WorldWideScience

Sample records for earth matter effects

  1. Detecting supernovae neutrino with Earth matter effect

    CERN Document Server

    Liao, Wei

    2016-01-01

    We study Earth matter effect in oscillation of supernovae neutrinos. We show that detecting Earth matter effect gives an independent measurement of spectra of supernovae neutrinos, i.e. the flavor difference of the spectra of supernovae neutrinos. We study the effect of energy resolution and angular resolution of final electron or positron on detecting the signal of Earth matter effect. We show that varying the widths of energy bins in analysis can change the signal strength of Earth matter effect and the statistical fluctuation. A reasonable choice of energy bins can both suppress the statistical fluctuation and make out a good signal strength relative to the statistical fluctuation. Neutrino detectors with good energy resolution and good angular resolution are therefore preferred so that there are more freedom to vary energy bins and to optimize the signal of Earth matter effect in analyzing events of supernovae neutrinos.

  2. Earth matter effect on active-sterile neutrino oscillations

    Science.gov (United States)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-08-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some experimental observations. In a four-neutrino mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos taking into account the matter effect for a varying terrestrial density.

  3. Earth's Stopping Effect in Directional Dark Matter Detectors

    CERN Document Server

    Kouvaris, Chris

    2015-01-01

    We explore the stopping effect that results from interactions between dark matter and nuclei as the dark matter particles travel undergound towards the detector. Although this effect is negligible for heavy dark matter particles, there is parameter phase space where the underground interactions of the dark matter particles with the nuclei can create observable differences in the spectrum. Dark matter particles that arrive on the detector from below can have less energy from the ones arriving from above. These differences can be potentially detectable by upcoming directional detectors. This can unveil a large amount of information regarding the type and strength of interactions between nuclei and light dark matter candidates.

  4. CP violation and matter effect for a variable earth density in very long baseline experiments

    CERN Document Server

    Brahmachari, B; Roy, P; Brahmachari, Biswajoy; Choubey, Sandhya; Roy, Probir

    2003-01-01

    The perturbative treatment of subdominant oscillation and the matter effect in neutrino beams/superbeams, propagating over long baselines and being used to look for CP violation, is studied here for a general matter density function varying with distance. New lowest order analytic expressions are given for different flavour transition and survival probabilities in a general neutrino mixing basis and a variable earth matter density profile. It is demonstrated that the matter effect in the muon neutrino (antineutrino) flavour survival probability vanishes to this order, provided the depletion, observed for atmospheric muon neutrinos and antineutrinos at super-Kamiokande, is strictly maximal. This result is independent of the earth density profile and the distance L between the source and the detector. In the general variable density case we show that one cannot separate the matter induced asymmetry from a genuine CP effect by keeping two detectors at distances $L_1$ and $L_2$ from the source while maintaining a...

  5. CP violation and matter effect for a variable earth density in very long baseline experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brahmachari, Biswajoy; Choubey, Sandhya E-mail: sandhya@he.sissa.it; Roy, Probir

    2003-11-03

    The perturbative treatment of subdominant oscillation and matter effect in neutrino beams/superbeams, propagating over long baselines and being used to look for CP violation, is studied here for a general matter density function varying with distance. New lowest order analytic expressions are given for different flavour transition and survival probabilities in a general neutrino mixing basis and a variable earth matter density profile. It is demonstrated that the matter effect in the muon neutrino (antineutrino) flavour survival probability vanishes to this order, provided the depletion, observed for atmospheric muon neutrinos and antineutrinos at super-Kamiokande, is strictly maximal. This result is independent of the earth density profile and the distance L between the source and the detector. In the general variable density case we show that one cannot separate the matter induced asymmetry from a genuine CP effect by keeping two detectors at distances L{sub 1} and L{sub 2} from the source while maintaining a fixed ratio L{sub 1}/E{sub 1}=L{sub 2}/E{sub 2}. This needs to be done numerically and we estimate the asymmetry generated by the earth matter effect with particular density profiles and some chosen parameters for very long baseline neutrino oscillation experiments.

  6. Precise analytical description of the Earth matter effect on oscillations of low energy neutrinos

    Science.gov (United States)

    Ioannisian, A. N.; Kazarian, N. A.; Smirnov, A. Yu.; Wyler, D.

    2005-02-01

    We present a formalism for the matter effects in the Earth on low energy neutrino fluxes which is both accurate and has all the advantages of a full analytic treatment. The oscillation probabilities are calculated up to the second order term in ɛ(x)≡2V(x)E/Δm2, where V(x) is the neutrino potential at position x. We show the absence of large undamped phases which makes the expansion in ɛ well behaved. An improved expansion is presented in terms of the variation of V(x) around a suitable mean value which allows one to treat energies up to those relevant for supernova neutrinos. We discuss also the case of three-neutrino mixing.

  7. A precise analytical description of the Earth matter effect on oscillations of low energy neutrinos

    CERN Document Server

    Ioannisian, A N; Smirnov, A Yu; Wyler, D

    2004-01-01

    We present a formalism for the matter effects in the Earth on low energy neutrino beams which is both accurate and has all advantages of a full analytic treatment. The oscillation probabilities are calculated up to second order term in $\\epsilon(x) \\equiv 2V(x)E/\\Delta m^2$ where $V(x)$ is the neutrino potential at position $x$. We show the absence of large undamped phases which makes the expansion in $\\epsilon$ well behaved. An improved expansion is presented in terms of the variation of $V(x)$ around a suitable mean value which allows to treat energies up to those relevant for Supernova neutrinos. We discuss also the case of three-neutrino mixing.

  8. Earth matter effect on atmospheric neutrino oscillation in (3+3) model

    CERN Document Server

    Rahman, Mushfiqur

    2015-01-01

    In a recent combined analysis of short baseline neutrino oscillation data by Conrad et al it is shown that (3+3) neutrino model, defined by three active and three sterile neutrinos, results in an overall goodness of $67\\%$ and a compatibility of $90\\%$ among all data sets - to be compared to the compatibility of $0.043\\% $ and $13\\% $ for a (3+1) and a (3+2) model, respectively. Aside from the fact that (3+3) model still finds inconsistencies with MiniBooNE appearance data sets, its high quality overall compatibility and goodness of fit led us to study the atmospheric neutrinos in this model which travel distances of thousands of kilometers through earth. We show that in this mixing scheme matter resonance effect inside earth enhances the small vacuum oscillations into near-maximal transitions and at high energies these maximal transitions occur in the TeV range, whereas at low energies those can occur in the few GeV region. We also calculate the zenith angle distributions of $\

  9. Realistic Earth matter effects and a method to measure small \\theta_{13} in the detection of supernova neutrinos

    CERN Document Server

    Guo, Xin-Heng; Young, Bing-Lin

    2008-01-01

    In this paper, we first calculate the realistic Earth matter effects on the detection of type II supernova neutrinos at the Daya Bay reactor neutrino experiment which is currently under construction. It is found that the Earth matter effects depend on the neutrino incident angle \\theta, the neutrino mass hierarchy \\Delta m_{31}^{2}, the crossing probability at the high resonance region inside the supernova, P_H, the neutrino temperature, T_{\\alpha}, and the pinching parameter in the neutrino spectrum, \\eta_{\\alpha}. We give the expression for the dependence of P_H on the neutrino mixing angle \\theta_{13}. With this we obtain the relations between \\theta_{13} and the event numbers for various reaction channels of supernova neutrinos. Using these relations, we propose a possible way to measure \\theta_{13} smaller than 1.5^\\circ. Such a sensitivity cannot be achieved by the Daya Bay neutrino experiment (the sensitivity of the Daya Bay experiment is \\theta_{13}\\sim 3^\\circ). Furthermore, we apply this method to o...

  10. Identifying neutrino mass hierarchy at extremely small theta13 through earth matter effects in a supernova signal.

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro

    2008-10-24

    Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of theta_(13). Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin(2)theta_(13) < or approximately 10(-5), where long baseline neutrino experiments would be ineffectual.

  11. Direct Detection of Dark Matter Bound to the Earth

    CERN Document Server

    Catena, Riccardo

    2016-01-01

    We study the properties and direct detection prospects of an as of yet neglected population of dark matter (DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form via scattering by nuclei in the Earth's interior. We compute fluxes and nuclear recoil energy spectra expected at direct detection experiments for the new DM population considering detectors with and without directional sensitivity, and different types of target materials and DM-nucleon interactions. DM particles bound to the Earth manifest as a prominent rise in the low-energy part of the observed nuclear recoil energy spectrum. Ultra-low threshold energies of about 1 eV are needed to resolve this effect. Its shape is independent of the DM-nucleus scattering cross-section normalisation.

  12. Geophysical constraints on mirror matter within the Earth

    CERN Document Server

    Ignatiev, A Yu

    2000-01-01

    We have performed a detailed investigation of geophysical constraints on the possible admixture of mirror matter inside the Earth. On the basis of the Preliminary Reference Earth Model (PREM) -- the `Standard Model' of the Earth's interior -- we have developed a method which allows one to compute changes in various quantities characterising the Earth (mass, moment of inertia, normal mode frequencies etc.)due to the presence of mirror matter. As a result we have been able to obtain for the first time the direct upper bounds on the possible concentration of the mirror matter in the Earth. In terms of the ratio of the mirror mass to the Earth mass a conservative upper bound is $3.8\\times 10^{-3}$. We then analysed possible mechanisms (such as lunar and solar tidal forces, meteorite impacts and earthquakes) of exciting mirror matter oscillations around the Earth centre. Such oscillations could manifest themselves through global variations of the gravitational acceleration at the Earth's surface. We conclude that ...

  13. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  14. Terrestrial effects on dark matter-electron scattering experiments

    DEFF Research Database (Denmark)

    Emken, Timon; Kouvaris, Chris; Shoemaker, Ian M.

    2017-01-01

    techniques involving detection of dark matter-electron scattering offer new sensitivity to sub-GeV dark matter. Typically however it is implicitly assumed that the dark matter is not altered as it traverses the Earth to arrive at the detector. In this paper we study in detail the effects of terrestrial...

  15. Understanding Earth's Albedo Effect

    Science.gov (United States)

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  16. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  17. Signatures of Earth-scattering in the direct detection of Dark Matter

    CERN Document Server

    Kavanagh, Bradley J; Kouvaris, Chris

    2016-01-01

    Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation of this `Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards the detector. Taking into account a realistic model of the Earth and allowing for a range of DM-nucleon interactions, we present the EarthShadow code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth-scattering reduces the direct detection rate at certain detector locations while increasing the rate in others. The Earth's ro...

  18. Signatures of Earth-scattering in the direct detection of Dark Matter

    Science.gov (United States)

    Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris

    2017-01-01

    Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation of this `Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards the detector. Taking into account a realistic model of the Earth and allowing for a range of DM-nucleon interactions, we present the EARTHSHADOW code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth-scattering reduces the direct detection rate at certain detector locations while increasing the rate in others. The Earth's rotation induces a daily modulation in the rate, which we find to be highly sensitive to the detector latitude and to the form of the DM-nucleon interaction. These distinctive signatures would allow us to unambiguously detect DM and perhaps even identify its interactions in regions of the parameter space within the reach of current and future experiments.

  19. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Miyazono, Evan; Faraon, Andrei

    2015-09-01

    Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2~100 μs) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces.

  20. The Earth effects on the supernova neutrino spectra

    CERN Document Server

    Takahashi, K

    2001-01-01

    The Earth effects on the energy spectra supernova neutrinos are studied. We analyse numerically the time-integrated energy spectra of neutrino in a mantle-core-mantle step function model of the Earth's matter density profile. We consider a realistic frame-work in which there are three active neutrinos whose mass squared differences and mixings are constrained by the present understanding of solar and atmospheric neutrinos. We find that the energy spectra change for some allowed mixing parameters. We show that observation of the Earth effect allow us to identify the solar neutrino solution and to probe the mixing angle $\\theta_{13}$.

  1. [Transparent evolution of the energy/matter interactions on earth: from gas whirlwind to technogenic civilization].

    Science.gov (United States)

    Pechurkin, N S; Shuvaev, A N

    2015-01-01

    The paper presents the idea of transparent evolution through the long-term reaction of the planet Earth on the external flow of radiant energy from the Sun. Due to limitations of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy was shown to lead to cyclization and transport of substance on emerging gradients. The evolution of energy-matter interaction follows the path of capturing and transferring more energy by the fewer matter, i.e., the path of growth of the amount of energy used by each unit mass. For this indicator, the least effective mass transfer is a simple mass transfer as vortices of gases, in the gradients of temperature and pressure, which occurred on the primary surface of the planet. A long-term natural selection related to the accumulation of water on the planet has played a special role in developing the interaction of energy and matter. Phase transformations (ice, water, vapor) and mechanical transfers are the most common energy-matter processes. Based on water cycles, cyclic transports and transformations, chemical transformation of substances became possible developing over time into a biological transformation. This kind of the interaction of energy and matter is most efficient. In particular, during photosynthesis the energy of our star "is captured and utilized" in the most active part of the spectrum of its radiation. In the process of biological evolution of heterotrophs, a rise (by a factor of hundreds) in the coefficient that characterizes the intensity of energy exchange from protozoa to mammals is most illustratory. The development and the current dominance of humans as the most energy-using active species in capturing the energy and meaningful organization of its new flows especially on the basis of organic debris of former biospheres is admirable, but quite natural from the energy positions. In the course of technological evolution of humankind, the measure of the intensity of energy for

  2. Dark matter comes into sharper focus - on Earth and in the heavens

    CERN Multimedia

    1990-01-01

    Observation of an elliptical galaxy that is acting as a gravitational lens, is helping astronomers in their understanding of dark matter. At the same time, experiments on earth have ruled out some of the hypothetical candidates for its composition (1

  3. Placing direct limits on the mass of earth-bound dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Stephen L [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)], E-mail: adler@ias.edu

    2008-10-17

    We point out that by comparing the total mass (in gravitational units) of the earth-moon system, as determined by lunar laser ranging, with the sum of the lunar mass as independently determined by its gravitational action on satellites or asteroids, and the earth mass, as determined by the LAGEOS geodetic survey satellite, one can get a direct measure of the mass of earth-bound dark matter lying between the radius of the moon's orbit and the geodetic satellite orbit. Current data show that the mass of such earth-bound dark matter must be less than 4 x 10{sup -9} of the earth's mass. (fast track communication)

  4. Investigating Earth shadowing effect with DAMA/LIBRA-phase1

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R.; Belli, P.; D' Angelo, S.; Di Marco, A. [Universita di Roma ' ' Tor Vergata' ' , Dipt. di Fisica, Rome (Italy); INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Montecchia, F. [Universita di Roma ' ' Tor Vergata' ' , Dipt. di Fisica, Rome (Italy); INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipt. di Ingegneria Civile e Ingegneria Informatica, Rome (Italy); D' Angelo, A.; Incicchitti, A. [Universita di Roma ' ' La Sapienza' ' , Dipt. di Fisica, Rome (Italy); INFN, sez. Roma, Rome (Italy); Cappella, F.; Caracciolo, V.; Cerulli, R. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G. [Chinese Academy of Sciences, Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Beijing (China); Ye, Z.P. [Chinese Academy of Sciences, Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Beijing (China); University of Jing Gangshan, Ji' an, Jiangxi (China)

    2015-05-15

    In the present paper the results obtained in the investigation of possible diurnal effects for low-energy single-hit scintillation events of DAMA/LIBRA-phase1 (1.04 ton x year exposure) have been analysed in terms of an effect expected in case of dark matter (DM) candidates inducing nuclear recoils and having high cross-section with ordinary matter, which implies low DM local density in order to fulfill the DAMA/LIBRA DM annual modulation results. This effect is due to the different Earth depths crossed by those DM candidates during the sidereal day. (orig.)

  5. Meteors as a Delivery Vehicle for Organic Matter to the Early Earth

    Science.gov (United States)

    Jenniskens, Peter; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Only in recent years has a concerted effort been made to study the circumstances under which extraterrestrial organic matter is accreted on Earth by way of meteors. Meteors are the luminous phenomena associated with the (partial) ablation of meteoric matter and represent the dominant pathway from space to Earth, with the possible exception of rare giant impacts of asteroids and comets. Meteors dominated the supply of organics to the early Earth if organic matter survived this pathway efficiently. Moreover, meteors are a source of kinetic energy that can convert inert atmospheric gases such as CO, N, and H2O into useful compounds, such as HCN and NO. Understanding these processes relies heavily on empirical evidence that is still very limited. Here I report on the observations in hand and discuss their relevance in the context of the origin of life.

  6. Dark Photons from the Center of the Earth: Smoking-Gun Signals of Dark Matter

    CERN Document Server

    Feng, Jonathan L; Tanedo, Philip

    2015-01-01

    Dark matter may be charged under dark electromagnetism with a dark photon that kinetically mixes with the Standard Model photon. In this framework, dark matter will collect at the center of the Earth and annihilate into dark photons, which may reach the surface of the Earth and decay into observable particles. We determine the resulting signal rates, including Sommerfeld enhancements, which play an important role in bringing the Earth's dark matter population to their maximal, equilibrium value. For dark matter masses $m_X \\sim$ 100 GeV - 10 TeV, dark photon masses $m_{A'} \\sim$ MeV - GeV, and kinetic mixing parameters $\\varepsilon \\sim 10^{-9} - 10^{-7}$, the resulting electrons, muons, photons, and hadrons that point back to the center of the Earth are a smoking-gun signal of dark matter that may be detected by a variety of experiments, including neutrino telescopes, such as IceCube, and space-based cosmic ray detectors, such as Fermi-LAT and AMS. We determine the signal rates and characteristics, and show ...

  7. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    CERN Document Server

    Zhong, Tian; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Quantum light-matter interfaces (QLMIs) connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching, and studies of fundamental physics. Rare-earth-ion (REI) doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium REIs to photonic nano-cavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled REIs is performed via photon echoes. Long optical coherence times (T2~100 microseconds) and small inhomogeneous...

  8. Earth Matters: Promoting Science Exploration through Blogs and Social Media

    Science.gov (United States)

    Ward, K.; Voiland, A. P.; Carlowicz, M. J.; Simmon, R. B.; Allen, J.; Scott, M.; Przyborski, P. D.

    2012-12-01

    NASA's Earth Observatory (EO) is a 13-year old online publication focusing on the communication of NASA Earth science research, including climate change, weather, geology, oceanography, and solar flares. We serve two primary audiences: the "attentive public"--people interested in and willing to seek out information about science, technology, and the environment--and popular media. We use the EO website (earthobservatory.nasa.gov) to host a variety of content including image-driven stories (natural events and research-based), articles featuring NASA research and, more recently, blogs that give us the ability to increase interaction with our users. For much of our site's history, our communication has been largely one way, and we have relied primarily on traditional online marketing techniques such as RSS and email listservs. As the information ecosystem evolves into one in which many users expect to play a more active role in distributing and even developing content through social media, we've experimented with various social media outlets (blogs, Twitter, Facebook, Google+, etc.) that offer new opportunities for people to interact with NASA data, scientists, and the EO editorial team. As part of our explorations, we are learning about how, and to what extent, these outlets can be used for interaction and outright promotion and how to achieve those goals with existing personnel and resources.

  9. Extreme states of matter on earth and in the cosmos

    CERN Document Server

    Fortov, Vladimir E

    2011-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview.  

  10. Matter Effects On Neutrino Oscillations

    Science.gov (United States)

    Gordon, Michael

    An introduction to neutrino oscillations in vacuum is presented, followed by a survey of various techniques for obtaining either exact or approximate expressions for numu → nue oscillations in matter. The method developed by Arafune, Koike, and Sato uses a perturbative analysis to find an approximation for the evolution operator. The method used by Freund yields an approximate oscillation probability by diagonalizing the Hamiltonian, finding the eigenvalues and eigenvectors, and then using those to find modified mixing angles with the matter effect taken into account. The method devised by Mann, Kafka, Schneps, and Altinok produces an exact expression for the oscillation by determining explicitly the evolution operator. These methods are compared to each other using the T2K, MINOS, NOnuA, and LBNE parameters.

  11. The Suess-Urey mission (return of solar matter to Earth).

    Science.gov (United States)

    Rapp, D; Naderi, F; Neugebauer, M; Sevilla, D; Sweetnam, D; Burnett, D; Wiens, R; Smith, N; Clark, B; McComas, D; Stansbery, E

    1996-01-01

    The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.

  12. First search for dark matter annihilations in the Earth with the IceCube Detector

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Argüelles, C; Auffenberg, J; Axani, S; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blot, S; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Bron, S; Burgman, A; Carver, T; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Cross, R; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dujmovic, H; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eller, P; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C -C; Franckowiak, A; Friedman, E; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Ghorbani, K; Giang, W; Gladstone, L; Glagla, M; Glauch, T; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Grant, D; Griffith, Z; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hansmann, T; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Hoshina, K; Huang, F; Huber, M; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Katz, U; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kim, M; Kintscher, T; Kiryluk, J; Kittler, T; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, M; Krückl, G; Krüger, C; Kunnen, J; Kunwar, S; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lauber, F; Lennarz, D; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mancina, S; Mandelartz, M; Maruyama, R; Mase, K; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Mohrmann, L; Montaruli, T; Moulai, M; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Peiffer, P; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pinat, E; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relethford, B; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Rysewyk, D; Sabbatini, L; Herrera, S E Sanchez; Sandrock, A; Sandroos, J; Sarkar, S; Satalecka, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stanev, T; Stasik, A; Stettner, J; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Tenholt, F; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Rossem, M; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vogel, E; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Weiss, M J; Wendt, C; Westerhoff, S; Whelan, B J; Wickmann, S; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wolf, M; Wood, T R; Woolsey, E; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2016-01-01

    We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly Interacting Massive Particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/ 2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spi...

  13. First search for dark matter annihilations in the Earth with the IceCube detector

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H.P.; Franckowiak, A.; Gluesenkamp, T.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Rossem, M. van; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Anton, G.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Pino Rosendo, E. del; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Bissok, M.; Glagla, M.; Glauch, T.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S.; Cross, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Collaboration: IceCube Collaboration; and others

    2017-02-15

    We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data. (orig.)

  14. First search for dark matter annihilations in the Earth with the IceCube detector

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glagla, M.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-02-01

    We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data.

  15. Thermal effects in supernova matter

    Science.gov (United States)

    Constantinou, Constantinos

    intermediate energy heavy-ion collisions. To explore the effect momentum-dependent interactions have on the thermal properties of dense matter we study a schematic model constructed by Welke et al. in which the appropriate momentum dependence that fits optical potential data is built through finite-range exchange forces of the Yukawa type. We look into the finite-temperature properties of this model in the context of infinite, isospin-symmetric nucleonic matter. The exact numerical results are compared to analytical ones in the quantum regime where we rely on Landau's Fermi-Liquid Theory, and in the classical regime where the state variables are obtained through a steepest descent calculation. Detailed comparisons with similarly calibrated Skyrme models are also performed. We find that the high-density behavior of the thermal pressure is once again a differentiating feature. We attribute this to the temperature dependence of the energy spectrum of the finite-range and the meson-exchange models which leads to a higher specific heat and thus a lower pressure.

  16. WIMP capture and annihilation in the Earth in effective theories

    Science.gov (United States)

    Catena, Riccardo

    2017-01-01

    I calculate the rate of WIMP capture and annihilation in the Earth in the non-relativistic effective theory of dark matter-nucleon interactions. Neglecting operator interference, I consider all Galilean invariant interaction operators that can arise from the exchange of a heavy particle of spin less than or equal to one when WIMPs have spin 0, 1/2 or 1. I compute position and shape of the expected resonances in the mass—capture rate plane and show that Iron is not the most important element in the capture process for many currently ignored interaction operators. I compare these predictions with the recent results of an Earth WIMP analysis of IceCube in the 86-string configuration and set limits on all isoscalar and isovector coupling constants of the effective theory of dark matter-nucleon interactions. For certain interaction operators and for a dark matter particle mass of about 50 GeV, I find that these limits are stronger than those I have previously derived in an analysis of the solar WIMP search performed at IceCube in the 79-string configuration.

  17. WIMP capture and annihilation in the Earth in effective theories

    CERN Document Server

    Catena, Riccardo

    2016-01-01

    I calculate the rate of WIMP capture and annihilation in the Earth in the non-relativistic effective theory of dark matter-nucleon interactions. Neglecting operator interference, I consider all Galilean invariant interaction operators that can arise from the exchange of a heavy particle of spin less than or equal to one when WIMPs have spin 0, 1/2 or 1. I compute position and shape of the expected resonances in the mass - capture rate plane and show that Iron is not the most important element in the capture process for many currently ignored interaction operators. I compare these predictions with the recent results of an Earth WIMP analysis of IceCube in the 86-string configuration and set limits on all isoscalar and isovector coupling constants of the effective theory of dark matter-nucleon interactions. For certain interaction operators and for a dark matter particle mass of about 50 GeV, I find that these limits are stronger than those I have previously derived in an analysis of the solar WIMP search perfo...

  18. Detection of Lense-Thirring Effect Due to Earth's Spin

    CERN Document Server

    Ciufolini, I; Vespe, F; Chieppa, F

    1997-01-01

    Rotation of a body, according to Einstein's theory of general relativity, generates a "force" on other matter; in Newton's gravitational theory only the mass of a body produces a force. This phenomenon, due to currents of mass, is known as gravitomagnetism owing to its formal analogies with magnetism due to currents of electric charge. Therefore, according to general relativity, Earth's rotation should influence the motion of its orbiting satellites. Indeed, we analysed the laser ranging observations of the orbits of the satellites LAGEOS and LAGEOS II, using a program developed at NASA/GSFC, and obtained the first direct measurement of the gravitomagnetic orbital perturbation due to the Earth's rotation, known as the Lense-Thirring effect. The accuracy of our measurement is about 25%.

  19. Measurement of atmospheric neutrino oscillations and matter effects with PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan; Euler, Sebastian; Krings, Kai; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    With IceCube's low-energy extension DeepCore the first significant effects of atmospheric neutrino oscillations have been observed. The planned ''Precision Icecube Next Generation Upgrade'' (PINGU) inside DeepCore will lower the energy threshold to a few GeV, where matter effects of neutrino oscillations have to be taken into account. The Mikheyev-Smirnov-Wolfenstein (MSW) effect modifies the mixing between flavor and mass eigenstates of the neutrinos, resulting in stronger oscillations. Furthermore, neutrinos when passing through the Earth core experience parametric enhancement due to multiple discontinuities in the electron density. In this talk the effects of matter oscillations and the capabilities to measure these effects with PINGU are investigated.

  20. Effect of the spherical Earth on a simple pendulum

    OpenAIRE

    2003-01-01

    We consider the period of a simple pendulum in the gravitational field of the spherical Earth. Effectively, gravity is enhanced compared with the often used flat Earth approximation, such that the period of the pendulum is shortened. We discuss the flat Earth approximation, and show when the corrections due to the spherical Earth may be of interest.

  1. Earth Sphericity Effects on Subduction Morphology

    Science.gov (United States)

    Morra, G.; Chatelain, P.; Tackley, P.; Koumoutsakos, P.

    2007-12-01

    We present here the first application in Geodynamics of a Multipole accelerated Boundary Element Method (FMM- BEM) for Stokes Flow. The approach offers the advantage of a reduced number of computational elements and linear scaling with the problem size. We show that this numerical mehod can be fruitfully applied to the simulation of several geodynamic systems at the planetary scale in spheical coordinates and we suggest a general appraoch for modeling combined mantle convection and plate tectonics. The potentialities of the approach are shown investigating the effect played by Earth sphericity on the subduction of a very wide oceanic lithosphere , comparing the morphology of the subducted lithosphere in a spherical and in flat setting. The results show a striking difference between the two models: while the slab on a "flat Earth" shows slight undulation, the same subducting plate on a spherical Earth-like setting presents a distinct folding below the trench far from the edges, with wavelength of (1000km-2000km) as Pacific trenches.

  2. Particle Dark Matter constraints: the effect of Galactic uncertainties

    Science.gov (United States)

    Benito, Maria; Bernal, Nicolás; Bozorgnia, Nassim; Calore, Francesca; Iocco, Fabio

    2017-02-01

    Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present a systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.

  3. Effective theory for electroweak doublet dark matter

    Science.gov (United States)

    Dedes, A.; Karamitros, D.; Spanos, V. C.

    2016-11-01

    We perform a detailed study of an effective field theory which includes the standard model particle content extended by a pair of Weyl fermionic SU(2) doublets with opposite hypercharges. A discrete symmetry guarantees that a linear combination of the doublet components is stable and can act as a candidate particle for dark matter. The dark sector fermions interact with the Higgs and gauge bosons through renormalizable d =4 operators, and nonrenormalizable d =5 operators that appear after integrating out extra degrees of freedom above the TeV scale. We study collider, cosmological and astrophysical probes for this effective theory of dark matter. We find that a weakly interacting dark matter particle with a mass nearby the electroweak scale, and thus observable at the LHC, is consistent with collider and astrophysical data only when fairly large magnetic dipole moment transition operators with the gauge bosons exist, together with moderate Yukawa interactions.

  4. Personal Effects and Vital Matters

    DEFF Research Database (Denmark)

    Klemp McLeod, Ann-Sophie

    compositions. The dual status of personal effects as both illusory surfaces and material possessions is explored in analytical discussions of satiric literature ranging from The Memoirs of the Extraordinary Life, Works and Discoveries of Martinus Scriblerus (1741) though Jonathan Swift’s dressing room poems...

  5. Debris Flows in Direct Dark Matter Searches-The modulation effect

    CERN Document Server

    Vergados, J D

    2012-01-01

    The effect of some possible non standard WIMP velocity distributions, like the Debris Flows recently proposed, on the direct dark matter detection rates is investigated. We find that such distributions may be deciphered from the data, especially if the time variation of the event rates due to the annual motion of the Earth is observed

  6. Darkon dark matter, unparticle effects and collider physics

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-Gang

    2009-01-01

    In this talk I report recent results on the simplest dark matter model, the Darkon model, and supersymmetric unparticle effects on dark matter, and some implications for coUider physics. I first discuss dark matter properties and collider signatures in the Darkon model, and then I discuss some implications for dark matter if a scalar unparticle is introduced to the MSSM.

  7. Effective Theory for Electroweak Doublet Dark Matter

    CERN Document Server

    Dedes, Athanasios; Spanos, Vassilis C

    2016-01-01

    We perform a detailed study of an effective field theory which includes the Standard Model particle content extended by a pair of Weyl fermionic SU(2)-doublets with opposite hypercharges. A discrete symmetry guarantees that a linear combination of the doublet components is stable and can act as a candidate particle for Dark Matter. The dark sector fermions interact with the Higgs and gauge bosons through renormalizable $d=4$ operators, and non-renormalizable $d=5$ operators that appear after integrating out extra degrees of freedom above the TeV scale. We study collider, cosmological and astrophysical probes for this effective theory of Dark Matter. We find that a WIMP with a mass nearby to the electroweak scale, and thus observable at LHC, is consistent with collider and astrophysical data only when fairly large magnetic dipole moment transition operators with the gauge bosons exist, together with moderate Yukawa interactions.

  8. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    Science.gov (United States)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of

  9. Prospectors and Developers Association of Canada Mining Matters: A Model of Effective Outreach

    Science.gov (United States)

    Hymers, L.; Heenan, S.

    2009-05-01

    , effectiveness and suitability of Mining Matters resources and training workshops for classroom instruction. Mining Matters also operates an Aboriginal Youth Outreach Program that promotes the importance of the minerals industry to Aboriginal youth through the distribution of educational resources, the provision of educational opportunities, and exposure to mineral and mining industry career opportunities and professionals. The Aboriginal Youth Outreach Program is designed to engage youth in Earth Sciences, providing them with the opportunity to develop skills, competencies and knowledge through Earth science, career, and skills development education. The Mining Matters program is effective and has garnered a National reputation for excellence. The Mining Matters program is a model of effective partnerships between industry, academia, and education outreach organizations. Our resources are currently used in Ontario, Manitoba, Saskatchewan, and British Columbia, with new partnerships being developed in Quebec and Nova Scotia.

  10. Effect of Rare Earths on Composition and Activities of Rare Earth Elements Binding Glycoprotein in Tea

    Institute of Scientific and Technical Information of China (English)

    汪东风; 李俊; 赵贵文; 王常红; 魏正贵; 尹明

    2001-01-01

    The effects of spraying rare earths(RE) on composition and activities of tea polysaccharide were measured by inductively coupled plasma mass spectrometry (ICP-MS), gas chromatography(GC), amino acid analyzer and animal models. The results show that there are rare earth elements binding glycoprotein in tea (REE-TGP). The effects of RE on composition and content of saccharides in REE-TGP are not obvious. The contents of Hypro and Ser in REE-TGP are evidently enhanced in comparison with that in control (not treated with rare earth), but the content of Glu is smaller than that from control. The content of La in REE-TGP from the tea garden sprayed rare earth is 193% higher than that in control. REE-TGP declines content of blood sugar in mice and enhances immunization of rat, which are very evident when the animals are treated by REE-TGP from the tea garden sprayed RE.

  11. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  12. Competition Between Organic Matter and Solid Surface for Cation Sorption: Ce and Rare Earth Element as Proxy

    Science.gov (United States)

    Davranche, M.; Pourret, O.; Gruau, G.; Dia, A.

    2006-12-01

    Aquatic or soil organic matter are well-known to be strong adsorbent of many cations due to their adsorption capacity. Among these cations, the trivalent rare earth element (REE) and particularly Ce seem to be promising tools to investigate the impact of competition in between organic or inorganic ligands. Ce (III) is oxidized into Ce (IV) by oxidative surface such as Fe and Mn oxyhydroxides. Since Ce (IV) is preferentially adsorbed (as compared to other REE), a positive and negative Ce anomaly is developed respectively onto the solid and within the solution. Previous studies (Davranche et al., 2004, 2005) highlighted the suppression of this feature when Ce occurs to be complexed with organic matter (as humate species). Recent experiments were designed to evaluate the competition between humate and Mn oxide for REE complexation (each reactant being added simultaneously). Two parameters control the competition: time and pH. While organic matter does adsorb immediately the free REE, a desorption of REE occurs through time. Desorption is marked by the development of a Ce anomaly in the REE pattern that reflects the complexation with Mn oxide surface. Along the time, solid surface becomes thus more competitive than the organic matter. PH still influences the competition since at basic pH, REE and organic matter - probably as REE-organic complexes - are adsorbed onto the solid surface. Ultrafiltration analyses at 5 KD were also performed to separate organic matter and organic complexes from the solution. Results provide evidence that in presence of a solid surface, HREE (high rare earth element) desorption from the organic matter occurs through time. This leads to HREE enrichment in solution. All these results suggest that complexation of organic matter is kinetically favoured as compared to the complexation with solid surfaces. However, the organic complex formed during the first stage of the complexation process involves weak bindings. These bindings are easily broken

  13. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...... spectroscopies to obtain insights into the structural and topological features of these glasses, and hence into the mixed alkaline earth effect. We demonstrate that the mixed alkaline earth effect manifests itself as a maximum in the amount of bonded tetrahedral units and as a minimum in liquid fragility index...

  14. Effect of the earth's ellipticity on the lunar tidal potential

    Science.gov (United States)

    Dahlen, F. A.

    1993-01-01

    The earth's orbital acceleration about the moon is influenced by its ellipticity. In this paper it shown that the ellipticity affects tidal gravity by contributing directly to the lunar tide-generating potential (in addition to effecting the elastic-gravitational response of the solid earth and oceans to this potential).

  15. Chiral magnetic effect in condensed matter systems

    Science.gov (United States)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  16. Solar Neutrino Observables Sensitive to Matter Effects

    Directory of Open Access Journals (Sweden)

    H. Minakata

    2012-01-01

    Full Text Available We discuss constraints on the coefficient AMSW which is introduced to simulate the effect of weaker or stronger matter potential for electron neutrinos with the current and future solar neutrino data. The currently available solar neutrino data leads to a bound AMSW=1.47+0.54−0.42(+1.88−0.82 at 1σ (3σ CL, which is consistent with the Standard Model prediction AMSW=1. For weaker matter potential (AMSW1, the bound is milder and is dominated by the day-night asymmetry of 8B neutrino flux recently observed by Super-Kamiokande. Among the list of observables of ongoing and future solar neutrino experiments, we find that (1 an improved precision of the day-night asymmetry of 8B neutrinos, (2 precision measurements of the low-energy quasi-monoenergetic neutrinos, and (3 the detection of the upturn of the 8B neutrino spectrum at low energies are the best choices to improve the bound on AMSW.

  17. Effects of Majorana physics on the UHE ν{sub τ} flux traversing the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Lucia [Universidad de la Republica, Instituto de Fisica, Facultad de Ingenieria, Montevideo (Uruguay); Romero, Ismael; Zapata, Gabriel; Sampayo, Oscar A. [Universidad Nacional de Mar del Plata, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), CONICET, UNMDP, Departamento de Fisica, Mar del Plata (Argentina)

    2017-02-15

    We study the effects produced by sterile Majorana neutrinos on the ν{sub τ} flux traversing the Earth, considering the interaction between the Majorana neutrinos and the standard matter as modeled by an effective theory. The surviving tau-neutrino flux is calculated using transport equations including Majorana neutrino production and decay. We compare our results with the pure Standard Model interactions, computing the surviving flux for different values of the effective lagrangian couplings, considering the detected flux by IceCube for an operation time of 10 years, and Majorana neutrinos with mass m{sub N} ∝ m{sub τ}. (orig.)

  18. Matter Effects of Thin Layers Detecting Oil by Oscillations of Solar Neutrinos

    CERN Document Server

    Ioannisian, A N; Ioannisian, Ara N.; Smirnov, Alexei Yu.

    2002-01-01

    We consider a possibility to use the solar neutrinos for studies of small scale structures of the Earth and for geological research. Effects of thin layers of matter with density contrast on oscillations of Beryllium neutrinos inside the Earth are studied. We find that change of the $^7Be$ neutrino flux can reach 0.25 % for layers with density of oil and size $(10 - 100)$ km. Problems of detection are discussed. Hypothetical method would consist of measuring the $^7Be -$ flux by e.g. large deep underwater detector-submarine which could change its location.

  19. Signatures of collective and matter effects on supernova neutrinos at large detectors

    CERN Document Server

    Choubey, Sandhya; Dighe, Amol; Mirizzi, Alessandro

    2010-01-01

    We calculate the expected galactic supernova neutrino signal at large next-generation underground detectors. At different epochs after the explosion, the primary fluxes can be quite different. For these primary neutrino fluxes, spectral splits induced by collective neutrino flavor transformations can arise for either mass hierarchy in both neutrino and antineutrino channels. We classify flux models according to the nature and number of these splits, and calculate the observable electron-neutrino and electron-antineutrino spectra at Earth, taking into account subsequent matter effects. We find that some of the spectral splits could occur sufficiently close to the peak energies to produce significant distortions in the observable SN neutrino signal. The most striking signature of this effect would be presence of peculiar energy dependent modulations associated with Earth matter crossing, present only in portions of the SN neutrino energy spectra demarcated by spectral splits. These signatures at proposed large ...

  20. Detrimental Effects of Extreme Solar Activity on Life on Earth

    Science.gov (United States)

    Airapetian, Vladimir; Glocer, Alex; Jackman, Charles

    2015-07-01

    Solar Coronal Mass Ejections (CMEs), the most energetic eruptions in the Solar System, represent large-scale disturbances forming with the solar corona and are associated with solar flares and Solar Energetic Particles (SEP) events. Current Kepler data from solar-like stars suggest that the frequency of occurrence of energetic flares and associated CMEs from the Sun can be as high as 1 per 1500 years. What effects would CME and associated SEPs have on Earth's habitability? We have performed a three-dimensional time-dependent global magnetohydrodynamic simulation of the magnetic interaction of such a CME cloud with the Earth's magnetosphere. We calculated the global structure of the perturbed magnetosphere and derive the latitude of the open-closed magnetic field boundary. We used a 2D GSFC atmospheric code to calculate the efficiency of ozone depletion in the Earth's atmosphere due to SEP events and its effects on our society and life on Earth.

  1. Diffraction and polarization effects in Earth radiation budget measurements.

    Science.gov (United States)

    Mahan, J R; Barki, A R; Priestley, K J

    2016-12-01

    Thermal radiation emitted and reflected from the Earth and viewed from near-Earth orbit may be characterized by its spectral distribution, its degree of coherence, and its state of polarization. The current generation of broadband Earth radiation budget instruments has been designed to minimize the effect of diffraction and polarization on science products. We used Monte Carlo ray-trace (MCRT) models that treat individual rays as quasi-monochromatic, polarized entities to explore the possibility of improving the performance of such instruments by including measures of diffraction and polarization during calibration and operation. We have demonstrated that diffraction and polarization sensitivity associated with typical Earth radiation budget instrument design features has a negligible effect on measurements.

  2. Hot Strange Hadronic Matter in an Effective Model

    Institute of Scientific and Technical Information of China (English)

    QIANWei-Liang; SURu-Keng; SONGHong-Qiu

    2003-01-01

    An effective model used to describe the strange hadronic matter with nucleons, A-hyperons, and [I]-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given.

  3. On the Validity of Dark Matter Effective Theory

    CERN Document Server

    Bauer, Martin; Desai, Nishita; Gonzalez-Fraile, Juan; Plehn, Tilman

    2016-01-01

    An effective theory of dark matter offers an attractive framework for global analyses of dark matter. In the light of global fits we test the validity of the link between the non-relativistic dark matter annihilation, or the predicted relic density, and LHC signatures. Specifically, we study how well the effective theory describes the main features of simple models with s-channel and t-channel mediators coupling to the Standard Model at tree level or through one-loop diagrams. Our results indicate that global dark matter analyses in terms of effective Lagrangians are highly non-trivial to interpret in term of actual models.

  4. Soil Organic Matter in Its Native State: Unravelling the Most Complex Biomaterial on Earth.

    Science.gov (United States)

    Masoom, Hussain; Courtier-Murias, Denis; Farooq, Hashim; Soong, Ronald; Kelleher, Brian P; Zhang, Chao; Maas, Werner E; Fey, Michael; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Simpson, Myrna J; Simpson, André J

    2016-02-16

    Since the isolation of soil organic matter in 1786, tens of thousands of publications have searched for its structure. Nuclear magnetic resonance (NMR) spectroscopy has played a critical role in defining soil organic matter but traditional approaches remove key information such as the distribution of components at the soil-water interface and conformational information. Here a novel form of NMR with capabilities to study all physical phases termed Comprehensive Multiphase NMR, is applied to analyze soil in its natural swollen-state. The key structural components in soil organic matter are identified to be largely composed of macromolecular inputs from degrading biomass. Polar lipid heads and carbohydrates dominate the soil-water interface while lignin and microbes are arranged in a more hydrophobic interior. Lignin domains cannot be penetrated by aqueous solvents even at extreme pH indicating they are the most hydrophobic environment in soil and are ideal for sequestering hydrophobic contaminants. Here, for the first time, a complete range of physical states of a whole soil can be studied. This provides a more detailed understanding of soil organic matter at the molecular level itself key to develop the most efficient soil remediation and agricultural techniques, and better predict carbon sequestration and climate change.

  5. Forbush Effects on the Martian Surface and Earth's Poles

    Science.gov (United States)

    Posner, A.; Guo, J.; Heber, B.; Wimmer-Schweingruber, R. F.; Zeitlin, C.; Zheng, Y.; MacNeice, P. J.; Odstrcil, D.; Rastaetter, L.; Steigies, C. T.; Andrews, J. P.; Appel, J. K.; Beaujean, R.; Berger, L.; Boettcher, S. I.; Brinza, D. E.; Bullock, M.; Burmeister, S.; Cucinotta, F.; Dresing, N.; Drews, C.; Ehresmann, B.; Epperly, M. E.; Hassler, D.; Herbst, K.; Kim, M. H. Y.; Kohler, J.; Kühl, P.; Lohf, H.; Martin-Garcia, C.; Müller-Mellin, R.; Neal, K.; Rafkin, S. C.; Reitz, G.; Smith, K. D.; Tyler, Y.; weigle, G., II

    2015-12-01

    We analyzed MSL/RAD observation of Forbush effects on the surface of Mars over a full Mars year from landing through the Mars opposition period in 2014. For the extended Mars opposition phase we compared the observed Forbush effects with those identified at Earth's south pole utilizing observations of the South Pole neutron monitor. Identification of the drivers of Forbush effects, recurrent and transient solar wind structures in the inner heliosphere, is aided by WSA-ENLIL simulations. We show that a remarkable correlations of count rates of (secondary) cosmic rays at Mars' surface and at the Earth's south pole is established for a minimum duration of 6 months around the Mars opposition, in particular when time shifted with propagation and/or corotation delays of the drivers of cosmic ray decreases in the solar wind. Moreover, the magnitude of Forbush effects on Mars is larger statistically than the equivalent near Earth's poles.

  6. Properties of Strange Matter in a Model with Effective Lagrangian

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; SU Ru-Keng; SONG Hong-Qiu; ZHANG Li-Liang

    2001-01-01

    The strange hadronic matter with nucleons, A-hyperons and E-hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.``

  7. Learning Styles, Subject Matter, and Effectiveness in Undergraduate Distance Education

    Science.gov (United States)

    Wu, Darren C.

    2014-01-01

    Are potential relationships among students' learning styles and effectiveness in online education moderated by subject matter for undergraduate students at a private higher education institution? This causal relationship correlational study evaluated the effects of subject matter as a moderating variable between students learning styles and…

  8. Spaceflight Effect on White Matter Structural Integrity

    Science.gov (United States)

    Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.

  9. Instability of some divalent rare earth ions and photochromic effect

    Science.gov (United States)

    Egranov, A. V.; Sizova, T. Yu.; Shendrik, R. Yu.; Smirnova, N. A.

    2016-03-01

    It was shown that the divalent rare earth ions (La, Ce, Gd, Tb, Lu, and Y) in cubic sites in alkaline earth fluorides are unstable with respect to electron autodetachment since its d1(eg) ground state is located in the conduction band which is consistent with the general tendency of these ions in various compounds. The localization of doubly degenerate d1(eg) level in the conduction band creates a configuration instability around the divalent rare earth ion that leading to the formation of anion vacancy in the nearest neighborhood, as was reported in the previous paper [A. Egranov, T. Sizova, Configurational instability at the excited impurity ions in alkaline earth fluorites, J. Phys. Chem. Solids 74 (2013) 530-534]. Thus, the formation of the stable divalent ions as La, Ce, Gd, Tb, Lu, and Y (PC+ centers) in CaF2 and SrF2 crystals during x-ray irradiation occurs via the formation of charged anion vacancies near divalent ions (Re2+va), which lower the ground state of the divalent ion relative to the conductivity band. Photochromic effect occurs under thermally or optically stimulated electron transition from the divalent rare earth ion to the neighboring anion vacancy and reverse under ultraviolet light irradiation. It is shown that the optical absorption of the PC+ centers due to d → d and d → f transitions of the divalent rare-earth ion.

  10. Possible resonance effect of axionic dark matter in Josephson junctions.

    Science.gov (United States)

    Beck, Christian

    2013-12-06

    We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11  meV and a local galactic axionic dark-matter density of 0.05  GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.

  11. Coupling river hydrochemical information with catchment properties for multi-scale-analysis of lateral matter fluxes in the Earth system

    Science.gov (United States)

    Hartmann, Jens; Lauerwald, Ronny; Moosdorf, Nils

    2016-04-01

    Over the last decade the number of regional to global scale studies of river chemical fluxes and their steering factors increased rapidly, entailing a growing demand for appropriate databases to calculate mass budgets, to calibrate models, or to test hypotheses [1, 2]. Research applying compilations of hydrochemical data are related to questions targeting different time and spatial scales, as for example the annual to centennial scale. In focus are often the alteration of land-ocean matter fluxes due anthropogenic disturbance, the climate sensitivity of chemical weathering fluxes [3], or nutrient fluxes and their evolution [2, 4]. We present an overview of the GLObal RIver CHemistry database GLORICH, which combines an assemblage of hydrochemical data from varying sources with catchment characteristics of the sampling locations [1]. The information provided include e.g. catchment size, lithology, soil, climate, land cover, net primary production, population density and average slope gradient. The data base comprises 1.27 million samples distributed over 17,000 sampling locations [1]. It will be shown how large assemblages of data are useful to target some major questions about the alteration of land ocean element fluxes due to climate or land use change while coupling hydrochemical data with catchment properties in a homogenized database. An extension by isotopic data will be in the focus of future work [c.f. 5]. Further, applications in climate change studies for understanding feedbacks in the Earth system will be discussed [6]. References: [1] Hartmann, J., Lauerwald, R., & Moosdorf, N. (2014). A brief overview of the GLObal RIver CHemistry Database, GLORICH. Procedia Earth and Planetary Science, 10, 23-27. [2] Hartmann, J., Levy, J., & Kempe, S. (2011). Increasing dissolved silica trends in the Rhine River: an effect of recovery from high P loads?. Limnology, 12(1), 63-73. [3] Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., & West, A. J. (2014). Global

  12. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    Science.gov (United States)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  13. Alleviation Effects of Rare Earth on Cd Stress to Rape

    Institute of Scientific and Technical Information of China (English)

    马建军; 张淑侠; 朱京涛; 吴贺平

    2004-01-01

    Using rapes as test materials, the fastness expression and alleviation effect of rapes were studied under Cd stress condition, as the rapeseeds were dipped in the single element(La, Ce, Nd, Pr)and mixed rare earth(RE). The results indicate that, under Cd stress, the dry and fresh weight are increased by both the single element and mixed rare earth treatment, and the fastness of rape is improved.The single element of rare earth decreases the Cd content in rape roots and transmits Cd to the edible parts above the ground in which the alleviation effect of Ce is most significant.La treatment takes the second place, so that the poisonous effect of heavy metal Cd is eased.The mixed rare earth doesn't alleviate the assimilation of Cd in rape roots, but accelerates the transfer of Cd to the parts above the ground. The research puts forward that the alleviation of rare earth on Cd stress has connection with the decrease of Ca content.

  14. Earth effects on supernova neutrinos and their implications for neutrino parameters

    CERN Document Server

    Takahashi, K

    2002-01-01

    We perform a detailed study of the Earth matter effects on supernova neutrinos with neutrino oscillation parameter LMA and small $\\theta_{13}$. The Earth effects show significant dependences on the distance which neutrinos travel in the Earth and the value of $\\Delta m^{2}$. We show that making use of these dependences, we can obtain implication for the value of $\\Delta m^{2}_{12}$ by comparing the observed energy spectrum to the predicted one. When SK detect neutrinos from supernova at 10kpc which traveled through the Earth (nadir angle $<$ 80 degree), $\\Delta m^{2}_{12}$ can be determined with an accuracy of $\\sim 2%$ if we can obtain the original neutrino flux from the data from the other detectors which detect neutrinos directly from the supernova. In much of the neutrino-detection-time-$\\Delta m^{2}_{12}$ plane, $\\Delta m^{2}_{12}$ can be determined with an accuracy equal to or better than $\\pm 0.5 \\times 10^{-5} {\\rm eV}^{2}$.

  15. Effective Field Theory of Dark Matter: a Global Analysis

    CERN Document Server

    Liem, Sebastian; Calore, Francesca; de Austri, Roberto Ruiz; Tait, Tim M P; Trotta, Roberto; Weniger, Christoph

    2016-01-01

    We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross- section. Although current data are not informative enough to strongly constrain the theory parameter space, w...

  16. Cosmological effects of coupled dark matter

    CERN Document Server

    Morris, Sophie C F; Padilla, Antonio; Tarrant, Ewan R M

    2013-01-01

    Many models have been studied that contain more than one species of dark matter and some of these couple the Cold Dark Matter (CDM) to a light scalar field. In doing this we introduce additional long range forces, which in turn can significantly affect our estimates of cosmological parameters if not properly accounted for. It is, therefore, important to study these models and their resulting cosmological implications. We present a model in which a fraction of the total cold dark matter density is coupled to a scalar field. We study the background and perturbation evolution and calculate the resulting Cosmic Microwave Background anisotropy spectra. The greater the fraction of dark matter coupled to the scalar field and the stronger the coupling strength, the greater the deviation of the background evolution from LCDM. Previous work, with a single coupled dark matter species, has found an upper limit on the coupling strength of order O(0.1). We find that with a coupling of this magnitude more than half the dark...

  17. Light matter in the core of the Earth: its identity, quantity and temperature using tricritical phenomena

    CERN Document Server

    Aitta, A

    2008-01-01

    Light elements in the iron-rich core of the Earth are important indicators for the evolution of our planet. Their amount and distribution, and the temperature in the core, are essential for understanding how the core and the mantle interact and for modelling the geodynamo which generates the planetary magnetic field. However, there is a longstanding controversy surrounding the identity and quantity of the light elements. Here, the theory of tricritical phenomena is employed as a precise theoretical framework to study solidification at the high pressures and temperatures where both experimental and numerical methods are complicated to implement and have large uncertainties in their results. Combining the theory with the most reliable iron melting data and the Preliminary Reference Earth Model (PREM) seismic data, one obtains the solidification temperature at the inner core boundary (ICB) for both pure iron and for the alloy of iron and light elements in the actual core melt. One also finds a value of about 2.5...

  18. Reproducing the organic matter model of anthropogenic dark earth of Amazonia and testing the ecotoxicity of functionalized charcoal compounds

    Directory of Open Access Journals (Sweden)

    Carolina Rodrigues Linhares

    2012-05-01

    Full Text Available The objective of this work was to obtain organic compounds similar to the ones found in the organic matter of anthropogenic dark earth of Amazonia (ADE using a chemical functionalization procedure on activated charcoal, as well as to determine their ecotoxicity. Based on the study of the organic matter from ADE, an organic model was proposed and an attempt to reproduce it was described. Activated charcoal was oxidized with the use of sodium hypochlorite at different concentrations. Nuclear magnetic resonance was performed to verify if the spectra of the obtained products were similar to the ones of humic acids from ADE. The similarity between spectra indicated that the obtained products were polycondensed aromatic structures with carboxyl groups: a soil amendment that can contribute to soil fertility and to its sustainable use. An ecotoxicological test with Daphnia similis was performed on the more soluble fraction (fulvic acids of the produced soil amendment. Aryl chloride was formed during the synthesis of the organic compounds from activated charcoal functionalization and partially removed through a purification process. However, it is probable that some aryl chloride remained in the final product, since the ecotoxicological test indicated that the chemical functionalized soil amendment is moderately toxic.

  19. Effective field theory of dark matter: a global analysis

    NARCIS (Netherlands)

    Liem, S.; Bertone, G.; Calore, F.; Ruiz de Austri, R.; Tait, T.M.P.; Trotta, R.; Weniger, C.

    2016-01-01

    We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constra

  20. The Runaway Greenhouse Effect on Earth and other Planets

    Science.gov (United States)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  1. Planck-scale effects on WIMP dark matter

    Directory of Open Access Journals (Sweden)

    Sofiane M Boucenna

    2014-01-01

    Full Text Available There exists a widely known conjecture that gravitational effects violate global symmetries. We study the effect of global-symmetry violating higher-dimension operators induced by Planck-scale physics on the properties of WIMP dark matter. Using an effective description, we show that the lifetime of the WIMP dark matter candidate can satisfy cosmological bounds under reasonable assumptions regarding the strength of the dimension-five operators. On the other hand, the indirect WIMP dark matter detection signal is significantly enhanced due to new decay channels.

  2. Systematic Effects in Earth Orientation Parameters Determined by VLBI

    Science.gov (United States)

    Schuh, H.; Heinkelmann, R.

    2015-12-01

    Very Long Baseline Interferometry (VLBI) is the only technique that directly connects on the observation level the realizations of ITRS and ICRS in terms of their orientation. Many applications in spacecraft navigation, fundamental astronomy, astrometry and geosciences depend on the Earth Orientation Parameters (EOP) determined by VLBI. Currently, under the IAG/IAU Joint Working Group on the Theory of Earth Rotation, activities are supported to advance the theory of Earth rotation. Some components of Earth Rotation, such as the free modes like the Free Core Nutation (FCN) are not predictable but rely entirely on the observation through VLBI. In our presentation we investigate the EOP when alternating various VLBI analysis options such as correction models, a priori parameters, and other choices with the aim to detect and quantify possible systematic effects. Our approach is purely empirical: we alternate certain analysis options and assess the differences with respect to the reference solution that adheres to the IERS Conventions (2010) and applies the standard parameterization. For demonstration we analyze the regular International VLBI Service for Geodesy and Astrometry (IVS) sessions IVS-R1 and IVS-R4.The IAG flagship component GGOS (Global Geodetic Observing System) aims to provide the EOP with an accuracy of 1 mm on the Earth surface (about 30 microarcseconds). This accuracy target will be applied as a limit to interpret the significance of the differences obtained in our comparisons.

  3. Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach

    Science.gov (United States)

    Tang, Jianwu; Johannesson, Karen H.

    2003-07-01

    Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., p KMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. p KMHA values were further refined by comparison of calculated Model V "fits" to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl -, F -, OH -, SO 42-, CO 32-, PO 43-), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V's ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to "speciation" data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5

  4. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    Science.gov (United States)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  5. A Note on the Sagnac Effect for Matter Beams

    CERN Document Server

    Ruggiero, Matteo Luca

    2014-01-01

    We study the Sagnac effect for matter beams, in order to estimate the kinematic corrections to the basic formula, deriving from the position and the extension of the interferometer, and discuss the analogy with the Aharonov-Bohm effect. We show that the formula for the Sagnac time delay is the same for matter and light beams in arbitrary stationary space-times, provided that a suitable condition on the speed of the beams is fulfilled. Hence, the same results obtained for light beams apply to matter beams.

  6. Heavy dark matter annihilation from effective field theory.

    Science.gov (United States)

    Ovanesyan, Grigory; Slatyer, Tracy R; Stewart, Iain W

    2015-05-29

    We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.

  7. Pion Effect of Nuclear Matter in a Chiral Sigma Model

    Institute of Scientific and Technical Information of China (English)

    HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong

    2009-01-01

    We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.

  8. Effective Field Theory of Dark Matter from membrane inflationary paradigm

    CERN Document Server

    Choudhury, Sayantan

    2015-01-01

    In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation using tensor-to-scalar ratio ($r$), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance ($\\Omega_{DM}h^2$) and primordial gravity waves ($r$), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, $\\sigma$, bulk mass scale $M_5$, and cosmological constant $\\tilde{\\Lambda}_{5}$, in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field ...

  9. Nucleon effective masses in field theories of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.H.; Reddy, S.; Prakash, M. [Dept. of Physics and Astronomy, Stony Brook, NY (United States)

    1998-06-01

    We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)

  10. Design of Scalable and Effective Earth Science Collaboration Tool

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  11. Gamma Ray Line Constraints on Effective Theories of Dark Matter

    CERN Document Server

    Goodman, Jessica; Rajaraman, Arvind; Shepherd, William; Tait, Tim M P; Yu, Hai-Bo

    2010-01-01

    A monochromatic gamma ray line results when dark matter particles in the galactic halo annihilate to produce a two body final state which includes a photon. Such a signal is very distinctive from astrophysical backgrounds, and thus represents an incisive probe of theories of dark matter. We compare the recent null results of searches for gamma ray lines in the galactic center and other regions of the sky with the predictions of effective theories describing the interactions of dark matter particles with the Standard Model. We find that the null results of these searches provide constraints on the nature of dark matter interactions with ordinary matter which are complementary to constraints from other observables, and stronger than collider constraints in some cases.

  12. Organic matter in the Titan lakes, and comparison with primitive Earth

    Science.gov (United States)

    Khare, Bishun N.; McKay, C.; Wilhite, P.; Beeler, D.; Carter, M.; Schurmeier, L.; Jagota, S.; Kawai, J.; Nna-Mvondo, D.; Cruikshank, D.; Embaye, T.

    2013-06-01

    Titan is the only world in the solar system besides the Earth that has liquid on its surface. The liquid in the lakes is thought to be composed primarily of ethane with methane and nitrogen in solution. The clouds are thought to be composed of liquid methane drops. Surface liquid is present in polar lakes and in surface materials at equatorial sites. Studying the chemical processing that potentially results from organic material interacting with this liquid is one of the main goals of proposed missions to Titan. We have been engaged in producing tholin under Titan-like conditions for more than three decades, first at the Laboratory for Planetary Studies at Cornell University in collaboration with Late Dr. Carl Sagan and for over a decade at Laboratory for Planetary Studies at NASA Ames Research Center and Carl Sagan Center for the Study of Life in the Universe, SETI Institute. Our focus is to understand the capabilities for analysis of tholin solubility in liquid methane and ethane for flight instruments. Our results are expected to contribute to an understanding of the organic chemistry on Titan and to the development of an explicit and targeted scientific strategy for near term analysis of the products of organic-liquid interactions on Titan. Organics are produced as a haze in Titan's high atmosphere due to photolysis of methane with the Sun's extreme ultraviolet light and subsequent reaction with N. Also tholins are formed at a much higher level on Titan by charged particles of Saturn magnetosphere. However, the presence of organics is not the sole feature, which makes Titan significant to astrobiology; organics are widely present in the outer solar system. The reason Titan is a prime target for future outer solar system missions is the combination of organic material and liquid on the surface; liquid that could over a medium for further organic synthesis. NASA recently selected for further study a Discovery proposal TiME to investigate the chemistry of the

  13. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    Science.gov (United States)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  14. Economics as if the earth really mattered. Putting balance back on the balance sheet.

    Science.gov (United States)

    Sherman, D

    1991-09-01

    Some of the thinking in the economic realm which affects the relationship between the economy and the environment is discussed. The standard economic model inherently conflicts with the environment. Humans as consumers have their needs met by maximizing production and efficiency in a free market economy, where an invisible hand guides to profit. The question is raised as to what the environmental impact is for economic growth. The need for clean air, water, and preservation of other living things is not met. It is argued that pollution is a necessary byproduct of production. Economic progress as measured by gross national product (GNP) cannot account for the degradation of nature, e.g., the Alaskan oil spill actually increased GNP. Traditional economics also tell little about the maldistribution of wealth. It is pointed out that Americans spend $5 billion a year on special diets while 400 million around the world are undernourished. Limits to natural resources are also not accounted for by economic theorists, or the value of the seemingly free life-sustaining services performed by a forest in purifying air, preventing erosion and flooding, regulating climate, and supporting biological diversity. It is pointed out that restructuring must occur if the capacity of the Earth to support life is classed in economic terms as an externality. Steady state economic models consider the cycles of production and consumption in the context of the surrounding ecosystem of waste and raw materials and try to achieve a state of equilibrium. Despite the 1972 President's Commission on Population Growth and the American Future's statement that population growth is not necessary for a vital economy, the mythology exists that the economy will collapse, personal income will drop, and business will decline without an ever-growing population. A summary on positive outcomes of zero population growth is given. The economist Julian Simon promotes the view that there is no environmental

  15. The Doppler effect on indirect detection of dark matter using dark matter only simulations

    CERN Document Server

    Powell, Devon; Ng, Kenny C Y; Abel, Tom

    2016-01-01

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy [Speckhard etal. PRL 2016 https://arxiv.org/abs/1507.04744]. The non-rotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by high energy resolution X-ray spectrometer on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at $\\geq$ 3$\\sigma$. The halo triaxiality is an important effect and it will typically reduce the significance of this signal...

  16. The modulation effect for supersymmetric dark matter detection with asymmetric velocity dispersion

    CERN Document Server

    Vergados, J D

    2000-01-01

    The detection of the theoretically expected dark matter is central to particle physics cosmology. Current fashionable supersymmetric models provide a natural dark matter candidate which is the lightest supersymmetric particle (LSP). Such models combined with fairly well understood physics like the quark substructure of the nucleon and the nuclear form factor and the spin response function of the nucleus, permit the evaluation of the event rate for LSP-nucleus elastic scattering. The thus obtained event rates are, however, very low or even undetectable. So it is imperative to exploit the modulation effect, i.e. the dependence of the event rate on the earth's annual motion. In this review we study such a modulation effect in directional and undirectional experiments. We calculate both the differential and the total rates using symmetric as well as asymmetric velocity distributions. We find that in the symmetric case the modulation amplitude is small, less than 0.07. There exist, however, regions of the phase sp...

  17. Effective field theory of dark matter: a global analysis

    Science.gov (United States)

    Liem, Sebastian; Bertone, Gianfranco; Calore, Francesca; de Austri, Roberto Ruiz; Tait, Tim M. P.; Trotta, Roberto; Weniger, Christoph

    2016-09-01

    We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross-section. Although current data are not informative enough to strongly constrain the theory parameter space, we demonstrate the power of our formalism to reconstruct the theoretical parameters compatible with an actual dark matter detection, by assuming that the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic centre is entirely due to dark matter annihilations. Please note that the excess can very well be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter interacting via effective field theory operators can in principle explain the Galactic centre excess, but that such interpretation is in strong tension with the non-detection of gamma rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough freedom to relieve the tension.

  18. Effect of Organic Matter on Manganese Solubility

    Directory of Open Access Journals (Sweden)

    Emilene Andrade

    2002-03-01

    Full Text Available The objective of this study was to re-evaluate some aspects of the relative importance of organic matter on Mn solubility in acid soil conditions. Field study showed that black oats, oil seed radish, elephant grass, lupin, leucaena, and coffee leaves serving as mulch decreased Mn solubility as compared with bare soil. The decrease in Mn solubility with plant mulch was related to increase in soil moisture content. Laboratory study showed that increasing temperature from 25 to 100ºC increased Mn solubility and total soil organic carbon was little changed; from 150 to 200ºC increased both Mn solubility and organic carbon oxidation, and up to 300ºC decreased Mn solubility and stoped organic carbon oxidation . Aluminum solubility always increased with increasing temperature. Organic matter exerted a control in both Mn and Al solubilities in acid soils.O estudo foi conduzido com objetivo de reavaliar alguns aspectos da importância relativa da matéria orgânica na solubilidade do Mn em solos ácidos. Em condição de campo cobertura morta com resíduos de aveia preta, nabo forrageiro, napier, tremoço, leucena e folhas de café diminuíram a solubilidade de Mn quando comparada com o solo descoberto. A redução na solubilidade do Mn em solo coberto com resíduos vegetais foi relacionada com o teor de umidade do solo. Estudos de laboratório demonstraram que o aumento da temperatura de 25 para 100ºC aumentou a solubilidade do Mn com pouca alteração no teor de carbono do solo; de 150 a 200ºC aumentou ambas a solubilidade do Mn e a oxidação do carbono orgânico e acima de 300ºC diminuiu a solubilidade do Mn e completou a oxidação do carbono orgânico. A solubilidade do Al sempre aumentou com a elevação da temperatura. A matéria orgânica influenciou diretamente a solubilidade do Mn e do Al.

  19. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    E Kh Akhmedov

    2000-01-01

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we review the parametric resonance of neutrino oscillations in matter. In particular, physical interpretation of the effect and the prospects of its experimental observation in oscillations of solar and atmospheric neutrinos in the earth are discussed.

  20. Matter-wave bright solitons in effective bichromatic lattice potentials

    Indian Academy of Sciences (India)

    Golam Ali Sekh

    2013-08-01

    Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effective potentials are found for the solitons in both bichromatic lattices and a comparative study is done on the dynamics of solitons with respect to the effective potentials. The effects of dispersion on solitons in bichromatic lattices are studied and it is found that the dispersive spreading can be minimized by appropriate combinations of lattice and interaction parameters. Stability of nondispersive matter-wave solitons is checked from phase portrait analysis.

  1. Effects of Gamma Ray Bursts in Earth Biosphere

    CERN Document Server

    Martin, Osmel; Guimaraes, Mayrene; Penate, Liuba; Horvath, Jorge; Galante, Douglas

    2009-01-01

    We continue former work on the modeling of potential effects of Gamma Ray Bursts on Phanerozoic Earth. We focus on global biospheric effects of ozone depletion and show a first modeling of the spectral reduction of light by NO2 formed in the stratosphere. We also illustrate the current complexities involved in the prediction of how terrestrial ecosystems would respond to this kind of burst. We conclude that more biological field and laboratory data are needed to reach even moderate accuracy in this modeling

  2. Effect of Rare Earth Elements on Quantity Growth of Ctrps

    Institute of Scientific and Technical Information of China (English)

    张自立; 常江; 等

    2002-01-01

    The effects of rare earth on the growth of rice,rape and soybean in three kinds of soils were studied with the method supposed by Economic Co-operation and Development organization(OECD),and the EC50(median growth concenrtation)values were obtained,The inhibition of RE on the growth of rice and rape in red soil and on the growth of soybeanin yellow fouvo-aquic soil is higher with stronger poison effects.Compared with other heavy metals such as Hg,Cd,Pb,As,the poison of RE on crops in weaker.

  3. Effect of Rare Earth Elements on Quantity Growth of Crops

    Institute of Scientific and Technical Information of China (English)

    张自立; 常江; 汪成胜; 柴绍明; 韩修明; 李瑞

    2002-01-01

    The effects of rare earth on the growth of rice, rape and soybean in three kinds of soils were studied with the method supposed by Economic Co-operation and De velopment organization (OECD), and the EC50(median growth concentration)value s were obtained . The inhibition of RE on the growth of rice and rape in red soil and on the gro wth of soybean in yellow fluvo-aquic soil is higher with stronger poison effect s. Compared with other heavy metals such as Hg, Cd, Pb, As, the poison of RE on crops is weaker.

  4. Dark matter as a dynamic effect due to a non-minimal gravitational coupling with matter

    CERN Document Server

    Bertolami, Orfeu

    2010-01-01

    In this work the phenomenology of models possessing a non-minimal coupling between matter and geometry is discussed, with a particular focus on the possibility of describing the flattening of the galactic rotation curves as a dynamically generated effect derived from this modification to General Relativity. Two possibilities are discussed: firstly, that the observed discrepancy between the measured rotation velocity and the classical prediction is due to a deviation from geodesic motion, due to a non-(covariant) conservation of the energy-momentum tensor; secondly, that even if the principle of energy conservation holds, the dynamical effects arising due to the non-trivial terms in the Einstein equations of motion can give rise to an extra density contribution that may be interpreted as dark matter. The mechanism of the latter alternative is detailed, and a numerical session ascertaining the order of magnitude of the relevant parameters is undertaken, with possible cosmological implications discussed.

  5. Chiral Effective Theory of Dark Matter Direct Detection

    CERN Document Server

    Bishara, Fady; Grinstein, Benjamin; Zupan, Jure

    2016-01-01

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  6. Can extra dimensional effects allow wormholes without exotic matter?

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Sayan, E-mail: sayan@iitkgp.ac.in [Department of Physics and Center for Theoretical Studies, Indian Institute of Technology, Kharagpur, 721 302 (India); Lahiri, Sayantani, E-mail: sayantani.lahiri@gmail.com [Institute for Physics, University Oldenburg, D-26111 Oldenburg (Germany); ZARM, University of Bremen, Am Fallturm, 28359 Bremen (Germany); SenGupta, Soumitra, E-mail: tpssg@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mallick Road, Jadavpur, Kolkata 700 032 (India)

    2015-11-12

    We explore the existence of Lorentzian wormholes in the context of an effective on-brane, scalar-tensor theory of gravity. In such theories, the timelike convergence condition, which is always violated for wormholes, has contributions, via the field equations, from on-brane matter as well as from an effective geometric stress energy generated by a bulk-induced radion field. It is shown that, for a class of wormholes, the required on-brane matter, as seen by an on-brane observer in the Jordan frame, is not exotic and does not violate the Weak Energy Condition. The presence of the effective geometric stress energy in addition to on-brane matter is largely responsible for creating this intriguing possibility. Thus, if such wormholes are ever found to exist in the Universe, they would clearly provide pointers towards the existence of a warped extra dimension as proposed in the two-brane model of Randall and Sundrum.

  7. Chiral effective theory of dark matter direct detection

    Science.gov (United States)

    Bishara, Fady; Brod, Joachim; Grinstein, Benjamin; Zupan, Jure

    2017-02-01

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of Script O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  8. Contact Interactions Probe Effective Dark Matter Models at the LHC

    CERN Document Server

    Dreiner, Herbi; Tattersall, Jamie

    2013-01-01

    Effective field theories provide a simple framework for probing possible dark matter (DM) models by reparametrising full interactions into a reduced number of operators with smaller dimensionality in parameter space. In many cases these models have four particle vertices, e.g. qqXX, leading to the pair production of dark matter particles, X, at a hadron collider from initial state quarks, q. In this analysis we show that for many fundamental DM models with s-channel DM couplings to qq-pairs, these effective vertices must also produce quark contact interactions (CI) of the form qqqq. The respective effective couplings are related by the common underlying theory which allows one to translate the upper limits from one coupling to the other. We show that at the LHC, the experimental limits on quark contact interactions give stronger translated limits on the DM coupling than the experimental searches for dark matter pair production.

  9. Health Effects of Airborne Particulate Matter Trace Elements

    Institute of Scientific and Technical Information of China (English)

    XIANG GAO; QI YU; LI-MIN CHEN

    2005-01-01

    The effects of airborne particulate matter (PM) trace elements on health are widely concerned nowadays. Many achievements have been made while many unknowns exist. This article reports the recent research progresses, describes the effects of exposure to PM trace elements on health epidemiological evidence, toxicology findings, and raises some questions for future studies.

  10. Finite Volume Effect of Baryons in Strange Hadronic Matter

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang

    2001-01-01

    The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.

  11. Iron matters: Its influence on what we think we know about the deep Earth's interior (Robert Wilhelm Bunsen Medal Lecture)

    Science.gov (United States)

    McCammon, Catherine

    2013-04-01

    Iron is not only the most abundant element in the Earth, but it is also the only major element with multiple electronic configurations (oxidation and spin state). The loss of a single electron or a change in the distribution of electrons between orbital states may appear minor at the atomic scale, but at the macroscopic level the effects can be profound. The oxidation state of iron varies through the mantle, from predominantly Fe2+ in the upper mantle and transition zone to roughly 50% Fe3+ in the lower mantle due to the strong affinity of (Mg,Fe)(Si,Al)O3 perovskite for Fe3+, and spin crossover transitions have been discovered to occur in both of the dominant lower mantle phases. This presentation will examine the effect of both oxidation state and spin state of iron on the physical and chemical properties of the mantle, as well as on dynamic processes that occur within our planet.

  12. Short-term Effects of Gamma Ray Bursts on Earth

    OpenAIRE

    2009-01-01

    The aim of the present work is to study the potential short-term atmospheric and biospheric influence of Gamma Ray Bursts on the Earth. We focus in the ultraviolet flash at the planet's surface, which occurs as a result of the retransmission of the $\\gamma$ radiation through the atmosphere. This would be the only important short-term effect on life. We mostly consider Archean and Proterozoic eons, and for completeness we also comment on the Phanerozoic. Therefore, in our study we consider atm...

  13. The Effect of Recent Venus Transit on Earths Atmosphere

    OpenAIRE

    H. P. Sardar; Mandal, S. K.; Mandal, P. K.; Guha, A.; Sarkar, S. K.; Sarkar, B. K.; Adhikari, S. K.; De, B. K.; S S; Ray, M.

    2006-01-01

    Some experiments on June 8, 2004, the day of transit of Venus across the Sun, were undertaken at Kolkata (latitude: 23034? N) to observe effect, if any, of transit of Venus on FWF, ELF and VLF amplitudes. The result shows good correlation between their temporal variations during the transit. The observation was unbelievable as the Venus subtends only 1/32th of the cone subtended by Sun on Earth. This anomaly may be explained on the assumption that the height of Venusian atmosphere with high c...

  14. The effect of recent Venus transit on Earths atmosphere

    OpenAIRE

    H. P. Sardar; Mandal, S. K.; Mandal, P. K.; Guha, A.; Sarkar, S. K.; Sarkar, B. K.; Adhikari, S. K.; De, B. K.; S S; Ray, M.

    2006-01-01

    Some experiments on June 8, 2004, the day of transit of Venus across the Sun, were undertaken at Kolkata (latitude: 22°34lN) to observe the effect, if any, of transit of Venus on FWF, ELF and VLF amplitudes. The result shows a good correlation between their temporal variations during the transit. The observation was unbelievable as the Venus subtends only 1/32th of the cone subtended by Sun on Earth. This anomaly may be explained on the assumption that the height of Venusian atmosphere with h...

  15. Global fits of the dark matter-nucleon effective interactions

    CERN Document Server

    Catena, Riccardo

    2014-01-01

    The effective theory of isoscalar dark matter-nucleon interactions mediated by heavy spin-one or spin-zero particles depends on 10 coupling constants besides the dark matter particle mass. Here we compare this 11-dimensional effective theory to current observations in a comprehensive statistical analysis of several direct detection experiments, including the recent LUX, SuperCDMS and CDMSlite results. From a multidimensional scan with about 3 million likelihood evaluations, we extract the marginalized posterior probability density functions (a Bayesian approach) and the profile likelihoods (a frequentist approach), as well as the associated credible regions and confidence levels, for each coupling constant vs dark matter mass and for each pair of coupling constants. We compare the Bayesian and frequentist approach in the light of the currently limited amount of data. We find that current direct detection data contain sufficient information to simultaneously constrain not only the familiar spin-independent and...

  16. Magnus Effect on a Spinning Satellite in Low Earth Orbit

    Science.gov (United States)

    Ramjatan, Sahadeo; Fitz-Coy, Norman; Yew, Alvin Garwai

    2016-01-01

    A spinning body in a flow field generates an aerodynamic lift or Magnus effect that displaces the body in a direction normal to the freestream flow. Earth orbiting satellites with substantial body rotation in appreciable atmospheric densities may generate a Magnus force to perturb orbital dynamics. We investigate the feasibility of using this effect for spacecraft at a perigee of 80km using the Systems Tool Kit (STK). Results show that for a satellite of reasonable properties, the Magnus effect doubles the amount of time in orbit. Orbital decay was greatly mitigated for satellites spinning at 10000 and 15000RPM. This study demonstrates that the Magnus effect has the potential to sustain a spacecraft's orbit at a low perigee altitude and could also serve as an orbital maneuver capability.

  17. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  18. Radiation effects on rare-earth doped optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Girard, S.; Marcandella, C. [CEA Bruyeres-le-Chatel, DIF 91 (France); Ouerdane, Y.; Tortech, B.; Boukenter, A.; Meunier, J.P.; Vivona, M. [Lab. Hubert Curien, CNRS, 42 - Saint-Etienne (France); Vivona, M.; Robin, Th.; Cadier, B. [iXFiber SAS, 22 - lannion (France)

    2010-07-01

    In this paper, we reviewed our previous work concerning the responses of rare-earth (RE) doped fibers (Yb, Er and Er/Yb) to various types of radiations like gamma-rays, X-rays and protons. For all these harsh environments, the main measured macroscopic radiation-induced effect is an increase of the linear attenuation of these waveguides due to the generation of point defects in the RE-doped core and silica-based cladding. To evaluate the vulnerability of this class of optical fibers for space missions, we characterize the growth and decay kinetics of their radiation-induced attenuation (RIA) during and after irradiation for various compositions. Laboratory testing reveals that this class of optical fibers is very sensitive to radiations compared to passive (RE-free) samples. As a consequence, despite the small length used for space applications, the understanding of the radiation-induced effects in this class of optical fibers becomes necessary before their integration as part of fiber-based systems like gyroscopes or communication systems. In this paper, we more particularly discussed about the relative influence of the rare-earth ions (Er{sup 3+} and/or Yb{sup 3+}) and of the glass matrix dopants (Al, P, ... ) on the optical degradation due to radiations. This has been done by using a set of five prototype optical fibers designed by the fiber manufacturer iXFiber SAS to enlighten the role of these parameters. Additional spectroscopic tools like con-focal microscopy of luminescence are also used to detect possible changes in the spectroscopy of the rare-earth ions and their consequences on the functionality of the active optical fibers. (authors)

  19. Self-energy Effects in the Superfluidity of Neutron Matter

    CERN Document Server

    Lombardo, U; Zuo, W

    2001-01-01

    The superfluidity of neutron matter in the channel $^1 S_0$ is studied by taking into account the effect of the ground-state correlations in the self-energy. To this purpose the gap equation has been solved within the generalized Gorkov approach. A sizeable suppression of the energy gap is driven by the quasi-particle strength around the Fermi surface.

  20. Pairing effects on spinodal decomposition of asymmetric nuclear matter

    Directory of Open Access Journals (Sweden)

    Burrello S.

    2015-01-01

    Full Text Available We present an analysis framed in the general context of two-component fermionic systems subjected to pairing correlations. The study is conducted for unstable asymmetric nuclear matter at low temperature, along the clusterization process driven by spinodal instabilities. It is shown that, especially around the transition temperature from the superfluid to the normal phase, pairing correlations may have non-negligible effects on the isotopic features of the clusterized low-density matter, which could be of interest also in the astrophysical context.

  1. Nuclear matter from effective quark-quark interaction.

    Science.gov (United States)

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  2. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeno, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, W.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-01

    We examine the consequences of the effective eld theory (EFT) of dark matter-nucleon scattering or current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral di*erences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  3. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  4. Dark matter effective field theory scattering in direct detection experiments

    CERN Document Server

    Schneck, K; Cerdeno, D G; Mandic, V; Rogers, H E; Agnese, R; Anderson, A J; Asai, M; Balakishiyeva, D; Barker, D; Thakur, R Basu; Bauer, D A; Billard, J; Borgland, A; Brandt, D; Brink, P L; Bunker, R; Caldwell, D O; Calkins, R; Chagani, H; Chen, Y; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jardin, D M; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Leder, A; Loer, B; Asamar, E Lopez; Lukens, P; Mahapatra, R; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Mendoza, J D Morales; Oser, S M; Page, K; Page, W A; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Roberts, A; Saab, T; Sadoulet, B; Sander, J; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Toback, D; Upadhyayula, S; Villano, A N; Welliver, B; Wilson, J S; Wright, D H; Yang, X; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2015-01-01

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  5. $Z$ boson mediated dark matter beyond the effective theory

    CERN Document Server

    Kearney, John; Pierce, Aaron

    2016-01-01

    Direct detection bounds are beginning to constrain a very simple model of weakly-interacting dark matter---a Majorana fermion with a coupling to the $Z$ boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher dimensional operator. While attractive in its simplicity, this model generically induces a large $\\rho$ parameter. An ultraviolet completion that avoids an overly large contribution to $\\rho$ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the $Z$ boson, but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, $Z$-mediated thermal dark matter as realized in the singlet-doublet model represents a...

  6. Effective Dark Matter Halo Catalog in f(R) Gravity.

    Science.gov (United States)

    He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi

    2015-08-14

    We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies.

  7. The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis.

    Science.gov (United States)

    Gelineau-Morel, Rose; Tomassini, Valentina; Jenkinson, Mark; Johansen-Berg, Heidi; Matthews, Paul M; Palace, Jacqueline

    2012-12-01

    Previous imaging studies assessing the relationship between white matter (WM) damage and matter (GM) atrophy have raised the concern that Multiple Sclerosis (MS) WM lesions may affect measures of GM volume by inducing voxel misclassification during intensity-based tissue segmentation. Here, we quantified this misclassification error in simulated and real MS brains using a lesion-filling method. Using this method, we also corrected GM measures in patients before comparing them with controls in order to assess the impact of this lesion-induced misclassification error in clinical studies. We found that higher WM lesion volumes artificially reduced total GM volumes. In patients, this effect was about 72% of that predicted by simulation. Misclassified voxels were located at the GM/WM border and could be distant from lesions. Volume of individual deep gray matter (DGM) structures generally decreased with higher lesion volumes, consistent with results from total GM. While preserving differences in GM volumes between patients and controls, lesion-filling correction revealed more lateralised DGM shape changes in patients, which were not evident with the original images. Our results confirm that WM lesions can influence MRI measures of GM volume and shape in MS patients through their effect on intensity-based GM segmentation. The greater effect of lesions at increasing levels of damage supports the use of lesion-filling to correct for this problem and improve the interpretability of the results. Volumetric or morphometric imaging studies, where lesion amount and characteristics may vary between groups of patients or change over time, may especially benefit from this correction.

  8. Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.

    Science.gov (United States)

    Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R

    2014-01-10

    The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10)  GeV dark matter may also be significant, depending on the threshold energy of the experiment.

  9. New spectral features from bound dark matter

    Science.gov (United States)

    Catena, Riccardo; Kouvaris, Chris

    2016-07-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature that we predict can provide a complementary verification of dark matter discovery at experiments with positive signal but unclear background. The effect is generically expected, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.

  10. Reheating Effects in the Matter Power Spectrum and Implications for Substructure

    CERN Document Server

    Erickcek, Adrienne L

    2011-01-01

    The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cut-off in the matter power spectrum. Conversely, for dark matter produced non-thermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > 0.1 Earth masses at z=100, ...

  11. Distribution of zero sequence currents for earth faults occurring along a transmission line and proximity effects

    Energy Technology Data Exchange (ETDEWEB)

    Nahman, J. (Belgrade Univ. (Yugoslavia). Elektrotehnicki Fakultet); Dordevic, V. (Energoprojekt, Belgrade (Yugoslavia))

    1993-09-01

    A relatively simple procedure is suggested for the evaluation of the distribution of zero sequence currents, within the earthing system of a substation, for earth faults occurred along a line coming from the substation. The earthing system model derived takes into account all relevant phenomena including the mutual influence among earth electrodes through the soil to cover the proximity effects which were shown to be significant in certain cases. The procedure suggested is applied to a practical case, for illustration. (author)

  12. Nucleon propagation through nuclear matter in chiral effective field theory

    CERN Document Server

    Mallik, S; Mishra, Hiranmaya

    2007-01-01

    We treat the propagation of nucleon in nuclear matter by evaluating the ensemble average of the two-point function of nucleon currents in the framework of the chiral effective field theory. We first derive the effective parameters of nucleon to one loop. The resulting formula for the effective mass was known previously and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of nucleon are compared with those in the literature.

  13. Nucleon propagation through nuclear matter in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S. [Saha Institute of Nuclear Physics, Kolkata (India); Mishra, H. [Physical Research Laboratory, Theory Divison, Ahmedabad (India)

    2007-05-15

    We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature. (orig.)

  14. Nucleon propagation through nuclear matter in chiral effective field theory

    Science.gov (United States)

    Mallik, S.; Mishra, H.

    2007-05-01

    We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.

  15. Andic soils : mineralogical effect onto organic matter dynamics, organic matter effect onto mineral dynamics, or both?

    Science.gov (United States)

    Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme

    2014-05-01

    From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by

  16. Backreaction effects on the matter side of Einstein's field equations

    CERN Document Server

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2015-01-01

    Recently, we have derived a novel and compact expression for how perturbations in the matter fields of the cosmological fluid can lead to deviations from the standard Friedmann equations. Remarkably, the dissipative damping of velocity perturbations by bulk and shear viscosity in the dark sector can modify the expansion history of the universe on arbitrarily large scales. In universes in which this effect is sufficiently sizeable, it could account for the acceleration of the cosmological expansion. But even if dark matter should be less viscous and if the effect would be correspondingly smaller, it may have observable consequences in the era of precision cosmology. Here, we review the origin of this backreaction effect and possibilities to constrain it further.

  17. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  18. Magnetocaloric effect in rare-earth intermetallics: Recent trends

    Indian Academy of Sciences (India)

    R Nirmala; A V Morozkin; S K Malik

    2015-06-01

    Magnetocaloric effect (MCE) is the change in isothermal magnetic entropy (m)and adiabatic temperature (ad) that accompany magnetic transitions in materials during the application or the removal of magnetic field under adiabatic conditions. The physics of MCE gets enriched by correlated spin-lattice degrees of freedom. This phenomenon has been actively investigated over the past few decades as it holds a promise for an alternate method of refrigeration/heat pumping. This has already resulted in several reviews on this topic. This paper focusses on some recent trends in this field and prospects of using rare-earth-based materials as active magnetic refrigerants over a broad temperature range that includes gas liquefaction and near-room temperature refrigeration/heating.

  19. Short-term Effects of Gamma Ray Bursts on Earth

    CERN Document Server

    Martín, Osmel; Cárdenas, Rolando; Horváth, J E

    2009-01-01

    The aim of the present work is to study the potential short-term atmospheric and biospheric influence of Gamma Ray Bursts on the Earth. We focus in the ultraviolet flash at the planet's surface, which occurs as a result of the retransmission of the $\\gamma$ radiation through the atmosphere. This would be the only important short-term effect on life. We mostly consider Archean and Proterozoic eons, and for completeness we also comment on the Phanerozoic. Therefore, in our study we consider atmospheres with oxygen levels ranging from $10^{-5}$ to 1% of the present atmospheric level, representing different moments in the oxygen rise history. Ecological consequences and some strategies to estimate their importance are outlined.

  20. Effect of Annealing on Rare Earth Based Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Jinhua

    2004-01-01

    Rare earth-based hydrogen storage alloy used as negative electrode materials for nickel-metal hydride (Ni-MH) batteries are used commercially.The effect of annealing treatment with different annealing temperature and time on the MLNi3.68 Co0.78 Mn0.35 Al0.27 and MMNi3.55 Co0.75 Mn0.40 Al0.30 alloys were investigated.The crystal microstructure,pressure-composition-isotherms (p-C-T) and electrochemical properties of alloys were examined by X-ray diffraction (XRD), automatic PCI monitoring system and electrical performance testing instruments.The optimum annealing treatment conditions of two kinds of alloys were determined.

  1. Atomic oxygen effects on POSS polyimides in low earth orbit.

    Science.gov (United States)

    Minton, Timothy K; Wright, Michael E; Tomczak, Sandra J; Marquez, Sara A; Shen, Linhan; Brunsvold, Amy L; Cooper, Russell; Zhang, Jianming; Vij, Vandana; Guenthner, Andrew J; Petteys, Brian J

    2012-02-01

    Kapton polyimde is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen in low Earth orbit (LEO), Kapton is severely eroded. An effective approach to prevent this erosion is to incorporate polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerizing POSS monomers with the polyimide precursor. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During exposure of POSS polyimide to atomic oxygen, organic material is degraded, and a silica passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Laboratory and space-flight experiments have shown that POSS polyimides are highly resistant to atomic-oxygen attack, with erosion yields that may be as little as 1% those of Kapton. The results of all the studies indicate that POSS polyimide would be a space-survivable replacement for Kapton on spacecraft that operate in the LEO environment.

  2. ADHESION EFFECTS WITHIN THE HARD MATTER – SOFT MATTER INTERFACE: MOLECULAR DYNAMICS

    National Research Council Canada - National Science Library

    Alexey Tsukanov; Sergey Psakhie

    2016-01-01

    In the present study three soft matter – hard matter systems consisting of different nanomaterials and organic molecules were studied using the steered molecular dynamics approach in order to reveal regularities in the formation of organic...

  3. Simulation of Motion of Satellite under the Effect of Oblateness of Earth and Atmospheric Drag

    CERN Document Server

    Sharma, Jaita; Pirzada, U M; Shah, Vishant

    2016-01-01

    The equations governing motion of the satellite under the effect of oblateness of Earth and atmospheric drag have been simulated, for a fixed initial position and three different initial velocities, till satellite collapses on Earth. Simulation of motion of artificial Earth satellite subject to the combined effects of oblate Earth and atmospheric drag is presented. The atmospheric model considered here takes in to account of exponential variation of the density with initial distance of Satellite from Earth's surface, scale height and radial distance. The minimum and maximum values of orbital elements and their variation over a time for different initial velocities have been reported.

  4. Soil organic matter (de)stabilization - new experiments needed to inform soil biogeochemistry modules in earth system models

    Science.gov (United States)

    Schmidt, Michael W. I.; Torn, Margaret S.; Riley, William J.

    2017-04-01

    To better predict soil carbon climate feedbacks, the next generation of soil biogeochemistry modules in Earth System Models (ESMs) demand new types of experiments, and a more appropriate use of existing observations. For example, we highlight soil incubations and how they have been misinterpreted when inferring pseudo-first order turnover times and decomposition temperature and moisture sensitivities. Further, for existing pseudo first-order modules, and the new microbial- and mineral-explicit generation of biogeochemistry modules, there is often a mismatch between temporal and spatial observations and how they are used by modelers. Observation periods should be longer, from annual to decadal, and include transitions, e.g., induced by climate or management. Key observations to better structure and parameterize processes that are important for carbon-climate feedbacks include i) mineral surface interactions, ii) microbial dynamics and activity, including effects of soil temperature and moisture, iii) erosion and export, iv) landscape scale process heterogeneity, and v) the effect of land use change, such as clear cut and changes in tillage. Recent insights and knowledge gaps from traditionally disconnected scientific fields (such as geophysical modeling, agricultural soil science, geomorphology, and soil biogeochemistry) will be discussed in the context of informing ESM-scale terrestrial biogeochemistry models.

  5. Effects of Organic Matter on the Growth of Thiobacillus intermedius

    Science.gov (United States)

    London, Jack; Rittenberg, Sydney C.

    1966-01-01

    London, Jack (University of California, Los Angeles), and Sydney C. Rittenberg. Effects of organic matter on the growth of Thiobacillus intermedius. J. Bacteriol. 91:1062–1069. 1966.—Yeast extract, glucose, glutamate, and other organic materials stimulate the rate and extent of growth of Thiobacillus intermedius in thiosulfate broth. Growth did not occur in glucose or glutamate mineral salts medium in the absence of thiosulfate, although a stable variant was obtained which grows on yeast extract alone. Cells harvested from media supplemented with organic matter have a reduced rate of thiosulfate oxidation (20 to 30% of autotrophic), oxidize the organic supplement, and have an additive rate of oxidation in the presence of both the organic substrate and thiosulfate. Carboxydismutase synthesis is repressed, and the incorporation of bicarbonate carbon into cell material is almost completely eliminated by the presence of organic matter in the growth medium. It is concluded that the availability of organic matter eliminates the autotrophic assimilatory mechanisms of T. intermedius but not its autotrophic energy-generating system. The data are discussed in relation to the existence of “obligate” chemoautotrophic bacteria. PMID:5929743

  6. Effects of Screen Ruling on Color of Printed Matter

    Directory of Open Access Journals (Sweden)

    Ikuo Naito

    2005-12-01

    Full Text Available The effects of screen ruling on color gamut were studied using 175, 330, 700 lines per inch (LPI halftone printed matter. The reflectance in the muddiness wavelength range, i.e., green (G range of cyan (C ink and blue (B range of magenta (M ink, improved drastically with increasing screen ruling. Micro reflection spectra of dot and non-dot (paper areas were measured. With C printed matter, the G reflectance of dot area increased and that of non-dot area in red (R range decreases with increasing the screen ruling. With M printed matter, the reflectance of dot area in B range increased and that of non-dot area in G range decreased with increasing the screen ruling. With accurate ink yellow (Y printed matter, reflectance of the none-dot area in B region decreased with increasing the screen ruling. These phenomena can be explained by optical dot gain. Resulting these phenomena, color appearance became better according to increase the screen ruling.

  7. Boundary effects and gapped dispersion in rotating fermionic matter

    Directory of Open Access Journals (Sweden)

    Shu Ebihara

    2017-01-01

    Full Text Available We discuss the importance of boundary effects on fermionic matter in a rotating frame. By explicit calculations at zero temperature we show that the scalar condensate of fermion and anti-fermion cannot be modified by the rotation once the boundary condition is properly implemented. The situation is qualitatively changed at finite temperature and/or in the presence of a sufficiently strong magnetic field that supersedes the boundary effects. Therefore, to establish an interpretation of the rotation as an effective chemical potential, it is crucial to consider further environmental effects such as the finite temperature and magnetic field.

  8. Boundary effects and gapped dispersion in rotating fermionic matter

    CERN Document Server

    Ebihara, Shu; Mameda, Kazuya

    2016-01-01

    We discuss the importance of boundary effects on fermionic matter in a rotating frame. By explicit calculations at zero temperature we show that the scalar condensate of fermion and anti-fermion cannot be modified by the rotation once the boundary condition is properly implemented. The situation is qualitatively changed at finite temperature and/or in the presence of a sufficiently strong magnetic field that supersedes the boundary effects. Therefore, to establish an interpretation of the rotation as an effective chemical potential, it is crucial to consider further environmental effects such as the finite temperature and magnetic field.

  9. Boundary effects and gapped dispersion in rotating fermionic matter

    Science.gov (United States)

    Ebihara, Shu; Fukushima, Kenji; Mameda, Kazuya

    2017-01-01

    We discuss the importance of boundary effects on fermionic matter in a rotating frame. By explicit calculations at zero temperature we show that the scalar condensate of fermion and anti-fermion cannot be modified by the rotation once the boundary condition is properly implemented. The situation is qualitatively changed at finite temperature and/or in the presence of a sufficiently strong magnetic field that supersedes the boundary effects. Therefore, to establish an interpretation of the rotation as an effective chemical potential, it is crucial to consider further environmental effects such as the finite temperature and magnetic field.

  10. Effective field theory of dark matter from membrane inflationary paradigm

    Science.gov (United States)

    Choudhury, Sayantan; Dasgupta, Arnab

    2016-09-01

    In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation from tensor-to-scalar ratio (r), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance (ΩDMh2) and primordial gravity waves (r), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, σ ≤ O(10-9) Mp4, bulk mass scale M5 ≤ O(0.04 - 0.05) Mp, and cosmological constant Λ˜5 ≥ - O(10-15) Mp5, in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field theory "relevant operators" induced from the localized s, t and u channel interactions in RSII membrane. Taking a completely model independent approach, we have studied an exhaustive list of tree-level Feynman diagrams for dark matter annihilation within the prescribed setup and to check the consistency of the obtained results, further we apply the constraints as obtained from recently observed Planck 2015 data and Planck + BICEP2 + Keck Array joint data sets. Using all of these derived results we have shown that to satisfy the bound on, ΩDMh2 = 0.1199 ± 0.0027, as from Planck 2015 data, it is possible to put further stringent constraint on r within, 0.01 ≤ r ≤ 0.12, for thermally averaged annihilation cross-section of dark matter, ≈ O(10-28 - 10-27) cm3 / s, which are very useful to constrain various membrane inflationary models.

  11. Thermal Effects in Dense Matter Beyond Mean Field Theory

    CERN Document Server

    Constantinou, Constantinos; Prakash, Madappa

    2016-01-01

    The formalism of next-to-leading order Fermi Liquid Theory is employed to calculate the thermal properties of symmetric nuclear and pure neutron matter in a relativistic many-body theory beyond the mean field level which includes two-loop effects. For all thermal variables, the semi-analytical next-to-leading order corrections reproduce results of the exact numerical calculations for entropies per baryon up to 2. This corresponds to excellent agreement down to sub-nuclear densities for temperatures up to $20$ MeV. In addition to providing physical insights, a rapid evaluation of the equation of state in the homogeneous phase of hot and dense matter is achieved through the use of the zero-temperature Landau effective mass function and its derivatives.

  12. Effective description of dark matter as a viscous fluid

    Directory of Open Access Journals (Sweden)

    Floerchinger Stefan

    2016-01-01

    Full Text Available Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.

  13. Effective description of dark matter as a viscous fluid

    Science.gov (United States)

    Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2016-10-01

    Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.

  14. Effective description of dark matter as a viscous fluid

    CERN Document Server

    Floerchinger, S.; Tetradis, N.; Wiedemann, U.A.

    2016-01-01

    Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.

  15. Can extra dimensional effects allow wormholes without exotic matter?

    Directory of Open Access Journals (Sweden)

    Sayan Kar

    2015-11-01

    Full Text Available We explore the existence of Lorentzian wormholes in the context of an effective on-brane, scalar-tensor theory of gravity. In such theories, the timelike convergence condition, which is always violated for wormholes, has contributions, via the field equations, from on-brane matter as well as from an effective geometric stress energy generated by a bulk-induced radion field. It is shown that, for a class of wormholes, the required on-brane matter, as seen by an on-brane observer in the Jordan frame, is not exotic and does not violate the Weak Energy Condition. The presence of the effective geometric stress energy in addition to on-brane matter is largely responsible for creating this intriguing possibility. Thus, if such wormholes are ever found to exist in the Universe, they would clearly provide pointers towards the existence of a warped extra dimension as proposed in the two-brane model of Randall and Sundrum.

  16. QCD Factorization Approach to Cold Nuclear Matter Effects

    Science.gov (United States)

    Qiu, Jianwe

    2016-09-01

    Cold nuclear matter effects exist in all high energy collisions involving identified nucleus (or nuclei). They have been manifested in very significant ways in e-A and p-A, as well as A-A collisions, where the cold nuclear effect is a part of the initial condition which plays a critical role in determining the outcome of heavy ion collisions. In this talk, I will discuss if it is possible to consistently calculate or extract the cold nuclear effect, the advantage and limitation of QCD factorization approach, and the predictive power or the testability of the QCD calculations.

  17. Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest

    Science.gov (United States)

    Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.

  18. Finite size effects in Neutron Star and Nuclear matter simulations

    CERN Document Server

    Molinelli, P A Giménez

    2014-01-01

    In this work we study molecular dynamics simulations of symmetric nuclear matter using a semi-classical nucleon interaction model. We show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the ``nuclear pasta'' phases expected in Neutron Star Matter simulations, but shaped by artificial aspects of the simulations. We explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. We find that different cells may yield different solutions for the same physical conditions (i.e. density and temperature). The particular shape of the solution at a given density can be predicted analytically by energy minimization. We also show that even if this behavior is due to finite size effects, it does not mean that it vanishes for very large systems and it actually is independent of the system size: The system size sets the only characteristic length scale for the inhomogeneitie...

  19. Z boson mediated dark matter beyond the effective theory

    Science.gov (United States)

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2017-02-01

    Direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter—a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Z boson but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z -mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches.

  20. Detecting inertial effects with airborne matter-wave interferometry

    CERN Document Server

    Geiger, Remi; Stern, Guillaume; Zahzam, Nassim; Cheinet, Patrick; Battelier, Baptiste; Villing, André; Moron, Frédéric; Lours, Michel; Bidel, Yannick; Bresson, Alexandre; Landragin, Arnaud; Bouyer, Philippe

    2011-01-01

    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / \\surdHz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves.

  1. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  2. Detecting inertial effects with airborne matter-wave interferometry.

    Science.gov (United States)

    Geiger, R; Ménoret, V; Stern, G; Zahzam, N; Cheinet, P; Battelier, B; Villing, A; Moron, F; Lours, M; Bidel, Y; Bresson, A; Landragin, A; Bouyer, P

    2011-09-20

    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / √Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves.

  3. The effect of dark matter velocity profile on directional detection of dark matter

    CERN Document Server

    Laha, Ranjan

    2016-01-01

    Directional detection is an important way to detect dark matter. An input to these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distribution in dark matter directional detection experiments. We calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for $^{19}$F and Xe targets. We show that with the use of updated dark matter velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of $\\sim$2 -- 3 less events when compared to that using the Standard Halo Model.

  4. Instability of some divalent rare earth ions and photochromic effect

    OpenAIRE

    Egranov, A. V.; Sizova, T. Yu.; Shendrik, R. Yu.; Smirnova, N. A.

    2015-01-01

    It was shown that the divalent rare earth ions (La, Ce, Gd, Tb, Lu, and Y) in cubic sites in alkaline earth fluorides are unstable with respect to electron autodetachment since its d1(eg) ground state is located in the conduction band which is consistent with the general tendency of these ions in various compounds. The localization of doubly degenerate d1(eg) level in the conduction band creates a configuration instability around the divalent rare earth ion that leading to the formation of an...

  5. On the effective operators for Dark Matter annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Andrea De; Thamm, Andrea [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Monin, Alexander [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Urbano, Alfredo, E-mail: andrea.desimone@sissa.it, E-mail: alexander.monin@epfl.ch, E-mail: andrea.thamm@cern.ch, E-mail: alfredo.urbano@sissa.it [SISSA, via Bonomea 265, I-34136 Trieste (Italy)

    2013-02-01

    We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.

  6. On the effective operators for Dark Matter annihilations

    CERN Document Server

    De Simone, Andrea; Thamm, Andrea; Urbano, Alfredo

    2013-01-01

    We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.

  7. Global effects of agriculture on fluvial dissolved organic matter.

    Science.gov (United States)

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-06

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  8. First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation

    CERN Document Server

    Renshaw, A; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Tomura, T; Ueno, K; Yokozawa, T; Wendell, R A; Irvine, T; Kajita, T; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Berkman, S; Tanaka, H A; Tobayama, S; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhabar, M; Bays, K; Carminati, G; Kropp, W R; Mine, S; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2013-01-01

    We report an indication that the elastic scattering rate of solar $^8$B neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through the Earth during nighttime. We determine the day/night asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, to be $(-3.2\\pm1.1(\\text{stat})\\pm0.5(\\text{syst}))\\%$, which deviates from zero by 2.7 $\\sigma$. Since the elastic scattering process is mostly sensitive to electron-flavored solar neutrinos, a non-zero day/night asymmetry implies that the flavor oscillations of solar neutrinos are affected by the presence of matter within the neutrinos' flight path. Super-Kamiokande's day/night asymmetry is consistent with neutrino oscillations for $3\\times10^{-5}$eV$^2\\leq\\Delta m^2_{21}\\leq9\\times10^{-5}$eV$^2$ and large mixing values of $\\theta_{12}$, at the $68\\%$ C.L.

  9. First indication of terrestrial matter effects on solar neutrino oscillation.

    Science.gov (United States)

    Renshaw, A; Abe, K; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Tomura, T; Ueno, K; Yokozawa, T; Wendell, R A; Irvine, T; Kajita, T; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Berkman, S; Tanaka, H A; Tobayama, S; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhabar, M; Bays, K; Carminati, G; Kropp, W R; Mine, S; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2014-03-07

    We report an indication that the elastic scattering rate of solar B8 neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through Earth during nighttime. We determine the day-night asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, to be [-3.2 ± 1.1(stat) ± 0.5(syst)]%, which deviates from zero by 2.7 σ. Since the elastic scattering process is mostly sensitive to electron-flavored solar neutrinos, a nonzero day-night asymmetry implies that the flavor oscillations of solar neutrinos are affected by the presence of matter within the neutrinos' flight path. Super-Kamiokande's day-night asymmetry is consistent with neutrino oscillations for 4 × 10(-5)  eV(2) ≤ Δm 2(21) ≤ 7 × 10(-5) eV(2) and large mixing values of θ12, at the 68% C.L.

  10. Earth curvature and atmospheric refraction effects on radar signal propagation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-01-01

    The earth isnt flat, and radar beams dont travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  11. Matter Effects on Neutrino Oscillations in Different Supernova Models

    Science.gov (United States)

    Xu, Jing; Hu, Li-Jun; Li, Rui-Cheng; Guo, Xin-Heng; Young, Bing-Lin

    2016-04-01

    In recent years, with the development of simulations about supernova explosion, we have a better understanding about the density profiles and the shock waves in supernovae than before. There might be a reverse shock wave, another sudden change of density except the forward shock wave, or even no shock wave, emerging in the supernova. Instead of using the expression of the crossing probability at the high resonance, PH, we have studied the matter effects on neutrino oscillations in different supernova models. In detail, we have calculated the survival probability of ve (Ps) and the conversion probability of vx (Pc) in the Schrödinger equation within a simplified two-flavor framework for a certain case, in which the neutrino transfers through the supernova matter from an initial flavor eigenstate located at the core of the supernova. Our calculations was based on the data of density in three different supernova models obtained from simulations. In our work, we do not steepen the density gradient around the border of the shock wave, which differs to what was done in most of the other simulations. It is found that the mass and the density distribution of the supernova do make a difference on the behavior of Ps and Pc. With the results of Ps and Pc, we can estimate the number of ve (and vx) remained in the beam after they go through the matter in the supernova. Supported by National Science Foundation of China under Grant Nos. 11175020 and 11275025

  12. Ultrathin organic semiconductor films--soft matter effect.

    Science.gov (United States)

    Wang, Tong; Yan, Donghang

    2014-05-01

    The growth of organic semiconductor thin films has been a crucial issue in organic electronics, especially the growth at the early stages. The thin-film phase has been found to be a common phenomenon in many organic semiconductor thin films, which is closely related with the weak van der Waals interaction between organic molecules, the long-range interaction between organic molecules and the substrate, as well as the soft matter characteristics of ultrathin films. The growth behavior and soft matter characteristics of the thin-film phase have great effects on thin film morphology and structure, for example, the formation and coalescence of grain boundaries, which further influences the performance of organic electronic devices. The understanding of thin-film phase and its intrinsic quality is necessary for fabricating large-size, highly ordered, continuous and defect-free ultrathin films. This review will focus on the growth behavior of organic ultrathin films, i.e., the level of the first several molecular layers, and provide an overview of the soft matter characteristics.

  13. Dark matter directional detection in non-relativistic effective theories

    CERN Document Server

    Catena, Riccardo

    2015-01-01

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF$_4$, CS$_2$ and $^{3}$He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  14. Observations and Effects of Dipolarization Fronts Observed in Earth's Magnetotail

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    Dipolarization fronts in Earth's magnetotail are characterized by sharp jumps in magnetic field, a drop in density, and often follow earthward fast plasma flow. They are commonly detected near the equatorial plane of Earth s tail plasma sheet. Sometimes, but not always, dipolarization fronts are associated with global substorms and auroral brightenings. Both Cluster, THEMIS, and other spacecraft have detected dipolarization fronts in a variety of locations in the magnetotail. Using multi-spacecraft analyses together with simulations, we have investigated the propagation and evolution of some dipolarization events. We have also investigated the acceleration of electrons and ions that results from such magnetic-field changes. In some situations, the velocities of fast earthward flows are comparable to the Alfven speed, indicating that the flow bursts might have been generated by bursty reconnection that occurred tailward of the spacecraft. Based on multi-spacecraft timing analysis, dipolarization fronts are found to propagate mainly earthward at 160-335 km/s and have thicknesses of 900-1500 km, which corresponds to the ion inertial length or gyroradius scale. Following the passage of dipolarization fronts, significant fluctuations are observed in the x and y components of the magnetic field. These peaks in the magnetic field come approximately 1-2 minutes after passage of the dipolarization front. These Bx and By fluctuations propagate primarily dawnward and earthward. Field-aligned electron beams are observed coincident with those magnetic field fluctuations. Non-Maxwellian electron and ion distributions are observed that are associated with the dipolarization that may be unstable to a range of electrostatic and/or whistler instabilities. Enhanced electrostatic broadband noise at frequencies below and near the lower-hybrid frequency is also observed at or very close to these fronts. This broadband noise is thought to play a role in further energizing the particles

  15. Effects of Low Earth Orbit on Docking Seal Materials

    Science.gov (United States)

    Imka, Emily C.; Asmar, Olivia C.; deGroh, Henry C., III; Banks, Bruce A.

    2014-01-01

    Spacecraft docking seals are typically made of silicone elastomers. When such seals are exposed to low Earth orbit (LEO) conditions, they can suffer damage from ultraviolet (UV) radiation and atomic oxygen (AO, or monoatomic oxygen, the predominant oxygen species in LEO). An experiment flew on the International Space Station (ISS) to measure the effects of LEO on seal materials S0383-70 and ELA-SA-401 and various mating counterface materials which included anodized aluminum. Samples flown in different orientations received different amounts of UV and AO. The hypotheses were that most of the damage would be from UV, and 10 days or more of exposure in LEO would badly damage the seals. Eighteen seals were exposed for 543 days in ram (windward), zenith (away from Earth), or wake (leeward) orientations, and 15 control samples (not flown) provided undamaged baseline leakage. To determine post-flight leak rates, each of the 33 seals were placed in an O-ring groove of a leak test fixture and pressure tested over time. Resistance temperature detectors (RTDs), pressure transducers, and LabVIEW (National Instruments) programs were used to measure and analyze the temperature and pressure and calculate leakage. Average leakage of control samples was 2.6 x 10(exp -7) lbs/day. LEO exposure did not considerably damage ELA-SA-401. The S0383-70 flight samples leaked at least 10 times more than ELA-SA-401 in all cases except one, demonstrating that ELA-SA-401 may be a more suitable sealing material in LEO. AO caused greater damage than UV; samples in ram orientation (receiving an AO fluence of 4.3 x 10(exp 21) atoms/(sq cm) and in wake (2.9x 10(exp 20) atoms/(sq cm)) leaked more than those in zenith orientation (1.58 x 10(exp 20) atoms/(sq cm)), whereas variations in UV exposure did not seem to affect the samples. Exposure to LEO did less damage to the seals than hypothesized, and the data did not support the conjecture that UV causes more damage than AO.

  16. Solar Dynamics and Its Effects on the Heliosphere and Earth

    CERN Document Server

    Baker, D. N; Schwartz, S. J; Schwenn, R; Steiger, R

    2007-01-01

    The SOHO and Cluster missions form a single ESA cornerstone. Yet they observe very different regions in our solar system: the solar atmosphere on one hand and the Earth’s magnetosphere on the other. At the same time the Ulysses mission provides observations in the third dimension of the heliosphere, and many others add to the picture from the Lagrangian point L1 to the edge of the heliosphere. It is the aim of this ISSI volume to tie these observations together in addressing the topic of Solar Dynamics and its Effects on the Heliosphere and Earth, thus contributing to the International Living With a Star (ILWS) program. The volume starts out with an assessment and description of the reasons for solar dynamics and how it couples into the heliosphere. The three subsequent sections are each devoted to following one chain of events from the Sun all the way to the Earth’s magnetosphere and ionosphere: The normal solar wind chain, the chain associated with coronal mass ejections, and the solar energetic particl...

  17. Effects of Simulated Rare Earth Recycling Wastewaters on Biological Nitrification.

    Science.gov (United States)

    Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Riman, Richard E; Navrotsky, Alexandra

    2015-08-18

    Increasing rare earth element (REE) supplies by recycling and expanded ore processing will result in generation of new wastewaters. In some cases, disposal to a sewage treatment plant may be favored, but plant performance must be maintained. To assess the potential effects of such wastewaters on biological treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50, and 100 ppm), and the extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions at 50 and 100 ppm inhibited N. europaea, even when virtually all of the REE was insoluble. Provision of TBP with Eu increased N. europaea inhibition, although TBP alone did not substantially alter activity. For N. winogradskyi cultures, Eu or Y additions at all tested levels induced significant inhibition, and nitrification shut down completely with TBP addition. REE solubility was calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, typically controlled by the precipitation of REE hydroxides but also likely affected by the formation of unknown phosphate phases, which determined aqueous concentrations experienced by the microorganisms.

  18. Effects of differentiation on the geodynamics of the early Earth

    Science.gov (United States)

    Piccolo, Andrea; Kaus, Boris; White, Richard; Johnson, Tim

    2016-04-01

    Archean geodynamic processes are not well understood, but there is general agreement that the mantle potential temperature was higher than present, and that as a consequence significant amounts of melt were produced both in the mantle and any overlying crust. This has likely resulted in crustal differentiation. An early attempt to model the geodynamic effects of differentiation was made by Johnson et al. (2014), who used numerical modeling to investigate the crust production and recycling in conjunction with representative phase diagrams (based on the inferred chemical composition of the primary melt in accordance with the Archean temperature field). The results of the simulations show that the base of the over-thickened primary basaltic crust becomes gravitational unstable due to the mineral assemblage changes. This instability leads to the dripping of dense material into the mantle, which causes an asthenospheric return flow, local partial melting and new primary crust generation that is rapidly recycled in to mantle. Whereas they gave important insights, the previous simulations were simplified in a number of aspects: 1) the rheology employed was viscous, and both elasticity and pressure-dependent plasticity were not considered; 2) extracted mantle melts were 100% transformed into volcanic rocks, whereas on the present day Earth only about 20-30% are volcanic and the remainder is plutonic; 3) the effect of a free surface was not studied in a systematic manner. In order to better understand how these simplifications affect the geodynamic models, we here present additional simulations to study the effects of each of these parameters. Johnson, T.E., Brown, M., Kaus, B., and VanTongeren, J.A., 2014, Delamination and recycling of Archaean crust caused by gravitational instabilities: Nature Geoscience, v. 7, no. 1, p. 47-52, doi: 10.1038/NGEO2019.

  19. Primary Study on Effects of New Rare Earth Agro-Materials on Potato

    Institute of Scientific and Technical Information of China (English)

    Yang Qifeng; Mao Wanhu; Wang Jiachen; Xing Guo; Yang Jun; Liu Xiangsheng

    2004-01-01

    Using common phosphate as a check, we studied the growth and yield of potato by new rare earth agro-materials including rare earth phosphate (base fertilizer), rare earth whole plant nutrient fertilizer, and amino acid chelated rare earth ( top dressing), which were used in a single or mixed way in Dingxi city, Gansu Province.The results are as follows that ( 1 ) After using new rare earth materials, the plant height increases by 0.4 ~ 5.6 cm and the ripen period is delayed by 4 ~ 9 d.(2) They can improve the potato economic characteristics, enhance productivity, decrease black leg and late blight.The disease index is decreased by 1.6% ~ 10.6%, single plant potato number increases by 0.3 ~ 0.5, and single plant yield increases by 80 g ~ 130 g.(3) The effect of increased yield is significant, and mixed use is better than single use.In the single material treatments, rare earth phosphate is the best, rare earth whole plant nutrient fertilizer and amino acid chelated rare earth are the second, and the increased rate are 14.5%, 8.4%, 9.2% so the material mixture-rare earth phosphate mixed of rare earth whole plant nutrient fertilizer or with amino acid chelated rare earth is economically useable, and increase rate are 25.2% and 24.4% compared with common phosphate.

  20. The effective field theory of dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam; Haxton, Wick; Katz, Emanuel; Lubbers, Nicholas; Xu, Yiming

    2013-02-01

    We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets — F, Na, Ge, I, and Xe — using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter.

  1. Earth tide effects on kinematic/static GPS positioning in Denmark and Greenland

    DEFF Research Database (Denmark)

    Xu, G.C.; Knudsen, Per

    2000-01-01

    and the position of reference station. With a baseline less than 80 km, the difference of the Earth tide effects could reach more than 5 mm. So, in precise applications of GPS positioning, the Earth tide effect has to be taken into account even for a relative small local GPS network. Several examples are given...

  2. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Extreme states of matter on Earth and in space

    Science.gov (United States)

    Fortov, Vladimir E.

    2009-06-01

    This review is concerned with the results of studies into the behavior of substances at ultimately high pressures and temperatures obtainable by way of kinetic or electromagnetic energy cumulation in laboratory conditions. Also considered are the diversified states of matter and the processes occurring under gravitational forces and thermonuclear energy release.

  3. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.

    2015-01-15

    In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a

  4. Effects of Rare Earth and Alkaline Earth on Spheroidizing of Eutectic Carbides in Low Tungsten White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Fu Hanguang; Zou Dening

    2004-01-01

    Tungsten Alloy White Cast Iron(TAWCI) has great brittleness and narrow application scope. The influences of Rare earth element(Ce) and alkaline earth elements ( K, Na) on the microstructures and performances of TAWCI were researched, and the idea estimating spheroidizing effect of carbides using Circular Degree (C. D) were put forward. The result shows that eutectics carbide tums into sphericity from network after modification, and carbide is refined and uniformly distributed and the C. D of eutectic carbide increases. The mechanism of carbide spheroidizing was analyzed. The impact toughness and wear resistance of TAWCI obviously improve with the rise of C. D of carbides.The service life of modified TAWCI roll is 35 % higher than that of high chromium cast iron roll, and its production cost is reduced by 25 %.

  5. Measurement and clinical effect of grey matter pathology in multiple sclerosis.

    Science.gov (United States)

    Geurts, Jeroen J G; Calabrese, Massimiliano; Fisher, Elizabeth; Rudick, Richard A

    2012-12-01

    During the past 10 years, the intense involvement of the grey matter of the CNS in the pathology of multiple sclerosis has become evident. On gross inspection, demyelination in the grey matter is rather inconspicuous, and lesions in the grey matter are mostly undetectable with traditional MRI sequences. However, the results of immunohistochemical studies have shown extensive involvement of grey matter, and researchers have developed and applied new MRI acquisition methods as a result. Imaging techniques specifically developed to visualise grey matter lesions indicate early involvement, and image analysis techniques designed to measure the volume of grey matter show progressive loss. Together, these techniques have shown that grey matter pathology is associated with neurological and neuropsychological disability, and the strength of this association exceeds that related to white matter lesions or whole brain atrophy. By focusing on the latest insights into the in-vivo measurement of grey matter lesions and atrophy, we can assess their clinical effects.

  6. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    Science.gov (United States)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  7. An analytical treatment for three neutrino oscillations in the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; D' Olivo, J.C.; Supanitsky, A.D. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Mexico, D.F. (Mexico)

    2012-08-15

    A simple, and at the same time accurate, description of the Earth matter effects on the oscillations between three neutrino flavors is given in terms of the Magnus expansion for the evolution operator.

  8. Precision Higgs Physics, Effective Field Theory, and Dark Matter

    Science.gov (United States)

    Henning, Brian Quinn

    The recent discovery of the Higgs boson calls for detailed studies of its properties. As precision measurements are indirect probes of new physics, the appropriate theoretical framework is effective field theory. In the first part of this thesis, we present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on the UV model concerned. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. The covariant derivative expansion dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of renormalization group running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. With a detailed understanding of how to use the SM EFT, we then turn to applications and study in detail two well-motivated test cases. The first is singlet scalar field that enables the first-order electroweak phase transition for baryogenesis; the second example is due to scalar tops in the MSSM. We find both Higgs and electroweak measurements are sensitive probes of these cases. The second part of this thesis centers around dark matter, and consists of two studies. In the first, we examine the effects of relic dark matter annihilations on big bang nucleosynthesis (BBN). The magnitude of these effects scale simply with the dark matter mass and annihilation cross-section, which we derive. Estimates based on these scaling behaviors indicate that BBN severely constrains hadronic and radiative dark

  9. Effects of Plasma Drag on Low Earth Orbiting Satellites due to Heating of Earth's Atmosphere by Coronal Mass Ejections

    CERN Document Server

    Nwankwo, Victor U J

    2013-01-01

    Solar events, such as coronal mass ejections (CMEs) and solar flares, heat up the upper atmosphere and near-Earth space environment. Due to this heating and expansion of the outer atmosphere by the energetic ultraviolet, X-ray and particles expelled from the sun, the low Earth-Orbiting satellites (LEOS) become vulnerable to an enhanced drag force by the ions and molecules of the expanded atmosphere. Out of various types of perturbations, Earth directed CMEs play the most significant role. They are more frequent and intense during the active (solar maximum) phase of the sun's approximately 11-year cycle. As we are approaching another solar maximum later in 2013, it may be instructive to analyse the effects of the past solar cycles on the orbiting satellites using the archival data of space environment parameters as indicators. In this paper, we compute the plasma drag on a model LEOS due to the atmospheric heating by CMEs and other solar events as a function of the solar parameters. Using the current forecast ...

  10. Effects of rare earths on friction and wear characteristics of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    祁庆琚; 刘勇兵; 杨晓红

    2003-01-01

    The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloyAZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are betterthan those of the matrix alloy under the testing conditions. Magnesium alloys undergo transition from mild wear tosevere wear. The addition of rare earths refines the structure of alloys, improves the comprehensive behaviors of themagnesium alloys, increases the stability of oxidation films on worn surfaces, enhances the loading ability of rare-earth magnesium alloys, and delays the transition from mild wear to severe wear effectively.

  11. ADHESION EFFECTS WITHIN THE HARD MATTER – SOFT MATTER INTERFACE: MOLECULAR DYNAMICS

    OpenAIRE

    2016-01-01

    In the present study three soft matter – hard matter systems consisting of different nanomaterials and organic molecules were studied using the steered molecular dynamics approach in order to reveal regularities in the formation of organic-inorganic hybrids and the stability of multimolecular complexes, as well as to analyze the energy aspects of adhesion between bio-molecules and layered ceramics. The combined process free energy estimation (COPFEE) procedure was used for quantitative and qu...

  12. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    Science.gov (United States)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  13. Earth regeneration effect in solar neutrino oscillations an analytic approach

    CERN Document Server

    Lisi, E; Lisi, Eligio; Montanino, Daniele

    1997-01-01

    We present a simple and accurate method for computing analytically the regeneration probabilities of solar neutrinos in the Earth. We apply this method to the calculation of several solar model independent quantities t= han can be measured by the SuperKamiokande and Sudbury Neutrino Observatory experiments.

  14. Tidal effects on Earth, Planets, Sun by far visiting moons

    Science.gov (United States)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  15. climatic and seasonal variations of effective-earth-radius factor and ...

    African Journals Online (AJOL)

    2008-04-12

    Apr 12, 2008 ... Keywords: illicrowave links, effective-earth radius, scale height and line -of-s ight. Introduction. Refractive ... causes bending of a radio ray towards the. Earth, is' normally not ... Table 1 shows the different types of atmospheric ...

  16. On the Fractal Mechanism of Interrelation Between the Genesis, Size and Composition of Atmospheric Particulate Matters in Different Regions of the Earth

    CERN Document Server

    Rusov, Vitaliy D; Jacimovic, Radojko R; Pavlovich, Vladimir N; Bondarchuk, Yuriy A; Vaschenko, Vladimir N; Zelentsova, Tatiana N; Beglaryan, Margarita E; Linnik, Elena P; Smolyar, Vladimir P; Kosenko, Sergey I; Gudyma, Alla A

    2011-01-01

    Experimental data from the National Air Surveillance Network of Japan from 1974 to 1996 and from independent measurements performed simultaneously in the regions of Ljubljana (Slovenia), Odessa (Ukraine) and the Ukrainian "Academician Vernadsky" Antarctic station (64{\\deg}15'W; 65{\\deg}15'S), where the air elemental composition was determined by the standard method of atmospheric particulate matter (PM) collection on nucleopore filters and subsequent neutron activation analysis, were analyzed. Comparative analysis of different pairs of atmospheric PM element concentration data sets, measured in different regions of the Earth, revealed a stable linear (on a logarithmic scale) correlation, showing a power law increase of every atmospheric PM element mass and simultaneously the cause of this increase - fractal nature of atmospheric PM genesis. Within the framework of multifractal geometry we show that the mass (volume) distribution of atmospheric PM elemental components is a log normal distribution, which on a l...

  17. The last gasp of dark matter effective theory

    Science.gov (United States)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-11-01

    We discuss an interesting class of models, based on strongly coupled Dark Matter (DM), where sizable effects can be expected in LHC missing energy (MET) searches, compatibly with a large separation of scales. In this case, an effective field theory (EFT) is appropriate (and sometimes necessary) to describe the most relevant interactions at the LHC. The selection rules implied by the structure of the new strong dynamics shape the EFT in an unusual way, revealing the importance of higher-derivative interactions previously ignored. We compare indications from relic density and direct detection experiments with consistent LHC constraints, and asses the relative importance of the latter. Our analysis provides an interesting and well-motivated scenario to model MET at the LHC in terms of a handful of parameters.

  18. The Last Gasp of Dark Matter Effective Theory

    CERN Document Server

    Bruggisser, Sebastian; Urbano, Alfredo

    2016-01-01

    We discuss an interesting class of models, based on strongly coupled Dark Matter (DM), where sizable effects can be expected in LHC missing energy (MET) searches, compatibly with a large separation of scales. In this case, an effective field theory (EFT) is appropriate (and sometimes necessary) to describe the most relevant interactions at the LHC. The selection rules implied by the structure of the new strong dynamics shape the EFT in an unusual way, revealing the importance of higher-derivative interactions previously ignored. We compare indications from relic density and direct detection experiments with consistent LHC constraints, and asses the relative importance of the latter. Our analysis provides an interesting and well-motivated scenario to model MET at the LHC in terms of a handful of parameters.

  19. From resonantly interacting fermions with effective range to neutron matter

    CERN Document Server

    Lacroix, Denis

    2016-01-01

    A density functional theory is proposed for strongly interacting fermions with arbitrary large negative scattering length. The functional has only two parameters that are directly fixed to reproduce the universal properties of unitary gas: the so-called "Bertsch parameter" $\\xi_0$ and a parameter $\\eta_e$ related to the possible influence of the effective range $r_e$ at infinite scattering length $a$. Using most recent quantum Monte-Carlo (QMC) estimates of these two parameters, it is shown that the functional properly reproduces the experimental measurements of interacting Fermi systems not only at unitarity but also away from this limit over a wide range of $(ak_F)^{-1}$ values. The functional is applied to obtain an expression of the Tan's contact parameter including the effect of $r_e$. Application is finally made to neutron matter. It is shown that most recent QMC results are well reproduced.

  20. The last gasp of Dark Matter effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Bruggisser, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Riva, Francesco; Urbano, Alfredo [CERN, Geneva (Switzerland). Theoretical Physics Dept.

    2016-07-15

    We discuss an interesting class of models, based on strongly coupled Dark Matter (DM), where sizable effects can be expected in LHC missing energy (MET) searches, compatibly with a large separation of scales. In this case, an effective field theory (EFT) is appropriate (and sometimes necessary) to describe the most relevant interactions at the LHC. The selection rules implied by the structure of the new strong dynamics shape the EFT in an unusual way, revealing the importance of higher-derivative interactions previously ignored. We compare indications from relic density and direct detection experiments with consistent LHC constraints, and asses the relative importance of the latter. Our analysis provides an interesting and well-motivated scenario to model MET at the LHC in terms of a handful of parameters.

  1. The last gasp of dark matter effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Bruggisser, Sebastian [DESY,Notkestrasse 85, D-22607 Hamburg (Germany); Riva, Francesco; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)

    2016-11-10

    We discuss an interesting class of models, based on strongly coupled Dark Matter (DM), where sizable effects can be expected in LHC missing energy (MET) searches, compatibly with a large separation of scales. In this case, an effective field theory (EFT) is appropriate (and sometimes necessary) to describe the most relevant interactions at the LHC. The selection rules implied by the structure of the new strong dynamics shape the EFT in an unusual way, revealing the importance of higher-derivative interactions previously ignored. We compare indications from relic density and direct detection experiments with consistent LHC constraints, and asses the relative importance of the latter. Our analysis provides an interesting and well-motivated scenario to model MET at the LHC in terms of a handful of parameters.

  2. Biochar effect on the mineralization of soil organic matter

    Directory of Open Access Journals (Sweden)

    Sander Bruun

    2012-05-01

    Full Text Available The objective of this work was to verify whether the addition of biochar to the soil affects the degradation of litter and of soil organic matter (SOM. In order to investigate the effect of biochar on the mineralization of barley straw, soil was incubated with 14C-labelled barley straw with or without unlabelled biochar. To investigate the effect of straw on the mineralization of biochar, soil was incubated with 14C-labelled biochar with or without straw. In addition, to investigate the effect of biochar on old SOM, a soil labelled by applying labelled straw 40 years ago was incubated with different levels of biochar. All experiments had a control treatment, without any soil amendment. The effect of biochar on the straw mineralization was small and nonsignificant. Without biochar, 48±0.2% of the straw carbon was mineralized within the 451 days of the experiment. In comparison, 45±1.6% of C was mineralized after biochar addition of 1.5 g kg-1. In the SOM-labelled soil, the organic matter mineralized more slowly with the increasing doses of biochar. Biochar addition at 7.7 g kg-1 reduced SOM mineralization from 6.6 to 6.3%, during the experimental period. The addition of 15.5 g kg-1 of biochar reduced the mineralized SOM to 5.7%. There is no evidence of increased degradation of either litter or SOM due to biochar addition; consequently, there is no evidence of decreased stability of SOM.

  3. Systemic and vascular effects of circulating diesel exhaust particulate matter.

    Science.gov (United States)

    Bai, Ni; van Eeden, Stephan F

    2013-11-01

    Numerous studies have found an association between transiently increased particulate matter air pollution and acute adverse cardiovascular health effects; however, the mechanisms underlying these effects are not clear. Translocation of ultra-fine ambient particulate matter has been proposed to play a key role in these acute side effects. This study was designed to determine the contribution of circulating (translocated) diesel exhaust particles (DEPs) to the systemic and vascular effects. C57 mice (10-week) received intravenous DEPs via tail vein injection. Following 1-h post-injection, inflammatory cytokines (IL-1β, IL-6 and TNF-α), peripheral blood cell counts, band cell counts, aortic endothelial function and vascular constriction were assessed. Thoracic aortae were isolated, and endothelial function was examined by measuring acetylcholine (ACh) and sodium nitroprusside (SNP)-stimulated vascular relaxation using a wire myograph. In addition, phenylephrine (PE)-stimulated vasoconstriction was also measured. The amount of DEPs deposited and trapped in tissues (the spleen, liver, lungs and heart) were quantified. Acute systemic DEP exposure caused a significant increase in TNF-α, peripheral neutrophil and band cell counts. ACh and SNP-induced relaxation were not affected by acute systemic DEP exposure, neither was PE-stimulated constriction. There was a significantly increased DEP deposition in the spleen as well as in the liver. No significantly increased DEPs were detected in the lung and heart. Here we show that circulating DEPs induce a systemic response characterized by increased TNF-α, peripheral granulocytes, but does not impact endothelial function. Our study also suggests that circulating particles are rapidly removed from the circulation and predominantly sequestered in the spleen and liver.

  4. The EMC effect of Nuclear Matter with Coulomb Corrections

    Science.gov (United States)

    Li, Shujie; Solvignon, Patricia; Arrington, John; Gaskell, Dave

    2016-09-01

    Extraction of the EMC effect for nuclear matter is of great interest since it allows comparison to theoretical calculations in a regime where ``exact'' nuclear wave functions can be used. Earlier extractions from (e,e') cross sections ignored the contribution of the Coulomb distortion, which can be approximated as an electron energy shift on the order of MeV. Though small, this shift can cause a noticeable change in cross sections in certain kinematic regimes. In this study, we applied Coulomb corrections on the per-nucleon ratios from the published SLAC E139 data and preliminary JLAB E03-103 data. I will show preliminary results for an extrapolation of the EMC ratios from finite nuclei to symmetric nuclear matter, including Coulomb Corrections and examining the sensitivity to different approximations for the nuclear density. The data from two experiments will also be combined to study the nuclear dependence of R =σL /σT . Supported in part by DOE Grant No. DE-AC05-06OR23177, No. DE-AC02-06CH11357, and No. DE-SC0014168.

  5. Effects of Rare Earths on Properties and Microstructure of Automotive Friction Materials

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Lu Liguo; Bai Jing

    2007-01-01

    Rare earth compounds as modifiers used widely in modern friction materials can enhance the interracial binding of constituents of materials and improve the comprehensive properties of materials evidently. However, there are still few reports on application of rare earth in automotive friction materials. In order to study the effect mechanism of rare earths in friction materials, a rare earth compound was selected as additive and the effects of materials doped with or without rare earth on friction and wear properties of materials were studied. The microstructure and worn surface morphology were observed by scanning electron microscopy and the macro performance was discussed. Worn surface element constitution of materials was analyzed by energy dispersive spectroscopy. Effect mechanism of rare earths on friction and wear behaviors of friction materials were discussed. The results show that doping rare earths in friction materials can stabilize friction Coefficient, lower the wear rate of materials and increase the impact strength of materials. The flexibility and fracture resistance of materials is greatly improved. Worn surface of materials doped with rare earth is compact and the surface adhesion is greatly enhanced.

  6. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  7. The effect of matter structure on the gravitational waveform

    CERN Document Server

    Bonvin, Camille; Sturani, Riccardo; Tamanini, Nicola

    2016-01-01

    Third generation ground-based interferometers as well as the planned space-based interferometer LISA are expected to detect a plethora of gravitational wave signals from coalescing binaries at cosmological distance. The emitted gravitational waves propagate in the expanding universe through the inhomogeneous distribution of matter. Here we show that the acceleration of the universe and the peculiar acceleration of the binary with respect to the observer distort the gravitational chirp signal from the simplest General Relativity prediction, affecting parameter estimations for the binaries visible by LISA. We find that the effect due to peculiar acceleration can be much larger than the one due to the universe acceleration, thereby excluding the possibility of using this latter to infer the redshift of the GW source (as previously proposed). Moreover, peculiar accelerations can introduce a bias in the estimation of parameters such as the time of coalescence and the individual masses of the binary. An error in th...

  8. Effects of QCD bound states on dark matter relic abundance

    Science.gov (United States)

    Liew, Seng Pei; Luo, Feng

    2017-02-01

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ˜ 30-100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ˜ 2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.

  9. Effect of ozonation on particulate matter in broiler houses.

    Science.gov (United States)

    Li, Q; Wang, L; Oviedo-Rondón, E; Parnell, C B

    2010-10-01

    The effects of ozonation on particulate matter were studied on a commercial broiler farm. The farm consisted of 4 identical tunnel-ventilated houses (12.8×152.4 m): 2 houses were treated with O3 (maximum concentration 0.1 ppm) and the other 2 served as control units. The particle size distributions of total suspended particulate (TSP) samples from both control and treated houses were found to have very similar profiles with no statistical difference. The TSP concentrations were significantly higher in treated houses as compared with those in control houses, and the mean of the differences was 5.50 mg/m3. In both treated and control houses, there were substantial vertical TSP concentration gradients and the concentrations decreased with height. At broiler chicken height (0.28 m), TSP concentrations were 13±3 mg/m3 in control houses and 17±2 mg/m3 in treated houses. At human breathing height (1.55 m), TSP concentrations were 8±4 mg/m3 in control houses and 7±2 mg/m3 in treated houses. Particle phase NH4+ concentrations were higher in treated houses (ranging from 0.59 to 42.01 mg/m3 with mean=17.49 mg/m3) than in control houses (ranging from 0.34 to 13.55 mg/m3 with mean=4.42 mg/m3). The TSP samples from locations in the vicinity of the farm showed higher concentrations downwind than that upwind, but there were no significant differences observed among different ambient locations for TSP NH4+ concentrations. The results from this study did not show that direct application of ozonation technique has beneficial effects for particulate matter control in broiler houses.

  10. Superficial white matter: effects of age, sex, and hemisphere.

    Science.gov (United States)

    Phillips, Owen R; Clark, Kristi A; Luders, Eileen; Azhir, Ramin; Joshi, Shantanu H; Woods, Roger P; Mazziotta, John C; Toga, Arthur W; Narr, Katherine L

    2013-01-01

    Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18-74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies.

  11. On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC

    CERN Document Server

    Busoni, Giorgio; Morgante, Enrico; Riotto, Antonio

    2014-01-01

    We discuss the limitations to the use of the effective field theory approach to study dark matter at the LHC. We introduce and study a few quantities, some of them independent of the ultraviolet completion of the dark matter theory, which quantify the error made when using effective operators to describe processes with very high momentum transfer. Our criteria indicate up to what cutoff energy scale, and with what precision, the effective description is valid, depending on the dark matter mass and couplings.

  12. Effect of Magnetic Field on the Phase Transition from Nuclear Matter to Quark Matter during Proto-Neutron Star Evolution

    CERN Document Server

    Gupta, V K; Singh, S; Anand, J D; Gupta, Asha

    2002-01-01

    We have studied phase transition from hadron matter to quark matter in the presence of high magnetic fields incorporating the trapped electron neutrinos at finite temperatures. We have used the density dependent quark mass (DDQM) model for the quark phase while the hadron phase is treated in the frame-work of relativistic mean field theory. It is seen that the nuclear energy at phase transition decreases with both magnetic field and temperature. A brief discussion of the effect of magnetic field in supernova explosions and proto-neutron star evolution is given.

  13. When matching matters: Loop effects in Higgs effective theory

    Science.gov (United States)

    Freitas, Ayres; López-Val, David; Plehn, Tilman

    2016-11-01

    Effective Lagrangians are a useful tool for a data-driven approach to physics beyond the Standard Model at the LHC. However, for the new physics scales accessible at the LHC, the effective operator expansion is only relatively slowly converging at best. For tree-level processes, it has been found that the agreement between the effective Lagrangian and a range of UV-complete models depends sensitively on the appropriate definition of the matching. We extend this analysis to the one-loop level, which is relevant for electroweak precision data and Higgs decay to photons. We show that near the scale of electroweak symmetry breaking the validity of the effective theory description can be systematically improved through an appropriate matching procedure. In particular, we find a significant increase in accuracy when including suitable terms suppressed by the Higgs vacuum expectation value in the matching.

  14. Effect of Rare Earths on Corrosion Resisting Properties of Carbon-Manganese Clean Steels

    Institute of Scientific and Technical Information of China (English)

    郭锋; 林勤; 孙学义

    2004-01-01

    Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current icorr, and characteristic potential of pitting Eb. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization.

  15. Effects of QCD bound states on dark matter relic abundance

    CERN Document Server

    Liew, Seng Pei

    2016-01-01

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by $\\sim 30 - 100\\%$ with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach $\\sim 2.5$ TeV. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the B...

  16. Telluric currents have no significant effect on the Earth's core seismicity

    Science.gov (United States)

    Chernogor, L. F.

    2017-01-01

    We show that telluric currents have no effect on the formation of macrofaults in the Earth's crust or on implementation of the intensification regime. This is mainly associated with the weakness of telluric currents and induction of the geomagnetic field.

  17. Single Event Effects Testing For Low Earth Orbit Missions with Neutrons

    Science.gov (United States)

    Reddell, Brandon; O'Neill, Pat; Bailey, Chuck; Nguyen, Kyson

    2015-01-01

    Neutrons can effectively be used to screen electronic parts intended to be used in Low Earth Orbit. This paper compares neutron with proton environments in spacecraft and discusses recent comparison testing.

  18. Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    KaikunWang; KuiZhang; 等

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of Magnesium alloy AZ91D alloy were studied.The different proportion of rare earth elements was added to the AZ91D and the tensile tests were carried out at different temperatures.The experimental results show that at room temperature or at 120℃ the AZ91D's decrease with the increasing amount of the rare earth elements.however,the ductility is improved.The influence of 0.14%Sb(mass fraction)on the AZ91D's strength is like that of rare earth elements(0.2%-0.4%)(mass fraction).Microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%) can fine AZ91D's grain and improve its ductility.

  19. Effects of rare earth elements on the microstructureand properties of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D alloy were studied. The different proportion of rare earth elements was added to the AZ91D and the tensile tests were carried out at different temperatures. The experimental results show that at room temperature or at 120℃ the AZ91D's strength decrease with the increasing amount of the rare earth elements. However, the ductility is improved. The influence of 0.14%Sb (mass fraction) on the AZ91D's strength is like that of rare earth elements (0.2%-0.4%) (mass fraction). Microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%) can fine AZ91D's grain and improve its ductility.

  20. Effect of rare earth elements on the microstructure and property for magnesium alloy AM60B

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of magnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added to AM60B and the tensile tests were carried out under different temperatures. The experimental results show that at room temperature the tensile strength of AM60B can be improved with the addition of rare earth elements. The ductility of which at room or elevated temperature (120℃) can also be improved, and the ductility is to some extent in proportion with the amount of rare earth elements. The ductility at 120℃ is better than that at room temperature. The microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%, mass fraction) can fine AM60B's grain and improve its ductility.

  1. Charge Penetration Effects in Rare-Earth Crystal Fields.

    Science.gov (United States)

    1982-06-01

    Interactions, 3. Three-Parameter Theory of Crystal Fields, Harry Diamond Laboratories HDL-TR-1673 (June 1975). 2R. M. Sternheimer , Phys. Rev., 84 (1951...R. M. Sternheimer , Phys. Rev., 84 (1951), 244. (3) R. E. Watson and A. J. Freeman, Phys. Rev., 135 (1964), A1209. (4) D. Sengupta and J. 0. Artman...A RARE-EARTH ION INTO THE CHARGE DI! THE RESULTS ARE CAST INTO A FORM REMINISCENT OF THE STERNHEIMER SHIELDING FA( A PRIME NM(R TO THE NTH POWER) TO

  2. An Assessment of Relativistic Effects for Low Earth Orbiters: The GRACE Satellites

    Science.gov (United States)

    2007-01-01

    IOP PUBLISHING METROLOGIA Metrologia 44 (2007) 484–490 doi:10.1088/0026-1394/44/6/007 An assessment of relativistic effects for low Earth orbiters...for the larger-eccentricity orbit is shown in figure 2(b). Metrologia , 44 (2007) 484–490 485 K M Larson et al Figure 1. Amplitude of the once/rev...486 Metrologia , 44 (2007) 484–490 Assessment of relativistic effects for low Earth orbiters combination was launched on TOPEX in 1992. Unfortunately

  3. Effects of warming on stream biofilm organic matter use capabilities.

    Science.gov (United States)

    Ylla, Irene; Canhoto, Cristina; Romaní, Anna M

    2014-07-01

    The understanding of ecosystem responses to changing environmental conditions is becoming increasingly relevant in the context of global warming. Microbial biofilm communities in streams play a key role in organic matter cycling which might be modulated by shifts in flowing water temperature. In this study, we performed an experiment at the Candal stream (Portugal) longitudinally divided into two reaches: a control half and an experimental half where water temperature was 3 °C above that of the basal stream water. Biofilm colonization was monitored during 42 days in the two stream halves. Changes in biofilm function (extracellular enzyme activities and carbon substrate utilization profiles) as well as chlorophyll a and prokaryote densities were analyzed. The biofilm in the experimental half showed a higher capacity to decompose cellulose, hemicellulose, lignin, and peptidic compounds. Total leucine-aminopeptidase, cellobiohydrolase and β-xylosidase showed a respective 93, 66, and 61% increase in activity over the control; much higher than would be predicted by only the direct temperature physical effect. In contrast, phosphatase and lipase activity showed the lowest sensitivity to temperature. The biofilms from the experimental half also showed a distinct functional fingerprint and higher carbon usage diversity and richness, especially due to a wider use of polymers and carbohydrates. The changes in the biofilm functional capabilities might be indirectly affected by the higher prokaryote and chlorophyll density measured in the biofilm of the experimental half. The present study provides evidence that a realistic stream temperature increase by 3 °C changes the biofilm metabolism to a greater decomposition of polymeric complex compounds and peptides but lower decomposition of lipids. This might affect stream organic matter cycling and the transfer of carbon to higher trophic levels.

  4. [Effect of treatments of hydrogen peroxide and sodium dithionite-citrate-bicarbonate on clay minerals of red earth sediments].

    Science.gov (United States)

    Li, Rong-Biao; Hong, Han-Lie; Yin, Ke; Wang, Chao-Wen; Gao, Wen-Peng; Han, Wen; Wu, Qing-Feng

    2013-04-01

    As classical procedures for pretreatment of soil sediments, hydrogen peroxide (H2O2) and sodium dithionite-citrate-bicarbonate (DCB) treatment methods are very important in removing the organic matter and iron oxides acting as cementing agents in the soils. However, both of these methods have less been focused on the effect on the clay minerals when separating. Here, we report the comparable methods between H2O2 and DCB to reveal their effect on clay minerals in red earth sediments using X-ray diffraction (XRD). The XRD results suggested that mineral particles can be totally decentralized by either H2O2 or DCB method in the soils and high purity clay minerals can be obtained by separating quartz and other impurities from clay minerals effectively. However, the XRD data were distorted by the DCB treatment owning to the cation exchange between Na+ and interlayer cation. On the contrary, the authentic data can be obtained by H2O2 treatment. Therefore, the H2O2 treatment seems to be a more appropriate method to obtain authentic information of clay mineralogy when separating of clay minerals from red earth sediments.

  5. The Effect of the Earth's Atmosphere on LSST Photometry

    Energy Technology Data Exchange (ETDEWEB)

    Rahlin, Alexandra S.; /MIT /SLAC

    2006-08-30

    The Large Synoptic Survey Telescope (LSST), a ground-based telescope currently under development, will allow a thorough study of dark energy by measuring, more completely and accurately than previously, the rate of expansion of the universe and the large-scale structure of the matter in it. The telescope utilizes a broadband photometric system of six wavelength bands to measure the redshifts of distant objects. The earth's atmosphere makes it difficult to acquire accurate data, since some of the light passing through the atmosphere is scattered or absorbed due to Rayleigh scattering, molecular absorption, and aerosol scattering. Changes in the atmospheric extinction distribution due to each of these three processes were simulated by altering the parameters of a sample atmospheric distribution. Spectral energy distributions of standard stars were used to simulate data acquired by the telescope. The effects of changes in the atmospheric parameters on the photon flux measurements through each wavelength band were observed in order to determine which atmospheric conditions must be monitored most closely to achieve the desired 1% uncertainty on flux values. It was found that changes in the Rayleigh scattering parameter produced the most significant variations in the data; therefore, the molecular volume density (pressure) must be measured with at most 8% uncertainty. The molecular absorption parameters produced less significant variations and could be measured with at most 62% uncertainty. The aerosol scattering parameters produced almost negligible variations in the data and could be measured with > 100% uncertainty. These atmospheric effects were found to be almost independent of the redshift of the light source. The results of this study will aid the design of the atmospheric monitoring systems for the LSST.

  6. Colors of a Second Earth II: Effects of Clouds on Photometric Characterization of Earth-like Exoplanets

    CERN Document Server

    Fujii, Yuka; Suto, Yasushi; Fukuda, Satoru; Nakajima, Teruyuki; Livengood, Timothy A; Turner, Edwin L

    2011-01-01

    As a test-bed for future investigations of directly imaged terrestrial exoplanets, we present the recovery of the surface components of the Earth from multi-band diurnal light curves obtained with the EPOXI spacecraft. We find that the presence and longitudinal distribution of ocean, soil and vegetation are reasonably well reproduced by fitting the observed color variations with a simplified model composed of a priori known albedo spectra of ocean, soil, vegetation, snow and clouds. The effect of atmosphere, including clouds, on light scattered from surface components is modeled using a radiative transfer code. The required noise levels for future observations of exoplanets are also determined. Our model-dependent approach allows us to infer the presence of major elements of the planet (in the case of the Earth, clouds and ocean) with observations having S/N $\\gtrsim 10$ in most cases and with high confidence if S/N $\\gtrsim 20$. In addition, S/N $\\gtrsim 100$ enables us to detect the presence of components o...

  7. Effective Model Approach to the Dense State of QCD Matter

    CERN Document Server

    Fukushima, Kenji

    2010-01-01

    The first-principle approach to the dense state of QCD matter, i.e. the lattice-QCD simulation at finite baryon density, is not under theoretical control for the moment. The effective model study based on QCD symmetries is a practical alternative. However the model parameters that are fixed by hadronic properties in the vacuum may have unknown dependence on the baryon chemical potential. We propose a new prescription to constrain the effective model parameters by the matching condition with the thermal Statistical Model. In the transitional region where thermal quantities blow up in the Statistical Model, deconfined quarks and gluons should smoothly take over the relevant degrees of freedom from hadrons and resonances. We use the Polyakov-loop coupled Nambu--Jona-Lasinio (PNJL) model as an effective description in the quark side and show how the matching condition is satisfied by a simple ansatz on the Polyakov loop potential. Our results favor a phase diagram with the chiral phase transition located at sligh...

  8. The effect of EarthPulse on learning of declarative knowledge

    Science.gov (United States)

    McKinney, Heather E.

    The purpose of this double-blind, bio-medical research study was to investigate the effect of EarthPulse, a brainwave entrainment and pulsed electromagnetic field (PEMF) device, on learning of declarative knowledge. Currently, PEMF research explores physiological and psychological effects but a gap exists in the potential effects of PEMF on learning. The study explored whether a relationship existed between receiving a thirty minute EarthPulse treatment on the "Entrain Up" setting and learning of declarative knowledge; whether the relationship remained over time; whether EarthPulse had an effect on sleep; and whether EarthPulse had an effect on attrition. Ninety-eight, randomly assigned, undergraduate students participated in this double-blind, experimental design study, of which 87 remained after attrition. After receiving a thirty minute EarthPulse or placebo treatment, experimental and control groups read identical passages and completed identical instruments to test learning and retention of declarative knowledge. Participants completed the same test in two intervals: an immediate (learning) and delayed (retention) posttest. Assumptions for normality and reliability were met. One-way ANOVA revealed no statistically significant effects on learning or retention at the 0.05 level. However, Chi square analysis revealed those who received the EarthPulse treatment were significantly less likely to fall asleep than those who received the control treatment (p=0.022) and very closely approached significance for attrition (p=0.051).

  9. Galactic Cosmic Rays - Clouds Effect and Bifurcation Model of the Earth Global Climate. Part 1. Theory

    CERN Document Server

    Rusov, V; Vaschenko, V; Mihalys, O; Kosenko, S; Mavrodiev, S; Vachev, B

    2008-01-01

    The possible physical linkage between galactic cosmic rays intensity and the Earth's cloud cover is discussed using the analysis of the first indirect aerosol effect (Twomey effect) and its experimental representation as the dependence of average cloud droplet effective radius on aerosol index characterizing the aerosol concentration in the atmospheric air column of unit section. It is shown that the basic kinetic equation of the Earth's climate energy-balance model is described by the bifurcation equation (with respect to the temperature of the Earth's surface) in the form of fold catastrophe with two governing parameters defining the variations of insolation and Earth's magnetic field (or galactic cosmic rays intensity in the atmosphere), respectively. The principle of hierarchical climatic models construction, which consists in the structural invariance of balance equations of these models evolving on the different time scales, is described. It means that if the system of equations of multizonal weather mo...

  10. Effect of CP violation in the singlet-doublet dark matter model

    Directory of Open Access Journals (Sweden)

    Tomohiro Abe

    2017-08-01

    Full Text Available We revisit the singlet-doublet dark matter model with a special emphasis on the effect of CP violation on the dark matter phenomenology. The CP violation in the dark sector induces a pseudoscalar interaction of a fermionic dark matter candidate with the SM Higgs boson. The pseudoscalar interaction helps the dark matter candidate evade the strong constraints from the dark matter direct detection experiments. We show that the model can explain the measured value of the dark matter density even if dark matter direct detection experiments do not observe any signal. We also show that the electron electric dipole moment is an important complement to the direct detection for testing this model. Its value is smaller than the current upper bound but within the reach of future experiments.

  11. Effect of Rare Earth Elements on Depositing Rate of Nickel Alloy Brush Plating Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.

  12. Effect of Rare Earth Elements on Exchange Performances of Cesium Ion-Sieve

    Institute of Scientific and Technical Information of China (English)

    张惠源; 王榕树; 林灿生; 张先业

    2003-01-01

    The exchange performances and the distribution coefficient of Cesium Ion-Sieve (Cs-IS) for cesium and for some rare earth elements were compared. In particular, the effects of neodymium on the cesium ion exchange and the Cs+ selectivity variation on Cs-IS owing to introduction of rare earth elements into HLLW were studied. Though rare earth elements exhibit a small influence on the distribution coefficient for Cs+, they impair Cs-exchange capacity of Cs-IS to some extent. This interruption on the selectivity to Cs+ can be significantly eliminated provided an appropriate ratio of liquid to solid V:m is used.

  13. Effect of rare earth substitution in cobalt ferrite bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Bulai, G., E-mail: georgiana.bulai@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi (Romania); Diamandescu, L. [National Institute of Material Physics, P.O. Box MG-7, 07125 Bucharest (Romania); Dumitru, I.; Gurlui, S. [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi (Romania); Feder, M. [National Institute of Material Physics, P.O. Box MG-7, 07125 Bucharest (Romania); Caltun, O.F. [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, nr. 11, 700506 Iasi (Romania)

    2015-09-15

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm{sup −3} decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe{sub 2}O{sub 4} sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples.

  14. Effect of Seismic Permanent Deformation on Safety and Stability of Earth-Rock Dam Slope

    Institute of Scientific and Technical Information of China (English)

    戚蓝; 陈启振; 蔡建成

    2015-01-01

    In order to study the effect of seismic permanent deformation on the safety and stability of earth-rock dam, the permanent deformation is considered as the non-design permanent load, and the stress-strain hysteresis curve is also considered when the earth is under cyclic load. The research work can make the calculation results of plastic col-lapse more accurate by including the effect of the post-earthquake degree of plastic deformation on the stability of the earth-rock dam, and the dam safety factor decreases from 2.50 to 1.90 after the magnitude-8 earthquake. Moreover, the research work will also improve the design of the earth-rock dam under abnormal operating conditions.

  15. Effects of Rare Earths on Properties of Ti-Zr-Cu-Ni Base Brazing Filler Alloys

    Institute of Scientific and Technical Information of China (English)

    Ma Tianjun; Kang Hui; Wu Yongqin; Qu Ping

    2004-01-01

    The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.

  16. Effect of ambient particulate matter expousre on hemostasis

    Science.gov (United States)

    Epidemiological studies have linked levels of particulate matter (PM) in ambient air to cardiovascular mortality and hospitalizations for myocardial infarction (MI) and stroke. Thrombus formation plays a primary role in potentiating acute cardiovascular events, and this study was...

  17. Combined analysis of effective Higgs portal dark matter models

    CERN Document Server

    Beniwal, Ankit; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Williams, Anthony

    2015-01-01

    We combine and extend the analyses of effective scalar, vector, Majorana and Dirac fermion Higgs portal models of Dark Matter (DM), in which DM couples to the Standard Model (SM) Higgs boson via an operator of the form $\\mathcal{O}_{\\textrm{DM}}\\, H^\\dagger H$. For the fermion models, we take an admixture of scalar $\\overline{\\psi} \\psi$ and pseudoscalar $\\overline{\\psi} i\\gamma_5 \\psi$ interaction terms. For each model, we apply constraints on the parameter space based on the Planck measured DM relic density and the LHC limits on the Higgs invisible branching ratio. For the first time, we perform a consistent study of the indirect detection prospects for these models based on the WMAP7/Planck observations of the CMB, a combined analysis of 15 dwarf spheroidal galaxies by Fermi-LAT and the upcoming Cherenkov Telescope Array (CTA). We also perform a correct treatment of the momentum-dependent direct search cross-section that arises from the pseudoscalar interaction term in the fermionic DM theories. We find, i...

  18. Spatial Temporal Modelling of Particulate Matter for Health Effects Studies

    Science.gov (United States)

    Hamm, N. A. S.

    2016-10-01

    Epidemiological studies of the health effects of air pollution require estimation of individual exposure. It is not possible to obtain measurements at all relevant locations so it is necessary to predict at these space-time locations, either on the basis of dispersion from emission sources or by interpolating observations. This study used data obtained from a low-cost sensor network of 32 air quality monitoring stations in the Dutch city of Eindhoven, which make up the ILM (innovative air (quality) measurement system). These stations currently provide PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in diameter), aggregated to hourly means. The data provide an unprecedented level of spatial and temporal detail for a city of this size. Despite these benefits the time series of measurements is characterized by missing values and noisy values. In this paper a space-time analysis is presented that is based on a dynamic model for the temporal component and a Gaussian process geostatistical for the spatial component. Spatial-temporal variability was dominated by the temporal component, although the spatial variability was also substantial. The model delivered accurate predictions for both isolated missing values and 24-hour periods of missing values (RMSE = 1.4 μg m-3 and 1.8 μg m-3 respectively). Outliers could be detected by comparison to the 95% prediction interval. The model shows promise for predicting missing values, outlier detection and for mapping to support health impact studies.

  19. Effects of mixed rare earth fertilizer on yield and nutrient quality of leafy vegetables during different seasons

    Institute of Scientific and Technical Information of China (English)

    任艳军; 任学军; 马建军; 闫立英

    2016-01-01

    Using Chinese cabbage and rape as test material and examining the same soil conditions at different seasons (spring and autumn), the effects of mixed rare earth fertilizer on the yield and nutrient quality of leafy vegetables were studied to provide a theo-retical basis for the application of mixed rare earth fertilizer in agriculture. Results showed a seasonal difference in the nutrient quality of Chinese cabbage and rape. For crops planted in autumn, the soluble sugar and vitamin C content were higher, the titratable acid and nitrate content were lower, and the sugar acid ratio was higher relative to crops planted in spring. Mixed rare earth treatments pro-moted growth of both crops during both seasons. The plot yield, stem and leaf fresh and dry matter weight, and dry and fresh ratio in-creased. These increases for Chinese cabbage were greater in autumn than in spring while for rape, the increases were greater in spring than autumn. The soluble sugar content, titratable acid content and sugar acid ratio were increased and the nitrate content de-creased, in autumn the effects were more obvious than in spring. In spring, the vitamin C content was increased, and the increase was greater for Chinese cabbage than rape. In autumn, the vitamin C content decreased, and the decrease was greater for rape than Chinese cabbage. At the same time, the content of heavy metals such as Cu, Zn, Cd, Pb and Ni in stems and leaves decreased. This decrease was greater in spring for Chinese cabbage and in autumn for rape.

  20. The effects of phase boundary induced layering on the Earth's thermal history

    Science.gov (United States)

    Butler, S. L.

    2009-12-01

    The convective Urey ratio is equal to the instantaneous heating generated in the Earth's mantle by radioactive decay divided by the contribution of convection in Earth's mantle to Earth's surface heat flow. The measured heat flow at the Earth's surface as well as geochemical models for radioactive abundances give relatively low modern-day convective Urey ratios of roughly 0.4 while early parameterized modelling studies that treated the internal heating rate as a free parameter indicated relatively high modern-day Urey ratios of at least 0.6. Seismic tomographic images of subducting slabs and numerical simulations of convection in Earth's mantle indicate that convection is partially layered by the endothermic phase transition at 660-km depth in the mantle. In numerical simulations, the 660-km depth phase transition also leads to increased time-dependence of the mantle flow and mantle `avalanches'. Incomplete layering has been proposed as a mechanism that could store heat in Earth's lower mantle early in Earth's evolution and release it at later times when the degree of layering decreases thus allowing for the modern-day surface heat flow with a relatively low internal heating rate. In this contribution, the Earth's thermal history is simulated using both dynamic models of mantle circulation that include the effects of the mantle phase transitions and parametrized models of mantle heat transfer. In particular, we will show that for dynamic models with Earth-like parameters describing the 660-km-depth phase boundary that, although the mass flux at 660-km depth is partially impeded and avalanching takes place, the long-term evolution of the surface heat flow is very similar to models with no phase boundary induced layering and hence incomplete mantle layering is not a likely solution of the mantle heat flow paradox.

  1. Possible resonance effect of axionic dark matter in S/N/S Josephson junctions

    CERN Document Server

    Beck, Christian

    2013-01-01

    We provide theoretical arguments that dark matter axions from the galactic halo that pass through the earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on uniqueness of the gauge-invariant axion Josephson phase angle modulo 2 pi and is predicted to produce a small Shapiro step-like feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed in [C. Hoffmann et al. PRB 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass of 0.11 meV and a local galactic axionic dark matter density of 0.05 GeV/cm^3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.

  2. Opposing effects of different soil organic matter fractions on crop yields.

    Science.gov (United States)

    Wood, Stephen A; Sokol, Noah; Bell, Colin W; Bradford, Mark A; Naeem, Shahid; Wallenstein, Matthew D; Palm, Cheryl A

    2016-10-01

    Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes.

  3. Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs

    Science.gov (United States)

    Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.

    2005-05-01

    Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA

  4. Effect of the shrinking dipole on solar-terrestrial energy input to the Earth's atmosphere

    Science.gov (United States)

    McPherron, R. L.

    2011-12-01

    The global average temperature of the Earth is rising rapidly. This rise is primarily attributed to the release of greenhouse gases as a result of human activity. However, it has been argued that changes in radiation from the Sun might play a role. Most energy input to the Earth is light in the visible spectrum. Our best measurements suggest this power input has been constant for the last 40 years (the space age) apart from a small 11-year variation due to the solar cycle of sunspot activity. Another possible energy input from the Sun is the solar wind. The supersonic solar wind carries the magnetic field of the Sun into the solar system. As it passes the Earth it can connect to the Earth's magnetic field whenever it is antiparallel t the Earth's field. This connection allows mass, momentum, and energy from the solar wind to enter the magnetosphere producing geomagnetic activity. Ultimately much of this energy is deposited at high latitudes in the form of particle precipitation (aurora) and heating by electrical currents. Although the energy input by this process is miniscule compared to that from visible radiation it might alter the absorption of visible radiation. Two other processes affected by the solar cycle are atmospheric entry of galactic cosmic rays (GCR) and solar energetic protons (SEP). A weak solar magnetic field at sunspot minimum facilitates GCR entry which has been implicated in creation of clouds. Large coronal mass ejections and solar flares create SEP at solar maximum. All of these alternative energy inputs and their effects depend on the strength of the Earth's magnetic field. Currently the Earth's field is decreasing rapidly and conceivably might reverse polarity in 1000 years. In this paper we describe the changes in the Earth's magnetic field and how this might affect GCR, SEP, electrical heating, aurora, and radio propagation. Whether these effects are important in global climate change can only be determined by detailed physical models.

  5. Effects of rare earth elements on callus growth, soluble protein ...

    African Journals Online (AJOL)

    USER

    2010-04-19

    Apr 19, 2010 ... The effects of La3+ on soluble protein content, peroxidase activity and shoot differentiation of callus were ... enzymes activity, nitrogen metabolism of in vitro culture .... ion might produce different effects on cell growth through.

  6. Neutron reflection from condensed matter, the Goos-Haenchen effect and coherence

    Energy Technology Data Exchange (ETDEWEB)

    Ignatovich, V.K

    2004-02-23

    The Goos-Haenchen (GH) effect for neutron reflection from condensed matter is considered. An experiment to quantify the effect is proposed. The relation of GH shift to the neutron coherence length is considered.

  7. The Effects of Cold Dark Matter on Big Bang Nucleosynthesis.

    Science.gov (United States)

    Parker, Ronald John David

    We show that the annihilation of cold, weakly -interacting dark matter candidates (chi) subsequent to chichi freeze -out can significantly affect the primordial abundance of light elements. The largest effects are (1) between the n/p freeze-out temperature (T ~eq 0.7 MeV) and the onset of nucleosynthesis at T ~eq 0.1 MeV, chichi annihilations increase the n/p ratio, leading to increased ^4He production; (2) following ^4He synthesis, baryonic products n,n,p of chichi annihilations dissociate some the the ^4He into D and ^3He, leading to increased D + ^3He abundances; (3) toward the end of nucleosynthesis, neutrons from chi chi annihilation lead to n + ^7 Be to p + ^7 Li, resulting in increased ^7Li + ^7Be production for low values of eta equiv n_{rm b}/n _gamma and decreased ^7 Li + ^7Be production for large eta, and (4) long after nucleosynthesis, once the universe cools below T ~eq 1 keV, the electromagnetic shower produced by electrons, positrons and photons from residual chichi annihilations cause further dissociation of ^4He, leading to increased CD + ^3He abundances. The most important result is that for Direc and Majorna neutrinos, the ^7 Li constraints on eta from SBBN are noticeably affected, with larger values of eta being favored. A summary of scattering rates for processes in the electromagnetic shower, containing corrections to numerous misprints in other sources, is presented in an Appendix. A listing of FORTRAN code used in the shower calculation is also included. Finally, the results are discussed in the light of Maharishi's Vedic Science, an ancient science which presents both knowledge and experience of the transcendental basis of life.

  8. Extra U(1), effective operators, anomalies and dark matter

    CERN Document Server

    Dudas, Emilian; Mambrini, Yann; Zaldivar, Bryan

    2013-01-01

    A general analysis is performed on the dimension-six operators mixing an almost hidden Z' to the Standard Model (SM), when the Z' communicates with the SM via heavy mediators. These are fermions charged under both Z' and the SM, while all SM fermions are neutral under Z'. We classify the operators as a function of the gauge anomalies behaviour of mediators and explicitly compute the dimension-six operators coupling Z' to gluons, generated at one-loop by chiral but anomaly-free, sets of fermion mediators. We prove that only one operator contribute to the couplings between Z' charged matter and on-shell gluons. We then make a complete phenomenological analysis of the scenario where the lightest fermion charged under Z' is the dark matter candidate. Combining results from WMAP/PLANCK data, mono-jet searches at LHC, and direct/indirect dark matter detections restrict considerably the allowed parameter space.

  9. Genetic Toxic Effects of Rare-earth Waste and Its Products on Peacock Fish

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; LIU Shi-ying; WU Yi-ning; DU Chang-jie

    2003-01-01

    The micro-nuclei and abnormal nuclei rates of peacock fish are tested,genetic toxic effects of rare-earth waste and its products(cement,plastic) on peacock in water are investigated.Results show that the leachate of rare-earth waste can lead to micronuclei and abnormal nuclei rates of peacock fish an obvious increase(P<0.01). Products made of the waste cause the micronuclei rate to be increased because of its low radio active action,but the change in abnormal nuclei rate can't reach a remarkable level.It shows that rare-earth waste has a certain effect of causing mutation on aquatic organism.Harmfulness of products made from this waste is decreased largely,and resources can be effectively saved.

  10. The Effect of Massive Neutrinos on Matter Power Spectrum

    CERN Document Server

    Agarwal, Shankar

    2010-01-01

    We investigate the impact of massive neutrinos on the distribution of matter in the semi-nonlinear regime (0.1matter power spectrum, resulting from the free-streaming of massive neutrinos out of high-density regions. Our simulations show a power suppression of 3.5%-90% at k~0.6 h Mpc^{-1} for total neutrino mass, \\Sigma m_{\

  11. Promoter Effects of Rare Earth Ions on Electrocatalytic Oxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The promoter effects of rare earth ions on the electrocatalytic oxidation of methanol at the Pt electrode were studied using the cyclic voltammetry and stable polarization techniques. It was found for the first time that Eu、Ho、Dy ions could accelerate the electrocatalytic oxidation of methanol at the Pt electrode, while Lu、Pr、Yb、Sm ions showed inhibitor effects.

  12. The effect of SST emissions on the earth's ozone layer

    Science.gov (United States)

    Whitten, R. C.; Turco, R. P.

    1974-01-01

    The work presented here is directed toward assessment of environmental effects of the supersonic transport (SST). The model used for the purpose includes vertical eddy transport and the photochemistry of the O-H-N system. It is found that the flight altitude has a pronounced effect on ozone depletion. The largest ozone reduction occurs for NO deposition above an altitude of 20 km.

  13. Plasma and magnetic field variations in the distant magnetotail associated with near-earth substorm effects

    Science.gov (United States)

    Baker, D. N.; Bame, S. J.; Mccomas, D. J.; Zwickl, R. D.; Slavin, J. A.; Smith, E. J.

    1987-01-01

    Examination of many individual event periods in the ISEE 3 deep-tail data set has suggested that magnetospheric substorms produce a characteristic pattern of effects in the distant magnetotail. During the growth, or tail-energy-storage phase of substorms, the magnetotail appears to grow diametrically in size, often by many earth radii. Subsequently, after the substorm expansive phase onset at earth, the distant tail undergoes a sequence of plasma, field, and energetic-particle variations as large-scale plasmoids move rapidly down the tail following their disconnection from the near-earth plasma sheet. ISEE 3 data are appropriate for the study of these effects since the spacecraft remained fixed within the nominal tail location for long periods. Using newly available auroral electrojet indices (AE and AL) and Geo particle data to time substorm onsets at earth, superposed epoch analyses of ISEE 3 and near-earth data prior to, and following, substorm expansive phase onsets have been performed. These analyses quantify and extend substantially the understanding of the deep-tail pattern of response to global substorm-induced dynamical effects.

  14. Correction on Effect of Earth's Oblateness in Inversion of GPS Occultation Data

    Institute of Scientific and Technical Information of China (English)

    XU Xiaohua; LI Zhenghang; LUO Jia

    2005-01-01

    By using observed CHAMP orbit ephemeredes and MSISE-90 dry air model and regarding the earth as a sphere and an ellipsoid respectively, phase delays are simulated and the simulated data are retrieved under different schemes. The comparison between the inverted temperature profiles and the model temperature profiles shows that by inverting observed data, we will get temperature results with large errors if the effect of Earth's oblateness is omitted. The correction method is proved to be effective because the temperature errors decreased obviously with this method.

  15. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect

    CERN Document Server

    Dauphas, N

    2015-01-01

    This study reports the bulk rare earth element (REEs, La-Lu) compositions of 41 chondrites, including 32 falls and 9 finds from carbonaceous (CI, CM, CO and CV), enstatite (EH and EL) and ordinary (H, L and LL) groups, as well as 2 enstatite achondrites (aubrite). The CI-chondrite-normalized REE patterns and Eu anomalies in ordinary and enstatite chondrites show more scatter in more metamorphosed than in unequilibrated chondrites. This is due to parent-body redistribution of the REEs in various carrier phases during metamorphism. The dispersion in REE patterns of equilibrated ordinary chondrites is explained by the nugget effect associated with concentration of REEs in minor phosphate grains. Terrestrial rocks and samples from ordinary and enstatite chondrites display negative Tm anomalies of ~-4.5 % relative to ca chondrites. In contrast, CM, CO and CV (except Allende) show no significant Tm anomalies. Allende CV chondrite shows large excess Tm (~+10 %). These anomalies are similar to those found in group II...

  16. Lensing effects of misaligned disks in dark matter halos

    NARCIS (Netherlands)

    Quadri, R.; Möller, O.; Natarajan, P.

    2002-01-01

    Published in: Astrophys. J. 597 (2003) 659-671 citations recorded in [Science Citation Index] Abstract: We study the observational signatures of the lensing signal produced by dark matter halos with embedded misaligned disks. This issue is of particular interest at the present time since most of the

  17. Matter composition at high density by effective scaled lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)

    1998-06-01

    We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)

  18. Parametric resonance in neutrino oscillation: A guide to control the effects of inhomogeneous matter density

    Science.gov (United States)

    Koike, Masafumi; Ota, Toshihiko; Saito, Masako; Sato, Joe

    2016-08-01

    Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.

  19. Parametric Resonance in Neutrino Oscillation: A Guide to Control the Effects of Inhomogeneous Matter Density

    CERN Document Server

    Koike, Masafumi; Saito, Masako; Sato, Joe

    2016-01-01

    Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.

  20. The effect of fire on soil organic matter--a review.

    Science.gov (United States)

    González-Pérez, José A; González-Vila, Francisco J; Almendros, Gonzalo; Knicker, Heike

    2004-08-01

    The extent of the soil organic carbon pool doubles that present in the atmosphere and is about two to three times greater than that accumulated in living organisms in all Earth's terrestrial ecosystems. In such a scenario, one of the several ecological and environmental impacts of fires is that biomass burning is a significant source of greenhouse gases responsible for global warming. Nevertheless, the oxidation of biomass is usually incomplete and a range of pyrolysis compounds and particulate organic matter (OM) in aerosols are produced simultaneously to the thermal modification of pre-existing C forms in soil. These changes lead to the evolution of the OM to "pyromorphic humus", composed by rearranged macromolecular substances of weak colloidal properties and an enhanced resistance against chemical and biological degradation. Hence the occurrence of fires in both undisturbed and agricultural ecosystems may produce long-lasting effects on soils' OM composition and dynamics. Due to the large extent of the C pool in soils, small deviations in the different C forms may also have a significant effect in the global C balance and consequently on climate change. This paper reviews the effect of forest fires on the quantity and quality of soils' OM. It is focused mainly on the most stable pool of soil C; i.e., that having a large residence time, composed of free lipids, colloidal fractions, including humic acids (HA) and fulvic acids (FA), and other resilient forms. The main transformations exerted by fire on soil humus include the accumulation of new particulate C forms highly resistant to oxidation and biological degradation including the so-called "black carbon" (BC). Controversial environmental implications of such processes, specifically in the stabilisation of C in soil and their bearing on the global C cycle are discussed.

  1. Lateral Earth Pressure behind Walls Rotating about Base considering Arching Effects

    Directory of Open Access Journals (Sweden)

    Dong Li

    2014-01-01

    Full Text Available In field, the earth pressure on a retaining wall is the common effect of kinds of factors. To figure out how key factors act, it has taken into account the arching effects together with the contribution from the mode of displacement of a wall to calculate earth pressure in the proposed method. Based on Mohr circle, a conversion factor is introduced to determine the shear stresses between artificial slices in soil mass. In the light of this basis, a modified differential slices solution is presented for calculation of active earth pressure on a retaining wall. Comparisons show that the result of proposed method is identical to observations from model tests in prediction of lateral pressures for walls rotating about the base.

  2. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Saleh A. Alkahtani

    2016-01-01

    Full Text Available The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance.

  3. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys

    Science.gov (United States)

    Alkahtani, Saleh A.; Elgallad, Emad M.; Tash, Mahmoud M.; Samuel, Agnes M.; Samuel, Fawzy H.

    2016-01-01

    The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance. PMID:28787844

  4. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys.

    Science.gov (United States)

    Alkahtani, Saleh A; Elgallad, Emad M; Tash, Mahmoud M; Samuel, Agnes M; Samuel, Fawzy H

    2016-01-13

    The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance.

  5. Using Ring Laser Systems to Measure Gravitomagnetic Effects on Earth

    CERN Document Server

    Ruggiero, Matteo Luca

    2013-01-01

    Gravitomagnetic effects originates from the rotation of the source of the gravitational field and from the rotational features of the observers' frame. In recent years, gravitomagnetism has been tested by means of its impact on the precession of LAGEOS orbits and on the precession of spherical gyroscopes in the GP-B experiment. What we suggest here is that light can be used as a probe to test gravitomagnetic effects in an terrestrial laboratory: the proposed detector consists of large ring-lasers arranged along three orthogonal axes.

  6. Tunguska Dark Matter Ball

    CERN Document Server

    Froggatt, C D

    2014-01-01

    It is suggested that the Tunguska event in June 1908 cm-large was due to a cm-large ball of a condensate of bound states of 6 top and 6 anti-top quarks containing highly compressed ordinary matter. Such balls are supposed to make up the dark matter as we earlier proposed. The expected rate of impact of this kind of dark matter ball with the earth seems to crudely match a time scale of 200 years between the impacts. The main explosion of the Tunguska event is explained in our picture as material coming out from deep within the earth, where it has been heated and compressed by the ball penetrating to a depth of several thousand km. Thus the effect has some similarity with volcanic activity as suggested by Kundt. We discuss the possible identification of kimberlite pipes with earlier Tunguska-like events. A discussion of how the dark matter balls may have formed in the early universe is also given.

  7. In-medium effective chiral lagrangians and the pion mass in nuclear matter

    CERN Document Server

    Wirzba, A; Wirzba, Andreas; Thorsson, Vesteinn

    1995-01-01

    We argue that the effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e.g. the PCAC choice. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. The in-medium Gell-Mann-Oakes-Renner relation as well as other in-medium identities are studied in addition. Finally, several constraints on effective lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogenous nuclear matter are discussed. (Talk presented at the workshop ``Hirschegg '95: Hadrons in Nuclear Matter'', Hirschegg, Kleinwalsertal, Austria, January 16-21, 1995)

  8. Cold Nuclear Matter Effects on J/psi Production: Intrinsic and Extrinsic Transverse Momentum Effects

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro, E.G.; /Santiago de Compostela U.; Fleuret, F.; /Ecole Polytechnique; Lansberg, J.P.; /Heidelberg U.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2010-08-26

    Cold nuclear matter effects on J/{psi} production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/{psi}-production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c{bar c}-pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R{sub AA} in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.

  9. Hydrological Effects in the EarthScope Plate Boundary Observatory

    Science.gov (United States)

    Meertens, C.; Wahr, J.; Borsa, A.; Jackson, M.; Wahr, A.

    2008-12-01

    The dense network of 1,100 continuously operating GPS stations in the Plate Boundary Observatory (PBO) is providing high quality position time series. Data are processed by PBO Analysis Centers at the New Mexico Institute of Mining and Technology and at Central Washington University. The results are combined by the Analysis Center Coordinator at the Massachusetts Institute of Technology and are made available from the UNAVCO Data Center in Boulder. Analysis software of Langbein, 2008, was used to estimate secular trends and annual variations in the time series. The results were interpreted in terms of hydrological loading and poroelastic effects, from both natural and anthropogenic changes in water storage. The effects of monument stability were also considered. The density of PBO observations allows for the identification of spatial patterns that appear coherent over relatively broad areas. Vertical annual signals of 8-10 mm peak-to-peak amplitude are evident at stations in the mountains of northern and central California and southern Oregon showing peak uplift in October and are correlated to hydrological loading. The vertical elastic loading signal, calculated from the 0.25 by 0.25 degree community Noah land-surface model, fits the annual signal well and appears also to model the secular trends, although the time duration of ~3 years is still limited. In contrast to mountainous regions, stations in the valleys of California show greater spatial variability ranging from stations with almost no detectable annual signal to stations with very large, 20-30 mm, amplitudes with peak uplift in March. The vertical signals are temporally correlated to ground-water variations caused by pumping for agricultural irrigation and likely are caused by poroelastic effects in the sediments rather than loading. Annual vertical signals in southern California, where not obviously influenced from localized ground-water fluctuations, are small with ~2 mm amplitude and may be due to

  10. Effects of Induced Surface Tension in Nuclear and Hadron Matter

    CERN Document Server

    Sagun, V V; Ivanytskyi, A I; Oliinychenko, D R; Mishustin, I N

    2016-01-01

    Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.

  11. Effects of Induced Surface Tension in Nuclear and Hadron Matter

    Directory of Open Access Journals (Sweden)

    Sagun V.V.

    2017-01-01

    Full Text Available Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.

  12. Possibility of soft-matter effects in solids

    Directory of Open Access Journals (Sweden)

    H.V. Gomonay

    2010-01-01

    Full Text Available Shape variation under the action of small external fields is a peculiar feature of soft matter. In the present paper we demonstrate a possibility of the analogous shape variation in the solids that combine the properties of antiferro- and ferromagnetic materials and show strong magnetoelastic coupling. The antiferromagnetic subsystem provides a macroscopic deformation of a sample in the external magnetic field while the ferromagnetic component ensures high susceptibility of the domain structure.

  13. Charge diffusion and the butterfly effect in striped holographic matter

    CERN Document Server

    Lucas, Andrew

    2016-01-01

    Recently, it has been proposed that the butterfly velocity - a speed at which quantum information propagates - may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  14. Charge diffusion and the butterfly effect in striped holographic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-26

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  15. Effect of mineral matter and phenol in supercritical extraction of oil shale with toluene

    Science.gov (United States)

    Abourriche, A.; Ouman, M.; Ichcho, S.; Hannache, H.; Pailler, R.; Naslain, R.; Birot, M.; Pillot, J.-P.

    2005-03-01

    In the present work, Tarfaya oil shale was subjected to supercritical toluene extraction. The experimental results obtained show clearly that the mineral matter and phenol have a significant effect on the yield and the composition of the obtained oil.

  16. Effect of Cultivation on Soil Organic Matter and Aggregate Stability

    Institute of Scientific and Technical Information of China (English)

    A.WILLIAMS; XING Bao-Shan; P.VENEMAN

    2005-01-01

    Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980's showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to assess the impact of conventional agricultural management on soil quality. POM was investigated using solid-state 13C nuclear magnetic resonance (NMR) to determine any qualitative differences that may be attributed to cultivation. Results show a highly significant loss in total SOC, POM and aggregate stability in the cultivated fields as compared to the grassland fields and a significant loss of POM-C as a percentage of total SOC.Integrated results of the NMR spectra of the POM show a loss in carbohydrate-C and an increase in aromatic-C in the cultivated fields, which translates to a loss of biological lability in the organic matter. Conventional cultivation decreased the quantity and quality of SOM and caused a loss in aggregate stability resulting in an overall decline in soil quality.

  17. Effects of rare earth element lanthanum on the microstructure of copper matrix diamond tool materials

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Effects of rare earth element La on the microstructure of Cu matrix diamond tools were researched under the conditions of various materials componentsand the process parameters in order to improve materials properties. SEM, XPS and X-ray were used to investigate the fracture section, microstructure and the element valence in materials. The results shown that the combination of rare earth element La and transition element Ti is advantageous to the bonding state between diamond particles and matrix, so it can improve the materials properties. Suitable sintering temperature is 790℃.

  18. Effect of Rare Earth Elements on Powder Boro-Carbo-Nitriding at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The process of the co-cementation layers of low temperature powder multicomponent thermochemical treatment with B-C-N-RE and the structure and properties were studied and compared with those of conventional boro-carbo-nitriding (B-C-N) by X-ray diffractometer, potentiostat and wear machine. The results show that rare earth elements have significant catalytic effect within proper limits. Both wear resistance and corrosion resistance of the B-C-N-RE co-cementation layer are greatly increased in comparison with those of the B-C-N. The function mechanism of rare earth elements is also discussed.

  19. effects of mixed of mixed of mixed alkaline earth oxides in potash ...

    African Journals Online (AJOL)

    eobe

    The aim of this work is to investigate the effects of mixed alkaline earth oxide. The aim of this ... been studied. As for the method used, raw materials were collected, batch calculations were made, and the batches ... This research work therefore ...

  20. Effects of Amazonian Dark Earths on growth and leaf nutrient balance of tropical tree seedlings

    NARCIS (Netherlands)

    Quintero Vallejo, Estela; Pena Claros, M.; Bongers, F.; Toledo, M.; Poorter, L.

    2015-01-01

    Background and aims: Amazonian Dark Earths (ADE) are ancient anthropogenic soils distributed in the Amazon basin. They are characterized by high nutrients such as phosphorus, calcium, potassium and nitrogen. We studied the effect of ADE on growth, morphology and physiology of 17 tree species from a

  1. Characterisation of Organic Matter Preserved in Earths Using Micromorphological and Chemical Analysis. Initial Results from Two Prehistoric French Sites : Les Bossats and Régismont-le-Haut.

    Science.gov (United States)

    Lejay, Mathieu; Alexis, Marie; Quenea, Katell; Sellami, Farid; Bodu, Pierre; Naton, Henri-Georges; Vassiliu, Ligia; Dumarçay, Gaëlle; Bon, François; Mensan, Romain

    2014-05-01

    -situ character of this feature and its direct association with hearth use. Following these observations we sampled several structures and facies in order to characterize this amorphous organic matter at the molecular scale. We first used C/N Elemental Analysis to quantify the organic carbon contained. The most promising samples have been selected for further detailed analyses (including pyrolysis, gas chromatography, mass spectrometry, and lipid analysis) in the hopes determining their exact molecular composition. Preliminary results indicate the conservation of long chain fatty acids, probably linked to higher plants, and cholesterol, so of animal origin. While the former can probably be explained by the nature of the fuel used (wood), the latter may in fact be implicated in the impregnation of sediments by amorphous organic matter. Although this research is still in its early stages, preliminary results are extremely encouraging. Our methodology seems effective as analysis at multiple scales allows us to trace features from the field to the lab and avoid on-site contamination issues. The flexibility of this methodology is also extremely positive, as analyses can be modified in view of the preceding step's results. Keywords : Micromorphology ; Organic chemistry ; Organic matter preservation ; Prehistoric hearths ; Upper Palaeolithic

  2. Effect of Rare Earth Composite Ceramic Materials on Oil Combustion of Oil-Burning Boiler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.

  3. Effect of impurity ions on preparation of novel saponifier for rare earth extraction

    Institute of Scientific and Technical Information of China (English)

    肖燕飞; 冯宗玉; 黄小卫; 黄莉; 徐旸; 侯永可; 王猛

    2013-01-01

    Magnesium bicarbonate, prepared by the carbonation of magnesium hydroxide slurry, was used as a novel saponifier to eliminate the ammonia nitrogen pollution in the rare earth extraction separation process. The effect of impurity ions introduced by system on the carbonation reaction of magnesium hydroxide was studied in the work. The results showed that the presence of Ca2+could lead to side reactions so as to reduce the conversion rate of magnesium hydroxide, and a small number of rare earth ions would have great influence on the carbonation reaction. What’s more, there was no influence on carbonation reaction with the low concen-tration of Na+or Mg2+, the conversion rate of magnesium hydroxide could reach above 96%. This paper showed a practical theory which could provide scientific guidance for the preparation of novel saponifier in rare earth extraction separation process.

  4. Effect of Rare Earth Element Ce on Microstructure and Properties of Aluminum Rod for Electrical Purpose

    Institute of Scientific and Technical Information of China (English)

    Li Pengfei; Wang Yunli; Gao Xizhu; Wang Zaiyun

    2004-01-01

    The effect of rare earth element Ce on microstructure, electrical conductivity and mechanical properties was studied.Using optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffractometer, the microstructure and phase composition of aluminum rod for electrical purpose were measured and analyzed.The results indicate that rare earth element Ce can considerably refine grain size of aluminum rod for electrical purpose,improve the regular distribution pattern of the impurity, such as silicon and iron which present in the aluminum matrix,form stable metal compound with pernicious impurity.This metal compound precipitates on the crystal boundary.As a result, the solid solubility of impurity in aluminum reduce, and the electrical conductivity of aluminum rod for electrical purpose is improved.It is found that the mechanical properties of aluminum rod for electrical purpose are improved by rare earth element in certain range of RE addition.

  5. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    CERN Document Server

    Laundal, Karl M; Olsen, Nils

    2016-01-01

    Interaction between the solar wind and the Earth's magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting $\\textit{Swarm}$ and CHAMP satellites, are used to co-estimate poloidal and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth's main field. We present global currents from both hemispheres during different sunlight conditions. The results show that the Birkeland currents vary with the conductivity, which depends most strongly on solar EUV ...

  6. Irradiation effects of swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Orkhan

    2011-12-22

    In the this thesis irradiation effects of swift heavy ions in matter are studied. The focus lies on the projectiles charge exchange and energy loss processes. A commonly used computer code which employs rate equations is the so called ETACHA code. This computer code is capable to also calculate the required input cross-sections. Within this thesis a new model to compute the charge state of swift heavy ions is explored. This model, the so called matrix method, takes the form of a simple algebraic expression, which also requires cross-sections as input. In the present implementation of the matrix method, cross-sections are taken from the ETACHA code, while excitation and deexcitation processes are neglected. Charge fractions for selected ion/target combinations, computed by the ETACHA code and the matrix method are compared. It is shown, that for sufficient large ion energies, both methods agree very well with each other. However, for lower energies pronounced differences are observed. These differences are believed to stem from the fact, that no excited states as well as the decay of theses excited states are included in the present implementation of the matrix method. Both methods are then compared with experimental measurements, where significant deviations are observed for both methods. While the predicted equilibrium charge state by both methods is in good agreement with the experiments, the matrix method predicts a much too large equilibrium thickness compared to both the ETACHA calculation as well as the experiment. Again, these deviations are believed to stem from the fact, that excitation and the decay of excited states are not included in the matrix method. A possible way to include decay processes into the matrix method is presented, while the accuracy of the applied capture cross-sections is tested by comparison with scaling rules. Swift heavy ions penetrating a dielectric are known to induced structural modifications both on the surface and in the bulk

  7. DAMA confronts null searches in the effective theory of dark matter-nucleon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Catena, Riccardo [Department of Physics, Chalmers University of Technology,Kemigården 1, Gothenburg (Sweden); Ibarra, Alejandro; Wild, Sebastian [Physik-Department T30d, Technische Universität München,James-Franck-Straße, 85748 Garching (Germany)

    2016-05-17

    We examine the dark matter interpretation of the modulation signal reported by the DAMA experiment from the perspective of effective field theories displaying Galilean invariance. We consider the most general effective coupling leading to the elastic scattering of a dark matter particle with spin 0 or 1/2 off a nucleon, and we analyze the compatibility of the DAMA signal with the null results from other direct detection experiments, as well as with the non-observation of a high energy neutrino flux in the direction of the Sun from dark matter annihilation. To this end, we develop a novel semi-analytical approach for comparing experimental results in the high-dimensional parameter space of the non-relativistic effective theory. Assuming the standard halo model, we find a strong tension between the dark matter interpretation of the DAMA modulation signal and the null result experiments. We also list possible ways-out of this conclusion.

  8. ETHOS - An Effective Theory of Structure Formation: From dark particle physics to the matter distribution of the Universe

    CERN Document Server

    Cyr-Racine, Francis-Yan; Zavala, Jesus; Bringmann, Torsten; Vogelsberger, Mark; Pfrommer, Christoph

    2015-01-01

    We formulate an effective theory of structure formation (ETHOS) that enables cosmological structure formation to be computed in almost any microphysical model of dark matter physics. This framework maps the detailed microphysical theories of particle dark matter interactions into the physical effective parameters that shape the linear matter power spectrum and the self-interaction transfer cross section of non-relativistic dark matter. These are the input to structure formation simulations, which follow the evolution of the cosmological and galactic dark matter distributions. Models with similar effective parameters in ETHOS but with different dark particle physics would nevertheless result in similar dark matter distributions. We present a general method to map an ultraviolet complete or effective field theory of low energy dark matter physics into parameters that affect the linear matter power spectrum and carry out this mapping for several representative particle models. We further propose a simple but use...

  9. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    Science.gov (United States)

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  10. Effective Field Theories for Hot and Dense Matter

    Directory of Open Access Journals (Sweden)

    Blaschke D.

    2010-10-01

    Full Text Available The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations. Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.

  11. Global effects of agriculture on fluvial dissolved organic matter

    DEFF Research Database (Denmark)

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco;

    2015-01-01

    (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial...... the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.......Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...

  12. Effect of hyperons on phase coexistence in strange matter

    CERN Document Server

    Das, P; Chaudhuri, G

    2016-01-01

    The study of liquid gas phase transition in fragmentation of nuclei in heavy ion collisions has been extended to the strangeness sector using the statistical model for multifragmentation. Helmholtz's free energy, specific heat and few other thermodynamic observables have been analyzed in order to examine the occurence of phase transition in the strange matter. The bimodal behaviour of the largest cluster formed in fragmentation also strongly indicates coexistence of both the phases. The presence of hyperons strengthens the signals and also shifts the transition temperature to lower values.

  13. The association of coronal mass ejections with their effects near the Earth

    Directory of Open Access Journals (Sweden)

    R. Schwenn

    2005-03-01

    Full Text Available To this day, the prediction of space weather effects near the Earth suffers from a fundamental problem: The radial propagation speed of "halo" CMEs (i.e. CMEs pointed along the Sun-Earth-line that are known to be the main drivers of space weather disturbances towards the Earth cannot be measured directly because of the unfavorable geometry. From inspecting many limb CMEs observed by the LASCO coronagraphs on SOHO we found that there is usually a good correlation between the radial speed and the lateral expansion speed Vexp of CME clouds. This latter quantity can also be determined for earthward-pointed halo CMEs. Thus, Vexp may serve as a proxy for the otherwise inaccessible radial speed of halo CMEs. We studied this connection using data from both ends: solar data and interplanetary data obtained near the Earth, for a period from January 1997 to 15 April 2001. The data were primarily provided by the LASCO coronagraphs, plus additional information from the EIT instrument on SOHO. Solar wind data from the plasma instruments on the SOHO, ACE and Wind spacecraft were used to identify the arrivals of ICME signatures. Here, we use "ICME" as a generic term for all CME effects in interplanetary space, thus comprising not only ejecta themselves but also shocks as well. Among 181 front side or limb full or partial halo CMEs recorded by LASCO, on the one hand, and 187 ICME events registered near the Earth, on the other hand, we found 91 cases where CMEs were uniquely associated with ICME signatures in front of the Earth. Eighty ICMEs were associated with a shock, and for 75 of them both the halo expansion speed Vexp and the travel time Ttr of the shock could be determined. The function Ttr=203-20.77*ln (Vexp fits the data best. This empirical formula can be used for predicting further ICME arrivals, with a 95% error margin of about one day. Note, though, that in 15% of comparable cases, a

  14. Preparation of Rare Earth Doped Alumina-Siloxane Gel and Its ER Effect

    Institute of Scientific and Technical Information of China (English)

    李幼荣; 张明; 周兰香; 邱关明; 井上真一; 冈本宏

    2002-01-01

    Poly(methyl methacrylate) (PMMA) was used to wrap alumina-siloxane sol through emulsion polymerization. A kind of suspensions with notable ER effect was produced by fully mixing the prepared microcapsule with silicon oil. Meanwhile a series of PMMA wrapped alumina-siloxane gel doped with rare earths was obtained and its ER effect was tested, like viscosity of different rare earth ion doped samples in different powder concentrations and at different temperatures, at the same time, leak current density and dielectric constant were measured. Results show that the ER effect of this suspension is remarkable, and its stability is much better. The condition of emulsion polymerization and the mechanism of effect are discussed.

  15. Correlated Nitrogen and Carbon Anomalies in an Anhydrous Interplanetary Dust Particle - Implications for Extraterrestrial Organic Matter Accreted by the Prebiotic Earth

    Energy Technology Data Exchange (ETDEWEB)

    Floss, C; Stadermann, F J; Bradley, J P; Dai, Z; Bajt, S; Graham, G

    2003-12-17

    Given the ubiquitous presence of H and N isotopic anomalies in interplanetary dust particles (IDPs) and their probable association with carbonaceous material, the lack of similar isotopic anomalies in C has been a major conundrum. We report here the first observation of correlated N and C isotopic anomalies in organic matter within an anhydrous IDP. The {sup 15}N composition of the anomalous region is the highest seen to date in an IDP and is accompanied by a moderate depletion in {sup 13}C. Our observations establish the presence of hetero-atomic organic compounds of presolar origin among the constant flux of carbonaceous material accreting to the terrestrial planets within IDPs. Theoretical models suggest that low temperature formation of organic compounds in cold interstellar molecular clouds does produce C and N fractionations, but it remains to be seen if these models can reproduce the specific effects we observe here.

  16. Effect of three-body interaction on hot asymmetric nuclear matter

    Institute of Scientific and Technical Information of China (English)

    Li Zeng-Hua; Zuo Wei; Lu Guang-Cheng

    2004-01-01

    The properties of hot asymmetric nuclear matter are studied in the framework of the finite temperature BruecknerHartree-Fock theory that is extended to include the contribution of microscopic three-body forces. We give the variation of the critical temperature with the asymmetry parameter and show the effect brought by this three-body repulsive potential on the value of the critical asymmetry of the phase transition for asymmetric nuclear matter. Owing to the additional repulsion provided by three-body forces, this value decreases. In addition, the domain of mechanical instability for hot nuclear matter is also indicated, which gradually shrinks with increasing asymmetry and temperature.

  17. Effects of Huge Earthquakes on Earth Rotation and the length of Day

    Directory of Open Access Journals (Sweden)

    Changyi Xu

    2013-01-01

    Full Text Available We calculated the co-seismic Earth rotation changes for several typical great earthquakes since 1960 based on Dahlen¡¦s analytical expression of Earth inertia moment change, the excitation functions of polar motion and, variation in the length of a day (ΔLOD. Then, we derived a mathematical relation between polar motion and earthquake parameters, to prove that the amplitude of polar motion is independent of longitude. Because the analytical expression of Dahlen¡¦s theory is useful to theoretically estimate rotation changes by earthquakes having different seismic parameters, we show results for polar motion and ΔLOD for various types of earthquakes in a comprehensive manner. The modeled results show that the seismic effect on the Earth¡¦s rotation decreases gradually with increased latitude if other parameters are unchanged. The Earth¡¦s rotational change is symmetrical for a 45° dip angle and the maximum changes appear at the equator and poles. Earthquakes at a medium dip angle and low latitudes produce large rotation changes. As an example, we calculate the polar motion and ΔLOD caused by the 2011 Tohoku-Oki Earthquake using two different fault models. Results show that a fine slip fault model is useful to compute co-seismic Earth rotation change. The obtained results indicate Dahlen¡¦s method gives good approximations for computation of co-seismic rotation changes, but there are some differences if one considers detailed fault slip distributions. Finally we analyze and discuss the co-seismic Earth rotation change signal using GRACE data, showing that such a signal is hard to be detected at present, but it might be detected under some conditions. Numerical results of this study will serve as a good indicator to check if satellite observations such as GRACE can detect a seismic rotation change when a great earthquake occur.

  18. New Models of Water Delivery To Earth: The Effects of Ice Longevity and Collisional Water Transport

    Science.gov (United States)

    Maindl, Thomas I.; Haghighipour, Nader

    2016-10-01

    It is widely accepted that the vast majority of Earth's water was delivered to its accretion zone by water-carrying planetesimals and planetary embryos from the outer regions of the asteroid belt while Earth was still forming. Modern simulations of the formation of terrestrial planets show this process with high resolution. However, their treatment of the actual delivery of water is still rudimentary assuming that a water-carrying object will maintain all its water content during its journey from its original orbit to the accretion zone of Earth. Models of the ice longevity have, however, shown that the water-ice may not stay intact, and asteroids and planetary embryos may lose some of their original water in form of ice sublimation during the dynamical evolution of these bodies. Also, collisions among these bodies while on their journey to Earth's accretion zone will result in the loss of large amounts of their water. These effects could be especially important during the formation of terrestrial planets as this process takes tens to hundreds of millions of years. We have developed a more accurate model in which the sublimation of ice during the process of the scattering of icy asteroids and planetary embryos into the accretion zone of Earth is taken into account. Our model includes two different modes of handling ice sublimation, one for sub-surface water and one for deeper ice. We also estimate water loss and retention during collisions which depends on the physical and dynamical parameters of the impacts. The results of our simulations put stringent constraints on the initial water distribution in the protoplanetary disk, the location of snowline, and the contribution of water from the primordial nebula to the final water budget of Earth. In this poster, we will present the results of our new simulations and discuss their implications for models of solar system formation and dynamics.

  19. Microhardness Indentation Size Effect in Flux-grown Crystals of Rare Earth Aluminates

    Institute of Scientific and Technical Information of China (English)

    Jianghong GONG; Zhenduo GUAN

    2001-01-01

    The previously reported results of microhardness measurements on flux-grown crystals of rare earth aluminates were re-examined in this paper to explore the applicability of the proportional specimen resistance (PSR) model to describe the indentation size effect. It was found that the PSR model is insufficient for describing the experimental data and a modified form of this model was proposed based on the consideration of the effect of surface stress state on hardness testing.

  20. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-01-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  1. DNA Damage Effect of Mixed Rare Earth Changle Crossing Placenta Barrier on Rat Embryo

    Institute of Scientific and Technical Information of China (English)

    周莉; 李树蕾; 陈辉; 黄可欣; 聂毓秀

    2003-01-01

    To assess the potential risk of mixed rare earths Changle for human embryo we used transplacental micronucleus test and single cell gel electrophoresis (SCGE) technique to detect DNA damage of embryo. The rats were administered respectively 0.3, 2, 5 and 20 mg*kg-1 mixed rare earths Changle every day orally from 6th to 18th day after pregnancy. The results show that the number of cells with micronucleus significantly increases as compared with the control except 0.3 mg*kg-1 group, which appears to be a dose-effect relationship. The number of comet star cell greatly increases with increasing contamination dose as compared with the control except 0.3 mg*kg-1 group, and also displays a dose-effect relationship. In conclusion, though mixed rare earth Changle is restricted by placenta membrane to enter embryo body, and more than 2 mg*kg-1 mixed rare earth Changle may cross placenta barrier and cause DNA damage of hepatocyte and developing erythrocyte of rat embryo.

  2. Effects of rare earths on the microarc oxidation of a magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    LI Jianzhong; TIAN Yanwen; CUI Zuoxing; HUANG Zhenqi

    2008-01-01

    The effects of rate earths on the properties of the microarc oxidation (MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy (EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.

  3. The Effects of Refraction on Transit Transmission Spectroscopy: Application to Earth-like Exoplanets

    CERN Document Server

    Misra, Amit; Crisp, Dave

    2014-01-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Palle et al. (2009). We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope (JWST) Near-Infrared Spectrograph (NIRSPEC). Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal to noise ratio (SNR) of absorption features by 60%, while for an Earth-analog plan...

  4. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  5. The Effects of Dark Matter Annihilation on Cosmic Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Kaurov, Alexander A. [Chicago U., Astron. Astrophys. Ctr.; Hooper, Dan [Chicago U., EFI; Gnedin, Nickolay Y. [Chicago U., KICP

    2015-12-01

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons that ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM, however, begins to efficiently annihilate with the formation of primordial microhalos at $z\\sim100-200$, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval $z \\sim 20-100$, it can leave a significant imprint on the global optical depth, $\\tau$. Moreover, we show that cosmic microwave background (CMB) polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. We show that future measurements could make it possible to place constraints on the dark matter's annihilation cross section that are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic ray measurements, and studies of recombination.

  6. A new explanation to the cold nuclear matter effects in heavy ion collisions

    CERN Document Server

    Liu, Zhi-Feng

    2014-01-01

    The J/Psi cross section ratios of p-A/p-p under different collision energy is calculated with cold nuclear matter effects redefined in this paper. The advantage of these new definitions is that all cold nuclear matter effects have clear physical origins.The radios are compared with the corresponding experiment data and that calculated with classic nuclear effects. The ratios calculated with new definitions can reproduce almost all existing J/Psi measurements in p-A collisions more accuratly than that calculated with classic nuclear effects. Hence, this paper presents a new approach to explain cold nuclear effects in the hardproduction of quarkonium.

  7. Sterile Neutrino Production Through a Matter Effect Enhancement at Long Baselines

    Science.gov (United States)

    Bramante, Joseph

    2013-06-01

    If sterile neutrinos have a neutral coupling to standard model fermions, matter effect resonant transitions to sterile neutrinos and excess neutral-current events could manifest at long baseline experiments. Assuming a single sterile neutrino with a neutral coupling to fermionic matter, we re-examine bounds on sterile neutrino production at long baselines from the MINOS result Pνμ →νs space of sterile neutrino matter effect fits of the LSND and MiniBooNe data, we show that in the case of a vector singlet coupling of sterile neutrinos to matter, some favored parametrizations of these fits would create neutral-current event excesses above standard model predictions at long baseline experiments (e.g. MINOS and OPERA).

  8. DAMA confronts null searches in the effective theory of dark matter-nucleon interactions

    CERN Document Server

    Catena, Riccardo; Wild, Sebastian

    2016-01-01

    We examine the dark matter interpretation of the modulation signal reported by the DAMA experiment from the perspective of effective field theories displaying Galilean invariance. We consider the most general effective coupling leading to the elastic scattering of a dark matter particle with a nucleon, and we analyze the compatibility of the DAMA signal with the null results from other direct detection experiments, as well as with the non-observation of a high energy neutrino flux in the direction of the Sun from dark matter annihilation. Assuming the standard halo model, we find a strong tension between the dark matter interpretation of the DAMA modulation signal and the null result experiments. We also list possible ways-out to this conclusion.

  9. Effects of Long-Term Fertilization on Distribution of Organic Matters and Nitrogen in Cinnamon Soil Macro-Aggregates

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Soil samples collected from a 25-year long-term fertilizer experiment carried out on the Earth-cumulic-Orthic Anthrosols in semi-humid farmland ecological system, were used to study the distribution of soil organic matters, total nitrogen, nitrate nitrogen, and ammoniate nitrogen in different grades of soil macro-aggregates in order to study the effects of long-term application of organic manures in combination with chemical fertilizers. It is showed that the percentage of mass of the soil macro-aggregates with long-term application of fertilizers with sizes of 5-2 mm is increased compared with that of the samples with no fertilizer. It is easier to form lager size soil macro-aggregates by the long-term application of organic manures in combination with chemical fertilizers. The contents of organic matters, total nitrogen and nitrate nitrogen are all higher after treatments with different combinations of fertilizers, while there is a little effect on the contents of ammoniate nitrogen. The contents of organic matters, total nitrogen in the grades of soil macro-aggregates from the plough layers of the treated farmland exhibited significant difference. Moreover, the contents of organic matters and total nitrogen in the soil macro-aggregates with the size of 1-0.25 mm is the highest in all treated soil samples. The contents of nitrate nitrogen in soil macro-aggregates increased with the increasing of soil macro-aggregate size except those applied with chemical fertilizer and lower amount of corn stover. The results of correlation analysis revealed that there exists a significantly positive correlation between the percentage of mass of soil macro-aggregates with the size of 5-2 mm and the contents of organic matters, total nitrogen and nitrate nitrogen in the soil samples. However, the correlation between the percentage of mass of soil macro-aggregates with the size of 1-0.25 mm and the contents of total nitrogen and nitrate nitrogen is significantly negative. The

  10. Yarkovsky Effect on Small Near-Earth Asteroids: Mathematical Formulation and Examples

    Science.gov (United States)

    Vokrouhlický, D.; Milani, A.; Chesley, S. R.

    2000-11-01

    The Yarkovsky effect is a subtle nongravitational phenomenon related to the anisotropic thermal emission of Solar System objects. Its importance has been recently demonstrated in relation to the transport of material from the main asteroid belt (both to explain the origin of near-Earth asteroids and some properties of meteorites) and also in relation to the aging processes of the asteroid families. However, unlike the case of the artificial satellites, the Yarkovsky effect has never been measured or detected in the motion of natural bodies in the Solar System. In this paper, we investigate the possibility of detecting the Yarkovsky effect via precise orbit determination of near-Earth asteroids. Such a detection is feasible only with the existence of precise radar astrometry at multiple apparitions. Since the observability of the Yarkovsky perturbation accumulates quadratically with time the time span between radar observations is a critical factor. Though the current data do not clearly indicate the Yarkovsky effect in the motion of these bodies, we predict that the next apparition of several asteroids (in particular, 6489 Golevka, 1620 Geographos, and possibly 1566 Icarus) might reveal its existence. Moreover, we show that the Yarkovsky effect may play a very important role in the orbit determination of small, but still observable, bodies like 1998 KY 26. If carefully followed, this body may serve as a superb probe of the Yarkovsky effect in its next close approach to the Earth in June 2024.

  11. In hot water: effects of temperature-dependent interiors on the radii of water-rich super-Earths

    CERN Document Server

    Thomas, Scott W

    2016-01-01

    Observational advancements are leading to increasingly precise measurements of super-Earth masses and radii. Such measurements are used in internal structure models to constrain interior compositions of super-Earths. It is now critically important to quantify the effect of various model assumptions on the predicted radii. In particular, models often neglect thermal effects, a choice justified by noting that the thermal expansion of a solid Earth-like planet is small. However, the thermal effects for water-rich interiors may be significant. We have systematically explored the extent to which thermal effects can influence the radii of water-rich super-Earths over a wide range of masses, surface temperatures, surface pressures and water mass fractions. We developed temperature-dependent internal structure models of water-rich super-Earths that include a comprehensive temperature-dependent water equation of state. We found that thermal effects induce significant changes in their radii. For example, for super-Eart...

  12. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun; Mann, Maxwell; Beach, Geoffrey S. D., E-mail: gbeach@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-06-06

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead to spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.

  13. Colors of a Second Earth II: Effects of Clouds on Photometric Characterization of Earth-like Exoplanets

    OpenAIRE

    Fujii, Yuka; Kawahara, Hajime; Suto, Yasushi; Fukuda, Satoru; Nakajima, Teruyuki; Livengood, Timothy A.; Turner, Edwin L.

    2011-01-01

    As a test-bed for future investigations of directly imaged terrestrial exoplanets, we present the recovery of the surface components of the Earth from multi-band diurnal light curves obtained with the EPOXI spacecraft. We find that the presence and longitudinal distribution of ocean, soil and vegetation are reasonably well reproduced by fitting the observed color variations with a simplified model composed of a priori known albedo spectra of ocean, soil, vegetation, snow and clouds. The effec...

  14. Global effects of agriculture on fluvial dissolved organic matter

    DEFF Research Database (Denmark)

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...... (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial...... DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM...

  15. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit; Meadows, Victoria [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Crisp, Dave, E-mail: amit0@astro.washington.edu [NAI Virtual Planetary Laboratory, Seattle, WA (United States)

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  16. Instanton-induced Effective Vertex in the Seiberg-Witten Theory with Matter

    CERN Document Server

    Lee, B K; Lee, ByungKoo; Nam, Soonkeon

    1997-01-01

    The instanton-induced effective vertex is derived for N=2 supersymmetric QCD (SQCD) with arbitrary mass matter hypermultiplets for the case of SU(2). The leading term of the low energy effective lagrangian obtained from this vertex agrees with one-instanton effective term of the Seiberg-Witten result.

  17. Effects of variable eccentricity on the climate of an Earth-like world

    CERN Document Server

    Way, Michael J

    2016-01-01

    The Kepler era of exoplanetary discovery has presented the Astronomical community with a cornucopia of planetary systems very different from the one which we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and it's climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for its large moon. Using a three dimensional general circulation model (3-D GCM) with a fully-coupled ocean we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earth's orbit. We investigate two scenarios that involve evolution of the Earth-like planet's orbital eccentricity from 0--0.066 on a time scale of 4500 years, and from 0--0.283 over 6500 years. We discover that during most of the 6500 year scenario the planet would experience a moist greenhouse effect when near periastron. This could have implications for the ability of such a world to retain an ocean on...

  18. Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M dwarfs

    CERN Document Server

    Rugheimer, S; Segura, A; Linsky, J; Mohanty, S

    2015-01-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with $T_{eff}$ = 2300K to $T_{eff}$ = 3800K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1AU equivalent distance and show spectra from the VIS to IR (0.4$\\mu$m - 20$\\mu$m) to compare detectability of features in different wavelength ranges with JWST and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely: H$_2$O, O$_3$, CH$_4$, N$_2$O and CH$_3$Cl. To observe signatures of life - O$_2$/O$_3$ in combination with reducing species like CH$_4$, we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O$_2$ spectral feature at 0.76$\\mu$m is increasingly difficult to detect in reflected light of later M dwarfs due to low stellar flux in ...

  19. Effects of the same CIR on the plasma environment of Venus, Earth and Mars

    Science.gov (United States)

    Opitz, A.; Witasse, O.; Svedhem, H.; Sauvaud, J.-A.; Fedorov, A.

    2013-09-01

    During the recent solar activity minimum the solar wind streams were very persistent, even after a few solar rotations the global solar wind properties were unchanged. The compression regions due to the fast stream - slow stream interaction were sweeping through the ecliptic plane without large longitudinal alterations, these are named corotating interaction regions (CIR). Their persistence allows the comparison of the effects of the same CIR on the different terrestrial planets. We investigated the time period in January and February 2007, when the twin solar spacecraft STEREO were still nearby Earth observing simultaneously the solar wind and the terrestrial magnetotail. When considering the solar rotation and the corotating solar wind structures, Venus was ~10 days ahead Earth, while Mars ~10 days behind. For this reason, the Venus Express in-situ plasma and magnetic field measurements were shifted by such a timelag to Earth orbit, and respectively the Mars Express observations in order to find the corresponding CIRs. Since the investigated three planets have different magnetic characteristics, their response to the CIR passage is expected to be different. We find energetic particle bursts escaping from the magnetized Earth and the unmagnetized planets Venus and Mars have increased ion escape rates.

  20. Effect of aggregation on SOC transport: linking soil properties to sediment organic matter

    Science.gov (United States)

    Kuhn, Nikolaus J.

    2016-04-01

    Soils are an interface between the Earth's spheres and shaped by the nature of the interaction between them. The relevance of soil properties for the nature of the interaction between atmosphere, hydrosphere and biosphere is well-studied and accepted, on point- or ecotone-scale. However, this understanding of the largely vertical connections between spheres is not matched by a similar recognition of soil properties affecting processes acting largely in a lateral way across the land surface, such as erosion, transport and deposition of soil and the associated organic matter. Understanding the redistribution of eroded soil organic matter falls into several disciplines, most notably soil science, agronomy, hydrology and geomorphology, and recently into biogeochemistry. Accordingly, the way soil and sediment are described differs: in soil science, aggregation and structure are essential properties, while most process-based soil erosion models treat soil as a mixture of individual mineral grains, based on concepts derived in fluvial geomorphology or civil engineering. The actual behavior of aggregated sediment and the associated organic matter is not reflected by either approach and difficult to capture due to the dynamic nature of aggregation, especially in an environment such as running water. Still, a proxy to assess the uncertainties introduced by aggregation on the behavior of soil/sediment organic while moving in water across landscapes and into the aquatic system would represent a major step forward. To develop such a proxy, a database collating relevant soil, organic matter and sediment properties could serve as an initial step to identify which soil types and erosion scenarios are prone to generate a high uncertainty compared to the use of soil texture in erosion models. Furthermore, it could serve to develop standardized analytical procedures for appropriate description of soil and organic matter as sediment.

  1. Assessing the effects of age on long white matter tracts using diffusion tensor tractography

    Science.gov (United States)

    Davis, Simon W.; Dennis, Nancy A.; Buchler, Norbou G.; White, Leonard E.; Madden, David J.; Cabeza, Roberto

    2009-01-01

    Aging is associated with significant white matter deterioration and this deterioration is assumed to be at least partly a consequence of myelin degeneration. The present study investigated specific predictions of the myelodegeneration hypothesis using diffusion tensor tractography. This technique has several advantages over other methods of assessing white matter architecture, including the possibility of isolating individual white matter tracts and measuring effects along the whole extent of each tract. The study yielded three main findings. First, age-related white matter deficits increased gradually from posterior to anterior segments within specific fiber tracts traversing frontal and parietal, but not temporal cortex. This pattern inverts the sequence of myelination during childhood and early development observed in previous studies and lends support to a “last-in-first-out” theory of the white matter health across the lifespan. Second, both the effects aging on white matter and their impact on cognitive performance were stronger for radial diffusivity (RD) than for axial diffusivity (AD). Given that RD has previously been shown to be more sensitive to myelin integrity than AD, this second finding is also consistent with the myelodegeneration hypothesis. Finally, the effects of aging on select white matter tracts were associated with age difference in specific cognitive functions. Specifically, FA in anterior tracts was shown to be primarily associated with executive tasks and FA in posterior tracts mainly associated with visual memory tasks. Furthermore, these correlations were mirrored in RD, but not AD, suggesting that RD is more sensitive to age-related changes in cognition. Taken together, the results help to clarify how age-related white matter decline impairs cognitive performance. PMID:19385018

  2. Effect of oxygen on the degradability of organic matter in subtidal and intertidal sediments of the North Sea area

    NARCIS (Netherlands)

    Dauwe, B.; Middelburg, J.J.; Herman, P.M.J.

    2001-01-01

    The effect of oxygen on the degradation of sedimentary organic matter has been determined for 6 subtidal stations and 3 intertidal stations in the North Sea area. The stations were selected to cover a range of organic matter lability and sediment texture (and hence concentrations of organic matter).

  3. Possible Effect of the Earth's Inertial Induction on the Orbital Decay of LAGEOS

    Science.gov (United States)

    Dey, Ujjal; Kar, Samanwita; Ghosh, Amitabha

    2016-09-01

    The theory of velocity dependent inertial induction, based upon extended Mach's principle, has been able to generate many interesting results related to celestial mechanics and cosmological problems. Because of the extremely minute magnitude of the effect its presence can be detected through the motion of accurately observed bodies like Earth satellites. LAGEOS I and II are medium altitude satellites with nearly circular orbits. The motions of these satellites are accurately recorded and the past data of a few decades help to test many theories including the general theory of relativity. Therefore, it is hoped that the effect of the Earth's inertial induction can have any detectable effect on the motion of these satellites. It is established that the semi-major axis of LAGEOS I is decreasing at the rate of 1.3 mm/d. As the atmospheric drag is negligible at that altitude, a proper explanation of the secular change has been wanting, and, therefore, this paper examines the effect of the Earth's inertial induction effect on LAGEOS I. Past researches have established that Yarkovsky thermal drag, charged and neutral particle drag might be the possible mechanisms for this orbital decay. Inertial induction is found to generate a perturbing force that results in 0.33 mm/d decay of the semi major axis. Some other changes are also predicted and the phenomenon also helps to explain the observed changes in the orbits of a few other satellites. The results indicate the feasibility of the theory of inertial induction i.e. the dynamic gravitation phenomenon of the Earth on its satellites as a possible partial cause for orbital decay.

  4. Thematic mapper research in the earth sciences: Small scale patches of suspended matter and phytoplankton in the Elbe River Estuary, German Bight and Tidal Flats

    Science.gov (United States)

    Grassl, H.; Doerffer, R.; Fischer, J.; Brockmann, C.; Stoessel, M.

    1987-01-01

    A Thematic Mapper (TM) field experiment was followed by a data analysis to determine TM capabilities for analysis of suspended matter and phytoplankton. Factor analysis showed that suspended matter concentration, atmospheric scattering, and sea surface temperature can be retrieved as independent factors which determine the variation in the TM data over water areas. Spectral channels in the near infrared open the possibility of determining the Angstrom exponent better than for the coastal zone color scanner. The suspended matter distribution may then be calculated by the absolute radiance of channel 2 or 3 or the ratio of both. There is no indication of whether separation of chlorophyll is possible. The distribution of suspended matter and sea surface temperature can be observed with the expected fine structure. A good correlation between water depth and suspended matter distribution as found from ship data can now be analyzed for an entire area by the synoptic view of the TM scenes.

  5. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    Science.gov (United States)

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic.

  6. Role of elastic deformation in determining the mixed alkaline earth effect of hardness in silicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Potuzak, M.

    2015-01-01

    been investigated previously, but the link between the resistance to elastic deformation and hardness has not yet been studied. In this work, we investigate the link between elastic deformation during indentation and Vickers hardness in a series of mixed magnesium-barium boroaluminosilicate glasses. We...... show that the mixed alkaline earth effect manifests itself as deviations from linearity in shear modulus, Poisson’s ratio, glass transition temperature, liquid fragility index, hardness, volume of densification, and volume of plastic flow. We find no correlation between the elastic part...... of the indentation and hardness, and we thus infer that elastic deformation does not play a dominant role in determining the mixed alkaline earth effect of hardness. However, interestingly, we find a strong correlation between Poisson’s ratio, volume of plastic flow, and hardness, by which the minimum in hardness...

  7. Solar irradiance changes and photobiological effects at Earth's surface following astrophysical ionizing radiation events

    CERN Document Server

    Thomas, Brian C; Snyder, Brock R

    2015-01-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the TUV radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radi...

  8. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization

    Science.gov (United States)

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589

  9. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization.

    Science.gov (United States)

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11-4.28 and 4.78-7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52-3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48-4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26-9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield.

  10. Effect of Rheology on Mantle Dynamics and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Tackley, P. J.; Ammann, M. W.; Brodholt, J. P.; Dobson, D. P.; Valencia, D. C.

    2011-12-01

    The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings [1,2] suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigor in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result a very low effective Rayleigh number in their deep mantles and possibly no convection there. Here we evaluate this. (i) As the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of [3] to a pressure of 1 TPa. The activation volume for diffusion creep becomes very low at very high pressure, but nevertheless for the largest super-Earths the viscosity along an adiabat may approach 10^30 Pa s in the deep mantle, which would be too high for convection. (ii) We use these DFT-calculated values in numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behavior, solved using StagYY [4]. Results confirm the likelihood of plate tectonics and show a novel self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead internal heating raises the temperature until the viscosity is low enough to facilitate convective loss of the radiogenic heat, which results in a super-adiabatic temperature profile and a viscosity increase with depth of no more than ~3 orders of magnitude, regardless of what is calculated for an adiabat. It has recently been argued [5] that at very high pressures, deformation

  11. Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small?

    CERN Document Server

    Li, Yu-Feng; Xing, Zhi-zhong

    2016-01-01

    We have carefully examined, in both analytical and numerical ways, how small the terrestrial matter effects can be in a given medium-baseline reactor antineutrino oscillation experiment like JUNO or RENO-50. Taking the ongoing JUNO experiment for example, we show that the inclusion of terrestrial matter effects may reduce the sensitivity of the neutrino mass ordering measurement by \\Delta \\chi^2_{\\rm MO} \\simeq 0.6, and a neglect of such effects may shift the best-fit values of the flavor mixing angle \\theta_{12} and the neutrino mass-squared difference \\Delta_{21} by about 1\\sigma to 2\\sigma in the future data analysis. In addition, a preliminary estimate indicates that a 2\\sigma sensitivity of establishing the terrestrial matter effects can be achieved for about 10 years of data taking at JUNO with the help of a proper near detector implementation.

  12. Effective Theory of WIMP Dark Matter supplemented by Simplified Models: Singlet-like Majorana fermion case

    CERN Document Server

    Matsumoto, Shigeki; Tsai, Yue-Lin Sming

    2016-01-01

    We enumerate the set of simplified models which match onto the complete set of gauge invariant effective operators up to dimension six describing interactions of a singlet-like Majorana fermion dark matter with the standard model. Tree level matching conditions for each case are worked out in the large mediator mass limit, defining a one to one correspondence between the effective operator coefficients and the simplified model parameters for weakly interacting models. Utilizing such a mapping, we compute the dark matter annihilation rate in the early universe, as well as other low-energy observables like nuclear recoil rates using the effective operators, while the simplified models are used to compute the dark matter production rates at high energy colliders like LEP, LHC and future lepton colliders. Combining all relevant constraints with a profile likelihood analysis, we then discuss the currently allowed parameter regions and prospects for future searches in terms of the effective operator parameters, red...

  13. Effects of Variable Eccentricity on the Climate of an Earth-Like World

    Science.gov (United States)

    Way, M. J.; Georgakarakos, Nikolaos

    2017-01-01

    The Kepler era of exoplanetary discovery has presented the Astronomical community with a cornucopia of planetary systems very different from the one which we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for its large moon. Using a three dimensional general circulation model (3-D GCM) with a fully-coupled ocean we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earths orbit. We investigate two scenarios that involve evolution of the Earth-like planets orbital eccentricity from 0 to 0.066 on a time scale of 4500 years, and from 0 to 0.283 over 6500 years. We discover that during most of the 6500 year scenario the planet would experience a moist greenhouse effect when near periastron. This could have implications for the ability of such a world to retain an ocean on time scales of 109 years. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitabilty of these worlds. These are the first such 3-D GCM simulations using a fully-coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.

  14. The Role of Stereo Projection in Developing an Effective Concluding Earth Science Course

    Science.gov (United States)

    Kirkby, K. C.; Morin, P. J.; Finley, F.

    2003-12-01

    Remarkably few students enrolled in introductory earth science courses have any intention of continuing in earth science, and for most students, these classes are often the last science course they will take in their academic careers. These students would be better served, if the course was instead designed to be a 'concluding' science course. One that explicitly provided students with the knowledge they need to become more informed citizens in the global community. The University of Minnesota is attempting to develop a national model of an effective 'concluding' earth science course by integrating three essential approaches: use of regional case studies to increase student comprehension; a comprehensive evaluation of students' prior knowledge, misconceptions and post-instructional knowledge that is woven throughout the project; and, an ambitious use of 'GeoWall' stereo projection systems to facilitate the students' use of maps and data sets and level the classroom playing field with regard to spatial conceptualization. In every discipline there are some critical skills or assessments that serve as conscious or unconscious 'gate-keepers' for progress in that field. In earth science, map interpretation is probably the critical restriction curtailing students' ability to access and explore course concepts. So much of our discipline's information is encoded in maps, that students who are not innately predisposed to understanding maps find it difficult to understand much of the course content and methodology. GeoWall stereo projection systems can reduce the efficiency of this 'gate-keeping' process, allowing students of diverse backgrounds and abilities to understand map data and succeed in the course. In doing so, these systems will not only help increase students' scientific literacy, but may also greatly increase the diversity of students who do go on to consider earth science as a potential career.

  15. Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients

    Energy Technology Data Exchange (ETDEWEB)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Li, Yimei; Li, Xingyu [Department of Biostatistics, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Sabin, Noah D. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Indelicato, Daniel J. [Department of Radiation Oncology, University of Florida, Jacksonville, Florida (United States); Ogg, Robert J. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Boop, Frederick A. [Semmes-Murphey Neurologic and Spine Institute, Memphis, Tennessee (United States); Jane, John A. [Department of Neurosurgery, University of Virginia, Charlottesville, Virginia (United States); Hua, Chiaho [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2015-09-01

    Purpose: The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. Methods and Materials: Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51 atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. Results: Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non–surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. Conclusions: DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect longitudinally

  16. A cost-effective weighing chamber for particulate matter filters.

    Science.gov (United States)

    Allen, R; Box, M; Liu, L J; Larson, T V

    2001-12-01

    Particulate matter (PM) is a ubiquitous air pollutant that has been receiving increasing attention in recent years due in part to the association between PM and a number of adverse health outcomes, including mortality and increases in emergency room visits and respiratory symptoms, as well as exacerbation of asthma and decrements in lung function. As a result, the ability to accurately sample ambient PM has become important, both to researchers and to regulatory agencies. The federal reference method for the determination of fine PM as PM2.5 in the atmosphere recommends that particle-sampling filters be conditioned and weighed in an environment with constant temperature and relative humidity (RH). It is also recommended that vibration, electrostatic charges, and contamination of the filters from laboratory air be minimized to reduce variability in filter weight measurements. These controls have typically been maintained in small, environmentally controlled "cleanrooms." As an alternative to constructing an elaborate cleanroom, we have designed, and presented in this paper, an inexpensive weighing chamber to maintain the necessary level of humidity control.

  17. The effect of rare-earth filtration on organ doses in intraoral radiography

    Energy Technology Data Exchange (ETDEWEB)

    Asako, Satoshi; Satoh, Kenji; Furumoto, Keiichi (Nippon Dental Univ., Tokyo (Japan))

    1994-08-01

    Filters of rare-earth elements such as lanthanum (La, Z=57), samarium (Sm, Z=62), gadolinium (Gd, Z=64) and erbium (Er, Z=68) are frequently used in radiography for the purpose of reducing the patient dose by eliminating low-energy and high-energy X-rays which are not involved in imaging. It is useful to evaluate the dose reduction achieved by these rare-earth filters in terms of organ dose, and the effective dose equivalent, which is used for evaluating carcinogenic risks and hereditary effects of X-ray irradiation, for the purpose of optimizing the radiographic technique and radiation protection. Therefore, we calculated the organ dose and effective dose equivalent during intraoral radiography of the maxillary incisor region by simulation using samarium or erbium, typical rare-earth elements, in filtration. We evaluated the effects of these metals in dose reduction. When samarium or erbium, 0.1 mm thick, was used in added filtration at tube voltage of 60, 70, 80 and 90 kV, the time required for radiography almost doubled, respectively. The organ dose at each tube voltage was the largest in the parathyroid and thyroid glands, followed by bone surfaces and the optic lenses, skin, red bone marrow and salivary glands, larynx, and brain, in that order. The organ dose at sites other than the larynx and brain decreased as the quality of the incident X-ray beam was hardened. When samarium or erbium was added at each voltage, the effective dose equivalent was reduced by about 20% to 45%. Erbium was more effective than samarium in reducing the effective dose equivalent, and either of the two elements decreased its effectiveness with an increase in tube voltage. (author) 43 refs.

  18. Magnified effects of the COMT gene on white-matter microstructure in very old age.

    Science.gov (United States)

    Papenberg, Goran; Lövdén, Martin; Laukka, Erika J; Kalpouzos, Grégoria; Keller, Lina; Graff, Caroline; Köhncke, Ylva; Li, Tie-Qiang; Fratiglioni, Laura; Bäckman, Lars

    2015-09-01

    Genetic factors may partly account for between-person differences in brain integrity in old age. Evidence from human and animal studies suggests that the dopaminergic system is implicated in the modulation of white-matter integrity. We investigated whether a genetic variation in the Catechol-O-Methyltransferase (COMT) Val158Met polymorphism, which influences dopamine availability in prefrontal cortex, contributes to interindividual differences in white-matter microstructure, as measured with diffusion-tensor imaging. In a sample of older adults from a population-based study (60-87 years; n = 238), we found that the COMT polymorphism affects white-matter microstructure, indexed by fractional anisotropy and mean diffusivity, of several white-matter tracts in the oldest age group (81-87 years), although there were no reliable associations between COMT and white-matter microstructure in the two younger age groups (60-66 and 72-78 years). These findings extend previous observations of magnified genetic effects on cognition in old age to white-matter integrity.

  19. Effect of dark matter halo on global spiral modes in galaxies

    Science.gov (United States)

    Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.

    2016-02-01

    Low surface brightness (LSB) galaxies form a major class of galaxies, and are characterized by low disc surface density and low star formation rate. These are known to be dominated by dark matter halo from the innermost regions. Here, we study the role of the dark matter halo on the grand-design, m = 2, spiral modes in a galactic disc by carrying out a global mode analysis in the WKB approximation. The Bohr-Sommerfeld quantization rule is used to determine how many discrete global spiral modes are permitted. First, a typical superthin, LSB galaxy UGC 7321 is studied by taking only the galactic disc, modelled as a fluid; and then the disc embedded in a dark matter halo. We find that both cases permit the existence of global spiral modes. This is in contrast to earlier results where the inclusion of dark matter halo was shown to nearly fully suppress local, swing-amplified spiral features. Although technically global modes are permitted in the fluid model as shown here, we argue that due to lack of tidal interactions, these are not triggered in LSB galaxies. For comparison, we carried out a similar analysis for the Galaxy, for which the dark matter halo does not dominate in the inner regions. We show that here too the dark matter halo has little effect, hence the disc embedded in a halo is also able to support global modes. The derived pattern speed of the global mode agrees fairly well with the observed value for the Galaxy.

  20. A systematic effective operator analysis of semi-annihilating dark matter

    Science.gov (United States)

    Cai, Yi; Spray, Andrew

    2017-02-01

    Semi-annihilation is a generic feature of dark matter theories stabilized by symmetries larger than a ℤ 2. It contributes to thermal freeze out, but is irrelevant for direct and collider searches. This allows semi-annihilating dark matter to avoid those limits in a natural way. We use an effective operator approach to make the first model-independent study of the associated phenomenology. We enumerate all possible operators that contribute to 2 → 2 semi-annihilation up to dimension 6, plus leading terms at dimension 7. We find that when the only light states charged under the dark symmetry are dark matter, the model space is highly constrained. Only fifteen operators exist, and just two for single-component dark sectors. If there can be additional light, unstable "dark partner" states the possible phenomenology greatly increases, at the cost of additional model dependence in the dark partner decay modes. We also derive the irreducible constraints on models with single-component dark matter from cosmic ray searches and astrophysical observations. We find that for semi-annihilation to electrons and light quarks, the thermal relic cross sections can be excluded for dark matter masses up to 100 GeV. However, significant model space for semi-annihilating dark matter remains.

  1. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    Science.gov (United States)

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF.

  2. [Effects of airborne fine particulate matter on human respiratory symptoms and pulmonary function].

    Science.gov (United States)

    Gao, Zhi-Yi; Li, Peng-Kun; Zhao, Jin-Zhuo; Jiang, Rong-Fang; Yang, Bin-Jie; Zhang, Min-Hua; Song, Wei-Min

    2010-10-01

    to explore effects of airborne fine particulate matter exposure on human respiratory symptoms and pulmonary function. one hundred and seven field traffic policemen were recruited as airborne fine particulate matter high-exposure group and one hundred and one male residents as common exposure group. The individual sampler was used to measure fine particulate matter exposure levels of the two groups. To obtain personal information, especially respiratory symptoms such as cough, sputum, etc. a questionnaire survey was used. The pulmonary ventilation function was detected: forced expiratory vital capacity (FVC), the first 1 second forced expiratory volume (FEV1.0), FVC/FEV1.0% and peak flow values (PEF), and the difference of fine particulate matter exposure level and respiratory function of the two groups was compared. 24 h individual average fine particulate matter exposure concentration of traffic police and residents were respectively (115.4 ± 46.17) microg/m(3) and (74.94 ± 40.09) microg/m(3), the traffic police PM2.5 exposure levels were significantly higher than the residents. In the incidence of respiratory symptoms, compared with high-exposure group and common exposure group, coughing, expectoration, throat unwell, asthma, short of breath and nose discomfort, traffic police group was higher than residents group (P matter exposure, may impact respiratory health and impair pulmonary function.

  3. Effect of light assisted collisions on matter wave coherence in superradiant Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak;

    2012-01-01

    We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...

  4. The Effects of CLIL Education on the Subject Matter (Mathematics) and the Target Language (English)

    Science.gov (United States)

    Ouazizi, Khalid

    2016-01-01

    This paper investigates the effects of Content and Language Integrated Learning, CLIL for short, on both the attainment of the subject matter, mathematics in our case, hence the content aspect of CLIL. The second axes of research focuses on the effect of CLIL on the learners' proficiency vis-à-vis the language of instruction, epitomized here by…

  5. Effect of Rare Earth Metals on Structure and Properties of Electroless Co-B Alloy Coating

    Institute of Scientific and Technical Information of China (English)

    宣天鹏; 张雷; 黄秋华

    2002-01-01

    The effect of rare earth metals cerium, lanthanum and yttrium on chemical composition, structure and properties of electroless Co-B alloy coating was studied. By plasma transmitting spectrograph, electron energy spectrometer, X-ray diffractometter, micro-hardometer and vibratory sample magnetometer the chemical constitution, structure and properties of the alloy coatings were analyzed and inspected. The results show that with a tiny quantity of rare earth metal added into Co-B alloy coating, the content of boron is decreased in the alloy coatings, and the kinds of rare earth metal have enormous effect on the structure and properties of electroless Co-B alloy coating. At the same time electroless Co-B alloy with amorphous structure is transformed to electroless Co-B-RE alloy with microcrystalline or crystalline structure. In this way microhardness of the coatings is increased remarkably. Cerium and lanthanum would also increase the saturated magnetic intensity and decrease coercitive force of the coating. So soft magnetization of the coatings would be improved.

  6. Effect of upward ion on field-aligned currents in the near-earth magnetotail

    Institute of Scientific and Technical Information of China (English)

    ZHANG; LingQian; LIU; ZhenXing; MA; ZhiWei; SHEN; Chao; ZHOU; XuZhi; ZHANG; XianGuo

    2007-01-01

    A 3-dimensional resistive MHD simulation was carried out to study the effect of the upward ions on the field-aligned currents (FACs) in the near-earth magnetotail. The simulation results show that the up-flow ions originating from the nightside auroral oval would drift into the center plasma sheet along the magnetic field lines in the plasma sheet boundary, and have an important effect on the field-aligned currents. The main conclusions include that: 1) the upward-ions mainly affect the field- aligned currents in the near-earth magnetotail (inside 15 Re); 2) the generated FACs in the near-earth region have two types, i.e., Region 1 FAC in the high-latitude and Region 2 FAC in the low-latitude; 3) FACs increase with the enhancement of the upward ion flux; 4) with the same flux of the upward ions, FACs enhance with the increase of the velocity of the up-flow ions; 5) the intensification of FACs is also closely related with the latitude of the upward ions, and the ions from the closed field line region generate larger FACs; 6) the generation of FACs is closely related with By created by the upward ions.

  7. Enhancement Effects of Three Rare Earth Elements on the Growth of Chaetoceros Mulleri

    Institute of Scientific and Technical Information of China (English)

    曲克明; 辛福言

    2001-01-01

    Enhancement effects of rare earth elements on the growth of Chaetoceros mulleri is studied in this paper. The results show that all of the light, middle and heavy rare earth elements have similar enhancement effect on the growth of Chaetoceros mulleri, with the beneficial concentrations of La, Gd and Yb being 7.28~87.40 μ mol/L, 6.36~57.23 μ mol/L and 5.78~17.34 μ mol/L. The optimum concentrations of La, Gd and Yb are 7.28 ~50.98 μ mol/L,31.80~44.52 μ m ol/L and 5.78~17.34 1μ mol/L, respectively. When the concentrations of La, Gd and Yb are 7.28~87.40 μ mol/L, 6.36~57.23 μ mol/L and 5.78~ 17,34 μ mol/L, the concentrations of chlorophyll have increased by 9.3~47.0%, 33.4~44.3%, and 36.5~40.3%, respectively as compared with the control group. The mechanism of enhancement of rare earth elements on the growth ot Chaetoceros mulleri is also discussed in this paper.

  8. Effects of Rare Earth Elements on Photocatalytic Antibacterial Properties of Nanometer TiO2 Powders

    Institute of Scientific and Technical Information of China (English)

    Gao Ning; Liang Jinsheng; Meng Junping; Ou Xiuqin

    2004-01-01

    Nanometer Ce/TiO2 functional materials with photocatalystic antibacterial properties were prepared by dipping TiO2 nanometer powders into RE( NO3 )·nH2O solutions, filtrating, drying and heat treatment, and the enhancement mechanisms of Ce on the nanometer TiO2 were studied by electronic spin resonance(ESR) The results show that TiO2 for photocatalystic antibacterial properties is strengthened evidently by adding Ce, which has a high efficiency of photocatalystic antibacterial properties with the light extent of visible light and ultraviolet radiation. The basic reason for obtaining the strengthened result is that the effective wave length of photocatalystic properties of TiO2 can be expanded to visible light area with the induction of the rare earth elements, whether or not ultraviolet light exists, nanometer TiO2 can produce a great deal of hydroxylic radical(·OH) by treating with rare earth elements.

  9. North-South Asymmetries in Earth's Magnetic Field: Effects on High-Latitude Geospace

    CERN Document Server

    Laundal, K M; Milan, S E; Haaland, S E; Coxon, J; Pedatella, N M; Förster, M; Reistad, J P

    2016-01-01

    The solar-wind magnetosphere interaction primarily occurs at altitudes where the dipole component of Earth's magnetic field is dominating. The disturbances that are created in this interaction propagate along magnetic field lines and interact with the ionosphere-thermosphere system. At ionospheric altitudes, the Earth's field deviates significantly from a dipole. North-South asymmetries in the magnetic field imply that the magnetosphere ionosphere-thermosphere (M-I-T) coupling is different in the two hemispheres. In this paper we review the primary differences in the magnetic field at polar latitudes, and the consequences that these have for the M-I-T coupling. We focus on two interhemispheric differences which are thought to have the strongest effects: 1) A difference in the offset between magnetic and geographic poles in the Northern and Southern Hemispheres, and 2) differences in the magnetic field strength at magnetically conjugate regions. These asymmetries lead to differences in plasma convection, neutr...

  10. Assessment of strain effect of strong-motion (focus zones of earthquakes on earth's surface displacement

    Directory of Open Access Journals (Sweden)

    Kh.L. Khamidov

    2017-01-01

    Full Text Available Strain effect of focal zones on fore-seismic displacements of earth's surface is studied in the paper for real conditions of focus zones of the earthquakes. The width of the interval of maximum displacements is determined by the conditions of potential focus of tectonic earthquake. The solution of elastic problem for half-space with soft inclusion is used. Calculations are conducted also by empirical formulas, obtained for similar stress states. Possible radius of the zone of maximum revelation of strain anomaly is determined on the basis of the growth of rupture scale and change in heterogeneity volume. It is shown that obtained expression covers a wider range of magnitude variations with consideration of the interval of scale change in upcoming rupture-forming zone. In the example of Tashkent (1966 and Gazli (1984 strong ground motions, an analysis of possible strains occurrence on the Earth's surface was conducted.

  11. Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect

    Science.gov (United States)

    Schumer, Rina; Taloni, Alessandro; Furbish, David Jon

    2017-03-01

    Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.

  12. Effect on Rare-Earth Element Lanthanum for Bond Strength of Electrodeposited Nickel

    Institute of Scientific and Technical Information of China (English)

    Song Bo; Zhang Xinyu; Jin Lihong; Zhu Yuansong; Mu Tao; Sui Zhitong

    2004-01-01

    The bond strength of electrodeposited nickel from common electroplate liquid and rare-earth electroplate liquid was tested and contrasted. Electrodeposited nickel of high bond strength was obtained by method of electro-plate nickel with one step and special pretreatment on the surface of aluminum-alloy substrate. The bond strength between the aluminum-alloy substrate and the electrodeposited nickel was tested by the method of heat shock. Then the effect on the bond strength of the electrodeposited nickel from rare-earth compound, the thickness of the electrodeposited nickel,temperature and current density were analyzed. The experimental result shows that the bond strength between the aluminum-alloy substrate and the electrodeposited nickel is 26 MPa under the following condition( current density: 0.2 ~ 0.6 A · dm-2, thickness of the nickel electrodeposition: 8 ~ 15 μm, and temperature of the electroplate liquid: 8 ~ 25 ℃ ).

  13. Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    Science.gov (United States)

    Hofer, Richard R. (Inventor); Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor)

    2012-01-01

    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.

  14. Effect of Rare Earths on Mechanical Properties and Microstructures of Si3N4-based Ceramics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of Y2O3, La2O3 and Nd2O3 on the mechanical properties and microstructures of Si3N4-based ceramics were studied. It shows that a significant improvement in mechanical properties can be obtained by adding rare earths oxides in Si3N4. The fracture toughness and the flexural strength of Si3N4 added with both Y2O3 and La2O3 are 7.8 MPa.m1/2 and 962 MPa, respectively. The main reason is that adding rare earths in Si3N4 can improve the microstructure of the material and increase the aspect ratio of β-Si3N4 grain.

  15. Urban airborne matter in central and southern Chile: Effects of meteorological conditions on fine and coarse particulate matter

    Science.gov (United States)

    Yáñez, Marco A.; Baettig, Ricardo; Cornejo, Jorge; Zamudio, Francisco; Guajardo, Jorge; Fica, Rodrigo

    2017-07-01

    Air pollution is one of the major global environmental problems affecting human health and life quality. Many cities of Chile are heavily polluted with PM2.5 and PM10, mainly in the cold season, and there is little understanding of how the variation in particle matter differs between cities and how this is affected by the meteorological conditions. The objective of this study was to assess the effect of meteorological variables on respirable particulate matter (PM) of the main cities in the central-south valley of Chile during the cold season (May to August) between 2014 and 2016. We used hourly PM2.5 and PMcoarse (PM10- PM2.5) information along with wind speed, temperature and relative humidity, and other variables derived from meteorological parameters. Generalized additive models (GAMs) were fitted for each of the eight cities selected, covering a latitudinal range of 929 km, from Santiago to Osorno. Great variation in PM was found between cities during the cold months, and that variation exhibited a marked latitudinal pattern. Overall, the more northerly cities tended to be less polluted in PM2.5 and more polluted in PMcoarse than the more southerly cities, and vice versa. The results show that other derived variables from meteorology were better related with PM than the use of traditional daily means. The main variables selected with regard to PM2.5 content were mean wind speed and minimum temperature (negative relationship). Otherwise, the main variables selected with regard to PMcoarse content were mean wind speed (negative), and the daily range in temperature (positive). Variables derived from relative humidity contributed differently to the models, having a higher effect on PMcoarse than PM2.5, and exhibiting both negative and positive effects. For the different cities the deviance explained by the GAMs ranged from 37.6 to 79.1% for PM2.5 and from 18.5 to 63.7% for PMcoarse. The percentage of deviance explained by the models for PM2.5 exhibited a

  16. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  17. Could the Earth's surface Ultraviolet irradiance be blamed for the global warming? A new effect may exist

    CERN Document Server

    Chen, Jilong; Zhao, Juan; Zheng, Yujun

    2014-01-01

    Whether natural factors could interpret the rise of the Earth's surface temperature is still controversial. Though numerous recent researches have reported apparent correlations between solar activity and the Earth's climate, solar activity has encountered a big problem when describing the rapid global warming after 1970s. Our investigation shows the good positive correlations between the Earth's surface Ultraviolet irradiance (280-400 nm) and the Earth's surface temperature both in temporal and spatial variations by analyzing the global surface Ultraviolet irradiance (280-400 nm) and global surface temperature data from 1980-1999. The rise of CO$_2$ cannot interpret the good positive correlations, and we could even get an opposite result to the good correlations when employing the rise of CO$_2$ to describe the relation between them. Based on the good positive correlations, we suggest a new effect, named "Highly Excited Water Vapor" (HEWV) effect, which can interpret how the Sun influences the Earth's surfac...

  18. Using the Rossiter-McLaughlin effect to observe the transmission spectrum of Earth's atmosphere

    CERN Document Server

    Yan, Fei; Petr-Gotzens, Monika G; Pallé, Enric; Zhao, Gang

    2015-01-01

    Due to stellar rotation, the observed radial velocity of a star varies during the transit of a planet across its surface, a phenomenon known as the Rossiter-McLaughlin (RM) effect. The amplitude of the RM effect is related to the radius of the planet which, because of differential absorption in the planetary atmosphere, depends on wavelength. Therefore, the wavelength-dependent RM effect can be used to probe the planetary atmosphere. We measure for the first time the RM effect of the Earth transiting the Sun using a lunar eclipse observed with the ESO HARPS spectrograph. We analyze the observed RM effect at different wavelengths to obtain the transmission spectrum of the Earth's atmosphere after the correction of the solar limb-darkening and the convective blueshift. The ozone Chappuis band absorption as well as the Rayleigh scattering features are clearly detectable with this technique. Our observation demonstrates that the RM effect can be an effective technique for exoplanet atmosphere characterization. It...

  19. Effects of the accumulation of the rare earth elements on soil macrofauna community

    Institute of Scientific and Technical Information of China (English)

    LI

    2010-01-01

    The accumulation of rare earth elements(REEs)in soil has occurred due to the pollution caused by the exploitation of rare earth resources and the wide rare earth fertilizers in agriculture.The accumulation of REEs has a toxic effect on the soil macrofauna community.12study samples were collected near a mine tailings dam with a large amount of REEs by distance gradient sample method.The total concentration of REEs was analyzed and the results were compared with that of the sample from a control site.The effects of the amount of REEs in the soil on the soil macrofauna community were also analyzed.The results showed that the accumulation of REEs in soil was significant in the study area and its concentration was strongly correlated with the distance from the pollution source.One-way ANOVA analysis indicated the significant differences in soil macrofauna communities among the different sites.The ordination obtained through the redundancy analysis demonstrated that the concentration of REEs and the total nitrogen,total potassium and pH,had affected the soil macrofauna community.A small amount of REEs in the soil can promote the diversity of soil macrofauna,but a large amount of REEs can reduce its diversity.The insect groups of Carabidae and Dermaptera were comparatively sensitive to the concentration of REEs in soil,and could be used as an indicator of soil pollution of REEs.However,the Formicidae and Stibaropus formosanus exhibited a high tolerance to REEs in soil.We believe that it is very important for the soil environment protection to strictly control the application of the rare earth fertilizers in agriculture in China.

  20. Effective theory of WIMP dark matter supplemented by simplified models: Singlet-like Majorana fermion case

    Science.gov (United States)

    Matsumoto, Shigeki; Mukhopadhyay, Satyanarayan; Tsai, Yue-Lin Sming

    2016-09-01

    We enumerate the set of simplified models which match onto the complete set of gauge invariant effective operators up to dimension six describing interactions of a singlet-like Majorana fermion dark matter with the standard model. Tree-level matching conditions for each case are worked out in the large mediator mass limit, defining a one-to-one correspondence between the effective operator coefficients and the simplified model parameters for weakly interacting models. Utilizing such a mapping, we compute the dark matter annihilation rate in the early universe, as well as other low-energy observables like nuclear recoil rates using the effective operators, while the simplified models are used to compute the dark matter production rates at high-energy colliders like LEP, LHC and future lepton colliders. Combining all relevant constraints with a profile-likelihood analysis, we then discuss the currently allowed parameter regions and prospects for future searches in terms of the effective operator parameters, reducing the model dependence to a minimal level. In the parameter region where such a model-independent analysis is applicable, and leaving aside the special dark matter mass regions where the annihilation proceeds through an s -channel Z or Higgs boson pole, the current constraints allow effective operator suppression scales (Λ ) of the order of a few hundred GeV for dark matter masses mχ>20 GeV at 95% C.L., while the maximum allowed scale is around 3 TeV for mχ˜O (1 TeV ) . An estimate of the future reach of ton-scale direct detection experiments and planned electron-positron colliders show that most of the remaining regions can be probed, apart from dark matter masses near half of the Z -boson mass (with 500 GeV <Λ <2 TeV ) and those beyond the kinematic reach of the future lepton colliders.

  1. Solar and terrestrial physics. [effects of solar activities on earth environment

    Science.gov (United States)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  2. Possible effects on Earth's climate due to reduced atmospheric ionization by GCR during Forbush Decreases

    Science.gov (United States)

    Portugal, Williamary; Echer, Ezequiel; Pereira de Souza Echer, Mariza; Pacini, Alessandra Abe

    2017-10-01

    This work presents the first results of a study about possible effects on the surface temperature during short periods of lower fluxes of Galactic Cosmic Rays at Earth, called Forbush Decreases. There is a hypothesis that the Galactic Cosmic Ray flux decreases cause changes on the physical-chemical properties of the atmosphere. We have conducted a study to investigate these possible effects on several latitudinal regions, around the ten strongest FDs occurred from 1987 to 2015. We have found a possible increase on the surface temperature at middle and high latitudes during the occurence of these events.

  3. Baryonic matter and beyond

    CERN Document Server

    Fukushima, Kenji

    2014-01-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  4. Establishment of ANEDr model for evaluating absorbed-nitrogen effects on wheat dry matter production

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jiao; TAO Hong-bin; LIAO Shu-hua; WANG Pu

    2016-01-01

    Applying mathematic models to evaluate absorbed-N effects on dry matter production at different developmental stages would help determine proper nitrogen management according to crop demands and yield target. Two ifeld trials were car-ried out for establishing absorbed-N effects on dry matter production (ANEDr) model, using uniform design in 2010–2011 and 2012–2013 winter wheat growing seasons in Hebei Province, China. Another ifeld trial was carried out in 2010–2011 for model validation. Dry matter and N concentration in leaf and non-leaf organs were measured at setting, jointing, an-thesis, and maturity. Theory of best linear unbiased prediction (BLUP) was applied to analyse the N effects of leaf and non-leaf organs on dry matter production. Within ANEDr model, four N-affected phases at each stage were concerned, leaf absorbed-N effect before this stage, non-leaf organ absorbed-N effect before this stage,leaf absorbed-N effect at this stage, and non-leaf organ absorbed-N effect at this stage. In addition, developmental processes, genotype characters and temperature were three factors that determine each N effect. It was demonstrated that ANEDr model can precisely quantify absorbed-N effects on dry matter production with high correlation coefifcient (r=0.95). Comparing with other models, ANEDr model considered both leaf and non-leaf organs according to developmental processes of winter wheat, showed higher lfexibility and simplicity, thus could be applied to different environments, cultivars and crops after parameter adjustment.

  5. Transverse and Longitudinal Doppler Effects of the Sunbeam Spectra and Earth-Self Rotation and Orbital Velocities, the Mass of the Sun and Others

    OpenAIRE

    Nam, Sang Boo

    2009-01-01

    The transverse and longitudinal Doppler effects of the sunbeam spectra are shown to result in the earth parameters such as the earth-self rotation and revolution velocities, the earth orbit semi-major axis, the earth orbital angular momentum, the earth axial tilt, the earth orbit eccentricity, the local latitude and the mass of the sun. The sunbeam global positioning scheme is realized, including the earth orbital position. PACS numbers: 91.10.Fc, 95.10.Km, 91.10.Da, 91.10.Jf.

  6. Action-effect learning in early childhood: does language matter?

    Science.gov (United States)

    Karbach, Julia; Kray, Jutta; Hommel, Bernhard

    2011-07-01

    Previous work showed that language has an important function for the development of action control. This study examined the role of verbal processes for action-effect learning in 4-year-old children. Participants performed an acquisition phase including a two-choice key-pressing task in which each key press (action) was followed by a particular sound (effect). Children were instructed to either (1) label their actions along with the corresponding effects, (2) verbalize task-irrelevant words, (3) or perform without verbalization. In a subsequent test phase, they responded to the same sound effects either under consistent or under inconsistent sound-key mappings. Evidence for action-effect learning was obtained only if action and effects were labeled or if no verbalization was performed, but not if children verbalized task-irrelevant labels. Importantly, action-effect learning was most pronounced when children verbalized the actions and the corresponding effects, suggesting that task-relevant verbal labeling supports the integration of event representations.

  7. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    Science.gov (United States)

    Geytenbeek, Ben; Rao, Soumya; Scott, Pat; Serenelli, Aldo; Vincent, Aaron C.; White, Martin; Williams, Anthony G.

    2017-03-01

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or an anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ~ 1 GeV‑2 or magnetic dipole moment of ~ 10‑3μp can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.

  8. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    CERN Document Server

    Geytenbeek, Ben; Scott, Pat; Serenelli, Aldo; Vincent, Aaron C; White, Martin; Williams, Anthony G

    2016-01-01

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or an anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with a mass of 3 GeV and an electric dipole moment $\\sim3\\times10^{-10} e-cm$ or an anapole moment of $\\sim10^3 GeV^{-2}$ can improve the sound-speed prof...

  9. Diatomaceous earth and oil enhance effectiveness of Metarhizium anisopliae against Triatoma infestans.

    Science.gov (United States)

    Luz, Christian; Rodrigues, Juscelino; Rocha, Luiz F N

    2012-04-01

    Entomopathogenic fungi, especially Metarhizium anisopliae, have potential for integrated control of peridomestic triatomine bugs. However, the high susceptibility of these vectors to fungal infection at elevated ambient humidities decreases in the comparatively dry conditions that often prevail in their microhabitats. A formulation adapted to this target pest that induces high and quick mortality can help to overcome these drawbacks. In the present study diatomaceous earth, which is used against pests of stored grains or as an additive to mycoinsecticides, delayed but did not reduce in vitro germination of M. anisopliae s.l. IP 46 conidia after >24h agitation without affecting viability, and did not hamper the survival of Triatoma infestans nymphs exposed to treated surfaces. The settling behavior of nymphs on a treated surface in choice tests depended on the concentration of diatomaceous earth and ambient light level. Conidia formulated with diatomaceous earth and a vegetable oil synergized the insecticidal effect of the fungus in nymphs, and quickly killed all treated insects, even at 75% relative humidity (LT(90) 8.3 days) where unformulated conidia caused only 25% mortality after a 25 days exposure. The improved performance of a combined oil and desiccant dust formulation of this Metarhizium isolate raises the likelihood for its successful mycoinsecticidal use for triatomine control and, apparently, against other domestic insect pests.

  10. Effect of Activation Energies on Thermal Explosion in the Interior of the Earth

    Directory of Open Access Journals (Sweden)

    Amos Oladele Popoola

    2011-01-01

    Full Text Available Problem statement: Literatures have shown that thermal processes in the interior of the earth and the classical thermal explosion are analogous and that combustion processes are characterized by ignition and explosion. The heat released during the thermal explosion that occurs in the interior of the earth requires more attention. Approach: The study investigated the role of activation energies ratio in the thermal explosion that occurs in the earth interior during gravitational differentiation. The study examined the effects of activation energies on the unsteady, steady and homogenous reactions of the resulting energy equation and provided the numerical and exact solutions of the equations. Results: The results showed that activation energies ratio has different implication in terms of heat release and established the criteria for the blow up to occur in two different homogenous reactions. It was observed that an increase in activation energies ratio increased the maximum temperature of the reactions but reduced the ignition time of the homogenous states. Conclusion: The results imply that for any non-zero second activation energy, ignition time lowers and more heat are released.

  11. Effectiveness of GeoWall Visualization Technology for Conceptualization of the Sun-Earth-Moon System

    Science.gov (United States)

    Turner, N. E.; Gray, C.; Mitchell, E. J.

    2004-12-01

    One persistent difficulty many introductory astronomy students face is the lack of a 3-dimensional mental model of the Earth-Moon system. Students without such a mental model can have a very hard time conceptualizing the geometric relationships that cause the cycle of lunar phases. The GeoWall is a recently developed and affordable projection mechanism for three-dimensional stereo visualization which is becoming a popular tool in classrooms and research labs. We present results from a study using a 3-D GeoWall with a simulated sunlit Earth-Moon system on undergraduate students' ability to understand the origins of lunar phases. We test students exposed to only in-class instruction, some with a laboratory exercise using the GeoWall Earth-Moon simulation, some students who were exposed to both, and some with an alternate activity involving lunar observations. Students are given pre and post tests using the a diagnostic test called the Lunar Phase Concept Inventory (LPCI). We discuss the effectiveness of this technology as a teaching tool for lunar phases.

  12. Snowball Earth

    OpenAIRE

    2016-01-01

    In the ongoing quest to better understand where life may exist elsewhere in the Universe, important lessons may be gained from our own planet. In particular, much can be learned from planetary glaciation events that Earth suffered ∼600 million years ago, so-called `Snowball Earth' episodes. I begin with an overview of how the climate works. This helps to explain how the ice-albedo feedback effect can destabilise a planet's climate. The process relies on lower temperatures causing more ice to ...

  13. The effect of earth tides as observed in seismo-electromagnetic precursory signals

    Directory of Open Access Journals (Sweden)

    M. Hayakawa

    2009-10-01

    Full Text Available Studies on the effect of earth tides in triggering earthquakes (EQs had a great progress in recent years, which has provided convincing evidence of earth tides in EQ triggering. On the other hand, there have been accumulated a lot of evidences on the presence of seismogenic electromagnetic effects (such as ULF electromagnetic emissions from the lithosphere, ionospheric perturbations as detected by subionospheric VLF/LF propagation, etc.. Since the initial agent of these seismogenic electromagnetic effects is obviously due to some mechanical action around the EQ focal zone, the tidal effect as seen in EQ sequence should appear also in seismo-electromagnetic phenomena. Based on this expectation we have studied the tidal effect in different seismogenic phenomena, and have found that lithospheric ULF emissions exhibit a clear maximum-minimum-maximum pattern synchronized with the lunar phase of the EQ during several months before the EQ. As for VLF/LF propagation anomaly representing the lower ionospheric perturbation, we have found the tidal modulation very similar to ULF emissions, but less clear, and also there are some differences from the ULF case (such as occasional shift with respect to the lunar phase and/or the presence of higher frequency modulation, etc.. These findings are indicative that those electromagnetic phenomena reported to be in possible association with an EQ are really related with any preparatory phase of an EQ. This kind of study would be a bridge between the seismology and our seismo-electromagnetic study.

  14. Hard Coal Fly Ash and Silica-Effect of Fine Particulate Matter Deposits on Brassica chinensis

    Directory of Open Access Journals (Sweden)

    Christian Ulrichs

    2009-01-01

    Full Text Available Problem statement: One focus in recent atmospheric pollution research is on fine Particle Matter (PM, especially as result of increasing traffic and anthropogenic activity in urban areas. Here, the impact on animal and human health has been in the center of many studies. Despite the fact that PM depositions can affect plants on the long term, there are only few studies about the impact on plants conducted. Approach: Therefore we studied the impact of PM on plants, using naturally occurring silica dusts (diatomaceous earth and hard Coal Fly Ash (CFA from burning processes. Dusts were applied onto Brassica chinensis L. using a simple duster (covering upper leaf surfaces or electrostatically (covering leaf upper and -underside. Results: Main components of the tested CFA are SO42-, K, Ca and NH4+. The pH value of eluates was found to be around 9.5 in CFA and 5.7 in silica. B. chinensis was insensitive towards the high pH and showed no growth reduction when grown in silica or CFA substrate. PM deposition on leaf surfaces results through shading in a reduced photosynthetic activity. The reduction is relatively higher at higher light intensities. Photosynthesis stays reduced after removal of silica PM from leaf surfaces. We assume that stomata get cloaked by small particles and that silica absorbs lipids from the epicuticle resulting in a general stress reaction. Smaller sized silica particles resulted in a higher reduction of CO2-absorption. Next to particle size is the photosynthesis negatively correlated with exposure time for silica PM. The chlorophyll fluorescence data indicate that dust-covered leaves exhibited significantly lower quantum yield of PS II and a reduced quantum efficiency of PS II and therefore supported the gas exchange data. Conclusion: Reduced photosynthetic performance would be expected to reduce growth and productivity of B. chinensis. In contrast to silica hard coal fly ash

  15. Do less effective teachers choose professional development does it matter?

    Science.gov (United States)

    Barrett, Nathan; Butler, J S; Toma, Eugenia F

    2012-10-01

    In an ongoing effort to improve teacher quality, most states require continuing education or professional development for their in-service teachers. Studies evaluating the effectiveness of various professional development programs have assumed a normal distribution of quality of teachers participating in the programs. Because participation in many professional development programs is either targeted or voluntary, this article suggests past evaluations of the effectiveness of professional development may be subject to selection bias and policy recommendations may be premature. This article presents an empirical framework for evaluating professional development programs where treatment is potentially nonrandom, and explicitly accounts for the teacher's prior effectiveness in the classroom as a factor that may influence participation in professional development. This article controls for the influence of selection bias on professional development outcomes by generating a matched sample based on propensity scores and then estimating the program's effect. In applying this framework to the professional development program examined in this article, less effective teachers are found to be more likely to participate in the program, and correcting for this selection leads to different conclusions regarding the program's effectiveness than when ignoring teacher selection patterns.

  16. Truncation effects in computing free wobble/nutation modes explored using a simple Earth model

    Science.gov (United States)

    Seyed-Mahmoud, Behnam; Rochester, Michael G.; Rogers, Christopher M.

    2017-03-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincaré problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode (TOM) is found to excellent accuracy. The computed periods of the Chandler wobble (CW) and free core nutation (FCN) are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble (ICW) is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 ± 1 sd, as more terms are included, with no guarantee that its proximity to earlier values

  17. Truncation effects in computing free wobble/nutation modes explored using a simple Earth model

    Science.gov (United States)

    Seyed-Mahmoud, Behnam; Rochester, Michael G.; Rogers, Christopher M.

    2017-06-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincaré problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode is found to excellent accuracy. The computed periods of the Chandler wobble and free core nutation are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 ± 1 sd, as more terms are included, with no guarantee that its proximity to earlier values is other than fortuitous

  18. Three-Body Force Effects on EOS of Asymmetric Nuclear Matter and Proton Fraction in Neutron Star Matter

    Institute of Scientific and Technical Information of China (English)

    ZUO Wei; A.Lejeune; U.Lombardo; J.F.Mathiot

    2003-01-01

    The three-body force effects on the equation of state and its iso-spin dependence of asymmetric nuclearmatter and on the proton fraction in neutron star matter have been investigated within Brueckner-Hartree-Fock approachby using a microscopic three-body force. It is shown that, even in the presence of the three-body force, the empiricalparabolic law of the energy per nucleon vs. isospin asymmetry β= ( N - Z) /A is fulfilled in the whole asymmetry range0≤β≤1 and also up to high density. The three-body force provides a strong enhancement of symmetry energy at highdensity in agreement with relativistic approaches. It also shows that the three-body force leads to a much more rapidincreasing of symmetry energy with density in relatively high density region and to a much lower threshold density forthe direct URCA process to occur in a neutron star as compared to the predictions adopting only pure two-body force.

  19. Necessity of using heterogeneous ellipsoidal Earth model with terrain to calculate co-seismic effect

    Science.gov (United States)

    Cheng, Huihong; Zhang, Bei; Zhang, Huai; Huang, Luyuan; Qu, Wulin; Shi, Yaolin

    2016-04-01

    Co-seismic deformation and stress changes, which reflect the elasticity of the earth, are very important in the earthquake dynamics, and also to other issues, such as the evaluation of the seismic risk, fracture process and triggering of earthquake. Lots of scholars have researched the dislocation theory and co-seismic deformation and obtained the half-space homogeneous model, half-space stratified model, spherical stratified model, and so on. Especially, models of Okada (1992) and Wang (2003, 2006) are widely applied in the research of calculating co-seismic and post-seismic effects. However, since both semi-infinite space model and layered model do not take the role of the earth curvature or heterogeneity or topography into consideration, there are large errors in calculating the co-seismic displacement of a great earthquake in its impacted area. Meanwhile, the computational methods of calculating the co-seismic strain and stress are different between spherical model and plane model. Here, we adopted the finite element method which could well deal with the complex characteristics (such as anisotropy, discontinuities) of rock and different conditions. We use the mash adaptive technique to automatically encrypt the mesh at the fault and adopt the equivalent volume force replace the dislocation source, which can avoid the difficulty in handling discontinuity surface with conventional (Zhang et al., 2015). We constructed an earth model that included earth's layered structure and curvature, the upper boundary was set as a free surface and the core-mantle boundary was set under buoyancy forces. Firstly, based on the precision requirement, we take a testing model - - a strike-slip fault (the length of fault is 500km and the width is 50km, and the slippage is 10m) for example. Because of the curvature of the Earth, some errors certainly occur in plane coordinates just as previous studies (Dong et al., 2014; Sun et al., 2012). However, we also found that: 1) the co

  20. Effective Mass of Kaon in Asymmetrici Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    LiXiguo; GaoYuan; LiuZiyu; ZuoWei

    2003-01-01

    The properties of kaon at very high baryon density has been a fascinating subject since 1986. Of particular importance is the modification of effective mass of antikaon in-medium. This is expected to not only help us to understander the chiral symmetry restoration but also effect the composition and structure of neutron star.. The modification of kaon and antikaon mass in medium might be a new mechanism of production at energies below the threshold. Based on the mean-field approximation to the effective SU(3)L×SU(3)n chiral Lagrangian, the kaon and anti kaon mass in medium, defined as the energy of a kaon (or antikaon) with zero three momentum,are then given by[1

  1. Effective equations for isotropic quantum cosmology including matter

    CERN Document Server

    Bojowald, Martin; Skirzewski, Aureliano

    2007-01-01

    Effective equations often provide powerful tools to develop a systematic understanding of detailed properties of a quantum system. This is especially helpful in quantum cosmology where several conceptual and technical difficulties associated with the full quantum equations can be avoided in this way. Here, effective equations for Wheeler-DeWitt and loop quantizations of spatially flat, isotropic cosmological models sourced by a massive or interacting scalar are derived and studied. The resulting systems are remarkably different from that given for a free, massless scalar. This has implications for the coherence of evolving states and the realization of a bounce in loop quantum cosmology.

  2. 77 FR 24742 - In the Matter of ABSG Consulting Inc. Confirmatory Order (Effective Immediately)

    Science.gov (United States)

    2012-04-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of ABSG Consulting Inc. Confirmatory Order (Effective Immediately) I ABSG Consulting Inc. (ABSG) is an independently owned and operated risk, safety, and integrity management company...

  3. Quantifying effects of land use change on soil organic matter at the landscape scale

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Apeldoorn, van D.F.; Pepers, K.H.; Hanegraaf, M.C.

    2012-01-01

    Geophysical Research Abstracts Vol. 14, EGU2012-8153, 2012 EGU General Assembly 2012 © Author(s) 2012 Quantifying effects of land use change on soil organic matter at the landscape scale M.P.W. Sonneveld (1), D.F. Van Apeldoorn (1), K.H. Pepers (1), and M.C. Hanegraaf (2) (1) Land Dynamics Group, Wa

  4. Mycorrhizal associations of trees have different indirect effects on organic matter decomposition

    Science.gov (United States)

    Melanie K. Taylor; Richard A. Lankau; Nina Wurzburger; Franciska de Vries

    2016-01-01

    1. Organic matter decomposition is the main process by which carbon (C) is lost from terrestrialecosystems, and mycorrhizal associations of plants (i.e. arbuscular mycorrhizas (AM) and ectomycorrhizas(ECM)) may have different indirect effects on this loss pathway. AM and ECM plants differin the soil...

  5. Effect of storage period and chemical treatment on sunflower parents lines seedling dry matter content

    Directory of Open Access Journals (Sweden)

    Mrđa Jelena

    2009-01-01

    Full Text Available In modern agricultural production, high quality seed which germinates quickly and evenly in different environments is the main requirement for high yields. The research was carried out in the Laboratory for Seed Testing in Institute of Field and Vegetable Crops in Novi Sad. Two cytoplasmic male sterile lines L-1 and L-2 were used for the research. Seed treatments with fungicides (benomil, metalaxyl and fludioxonil and insecticides (tiametoxam and imidacloprid were applied to evaluate effects of chemical treatments and storage duration on seedlings dry matter content. This treated seed was kept in a storage facility where all commercial seed is stored. The first assessment was done after the treatments and had been repeated every three months. Analysis of variance of the tested parameters showed statistically significant effects of chemical treatments and storage duration on seedling dry matter content in L-1 line. In line L-2, statistically significant effect of chemical treatment on seedling dry matter content was observed, whereas the effect of storage duration on seedlings dry matter content was highly significant. Double interactions were highly significant. .

  6. Quantifying effects of land use change on soil organic matter at the landscape scale

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Apeldoorn, van D.F.; Pepers, K.H.; Hanegraaf, M.C.

    2012-01-01

    Geophysical Research Abstracts Vol. 14, EGU2012-8153, 2012 EGU General Assembly 2012 © Author(s) 2012 Quantifying effects of land use change on soil organic matter at the landscape scale M.P.W. Sonneveld (1), D.F. Van Apeldoorn (1), K.H. Pepers (1), and M.C. Hanegraaf (2) (1) Land Dynamics Group,

  7. Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke

    Science.gov (United States)

    The effect of photoperiod and growing degree days (GDD) on dry matter and dry partitioning in Jerusalem artichoke was investigated during 2008-09 and 2009-10. Three Jerusalem artichoke genotypes (CN-52867, JA-89 and HEL-65) were planted in 15 day-intervals between with thirteen different dates (Sep...

  8. Determination of the neutrino mass hierarchy in the regime of small matter effect

    CERN Document Server

    Schwetz, T

    2007-01-01

    We point out a synergy between T-conjugated oscillation channels in the determination of the neutrino mass hierarchy with oscillation experiments with relatively short baselines (L < 700 km), where the matter effect is small. If information from all four oscillation channels $\

  9. Cold Nuclear Matter Effects on Open and Hidden Heavy Flavor Production at the LHC

    CERN Document Server

    Vogt, R

    2015-01-01

    We discuss a number of cold nuclear matter effects that can modify open heavy flavor and quarkonium production in proton-nucleus collisions and could thus also affect their production in nucleus-nucleus collisions, in addition to hot quark-gluon plasma production. We show some results for $p+$Pb collisions at sqrt s = 5 TeV at the LHC.

  10. The effect of random matter density perturbations on the MSW solution to the solar neutrino problem

    CERN Document Server

    Nunokawa, H; Semikoz, V B; Valle, José W F

    1996-01-01

    We consider the implications of solar matter density random noise upon resonant neutrino conversion. The evolution equation describing MSW-like conversion is derived in the framework of the Schr\\"odinger approach. We study quantitatively their effect upon both large and small mixing angle MSW solutions to the solar neutrino problem. This is carried out both for the active-active \

  11. Self-adjointness and the Casimir effect with confined quantized spinor matter

    CERN Document Server

    Sitenko, Yurii A

    2015-01-01

    A generalization of the MIT bag boundary condition for spinor matter is proposed basing on the requirement that the Dirac hamiltonian operator be self-adjoint. An influence of a background magnetic field on the vacuum of charged spinor matter confined between two parallel material plates is studied. Employing the most general set of boundary conditions at the plates in the case of the uniform magnetic field directed orthogonally to the plates, we find the pressure from the vacuum onto the plates. In physically plausible situations, the Casimir effect is shown to be repulsive, independently of a choice of boundary conditions and of a distance between the plates.

  12. Pairing effects on neutrino transport in low-density stellar matter

    CERN Document Server

    Burrello, S; Matera, F

    2016-01-01

    We investigate the impact of pairing correlations on neutrino transport in stellar matter. Our analysis is extended to nuclear matter conditions where large density fluctuations develop, associated with the onset of the liquid-vapor phase transition, and clustering phenomena occur. Within a thermodynamical treatment, we show that at moderate temperatures, where pairing effects are still active, the scattering of neutrinos in the nuclear medium is significantly affected by pairing correlations, which increase the neutrino trapping, thus modifying the cooling mechanism, by neutrino emission, of neutron stars.

  13. Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 México, D.F. (Mexico); Moura, C.A., E-mail: celio.moura@ufabc.edu.br [Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Rua Santa Adélia, 166, 09210-170 Santo André, SP (Brazil); Parada, A., E-mail: alexander.parada00@usc.edu.co [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 México, D.F. (Mexico)

    2015-05-11

    Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.

  14. The effect of deconfinement phase transition on rotochemical deviations in stars containing mixed phase matter

    CERN Document Server

    Wei, Wei

    2011-01-01

    As a neutron star spins down, its core density increase, changing the relative equilibrium concentration, and causing deconfinement phase transition as well. hadron matter are converted into quark matter in the interior, which enhances the deviation of chemical equilibrium state. We study such deviations and its chemical energy release.Applying to the simulation of cooling neutron stars, we find the surface effective temperature of neutron stars is promoted obviously. This implies that the deconfinement phase transition is able to raise the chemical heating efficiency.

  15. Searching for Axion Dark Matter in Atoms: Oscillating Electric Dipole Moments and Spin-Precession Effects

    CERN Document Server

    Roberts, Benjamin M; Flambaum, Victor V; Dzuba, Vladimir A

    2015-01-01

    We propose to search for axion dark matter via the oscillating electric dipole moments that axions induce in atoms and molecules. These moments are produced through the intrinsic oscillating electric dipole moments of nucleons and through the $P,T$-violating nucleon-nucleon interaction mediated by pion exchange, both of which arise due to the axion-gluon coupling, and also directly through the axion-electron interaction. Axion dark matter may also be sought for through the spin-precession effects that axions produce by directly coupling to fermion spins.

  16. How reliable is the mean-field nuclear matter description for supporting chiral effective lagrangians?

    CERN Document Server

    Delfino, A; Frederico, T

    1996-01-01

    The link between non-linear chiral effective Lagrangians and the Walecka model description of bulk nuclear matter [1] is questioned. This fact is by itself due to the Mean Field Approximation (MFA) which in nuclear mater makes the picture of a nucleon-nucleon interaction based on scalar(vector) meson exchange, equivalent to the description of a nuclear matter based on attractive and repulsive contact interactions. We present a linear chiral model where this link between the Walecka model and an underlying to chiral symmetry realization still holds, due to MFA.

  17. Simplified models vs. effective field theory approaches in dark matter searches

    Science.gov (United States)

    De Simone, Andrea; Jacques, Thomas

    2016-07-01

    In this review we discuss and compare the usage of simplified models and Effective Field Theory (EFT) approaches in dark matter searches. We provide a state of the art description on the subject of EFTs and simplified models, especially in the context of collider searches for dark matter, but also with implications for direct and indirect detection searches, with the aim of constituting a common language for future comparisons between different strategies. The material is presented in a form that is as self-contained as possible, so that it may serve as an introductory review for the newcomer as well as a reference guide for the practitioner.

  18. Simplified Models vs. Effective Field Theory Approaches in Dark Matter Searches

    CERN Document Server

    De Simone, Andrea

    2016-01-01

    In this review we discuss and compare the usage of simplified models and Effective Field Theory (EFT) approaches in dark matter searches. We provide a state of the art description on the subject of EFTs and simplified models, especially in the context of collider searches for dark matter, but also with implications for direct and indirect detection searches, with the aim of constituting a common language for future comparisons between different strategies. The material is presented in a form that is as self-contained as possible, so that it may serve as an introductory review for the newcomer as well as a reference guide for the practitioner.

  19. Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes

    Directory of Open Access Journals (Sweden)

    O.G. Miranda

    2015-05-01

    Full Text Available Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.

  20. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)], E-mail: ugo.besson@unipv.it, E-mail: anna.deambrosisvigna@unipv.it

    2010-03-15

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  1. Effects of the observed J2 variations on the Earth's precession and nutation

    Science.gov (United States)

    Ferrándiz, José M.; Baenas, Tomás; Belda, Santiago

    2016-04-01

    The Earth's oblateness parameter J2 is closely related to the dynamical ellipticity H, which factorizes the main components of the precession and the different nutation terms. In most theoretical approaches to the Earth's rotation, with IAU2000 nutation theory among them, H is assumed to be constant. The precession model IAU2006 supposes H to have a conventional linear variation, based on the J2 time series derived mainly from satellite laser ranging (SLR) data for decades, which gives rise to an additional quadratic term of the precession in longitude and some corrections of the nutation terms. The time evolution of J2 is, however, too complex to be well approximated by a simple linear model. The effect of more general models including periodic terms and closer to the observed time series, although still unable to reproduce a significant part of the signal, has been seldom investigated. In this work we address the problem of deriving the effect of the observed J2 variations without resorting to such simplified models. The Hamiltonian approach to the Earth rotation is extended to allow the McCullagh's term of the potential to depend on a time-varying oblateness. An analytical solution is derived by means of a suitable perturbation method in the case of the time series provided by the Center for Space Research (CSR) of the University of Texas, which results in non-negligible contributions to the precession-nutation angles. The presentation focuses on the main effects on the longitude of the equator; a noticeable non-linear trend is superimposed to the linear main precession term, along with some periodic and decadal variations.

  2. Effects of weathering of organic matter in the La Luna Formation, Maracaibo Basin, Western Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, N.

    1986-01-01

    The effect of weathering of organic matter in the La Luna Formation, the main source rock of Cretaceous oil in Western Venezuela was studied by means of organic petrography. Two outcrop samples from zero to about 10 cm depth were studied microscopically, both in whole rock and kerogen extract mode. This permitted recognizing some characteristics and consequences of weathering, such as: increased porosity of huminite and solid bitumens and the decrease of its reflectance (% anti Ro); disappearance of micrinite, presence of exudation substances and lower fluorescence emission of liptinite under blue light excitation. The mass reduction of the organic matter was determined by the difference of total organic carbon values, and by the weight reduction of the sample before and after extraction, in both weathered and unweathered samples. The loss of organic matter by weathering is considerable, as much as 87% in the first 0.5 cm of the weathering halo are lost.

  3. Cumulative effects of biochar, mineral and organic fertilizers on soil organic matter

    Science.gov (United States)

    Plaza, César; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2016-04-01

    We investigated the effect of three consecutive annual applications of biochar at rates of 0 and 20 t ha-1, in a factorial combination with a mineral fertilizer (NPK and nitrosulfate) and two types of organic amendment (municipal solid waste compost and sewage sludge), on soil organic matter in a field experiment under Mediterranean conditions. Biochar increased significantly soil organic C content and C/N ratio. In biochar-amended soils, soil organic C increased significantly with the addition of municipal solid waste compost and sewage sludge. To capture organic matter protection mechanisms related to aggregation and mineral interaction, the soil samples will be fractionated into free (unprotected), intra-macroaggregate, intra-microaggregate, and mineral-associated organic matter pools, and the isolated fractions will be subjected to further chemical and spectroscopic analysis.

  4. The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium

    CERN Document Server

    Viel, Matteo; Springel, Volker

    2010-01-01

    We present a suite of full hydrodynamical cosmological simulations that quantitatively address the impact of neutrinos on the (mildly non-linear) spatial distribution of matter and in particular on the neutral hydrogen distribution in the Intergalactic Medium (IGM), which is responsible for the intervening Lyman-alpha absorption in quasar spectra. The free-streaming of neutrinos results in a (non-linear) scale-dependent suppression of power spectrum of the total matter distribution at scales probed by Lyman-alpha forest data which is larger than the linear theory prediction by about 25% and strongly redshift dependent. By extracting a set of realistic mock quasar spectra, we quantify the effect of neutrinos on the flux probability distribution function and flux power spectrum. The differences in the matter power spectra translate into a ~2.5% (5%) difference in the flux power spectrum for neutrino masses with Sigma m_{\

  5. The EOS of neutron matter and the effect of $\\Lambda$ hyperons to neutron star structure

    CERN Document Server

    Gandolfi, Stefano

    2015-01-01

    The structure of neutron stars is determined by the equation of state of the matter inside the star, which relies on the knowledge of nuclear interactions. While radii of neutron stars mostly depend on the equation of state of neutron matter at nuclear densities, their maximum mass can be drastically affected by the appearance of hyperons at higher densities in the inner core of the star. We summarize recent quantum Monte Carlo results on the calculation of the equation of state of neutron matter at nuclear and higher densities. We report about the development of realistic hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei and on the effect of $\\Lambda$ hyperons to the neutron star structure.

  6. Effect of Anion on Adsorption of Rare Earth Elements on Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Jianjun

    2007-01-01

    For a better understanding the adsorption of rare earth elements (REEs) on minerals and its controlling factors, adsorption experiments were performed with kaolin in a matrix of various concentration of anion (Cl-, ClO4-, SO42-) in the pH 6.5. The adsorption of REEs onto the kaolin increase with increasing anion concentration, especially in the presence of SO42-, which is ascribe to the Na+ mass effect and anion complexation. furthermore, the heavy REEs are more adsorbed onto kaolin in presence of higher concentration of anion, especially for Cl- and SO42-, presumably due to the difference of anion complexation with light REE and heavy REEs.

  7. Effect of Rare Earth Elements on Quenching Crack Resistance of Steel 9Cr2Mo

    Institute of Scientific and Technical Information of China (English)

    杨庆祥; 李慧; 郭铁波; 张兰萍

    2001-01-01

    The effect of rare earth elements on quenching crack resistance of steel 9Cr2Mo was investigated by means of scanning electron microscopy (SEM) and optical microscopy. Experimental results show that, by adding RE elements to steel 9Cr2Mo, the number of quenching for crack initiation is increased. Meanwhile the propagation of quenching cracks is postponed and the paths of crack propagation are changed. Therefore, quenching crack resistance can be improved by adding RE elements to steel 9Cr2Mo.

  8. The insecticidal effect of diatomaceous earth against adults and nymphs of Blattella germanica

    OpenAIRE

    2014-01-01

    Objective: To evaluate the insecticidal effect of diatomaceous earth (DE) against adults and nymphs of Blattella germanica. Methods: This cross sectional study has been done on the laboratory strain of German cockroaches. Two stages, nymph and adult, were exposed to six dose rates of the DE, 2.5, 5, 10, 15, 20 and 25 g/m2, at 24, 48 and 72 h exposure period. Mortality (number of dead cockroaches) was assessed after 24 h. Other exposed specimens were transferred to the beakers contained foo...

  9. Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE

    Directory of Open Access Journals (Sweden)

    Abdulhadi Abu-Almal

    2010-01-01

    Full Text Available A large set of 14 years of reliable local radiosonde meteorological data, from 1990 to 2003, has been used to calculate the effective Earth radius and point refractivity gradient in the United Arab Emirates. The obtained values are used to investigate their impact on the design of microwave links. The cumulative distribution of the refractivity gradient in the first 65 meters above the ground surface, the monthly distribution for the median value of the k-factor, as well as their comparison with the ITU-maps are provided. Both experimental and global standard values are applied to specific link budget calculations.

  10. Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater

    Institute of Scientific and Technical Information of China (English)

    毛向阳; 方峰; 蒋建清; 谈荣生

    2009-01-01

    Cu-30Ni-xRE(x=0-0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...

  11. Effect of Rare Earth Elements on Thermal Fatigue Property of Low Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    常立民; 刘建华; 张瑞军; 邵利; 于升学; 谌岩

    2003-01-01

    The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi-steel in as-cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide′s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950 ℃ for 3 h.

  12. Effective and responsible teaching of climate change in Earth Science-related disciplines

    Science.gov (United States)

    Robinson, Z. P.; Greenhough, B. J.

    2009-04-01

    topic to cover within the Earth Science-related curricula due to wide-ranging, and sometimes polarised, existing attitudes of students and levels of existing partial and sometimes flawed knowledge in addition to the troublesome concepts that need to be grasped. These issues highlight the responsibility and challenge inherent in teaching the subject of climate change and the importance of consideration of integrating sustainability issues with the core science of climate change. The talk will include a discussion of strategies and resources for the effective teaching of climate change topics for a range of levels and discipline backgrounds.

  13. Magnetoelectric Effects in Local Light-Matter Interactions

    CERN Document Server

    Bliokh, Konstantin Y; Nori, Franco

    2013-01-01

    We study the generic interaction of a monochromatic electromagnetic field with bi-isotropic nanoparticles. Such an interaction is described by dipole-coupling terms associated with the breaking of dual, P- and T-symmetries, including the chirality and the nonreciprocal magnetoelectric effect. We calculate absorption rates, radiation forces, and radiation torques for the nanoparticles and introduce novel characteristics of the field quantifying the transfer of energy, momentum, and angular-momentum in these interactions. In particular, we put forward the concept of 'magnetoelectric energy density', quantifying the local PT-symmetry of the field. Akin to the 'super-chiral' light suggested recently for sensitive local probing of molecular chirality [Phys. Rev. Lett. 104, 163901 (2010); Science 332, 333 (2011)], here we describe a complex field for sensitive probing of the nonreciprocal magnetoelectric effect in nanoparticles or molecules.

  14. Cost-effective unilateral climate policy design: Size Matters

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph; Fischer, Carolyn; Rosendahl, Knut Einar

    2011-07-01

    Given the bleak prospects for a global agreement on mitigating climate change, pressure for unilateral abatement is increasing. A major challenge is emissions leakage. Border carbon adjustments and output-based allocation of emissions allowances can increase effectiveness of unilateral action but introduce distortions of their own. We assess antileakage measures as a function of abatement coalition size. We first develop a partial equilibrium analytical framework to see how these instruments affect emissions within and outside the coalition. We then employ a computable general equilibrium model of international trade and energy use to assess the strategies as the coalition grows. We find that full border adjustments rank first in global cost-effectiveness, followed by import tariffs and output-based rebates. The differences across measures and their overall appeal decline as the abatement coalition grows. In terms of cost, the coalition countries prefer border carbon adjustments; countries outside the coalition prefer output-based rebates.(Author)

  15. Nonlinear cosmological consistency relations and effective matter stresses

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche ' ' Enrico Fermi' ' , Piazza del Viminale 1, I-00184 Rome (Italy); Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin, E-mail: guillermo.ballesteros@pd.infn.it, E-mail: lukas.hollenstein@unige.ch, E-mail: rajeev.jain@unige.ch, E-mail: martin.kunz@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, Quai E. Ansermet 24, CH-1211 Genève 4 (Switzerland)

    2012-05-01

    We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias.

  16. Why herd size matters - mitigating the effects of livestock crashes.

    Directory of Open Access Journals (Sweden)

    Marius Warg Næss

    Full Text Available Analysing the effect of pastoral risk management strategies provides insights into a system of subsistence that have persevered in marginal areas for hundreds to thousands of years and may shed light into the future of around 200 million households in the face of climate change. This study investigated the efficiency of herd accumulation as a buffer strategy by analysing changes in livestock holdings during an environmental crisis in the Saami reindeer husbandry in Norway. We found a positive relationship between: (1 pre- and post-collapse herd size; and (2 pre-collapse herd size and the number of animals lost during the collapse, indicating that herd accumulation is an effective but costly strategy. Policies that fail to incorporate the risk-beneficial aspect of herd accumulation will have a limited effect and may indeed fail entirely. In the context of climate change, official policies that incorporate pastoral risk management strategies may be the only solution for ensuring their continued existence.

  17. Tillage Effects on Spatiotemporal Variability of Particulate Organic Matter

    Directory of Open Access Journals (Sweden)

    Juhwan Lee

    2009-01-01

    Full Text Available This study was performed to evaluate effects of no-till (NT and standard tillage (ST on POM in two 15-ha neighboring fields from 2003 to 2004. We also evaluated the effects of minimum tillage (MT on POM after both NT and ST fields were converted to MT in the summer of 2005. We quantified C and N stocks of three size fractions (53–250, 250–1000, and 1000–2000 μm of POM (0–0.15 m depth. The POM-C 53–250 μm and 250–1000 μm fractions decreased by 25% and 36% after six months under ST, whereas relatively little change occurred under NT, suggesting significant tillage effects over the period 2003-2004. Only small changes in POM content then occurred under MT on both fields. Changes in POM-N were similar to POM-C changes upon tillage conversions. This suggests that reduced tillage did not lead to soil C increase compared to ST but may help maintain the level of soil C for a typical California farming system. Short-term, field level variability of POM was primarily affected by tillage and was further influenced by clay content, bulk density, and scale of observation.

  18. The Effects of Meditation on Grey Matter Atrophy and Neurodegeneration: A Systematic Review.

    Science.gov (United States)

    Last, Nicole; Tufts, Emily; Auger, Leslie E

    2017-01-01

    The present systematic review is based on the premise that a variety of neurodegenerative diseases are accompanied by grey matter atrophy in the brain and meditation may impact this. Given that age is a major risk factor for many of these progressive and neurodegenerative diseases and that the percentage of the population over the age of 65 is quickly increasing, there is an obvious need for prompt treatment and prevention advances in research. As there is currently no cure for Alzheimer's disease and other neurodegenerative diseases, many are seeking non-pharmacological treatment options in attempts to offset the disease-related cognitive and functional declines. On the basis of a growing body of research suggesting that meditation is effective in increasing grey matter volume in healthy participants, this paper systematically reviewed the literature regarding the effects of meditation on restoring grey matter volume in healthy individuals and those affected by neurodegeneration. This review searched PubMed, CINAHL, and APA PsycNET to identify original studies that included MRI imaging to measure grey matter volume in meditators and post-mindfulness-based intervention participants compared to controls. Thirteen studies were considered eligible for review and involved a wide variety of meditation techniques and included participants with and without cognitive impairment. All studies reported significant increases in grey matter volume in the meditators/intervention group, albeit in assorted regions of the brain. Limited research exists on the mechanisms through which meditation affects disease-related neurodegeneration, but preliminary evidence suggests that it may offset grey matter atrophy.

  19. On the dark matter as a geometric effect in f (R) gravity

    Science.gov (United States)

    Usman, Muhammad

    2016-11-01

    A mysterious type of matter is supposed to exist because the observed rotational velocity curves of particles moving around the galactic center and the expected rotational velocity curves do not match. This type of matter is called dark matter. There are also a number of proposals in the modified gravity which are alternatives to the dark matter. In this contrast, in 2008, Christian G. Böhmer, Tiberiu Harko and Francisco S.N. Lobo presented an interesting idea in Böhmer et al. (Astropart Phys 29(6):386-392, 2008) where they showed that a f (R) gravity model could actually explain dark matter to be a geometric effect only. They solved the gravitational field equations in vacuum using generic f (R) gravity model for constant velocity regions (i.e. dark matter regions around the galaxy). They found that the resulting modifications in the Einstein Hilbert Lagrangian is of the form R^{1+m}, where m=V_{tg}^2/c^2; V_{tg} being the tangential velocity of the test particle moving around the galaxy in the dark matter regions and c being the speed of light. From observations it is known that m≈ O(10^{-6}) (Böhmer et al. 2008; Salucci et al. in Mon Not R Astron Soc 378(1):41-47, 2007; Persic et al. in Mon Not R Astron Soc 281:27-47, 1996; Borriello and Salucci in Mon Not R Astron Soc 323(2):285-292, 2001). In this article, we perform two things (1) We show that the form of f (R) they claimed is not correct. In doing the calculations, we found that when the radial component of the metric for constant velocity regions is a constant then the exact solutions for f (R) obtained is of the form of R^{1-α } which corresponds to a negative correction rather than positive claimed by the authors of Böhmer et al. (2008), where α is the function of m. (2) We also show that we can not have an analytic solution of f(R) for all values of tangential velocity including the observed value of tangential velocity 200-300 km/s (Salucci et al. 2007; Persic et al. 1996; Borriello and Salucci

  20. Local Doppler Effect, Index of Refraction through the Earth Crust, PDF and the CNGS Neutrino Anomaly?

    Directory of Open Access Journals (Sweden)

    Assis A. V. D. B.

    2012-04-01

    Full Text Available In this brief paper, we show the neutrino velocity discrepancy obtained in the OPERA experiment may be due to the local Doppler effect between a local clock attached to a given detector at Gran Sasso, say C G , and the respective instantaneous clock crossing C G , say C C , being this latter at rest in the instantaneous inertial frame having got the velocity of rotation of CERN about Earth’s axis in relation to the fixed stars. With this effect, the index of refraction of the Earth crust may accomplish a refractive effect by which the neutrino velocity through the Earth crust turns out to be small in relation to the speed of light in the empty space, leading to an encrusted discrepancy that may have contamined the data obtained from the block of detectors at Gran Sasso, leading to a time interval excess that did not provide an exact match between the shift of the protons PDF (probability distribution function by TOF c and the detection data at Gran Sasso via the maximum likelihood matching.

  1. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    JIYUN-JING; XIAOBAI; 等

    2000-01-01

    To study the suppression effect of light rare earth elements(RE) on proliferation of two cancer cell lines.Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar,microtubule structure,calmodulin levels and regulation of smoe gene expressions y Northern blot analysis with and without treatment by RE.The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal.The calmodulin (CaM) levels decreased in human leukemia cells(k562) treated with cerium chloride and neodymium chloride.The Northern blot analysis revealed marked up-regulation of p53,p16(MTS1),p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride,as compared to control PAMC82 cells,The light rare earth elements studied have certain suppression effects on proliferation of cancer cells,This effect might be realted to the decrease of calmodulin and up-regulationg of smoe gene expressions in cancer cells.

  2. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the suppression effect of light rare earth elements (RE) on proliferation of two cancer cell lines. Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar, microtubule structure, calmodulin levels and regulation of some gene expressions by Northern blot analysis with and without treatment by RE. The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal. The calmodulin (CaM) levels decreased in human leukemia cells (K562) treated with cerium chloride and neodymium chloride. The Northern blot analysis revealed marked up-regulation of p53, p16(MTS1), p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride, as compared to control PAMC82 cells. The light rare earth elements studied have certain suppression effects on proliferation of cancer cells. This effect might be related to the decrease of calmodulin and up-regulation of some gene expressions in cancer cells.

  3. On the effects of the evolution of microbial mats and land plants on the Earth as a planet. Photometric and spectroscopic light curves of paleo-Earths

    CERN Document Server

    Sanromá, E; García-Muñoz, A

    2013-01-01

    Understanding the spectral and photometric variability of the Earth and the rest of the Solar System planets has become of the utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non- uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most probably the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of the Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produce detectabl...

  4. Effects of ANK3 Variation on Gray and White Matter in Bipolar Disorder

    Science.gov (United States)

    Lippard, Elizabeth Thomas Cox; Jensen, Kevin Patrick; Wang, Fei; Johnston, Jennifer Ann Yadon; Spencer, Linda; Pittman, Brian; Gelernter, Joel; Blumberg, Hilary Patricia

    2016-01-01

    The single nucleotide polymorphism rs9804190 in the Ankyrin G (ANK3) gene has been reported in genome-wide association studies to be associated with bipolar disorder (BD). However, the neural system effects of rs9804190 in BD are not known. We investigated associations between rs9804190 with gray and white matter structure within a frontotemporal neural system implicated in BD. A total of 187 adolescent and adult European Americans were studied: a group homozygous for the C allele [52 individuals with BD and 56 controls] and a T-carrier group, carrying the high risk T allele (38 BD and 41 controls). Subjects participated in high-resolution structural magnetic resonance imaging and diffusion tensor imaging (DTI) scanning. Frontotemporal region of interest (ROI) and whole brain exploratory analyses were conducted. DTI ROI-based analysis revealed a significant diagnosis by genotype interaction within the uncinate fasciculus (p ≥ 0.05), with BD subjects carrying the T (risk) allele showing decreased fractional anisotropy compared to other subgroups, independent of age. Genotype effects were not observed in frontotemporal gray matter volume. These findings support effects of rs9804190 on frontotemporal white matter in adolescents and adults with BD and suggest a mechanism contributing to white matter pathology in BD. PMID:27240527

  5. Studying the Physical Basis of Global Warming: Thermal Effects of the Interaction between Radiation and Matter and Greenhouse Effect

    Science.gov (United States)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation…

  6. Studying the Physical Basis of Global Warming: Thermal Effects of the Interaction between Radiation and Matter and Greenhouse Effect

    Science.gov (United States)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation…

  7. Effective Social Media Engagement for Nonprofits: What Matters?

    Directory of Open Access Journals (Sweden)

    Julia L Carboni

    2015-03-01

    Full Text Available We employ public management relationship theory to examine how nonprofits can effectively engage social media stakeholders in two-way communication. Though many nonprofit organizations have a social media presence, there is variance in how well organizations use social media to engage stakeholders. Simply having a social media presence is not enough to engage stakeholders.  We examine Facebook posts of a stratified random sample of youth development organizations to determine what predicts stakeholder engagement. We find the type of Facebook post is a significant predictor of stakeholder engagement.  Longer posts also significantly predict increased stakeholder engagement.  At the organizational level, having many posts is a significant negative predictor of stakeholder engagement, indicating that users may feel bombarded and are less likely to engage.  Increased organizational spending on advertising as a proportion of total budget is positively associated with stakeholder engagement. 

  8. Relativistic Effects and Three-Nucleon Forces in Nuclear Matter and Nuclei

    CERN Document Server

    Müther, Herbert; Ma, Zhongyu

    2016-01-01

    We review a large body of predictions obtained within the framework of relativistic meson theory together with the Dirac-Brueckner-Hartree-Fock approach to nuclear matter and finite nuclei. The success of this method has been largely related to its ability to take into account important three-body effects. Therefore, the overarching theme of this article is the interpretation of the so-called "Dirac effects" as an effective three-nucleon force. We address the equation of state of isospin symmetric and asymmetric nucleonic matter and related issues, ranging from proton and neutron density distributions to momentum distributions and short-range correlations. A central part of the discussion is devoted to the optical model potential for nucleon-nucleus scattering. We also take the opportunity to explore similarities and differences with predictions based on the increasingly popular chiral effective field theory.

  9. Kondo effect of D\\xAFs and D\\xAFs* mesons in nuclear matter

    Science.gov (United States)

    Yasui, Shigehiro; Sudoh, Kazutaka

    2017-03-01

    We study the Kondo effect for D¯s and D¯s* mesons as impurity particles in nuclear matter. The spin-exchange interaction between the D¯s or D¯s* meson and the nucleon induces the enhancement of the effective coupling in the low-energy scattering in the infrared region, whose energy scale of singularity is given by the Kondo scale. We investigate the Kondo scale in the renormalization group equation at nucleon one-loop level. We furthermore study the ground state with the Kondo effect in the mean-field approach, and present that the Kondo scale is related to the mixing strength between the D¯s or D¯s* meson and the nucleon in nuclear matter. We show the spectral function of the impurity when the Kondo effect occurs.

  10. Mechanism of Action of Rare Earths in High Effective Fe Powder Welding Rods

    Institute of Scientific and Technical Information of China (English)

    Han Yongquan; Li Jianguo; Yao Qinghu; Liu Yan; Huang Lihong

    2007-01-01

    The optimum coating composition of alkali Fe powder welding rods was designed by orthogonal experiment with mix rates. A new kind of effective RE-Fe powder welding rod was prepared which could be used at the condition of direct and indirect current. The arc characteristics and stabilities of effective Fe powder welding rods containing RE were analyzed by HANNOVER analyzer. The efficiency of Fe powder welding rods was tested by weighting method. It wag found that the stability of Fe powder welding rods Wag improved when it was added with rare earths. The results of impact experiment at low temperatures and SEM analysis on impact break showed that the grain was refined, the welding joint was cleaned, and the mechanical properties of joint was enhanced with proper RE content. It was provided with good processing property for this effective RE-Fe powder welding rod, and its efficiency could arrive at 180%.

  11. Piezoelectric/photoluminescence effects in rare-earth doped lead-free ceramics

    Science.gov (United States)

    Yao, Qirong; Wang, Feifei; Jin, Chengchao; Tang, Yanxue; Wang, Tao; Shi, Wangzhou

    2013-10-01

    In the present work, we report the environmentally-friendly multifunctional effects—piezoelectric/photoluminescence effects, which originated from the combination of the electromechanical properties and the photoluminescence effect through introducing the rare-earth elements (Pr and Eu) into the (Bi0.5Na0.5)TiO3-BaTiO3 ceramics with the composition around the morphotropic phase boundary. Compared to the pure piezoelectric ceramic, the proposed system simultaneously exhibited enhanced ferroelectric, piezoelectric, dielectric properties along with strong photoluminescence effects, which exhibited potential applications in sensor, and electro-mechano-optical integration. In addition, the present work also provides a promising path for us to fabricate multifunctional composites.

  12. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  13. Effects of Rare Earth Element Lan on the Activities of Earthworm Enzyme

    Institute of Scientific and Technical Information of China (English)

    Xu Dongmei; Liu Wenli; Liu Weiping

    2007-01-01

    The effects of Rare Earth Element Lan on the activities of cellulose, catalase, peroxidase and superoxide dismutasein in earthworm were carried out by natural soil test. The results indicated that Lan can significantly suppress the activity of cellulose. The responses of three enzymes in earthworm to Lan were different, Lan mostly affects catalase activity and inhibited catalase activity throughout the experiment. Peroxidase activity tend to "promote weakly and inhibited strongly" when short term of exposure to Lan, while "inhibited weakly and promote strongly" as a function of time. In comparison, Lan had little influence on the activity of superoxide dismutase. The variance analysis results showed that the concentration of Lan significantly affected the activities of cellulose and CAT but had no obvious influence on the activities of SOD and POD. The treatment time and the interactive effect between treatment concentrations and time had very significant effect on the activities of cellulose, SOD, CAT and POD.

  14. Effect of Exogenous Rare Earths on Microbial Characteristics in Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    周峰; 陈浮; 曹建华; 濮励杰; 彭补拙

    2004-01-01

    An incubation study was performed to elucidate exogenous rare earth elements(RE)influencing on microbial biomass,microbial ecophysiological parameters cmic/corg,metabolic quotient qCO2 and respiratory rate in relation to temporal availability in paddy soil.Six samples were added different concentrations between 0 and 2000 mg*kg-1 REEs in soil.Results show that exogenous RE have slight stimulative effects on microbial indices in paddy soil at low concentration in the early stage after adding RE,while having inhibitory effects at high concentration.The inhibition is strengthened with increasing RE concentration and is weakened with increasing incubation time.Principal component analysis of the BIOLOG data indicates that microbial community structures have changed,carbon sources consumption of microorganisms in paddy soil becomes much more rapid after 8 weeks,and under RE stress,the change of microbial community structures is a long-term effect.

  15. Timing matters: temporal dynamics of stress effects on memory retrieval.

    Science.gov (United States)

    Schwabe, Lars; Wolf, Oliver T

    2014-09-01

    Stress may impair memory retrieval. This retrieval impairment has been attributed to the action of the stress hormone cortisol, which is released with a delay of several minutes after a stressful encounter. Hence, most studies tested memory retrieval 20-30 min after stress, when the stress-induced cortisol increase peaks. In the present experiment, we investigated whether retrieval impairments can also be found at later intervals after stress. To this end, participants learned a list of words on day 1. Twenty-four hours later, they were first exposed to a stressor or a nonstressful control manipulation and completed a recognition test for the words either immediately thereafter, 25 min later, or 90 min later. Our findings showed that stress did not impair memory retrieval when memory was tested immediately after the stressor, before cortisol levels were elevated. However, retrieval performance was impaired 25 min after stress, when cortisol levels peaked, as well as 90 min after the stressor, when cortisol levels had already returned to baseline. The retrieval impairment 90 min after stress appeared to be even stronger than the one after 25 min. These findings suggest that the detrimental effects of stress on retrieval performance may last longer than is usually assumed.

  16. Land-use Effect on Stream Organic Matter Composition in Two Metropolitan Areas in USA

    Science.gov (United States)

    Duan, S.; Kaushal, S.; Amon, R. M.; Brinkmeyer, R.

    2011-12-01

    Urbanization is a form of land-use change that is increasing in coastal watersheds and may affect the quantity and quality of organic carbon delivered to streams and coastal ocean. Here, we examine the changes in optical and isotopic characteristics of organic matter in streams (Gwynns Fall and Buffalo Bayou) draining Baltimore and Houston Metropolitan Areas (USA), relative to nearby less affected forested watersheds. A summer longitudinal sampling in Gwynns Fall along a rural-urban gradient showed increases in dissolved organic carbon (DOC) and fluorescent protein to humic ratio but a decrease in specific UV absorption (SUVA). Parallel Factor modeling shows dominance of terrestrial component of DOC, and the ratio of an unknown component to the component of humic substance was high in urban watersheds and it was positively correlated impervious surface cover (an index of urbanization). Incubation experiments with leaves and stream algae suggest origin of decayed leaf leachate of this component. Conversely, DOM in Buffalo Bayou showed higher intensity of protein-like fluorescence, and the intensity increased longitudinal along a rural-urban gradient but decreased from low-flows to a flooding event. The difference in fluorescent organic matter composition between the two streams probably reflected different management of wastewater in watersheds. Surface sediment collected at sites of sub-watersheds of Gwynns Fall showed changes in particle size, elemental and isotopic composition with land use. Sediment incubations showed that higher temperature (due to urban heat island effect) enhanced loss of labile organic matter and release of refractory organic matter into stream water. Release of reactive soluble phosphorus, loss of nitrogen and reduction of sulfate also occurred at high incubating temperatures, along with mineralization of sediment organic matter. Bed sediment collected along Buffalo Bayou displayed a longitudinal decrease in N-15, probably reflecting the

  17. Effects of rare earth addition on sintering process and dielectric property of cordierite based glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    陈国华; 刘心宇

    2004-01-01

    The effects of rare earth oxide on the sintering and dielectric property of cordierite-based glass-ceramics with non-stoichiometric composition prepared by quenching of molten droplets were investigated. The results show that the addition of rare earth oxide can lower the sintering temperature of cordierite glass-ceramics, improve the densification process and obviously reduce sintering activation energy. It is found that the densification of cordieritebased glass-ceramics is a liquid phase sintering process. The dielectric constant of the sintered compacts enhances with the increase of the density. When the sintering temperature is identical, the rare earth addition is found to have a noticeable effect on the dielectric loss of glass-ceramics. The properties of the glass-ceramics containing rare earth oxide appear to be correct for low firing temperature substrates.

  18. Quasi-particles and effective mean field in strongly interacting matter

    Energy Technology Data Exchange (ETDEWEB)

    Levai, P. [MTA KFKI RMKI, POB 49., Budapest 114, 1525 (Hungary); Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); Ko, C.M. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States)

    2010-03-01

    We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar sigma field by introducing a dynamically generated mass, M(sigma), and a self-consistently determined interaction term, B(sigma). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.

  19. Quasi-particles and effective mean field in strongly interacting matter

    Science.gov (United States)

    Lévai, P.; Ko, C. M.

    2010-03-01

    We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar σ field by introducing a dynamically generated mass, M(σ), and a self-consistently determined interaction term, B(σ). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.

  20. Effects of a general set of interactions on neutrino propagation in matter

    CERN Document Server

    Nardi, E

    2000-01-01

    This talk is based on the article hep-ph/9903517 written in collaborationwith Sven Bergmann and Yuval Grossman. An analysis of the effective potentialfor neutrino propagation in matter, assuming a generic set of Lorentz invariantnon-derivative interactions is presented. In addition to vector and axialvector couplings, also tensor interactions can give coherent effects if themedium is polarized, and the components of a tensor potential transverse to thedirection of neutrino propagation can induce a neutrino spin-flip.

  1. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    Science.gov (United States)

    Luehr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2016-01-01

    Magnetospheric currents play an important role in the electrodynamics of near- Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterizing the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  2. On the effect of ocean tides and tesseral harmonics on spacecraft flybys of the Earth

    CERN Document Server

    Acedo, L

    2016-01-01

    The so-called flyby anomaly has encouraged several authors to analyze in detail the minor perturbative contributions to the trajectory of spacecraft performing a flyby manoeuvre. This anomaly consist of an unexplained increase or decrease of the asymptotic velocity of the spacecraft after a flyby of the Earth in the range of a few mm per second. Some order of magnitude estimations have been performed in recent years to dismiss many possible conventional effects as the source of such an anomaly but no explanation has been found yet. In this paper we perform a study of the perturbation induced by ocean tides in a flybying spacecraft by considering the time dependence of the location of the high tide as the Moon follows its orbit. We show that this effect implies a change of the spacecraft velocity of a few micrometers per second. We also consider the coupling of tesseral harmonics inhomogeneities and the rotation of the Earth and its impact of the spacecraft outgoing velocity. Significant corrections to the obs...

  3. On the effect of ocean tides and tesseral harmonics on spacecraft flybys of the Earth

    Science.gov (United States)

    Acedo, L.

    2016-12-01

    The so-called flyby anomaly has encouraged several authors to analyse in detail the minor perturbative contributions to the trajectory of spacecraft performing a flyby manoeuvre. This anomaly consist of an unexplained increase or decrease of the asymptotic velocity of the spacecraft after a flyby of the Earth in the range of a few mm per second. Some order of magnitude estimations have been performed in recent years to dismiss many possible conventional effects as the source of such an anomaly but no explanation has been found yet. In this paper we perform a study of the perturbation induced by ocean tides in a flybying spacecraft by considering the time dependence of the location of the high tide as the Moon follows its orbit. We show that this effect implies a change of the spacecraft velocity of a few micrometres per second. We also consider the coupling of tesseral harmonics inhomogeneities and the rotation of the Earth and its impact on the spacecraft outgoing velocity. Significant corrections to the observed asymptotic velocities are found in this case but neither their sign nor their magnitude coincide with the anomalies. So, we can also rule this out as a conventional explanation.

  4. Effects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation

    OpenAIRE

    Juan Fan; Jinsong Wang; Bo Zhao; Lianhai Wu; Chunyu Zhang; Xiuhai Zhao; Gadow, Klaus V.

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter a...

  5. Radiative effects of ozone on the climate of a Snowball Earth

    Directory of Open Access Journals (Sweden)

    J. Yang

    2012-12-01

    Full Text Available Some geochemical and geological evidence has been interpreted to suggest that the concentration of atmospheric oxygen was only 1–10 % of the present level in the time interval from 750 to 580 million years ago when several nearly global glaciations or Snowball Earth events occurred. This low concentration of oxygen would have been accompanied by a lower ozone concentration than exists at present. Since ozone is a greenhouse gas, this change in ozone concentration would alter surface temperature, and thereby could have an important influence on the climate of the Snowball Earth. Previous works that have focused either on initiation or deglaciation of the proposed Snowball Earth has not taken the radiative effects of ozone changes into account. We address this issue herein by performing a series of simulations using an atmospheric general circulation model with various ozone concentrations.

    Our simulation results demonstrate that, as ozone concentration is uniformly reduced from 100 % to 50 %, surface temperature decreases by approximately 0.8 K at the Equator, with the largest decreases located in the middle latitudes reaching as high as 2.5 K. When ozone concentration is reduced and its vertical and horizontal distribution is simultaneously modulated, surface temperature decreases by 0.4–1.0 K at the Equator and by 4–7 K in polar regions. These results here have uncertainties, depending on model parameterizations of cloud, surface snow albedo, and relevant feedback processes, while they are qualitatively consistent with radiative-convective model results that do not involve such parameterizations and feedbacks. These results suggest that ozone variations could have had a moderate impact on the climate during the Neoproterozoic glaciations.

  6. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    Science.gov (United States)

    Jia, You-Hua; Zhong, Biao; Yin, Jian-Ping

    2009-03-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb3+ -doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material.

  7. Ion potential in warm dense matter: wake effects due to streaming degenerate electrons.

    Science.gov (United States)

    Moldabekov, Zhandos; Ludwig, Patrick; Bonitz, Michael; Ramazanov, Tlekkabul

    2015-02-01

    The effective dynamically screened potential of a classical ion in a stationary flowing quantum plasma at finite temperature is investigated. This is a key quantity for thermodynamics and transport of dense plasmas in the warm-dense-matter regime. This potential has been studied before within hydrodynamic approaches or based on the zero temperature Lindhard dielectric function. Here we extend the kinetic analysis by including the effects of finite temperature and of collisions based on the Mermin dielectric function. The resulting ion potential exhibits an oscillatory structure with attractive minima (wakes) and, thus, strongly deviates from the static Yukawa potential of equilibrium plasmas. This potential is analyzed in detail for high-density plasmas with values of the Brueckner parameter in the range 0.1≤r(s)≤1 for a broad range of plasma temperature and electron streaming velocity. It is shown that wake effects become weaker with increasing temperature of the electrons. Finally, we obtain the minimal electron streaming velocity for which attraction between ions occurs. This velocity turns out to be less than the electron Fermi velocity. Our results allow for reliable predictions of the strength of wake effects in nonequilibrium quantum plasmas with fast streaming electrons showing that these effects are crucial for transport under warm-dense-matter conditions, in particular for laser-matter interaction, electron-ion temperature equilibration, and stopping power.

  8. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms.

    Science.gov (United States)

    Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten

    2015-10-01

    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.

  9. Effect of Rare Earths on Tribological Properties of Carbon Fibers Reinforced PTFE Composites

    Institute of Scientific and Technical Information of China (English)

    Shangguan Qianqian; Cheng Xianhua

    2007-01-01

    Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was investigated. Experimental results revealed that RE was superior to air oxidation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.

  10. The effect of the earth's radiation belts on an optical system.

    Science.gov (United States)

    Wolff, C

    1966-11-01

    A photoelectric optical imaging system has survived one year in the earth's radiation belts with no measurable (radiation belts twice every 64 hr, and experiences a noise level equivalent to 400 photons/sec when in their most intense regions. While this noise is far less than that of other photoelectric systems operating in the belts because of the small effective area of the photocathode, the noise per unit cathode area is 1.3 x 10(5) photons/sec-cm(2), and is similar to the best of the other systems. The number and energy distribution of incident particles is calculated and then combined with shielding estimates to give the total energy absorbed in the optical elements. Radiation damage reports in the literature are shown to be consistent with the lack of a sensitivity change in this orbiting optical system. The effects of particle radiation on optical systems in general is briefly summarized, with emphasis on recent work of others.

  11. Effects of Rare Earth Elements on Vigor Enhancement of Aged Spinach Seeds

    Institute of Scientific and Technical Information of China (English)

    刘超; 洪法水; 郑蕾; 汤萍; 王志刚

    2004-01-01

    The effect and the mechanism of action of lanthanum, cerium and neodymium on aged seeds of spinach were studied. By LaCl3, CeCl3, and NdCl3 treatment, the germination rate, germination index and vigor index of aged spinach seeds are increased and the activities of superoxide dismutase, catalase and peroxidase are enhanced. Moreover the ·O2- and malondialdehyde content are decreased and the cell membrane permeability of aged spinach seeds is reduced. Among these three rare earth elements, Ce treatment enhances vigor of aged seeds most significantly, that of Nd treatment secondly and La treatment is not as effective as the other two treatments. The reason may be from 4f electron characteristic and alternation valence of REEs.

  12. Dirac matter

    CERN Document Server

    Rivasseau, Vincent; Fuchs, Jean-Nöel

    2017-01-01

    This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...

  13. Physical activity and inflammation: effects on gray-matter volume and cognitive decline in aging.

    Science.gov (United States)

    Papenberg, Goran; Ferencz, Beata; Mangialasche, Francesca; Mecocci, Patrizia; Cecchetti, Roberta; Kalpouzos, Grégoria; Fratiglioni, Laura; Bäckman, Lars

    2016-10-01

    Physical activity has been positively associated with gray-matter integrity. In contrast, pro-inflammatory cytokines seem to have negative effects on the aging brain and have been related to dementia. It was investigated whether an inactive lifestyle and high levels of inflammation resulted in smaller gray-matter volumes and predicted cognitive decline across 6 years in a population-based study of older adults (n = 414). Self-reported physical activity (fitness-enhancing, health-enhancing, inadequate) was linked to gray-matter volume, such that individuals with inadequate physical activity had the least gray matter. There were no overall associations between different pro-and anti-inflammatory markers (IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, G-CSF, and TNF-α) and gray-matter integrity. However, persons with inadequate activity and high levels of the pro-inflammatory marker IL-12p40 had smaller volumes of lateral prefrontal cortex and hippocampus and declined more on the Mini-Mental State Examination test over 6 years compared with physically inactive individuals with low levels of IL-12p40 and to more physically active persons, irrespective of their levels of IL-12p40. These patterns of data suggested that inflammation was particularly detrimental in inactive older adults and may exacerbate the negative effects of physical inactivity on brain and cognition in old age. Hum Brain Mapp 37:3462-3473, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Effect of Rare Earth Elements Burning Loss on Microstructure and Properties in TbDyFe

    Directory of Open Access Journals (Sweden)

    DENG Zhong-hua

    2016-08-01

    Full Text Available In order to simulate low vacuum experimental environment,Tb0.27Dy0.73Fe1.91 alloy round bars were prepared through melting with Tb, Dy and Fe elements, directional solidification and heat treatment in low vacuum environment. The magnetostriction of the alloy rods was tested. The microstructures and the causes of defects in the alloy were investigated. The results indicate that under the low vacuum experimental environment, there are plenty of twin dendritic lamellar microstructures and ordinary twin microstructures are generated in alloy, among which the mechanical properties and "jump" effect of twin dendritic lamellar structures are good, while the ordinary twins are bad to the magnetostrictive property in the alloy. REFe2 and REFe3 coupling phase is the main phase in the matrix, the burning loss of rare earth elements lead variations in chemical composition, resulting coupling growth with REFe3 phase and REFe2 phase. The thermal stress and the burning loss of rare earth elements segregate at grain boundaries resulting in the presence of micro-cracks and micro-holes. These microstructures and defects generate bad impact on mechanical properties and magnetostriction of TbDyFe alloy rods.

  15. Evidence of long term global decline in the Earth's thermospheric densities apparently related to anthropogenic effects

    Science.gov (United States)

    Keating, G. M.; Tolson, R. H.; Bradford, M. S.

    2000-05-01

    A study was performed of the long-term orbital decay of five Earth satellites with perigee altitudes averaging near 350km. To decouple long-term trend measurements from the effects of solar variability, measurements were evaluated during the years of solar minimum (1976, 1986 and 1996). Atmospheric densities derived from these essentially global measurements showed substantial evidence of a decline averaging 9.8 ± 2.5% in thermospheric density over 20 years pointing toward a long-term cooling of the upper atmosphere. Increases in greenhouse gases induced by human activity are hypothesized to warm the Earth's surface and lower atmosphere, but strongly cool the upper atmosphere. Assuming that the 10% increase in CO2 over these 20 years caused cooling resulting in the 10% decline in density, a doubling of CO2 could cause the thermospheric densities measured near 350km to decrease by a factor of 3. This decrease may shrink the altitude of a constant density surface by 40km before the end of the 21st century.

  16. Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic and Biogeochemical Effects

    CERN Document Server

    Thomas, B C; Jackman, C H; Laird, C M; Medvedev, M V; Stolarski, R S; Gehrels, N; Cannizzo, J K; Hogan, D P; Ejzak, L M; Thomas, Brian C.; Melott, Adrian L.; Jackman, Charles H.; Laird, Claude M.; Medvedev, Mikhail V.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.; Ejzak, Larissa M.

    2005-01-01

    Gamma-Ray Bursts (GRBs) are likely to have made a number of significant impacts on the Earth during the last billion years. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of GRBs delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have estimated DNA damage levels caused by increased solar UVB radiation, reduction in solar visible light due to $\\mathrm{NO_2}$ opacity, and deposition of nitrates through rainout of $\\mathrm{HNO_3}$. For the ``typical'' nearest burst in the last billion years, we find globally averaged ozone depletion up to 38%. Localized depletion reaches as much as 74%. Significant global depletion (at least 10%) persists up to about 7 years after the burst. Our results depend strongly on time of year and latitude over which the burst occurs. We find DNA damage of up to 16 times the normal annual global average, well above lethal levels for simple life forms such as phytopl...

  17. Effects of Processing Technology on Property and Microstructure of Rare Earth Containing Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    Xu Chonghai

    2004-01-01

    Effects of processing technology on the properties such as relative density, flexural strength, fracture toughness, hardness, etc. and the microstructure of rare earth yttrium containing Al2O3/(W, Ti)C ceramic composite were experimentally investigated. It suggests that different processing parameters can undoubtedly result in different microstructures and different mechanical properties of the material. Under the experimental conditions, the suitable hot pressing temperature is 1720 ~ 1780 ℃, the time duration is 10 ~ 30 min and the hot pressing pressure is 30 ~ 35 MPa. The corresponding relative density can even be higher than 98 %. With SEM and TEM observation, each phases in the ceramic material is found to be in fine grains and distribute homogeneously. Typical fracture feature of the material is the mixture of both intergranular and introgranular fracture. Additionally, the existence of rare earth yttrium containing nanometer or sub-micron meter sized ceramic grains, dislocations and spontaneous microcracks can also contribute to the further improvement of the mechanical properties of the ceramic composite.

  18. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  19. Effects of Unstable Dark Matter on Large-Scale Structure and Constraints from Future Surveys

    CERN Document Server

    Wang, Mei-Yu

    2012-01-01

    In this paper we explore the effect of decaying dark matter (DDM) on large-scale structure and possible constraints from galaxy imaging surveys. DDM models have been studied, in part, as a way to address apparent discrepancies between the predictions of standard cold dark matter models and observations of galactic structure. Our study is aimed at developing independent constraints on these models. In such models, DDM decays into a less massive, stable dark matter (SDM) particle and a significantly lighter particle. The small mass splitting between the parent DDM and the daughter SDM provides the SDM with a recoil or "kick" velocity vk, inducing a free-streaming suppression of matter fluctuations. This suppression may be probed via weak lensing power spectra measured by a number of forthcoming imaging surveys that aim primarily to constrain dark energy. Using scales on which linear perturbation theory alone is valid (multipoles 90 km/s for lifetimes ~ 1-5 Gyr. To estimate more aggressive constraints, we model...

  20. Analytical approximation of the neutrino oscillation matter effects at large θ{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Sanjib Kumar [Institute of Physics, Sachivalaya Marg, Sainik School Post,Bhubaneswar 751005, Orissa (India); Kao, Yee [Department of Chemistry and Physics, Western Carolina University,Cullowhee, NC 28723 (United States); Takeuchi, Tatsu [Center for Neutrino Physics, Physics Department, Virginia Tech,Blacksburg, VA 24061 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,Kashiwa-shi, Chiba-ken 277-8583 (Japan)

    2014-04-07

    We argue that the neutrino oscillation probabilities in matter are best understood by allowing the mixing angles and mass-squared differences in the standard parametrization to ‘run’ with the matter effect parameter a=2√2G{sub F}N{sub e}E, where N{sub e} is the electron density in matter and E is the neutrino energy. We present simple analytical approximations to these ‘running’ parameters. We show that for the moderately large value of θ{sub 13}, as discovered by the reactor experiments, the running of the mixing angle θ{sub 23} and the CP violating phase δ can be neglected. It simplifies the analysis of the resulting expressions for the oscillation probabilities considerably. Approaches which attempt to directly provide approximate analytical expressions for the oscillation probabilities in matter suffer in accuracy due to their reliance on expansion in θ{sub 13}, or in simplicity when higher order terms in θ{sub 13} are included. We demonstrate the accuracy of our method by comparing it to the exact numerical result, as well as the direct approximations of Cervera et al., Akhmedov et al., Asano and Minakata, and Freund. We also discuss the utility of our approach in figuring out the required baseline lengths and neutrino energies for the oscillation probabilities to exhibit certain desirable features.

  1. Analytical approximation of the neutrino oscillation matter effects at large θ 13

    Science.gov (United States)

    Agarwalla, Sanjib Kumar; Kao, Yee; Takeuchi, Tatsu

    2014-04-01

    We argue that the neutrino oscillation probabilities in matter are best understood by allowing the mixing angles and mass-squared differences in the standard parametrization to `run' with the matter effect parameter a = , where N e is the electron density in matter and E is the neutrino energy. We present simple analytical approximations to these `running' parameters. We show that for the moderately large value of θ 13, as discovered by the reactor experiments, the running of the mixing angle θ 23 and the CP violating phase δ can be neglected. It simplifies the analysis of the resulting expressions for the oscillation probabilities considerably. Approaches which attempt to directly provide approximate analytical expressions for the oscillation probabilities in matter suffer in accuracy due to their reliance on expansion in θ 13, or in simplicity when higher order terms in θ 13 are included. We demonstrate the accuracy of our method by comparing it to the exact numerical result, as well as the direct approximations of Cervera et al., Akhmedov et al., Asano and Minakata, and Freund. We also discuss the utility of our approach in figuring out the required baseline lengths and neutrino energies for the oscillation probabilities to exhibit certain desirable features.

  2. A Systematic Effective Operator Analysis of Semi-Annihilating Dark Matter

    CERN Document Server

    Cai, Yi

    2016-01-01

    Semi-annihilation is a generic feature of dark matter theories stabilised by symmetries larger than a $Z_2$. It contributes to thermal freeze out, but is irrelevant for direct and collider searches. This allows semi-annihilating dark matter to avoid those limits in a natural way. We use an effective operator approach to make the first model-independent study of the associated phenomenology. We enumerate all possible operators that contribute to $2\\to2$ semi-annihilation up to dimension 6, plus leading terms at dimension 7. We find that when the only light states charged under the dark symmetry are dark matter, the model space is highly constrained. Only fifteen operators exist, and just two for single-component dark sectors. If there can be additional light, unstable "dark partner" states the possible phenomenology greatly increases, at the cost of additional model dependence in the dark partner decay modes. We also derive the irreducible constraints on models with single-component dark matter from cosmic ray...

  3. Effect of dark matter halo on global spiral modes in a collisionless galactic disc

    CERN Document Server

    Ghosh, Soumavo; Jog, Chanda J

    2016-01-01

    Low surface brightness (LSB) galaxies are dominated by dark matter halo from the innermost radii; hence they are ideal candidates to investigate the influence of dark matter on different dynamical aspects of spiral galaxies. Here, we study the effect of dark matter halo on grand-design, m = 2, spiral modes in a galactic disc, treated as a collisionless system, by carrying out a global modal analysis within the WKB approximation. First, we study a superthin, LSB galaxy UGC 7321 and show that it does not support discrete global spiral modes when modelled as a disc-alone system or as a disc plus dark matter system. Even a moderate increase in the stellar central surface density does not yield any global spiral modes. This naturally explains the observed lack of large-scale spiral structure in LSBs. An earlier work (Ghosh, Saini, & Jog 2016) where the galactic disc was treated as a fluid system for simplicity had shown that the dominant halo could not arrest global modes. This difference arises due to the dif...

  4. Study of rare earth element effect on microstructures and mechanical properties of an Al-Cu-Mg-Si cast alloy

    Institute of Scientific and Technical Information of China (English)

    WAN Weiwei; HAN Jianmin; LI Weijing; WANG Jinhua

    2006-01-01

    The improvements of microstructures and properties of a high strength aluminum cast alloy were studied.The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast alloy Al-Cu-Mg-Si were investigated.The result shows that the addition of rare earth elements can change the microstructures in refining the grain size of the alloy and making the needle-like and laminar eutectic Si to a granular Si.With the increase of the rare earth, the tensile strength and elongation of the alloy increase first and then fall down.The mechanical properties of the alloy will reach the highest value when the content of rare earth elements is about 0.7%.

  5. Effect of Rare Earth Alloy Modification on High Carbon Equivalent Gray Cast Iron of Automotive Brake Drum

    Institute of Scientific and Technical Information of China (English)

    ZHANG Daowen; LI Zhu; HUANG Jie

    2012-01-01

    Effect of rare earth alloy modification on properties and microstructure of high carbon equivalent gray cast iron was investigated.The experimental results show that in the way of mechanical property,when the addition of rare earth alloy is 0.2% and 0.3%,the tensile strength of cast iron increases.In the way of microstructure,the addition of rare earth alloy increases the number of primary austenite dendrites,reduces secondary dendritic arm spacing,and changes the eutectic size and quantity.When rare earth alloy is added into gray cast iron,the morphology and quantity of graphite play a major role on the improvement of tensile strength.

  6. Study of Cold Nuclear Matter Effects on Heavy Quarkonia in Proton-Lead Collisions at LHCb

    CERN Document Server

    Jing, Fanfan; Yang, Zhenwei; Schmidt, Burkhard

    Proton-nucleus ($p\\rm{A}$) collisions play an important role in high energy nuclear physics as they allow to study nuclear matter effects and the parton distribution functions in the nuclear environment (nPDF). The quantum chromodynamics (QCD) phase transition from hadron gas to the the quark-gluon plasma (QGP) is not expected to occur in a $p\\rm{A}$ collision due to its limited space-time size. Therefore, the $p\\rm{A}$ collisions provide an ideal platform to study cold nuclear matter (CNM) effects, which are also known as normal nuclear matter effects. The measurements of the productions and correlations of the final-state particles in $p\\rm{A}$ collisions serve the purpose to test various theoretical models for CNM effects, to constrain the benchmarking nPDFs, and thus provide a baseline to understand and interpret the QGP created in ultra-relativistic heavy-ion collisions. Heavy quarkonia (including charmonia and bottomonia), which are produced at the early stage of heavy-ion collisions, are considered goo...

  7. Investigating the effect of lateral viscosity variations in the Earth's mantle

    Science.gov (United States)

    O'Farrell, K. A.; Lithgow-Bertelloni, C. R.

    2015-12-01

    Seismic tomography can be used to investigate radial viscosity variations on instantaneous flow models by predicting the global geoid and comparing with the observed geoid. This method is one of many that has been used to constrain viscosity structure in the Earth's mantle in the last few decades. Using the 3D mantle convection model, Stag-YY (e.g., Hernlund and Tackley, 2008), we are further able to explore the effect of lateral variations in viscosity in addition to the radial variations. Examining over 50 tomographic models we found notable differences by comparing a synthetically produced geoid with the observed geoid. Comparing S- and P-wave tomographic models, the S-wave models provided a better fit to the observed geoid. Using this large suite of 50 tomographic models, we have been able to constrain the radial viscosity structure of the Earth. We found that two types of viscosity profiles yielded equally good fits. A viscosity profile with a low transition zone viscosity and a lower mantle viscosity equal to the upper mantle, or a profile with a large lower mantle viscosity and a transition zone viscosity similar to the upper mantle. Using the set of radial viscosity profiles that gave the best fit to the observed geoid, we can explore a range of lateral viscosity variations and see how they affect the different types of tomographic models. Improving on previous studies of lateral viscosity variations (e.g. Ghosh, Becker and Zhong, 2010), we systematically explore a large range of tomographic models and density-velocity conversion factors. We explore which type of tomographic model (S- or P- wave) is more strongly affected by lateral viscosity variations, as well as the effect on isotropic and anisotropic models. We constrain the strength of lateral viscosity variations necessary to produce a high correlation between observed and predicted geoid anomalies. We will discuss the wavelength of flow that is most affected by the lateral viscosity variations

  8. Indirect detection constraints on the model space of dark matter effective theories

    Science.gov (United States)

    Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica

    2015-11-01

    Using limits on photon flux from dwarf spheroidal galaxies, we place bounds on the parameter space of models in which dark matter annihilates into multiple final state particle pair channels. We derive constraints on effective operator models with dark matter couplings to third generation fermions and to pairs of standard model vector bosons. We present limits in various slices of model parameter space along with estimations of the region of maximal validity of the effective operator approach for indirect detection. We visualize our bounds for models with multiple final state annihilations by projecting parameter space constraints onto triangles, a technique familiar from collider physics; and we compare our bounds to collider limits on equivalent models.

  9. Indirect Detection Constraints on the Model Space of Dark Matter Effective Theories

    CERN Document Server

    Carpenter, Linda M; Goodman, Jessica

    2015-01-01

    Using limits on photon flux from Dwarf Spheroidal galaxies, we place bounds on the parameter space of models in which Dark Matter annihilates into multiple final state particle pair channels. We derive constraints on effective operator models with Dark Matter couplings to third generation fermions and to pairs of Standard Model vector bosons. We present limits in various slices of model parameter space along with estimations of the region of maximal validity of the effective operator approach for indirect detection. We visualize our bounds for models with multiple final state annihilations by projecting parameter space constraints onto triangles, a technique familiar from collider physics; and we compare our bounds to collider limits on equivalent models.

  10. Effects of nuclear deformation on the form factor for direct dark matter detection

    Institute of Scientific and Technical Information of China (English)

    CHEN Ya-Zheng; CHEN Jun-Mou; LUO Yan-An; SHEN Hong; LI Xue-Qian

    2012-01-01

    For the detection of direct dark matter,in order to extract useful information about the fundamental interactions from the data,it is crucial to properly determine the nuclear form factor.The form factor for the spin-independent cross section of collisions between dark matter particles and the nucleus has been thoroughly studied by many authors.When the analysis was carried out,the nuclei were always supposed to be spherically symmetric.In this work,we investigate the effects of the deformation of nuclei from a spherical shape to an elliptical one on the form factor.Our results indicate that as long as the ellipticity is not too large,such deformation will not cause any substantial effects.In particular,when the nuclei are randomly orientated in room-temperature circumstances,one can completely neglect them.

  11. Effects of dissolved organic matter on the growth and pigments synthesis of Spirulina platensis ( Arthrospira )

    Institute of Scientific and Technical Information of China (English)

    MA Zengling; GAO Kunshan; WATANABE Teruo

    2006-01-01

    Excessive accumulation of dissolved organic matter (DOM) in the culture ponds of Spirulina platensis is usually considered to be one of the potential factors affecting the production of S. platensis, however, we are not quite aware of effects of DOM on the growth and pigments synthesis of S. platensis. In the present study, S. platensis was grown in batch or semi-continuous cultures using the filtrate in the culture ponds that had not been renewed for years. It was found that disssolved organic carbon up to 60 mg/L did not bring about an inhibitory effect on the growth of S. platensis, but increased the contents of chlorophyll a and phycocyanin instead. However, further accumulation of dissolved organic matter could decrease the content of chlorophyll a.

  12. Ionizing radiation effects on the matter and its applications in research and industry

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Z, E. [Instituto de Ciencias Nucleares, UNAM, Ciudad Universitaria, Mexico 04510, D. F. (Mexico); Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico)], e-mail: ecruz@nucleares.unam.mx

    2009-07-01

    Ionizing radiation as alpha and beta particles, electron accelerated, neutron particle, and X-rays and photons with relative high energy, as an useful radiation tool for many applications. the last two kind radiations are know as electromagnetic radiation. The radiation effects on the matter are well know that produces about fourteen processes during interaction with solids, aqueous solution and gases. In applications, commonly it depends of the nature and interest on the material samples that their characteristics can modify with the energy deposited on them. This part is devoted to more important effects produced by ionizing radiation with the matter and talk about the wide range applications recently; crystals radiation detectors and for application in medicine, detection of foodstuffs irradiated for preservation, and the application of ionizing radiation on polymeric materials. (Author)

  13. Effects of Organic Matter and Clay Content in Soil on Pesticide Adsorption Processes

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2009-01-01

    Full Text Available The effect of organic matter and clay content on the adsorption of atrazine, acetochlor, clomazone, pendimethalin and oxyfluorfen in soil samples was studied. In order to determine whether and to what degree different soil properties affect the process of determinationof selected pesticides, three soils with different clay and organic matter contents were used. An optimized liquid-solid extraction procedure followed by SPME measurement was applied to analyse the selected pesticides in soil samples. Detection and quantificationwere done by gas chromatography-mass spectrometry (GC/MS. Relative standard deviation (RSD values for multiple analyses of soil samples fortified at 30 μg/kg of each pesticide were below 19%. Limits of detection (LODs for all compounds studied were less than 2 μg/kg. The results indicate that soils with different physico-chemical properties have different effects on the adsorption of most pesticides, especially at higher concentration levels.

  14. Effects of a Cooperative Learning Strategy on Teaching and Learning Phases of Matter and One-Component Phase Diagrams

    Science.gov (United States)

    Doymus, Kemal

    2007-01-01

    This study aims to determine the effects of cooperative learning (using the jigsaw method) on students' achievement in a general chemistry course. The Chemistry Achievement Test (CAT) and Phase Achievement Test (PAT) were used. The questions on the CAT relate to solids, liquids, gases, bonding, matter, and matter states. This test was given to…

  15. Solar Irradiance Changes And Photobiological Effects At Earth's Surface Following Astrophysical Ionizing Radiation Events

    Science.gov (United States)

    Thomas, Brian; Neale, Patrick

    2016-01-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in

  16. Effects of the rare earth ions on bone resorbing function of rabbit mature osteoclasts in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinchao; XU Shanjin; WANG Kui; YU Shifeng

    2003-01-01

    The effects of rare earth ions on bone resorbing function of osteoclasts were studied by culturing Japanese white rabbit osteoclasts on bone slices. In order to evaluate the activity of osteoclasts, the number and surface areas of lacunae were measured by photomicrography and image analysis, and the calcium concentration in the supernatant was measured by the atomic absorption spectrometry. The lacunae morphology was observed under a scanning electron microscope. The results indicated that La3+, Sm3+ and Er3+ at the concentration of 1.00×10-5, 1.00×10-6 and 1.00× 10-7mol/L and Nd3+, Gd3+ and Dy3+ at the concentration of 1.00× 10-5 and 1.00×10-6 mol/L inhibited osteoclastic activity as indicated by the dose-dependent reduction in the numbers and surface areas of the lacunae (P<0.01). On the contrary, the number and surface areas of lanunae were increased and osteoclastic bone resorbing function was significantly enhanced by La3+, Sm3+ and Er3+ at the concentration of 1.00×10?8 mol/L and Nd3+, Gd3+ and Dy3+ at the concentration of 1.00×10-7 mol/L (P<0.01). Nd3+, Gd3+ and Dy3+ had no effect on osteoclastic bone resorption function at concentrations as low as 1.00×10-8 mol/L (P>0.05). It is suggested that the effects of rare earth ions on osteoclastic bone resorption are bidirectional, depending on concentrations and species.

  17. Rural Single Wire Earth Return distribution networks - Associated problems and cost-effective solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, N. [Swinburne University of Technology, PO Box 218, Hawthorn, Vic 3122 (Australia); Mayer, J.E. [Aurecon Australia Pty Ltd., Brisbane (Australia); Wolfs, P.J. [Curtin University of Technology, Perth (Australia)

    2011-02-15

    Single Wire Earth Return (SWER) systems are used for supplying electricity at low cost, where electricity supply is required for small populations of people dispersed across wide geographical areas. It is principally used for rural electrification, but is also used for other isolated loads and light rail. The existing SWER distribution systems have been stretched with the sharp growth of their loads because of customers' change of lifestyle, which has introduced additional load of air conditioning equipment, motors driven by variable-speed drives and inverters. This paper proposes cost-effective solutions to address the problem of voltage regulation and compensation of the unbalancing effect of SWER lines on the three-phase feeder of these lines, which have been exacerbated by this load growth. To improve the voltage regulation problem, a LV switchable reactor has been designed, a prototype made and tested in the field. Also, an unbalance compensator has been designed to reduce the unbalancing effect of SWER lines. Two case networks have been used to perform simulation studies on the effectiveness of both proposed solutions. At first, a case study is used to demonstrate the impact of a switchable reactor on improving voltage regulation. Then, another case study shows that installation of a switchable reactor and an unbalance compensator simultaneously on a SWER distribution system effectively improves voltage regulation and reduces unbalancing effects. (author)

  18. Effects of rare earth elements on growth and metabolism of medicinal plants

    Directory of Open Access Journals (Sweden)

    Chunhong Zhang

    2013-02-01

    Full Text Available The rare earth elements (REEs are a set of 17 chemical elements. They include the lanthanide series from lanthanum (La to lutetium (Lu, scandium (Sc, and yttrium (Y in the periodic table. Although REEs are used widely in industry and agriculture in China for a long time, there has been increasing interest in application of REEs to medicinal plants in recent years. In this paper, we summarize researches in the past few decades regarding the effects of REEs on the germination of seeds, the growth of roots, total biomass, and the production of its secondary metabolites, as well as their effects on the absorption of minerals and metals by medicinal plants. By compilation and analysis of these data, we found that REEs have promoting effects at low concentrations and negative effects at comparatively high concentrations. However, most studies focused only on a few REEs, i.e., La, cerium (Ce, neodymium (Nd and europium (Eu, and they made main emphasis on their effects on regulation of secondary metabolism in tissue-cultured plants, rather than cultivated medicinal plants. Advanced research should be invested regarding on the effects of REEs on yields of cultivated plants, specifically medicinal plants.

  19. Effective dose measured with a life size human phantom in a low Earth orbit mission.

    Science.gov (United States)

    Yasuda, Hiroshi

    2009-03-01

    The biggest concern about the health risk to astronauts is how large the stochastic effects (cancers and hereditary effects) of space radiation could be. The practical goal is to determine the "effective dose" precisely, which is difficult for each crew because of the complex transport processes of energetic secondary particles. The author and his colleagues thus attempted to measure an effective dose in space using a life-size human phantom torso in the STS-91 Shuttle-Mir mission, which flew at nearly the same orbit as that of the International Space Station (ISS). The effective dose for about 10-days flight was 4.1 mSv, which is about 90% of the dose equivalent (H) at the skin; the lowest H values were seen in deep, radiation-sensitive organs/tissues such as the bone marrow and colon. Succeeding measurements and model calculations show that the organ dose equivalents and effective dose in the low Earth orbit mission are highly consistent, despite the different dosimetry methodologies used to determine them.

  20. A nucleosynthetic origin for the Earth's anomalous (142)Nd composition.

    Science.gov (United States)

    Burkhardt, C; Borg, L E; Brennecka, G A; Shollenberger, Q R; Dauphas, N; Kleine, T

    2016-09-15

    A long-standing paradigm assumes that the chemical and isotopic compositions of many elements in the bulk silicate Earth are the same as in chondrites. However, the accessible Earth has a greater (142)Nd/(144)Nd ratio than do chondrites. Because (142)Nd is the decay product of the now-extinct (146)Sm (which has a half-life of 103 million years), this (142)Nd difference seems to require a higher-than-chondritic Sm/Nd ratio for the accessible Earth. This must have been acquired during global silicate differentiation within the first 30 million years of Solar System formation and implies the formation of a complementary (142)Nd-depleted reservoir that either is hidden in the deep Earth, or lost to space by impact erosion. Whether this complementary reservoir existed, and whether or not it has been lost from Earth, is a matter of debate, and has implications for determining the bulk composition of Earth, its heat content and structure, as well as for constraining the modes and timescales of its geodynamical evolution. Here we show that, compared with chondrites, Earth's precursor bodies were enriched in neodymium that was produced by the slow neutron capture process (s-process) of nucleosynthesis. This s-process excess leads to higher (142)Nd/(144)Nd ratios; after correction for this effect, the (142)Nd/(144)Nd ratios of chondrites and the accessible Earth are indistinguishable within five parts per million. The (142)Nd offset between the accessible silicate Earth and chondrites therefore reflects a higher proportion of s-process neodymium in the Earth, and not early differentiation processes. As such, our results obviate the need for hidden-reservoir or super-chondritic Earth models and imply a chondritic Sm/Nd ratio for the bulk Earth. Although chondrites formed at greater heliocentric distances and contain a different mix of presolar components than Earth, they nevertheless are suitable proxies for Earth's bulk chemical composition.

  1. Beyond the Dark matter effective field theory and a simplified model approach at colliders

    CERN Document Server

    Baek, Seungwon; Park, Myeonghun; Park, Wan-Il; Yu, Chaehyun

    2015-01-01

    Direct detection of and LHC search for the singlet fermion dark matter (SFDM) model with Higgs portal interaction are considered in a renormalizable model where the full Standard Model (SM) gauge symmetry is imposed by introducing a singlet scalar messenger. In this model, direct detection is described by an effective operator m_q \\bar{q} q \\bar{\\chi} \\chi as usual, but the full amplitude for monojet + \

  2. Effect of Muons on the Phase Transition in Magnetised Proto-Neutron Star Matter

    CERN Document Server

    Sen-Gupta, A; Singh, S; Anand, J D; Gupta, Asha

    2002-01-01

    We study the effect of inclusion of muons and the muon neutrinos on the phase transition from nuclear to quark matter in a magnetised proto-neutron star and compare our results with those obtained by us without the muons. We find that the inclusion of muons changes slightly the nuclear density at which transition occurs.However the dependence of this transition density on various chemical potentials, temperature and the magnetic field remains quantitatively the same.

  3. Educational Vouchers When There Are Peer Group Effects--Size Matters

    OpenAIRE

    Caucutt, Elizabeth M.

    2002-01-01

    In this article, I study the effects various educational voucher policies have on the sorting of children across schools and the per-student expenditure levels at these schools, when a child's peer group matters and students differ over income and ability. I find that, depending on the magnitude of the voucher, switching from a public system to a voucher system could entail either welfare gains or losses. All voucher policies under consideration lead to greater inequality than the public syst...

  4. Could the Earth's surface Ultraviolet irradiance be blamed for the global warming? (II) ----Ozone layer depth reconstruction via HEWV effect

    CERN Document Server

    Chen, Jilong; Zheng, Yujun

    2014-01-01

    It is suggested by Chen {\\it et al.} that the Earth's surface Ultraviolet irradiance ($280-400$ nm) could influence the Earth's surface temperature variation by "Highly Excited Water Vapor" (HEWV) effect. In this manuscript, we reconstruct the developing history of the ozone layer depth variation from 1860 to 2011 based on the HEWV effect. It is shown that the reconstructed ozone layer depth variation correlates with the observational variation from 1958 to 2005 very well ($R=0.8422$, $P>99.9\\%$). From this reconstruction, we may limit the spectra band of the surface Ultraviolet irradiance referred in HEWV effect to Ultraviolet B ($280-320$ nm).

  5. Effect of organic matter and Si liquid fertilizer on growth and yield of sugar cane

    Directory of Open Access Journals (Sweden)

    Djajadi Djajadi

    2017-02-01

    Full Text Available Sugarcane is known to absorb more Si than any other nutrient from the soil; therefore continuous cropping of the plant at the same soil would bring consequences of more Si and organic matter depletion. Silicon (Si is considered as a beneficial nutrient for sugarcane production while organic matter is well known as soil amendment. Field study was carried out to know the effect of organic and Si liquid fertilizer on growth, Si and N uptake, and yield of cane variety of PSBM 901. The study field was located at Kempleng village, Purwoasri, East Java and the study was done from May 2013 up to September 2014. Split plot design with three replicates was employed to arrange treatments. Organic matter types (no organic matter, Crotalaria juncea and manure were set as main plots while Si liquid fertilizer concentration (0, 15% Si and 30% S were arranged as sub plots. C juncea was planted at 15 days before planting of sugar cane, and after 35 days the C juncea were chopped and mixed into the soil. Manure was added one week before sugar cane was planted. Si liquid fertilizer was sprayed to the whole part of sugar cane plant at 30 and 50 days after sugar cane was planted. All treatments received basal fertilizer of 800 kg ZA/ha, 200 kg SP 36/ha and 300 kg KCl/ha. Results showed that interaction between organic matter and Si liquid fertilizer significantly affected on Si and N absorption, length of stem, yield and rendement of sugar cane. Addition of manure and followed by spraying of 30% Si liquid fertilizer gave the highest value of S and N absorption (869 g SiO2/plant and 720 g N/plant, cane yield (155.74 tons/ha and rendement (8.15%.

  6. Age effects on gray matter volume and attentional performance in Zen meditation.

    Science.gov (United States)

    Pagnoni, Giuseppe; Cekic, Milos

    2007-10-01

    Zen meditation, a Buddhist practice centered on attentional and postural self-regulation, has been speculated to bring about beneficial long-term effects for the individual, ranging from stress reduction to improvement of cognitive function. In this study, we examined how the regular practice of meditation may affect the normal age-related decline of cerebral gray matter volume and attentional performance observed in healthy individuals. Voxel-based morphometry for MRI anatomical brain images and a computerized sustained attention task were employed in 13 regular practitioners of Zen meditation and 13 matched controls. While control subjects displayed the expected negative correlation of both gray matter volume and attentional performance with age, meditators did not show a significant correlation of either measure with age. The effect of meditation on gray matter volume was most prominent in the putamen, a structure strongly implicated in attentional processing. These findings suggest that the regular practice of meditation may have neuroprotective effects and reduce the cognitive decline associated with normal aging.

  7. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    Science.gov (United States)

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  8. Effects of rare earth oxide additives on the thermal behaviors of aluminum nitride ceramics

    Institute of Scientific and Technical Information of China (English)

    YAO Yijun; WANG Ling; LI Chuncheng; JIANG Xiaolong; QIU Tai

    2009-01-01

    The effects of Y_2O_3 and Er_2O_3 on the sintering behaviors, thermal properties and microstructure of AIN ceramics were investigated. The ex-perimental results show that the sintering temperature can be decreased; the relative density and thermal behavior can be improved by adding rare earth oxide in AIN ceramics. For AIN ceramics with 3 wt.% Er_2O_3 additive, the relative density is 98.8%, and the thermal conductivity reaches 106 W·m~(-1)·K~(-1). The microstructure research found that no obvious aluminum erbium oxide was found in AIN ceramics doped with 3 wt.% Er_2O_3, which favored the improvement of the thermal conductivity of AIN ceramics.

  9. Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions

    Science.gov (United States)

    Regetz, J. D., Jr.; Terwilliger, C. H., Jr.

    1979-01-01

    This paper presents the results of a study to determine the directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions of the next three decades in the most cost-effective manner. Discussed are the mission set requirements, state-of-the-art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost-optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system-level electric propulsion parameters. It is found that the efficiency-specific impulse characteristic generally has a more significant impact on overall costs than specific masses or costs of propulsion and power systems.

  10. Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth

    Science.gov (United States)

    Kuhn, W. R.; Atreya, S. K.

    1979-01-01

    Photochemical calculations indicate that in the prebiotic atmosphere of earth ammonia would have been irreversibly converted to N2 in less than 40 years if the ammonia surface mixing ratio were no more than 0.0001. However, if a continuous outgassing of ammonia were maintained, radiative-equilibrium calculations indicate that a surface mixing ratio of ammonia of 0.0001 or greater would provide a sufficient greenhouse effect to keep the surface temperature above freezing. With a 0.0001 mixing ratio of ammonia, 60% to 70% of the present-day solar luminosity would be adequate to maintain surface temperatures above freezing. A lower limit to the time constant for accumulation of an amount of nitrogen equivalent to the present day value is 10 my if the outgassing were such as to provide a continuous surface mixing ratio of ammonia of at least 0.00001.

  11. Effect of Rre Earth Oxides and Silica on Sintering and Microstructure of AZS—40 Materials

    Institute of Scientific and Technical Information of China (English)

    CHAIJun-lan; CHENZhao-you

    1996-01-01

    Effect of the content of La2O3,CeO2 and SiO2 on the sintering behavior and microstruc-ture of AZS-40 material has been studied by means of sintering test and SEM examination,The results show that the porosity of the AZS-40 clinker with addition of 0.5% La2O3 or CeO2 could reach 2% under the ondition of 1600℃ for 4 hours.But it is not beneficial to the sintering and microstructure of the clinkers when the addition of the rare earth oxides increases to more than 0.5%,AZS-40 materials become difficult to be sintered as the addition of SiO2 in the materials incereases.

  12. Oblate-Earth Effects on the Calculation of Ec During Spacecraft Reentry

    Science.gov (United States)

    Bacon, John B.; Matney, Mark

    2017-01-01

    The bulge in the Earth at its equator has been shown to lead to a clustering of natural decays biased to occur towards the equator and away from the orbit's extreme latitudes. Such clustering must be considered when predicting the Expectation of Casualty (Ec) during a natural decay, because of the corresponding clustering of the human population in the lower latitudes. This study expands upon prior work, and formalizes in a single empirical equation the correction that must be made to the calculation of the average exposed population density as a result of this effect. The equation is represented as a function of ballistic number and inclination of the entering spacecraft over the credible range of ballistic numbers.

  13. The Sagnac Phase Shift Suggested by the Aharonov-Bohm Effect for Relativistic Matter Beams

    Science.gov (United States)

    Rizzi, Guido; Ruggiero, Matteo Luca

    2003-10-01

    The phase shift due to the Sagnac Effect, for relativistic matter beams counter-propagating in a rotating interferometer, is deduced on the bases of a formal analogy with the Aharonov-Bohm effect. A procedure outlined by Sakurai, in which non relativistic quantum mechanics and Newtonian physics appear together with some intrinsically relativistic elements, is generalized to a fully relativistic context, using the Cattaneo's splitting technique. This approach leads to an exact derivation, in a self-consistently relativistic way, of the Sagnac effect. Sakurai's result is recovered in the first order approximation.

  14. The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams

    CERN Document Server

    Rizzi, G; Rizzi, Guido; Ruggiero, Matteo Luca

    2003-01-01

    The phase shift due to the Sagnac Effect, for relativistic matter beams counter-propagating in a rotating interferometer, is deduced on the bases of a a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by Sakurai, in which non relativistic quantum mechanics and newtonian physics appear together with some intrinsically relativistic elements, is generalized to a fully relativistic context, using the Cattaneo's splitting technique. This approach leads to an exact derivation, in a self-consistently relativistic way, of the Sagnac effect. Sakurai's result is recovered in the first order approximation.

  15. Effects of CubeSat Deployments in Low-Earth Orbit

    Science.gov (United States)

    Matney, M. J.; Vavrin, A. B.; Manis, A. P.

    2017-01-01

    Long-term models, such as NASA's LEGEND (LEO (Low-Earth Orbit)-to-GEO (Geosynchrous Earth Orbit) Environment Debris) model, are used to make predictions about how space activities will affect the long-term evolution of the debris environment. Part of this process is to predict how spacecraft and rocket bodies will be launched and left in the environment in the future. This has usually been accomplished by repeating past launch history to simulate future launches. It was partially upon the basis of the results of such models that both national and international orbital debris mitigation guidelines - especially the "25-year rule" for post-mission disposal - were determined. The proliferation of Cubesat launches in recent years, however, has raised concerns that we are seeing a fundamental shift in how humans launch satellites into space that may alter the assumptions upon which our current mitigation guidelines are based. The large number of Cubesats, and their short lifetime and general inability to perform collision avoidance, potentially makes them an important new source of debris. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding Cubesats to the environment. Several possible future scenarios were simulated to investigate the effects of the size of future Cubesat launches and the efficiency of post-mission disposal on the proliferation of catastrophic collisions over the next 200 years. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major Cubesat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of post-mission disposal. We also discuss how the proliferation of Cubesats may affect satellite traffic at lower altitudes.

  16. The Effect of Rare Earth Dopants in Crystal Structure of Bi-2212 Superconductor

    Science.gov (United States)

    Suharta, W. G.; Widagda, IGA.; Putra, K.; Suyanto, H.

    2017-03-01

    Bi2Sr2CaCu2O8+∂ samples have been successfully synthesized by doping rare earth (RE) variations using wet-mixing method. Samples calcined at 600°C for 3 hours and sintered at 850°C for 10 hours. The purpose of research is to determine the effect of the RE dopant on the microscopic structure of BSCRECO superconductors. Therefore, the research was conducted characterization by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Measurements with XRD could be carried out and crystal system of Bi2Sr2CaCu2O8+∂ with rare earth (RE) dopants could be determined clearly. Generally, crystallization has occurred very well demonstrated by the diffraction peaks are sharp, which is dominated by the emergence of Bi-2212 phase. Search match results of XRD spectrum showed Bi2Sr2CuOx (2201) and Ca2CuO3 (21) as an impurity phase with small intensity. Also, that is showing volume fraction from 85 to 92% and orthorombic value for all samples from 5 to 7%. The effect of RE dopants resulted a shift angle 2θ and changes in the volume of the unit cells of each sample. The value of the unit cell volume of the largest to smallest is BS(CN)CO, BS(CNG)CO, BS(CNEG)CO, BS(CNE)CO, BS(CG)CO, BS(CEG)CO and BS(CE)CO. Measurement with FTIR showed the bending vibration absorption by CO3 2- in the wavelength range between 1500 and 1520 cm-1, vibration of M-O between 420 and 650 cm-1, the complex formation of BSCCO in the wavelength range between 1690 and 1700 cm-1. Measurement with SEM showed rod shape with particle size in hundreds nanometer.

  17. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    Science.gov (United States)

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  18. Changes in the Earth's Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

    Science.gov (United States)

    Na, Sung-Ho; Cho, Jungho; Kim, Tu-Hwan; Seo, Kiweon; Youm, Kookhyoun; Yoo, Sung-Moon; Choi, Byungkyu; Yoon, Hasu

    2016-12-01

    The atmosphere strongly affects the Earth's spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i) the Earth orientation parameter and ii) the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth's spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth's pole has been observed. The change in the Earth's inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

  19. Sorption of dissolved organic matter and its effects on the atrazine sorption on soils

    Institute of Scientific and Technical Information of China (English)

    LING Wan-ting; WANG Hai-zhen; XU Jian-ming; GAO Yan-zheng

    2005-01-01

    The dissolved organic matter(DOM), water soluble organic matter derived from sewage sludge was separated into hydrophobic fraction(Ho) and hydrophilic fraction(Hi). The sorption of DOM and its fractions on soils and the effects of DOM sorption on a nonionic pesticide(atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-trazine)) distribution between soil and water were investigated using a batch equilibrium technique. The total DOM sorption on soils described by the Langmuir equation reached saturation as the DOMconcentration increased. The sorption of Ho fit the Freundlich model. In contrast, a negative retention evidently occurred as adding Hi at higher level in tested soils. The sorption of Ho dominated the total DOM sorption and the release of soil organic matter(SOM). Effects of DOM on the atrazine sorption by soils were DOM-concentration dependent and dominated by the interaction of atrazine, DOM, and soil solids. Generally, the presence of DOM with lower concentration promoted atrazine sorption on soils, namely the apparent partitioning constant( K; ) for atrazine sorption in the presence of DOM was larger than the distribution constant ( Kd ) without DOM; whereas the presence of DOM with higher concentration inhibited atrazine sorption(i. e., K; < Kd ) . The overall effects of DOM on atrazine sorption in soils might be related to the DOM sorption and the release of soil intrinsic organic matter into aqueous solution. The sorption of Ho on soils promoted the atrazine sorption on soil, while the release of SOM by Hi and the competitive sorption between Hi and atrazine on soil surface led to a decrease of atrazine sorption. Information provided in this work may contribute to a better understanding of the DOM sorption and its impacts on the contaminant soil-water distribution.

  20. Dilation effect on 3D Passive Earth Pressure Coefficients for Retaining Wall

    OpenAIRE

    Khelifa, Tarek; Benmebarek, Sadok

    2015-01-01

    The 2D passive earth pressures acting on rigid retaining walls problem has been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line and numerical computation), however, the 3D passive earth pressures problem has received less attention. This paper is concerned with the numerical study of 3D passive earth pressures induced by the translation of a rigid rough retaining wall for associated and non-associated soils. Using the explicit finite d...