied Sciences Program have initiated activities in recent years to quantify the socioeconomic benefits from applications of Earth observations research, and to develop multidisciplinary models for organizations' decision-making activities. A community of practice has conducted workshops, developed impact analysis reports, published a book, developed a primer, and pursued other activities to advance analytic methodologies and build capacity. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to pursue a research agenda on analytic techniques, develop a body of knowledge, and promote broader skills and capabilities.

  14. Significant results from using earth observation satellites for mineral and energy resource exploration

    Science.gov (United States)

    Carter, William D.

    1981-01-01

    A large number of Earth-observation satellites orbit our world several times each day, providing new information about the land and sea surfaces and the overlying thin layer of atmosphere that makes our planet unique. Meteorological satellites have had the longest history of experimental use and most are now considered operational. The geologic information collected by the Landsat, Polar Orbiting Geophysical Observatory (POGO), Magsat, Heat Capacity Mapping Mission (HCMM) and Seasat land and ocean observation systems is being thoroughly tested, and some of these systems are now approaching operational use.

  15. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby

    Science.gov (United States)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.

    2010-01-01

    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  16. University of Rhode Island Regional Earth Systems Center

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, Lewis [Univ. of Rhode Island, Kingston, RI (United States); Cornillon, P. [Univ. of Rhode Island, Kingston, RI (United States)

    2017-02-06

    The primary objective of this program was to establish the URI Regional Earth System Center (“Center”) that would enhance overall societal wellbeing (health, financial, environmental) by utilizing the best scientific information and technology to achieve optimal policy decisions with maximum stakeholder commitment for energy development, coastal environmental management, water resources protection and human health protection, while accelerating regional economic growth. The Center was to serve to integrate existing URI institutional strengths in energy, coastal environmental management, water resources, and human wellbeing. This integrated research, educational and public/private sector outreach Center was to focus on local, state and regional resources. The centerpiece activity of the Center was in the development and implementation of integrated assessment models (IAMs) that both ‘downscaled’ global observations and interpolated/extrapolated regional observations for analyzing the complexity of interactions among humans and the natural climate system to further our understanding and, ultimately, to predict the future state of our regional earth system. The Center was to begin by first ‘downscaling’ existing global earth systems management tools for studying the causes of local, state and regional climate change and potential social and environmental consequences, with a focus on the regional resources identified above. The Center would ultimately need to address the full feedbacks inherent in the nonlinear earth systems by quantifying the “upscaled” impacts of those regional changes on the global earth system. Through an interacting suite of computer simulations that are informed by observations from the nation’s evolving climate observatories, the Center activities integrates climate science, technology, economics, and social policy into forecasts that will inform solutions to pressing issues in regional climate change science,

  17. The future of Earth observation in hydrology

    NARCIS (Netherlands)

    McCabe, Matthew F.; Rodell, Matthew; Alsdorf, Douglas E.; Miralles, Diego G.; Uijlenhoet, Remko; Wagner, Wolfgang; Lucieer, Arko; Houborg, Rasmus; Verhoest, Niko E.C.; Franz, Trenton E.

    2017-01-01

    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by

  18. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    Science.gov (United States)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  19. The Representation of Tropical Cyclones Within the Global William Putman Non-Hydrostatic Goddard Earth Observing System Model (GEOS-5) at Cloud-Permitting Resolutions

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Earth System Science. Volume 122 Issue 4 August 2013 pp 899-933. Tidal variations in the Sundarbans Estuarine System, India · Meenakshi Chatterjee D ... 5 July 2014 pp 1045-1074. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope.

  1. Non-rocket Earth-Moon transport system

    Science.gov (United States)

    Bolonkin, Alexander

    2003-06-01

    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  2. Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    Science.gov (United States)

    Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.

    2013-01-01

    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.

  3. Improved Lower Mekong River Basin Hydrological Decision Making Using NASA Satellite-based Earth Observation Systems

    Science.gov (United States)

    Bolten, J. D.; Mohammed, I. N.; Srinivasan, R.; Lakshmi, V.

    2017-12-01

    Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation. Index Terms: 1622: Earth system modeling; 1631: Land/atmosphere interactions; 1800: Hydrology; 1836 Hydrological cycles and budgets; 1840 Hydrometeorology; 1855: Remote sensing; 1866: Soil moisture; 6334: Regional Planning

  4. Orbital Noise in the Earth System and Climate Fluctuations

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  5. Learning to Improve Earth Observation Flight Planning

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes a method and system for integrating machine learning with planning and data visualization for the management of mobile sensors for Earth science...

  6. Cloud Based Earth Observation Data Exploitation Platforms

    Science.gov (United States)

    Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.

    2017-12-01

    In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland

  7. Earth Systems Science: An Analytic Framework

    Science.gov (United States)

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  8. Towards the creation of a European Network of Earth Observation Networks within GEO. The ConnectinGEO project.

    Science.gov (United States)

    Masó, Joan; Serral, Ivette; Menard, Lionel; Wald, Lucien; Nativi, Stefano; Plag, Hans-Peter; Jules-Plag, Shelley; Nüst, Daniel; Jirka, Simon; Pearlman, Jay; De Maziere, Martine

    2015-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is a new H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. ConnectinGEO aims to facilitate a broader and more accessible knowledge base to support the needs of GEO, its Societal Benefit Areas (SBAs) and the users of the Global Earth Observing System of Systems (GEOSS). A broad range of subjects from climate, natural resources and raw materials, to the emerging UN Sustainable Development Goals (SDGs) will be addressed. The project will generate a prioritized list of critical gaps within available observation data and models to translate observations into practice-relevant knowledge, based on stakeholder consultation and systematic analysis. Ultimately, it will increase coherency of European observation networks, increase the use of Earth observations for assessments and forecasts and inform the planning for future observation systems. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed by project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the space-based, airborne and in-situ observations European networks (e.g. EPOS, EMSO and GROOM, etc), representatives of the industry sector and European and national funding agencies, in particular those participating in the future ERA-PlaNET. At the beginning, the ENEON will be created and managed by the project. Then the management will be transferred to the network itself to ensure

  9. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  10. Observations of Near-Earth Asteroids in Polarized Light

    Science.gov (United States)

    Afanasiev, V. L.; Ipatov, A. V.

    2018-04-01

    We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made onMarch 8, 2016 (approximately 20m at a distance of about 0.23 AU from the Earth) showed a 0.m2-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2-3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson's B-, V-, and R-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0.m02). Spectropolarimetric observations in the 420-800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44°, which is typical for S-type near-Earth asteroids.

  11. Earth System Monitoring Selected Entries from the Encyclopedia of Sustainability Science and Technology

    CERN Document Server

    2013-01-01

    Modern Earth System Monitoring represents a fundamental change in the way scientists study the Earth System.  In Oceanography, for the past two centuries, ships have provided the platforms for observing.  Expeditions on the continents and Earth’s poles are land-based analogues. Fundamental understanding of current systems, climate, natural hazards, and ecosystems has been greatly advanced. While these approaches have been remarkably successful, the need to establish measurements over time can only be made using Earth observations and observatories with exacting standards and continuous data.  The 19 peer-reviewed contributions in this volume provide early insights into this emerging view of Earth in both space and time in which change is a critical component of our growing understanding. Presents 19 authoritative, peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology Covers a wide range of data collection platforms, including satellite remote sensing, aerial surveys, and l...

  12. Earth observations from space: the first 50 years of scientific achievements

    National Research Council Canada - National Science Library

    Committee on Scientific Accomplishments of Earth Observations from Space; National Research Council; Division on Earth and Life Studies; National Research Council

    .... This book describes how the ability to view the entire globe at once, uniquely available from satellite observations, has revolutionized Earth studies and ushered in a new era of multidisciplinary Earth sciences...

  13. LIDAR technology developments in support of ESA Earth observation missions

    Science.gov (United States)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  14. Scalable Earth-observation Analytics for Geoscientists: Spacetime Extensions to the Array Database SciDB

    Science.gov (United States)

    Appel, Marius; Lahn, Florian; Pebesma, Edzer; Buytaert, Wouter; Moulds, Simon

    2016-04-01

    Today's amount of freely available data requires scientists to spend large parts of their work on data management. This is especially true in environmental sciences when working with large remote sensing datasets, such as obtained from earth-observation satellites like the Sentinel fleet. Many frameworks like SpatialHadoop or Apache Spark address the scalability but target programmers rather than data analysts, and are not dedicated to imagery or array data. In this work, we use the open-source data management and analytics system SciDB to bring large earth-observation datasets closer to analysts. Its underlying data representation as multidimensional arrays fits naturally to earth-observation datasets, distributes storage and computational load over multiple instances by multidimensional chunking, and also enables efficient time-series based analyses, which is usually difficult using file- or tile-based approaches. Existing interfaces to R and Python furthermore allow for scalable analytics with relatively little learning effort. However, interfacing SciDB and file-based earth-observation datasets that come as tiled temporal snapshots requires a lot of manual bookkeeping during ingestion, and SciDB natively only supports loading data from CSV-like and custom binary formatted files, which currently limits its practical use in earth-observation analytics. To make it easier to work with large multi-temporal datasets in SciDB, we developed software tools that enrich SciDB with earth observation metadata and allow working with commonly used file formats: (i) the SciDB extension library scidb4geo simplifies working with spatiotemporal arrays by adding relevant metadata to the database and (ii) the Geospatial Data Abstraction Library (GDAL) driver implementation scidb4gdal allows to ingest and export remote sensing imagery from and to a large number of file formats. Using added metadata on temporal resolution and coverage, the GDAL driver supports time-based ingestion of

  15. Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations

    Science.gov (United States)

    Penny, Stephen G.; Akella, Santha; Buehner, Mark; Chevallier, Matthieu; Counillon, Francois; Draper, Clara; Frolov, Sergey; Fujii, Yosuke; Karspeck, Alicia; Kumar, Arun

    2017-01-01

    The purpose of this report is to identify fundamental issues for coupled data assimilation (CDA), such as gaps in science and limitations in forecasting systems, in order to provide guidance to the World Meteorological Organization (WMO) on how to facilitate more rapid progress internationally. Coupled Earth system modeling provides the opportunity to extend skillful atmospheric forecasts beyond the traditional two-week barrier by extracting skill from low-frequency state components such as the land, ocean, and sea ice. More generally, coupled models are needed to support seamless prediction systems that span timescales from weather, subseasonal to seasonal (S2S), multiyear, and decadal. Therefore, initialization methods are needed for coupled Earth system models, either applied to each individual component (called Weakly Coupled Data Assimilation - WCDA) or applied the coupled Earth system model as a whole (called Strongly Coupled Data Assimilation - SCDA). Using CDA, in which model forecasts and potentially the state estimation are performed jointly, each model domain benefits from observations in other domains either directly using error covariance information known at the time of the analysis (SCDA), or indirectly through flux interactions at the model boundaries (WCDA). Because the non-atmospheric domains are generally under-observed compared to the atmosphere, CDA provides a significant advantage over single-domain analyses. Next, we provide a synopsis of goals, challenges, and recommendations to advance CDA: Goals: (a) Extend predictive skill beyond the current capability of NWP (e.g. as demonstrated by improving forecast skill scores), (b) produce physically consistent initial conditions for coupled numerical prediction systems and reanalyses (including consistent fluxes at the domain interfaces), (c) make best use of existing observations by allowing observations from each domain to influence and improve the full earth system analysis, (d) develop a robust

  16. Earth Observation Services (Image Processing Software)

    Science.gov (United States)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  17. Data Curation for the Exploitation of Large Earth Observation Products Databases - The MEA system

    Science.gov (United States)

    Mantovani, Simone; Natali, Stefano; Barboni, Damiano; Cavicchi, Mario; Della Vecchia, Andrea

    2014-05-01

    National Space Agencies under the umbrella of the European Space Agency are performing a strong activity to handle and provide solutions to Big Data and related knowledge (metadata, software tools and services) management and exploitation. The continuously increasing amount of long-term and of historic data in EO facilities in the form of online datasets and archives, the incoming satellite observation platforms that will generate an impressive amount of new data and the new EU approach on the data distribution policy make necessary to address technologies for the long-term management of these data sets, including their consolidation, preservation, distribution, continuation and curation across multiple missions. The management of long EO data time series of continuing or historic missions - with more than 20 years of data available already today - requires technical solutions and technologies which differ considerably from the ones exploited by existing systems. Several tools, both open source and commercial, are already providing technologies to handle data and metadata preparation, access and visualization via OGC standard interfaces. This study aims at describing the Multi-sensor Evolution Analysis (MEA) system and the Data Curation concept as approached and implemented within the ASIM and EarthServer projects, funded by the European Space Agency and the European Commission, respectively.

  18. Destiny's Earth Observation Window

    Science.gov (United States)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  19. The magnetic field of the earth - Performance considerations for space-based observing systems

    Science.gov (United States)

    Webster, W. J., Jr.; Taylor, P. T.; Schnetzler, C. C.; Langel, R. A.

    1985-01-01

    Basic problems inherent in carrying out observations of the earth magnetic field from space are reviewed. It is shown that while useful observations of the core and crustal fields are possible at the peak of the solar cycle, the greatest useful data volume is obtained during solar minimum. During the last three solar cycles, the proportion of data with a planetary disturbance index of less than 2 at solar maximum was in the range 0.4-0.8 in comparison with solar minimum. It is found that current state of the art orbit determination techniques should eliminate orbit error as a problem in gravitational field measurements from space. The spatial resolution obtained for crustal field anomalies during the major satellite observation programs of the last 30 years are compared in a table. The relationship between observing altitude and the spatial resolution of magnetic field structures is discussed. Reference is made to data obtained using the Magsat, the Polar Orbiting Geophysical Observatory (POGO), and instruments on board the Space Shuttle.

  20. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  1. Observing the Earth from afar with NASA's Worldview

    Science.gov (United States)

    Wong, M. M.; Boller, R. A.; King, B. A.; Baynes, K.; Rice, Z.

    2017-12-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  2. GRACE, time-varying gravity, Earth system dynamics and climate change

    Science.gov (United States)

    Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  3. UNH Data Cooperative: A Cyber Infrastructure for Earth System Studies

    Science.gov (United States)

    Braswell, B. H.; Fekete, B. M.; Prusevich, A.; Gliden, S.; Magill, A.; Vorosmarty, C. J.

    2007-12-01

    Earth system scientists and managers have a continuously growing demand for a wide array of earth observations derived from various data sources including (a) modern satellite retrievals, (b) "in-situ" records, (c) various simulation outputs, and (d) assimilated data products combining model results with observational records. The sheer quantity of data, and formatting inconsistencies make it difficult for users to take full advantage of this important information resource. Thus the system could benefit from a thorough retooling of our current data processing procedures and infrastructure. Emerging technologies, like OPeNDAP and OGC map services, open standard data formats (NetCDF, HDF) data cataloging systems (NASA-Echo, Global Change Master Directory, etc.) are providing the basis for a new approach in data management and processing, where web- services are increasingly designed to serve computer-to-computer communications without human interactions and complex analysis can be carried out over distributed computer resources interconnected via cyber infrastructure. The UNH Earth System Data Collaborative is designed to utilize the aforementioned emerging web technologies to offer new means of access to earth system data. While the UNH Data Collaborative serves a wide array of data ranging from weather station data (Climate Portal) to ocean buoy records and ship tracks (Portsmouth Harbor Initiative) to land cover characteristics, etc. the underlaying data architecture shares common components for data mining and data dissemination via web-services. Perhaps the most unique element of the UNH Data Cooperative's IT infrastructure is its prototype modeling environment for regional ecosystem surveillance over the Northeast corridor, which allows the integration of complex earth system model components with the Cooperative's data services. While the complexity of the IT infrastructure to perform complex computations is continuously increasing, scientists are often forced

  4. Naval EarthMap Observer: overview and data processing

    Science.gov (United States)

    Bowles, Jeffrey H.; Davis, Curtiss O.; Carney, Megan; Clamons, Dean; Gao, Bo-Cai; Gillis, David; Kappus, Mary E.; Lamela, G.; Montes, Marcos J.; Palmadesso, Peter J.; Rhea, J.; Snyder, William A.

    1999-12-01

    We present an overview of the Naval EarthMap Observer (NEMO) spacecraft and then focus on the processing of NEMO data both on-board the spacecraft and on the ground. The NEMO spacecraft provides for Joint Naval needs and demonstrates the use of hyperspectral imagery for the characterization of the littoral environment and for littoral ocean model development. NEMO is being funded jointly by the U.S. government and commercial partners. The Coastal Ocean Imaging Spectrometer (COIS) is the primary instrument on the NEMO and covers the spectral range from 400 to 2500 nm at 10-nm resolution with either 30 or 60 m work GSD. The hyperspectral data is processed on-board the NEMO using NRL's Optical Real-time Automated Spectral Identification System (ORASIS) algorithm that provides for real time analysis, feature extraction and greater than 10:1 data compression. The high compression factor allows for ground coverage of greater than 106 km2/day. Calibration of the sensor is done with a combination of moon imaging, using an onboard light source and vicarious calibration using a number of earth sites being monitored for that purpose. The data will be atmospherically corrected using ATREM. Algorithms will also be available to determine water clarity, bathymetry and bottom type.

  5. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, A. A. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Vasko, I. Y.; Petrukovich, A. A.; Zelenyi, L. M. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); Artemyev, A. V. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); University of California, Los Angeles, California 90095 (United States); Yushkov, E. V. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation)

    2016-07-15

    Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.

  6. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere

    International Nuclear Information System (INIS)

    Vinogradov, A. A.; Vasko, I. Y.; Petrukovich, A. A.; Zelenyi, L. M.; Artemyev, A. V.; Yushkov, E. V.

    2016-01-01

    Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.

  7. GMES Initial Operations - Network for Earth Observation Research Training (GIONET)

    Science.gov (United States)

    Nicolas-Perea, V.; Balzter, H.

    2012-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: -Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). -Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centers and market leaders in the private sector. -Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: Forest monitoring: Global biomass information systems Forest Monitoring of the Congo Basin using Synthetic Aperture radar (SAR) Multi-concept Earth Observation Capabilities for Biomass Mapping and Change Detection: Synergy of Multi-temporal and Multi-frequency Interferometric Radar and Optical Satellite Data Land cover and change: Multi-scale Remote Sensing Synergy for Land Process Studies: from field Spectrometry to Airborne Hyperspectral and

  8. Full and Open Access to Data in the Global Earth Observing System of Systems (GEOSS): Implementing the GEOSS Data Sharing Principles

    Science.gov (United States)

    Chen, R. S.; Uhlir, P. F.; Gabrinowicz, J. I.

    2008-12-01

    Full and open access to data from remote sensing platforms and other sources can facilitate not only scientific research but also the more widespread and effective use of scientific data for the benefit of society. The Global Earth Observing System of Systems (GEOSS) is a major international initiative of the Group on Earth Observations (GEO) to develop "coordinated, comprehensive and sustained Earth observations and information." In 2005, GEO adopted the GEOSS Data Sharing Principles, which call for the "full and open exchange of data, metadata, and products shared within GEOSS, recognizing relevant international instruments and national policies and legislation." These Principles also note that "All shared data, metadata, and products will be made available with minimum time delay and at minimum cost" and that "All shared data, metadata, and products being free of charge or no more than cost of reproduction will be encouraged for research and education." GEOSS Task DA-06-01, aimed at developing a set of recommended implementation guidelines for the Principles, was established in 2006 under the leadership of CODATA, the Committee on Data for Science and Technology of the International Council for Science (ICSU). An international team of authors has developed a draft White Paper on the GEOSS Data Sharing Principles and a proposed set of implementation guidelines. These have been carefully reviewed by independent reviewers, various GEO Committees, and GEO National Members and Participating Organizations. It is expected that the proposed implementation guidelines will be discussed at the GEO-V Plenary in Budapest in November 2008. The current version of the proposed implementation guidelines recognizes the importance of good faith, voluntary adherence to the Principles by GEO National Members and Participating Organizations. It underscores the value of reuse and re-dissemination of GEOSS data with minimum restrictions, not only within GEOSS itself but on the part of

  9. High frequency variations of Earth Rotation Parameters from GPS and GLONASS observations.

    Science.gov (United States)

    Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong

    2015-01-28

    The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future.

  10. NASA Information And Data System for Earth Science Data Fusion and Analytics

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the key elements of advancing our understanding of Earth system via remote sensing is integration of diverse measurements into the observing system. As remote...

  11. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    Science.gov (United States)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as

  12. The Montaguto earth flow: nine years of observation and analysis

    Science.gov (United States)

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  13. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    climate forecasts. Aqua is a major mission of the Earth Observing System (EOS), an international program centered in NASA's Earth Science Enterprise to study the Earth in detail from the unique vantage point of space. Focused on key measurements identified by a consensus of U.S. and international scientists, EOS is further enabling studies of the complex interactions amongst the Earth's land, ocean, air, ice and biological systems. Aqua's contributions to monitoring water in the Earth's environment will involve all six of Aqua's instruments: the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer- Earth Observing System (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Frozen water in the oceans, in the form of sea ice, will be examined with both AMSR-E and MODIS data, the former allowing routine monitoring of sea ice at a coarse resolution and the latter providing greater spatial resolution but only under cloud-free conditions. Sea ice can insulate the underlying liquid water against heat loss to the often frigid overlying polar atmosphere and also reflects sunlight that would otherwise be available to warm the ocean. AMSR-E measurements will allow the routine derivation of sea ice concentrations in both polar regions, through taking advantage of the marked contrast in microwave emissions of sea ice and liquid water. This will continue, with improved resolution and accuracy, a 22-year satellite record of changes in the extent of polar ice. MODIS, with its finer resolution, will permit the identification of individual ice flows, when unobscured by clouds. AMSR-E and MODIS will also provide monitoring, the AIRS/AMSU/HSB combination will provide more-accurate space-based measurements of atmospheric temperature and water vapor than have ever been obtained before, with the highest vertical

  14. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  15. The UK Earth System Model project

    Science.gov (United States)

    Tang, Yongming

    2016-04-01

    In this talk we will describe the development and current status of the UK Earth System Model (UKESM). This project is a NERC/Met Office collaboration and has two objectives; to develop and apply a world-leading Earth System Model, and to grow a community of UK Earth System Model scientists. We are building numerical models that include all the key components of the global climate system, and contain the important process interactions between global biogeochemistry, atmospheric chemistry and the physical climate system. UKESM will be used to make key CMIP6 simulations as well as long-time (e.g. millennium) simulations, large ensemble experiments and investigating a range of future carbon emission scenarios.

  16. Determining characteristics of artificial near-Earth objects using observability analysis

    Science.gov (United States)

    Friedman, Alex M.; Frueh, Carolin

    2018-03-01

    Observability analysis is a method for determining whether a chosen state of a system can be determined from the output or measurements. Knowledge of state information availability resulting from observability analysis leads to improved sensor tasking for observation of orbital debris and better control of active spacecraft. This research performs numerical observability analysis of artificial near-Earth objects. Analysis of linearization methods and state transition matrices is performed to determine the viability of applying linear observability methods to the nonlinear orbit problem. Furthermore, pre-whitening is implemented to reformulate classical observability analysis. In addition, the state in observability analysis is typically composed of position and velocity; however, including object characteristics beyond position and velocity can be crucial for precise orbit propagation. For example, solar radiation pressure has a significant impact on the orbit of high area-to-mass ratio objects in geosynchronous orbit. Therefore, determining the time required for solar radiation pressure parameters to become observable is important for understanding debris objects. In order to compare observability analysis results with and without measurement noise and an extended state, quantitative measures of observability are investigated and implemented.

  17. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  18. Basic Earth's Parameters as estimated from VLBI observations

    Directory of Open Access Journals (Sweden)

    Ping Zhu

    2017-11-01

    Full Text Available The global Very Long Baseline Interferometry observation for measuring the Earth rotation's parameters was launched around 1970s. Since then the precision of the measurements is continuously improving by taking into account various instrumental and environmental effects. The MHB2000 nutation model was introduced in 2002, which is constructed based on a revised nutation series derived from 20 years VLBI observations (1980–1999. In this work, we firstly estimated the amplitudes of all nutation terms from the IERS-EOP-C04 VLBI global solutions w.r.t. IAU1980, then we further inferred the BEPs (Basic Earth's Parameters by fitting the major nutation terms. Meanwhile, the BEPs were obtained from the same nutation time series using a BI (Bayesian Inversion. The corrections to the precession rate and the estimated BEPs are in an agreement, independent of which methods have been applied.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 5. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR). Nishant Gupta Tajdarul H Syed Ashiihrii Athiphro. Volume 122 Issue 5 October 2013 pp 1249- ...

  20. Earth Observation of Vegetation Dynamics in Global Drylands

    DEFF Research Database (Denmark)

    Tian, Feng

    Land degradation in global drylands has been a concern related to both the local livelihoods and the changes in terrestrial biosphere, especially in the context of substantial global environmental changes. Earth Observation (EO) provides a unique way to assess the vegetation dynamics over the past...

  1. Global Change and the Earth System

    Science.gov (United States)

    Pollack, Henry N.

    2004-08-01

    The Earth system in recent years has come to mean the complex interactions of the atmosphere, biosphere, lithosphere and hydrosphere, through an intricate network of feedback loops. This system has operated over geologic time, driven principally by processes with long time scales. Over the lifetime of the solar system, the Sun has slowly become more radiant, and the geography of continents and oceans basins has evolved via plate tectonics. This geography has placed a first-order constraint on the circulation of ocean waters, and thus has strongly influenced regional and global climate. At shorter time scales, the Earth system has been influenced by Milankovitch orbital factors and occasional exogenous events such as bolide impacts. Under these influences the system chugged along for eons, until some few hundred thousand years ago, when one remarkable species evolved: Homo sapiens. As individuals, humans are of course insignificant in shaping the Earth system, but collectively the six billion human occupants of the planet now rival ``natural'' processes in modifying the Earth system. This profound human influence underlies the dubbing of the present epoch of geologic history as the ``Anthropocene.''

  2. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D. [NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035 (United States); Ennico, Kimberly [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Meadows, Victoria S.; Sparks, William; Schwieterman, Edward W. [NASA Astrobiology Institute' s Virtual Planetary Laboratory, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Bussey, D. Ben J. [NASA Ames Research Center, MS 17-1, Moffett Field, CA 94089, USA Now the NASA Solar System Exploration Research Virtual Institute. (United States); Breiner, Jonathan, E-mail: tyler.d.robinson@nasa.gov [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)

    2014-06-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  3. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.; Sparks, William; Schwieterman, Edward W.; Bussey, D. Ben J.; Breiner, Jonathan

    2014-01-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  4. GRACE, time-varying gravity, Earth system dynamics and climate change

    International Nuclear Information System (INIS)

    Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography. (review article)

  5. NOAA Observing System Integrated Analysis (NOSIA): development and support to the NOAA Satellite Observing System Architecture

    Science.gov (United States)

    Reining, R. C.; Cantrell, L. E., Jr.; Helms, D.; LaJoie, M.; Pratt, A. S.; Ries, V.; Taylor, J.; Yuen-Murphy, M. A.

    2016-12-01

    There is a deep relationship between NOSIA-II and the Federal Earth Observation Assessment (EOA) efforts (EOA 2012 and 2016) chartered under the National Science and Technology Council, Committee on Environment, Natural Resources, and Sustainability, co-chaired by the White House Office of Science and Technology Policy, NASA, NOAA, and USGS. NOSIA-1, which was conducted with a limited scope internal to NOAA in 2010, developed the methodology and toolset that was adopted for EOA 2012, and NOAA staffed the team that conducted the data collection, modeling, and analysis effort for EOA 2012. EOA 2012 was the first-ever integrated analysis of the relative impact of 379 observing systems and data sources contributing to the key objectives identified for 13 Societal Benefit Areas (SBA) including Weather, Climate, Disasters, Oceans and Coastal Resources, and Water Resources. This effort culminated in the first National Plan for Civil Earth Observations. NOAA conducted NOSIA-II starting in 2012 to extend the NOSIA methodology across all of NOAA's Mission Service Areas, covering a representative sample (over 1000) of NOAA's products and services. The detailed information from NOSIA-II is being integrated into EOA 2016 to underpin a broad array of Key Products, Services, and (science) Objectives (KPSO) identified by the inter-agency SBA teams. EOA 2016 is expected to provide substantially greater insight into the cross-agency impacts of observing systems contributing to a wide array of KPSOs, and by extension, to societal benefits flowing from these public-facing products. NOSIA-II is being adopted by NOAA as a corporate decision-analysis and support capability to inform leadership decisions on its integrated observing systems portfolio. Application examples include assessing the agency-wide impacts of planned decommissioning of ships and aircraft in NOAA's fleet, and the relative cost-effectiveness of alternative space-based architectures in the post-GOES-R and JPSS era

  6. The Network Structure Underlying the Earth Observation Assessment

    Science.gov (United States)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  7. Enhancing Earth Observation and Modeling for Tsunami Disaster Response and Management

    Science.gov (United States)

    Koshimura, Shunichi; Post, Joachim

    2017-04-01

    In the aftermath of catastrophic natural disasters, such as earthquakes and tsunamis, our society has experienced significant difficulties in assessing disaster impact in the limited amount of time. In recent years, the quality of satellite sensors and access to and use of satellite imagery and services has greatly improved. More and more space agencies have embraced data-sharing policies that facilitate access to archived and up-to-date imagery. Tremendous progress has been achieved through the continuous development of powerful algorithms and software packages to manage and process geospatial data and to disseminate imagery and geospatial datasets in near-real time via geo-web-services, which can be used in disaster-risk management and emergency response efforts. Satellite Earth observations now offer consistent coverage and scope to provide a synoptic overview of large areas, repeated regularly. These can be used to compare risk across different countries, day and night, in all weather conditions, and in trans-boundary areas. On the other hand, with use of modern computing power and advanced sensor networks, the great advances of real-time simulation have been achieved. The data and information derived from satellite Earth observations, integrated with in situ information and simulation modeling provides unique value and the necessary complement to socio-economic data. Emphasis also needs to be placed on ensuring space-based data and information are used in existing and planned national and local disaster risk management systems, together with other data and information sources as a way to strengthen the resilience of communities. Through the case studies of the 2011 Great East Japan earthquake and tsunami disaster, we aim to discuss how earth observations and modeling, in combination with local, in situ data and information sources, can support the decision-making process before, during and after a disaster strikes.

  8. Observing atmospheric tides in Earth rotation parameters with VLBI

    Science.gov (United States)

    Girdiuk, Anastasiia; Böhm, Johannes; Schindelegger, Michael

    2015-04-01

    In this study, we assess the contribution of diurnal (S1) and semi-diurnal (S2) atmospheric tides to variations in Earth rotation by analyzing Very Long Baseline Interferometry (VLBI) observations. Particular emphasis is placed on the dependency of S1 and S2 estimates on varying settings in the a priori delay model. We use hourly Earth rotation parameters (ERP) of polar motion and UT1 as determined with the Vienna VLBI Software (VieVS) from 25 years of VLBI observations and we adjust diurnal and semi-diurnal amplitudes to the hourly ERP estimates after disregarding the effect of high-frequency ocean tides. Prograde and retrograde polar motion coefficients are obtained for several solutions differing in processing strategies (with/without thermal deformation, time span of observations, choice of a priori ERP model and celestial pole offsets) and we compare the corresponding harmonics with those derived from atmospheric and non-tidal oceanic angular momentum estimates.

  9. Preliminary Evaluation of Influence of Aerosols on the Simulation of Brightness Temperature in the NASA's Goddard Earth Observing System Atmospheric Data Assimilation System

    Science.gov (United States)

    Kim, Jong; Akella, Santha; da Silva, Arlindo M.; Todling, Ricardo; McCarty, William

    2018-01-01

    This document reports on preliminary results obtained when studying the impact of aerosols on the calculation of brightness temperature (BT) for satellite infrared (IR) instruments that are currently assimilated in a 3DVAR configuration of Goddard Earth Observing System (GEOS)-atmospheric data assimilation system (ADAS). A set of fifteen aerosol species simulated by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model is used to evaluate the influence of the aerosol fields on the Community Radiative Transfer Model (CRTM) calculations taking place in the observation operators of the Gridpoint Statistical Interpolation (GSI) analysis system of GEOSADAS. Results indicate that taking aerosols into account in the BT calculation improves the fit to observations over regions with significant amounts of dust. The cooling effect obtained with the aerosol-affected BT leads to a slight warming of the analyzed surface temperature (by about 0:5oK) in the tropical Atlantic ocean (off northwest Africa), whereas the effect on the air temperature aloft is negligible. In addition, this study identifies a few technical issues to be addressed in future work if aerosol-affected BT are to be implemented in reanalysis and operational settings. The computational cost of applying CRTM aerosol absorption and scattering options is too high to justify their use, given the size of the benefits obtained. Furthermore, the differentiation between clouds and aerosols in GSI cloud detection procedures needs satisfactory revision.

  10. VenSAR on EnVision: Taking earth observation radar to Venus

    Science.gov (United States)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed

    2018-02-01

    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  11. A POPULATION OF VERY HOT SUPER-EARTHS IN MULTIPLE-PLANET SYSTEMS SHOULD BE UNCOVERED BY KEPLER

    International Nuclear Information System (INIS)

    Schlaufman, Kevin C.; Lin, D. N. C.; Ida, S.

    2010-01-01

    We simulate a Kepler-like observation of a theoretical exoplanet population and show that the observed orbital period distribution of the Kepler giant planet candidates is best matched by an average stellar specific dissipation function Q' * in the interval 10 6 ∼ * ∼ 7 . In that situation, the few super-Earths that are driven to orbital periods of P < 1 day by dynamical interactions in multiple-planet systems will survive tidal disruption for a significant fraction of the main-sequence lifetimes of their stellar hosts. Consequently, though these very hot super-Earths are not characteristic of the overall super-Earth population, their substantial transit probability implies that they should be significant contributors to the full super-Earth population uncovered by Kepler. As a result, the CoRoT-7 system may be the first representative of a population of very hot super-Earths that we suggest should be found in multiple-planet systems preferentially orbiting the least-dissipative stellar hosts in the Kepler sample.

  12. Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars

    Science.gov (United States)

    Alonso, E. Díez; Hernández, J. I. González; Suárez Gómez, S. L.; Aguado, D. S.; González Gutiérrez, C.; Suárez Mascareño, A.; Cabrera-Lavers, A.; González-Nuevo, J.; Toledo-Padrón, B.; Gracia, J.; de Cos Juez, F. J.; Rebolo, R.

    2018-06-01

    We present two new planetary systems found around cool dwarf stars with data from the K2 mission. The first system was found in K2-XX1 (EPIC 248545986), characterized in this work as M3.0V and observed in the 14th campaign of K2. It consists of three Earth-size transiting planets with radii of 1.1, 1.0 and 1.1 R⊕, showing a compact configuration with orbital periods of 5.24, 7.78 and 10.1 days, close to 2:3:4 resonance. The second was found in K2-XX2 (EPIC 249801827), characterized in this work as M0.5V and observed in the 15th campaign. It consists of two transiting super-Earths with radii 2.0 and 1.8 R⊕ and orbital periods of 6.03 and 20.5 days. The equilibrium temperatures of the atmospheres of these planets are estimated to be in the range of 380-600 K and the amplitudes of signals in transmission spectroscopy are estimated at ˜ 10 ppm.

  13. First Observations of a Foreshock Bubble at Earth: Implications for Magnetospheric Activity and Energetic Particle Acceleration

    Science.gov (United States)

    Turner, D. L.; Omidi, N.; Sibeck, D. G.; Angelopoulos, V.

    2011-01-01

    Earth?s foreshock, which is the quasi-parallel region upstream of the bow shock, is a unique plasma region capable of generating several kinds of large-scale phenomena, each of which can impact the magnetosphere resulting in global effects. Interestingly, such phenomena have also been observed at planetary foreshocks throughout our solar system. Recently, a new type of foreshock phenomena has been predicted: foreshock bubbles, which are large-scale disruptions of both the foreshock and incident solar wind plasmas that can result in global magnetospheric disturbances. Here we present unprecedented, multi-point observations of foreshock bubbles at Earth using a combination of spacecraft and ground observations primarily from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, and we include detailed analysis of the events? global effects on the magnetosphere and the energetic ions and electrons accelerated by them, potentially by a combination of first and second order Fermi and shock drift acceleration processes. This new phenomena should play a role in energetic particle acceleration at collisionless, quasi-parallel shocks throughout the Universe.

  14. DATA FUSION TECHNOLOGY OF MULTI-PLATFORM EARTH OBSERVATION ON AGRICULTURE

    OpenAIRE

    W. Xie; Y. Xue; L. Zhai; H. Sang

    2013-01-01

    Earth observation is the gathering of information via remote sensing technologies supplemented by earth surveying techniques, encompassing the collection, analysis and presentation of data. Remote sensing technology is playing a key role on precision agriculture. From the point of view of remote sensing and photogrammetry field, this article first took an overview of its applications on agriculture throughout past 3 decades, analyzed the advantages and disadvantages of different kind...

  15. Near-Earth Asteroid Physical Observations: 1993-1995

    Science.gov (United States)

    Skiff, B. A.; Buie, M. W.; Bowell, E.

    1996-09-01

    In September 1993, we initiated a regular program of photometric observations of Near-Earth objects. Since that time we have been allocated 5-7 nights per month at the 42'' Hall telescope at Anderson Mesa. There are three goals of our observing program for each asteroid: (1) to obtain an accurate rotation period and characterization of the lightcurve, (2) to obtain the surface color, and (3) to measure the photometric parameters, H and G. All of the lightcurve observations are made in Kron-Cousins R and we always obtain a V-R color. Limited ECAS colors are also obtained when the objects are bright enough. We have secured periods for 9 asteroids, 1864 Daedalus, 1866 Sisyphus, 3200 Phaethon, 4954 Eric, 5693 (1993 EA), 5836 (1993 MF), 6489 (1991 JX), 1993 QP, and 1993 WD. Some of these periods are a confimation of an earlier result but most are new. We obtained colors for all these objects as well as four additional asteroids, 5407 (1992 AX), 1993 UC, 1993 VW, and 1994 LW. We have additional (as yet unreduced) observations of 2062 Aten, 2212 Hephaistos, 3752 Camillo, 5143 Heracles, 5863 (1983 RB), 6053 (1993 BW3), 7025 (1993 QA), 7092 (1992 LC), 1989 VA, 1992 TC, 1994 RC, and 1995 YA3. The fastest rotation period we find is 2.402 hours for 1866 Sisyphus and the slowest is 93QP at ~ 24 hours. The colors for these objects range from V-R=0.34 for 3200 Phaethon to V-R=0.49 for 1866 Sisyphus and 4954 Eric. Most colors fall near V-R=0.43. These observations should help to provide a more complete understanding of the surface properties and rotational states of the Near-Earth asteroids. This work was supported by NASA Grant NAGW-1470.

  16. Design and installation of earth energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Loggia, S; Adragna, M; Coyle, S; Foley, C; Hawryn, S; Martin, A; McConnell, J [eds.

    2002-07-01

    This first edition of the Canadian Standards Association (CSA) Standard C448 Series, replaces CSA Standards CAN/CSA-C445-M92 entitled Design and Installation of Earth Energy Heat Pump Systems for Residential and Other Small Buildings, as well as C447-94 entitled Design and Installation of Earth Energy Heat Pump Systems for Commercial and Institutional Buildings. This standard document consists of three parts: (C448.1) Design and installation of earth energy systems for commercial and institutional buildings; (C448.2) Design and installation of earth energy systems for residential and small buildings; and, (C448.3) Design and installation of underground thermal energy storage systems for commercial and institutional buildings. In C448.1, the requirements applicable to any system falling within the scope of the C448 series were included. Alternative requirements for houses and small buildings were added in C448.2. It was noted that either standard may be implemented. The standards applicable to the intentional storage of energy in the earth for later use were presented in C448.3. This latter section includes a brief introduction on underground thermal energy storage (UTES). tabs.

  17. A bibliography of research conducted by the Earth Resources Observation Systems (EROS) Office, U.S. Geological Survey : 1975-1982

    Science.gov (United States)

    Bowman, Helen L.

    1984-01-01

    The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Program was established in 1967 by Secretarial order to plan and develop techniques for collecting and analyzing remotely sensed data, and to apply these techniques to the resource inventory and management responsibilities of the Department of the Interior. U.S. Geological Survey scientists, realizing the potential benefits of synoptic views of the Earth, were among the first members of America's scientific community to press for the launch of civilian Earth-surface observation satellites. Under the leadership of Director William T. Pecora, U.S. Geological Survey initiatives greatly influenced the National Aeronautics and Space Administration's (NASA) development of the Landsat program.As part of the Landsat program, an agreement between NASA and the Geological Survey was signed to provide Landsat archiving and data production capabilities at the EROS Data Center in Sioux Falls, South Dakota. This partnership with NASA began in 1972 and continued until Presidential Directive 54 designated the National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce as the manager of U.S. civil operational land remote-sensing activities. NOAA has managed the Landsat program since Fiscal Year 1983, and EROS continues to process, archive, reproduce, and distribute Landsat data under a Memorandum of Understanding between NOAA and the Geological Survey. Archives at the EROS Data Center include over 2 million worldwide Landsat scenes and over 5 million aerial photographs, primarily of U.S. sites. Since the launch of Landsat 1, global imaging of the Earth's surface has become an operational tool for resource exploration and land management. As technology evolved, so did the EROS Program mission. Research and applications efforts began at the EROS Headquarters Office in the Washington metropolitan area in 1966; at the EROS Data Center in 1971; and at the EROS Field Office in Anchorage

  18. MID-INFRARED PROPERTIES OF DISK AVERAGED OBSERVATIONS OF EARTH WITH AIRS

    International Nuclear Information System (INIS)

    Hearty, Thomas; Song, Inseok; Kim, Sam; Tinetti, Giovanna

    2009-01-01

    We have investigated mid-infrared spectra of Earth obtained by the Atmospheric Infrared Sounder (AIRS) instrument on-board the AQUA spacecraft to explore the characteristics that may someday be observed in extrasolar terrestrial planets. We have used the AIRS infrared (R ∼ 1200; 3.75-15.4 μm) spectra to construct directly observed high-resolution spectra of the only known life bearing planet, Earth. The AIRS spectra are the first such spectra that span the seasons. We investigate the rotational and seasonal spectral variations that would arise due to varying cloud amount and viewing geometry and we explore what signatures may be observable in the mid-infrared by the next generation of telescopes capable of observing extrasolar terrestrial planets.

  19. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    Science.gov (United States)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor

  20. MACSAT - A Near Equatorial Earth Observation Mission

    Science.gov (United States)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  1. Re-organizing Earth Observation Data Storage to Support Temporal Analysis of Big Data

    Science.gov (United States)

    Lynnes, C.

    2017-12-01

    The Earth Observing System Data and Information System archives many datasets that are critical to understanding long-term variations in Earth science properties. Thus, some of these are large, multi-decadal datasets. Yet the challenge in long time series analysis comes less from the sheer volume than the data organization, which is typically one (or a small number of) time steps per file. The overhead of opening and inventorying complex, API-driven data formats such as Hierarchical Data Format introduces a small latency at each time step, which nonetheless adds up for datasets with O(10^6) single-timestep files. Several approaches to reorganizing the data can mitigate this overhead by an order of magnitude: pre-aggregating data along the time axis (time-chunking); storing the data in a highly distributed file system; or storing data in distributed columnar databases. Storing a second copy of the data incurs extra costs, so some selection criteria must be employed, which would be driven by expected or actual usage by the end user community, balanced against the extra cost.

  2. Observing the Earth from an Astronaut's View - Applied Remote Sensing in Schools

    Science.gov (United States)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Kerstin, Voß

    2015-04-01

    Since spring 2014, NASA conducts the High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS). HDEV consists of four cameras mounted at ESA's Columbus laboratory. They continuously observe our earth in three different perspectives. Hence, they provide not only footage showing the Sun and the Moon rising and setting but also regular images of landscapes that are difficult to access, such as mountain ranges, deserts, and tropical rainforests. The German educational project "Columbus Eye", which is executed by the University of Bonn and is funded by the German Aerospace Center (DLR), aims at the implementation of the HDEV imagery and videos in a teaching portal: www.columbuseye.uni-bonn.de. Pupils should be motivated to work with the footage in order to learn about pattern and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (www.fis.uni-bonn.de/en). Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 7 years since FIS' kickoff. The talk presents the educational valorization of ISS and satellite borne imagery data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular STEM curricula. A report of first experiences of a nationwide road show accompanying the mission of the ESA astronaut Alexander Gerst will be given. Among others it involved an event during which pupils from a secondary school in North Rhine-Westphalia have talked to the astronaut via ham radio. Accordingly, the presentation addresses the question of how synergies of human

  3. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. AIRS observations of seasonal variability in meridional temperature gradient over Indian region at 100 hPa. A Gupta S K Dhaka V Panwar R Bhatnagar V Kumar Savita M Datta S K Dash. Volume 122 Issue 1 February 2013 pp 201-213 ...

  5. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  6. ODM2 (Observation Data Model): The EarthChem Use Case

    Science.gov (United States)

    Lehnert, Kerstin; Song, Lulin; Hsu, Leslie; Horsburgh, Jeffrey S.; Aufdenkampe, Anthony K.; Mayorga, Emilio; Tarboton, David; Zaslavsky, Ilya

    2014-05-01

    PetDB is an online data system that was created in the late 1990's to serve online a synthesis of published geochemical and petrological data of igneous and metamorphic rocks. PetDB has today reached a volume of 2.5 million analytical values for nearly 70,000 rock samples. PetDB's data model (Lehnert et al., G-Cubed 2000) was designed to store sample-based observational data generated by the analysis of rocks, together with a wide range of metadata documenting provenance of the samples, analytical procedures, data quality, and data source. Attempts to store additional types of geochemical data such as time-series data of seafloor hydrothermal springs and volcanic gases, depth-series data for marine sediments and soils, and mineral or mineral inclusion data revealed the limitations of the schema: the inability to properly record sample hierarchies (for example, a garnet that is included in a diamond that is included in a xenolith that is included in a kimberlite rock sample), inability to properly store time-series data, inability to accommodate classification schemes other than rock lithologies, deficiencies of identifying and documenting datasets that are not part of publications. In order to overcome these deficiencies, PetDB has been developing a new data schema using the ODM2 information model (ODM=Observation Data Model). The development of ODM2 is a collaborative project that leverages the experience of several existing information representations, including PetDB and EarthChem, and the CUAHSI HIS Observations Data Model (ODM), as well as the general specification for encoding observational data called Observations and Measurements (O&M) to develop a uniform information model that seamlessly manages spatially discrete, feature-based earth observations from environmental samples and sample fractions as well as in-situ sensors, and to test its initial implementation in a variety of user scenarios. The O&M model, adopted as an international standard by the Open

  7. B-DEOS: British Dynamics of Earth and Ocean systems- new approaches for a multidisciplinary ocean observing system in the Atlantic and S Ocean

    Science.gov (United States)

    Schultz, A.; Lampitt, R. S.

    2001-12-01

    Advances in theoretical understanding of the natural systems in the sea and in the Earth below have been closely associated with new data sets made possible by technological advances. The plate tectonic revolution, the discovery of hydrothermal circulation, and many other examples can be attributed to the application of innovative new technology to the study of the sea. A consortium of research groups and institutions within the United Kingdom is planning a system of multidisciplinary ocean observatories to study the components of, and linkages between the physical, chemical and biological processes regulating the earth-ocean-atmosphere-biosphere system. An engineering feasibility design study has been completed which has resulted in a robust and flexible design for a telecommunications/power buoy system, and a UK NERC Thematic Programme is in the advanced planning stage. Representatives of the US, Japan, France, Portugal, Spain, Germany and other countries have been involved in consultations, and a coordinated international effort is expected to develop throughout the Atlantic and S Oceans, with collaborations extended to observatories operated by cooperating partners in other regions. The B-DEOS observatory system is designed to allow studies on scales of order cm to 1000 km, as well as to supplement on larger spatial scales the emerging global ocean and seafloor solid earth observatory network. The facility will make it possible to obtain requisite long-term synoptic baseline data, and to monitor natural and man-made changes to this system by: 1) Establishing a long-term, permanent and relocatable network of instrumented seafloor platforms, moorings and profiler vehicles, provided with power from the ocean surface and internal power supplies, and maintaining a real- or near-real time bidirectional Internet link to shore. 2) Examining the time varying properties of these different environments (solid earth, ocean, atmosphere, biosphere), exploring the links

  8. The Earth System Grid Federation (ESGF) Project

    Science.gov (United States)

    Carenton-Madiec, Nicolas; Denvil, Sébastien; Greenslade, Mark

    2015-04-01

    The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system is a collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of model output and observational data. ESGF's primary goal is to facilitate advancements in Earth System Science. It is an interagency and international effort led by the US Department of Energy (DOE), and co-funded by National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), National Science Foundation (NSF), Infrastructure for the European Network of Earth System Modelling (IS-ENES) and international laboratories such as the Max Planck Institute for Meteorology (MPI-M) german Climate Computing Centre (DKRZ), the Australian National University (ANU) National Computational Infrastructure (NCI), Institut Pierre-Simon Laplace (IPSL), and the British Atmospheric Data Center (BADC). Its main mission is to support current CMIP5 activities and prepare for future assesments. The ESGF architecture is based on a system of autonomous and distributed nodes, which interoperate through common acceptance of federation protocols and trust agreements. Data is stored at multiple nodes around the world, and served through local data and metadata services. Nodes exchange information about their data holdings and services, trust each other for registering users and establishing access control decisions. The net result is that a user can use a web browser, connect to any node, and seamlessly find and access data throughout the federation. This type of collaborative working organization and distributed architecture context en-lighted the need of integration and testing processes definition to ensure the quality of software releases and interoperability. This presentation will introduce the ESGF project and demonstrate the range of tools and processes that have been set up to support release management activities.

  9. Improved Analysis of Earth System Models and Observations using Simple Climate Models

    Science.gov (United States)

    Nadiga, B. T.; Urban, N. M.

    2016-12-01

    Earth system models (ESM) are the most comprehensive tools we have to study climate change and develop climate projections. However, the computational infrastructure required and the cost incurred in running such ESMs precludes direct use of such models in conjunction with a wide variety of tools that can further our understanding of climate. Here we are referring to tools that range from dynamical systems tools that give insight into underlying flow structure and topology to tools that come from various applied mathematical and statistical techniques and are central to quantifying stability, sensitivity, uncertainty and predictability to machine learning tools that are now being rapidly developed or improved. Our approach to facilitate the use of such models is to analyze output of ESM experiments (cf. CMIP) using a range of simpler models that consider integral balances of important quantities such as mass and/or energy in a Bayesian framework.We highlight the use of this approach in the context of the uptake of heat by the world oceans in the ongoing global warming. Indeed, since in excess of 90% of the anomalous radiative forcing due greenhouse gas emissions is sequestered in the world oceans, the nature of ocean heat uptake crucially determines the surface warming that is realized (cf. climate sensitivity). Nevertheless, ESMs themselves are never run long enough to directly assess climate sensitivity. So, we consider a range of models based on integral balances--balances that have to be realized in all first-principles based models of the climate system including the most detailed state-of-the art climate simulations. The models range from simple models of energy balance to those that consider dynamically important ocean processes such as the conveyor-belt circulation (Meridional Overturning Circulation, MOC), North Atlantic Deep Water (NADW) formation, Antarctic Circumpolar Current (ACC) and eddy mixing. Results from Bayesian analysis of such models using

  10. A survey and assessment of the capabilities of Cubesats for Earth observation

    Science.gov (United States)

    Selva, Daniel; Krejci, David

    2012-05-01

    In less than a decade, Cubesats have evolved from purely educational tools to a standard platform for technology demonstration and scientific instrumentation. The use of COTS (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising scientific value. Furthermore, advantages in terms of development cost and development time with respect to larger satellites, as well as the possibility of launching several dozens of Cubesats with a single rocket launch, have brought forth the potential for radically new mission architectures consisting of very large constellations or clusters of Cubesats. These architectures promise to combine the temporal resolution of GEO missions with the spatial resolution of LEO missions, thus breaking a traditional trade-off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific requirements in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. Based on this review, several Earth observation measurements are identified that can potentially be compatible with the current state-of-the-art of Cubesat technology although some of them have actually never been addressed by any Cubesat mission. Simultaneously, other measurements are identified which are unlikely to be performed by Cubesats in the next few years due to insuperable constraints. Ultimately, this paper is intended to supply a box of ideas for universities to design future Cubesat missions with high scientific payoff.

  11. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  12. Results of Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations

    Science.gov (United States)

    Orton, Glenn; Momary, Thomas; Bolton, Scott; Levin, Steven; Hansen, Candice; Janssen, Michael; Adriani, Alberto; Gladstone, G. Randall; Bagenal, Fran; Ingersoll, Andrew

    2017-04-01

    The Juno mission has promoted and coordinated a network of Earth-based observations, including both Earth-proximal and ground-based facilities, to extend and enhance observations made by the Juno mission. The spectral region and timeline of all of these observations are summarized in the web site: https://www.missionjuno.swri.edu/planned-observations. Among the earliest of these were observation of Jovian auroral phenomena at X-ray, ultraviolet and infrared wavelengths and measurements of Jovian synchrotron radiation from the Earth simultaneously with the measurement of properties of the upstream solar wind. Other observations of significance to the magnetosphere measured the mass loading from Io by tracking its observed volcanic activity and the opacity of its torus. Observations of Jupiter's neutral atmosphere included observations of reflected sunlight from the near-ultraviolet through the near-infrared and thermal emission from 5 μm through the radio region. The point of these measurements is to relate properties of the deep atmosphere that are the focus of Juno's mission to the state of the "weather layer" at much higher atmospheric levels. These observations cover spectral regions not included in Juno's instrumentation, provide spatial context for Juno's often spatially limited coverage of Jupiter, and they describe the evolution of atmospheric features in time that are measured only once by Juno. We will summarize the results of measurements during the approach phase of the mission that characterized the state of the atmosphere, as well as observations made by Juno and the supporting campaign during Juno's perijoves 1 (2016 August 27), 3 (2016 December 11), 4 (2017 February 2) and possibly "early" results from 5 (2017 March 27). Besides a global network of professional astronomers, the Juno mission also benefited from the enlistment of a network of dedicated amateur astronomers who provided a quasi-continuous picture of the evolution of features observed by

  13. Building Capacity for Earth Observations in Support of the United Nations Sustainable Development Goals

    Science.gov (United States)

    Blevins, B.; Prados, A. I.; Hook, E.

    2017-12-01

    The Group on Earth Observations (GEO) looks to build a future where the international community uses Earth observations to make better, informed decisions. This includes application in international agreements such as the UN Sustainable Development Goals (SDGs), the Sendai Framework for Disaster Risk Reduction, and the Convention on Biological Diversity. To do this, decision makers first need to build the necessary skills. NASA's Applied Remote Sensing Training program (ARSET) seeks to build capacity through remote sensing training. In-person and online trainings raise awareness, enable data access, and demonstrate applications of Earth observations. Starting in 2017, ARSET began offering training focused on applying Earth data to the UN SDGs. These trainings offer insight into applications of satellite data in support of implementing, monitoring, and evaluating the SDGs. This presentation will provide an overview of the use of NASA satellite data to track progress towards increased food security, disaster risk reduction, and conservation of natural resources for societal benefit. It will also include a discussion on capacity building best practices and lessons learned for using Earth observations to meet SDG targets, based on feedback from engaging over 800 participants from 89 nations and 580 organizations in ARSET SDG trainings.

  14. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan

    Science.gov (United States)

    Fay, M.

    1998-01-01

    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  15. Keeping Earth at work: Using thermodynamics to develop a holistic theory of the Earth system

    Science.gov (United States)

    Kleidon, Axel

    2010-05-01

    The Earth system is unique among terrestrial planets in that it is maintained in a state far from thermodynamic equilibrium. Practically all processes are irreversible in their nature, thereby producing entropy, and these would act to destroy this state of disequilibrium. In order to maintain disequilibrium in steady state, driving forces are required that perform the work to maintain the Earth system in a state far from equilibrium. To characterize the functioning of the Earth system and the interactions among its subsystems we need to consider all terms of the first and second law of thermodynamics. While the global energy balance is well established in climatology, the global entropy and work balances receive little, if any, attention. Here I will present first steps in developing a holistic theory of the Earth system including quantifications of the relevant terms that is based on the first and second laws of thermodynamics. This theory allows us to compare the significance of different processes in driving and maintaining disequilibrium, allows us to explore interactions by investigating the role of power transfer among processes, and specifically illustrate the significance of life in driving planetary disequilibrium. Furthermore, the global work balance demonstrates the significant impact of human activity and it provides an estimate for the availability of renewable sources of free energy within the Earth system. Hence, I conclude that a holistic thermodynamic theory of the Earth system is not just some academic exercise of marginal use, but essential for a profound understanding of the Earth system and its response to change.

  16. Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System

    Science.gov (United States)

    Rienecker, Michele M.; Balmaseda, Magdalena; Awaji, Toshiyuki; Barnier, Bernard; Behringer, David; Bell, Mike; Bourassa, Mark; Brasseur, Pierre; Breivik, Lars-Anders; Carton, James; hide

    2009-01-01

    Ocean assimilation systems synthesize diverse in situ and satellite data streams into four-dimensional state estimates by combining the various observations with the model. Assimilation is particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Developments in assimilation and in the observing system have advanced our understanding and prediction of ocean variations at mesoscale and climate scales. Use of these systems for assessing the observing system helps identify the strengths of each observation type. Results indicate that the ocean remains under-sampled and that further improvements in the observing system are needed. Prospects for future advances lie in improved models and better estimates of error statistics for both models and observations. Future developments will be increasingly towards consistent analyses across components of the Earth system. However, even today ocean synthesis and assimilation systems are providing products that are useful for many applications and should be considered an integral part of the global ocean observing and information system.

  17. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  18. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  19. Can we use Earth Observations to improve monthly water level forecasts?

    Science.gov (United States)

    Slater, L. J.; Villarini, G.

    2017-12-01

    Dynamical-statistical hydrologic forecasting approaches benefit from different strengths in comparison with traditional hydrologic forecasting systems: they are computationally efficient, can integrate and `learn' from a broad selection of input data (e.g., General Circulation Model (GCM) forecasts, Earth Observation time series, teleconnection patterns), and can take advantage of recent progress in machine learning (e.g. multi-model blending, post-processing and ensembling techniques). Recent efforts to develop a dynamical-statistical ensemble approach for forecasting seasonal streamflow using both GCM forecasts and changing land cover have shown promising results over the U.S. Midwest. Here, we use climate forecasts from several GCMs of the North American Multi Model Ensemble (NMME) alongside 15-minute stage time series from the National River Flow Archive (NRFA) and land cover classes extracted from the European Space Agency's Climate Change Initiative 300 m annual Global Land Cover time series. With these data, we conduct systematic long-range probabilistic forecasting of monthly water levels in UK catchments over timescales ranging from one to twelve months ahead. We evaluate the improvement in model fit and model forecasting skill that comes from using land cover classes as predictors in the models. This work opens up new possibilities for combining Earth Observation time series with GCM forecasts to predict a variety of hazards from space using data science techniques.

  20. The Role of Earth Observation on Environmental Management in ...

    African Journals Online (AJOL)

    The success of environmental management and protection lies on the availability of adequate information to support intervention measures. Such information acts as a prerequisite to predict the future and, subsequently, to validate the accuracy of those predictions. In this paper, we illustrate the potential of earth observation ...

  1. NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Mainzer, A.; Bauer, J.; Masiero, J.; Eisenhardt, P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T.; Mo, W. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD (United States); McMillan, R. S. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Blvd., Tucson, AZ 85721-0092 (United States); Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Walker, R. [Monterey Institute for Research in Astronomy, Monterey, CA (United States); Wright, E. [Department of Physics and Astronomy, UCLA, P.O. Box 91547, Los Angeles, CA 90095-1547 (United States); Tholen, D. J.; Jedicke, R.; Denneau, L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI (United States); Spahr, T. [Minor Planet Center, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); DeBaun, E. [Department of Physics and Astronomy, Dartmouth University, Hanover, NH 03755 (United States); Elsbury, D. [University of California Santa Barbara, Broida Hall, Santa Barbara, CA 93103 (United States); Gautier, T. [Cornell University, Ithaca, NY 14853 (United States); Gomillion, S. [Department of Engineering Physics, Embry-Riddle Aeronautical University, 600 S. Clyde Morris Boulevard, Daytona Beach, FL 32114 (United States); Hand, E. [Department of Mechanical Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Watkins, J., E-mail: amainzer@jpl.nasa.gov [Department of Earth and Space Sciences, UCLA, 595 Charles Young Drive East, Box 951567, Los Angeles, CA 90095 (United States); and others

    2011-12-20

    With the NEOWISE portion of the Wide-field Infrared Survey Explorer (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 {mu}m, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The survey's uniform sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981 {+-} 19 NEAs larger than 1 km and 20,500 {+-} 3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32 {+-} 0.14 below 1.5 km. This power-law slope produces {approx}13, 200 {+-} 1900 NEAs with D > 140 m. Although previous studies predict another break in the cumulative size distribution below D {approx} 50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100 and 1000 m is lower than previous estimates. The numbers of near-Earth comets and potentially hazardous NEOs will be the subject of future work.

  2. NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS

    International Nuclear Information System (INIS)

    Mainzer, A.; Bauer, J.; Masiero, J.; Eisenhardt, P.; Grav, T.; Mo, W.; McMillan, R. S.; Cutri, R. M.; Walker, R.; Wright, E.; Tholen, D. J.; Jedicke, R.; Denneau, L.; Spahr, T.; DeBaun, E.; Elsbury, D.; Gautier, T.; Gomillion, S.; Hand, E.; Watkins, J.

    2011-01-01

    With the NEOWISE portion of the Wide-field Infrared Survey Explorer (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 μm, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The survey's uniform sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981 ± 19 NEAs larger than 1 km and 20,500 ± 3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32 ± 0.14 below 1.5 km. This power-law slope produces ∼13, 200 ± 1900 NEAs with D > 140 m. Although previous studies predict another break in the cumulative size distribution below D ∼ 50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100 and 1000 m is lower than previous estimates. The numbers of near-Earth comets and potentially hazardous NEOs will be the subject of future work.

  3. Enhanced Formation Flying for the Earth Observing-1 (EO-1) New Millennium Mission

    Science.gov (United States)

    Folta, David; Quinn, David

    1997-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for new technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation, an example of which is shown in the figure below, to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation proposed by GSFC Codes 550 and 712 allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this analysis is to develop the fundamentals of formation flying mechanics, concepts for understanding the relative motion of free flying spacecraft, and an operational control theory for formation maintenance of the Earth Observing-1 (EO-l) spacecraft that is part of the New Millennium. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as the operational impacts. Applications to the Mission to Planet Earth (MTPE) Earth Observing System (EOS) and New Millennium (NM) were highly considered in analysis and applications. This paper presents the proposed methods for the guidance and control of the EO-1 spacecraft to formation fly with the Landsat-7 spacecraft using an autonomous closed loop three axis navigation control, GPS, and Cross link navigation support. Simulation results using various fidelity levels of modeling, algorithms developed and implemented in MATLAB, and autonomous 'fuzzy logic' control using AutoCon will be presented. The results of these

  4. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    Science.gov (United States)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  5. Observation of the Earth liquid core resonance by extensometers

    Science.gov (United States)

    Bán, Dóra; Mentes, Gyula

    2016-04-01

    The axis of the fluid outer core of the Earth and the rotation axis of the mantle do not coincide therefore restoring forces are set up at the core-mantle boundary which try to realign the two axes causing a resonance effect. In celestial reference system it is called the "Free Core Nutation" (FCN), which can be characterized by a period of 432 days while in the Earth reference system it is called the "Nearly Diurnal Free Wobble" (NDFW). The frequency of this phenomenon is near to the diurnal tidal frequencies, especially to P1 and K1 waves. Due to its resonance effect this phenomenon can be detected also by quartz tube extensometers suitable for Earth tides recording. In this study data series measured in several extensometric stations were used to reveal the presence of the FCN resonance. In the Pannonian Basin there are five observatories where extensometric measurements were carried out in different lengths of time. Four stations in Hungary: Sopronbánfalva Geodynamical Observatory (2000-2014), Budapest Mátyáshegy Gravity and Geodynamic Observatory (2005-2012), Pécs uranium mine (1991-1999), Bakonya, near to Pécs (2004-2005) and in Slovakia: Vyhne Earth Tide Observatory (2001-2013). Identical instrumentation in different observatories provides the opportunity to compare measurements with various topography, geology and environmental parameters. The results are also compared to values inferred from extensometric measurements in other stations.

  6. The survey on data format of Earth observation satellite data at JAXA.

    Science.gov (United States)

    Matsunaga, M.; Ikehata, Y.

    2017-12-01

    JAXA's earth observation satellite data are distributed by a portal web site for search and deliver called "G-Portal". Users can download the satellite data of GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 from G-Portal. However, these data formats are different by each satellite like HDF4, HDF5, NetCDF4, CEOS, etc., and which formats are not familiar to new data users. Although the HDF type self-describing format is very convenient and useful for big dataset information, old-type format product is not readable by open GIS tool nor apply OGC standard. Recently, the satellite data are widely used to be applied to the various needs such as disaster, earth resources, monitoring the global environment, Geographic Information System(GIS) and so on. In order to remove a barrier of using Earth Satellite data for new community users, JAXA has been providing the format-converted product like GeoTIFF or KMZ. In addition, JAXA provides format conversion tool itself. We investigate the trend of data format for data archive, data dissemination and data utilization, then we study how to improve the current product format for various application field users and make a recommendation for new product.

  7. Training the next generation of Space and Earth Science Engineers and Scientists through student design and development of an Earth Observation Nanosatellite, AlbertaSat-1

    Science.gov (United States)

    Lange, B. A.; Bottoms, J.

    2011-12-01

    This presentation addresses the design and developmental process of a Nanosatellite by an interdisciplinary team of undergraduate and graduate students at the University of Alberta. The Satellite, AlbertaSat-1, is the University of Alberta's entry in the Canadian Satellite Design Challenge (CDSC); an initiative to entice Canadian students to contribute to space and earth observation technologies and research. The province of Alberta, while home to a few companies, is very limited in its space industry capacity. The University of Alberta reflects this fact, where one of the major unifying foci of the University is oil, the provinces greatest resource. For students at the U of A, this lack of focus on astronautical, aerospace and space/earth observational research limits their education in these industries/disciplines. A fully student operated project such as AlbertaSat-1 provides this integral experience to almost every discipline. The AlbertaSat-1 team is comprised of students from engineering, physics, chemistry, earth and atmospheric science, business, and computer science. While diverse in discipline, the team is also diverse in experience, spanning all levels from 1st year undergraduate to experienced PhD. Many skill sets are required and the diverse group sees that this is covered and all opinions voiced. Through immersion in the project, students learn quickly and efficiently. The necessity for a flawless product ensures that only the highest quality of work is presented. Students participating must research and understand their own subsystem as well as all others. This overall system view provides the best educational tool, as students are able to see the real impacts of their work on other subsystems. As the project is completely student organized, the participants gain not only technical engineering, space and earth observational education, but experience in operations and financial management. The direct exposure to all aspects of the space and earth

  8. PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, Steve

    2012-06-01

    Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software now known as the Earth System Grid Federation (ESGF) has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

  9. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  10. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  11. A Global Capacity Building Vision for Societal Applications of Earth Observing Systems and Data: Key Questions and Recommendations

    Science.gov (United States)

    Hossain, Faisal; Serrat-Capdevila, Aleix; Granger, Stephanie; Thomas, Amy; Saah, David; Ganz, David; Mugo, Robinson; Murthy, M. S. R.; Ramos, Victor Hugo; Kirschbaum, Dalia; hide

    2016-01-01

    Capacity building using Earth observing (EO) systems and data (i.e., from orbital and nonorbital platforms) to enable societal applications includes the network of human, nonhuman, technical, nontechnical, hardware, and software dimensions that are necessary to successfully cross the valley [of death; see NRC (2001)] between science and research (port of departure) and societal application (port of arrival). In many parts of the world (especially where ground-based measurements are scarce or insufficient), applications of EO data still struggle for longevity or continuity for a variety of reasons, foremost among them being the lack of resilient capacity. An organization is said to have resilient capacity when it can retain and continue to build capacity in the face of unexpected shocks or stresses. Stresses can include intermittent power and limited Internet bandwidth, constant need for education on ever-increasing complexity of EO systems and data, communication challenges between the ports of departure and arrival (especially across time zones), and financial limitations and instability. Shocks may also include extreme events such as disasters and losing key staff with technical and institutional knowledge.

  12. Medium-sized aperture camera for Earth observation

    Science.gov (United States)

    Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin

    2017-11-01

    Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.

  13. Observations in the Earth's magnetotail relating to magnetic merging

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.

    1976-01-01

    For more than a decade there has been growing conviction that the burst of energy from a solar flare is first stored in magnetic fields and is then released rapidly by magnetic field annihilation (magnetic merging). There has also been recognition that magnetic merging may be responsible for the energy release manifested in auroral phenomena at the Earth. The most substantial evidence that magnetic merging does indeed occur in the Earth's magnetosphere and causes the auroral phenomena is provided by recent observations, in the magnetotail, of very rapid (approximately 500 km s -1 ) tailward, then earthward, flow of plasma during magnetospheric substorms. The observations, made with the Vela and IMP satellites, reveal also that the component of the tail magnetic field perpendicular to the tail neutral sheet changes polarity at the time of the reversal of plasma flow. These features are interpreted as indicative of passage of a magnetic neutral line, at which magnetic merging is proceeding, past the observing satellite. This paper describes an example of such observations made with IMP 6. It is anticipated that such systematic measurements of the plasma, energetic particles and magnetic field in the neighborhood of the passing neutral line on many such occasions will provide a general understanding of the magnetic merging process which can be applied to studies of solar flares and other astrophysical phenomena. (Auth.)

  14. Earth Observation from the International Space Station -Remote Sensing in Schools-

    Science.gov (United States)

    Schultz, Johannes; Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Selg, Fabian; Menz, Gunter

    2016-04-01

    Since spring 2014, the NASA High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS) is online. HDEV consists of four cameras mounted at ESA's Columbus laboratory and is recording the earth 24/7. The educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' has published a learning portal for earth observation from the ISS (www.columbuseye.uni-bonn.de). Besides a video live stream, the portal contains an archive providing spectacular footage, web-GIS and an observatory with interactive materials for school lessons. Columbus Eye is carried out by the University of Bonn and funded by the German Aerospace Center (DLR) Space Administration. Pupils should be motivated to work with the footage in order to learn about patterns and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (http://www.fis.uni-bonn.de). Based on the ISS videos three different teaching material types are developed. The simplest teaching type are provided by worksheets, which have a low degree of interactivity. Alongside a short didactical commentary for teachers is included. Additionally, videos, ancillary information, maps, and instructions for interactive school experiments are provided. The observatory contains the second type of the Columbus Eye teaching materials. It requires a high degree of self-organisation and responsibility of the pupils. Thus, the observatory provides the opportunity for pupils to freely construct their own hypotheses based on a spatial analysis tool similar to those provided by commercial software. The third type are comprehensive learning and teaching modules with a high degree of interactivity, including background information, interactive animations, quizzes and different analysis tools (e.g. change detection, classification, polygon or NDVI

  15. Constraints on High Northern Photosynthesis Increase Using Earth System Models and a Set of Independent Observations

    Science.gov (United States)

    Winkler, A. J.; Brovkin, V.; Myneni, R.; Alexandrov, G.

    2017-12-01

    Plant growth in the northern high latitudes benefits from increasing temperature (radiative effect) and CO2 fertilization as a consequence of rising atmospheric CO2 concentration. This enhanced gross primary production (GPP) is evident in large scale increase in summer time greening over the 36-year record of satellite observations. In this time period also various global ecosystem models simulate a greening trend in terms of increasing leaf area index (LAI). We also found a persistent greening trend analyzing historical simulations of Earth system models (ESM) participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, these models span a large range in strength of the LAI trend, expressed as sensitivity to both key environmental factors, temperature and CO2 concentration. There is also a wide spread in magnitude of the associated increase of terrestrial GPP among the ESMs, which contributes to pronounced uncertainties in projections of future climate change. Here we demonstrate that there is a linear relationship across the CMIP5 model ensemble between projected GPP changes and historical LAI sensitivity, which allows using the observed LAI sensitivity as an "emerging constraint" on GPP estimation at future CO2 concentration. This constrained estimate of future GPP is substantially higher than the traditional multi-model mean suggesting that the majority of current ESMs may be significantly underestimating carbon fixation by vegetation in NHL. We provide three independent lines of evidence in analyzing observed and simulated CO2 amplitude as well as atmospheric CO2 inversion products to arrive at the same conclusion.

  16. Land Boundary Conditions for the Goddard Earth Observing System Model Version 5 (GEOS-5) Climate Modeling System: Recent Updates and Data File Descriptions

    Science.gov (United States)

    Mahanama, Sarith P.; Koster, Randal D.; Walker, Gregory K.; Takacs, Lawrence L.; Reichle, Rolf H.; De Lannoy, Gabrielle; Liu, Qing; Zhao, Bin; Suarez, Max J.

    2015-01-01

    The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set.

  17. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    Science.gov (United States)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  18. NEODyS: an online information system for near-Earth objects

    Science.gov (United States)

    Chesley, S. R.; Milani, A.

    1999-09-01

    The Near-Earth Object Dynamics Site (NEODyS) is an online information service for near-Earth asteroids (NEAs). Fundamentally, NEODyS is a database of NEA information; however, the distinguishing feature of the system is the degree to which the information is made available on the World Wide Web. In NEODyS every NEA has its own ``home page'' containing sections devoted to the object's orbit, observations, and close encounters. NEODyS provides interactive ephemeris services to the observer in both tabular and graphical forms. The graphical ephemeris provides a depiction of the uncertainty region on the celestial sphere, including nonlinear effects, which can be of paramount importance in the recovery of lost or nearly lost objects. With the database query service one may search for all asteroids possessing some desired orbital characteristics. This makes it easy, for example, to find all of the asteroids which are large enough to be hazardous, and can come close to the Earth, yet are effectively lost. New features expected to be in place soon include an observation planning service, which will allow the user to easily determine which NEAs are presently observable. This will be implemented with a database query of the current ephemerides, with uncertainty, for all NEODyS objects. The other planned expansion is a close approach monitoring system, which will report all potential close approaches within a fixed distance to all planets and to the largest asteroids which are compatible with the observations. The database is automatically updated on a daily basis as new observations are released from the Minor Planet Center. All of the data files needed to reproduce the NEODyS results are freely available, even the OrbFit software used for orbit determination. NEODyS can be accessed at URL http://newton.dm.unipi.it/neodys. NEODyS has been funded by NATO, the Italian Space Agency (ASI), Consiglio Nazionale delle Ricerche (CNR), and the University of Pisa.

  19. A new program in earth system science education

    Science.gov (United States)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  20. WHERE TO FIND HABITABLE ''EARTHS'' IN CIRCUMBINARY SYSTEMS

    International Nuclear Information System (INIS)

    Liu Huigen; Zhang Hui; Zhou Jilin

    2013-01-01

    Six P-type planets have been found thus far around five binary systems, i.e., Kepler-16b, 34b, 35b, 38b, and 47b and c, which are all Neptune- or Jupiter-like planets. The stability of planets and the habitable zones are influenced by the gravitational and radiative perturbations of binary companions. In this Letter, we check the stability of an additional habitable Earth-mass planet in each system. Based on our simulations in 10 Myr, a habitable ''Earth'' is hardly stable in Kepler-16, while a stable ''Earth'' in Kepler-47 close to the boundaries of the habitable zone is possible. In contrast, Kepler-34, 35, and 38 seem to have high probabilities of being able to tolerante a stable ''Earth'' in their habitable zones. The affects of transit time variations are quite small due to the small mass of an undetected ''Earth,'' except that of Kepler-16b. With a time precision of 10 –3 day (∼88 s), an ''Earth'' in the corotational resonance with Kepler-16b can be detected in three years, while habitable ''Earths'' in the Kepler-34 and 38 systems can be detected in 10 yr. Habitable ''Earths'' in Kepler-35 and 47 are not likely to be detected in 10 yr under this precision.

  1. Earth-based Observing Campaign For Comet 103p/hartley 2 For The Dixi Mission

    Science.gov (United States)

    Meech, Karen Jean; Kelley, M. S.; A'Hearn, M. F.; DIXI Observing Team

    2011-01-01

    The Deep Impact Extended mission (DIXI) is part of the EPOXI mission and will rendezvous with the comet 103P/Hartley 2 on 4 Nov. 2010 at 13:50 UT. Many of the anticipated key science results will come from the combined interpretation of the in-situ spacecraft data and the Earth- and space-based observing campaigns. DIXI in-situ objectives include characterizing the nucleus properties, understanding the activity (outbursts, and sources), mapping the surface and correlating surface albedo, color and temperature with topography to understand the thermal properties of the surface. The Earth-based observations provide a longer-term context for the in-situ observations, and will characterize the activity levels leading up to the encounter, including assessing the dust environment and volatile species production rates. Earth-based observations will search for outbursts and jets that might be linked to activity. The international observing campaign scheduled at more than 20 observatories, began in March 2010, and will continue beyond January 2011, although selected observations began in 2008 with the recovery of the nucleus (Snodgrass et al., (2010), A&A, 516L) and Spitzer IR observations (Lisse et al., (2009) PASP 121, 968), and in 2009 with the measurement of the rotational light curve. We will report on Earth-based observing highlights and their synergies with the in-situ observations. With these combined data we can not only better understand comet Hartley 2, but through the legacy of telescopic observations we may also better understand comets as a whole.

  2. Large micro-mirror arrays: key components in future space instruments for Universe and Earth Observation

    Directory of Open Access Journals (Sweden)

    Zamkotsian Frederic

    2015-01-01

    Full Text Available In future space missions for Universe and Earth Observation, scientific return could be optimized using MOEMS devices. Micro-mirror arrays are used for designing new generation of instruments, multi-object spectrographs in Universe Observation and programmable wide field spectrographs in Earth Observation. Mock-ups have been designed and built for both applications and they show very promising results.

  3. Long Term Preservation of Earth Observation Data in Europe - Challenge and Cooperation Activities

    Science.gov (United States)

    Molch, K.; Albani, M.

    2014-12-01

    Earth observation data are unique snapshots of the Earth and the atmosphere. As such they constitute a humankind asset in their importance for monitoring changes in global environmental conditions. With spaceborne Earth observation (EO) missions dating back to the 1970s, 40 years worth of observations are now available in EO data archives worldwide. Data holdings are growing exponentially, e.g. with the Sentinel series of high resolution EO satellites of the European Copernicus Program - which introduces a new dimension of data volumes to be handled. As other EO data holders around the globe, the European Space Agency (ESA) and its member states are committed to keeping the valuable EO data assets safe, accessible, and useable for an unlimited timespan. Rapidly evolving information technology and changing user requirements call for a dedicated and coordinated approach to EO data long term preservation. In Europe collaborative EO data stewardship activities are coordinated by ESA within the ESA long term data preservation (LTDP) program. With a view to the entire data set life cycle of historic and current missions an active LTDP working group addresses a wide range of relevant technical and organizational topics. Studies investigate archiving and access technologies, user expectations, or applicable standards; guidelines and best practices recommend preservation workflows, steps to take in curating individual data sets, the composition of the preserved data set, or concepts for introducing persistent identifiers. Fostering an active international exchange, the activities and documents developed within this European LTDP framework extend beyond Europe by being introduced to the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). The paper describes the European LTDP cooperation framework, discusses individual focus areas and current activities, and highlights the interaction with global data stewardship initiatives.

  4. Our Mission to Planet Earth: A guide to teaching Earth system science

    Science.gov (United States)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  5. Challenges in Modeling the Sun-Earth System

    Science.gov (United States)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects

  6. Earth Observation Data Quality Monitoring and Control: A Case Study of STAR Central Data Repository

    Science.gov (United States)

    Han, W.; Jochum, M.

    2017-12-01

    Earth observation data quality is very important for researchers and decision makers involved in weather forecasting, severe weather warning, disaster and emergency response, environmental monitoring, etc. Monitoring and control earth observation data quality, especially accuracy, completeness, and timeliness, is very useful in data management and governance to optimize data flow, discover potential transmission issues, and better connect data providers and users. Taking a centralized near real-time satellite data repository, STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR), as an example, this paper describes how to develop new mechanism to verify data integrity, check data completeness, and monitor data latency in an operational data management system. Such quality monitoring and control of large volume satellite data help data providers and managers improve data transmission of near real-time satellite data, enhance its acquisition and management, and overcome performance and management issues to better serve research and development activities.

  7. Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core

    Science.gov (United States)

    Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.

    2017-12-01

    Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.

  8. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context

    Directory of Open Access Journals (Sweden)

    Julie Transon

    2018-01-01

    Full Text Available In the last few decades, researchers have developed a plethora of hyperspectral Earth Observation (EO remote sensing techniques, analysis and applications. While hyperspectral exploratory sensors are demonstrating their potential, Sentinel-2 multispectral satellite remote sensing is now providing free, open, global and systematic high resolution visible and infrared imagery at a short revisit time. Its recent launch suggests potential synergies between multi- and hyper-spectral data. This study, therefore, reviews 20 years of research and applications in satellite hyperspectral remote sensing through the analysis of Earth observation hyperspectral sensors’ publications that cover the Sentinel-2 spectrum range: Hyperion, TianGong-1, PRISMA, HISUI, EnMAP, Shalom, HyspIRI and HypXIM. More specifically, this study (i brings face to face past and future hyperspectral sensors’ applications with Sentinel-2’s and (ii analyzes the applications’ requirements in terms of spatial and temporal resolutions. Eight main application topics were analyzed including vegetation, agriculture, soil, geology, urban, land use, water resources and disaster. Medium spatial resolution, long revisit time and low signal-to-noise ratio in the short-wave infrared of some hyperspectral sensors were highlighted as major limitations for some applications compared to the Sentinel-2 system. However, these constraints mainly concerned past hyperspectral sensors, while they will probably be overcome by forthcoming instruments. Therefore, this study is putting forward the compatibility of hyperspectral sensors and Sentinel-2 systems for resolution enhancement techniques in order to increase the panel of hyperspectral uses.

  9. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.

    Science.gov (United States)

    Kleidon, Axel

    2010-01-13

    The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society

  10. A rightly balanced intellectual property rights regime as a mechanism to enhance commercial earth observation activities

    Science.gov (United States)

    Doldirina, Catherine

    2010-09-01

    Earth observation by satellites is one of the developing sectors of space activities with the growing involvement in private capital or actors. This leads to the question of how efficient legal rules governing this activity are. Copyright law is one of the key fields of law applicable to earth observation activities and is the subject of the present analysis. This paper describes the current state of copyright regulations in different jurisdictions. It also addresses the issue of defining earth observation data for the purpose of applying copyright protection to them. Finally, it analyses whether more or less copyright protection would be beneficial for the commercialisation of the earth observation activities, and the distribution and further use of data they produce. The paper is largely based on my current doctoral research. Draft chapter on file with the author.

  11. High Temporal and Spatial Resolution Coverage of Earth from Commercial AVSTAR Systems in Geostationary Orbit

    Science.gov (United States)

    Lecompte, M. A.; Heaps, J. F.; Williams, F. H.

    Imaging the earth from Geostationary Earth Orbit (GEO) allows frequent updates of environmental conditions within an observable hemisphere at time and spatial scales appropriate to the most transient observable terrestrial phenomena. Coverage provided by current GEO Meteorological Satellites (METSATS) fails to fully exploit this advantage due primarily to obsolescent technology and also institutional inertia. With the full benefit of GEO based imaging unrealized, rapidly evolving phenomena, occurring at the smallest spatial and temporal scales that frequently have significant environmental impact remain unobserved. These phenomena may be precursors for the most destructive natural processes that adversely effect society. Timely distribution of information derived from "real-time" observations thus may provide opportunities to mitigate much of the damage to life and property that would otherwise occur. AstroVision International's AVStar Earth monitoring system is designed to overcome the current limitations if GEO Earth coverage and to provide real time monitoring of changes to the Earth's complete atmospheric, land and marine surface environments including fires, volcanic events, lightning and meteoritic events on a "live," true color, and multispectral basis. The understanding of severe storm dynamics and its coupling to the earth's electro-sphere will be greatly enhanced by observations at unprecedented sampling frequencies and spatial resolution. Better understanding of these natural phenomena and AVStar operational real-time coverage may also benefit society through improvements in severe weather prediction and warning. AstroVision's AVStar system, designed to provide this capability with the first of a constellation of GEO- based commercial environmental monitoring satellites to be launched in late 2003 will be discussed, including spatial and temporal resolution, spectral coverage with applications and an inventory of the potential benefits to society

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Journal of Earth System Science was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed 'Journal of Earth System ...

  13. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    Science.gov (United States)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  14. Young Earth System Scientists (YESS) Community

    Science.gov (United States)

    Reed, K. A.; Langendijk, G.; Bahar, F.; Huang-Lachmann, J. T.; Osman, M.; Mirsafa, M.; Sonntag, S.

    2017-12-01

    The Young Earth System Scientists (YESS) community is compiled of early career researchers (including students) coming from a range of scientific backgrounds, spanning both natural and social sciences. YESS unifies young researchers in an influential network to give them a collective voice and leverage within the geosciences community, while supporting career development. The YESS community has used its powerful network to provide a unified perspective on the future of Earth system science (Rauser et al. 2017), to be involved in the organization of international conferences, and to engage with existing international structures that coordinate science. Since its founding in Germany in 2010, the YESS community has grown extensively across the globe, with currently almost 1000 members from over 80 countries, and has become truly interdisciplinary. Recently, the organization has carried elections for Regional Representatives and the Executive Committee as part of its self-sustained governance structure. YESS is ready to continue pioneering crucial areas of research which provide solutions to benefit society for the long-term advancement of Earth system science.

  15. Interactions of Vegetation and Climate: Remote Observations, Earth System Models, and the Amazon Forest

    Science.gov (United States)

    Quetin, Gregory R.

    The natural composition of terrestrial ecosystems can be shaped by climate to take advantage of local environmental conditions. Ecosystem functioning, e.g. interaction between photosynthesis and temperature, can also acclimate to different climatological states. The combination of these two factors thus determines ecological-climate interactions. The ecosystem functioning also plays a key role in predicting the carbon cycle, hydrological cycle, terrestrial surface energy balance, and the feedbacks in the climate system. Predicting the response of the Earth's biosphere to global warming requires the ability to mechanistically represent the processes controlling ecosystem functioning through photosynthesis, respiration, and water use. The physical environment in a place shapes the vegetation there, but vegetation also has the potential to shape the environment, e.g. increased photosynthesis and transpiration moisten the atmosphere. These two-way ecoclimate interactions create the potential for feedbacks between vegetation at the physical environment that depend on the vegetation and the climate of a place, and can change throughout the year. In Chapter 1, we derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness to interannual variations in temperature and precipitation. We infer mechanisms constraining ecosystem functioning by analyzing how the sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate at large spatial scales. In hot and wet locations, vegetation is greener in warmer years despite temperatures likely exceeding thermally optimum conditions. However, sunlight generally increases during warmer years, suggesting that the increased stress from higher atmospheric water demand is offset by higher rates of photosynthesis. The sensitivity of vegetation

  16. GIONET (GMES Initial Operations Network for Earth Observation Research Training)

    Science.gov (United States)

    Nicolas, V.; Balzter, H.

    2013-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. Copernicus (previously known as GMES (Global Monitoring for Environment and Security) is a joint undertaking of the European Space Agency and the European Commission. It develops fully operational Earth Observation monitoring services for a community of end users from the public and private sector. The first services that are considered fully operational are the land monitoring and emergency monitoring core services. In GIONET, 14 early stage researchers are being trained at PhD level in understanding the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers are based in industry and universities across Europe, as well as receiving the best technical training and scientific education. The training programme through supervised research focuses on 14 research topics. Each topic is carried out by an Early Stage Researcher based in one of the partner organisations and is expected to lead to a PhD degree. The 14 topics are grouped in 5 research themes: Forest monitoring Land cover and change Coastal zone and freshwater monitoring Geohazards and emergency response Climate adaptation and emergency response The methods developed and used in GIONET are as diverse as its research topics. GIONET has already held two summer schools; one at Friedrich Schiller University in Jena (Germany), on 'New operational radar satellite applications: Introduction to SAR, Interferometry and Polarimetry for Land Surface Mapping'. The 2nd summer school took place last September at the University of Leicester (UK )on 'Remote sensing of land cover and forest in GMES'. The next Summer School in September 2013

  17. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2018-03-01

    Full Text Available Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE. The SNIPE mission consists of four nanosatellites (~10 kg, which will be launched into a polar orbit at an altitude of 600 km (TBD in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  18. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    Science.gov (United States)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  19. Encyclopedia of earth system science

    National Research Council Canada - National Science Library

    Nierenberg, William Aaron

    1992-01-01

    .... The very diversity of the articles attests to the complexity of earth system science as a unique interdisciplinary venture to place humanity in a position to move wisely to protect the global habitat...

  20. Determination of the Earth's pole tide Love number k2 from observations of polar motion using an adaptive Kalman filter approach

    Science.gov (United States)

    Seitz, F.; Kirschner, S.; Neubersch, D.

    2012-09-01

    The geophysical interpretation of observed time series of Earth rotation parameters (ERP) is commonly based on numerical models that describe and balance variations of angular momentum in various subsystems of the Earth. Naturally, models are dependent on geometrical, rheological and physical parameters. Many of these are weakly determined from other models or observations. In our study we present an adaptive Kalman filter approach for the improvement of parameters of the dynamic Earth system model DyMEG which acts as a simulator of ERP. In particular we focus on the improvement of the pole tide Love number k2. In the frame of a sensitivity analysis k2 has been identified as one of the most crucial parameters of DyMEG since it directly influences the modeled Chandler oscillation. At the same time k2 is one of the most uncertain parameters in the model. Our simulations with DyMEG cover a period of 60 years after which a steady state of k2 is reached. The estimate for k2, accounting for the anelastic response of the Earth's mantle and the ocean, is 0.3531 + 0.0030i. We demonstrate that the application of the improved parameter k2 in DyMEG leads to significantly better results for polar motion than the original value taken from the Conventions of the International Earth Rotation and Reference Systems Service (IERS).

  1. Data-mining analysis of the global distribution of soil carbon in observational databases and Earth system models

    Science.gov (United States)

    Hashimoto, Shoji; Nanko, Kazuki; Ťupek, Boris; Lehtonen, Aleksi

    2017-03-01

    Future climate change will dramatically change the carbon balance in the soil, and this change will affect the terrestrial carbon stock and the climate itself. Earth system models (ESMs) are used to understand the current climate and to project future climate conditions, but the soil organic carbon (SOC) stock simulated by ESMs and those of observational databases are not well correlated when the two are compared at fine grid scales. However, the specific key processes and factors, as well as the relationships among these factors that govern the SOC stock, remain unclear; the inclusion of such missing information would improve the agreement between modeled and observational data. In this study, we sought to identify the influential factors that govern global SOC distribution in observational databases, as well as those simulated by ESMs. We used a data-mining (machine-learning) (boosted regression trees - BRT) scheme to identify the factors affecting the SOC stock. We applied BRT scheme to three observational databases and 15 ESM outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and examined the effects of 13 variables/factors categorized into five groups (climate, soil property, topography, vegetation, and land-use history). Globally, the contributions of mean annual temperature, clay content, carbon-to-nitrogen (CN) ratio, wetland ratio, and land cover were high in observational databases, whereas the contributions of the mean annual temperature, land cover, and net primary productivity (NPP) were predominant in the SOC distribution in ESMs. A comparison of the influential factors at a global scale revealed that the most distinct differences between the SOCs from the observational databases and ESMs were the low clay content and CN ratio contributions, and the high NPP contribution in the ESMs. The results of this study will aid in identifying the causes of the current mismatches between observational SOC databases and ESM outputs

  2. Nonlinear dynamics of global atmospheric and earth system processes

    Science.gov (United States)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  3. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    Science.gov (United States)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  4. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  5. Restrictions on the detection of the Super-Earth in Solar system

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    For assessment of visibility of possible 9th planet, we use the infrared observations obtained by the "Wide-Field Infrared Survey Explorer". It turned out that the telescope could not see an analog of the planet of the giant Saturn at a distance of up to 30000 AU. This circumstance allowed us to estimate that at distances up to 1000 AU it would be clearly visible planetary body with a radius of more than 11,000 km; that is, a planet with mass of about 10 Earth masses and "earth" density (5520 kg/m3). If we take into account that the density of the "average" TNO differs little from 2000 kg/m3, that the radius of such "Super-Earth" with a mass of about 10 Earth masses - will increase to 19200 km. Then the limit of detection of a possible 9th planet will increase by almost 4 times: up to 4000 AU. And since the "WISE" telescope did not "see" even Saturn, that our estimates unequivocally suggest that there is no "Super-Earth" at a distance up to 1000 AU in the Solar system.

  6. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    Science.gov (United States)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing

  7. Challenges to modeling the Sun-Earth System: A Workshop Summary

    Science.gov (United States)

    Spann, James F.

    2006-01-01

    This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress

  8. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  9. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  10. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  11. EarthCube - Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks

    Science.gov (United States)

    Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.

    2014-12-01

    In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a

  12. Continental-scale water fluxes from continuous GPS observations of Earth surface loading

    Science.gov (United States)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2015-12-01

    After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.

  13. Perspectives for Distributed Observations of Near-Earth Space Using a Russian-Cuban Observatory

    Science.gov (United States)

    Bisikalo, D. V.; Savanov, I. S.; Naroenkov, S. A.; Nalivkin, M. A.; Shugarov, A. S.; Bakhtigaraev, N. S.; Levkina, P. A.; Ibragimov, M. A.; Kil'pio, E. Yu.; Sachkov, M. E.; Kartashova, A. P.; Fateeva, A. M.; Uratsuka, Marta R. Rodriguez; Estrada, Ramses Zaldivar; Diaz, Antonio Alonsa; Rodríguez, Omar Pons; Figuera, Fidel Hernandes; Garcia, Maritza Garcia

    2018-06-01

    The creation of a specialized network of large, wide-angle telescopes for distributed observations of near-Earth space using a Russian-Cuban Observatory is considered. An extremely important goal of routine monitoring of near-Earth and near-Sun space is warding off threats with both natural and technogenic origins. Natural threats are associated with asteroids or comets, and technogenic threats with man-made debris in near-Earth space. A modern network of ground-based optical instruments designed to ward off such threats must: (a) have a global and, if possible, uniform geographic distribution, (b) be suitable for wide-angle, high-accuracy precision survey observations, and (c) be created and operated within a single network-oriented framework. Experience at the Institute of Astronomy on the development of one-meter-class wide-angle telescopes and elements of a super-wide-angle telescope cluster is applied to determine preferences for the composition of each node of such a network. The efficiency of distributed observations in attaining maximally accurate predictions of the motions of potentially dangerous celestial bodies as they approach the Earth and in observations of space debris and man-made satellites is estimated. The first estimates of astroclimatic conditions at the proposed site of the future Russian-Cuban Observatory in the mountains of the Sierra del Rosario Biosphere Reserve are obtained. Special attention is given to the possible use of the network to carry out a wide range of astrophysical studies, including optical support for the localization of gravitational waves and other transient events.

  14. Committee on Earth Observation Satellites (CEOS) perspectives about the GEO Supersite initiative

    Science.gov (United States)

    Lengert, Wolfgang; Zoffoli, Simona; Giguere, Christine; Hoffmann, Joern; Lindsay, Francis; Seguin, Guy

    2014-05-01

    This presentation is outlining the effort of the Committee on Earth Observation Satellites (CEOS) using its global collaboration structure to support implementing the GEO priority action DI-01 Informing Risk Management and Disaster Reduction addressing the component: C2 Geohazards Monitoring, Alert, and Risk Assessment. A CEOS Supersites Coordination Team (SCT) has been established in order to make best use of the CEOS global satellite resources. For this, the CEOS SCT has taken a holistic view on the science data needs and availability of resources, considering the constraints and exploitation potentials of synergies. It is interfacing with the Supersites Science Advisory Group and the Principle Investigators to analyze how the satellite data associated with seismic and Global Navigation Satellite System (GNSS) data can support national authorities and policy makers in risk assessment and the development of mitigation strategies. CEOS SCT aims to support the establishment of a fully integrated approach to geohazards monitoring, based on collaboration among existing networks and international initiatives, using new instrumentation such as in-situ sensors, and aggregating space (radar, optical imagery) and ground-based (subsurface) observations. The three Supersites projects which are funded under the EC FP7 action, namely (i) FUTUREVOLC: A European volcanological supersite in Iceland: a monitoring system and network for the future Geohazards Monitoring, Alert, and Risk Assessment, (ii) MARsite: New Directions in Seismic Hazard assessment through Focused Earth Observation in the Marmara Supersite, (iii) MED-SUV: MEDiterranean Volcanoes and related seismic risks, have been examined as a vehicle to fulfill these ambitious objectives. FUTUREVOLC has already been granted CEOS support. This presentation will outline CEOS agreed process and criteria applied by the Supersites Coordination Team (SCT), for selecting these Supersites in the context of the GSNL initiative, as

  15. Observed ices in the Solar System

    Science.gov (United States)

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  16. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  17. Simulating the Earth System Response to Negative Emissions

    Science.gov (United States)

    Jackson, R. B.; Milne, J.; Littleton, E. W.; Jones, C.; Canadell, J.; Peters, G. P.; van Vuuren, D.; Davis, S. J.; Jonas, M.; Smith, P.; Ciais, P.; Rogelj, J.; Torvanger, A.; Shrestha, G.

    2016-12-01

    The natural carbon sinks of the land and oceans absorb approximately half the anthropogenic CO2 emitted every year. The CO2 that is not absorbed accumulates in the Earth's atmosphere and traps the suns rays causing an increase in the global mean temperature. Removing this left over CO2 using negative emissions technologies (NETs) has been proposed as a strategy to lessen the accumulating CO2 and avoid dangerous climate change. Using CMIP5 Earth system model simulations this study assessed the impact on the global carbon cycle, and how the Earth system might respond, to negative emissions strategies applied to low emissions scenarios, over different times horizons from the year 2000 to 2300. The modeling results suggest that using NETs to remove atmospheric CO2 over five 50-year time horizons has varying effects at different points in time. The effects of anthropogenic and natural sources and sinks, can result in positive or negative changes in atmospheric CO2 concentration. Results show that historic emissions and the current state of the Earth System have impacts on the behavior of atmospheric CO2, as do instantaneous anthropogenic emissions. Indeed, varying background scenarios seemed to have a greater effect on atmospheric CO2 than the actual amount and timing of NETs. These results show how NETs interact with the physical climate-carbon cycle system and highlight the need for more research on earth-system dynamics as they relate to carbon sinks and sources and anthropogenic perturbations.

  18. The Earth System Science Education Experience: Personal Vignettes

    Science.gov (United States)

    Ruzek, M.; Aron, J.; Maranto, G.; Reider, D.; Wake, C.

    2006-12-01

    Colleges and universities across the country and around the world have embraced the Earth system approach to gain deeper understanding of the interrelationships of processes that define the home planet. The Design Guide for Undergraduate Earth System Science Education, a product of the NASA/USRA Earth System Science Education for the 21st Century Program (ESSE 21), represents a synthesis of community understanding of the content and process of teaching and learning about Earth as a system. The web-based Design Guide serves faculty from multiple disciplines who wish to adopt an ESS approach in their own courses or programs. Illustrating the nine topical sections of the Design Guide are a series of short vignettes telling the story of how ESS is being used in the classroom, how ESS has contributed to institutional change and personal professional development, how ESS is being implemented at minority serving institutions, and the impact of ESS education on student research. Most vignettes are written from a personal perspective and reflect a direct experience with Earth System Science Education. Over forty vignettes have been assembled aiming to put a face on the results of the systemic reform efforts of the past fifteen years of the ESSE programs, documenting the sometimes intangible process of education reform to be shared with those seeking examples of ESS education. The vignettes are a vital complement to the Design Guide sections, and are also available as a separate collection on the Design Guide and ESSE 21 web sites.

  19. Satellite Earth observation data to identify climate and anthropogenic pressures on Bucharest periurban forests

    Energy Technology Data Exchange (ETDEWEB)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan [National Institute of R& D for Optoelectronics, MG5 Bucharest-Magurele, 077125 Romania (Romania); Dida, Adrian [University Transylvania of Brasov, Brasov (Romania)

    2016-03-25

    Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forest areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.

  20. Satellite Earth observation data to identify climate and anthropogenic pressures on Bucharest periurban forests

    International Nuclear Information System (INIS)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan; Dida, Adrian

    2016-01-01

    Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forest areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.

  1. A New Cyber-enabled Platform for Scale-independent Interoperability of Earth Observations with Hydrologic Models

    Science.gov (United States)

    Rajib, A.; Zhao, L.; Merwade, V.; Shin, J.; Smith, J.; Song, C. X.

    2017-12-01

    Despite the significant potential of remotely sensed earth observations, their application is still not full-fledged in water resources research, management and education. Inconsistent storage structures, data formats and spatial resolution among different platforms/sources of earth observations hinder the use of these data. Available web-services can help bulk data downloading and visualization, but they are not sufficiently tailored to meet the degree of interoperability required for direct application of earth observations in hydrologic modeling at user-defined spatio-temporal scales. Similarly, the least ambiguous way for educators and watershed managers is to instantaneously obtain a time-series at any watershed of interest without spending time and computational resources on data download and post-processing activities. To address this issue, an open access, online platform, named HydroGlobe, is developed that minimizes all these processing tasks and delivers ready-to-use data from different earth observation sources. HydroGlobe can provide spatially-averaged time series of earth observations by using the following inputs: (i) data source, (ii) temporal extent in the form of start/end date, and (iii) geographic units (e.g., grid cell or sub-basin boundary) and extent in the form of GIS shapefile. In its preliminary version, HydroGlobe simultaneously handles five data sources including the surface and root zone soil moisture from SMAP (Soil Moisture Active Passive Mission), actual and potential evapotranspiration from MODIS (Moderate Resolution Imaging Spectroradiometer), and precipitation from GPM (Global Precipitation Measurements). This presentation will demonstrate the HydroGlobe interface and its applicability using few test cases on watersheds from different parts of the globe.

  2. Visualization system on the earth simulator user's guide

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Sai, Kazunori

    2002-08-01

    A visualization system on the Earth Simulator is developed. The system enables users to see a graphic representation of simulation results on a client terminal simultaneously with them being computed on the Earth Simulator. Moreover, the system makes it possible to change parameters of the calculation and its visualization in the middle of calculation. The graphical user interface (GUI) of the system is constructed on a Java applet. Consequently, the client only needs a web browser, so it is independent of operating systems. The system consists of a server function, post-processing function and client function. The server and post-processing functions work on the Earth Simulator, and the client function works on the client terminal. The server function employs a library style format so that users can easily invoke real-time visualization functions by applying their code. The post-processing function employs a library style format and moreover provides a load module. This report describes mainly the usage of the server and post-processing functions. (author)

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Jeeva. Articles written in Journal of Earth System Science. Volume 111 Issue 1 March 2002 pp 51-62. Velocity of small-scale auroral ionospheric current systems over Indian Antarctic station Maitri · Girija Rajaram A N Hanchinal R Kalra K Unnikrishnan K Jeeva M ...

  4. Observations of Earth space by self-powered stations in Antarctica.

    Science.gov (United States)

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  5. NextGEOSS project: A user-driven approach to build a Earth Observations Data Hub

    Science.gov (United States)

    Percivall, G.; Voidrot, M. F.; Bye, B. L.; De Lathouwer, B.; Catarino, N.; Concalves, P.; Kraft, C.; Grosso, N.; Meyer-Arnek, J.; Mueller, A.; Goor, E.

    2017-12-01

    Several initiatives and projects contribute to support Group on Earth Observation's (GEO) global priorities including support to the UN 2030 Agenda for sustainable development, the Paris Agreement on climate change, and the Sendai Framework for Disaster Risk Reduction . Running until 2020, the NextGEOSS project evolves the European vision of a user driven GEOSS data exploitation for innovation and business, relying on the three main pillars: engaging communities of practice delivering technological advancements advocating the use of GEOSS These 3 pillars support the creation and deployment of Earth observation based innovative research activities and commercial services. In this presentation we will emphasise how the NextGEOSS project uses a pilot-driven approach to ramp up and consolidate the system in a pragmatique way, integrating the complexity of the existing global ecosystem, leveraging previous investments, adding new cloud technologies and resources and engaging the diverse communities to address all types of Sustainable Development Goals (SDGs). A set of 10 initial pilots have been defined by the project partners to address the main challenges and include as soon as possible contributions to SDGs associated with Food Sustainability, Bio Diversity, Space and Security, Cold Regions, Air Pollutions, Disaster Risk Reduction, Territorial Planning, Energy. In 2018 and 2019 the project team will work on two new series of Architecture Implementation Pilots (AIP-10 and AIP-11), opened world-wide, to increase discoverability, accessibility and usability of data with a strong User Centric approach for innovative GEOSS powered applications for multiple societal areas. All initiatives with an interest in and need of Earth observations (data, processes, models, ...) are welcome to participate to these pilots initiatives. NextGEOSS is a H2020 Research and Development Project from the European Community under grant agreement 730329.

  6. Observations of nonadiabatic acceleration of ions in Earth's magnetotail

    Science.gov (United States)

    Frank, L. A.; Paterson, W. R.; Kivelson, M. G.

    1994-01-01

    We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity

  7. On the Tidal Evolution of the Earth-Moon System: A Cosmological Model

    Directory of Open Access Journals (Sweden)

    Arbab A. I.

    2009-01-01

    Full Text Available We have presented a cosmological model for the tidal evolution of the Earth-Moon system. We have found that the expansion of the universe has immense consequences on our local systems. The model can be compared with the present observational data. The close approach problem inflicting the known tidal theory is averted in this model. We have also shown that the astronomical and geological changes of our local systems are of the order of Hubble constant.

  8. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    Science.gov (United States)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  9. Data Mining and Knowledge Discovery tools for exploiting big Earth-Observation data

    Science.gov (United States)

    Espinoza Molina, D.; Datcu, M.

    2015-04-01

    The continuous increase in the size of the archives and in the variety and complexity of Earth-Observation (EO) sensors require new methodologies and tools that allow the end-user to access a large image repository, to extract and to infer knowledge about the patterns hidden in the images, to retrieve dynamically a collection of relevant images, and to support the creation of emerging applications (e.g.: change detection, global monitoring, disaster and risk management, image time series, etc.). In this context, we are concerned with providing a platform for data mining and knowledge discovery content from EO archives. The platform's goal is to implement a communication channel between Payload Ground Segments and the end-user who receives the content of the data coded in an understandable format associated with semantics that is ready for immediate exploitation. It will provide the user with automated tools to explore and understand the content of highly complex images archives. The challenge lies in the extraction of meaningful information and understanding observations of large extended areas, over long periods of time, with a broad variety of EO imaging sensors in synergy with other related measurements and data. The platform is composed of several components such as 1.) ingestion of EO images and related data providing basic features for image analysis, 2.) query engine based on metadata, semantics and image content, 3.) data mining and knowledge discovery tools for supporting the interpretation and understanding of image content, 4.) semantic definition of the image content via machine learning methods. All these components are integrated and supported by a relational database management system, ensuring the integrity and consistency of Terabytes of Earth Observation data.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ratheesh Ramakrishnan. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1201-1213. Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations · Ratheesh Ramakrishnan A S ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Evangelin Ramani Sujatha. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1337-1350. Landslide susceptibility analysis using Probabilistic Certainty Factor Approach: A case study on Tevankarai stream watershed, India.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Soumen Sarkar. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 303-323. Evidence of lacustrine sedimentation in the Upper Permian Bijori Formation, Satpura Gondwana basin: Palaeogeographic and tectonic implications.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C J Johny. Articles written in Journal of Earth System Science. Volume 125 Issue 3 April 2016 pp 521-538. Impact of hybrid GSI analysis using ETR ensembles · V S Prasad C J Johny · More Details Abstract Fulltext PDF. Performance of a hybrid assimilation system ...

  14. ALISEO on MIOSat: an imaging interferometer for earth observation

    Science.gov (United States)

    Barducci, A.; Castagnoli, F.; Castellini, G.; Guzzi, D.; Marcoionni, P.; Pippi, I.

    2017-11-01

    The Italian Space Agency (ASI) decided to perform an low cost Earth observation mission based on a new mini satellite named MIOsat which will carry various technological payloads. Among them an imaging interferometer designed and now ready to be assembled and tested by our Institute. The instrument, named ALISEO (Aerospace Leap-frog Imaging Stationary interferometer for Earth Observation), operates in the common-path Sagnac configuration, and it does not utilize any moving part to scan the phase delays between the two interfering beams. The sensor acquires target images modulated by a pattern of autocorrelation functions of the energy coming from each scene pixel, and the resulting fringe pattern remains spatially fixed with respect to the instrument's field-of-view. The complete interferogram of each target location is retrieved by introducing a relative source-observer motion, which allows any image pixels to be observed under different viewing-angles and experience discrete path differences. The paper describes the main characteristics of the imaging interferometer as well as the overall optical configuration and the electronics layout. Moreover some theoretical issues concerning sampling theory in "common path" imaging interferometry are investigated. The experimental activity performed in laboratory is presented and its outcomes are analysed. Particularly, a set of measurements has been carried out using both standard (certificate) reflectance tiles and natural samples of different volcanic rocks. An algorithm for raw data pre-processing aimed at retrieving the at-sensor radiance spectrum is introduced and its performance is addressed by taking into account various issues such as dark signal subtraction, spectral instrument response compensation, effects of vignetting, and Fourier backtransform. Finally, examples of retrieved absolute reflectance of several samples are sketched at different wavelengths.

  15. the law governing acquisition and use of earth observation data in ...

    African Journals Online (AJOL)

    Adv. Phetole P Sekhula

    authorises the South African National Space Agency (SANSA) to acquire and ... agricultural use, environmental mapping and management, disaster .... intergovernmental organisations active in the earth observation arena as well as .... The Principles identify three categories of data and each category is treated uniquely.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bhawanisingh G Desai. Articles written in Journal of Earth System Science. Volume 120 Issue 4 August 2011 pp 723-734. Discontinuity surfaces and event stratigraphy of Okha Shell Limestone Member: Implications for Holocene sea level changes, western India.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Seetaramayya. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 283-293. Ocean-atmosphere interaction and synoptic weather conditions in association with the two contrasting phases of monsoon during BOBMEX-1999.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajeev Ranjan Kumar. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1177-1184. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sohini Ganguly. Articles written in Journal of Earth System Science. Volume 119 Issue 5 October 2010 pp 675-699. Evaluation of phase chemistry and petrochemical aspects of Samchampi–Samteran differentiated alkaline complex of Mikir Hills, northeastern India.

  20. Toward Implementation of the Global Earth Observation System of Systems Data Sharing Principles

    Directory of Open Access Journals (Sweden)

    Paul F Uhlir

    2009-09-01

    Full Text Available This article reflects the views of the authors and not necessarily those of their institutions of employment or affiliation. This article was first written as a “white paper” for the Group on Earth Observations (GEO under Task DA-06-01, “Furthering the Practical Application of the Agreed GEOSS Data Sharing Principles,” which was led beginning in 2006 by the Committee on Data for Science and Technology (CODATA of the International Council for Science (ISCU under the auspices of the GEO Architecture and Data Committee. We would like to thank the many individuals who helped facilitate the writing of the article or its review. These include Michael Rast, Michael Tanner, and Masami Onoda of the GEO Secretariat, and Kathleen Cass of the CODATA Secretariat, all of whom provided a great deal of project guidance and administrative support; Charles Barton, Australian National University, and Jack Hill, the U.S. Geological Survey, for their contributions to the drafting of the article; Santiago Borrero, Dora Ann Lange Canhos, Yukiko Fukasaku, Huadong Guo, Alexei Gvishiani, Bernard Minster, Steve Rossouw, and Fraser Taylor for providing review comments on earlier drafts; and the many representatives to GEO from its Member States or Affiliated Organizations, who also provided significant substantive comments and suggestions. We also acknowledge the strong support and encouragement of José Achache, Director of the GEO Secretariat, who recognized early on the importance of this effort. Finally, we wish to thank the editors of the Journal of Space Law and the CODATA Data Science Journal, for their assistance with the publishing of this article.

  1. Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1)

    OpenAIRE

    F. Li; S. Levis; D. S. Ward

    2013-01-01

    Modeling fire as an integral part of an Earth system model (ESM) is vital for quantifying and understanding fire–climate–vegetation interactions on a global scale and from an Earth system perspective. In this study, we introduce to the Community Earth System Model (CESM) the new global fire parameterization proposed by Li et al. (2012a, b), now with a more realistic representation of the anthropogenic impacts on fires, with a parameterization of peat fires, and with other minor modifications....

  2. Earth and space science information systems

    Energy Technology Data Exchange (ETDEWEB)

    Zygielbaum, A. (ed.) (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States))

    1993-01-01

    These proceedings represent papers presented at the Earth and Space Science Information Systems (ESSIS) Conference. The attendees included scientists and engineers across many disciplines. New trends in information organizations were reviewed. One hundred and twenty eight papers are included in this volume, out of these two have been abstracted for the Energy Science and Technology database. The topics covered in the papers range from Earth science and technology to astronomy and space, planetary science and education. (AIP)

  3. NASA's Earth Science Data Systems Standards Process Experiences

    Science.gov (United States)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  4. Reducing Loss of Life and Property from Disasters: A Societal Benefit Area of the Strategic Plan for U.S. Integrated Earth Observation System (IEOS)

    Science.gov (United States)

    Helz, Rosalind L.; Gaynor, John E.

    2007-01-01

    Natural and technological disasters, such as hurricanes and other extreme weather events, earthquakes, volcanic eruptions, landslides and debris flows, wildland and urban-interface fires, floods, oil spills, and space-weather storms, impose a significant burden on society. Throughout the United States, disasters inflict many injuries and deaths, and cost the nation $20 billion each year (SDR, 2003). Disasters in other countries can affect U.S. assets and interests overseas (e.g. the eruption of Mt. Pinatubo in the Philippines, which effectively destroyed Clark Air Force Base). Also, because they have a disproportionate impact on developing countries, disasters are major barriers to sustainable development. Improving our ability to assess, predict, monitor, and respond to hazardous events is a key factor in reducing the occurrence and severity of disasters, and relies heavily on the use of information from well-designed and integrated Earth observation systems. To fully realize the benefits gained from the observation systems, the information derived must be disseminated through effective warning systems and networks, with products tailored to the needs of the end users and the general public.

  5. The fire-vegetation-climate system: how ecology can contribute to earth system science

    CSIR Research Space (South Africa)

    Archibald, S

    2013-05-01

    Full Text Available and future state of global vegetation. A key complexity that is currently not well captured by Earth System models is that vegetation is not always deterministically responsive to climate and soils. Feedbacks within the Earth System, top-down controls...

  6. Dynamics of the Sun-Earth-Moon System

    Indian Academy of Sciences (India)

    The dynamics of the Sun-Earth-Moon system is discussed with special attention to the effects of. Sun's perturbations on the Moon's orbit around the Earth. Important secular effects are the re- gression of the nodes, the advance of the perigee and the increase in the Moon's mean longitude. We discuss the relationship of the ...

  7. AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Campante, T. L.; Davies, G. R.; Chaplin, W. J.; Handberg, R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Barclay, T.; Huber, D.; Burke, C. J.; Quintana, E. V. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Swift, J. J. [Department of Astronomy and Department of Planetary Science, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Adibekyan, V. Zh. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Cochran, W. [Department of Astronomy and McDonald Observatory, The University of Texas at Austin, TX 78712-1205 (United States); Isaacson, H. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Bedding, T. R. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Ragozzine, D. [Department of Physics and Space Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Riddle, R. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Baranec, C. [Institute for Astronomy, University of Hawai' i at Mānoa, Hilo, HI 96720-2700 (United States); Basu, S., E-mail: campante@bison.ph.bham.ac.uk [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2015-02-01

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.

  8. AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS

    International Nuclear Information System (INIS)

    Campante, T. L.; Davies, G. R.; Chaplin, W. J.; Handberg, R.; Barclay, T.; Huber, D.; Burke, C. J.; Quintana, E. V.; Swift, J. J.; Adibekyan, V. Zh.; Cochran, W.; Isaacson, H.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Bedding, T. R.; Ragozzine, D.; Riddle, R.; Baranec, C.; Basu, S.

    2015-01-01

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation

  9. Astrometric detectability of systems with unseen companions: effects of the Earth orbital motion

    Science.gov (United States)

    Butkevich, Alexey G.

    2018-06-01

    The astrometric detection of an unseen companion is based on an analysis of the apparent motion of its host star around the system's barycentre. Systems with an orbital period close to 1 yr may escape detection if the orbital motion of their host stars is observationally indistinguishable from the effects of parallax. Additionally, an astrometric solution may produce a biased parallax estimation for such systems. We examine the effects of the orbital motion of the Earth on astrometric detectability in terms of a correlation between the Earth's orbital position and the position of the star relative to its system barycentre. The χ2 statistic for parallax estimation is calculated analytically, leading to expressions that relate the decrease in detectability and accompanying parallax bias to the position correlation function. The impact of the Earth's motion critically depends on the exoplanet's orbital period, diminishing rapidly as the period deviates from 1 yr. Selection effects against 1-yr-period systems is, therefore, expected. Statistical estimation shows that the corresponding loss of sensitivity results in a typical 10 per cent increase in the detection threshold. Consideration of eccentric orbits shows that the Earth's motion has no effect on detectability for e≳ 0.5. The dependence of the detectability on other parameters, such as orbital phases and inclination of the orbital plane to the ecliptic, are smooth and monotonic because they are described by simple trigonometric functions.

  10. Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST

    Science.gov (United States)

    Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.

    2017-12-01

    Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sukanta Dey. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 20. An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Parmanand Sharma. Articles written in Journal of Earth System Science. Volume 121 Issue 3 June 2012 pp 625-636. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India · Virendra Bahadur Singh A L Ramanathan Jose George ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V S Dubey. Articles written in Journal of Earth System Science. Volume 114 Issue 5 October 2005 pp 515-522. Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Saji Mohandas. Articles written in Journal of Earth System Science. Volume 117 Issue 5 October 2008 pp 603-620. Skills of different mesoscale models over Indian region during monsoon season: Forecast errors · Someshwar Das Raghavendra Ashrit Gopal Raman ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Dhruba Mukhopadhyay. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 22-38. Anasagar gneiss: A folded granitoid pluton in the Phanerozoic South Delhi Fold Belt, central Rajasthan · Dhruba Mukhopadhyay Tapas Bhattacharyya ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Dharanirajan. Articles written in Journal of Earth System Science. Volume 123 Issue 8 December 2014 pp 1819-1830. Geomorphic settings of mangrove ecosystem in South Andaman Island: A geospatial approach · E Yuvaraj K Dharanirajan S Jayakumar Saravanan.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V B Sumithranand. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 507-517. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Shantamoy Guha. Articles written in Journal of Earth System Science. Volume 126 Issue 2 March 2017 pp 21. Identification of drought in Dhalai river watershed using MCDM and ANN models · Sainath Aher Sambhaji Shinde Shantamoy Guha Mrinmoy Majumder.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Sasibhushana Rao. Articles written in Journal of Earth System Science. Volume 116 Issue 5 October 2007 pp 407-411. GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling · G Sasibhushana Rao.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Anurag Tripathi. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 17. Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics · Pramod Kumar Yadav P K Adhikari Shalivahan Srivastava Ved P ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Manideepa Roy Choudhury. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 1033-1040. Deformation of footwall rock of Phulad Shear Zone, Rajasthan: Evidence of transpressional shear zone · Manideepa Roy Choudhury Subhrajyoti ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Younes Jedoui. Articles written in Journal of Earth System Science. Volume 122 Issue 1 February 2013 pp 15-28. Investigation of sulphate origins in the Jeffara aquifer, southeastern Tunisia: A geochemical approach · Samir Kamel Mohamed Ben Chelbi Younes Jedoui.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Earth system model; Greenland; Antarctica; ice sheet; climate dynamics; surface mass balance. Abstract. Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Prabir Dasgupta. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 287-302. Facies pattern of the middle Permian Barren Measures Formation, Jharia basin, India: The sedimentary response to basin tectonics · Prabir Dasgupta.

  5. Freva - Freie Univ Evaluation System Framework for Scientific HPC Infrastructures in Earth System Modeling

    Science.gov (United States)

    Kadow, C.; Illing, S.; Schartner, T.; Grieger, J.; Kirchner, I.; Rust, H.; Cubasch, U.; Ulbrich, U.

    2017-12-01

    The Freie Univ Evaluation System Framework (Freva - freva.met.fu-berlin.de) is a software infrastructure for standardized data and tool solutions in Earth system science (e.g. www-miklip.dkrz.de, cmip-eval.dkrz.de). Freva runs on high performance computers to handle customizable evaluation systems of research projects, institutes or universities. It combines different software technologies into one common hybrid infrastructure, including all features present in the shell and web environment. The database interface satisfies the international standards provided by the Earth System Grid Federation (ESGF). Freva indexes different data projects into one common search environment by storing the meta data information of the self-describing model, reanalysis and observational data sets in a database. This implemented meta data system with its advanced but easy-to-handle search tool supports users, developers and their plugins to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. The integrated web-shell (shellinabox) adds a degree of freedom in the choice of the working environment and can be used as a gate to the research projects HPC. Plugins are able to integrate their e.g. post-processed results into the database of the user. This allows e.g. post-processing plugins to feed statistical analysis plugins, which fosters an active exchange between plugin developers of a research project. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a database. Configurations and results of the tools can be shared among scientists via shell or web system. Furthermore, if configurations match

  6. Mathematical modeling of earth's dynamical systems a primer

    CERN Document Server

    Slingerland, Rudy

    2011-01-01

    Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be f...

  7. Developments in Earth Observation data reception, dissemination and archival at National Remote Sensing Agency

    Science.gov (United States)

    Radhakrishnan, K.; Manjunath, A. S.; Kumar, Anil

    2009-10-01

    With the rapid advancement in remote sensing technology and corresponding applications, the Earth Observation Ground Segment has undergone a significant change at NRSA. From dedicated data acquisition and processing systems, we have realized multi-mission data acquisition quick look and browse systems and also multi-mission integrated information management systems. Front end of data reception station has been upgraded to handle wider bandwidth and data rates up to 320 Mbps for near future missions such as the Radar Imaging Satellite (RISAT). Antenna, feed, down converters and RF chain have been upgraded. To cater to multi-mission scenario mission independent, fully configurable demodulator/bit synchs have been deployed. For handling data acquisition in multi-satellite scenario where in data from 5 to 6 remote sensing satellites are to be received almost simultaneously, automation of operations has been incorporated towards station configuration to avoid manual errors. From media-based data handling, there has been a shift towards net centric data handling among the various work centers such as user order processing, data processing systems, special processing systems, data quality evaluation, and product quality control work centers. The turn around time for dissemination of user desired data products has been improved from two weeks to one day. Presently a state of the art integrated environment has been envisaged which will bring down the turn around time for the supply of data products significantly. Automation has been incorporated at both data acquisition and data processing to improve the product throughput. Presently NRSA is catering to a demand of about 30,000 data products per annum and in the next two years it is aimed to reach a level of 50,000 products per annum by realizing the integrated multi-mission ground system for earth observation (IMGEOS). This will significantly modify the entire data production and dissemination chain so that data can be

  8. Improving the Operations of the Earth Observing One Mission via Automated Mission Planning

    Science.gov (United States)

    Chien, Steve A.; Tran, Daniel; Rabideau, Gregg; Schaffer, Steve; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We describe the modeling and reasoning about operations constraints in an automated mission planning system for an earth observing satellite - EO-1. We first discuss the large number of elements that can be naturally represented in an expressive planning and scheduling framework. We then describe a number of constraints that challenge the current state of the art in automated planning systems and discuss how we modeled these constraints as well as discuss tradeoffs in representation versus efficiency. Finally we describe the challenges in efficiently generating operations plans for this mission. These discussions involve lessons learned from an operations model that has been in use since Fall 2004 (called R4) as well as a newer more accurate operations model operational since June 2009 (called R5). We present analysis of the R5 software documenting a significant (greater than 50%) increase in the number of weekly observations scheduled by the EO-1 mission. We also show that the R5 mission planning system produces schedules within 15% of an upper bound on optimal schedules. This operational enhancement has created value of millions of dollars US over the projected remaining lifetime of the EO-1 mission.

  9. Distributed Space Mission Design for Earth Observation Using Model-Based Performance Evaluation

    Science.gov (United States)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Cervantes, Ben; DeWeck, Oliver

    2015-01-01

    Distributed Space Missions (DSMs) are gaining momentum in their application to earth observation missions owing to their unique ability to increase observation sampling in multiple dimensions. DSM design is a complex problem with many design variables, multiple objectives determining performance and cost and emergent, often unexpected, behaviors. There are very few open-access tools available to explore the tradespace of variables, minimize cost and maximize performance for pre-defined science goals, and therefore select the most optimal design. This paper presents a software tool that can multiple DSM architectures based on pre-defined design variable ranges and size those architectures in terms of predefined science and cost metrics. The tool will help a user select Pareto optimal DSM designs based on design of experiments techniques. The tool will be applied to some earth observation examples to demonstrate its applicability in making some key decisions between different performance metrics and cost metrics early in the design lifecycle.

  10. Gap analysis of the European Earth Observation Networks

    Science.gov (United States)

    Closa, Guillem; Serral, Ivette; Maso, Joan

    2016-04-01

    Earth Observations (EO) are fundamental to enhance the scientific understanding of the current status of the Earth. Nowadays, there are a lot of EO services that provide large volume of data, and the number of datasets available for different geosciences areas is increasing by the day. Despite this coverage, a glance of the European EO networks reveals that there are still some issues that are not being met; some gaps in specific themes or some thematic overlaps between different networks. This situation requires a clarification process of the actual status of the EO European networks in order to set priorities and propose future actions that will improve the European EO networks. The aim of this work is to detect the existing gaps and overlapping problems among the European EO networks. The analytical process has been done by studying the availability and the completeness of the Essential Variables (EV) data captured by the European EO networks. The concept of EVs considers that there are a number of parameters that are essential to characterize the state and trends of a system without losing significant information. This work generated a database of the existing gaps in the European EO network based on the initial GAIA-CLIM project data structure. For each theme the missing or incomplete data about each EV was indentified. Then, if incomplete, the gap was described by adding its type (geographical extent, vertical extent, temporal extent, spatial resolution, etc), the cost, the remedy, the feasibility, the impact and the priority, among others. Gaps in EO are identified following the ConnectinGEO methodology structured in 5 threads; identification of observation requirements, incorporation of international research programs material, consultation process within the current EO actors, GEOSS Discovery and Access Broker analysis, and industry-driven challenges implementation. Concretely, the presented work focuses on the second thread, which is based on

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Barnes. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Geetha Selvarani. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 311-328. Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing · G Maheswaran A Geetha Selvarani K Elangovan.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R Srinivasan. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 57-65. Sm-Nd Ages of Two Meta-Anorthosite Complexes Around Holenarsipur: Constraints on the Antiquity of Archean Supracrustal Rocks of the Dharwar Craton.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Umesh S Balpande. Articles written in Journal of Earth System Science. Volume 123 Issue 7 October 2014 pp 1501-1515. Morphometric analysis of Suketi river basin, Himachal Himalaya, India · Anil M Pophare Umesh S Balpande · More Details Abstract Fulltext PDF.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abhijit Chakraborty. Articles written in Journal of Earth System Science. Volume 114 Issue 3 June 2005 pp 275-286. Significance of transition between Talchir Formation and Karharbari Formation in Lower Gondwana basin evolution — A study in West Bokaro Coal basin, ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Shalini. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Suman Sinha. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 725-735. Developing synergy regression models with space-borne ALOS PALSAR and Landsat TM sensors for retrieving tropical forest biomass · Suman Sinha C ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Naveen Kumar. Articles written in Journal of Earth System Science. Volume 118 Issue 5 October 2009 pp 539-549. Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain · Atul Kumar Dilip Kumar Jaiswal Naveen ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sharmistha De Sarkar. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 715-727. Arc parallel extension in Higher and Lesser Himalayas, evidence from western Arunachal Himalaya, India · Sharmistha De Sarkar George Mathew ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajdeep Roy. Articles written in Journal of Earth System Science. Volume 120 Issue 6 December 2011 pp 1145-1154. Identification of non-indigenous phytoplankton species dominated bloom off Goa using inverted microscopy and pigment (HPLC) analysis · P V Bhaskar ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Keqing Zong. Articles written in Journal of Earth System Science. Volume 127 Issue 3 April 2018 pp 43. Early Neoarchaean A-type granitic magmatism by crustal reworking in Singhbhum craton: Evidence from Pala Lahara area, Orissa · Abhishek Topno Sukanta Dey ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Venkat Ratnam. Articles written in Journal of Earth System Science. Volume 120 Issue 5 October 2011 pp 807-823. Long-term variations in outgoing long-wave radiation (OLR), convective available potential energy (CAPE) and temperature in the tropopause region over ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Aavudai Anandhi. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 447-460. Assessing impact of climate change on season length in Karnataka for IPCC SRES scenarios · Aavudai Anandhi · More Details Abstract Fulltext PDF.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Archana Tripathi. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 537-557. Stratigraphic status of coal horizon in Tatapani–Ramkola Coalfield, Chhattisgarh, India · Archana Tripathi Vijaya Srikanta Murthy B Chakarborty D K Das.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abdul Matin. Articles written in Journal of Earth System Science. Volume 118 Issue 4 August 2009 pp 379-390. Deformation mechanisms in the frontal Lesser Himalayan Duplex in Sikkim Himalaya, India · Abdul Matin Sweety Mazumdar · More Details Abstract Fulltext PDF.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bibhuti Gogoi. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 959-987. Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcanic and volcano-sedimentary sequence of Chotanagpur Granite Gneiss ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Abbas Goli Jirandeh. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 349-369. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran · Hamid Reza Pourghasemi Abbas Goli Jirandeh ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rahul Choudhury. Articles written in Journal of Earth System Science. Volume 125 Issue 7 October 2016 pp 1365-1377. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals · Tonkeswar Das Ananya Saikia ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Pravin K Gupta. Articles written in Journal of Earth System Science. Volume 115 Issue 3 June 2006 pp 267-276. Fast computation of Hankel Transform using orthonormal exponential approximation of complex kernel function · Pravin K Gupta Sri Niwas Neeta Chaudhary.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Christian Koeberl. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 91-108. Mineral chemistry of lava flows from Linga area of the Eastern Deccan Volcanic Province, India · Sohini Ganguly Jyotisankar Ray Christian Koeberl ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Shamsuddin Shahid. Articles written in Journal of Earth System Science. Volume 124 Issue 6 August 2015 pp 1325-1341. Multilayer perceptron neural network for downscaling rainfall in arid region: A case study of Baluchistan, Pakistan · Kamal Ahmed Shamsuddin Shahid ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Anup Saha. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 885-895. Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half- ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Santimoy Kundu. Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 161-170. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer · Shishir Gupta Rehena Sultana Santimoy Kundu.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rehena Sultana. Articles written in Journal of Earth System Science. Volume 124 Issue 1 February 2015 pp 161-170. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer · Shishir Gupta Rehena Sultana Santimoy Kundu.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Soumyajit Mukherjee. Articles written in Journal of Earth System Science. Volume 126 Issue 1 February 2017 pp 2. Shear heating by translational brittle reverse faulting along a single, sharp and straight fault plane · Soumyajit Mukherjee · More Details Abstract Fulltext PDF.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajneesh Kumar. Articles written in Journal of Earth System Science. Volume 109 Issue 3 September 2000 pp 371-380. Plain strain problem of poroelasticity using eigenvalue approach · Rajneesh Kumar Aseem Miglani N R Garg · More Details Abstract Fulltext PDF.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Charuta V Prabhu. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 267-277. Diurnal variability of upper ocean temperature and heat budget in the southern Bay of Bengal during October — November, 1998 (BOBMEX-Pilot).

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Tapas Acharya. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 453-462. Analysis of lineament swarms in a Precambrian metamorphic rocks in India · Tapas Acharya Sukumar Basu Mallik · More Details Abstract Fulltext PDF.

  19. The future of Earth observation in hydrology

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2017-07-01

    Full Text Available In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs, and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions. More recently, the proliferation of smartphones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3–5 m resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery

  20. The future of Earth observation in hydrology

    Science.gov (United States)

    McCabe, Matthew F.; Rodell, Matthew; Alsdorf, Douglas E.; Miralles, Diego G.; Uijlenhoet, Remko; Wagner, Wolfgang; Lucieer, Arko; Houborg, Rasmus; Verhoest, Niko E. C.; Franz, Trenton E.; Shi, Jiancheng; Gao, Huilin; Wood, Eric F.

    2017-07-01

    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smartphones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other

  1. The future of Earth observation in hydrology

    KAUST Repository

    McCabe, Matthew F.

    2017-07-28

    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smartphones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3–5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense

  2. Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 5: Analysis of GSFC Earth Observation Satellite (EOS) system mission model using BRAVO techniques

    Science.gov (United States)

    1975-01-01

    Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.

  3. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Goldblatt, Colin; Johnson, Benjamin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth’s biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  4. Freva - Freie Univ Evaluation System Framework for Scientific Infrastructures in Earth System Modeling

    Science.gov (United States)

    Kadow, Christopher; Illing, Sebastian; Kunst, Oliver; Schartner, Thomas; Kirchner, Ingo; Rust, Henning W.; Cubasch, Ulrich; Ulbrich, Uwe

    2016-04-01

    The Freie Univ Evaluation System Framework (Freva - freva.met.fu-berlin.de) is a software infrastructure for standardized data and tool solutions in Earth system science. Freva runs on high performance computers to handle customizable evaluation systems of research projects, institutes or universities. It combines different software technologies into one common hybrid infrastructure, including all features present in the shell and web environment. The database interface satisfies the international standards provided by the Earth System Grid Federation (ESGF). Freva indexes different data projects into one common search environment by storing the meta data information of the self-describing model, reanalysis and observational data sets in a database. This implemented meta data system with its advanced but easy-to-handle search tool supports users, developers and their plugins to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. Facilitation of the provision and usage of tools and climate data automatically increases the number of scientists working with the data sets and identifying discrepancies. The integrated web-shell (shellinabox) adds a degree of freedom in the choice of the working environment and can be used as a gate to the research projects HPC. Plugins are able to integrate their e.g. post-processed results into the database of the user. This allows e.g. post-processing plugins to feed statistical analysis plugins, which fosters an active exchange between plugin developers of a research project. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a database

  5. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  6. Marine Aerosol Precursor Emissions for Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Maltrud, Mathew Einar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Dimethyl sulfide (DMS) is generated by marine ecosystems and plays a major role in cloud formation over the ocean. Currently, Earth System Models use imposed flux of DMS from the ocean to the atmosphere that is independent of the climate state. We have added DMS as a prognostic variable to the Community Earth System Model (CESM) that depends on the distribution of phytoplankton species, and thus changes with climate.

  7. Global biogeographical pattern of ecosystem functional types derived from earth observation data

    DEFF Research Database (Denmark)

    Ivits, Eva; Cherlet, Michael; Horion, Stéphanie Marie Anne F

    2013-01-01

    correspondence of the EFTs to global climate and also to land use classification. The results show the great potential of Earth Observation derived parameters for the quantification of ecosystem functional dynamics and for providing reference status information for future assessments of ecosystem changes........ The association of the EFTs with existing climate and land cover classifications was demonstrated via Detrended Correspondence Analysis (DCA). The ordination indicated good description of the global environmental gradient by the EFTs, supporting the understanding of phenological and productivity dynamics...... of global ecosystems. Climatic constraints of vegetation growth explained 50% of variation in the phenological data along the EFTs showing that part of the variation in the global phenological gradient is not climate related but is unique to the Earth Observation derived variables. DCA demonstrated good...

  8. Focal plane for the next generation of earth observation instruments

    Science.gov (United States)

    Pranyies, P.; Toubhans, I.; Badoil, B.; Tanguy, F.; Descours, Francis

    2017-09-01

    Sodern is the French focal plane provider for Earth Observation (EO) satellites. Since the 1980's, Sodern has played an active role first in the SPOT program. Within the two-spacecraft constellation Pleiades 1A/1B over the next years, Sodern introduced advanced technologies as Silicon Carbide (SiC) focal plane structure and multispectral strip filters dedicated to multiple-lines detectors.

  9. Assessment of vegetation trends in drylands from time series of earth observation data

    NARCIS (Netherlands)

    Fensholt, R.; Horion, S.; Tagesson, T.; Ehammer, A.; Grogan, K.; Tian, F.; Huber, S.; Verbesselt, J.; Prince, S.D.; Tucker, C.J.; Rasmussen, K.

    2015-01-01

    This chapter summarizes approaches to the detection of dryland vegetation change and methods for observing spatio-temporal trends from space. An overview of suitable long-term Earth Observation (EO) based datasets for assessment of global dryland vegetation trends is provided and a status map of

  10. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements...... will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect...

  11. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2015-12-01

    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Tarun Solanki. Articles written in Journal of Earth System Science. Volume 127 Issue 1 February 2018 pp 9. Geomorphic investigation of the Late-Quaternary landforms in the southern Zanskar Valley, NW Himalaya · Shubhra Sharma Aadil Hussain Amit K Mishra Aasif Lone ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ashwini Kulkarni. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 203-210. Impact of global warming on cyclonic disturbances over south Asian region · Savita Patwardhan Ashwini Kulkarni K Krishna Kumar · More Details Abstract ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Banerjee. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 87-96. Facies, dissolution seams and stable isotope compositions of the Rohtas Limestone (Vindhyan Supergroup) in the Son valley area, central India · S Banerjee S K ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Sajani. Articles written in Journal of Earth System Science. Volume 116 Issue 2 April 2007 pp 149-157. The role of low-frequency intraseasonal oscillations in the anomalous Indian summer monsoon rainfall of 2002 · S Sajani S Naseema Beegum K Krishna Moorthy.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J C Joshi. Articles written in Journal of Earth System Science. Volume 126 Issue 1 February 2017 pp 3. Optimisation of Hidden Markov Model using Baum–Welch algorithm for prediction of maximum and minimum temperature over Indian Himalaya · J C Joshi Tankeshwar ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Bhushan R Lamsoge. Articles written in Journal of Earth System Science. Volume 123 Issue 7 October 2014 pp 1541-1566. Impact of over-exploitation on groundwater quality: A case study from WR-2Watershed, India · Anil M Pophare Bhushan R Lamsoge Yashwant B ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Arka Rudra. Articles written in Journal of Earth System Science. Volume 123 Issue 5 July 2014 pp 935-941. Molecular composition and paleobotanical origin of Eocene resin from northeast India · Arka Rudra Suryendu Dutta Srinivasan V Raju · More Details Abstract Fulltext ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R S Rana. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 289-307. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India · M R Rao Ashok Sahni R S Rana Poonam Verma.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K D Singh. Articles written in Journal of Earth System Science. Volume 122 Issue 1 February 2013 pp 93-106. A field technique for rapid lithological discrimination and ore mineral identification: Results from Mamandur Polymetal Deposit, India · D Ramakrishnan M Nithya ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 4. Volume 110, Issue 4. December 2001, pages 267-463. Recent Researchers in Petrology and Geochemistry. pp 267-267. Preface · S Bhattacharya J Ganguly · More Details Fulltext PDF. pp 269-285. Earth support systems: Threatened? Why? What can ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Y Sadhuram. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 37-49. Seasonal variability of physico-chemical characteristics of the Haldia channel of Hooghly estuary, India · Y Sadhuram V V Sarma T V Ramana Murty B ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Verma. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 21. Late Glacial–Holocene record of benthic foraminiferal morphogroups from the eastern Arabian Sea OMZ: Paleoenvironmental implications · K Verma S K Bharti A D Singh.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Monica Sharma. Articles written in Journal of Earth System Science. Volume 124 Issue 4 June 2015 pp 861-874. Evaluation of official tropical cyclone landfall forecast issued by India Meteorological Department · M Mohapatra D P Nayak Monica Sharma R P Sharma B K ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Raghavendra Ashrit. Articles written in Journal of Earth System Science. Volume 115 Issue 3 June 2006 pp 299-313. Simulation of a Himalayan cloudburst event · Someshwar Das Raghavendra Ashrit M W Moncrieff · More Details Abstract Fulltext PDF. Intense rainfall often ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Gh Jeelani. Articles written in Journal of Earth System Science. Volume 120 Issue 3 June 2011 pp 399-411. Assessing variability of water quality in a groundwater-fed perennial lake of Kashmir Himalayas using linear geostatics · S Sarah Gh Jeelani Shakeel Ahmed.

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Vishwas S Kale. Articles written in Journal of Earth System Science. Volume 117 Issue 6 December 2008 pp 959-971. Uplift along the western margin of the Deccan Basalt Province: Is there any geomorphometric evidence? Vishwas S Kale Nikhil Shejwalkar · More Details ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C K Unnikrishnan. Articles written in Journal of Earth System Science. Volume 125 Issue 4 June 2016 pp 677-689. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model · C K Unnikrishnan M Rajeevan S ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sankar Kumar Nath. Articles written in Journal of Earth System Science. Volume 117 Issue S2 November 2008 pp 649-670. Seismic hazard scenario and attenuation model of the Garhwal Himalaya using near-field synthesis from weak motion seismometry · Sankar Kumar ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ranjit Das. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 19-28. Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India · Ranjit Das H R Wason M L ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Manish M John. Articles written in Journal of Earth System Science. Volume 114 Issue 2 April 2005 pp 143-158. Contrasting metamorphism across Cauvery Shear Zone, south India · Manish M John S Balakrishnan B K Bhadra · More Details Abstract Fulltext PDF.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Harinder K Thakur. Articles written in Journal of Earth System Science. Volume 118 Issue 1 February 2009 pp 41-48. Aerosol optical depths at Mohal-Kullu in the northwestern Indian Himalayan high altitude station during ICARB · Jagdish C Kuniyal Alpana Thakur Harinder ...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Dajkumar Sahayam. Articles written in Journal of Earth System Science. Volume 119 Issue 1 February 2010 pp 129-135. Distribution of arsenic and mercury in subtropical coastal beachrock, Gulf of Mannar, India · J Dajkumar Sahayam N Chandrasekar S Krishna Kumar ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Senthilnath. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 559-572. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction · J Senthilnath H Vikram Shenoy Ritwik ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B Spandana. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 421-427. Temporal characteristics of aerosol physical properties at Visakhapatnam on the east coast of India during ICARB – Signatures of transport onto Bay of Bengal.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. B S Marh. Articles written in Journal of Earth System Science. Volume 125 Issue 3 April 2016 pp 539-558. Post-glacial landform evolution in the middle Satluj River valley, India: Implications towards understanding the climate tectonic interactions · Shubhra Sharma S K ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sahadev Kumar. Articles written in Journal of Earth System Science. Volume 125 Issue 1 February 2016 pp 165-178. Coal fire mapping of East Basuria Colliery, Jharia coalfield using vertical derivative technique of magnetic data · S K Pal Jitendra Vaish Sahadev Kumar ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. C S Jha. Articles written in Journal of Earth System Science. Volume 122 Issue 2 April 2013 pp 271-281. Landscape level assessment of critically endangered vegetation of Lakshadweep islands using geo-spatial techniques · C Sudhakar Reddy Bijan Debnath P Hari ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. George Mathew. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Partha Pratim Chakraborty. Articles written in Journal of Earth System Science. Volume 115 Issue 1 February 2006 pp 23-36. Outcrop signatures of relative sea level fall on a siliciclastic shelf: Examples from Rewa Group of Proterozoic Vindhyan basin · Partha Pratim ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Samadrita Mukherjee. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 869-886. Evaluation of topographic index in relation to terrain roughness and DEM grid spacing · Samadrita Mukherjee Sandip Mukherjee R D Garg A Bhardwaj ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Krishnamoorthy. Articles written in Journal of Earth System Science. Volume 111 Issue 4 December 2002 pp 425-435. Detection of marine aerosols with IRS P4-Ocean Colour Monitor · Indrani Das M Mohan K Krishnamoorthy · More Details Abstract Fulltext PDF.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Sudhir Jain. Articles written in Journal of Earth System Science. Volume 121 Issue 2 April 2012 pp 345-353. Ionospheric irregularities at Antarctic using GPS measurements · Sunita Tiwari Amit Jain Shivalika Sarkar Sudhir Jain A K Gwal · More Details Abstract Fulltext PDF.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Sarkar. Articles written in Journal of Earth System Science. Volume 114 Issue 1 February 2005 pp 87-96. Facies, dissolution seams and stable isotope compositions of the Rohtas Limestone (Vindhyan Supergroup) in the Son valley area, central India · S Banerjee S K ...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Nitesh Patidar. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 19. Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005 using variable infiltration capacity ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J U Chukudebelu. Articles written in Journal of Earth System Science. Volume 123 Issue 3 April 2014 pp 491-502. Evaluation of soil corrosivity and aquifer protective capacity using geoelectrical investigation in Bwari basement complex area, Abuja · A E Adeniji O V ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Chandra Shekhar Jha. Articles written in Journal of Earth System Science. Volume 122 Issue 5 October 2013 pp 1259-1268. Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ju Wei. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 1021-1031. Tectonic stress accumulation in Bohai–Zhangjiakou Seismotectonic Zone based on 3D visco-elastic modelling · Ju Wei Sun Weifeng Ma Xiaojing Jiang Hui.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Rajagopalan. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 153-156. Glacial-interglacial changes in the surface water characteristics of the Andaman Sea: Evidence from stable ratios of planktonic foraminifera · S M Ahmad D J ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Izrar Ahmed. Articles written in Journal of Earth System Science. Volume 117 Issue 1 February 2008 pp 69-78. Implications of Kali–Hindon inter-stream aquifer water balance for groundwater management in western Uttar Pradesh · Rashid Umar M Muqtada A Khan Izrar ...

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V V S Gurunadha Rao. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 855-867. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India · G Tamma Rao V V S Gurunadha Rao K ...

  12. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth System Models

    OpenAIRE

    A. Gnanadesikan; R. Abernathey; M.-A. Pradal

    2014-01-01

    This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium–heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to b...

  13. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links

    Science.gov (United States)<